Powered by Deep Web Technologies
Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Lt.  

Office of Legacy Management (LM)

TJ3: 7-Z TJ3: 7-Z 2.u 7 ifp&i?: 9:. .$&q Lt. ~ 3," .z' b ( $ -&7 ;" i C$' d. , : e-. flp w EmfP af XXPW 3PWlJ DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF ENVIRONMENTAL QUALITY BUREAU OF RADIATION PROTECTION 380 SCOTCH ROAD. TRENTON. N. J. 08628 December 21, 1978 Ms. Louisa Little Pierpont Associates, Inc. 405 Lexington Avenue New York City, New York 10017 Dear Ms. Little: The purpose of this letter is to inquire about the present status of the former M. hT. Kellogg site (Kellex) located at the intersection of New Jersey Route 440 and Kellogg Street in Jersey City, New Jersey. The N. J. Department of Environmental Protection (N.J. DEP) has received fnformation that construction is in progress at this site which has resulted in

2

Vermont Nuclear Profile - Vermont Yankee  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont Yankee" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

3

Census Snapshot: Vermont  

E-Print Network (OSTI)

THE WILLIAMS INSTITUTE CENSUS SNAPSHOT VERMONT DECEMBER 2007VERMONT Adam P. Romero, Public Policy Fellow Amanda K.couples raising children in Vermont. We compare same-sex ô

Romero, Adam P; Baumle, Amanda K; Badgett, M.V. Lee; Gates, Gary J

2007-01-01T23:59:59.000Z

4

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Vermont) The purpose of the Employment Growth Incentive (VEGI) is to encourage job creation in Vermont by a Vermont company, a Vermont division of a company that plans to...

5

Vermont Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Vermont Yankee (Entergy Nuclear Vermont Yankee) find more: Distribution & Marketing ; Distribution Centers: Vermont: Oil Seaports/Oil Import Sites None:

6

Vermont Sustainable Jobs Fund (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

The Vermont Sustainable Job Fund offers grants, loans, and technical assistance. VSJF's grant-making depends on the funds it raised and its strategic market development focus. Grant proposals are...

7

Hydraulic Fracturing (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

Vermont prohibits hydraulic fracturing or the collection, storage, or treatment of wastewater from hydraulic fracturing

8

Vermont Wetland Rules (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wetland Rules (Vermont) Wetland Rules (Vermont) Vermont Wetland Rules (Vermont) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Environmental Regulations Provider Department of Environmental Conservation A permit is required for any activity within a Class I or Class II wetland

9

Vermont Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Most of Vermontĺs remaining generation is produced from renewable energy sources, largely from hydroelectric power and fuel wood.

10

401 Certification (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

401 Certification (Vermont) 401 Certification (Vermont) Eligibility Utility Industrial Savings For Buying & Making Electricity Water Home Weatherization Program Information Vermont...

11

Vermont Employment Growth Incentive (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Employment Growth Incentive (Vermont) Employment Growth Incentive (Vermont) Vermont Employment Growth Incentive (Vermont) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Installer/Contractor Retail Supplier Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Industry Recruitment/Support Performance-Based Incentive Provider Vermont Agency of Commerce and Community Development The purpose of the Employment Growth Incentive (VEGI) is to encourage job creation in Vermont by a Vermont company, a Vermont division of a company that plans to grow and expand in Vermont, a company considering locating a new business or division in Vermont, or a Vermont start-up business

12

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

farms, schools, buildersdevelopers, and local & state governments. July 12, 2013 Small Commercial Refrigeration Incentive Efficiency Vermont offers financial incentives to cover...

13

Capital Access Program (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

The Capital Access Program provides loan guarantees to small businesses seeking access to commercial credit. Premiums paid by the borrower and matched by Vermont Economic Development Authority fund...

14

Retail Unbundling - Vermont  

U.S. Energy Information Administration (EIA)

Status: The State has no unbundled services for residential customers. Overview: In September 2006, the Vermont Public Service Board (Board) approved a memorandum ...

15

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Than 38.8 Million in Weatherization Funding and Energy Efficiency Grants for Vermont Part of nearly 8 billion in Recovery Act funding for energy efficiency efforts...

16

,"Vermont Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Prices",10,"Annual",2012,"6301980" ,"Release Date:","10312013" ,"Next Release...

17

C. Lt. Cooper  

Office of Legacy Management (LM)

C. Lt. Cooper C. Lt. Cooper c i+ ."',Z &+.), . - p 1 i ,P. f %:,:-I ! 19~~3 L. - F.M \ E3rush 3eryllium Company ~~~~io,tp!rr~~~~~~~~!~~~~~ I. * I/ :@ k 3 on August 2nd, I visited Brush beryllium Company along with Edajor &dlock and %,l,jor Eussell. arush representatives in the conference were Dr. C, B. Saver, ?resident, and Xessrs. Ejellgren, Christiansen, Fletcher and Zavarine. production of Tuballoy at arush ceased on July 31St* Furnaces Tre- tiously used fmTuballoy will be remodelled for manufacture of aeryl- lium, thus releasing melting furnaces at the Loraine plant for produc- tion of beryllium fluoride. This shift will make. their metal production capacity 600 pounds per month of which 500 lbs. will be available,to the project. It was agreed that the kngineers would place a,n order with arush for

18

,"Vermont Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

80SVT3","N3050VT3","N3010VT3","N3020VT3","N3035VT3","N3045VT3" "Date","Vermont Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Vermont Natural Gas Pipeline and...

19

State Energy Program Assurances - Vermont Governor Douglas |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Energy Program Assurances - Vermont Governor Douglas State Energy Program Assurances - Vermont Governor Douglas Letter from Vermont Governor Douglas providing Secretary Chu...

20

Vermont/Incentives | Open Energy Information  

Open Energy Info (EERE)

Vermont/Incentives Vermont/Incentives < Vermont Jump to: navigation, search Contents 1 Financial Incentive Programs for Vermont 2 Rules, Regulations and Policies for Vermont Download All Financial Incentives and Policies for Vermont CSV (rows 1 - 100) Financial Incentive Programs for Vermont Download Financial Incentives for Vermont CSV (rows 1 - 50) Incentive Incentive Type Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit No Agricultural Lighting and Equipment Rebate Program (Vermont) State Rebate Program Yes Burlington Electric Department - Commercial Energy Efficiency Rebate Program (Vermont) Utility Rebate Program Yes Burlington Electric Department - Multi-Family Rental Energy Efficiency Rebate Program (Vermont) Utility Rebate Program Yes

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Vermont/EZ Policies | Open Energy Information  

Open Energy Info (EERE)

and wages in the applicable tax year. The credit was established in 1998 to foster new job creation within Vermont. Underground Injection Control Rule (Vermont) Vermont...

22

Vermont Energy Investors Corp | Open Energy Information  

Open Energy Info (EERE)

Vermont Energy Investors Corp Jump to: navigation, search Name Vermont Energy Investors Corp Place Burlington, Vermont Zip VT 05401-4 Sector Efficiency, Renewable Energy Product...

23

Reunion Power LLC Vermont | Open Energy Information  

Open Energy Info (EERE)

Reunion Power LLC Vermont Jump to: navigation, search Name Reunion Power LLC (Vermont) Place Vermont Sector Biomass Product Reunion Power holds a portfolio of biomass projects that...

24

Frog fence along Vermont Rt. 2 in sandbar wildlife management area collaboration between Vermont Agency of Transportation and Vermont Agency of Natural Resources  

E-Print Network (OSTI)

FROG FENCE ALONG VERMONT RT. 2MANAGEMENT AREA COLLABORATION BETWEEN VERMONT AGENCY OFTRANSPORTATION AND VERMONT AGENCY OF NATURAL RESOURCES

Hoffman, Nelson

2003-01-01T23:59:59.000Z

25

Vermont Seed Capital Fund (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seed Capital Fund (Vermont) Seed Capital Fund (Vermont) Vermont Seed Capital Fund (Vermont) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Retail Supplier Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Corporate Tax Incentive Provider Vermont Department of Taxes The Vermont Seed Capital Fund increases the amount of investment capital available to new Vermont firms or to existing Vermont firms for the purpose of expansion. The first $5 million of capitalization contributed by taxpayers on or before January 1, 2014. Lesser of 4% of contribution or 50% of tax liability prior to allowance of this credit. There is a four year

26

Efficiency Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Vermont Efficiency Vermont Efficiency Vermont < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Program Info State Vermont Program Type Public Benefits Fund Provider Efficiency Vermont In June 1999, Vermont enacted legislation authorizing the Vermont Public Service Board (PSB) to establish a volumetric charge on all electric customers' bills to support energy-efficiency programs. As a result, in 2000 the PSB established Efficiency Vermont and a funding mechanism to support it. The funding mechanism, which varies by utility, is based on factors unique to each utility's service territory and is reviewed periodically and adjusted as necessary by the PSB.* It should be noted that Burlington Electric Department is not required to fund Efficiency Vermont;

27

Competitive Wind Grants (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competitive Wind Grants (Vermont) Competitive Wind Grants (Vermont) Eligibility Agricultural Commercial Construction Industrial Institutional Local Government Low-Income...

28

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 15, 2010 A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo Jobs, sustainable heating coming to Vermont city Their new...

29

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Program - Passumpsic CX(s) Applied: B5.1 Date: 04192010 Location(s): St. Johnsbury, Vermont Office(s): Energy Efficiency and Renewable Energy, National Energy...

30

Vermont Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Vermont Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional...

31

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination Clean Energy Development Fund - Renewable Energy Program - Candelora Hydro Project CX(s) Applied: B1.15, B5.1 Date: 04282011 Location(s): Pownal, Vermont...

32

The Vermont Gasifier  

DOE Green Energy (OSTI)

A new demonstration biomass gasifier in Burlington, Vermont, is a major advance toward biopower systems of the 21st century. The purpose of the project is to verify design and operating characteristics of this gasification technology at an intermediate size. The Vermont gasifier is rated at 200 tons of biomass per day. The demonstration will allow further scale-up to a first-of-its-kind commercial gasifier to be demonstrated in the future at an industrial or utility scale.

Jones, J.; Wulf, T.

1998-09-28T23:59:59.000Z

33

EA-82 Vermont Electric Power Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

82 Vermont Electric Power Company EA-82 Vermont Electric Power Company Order authorizing Vermont Electric Power Company to export electric energy to Canada EA-82 Vermont Electric...

34

A-&lt;  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

< &lt; Enclosure 2 ..- Page 1 of 2 RECORDS DlSPOSrrlON AUTHORITY (k IrrEtnx;tmr wl ma^) DATE RECEIVED 1. FROM (AgbncyoreaWWmmt NOTIFICATION TO AGENCY DepamncntofErmyy . 1 4.. NA?$E OF PERSON WITH WHOM TO CONFER 5. TELEPHONE I 6 . A G t N C Y CtK l ItlCATION I ~ E a r t i f y t M I m ~ b 3 ~ f D T ~ . o 1 c 1 c y m ~ p b c . t r i n b . g t o t h e ~ o f ~ r s c o r e b u d t f r t t t h a r s c o r d r ~ f o r ~ m t h s d b e h d p r g s ( s ) w s n o t m n r c b d f o r t h a k a i n s r r o f t h b . g c n c y ~ w i l l n o t b s m d s d r r R t r t h s ~ p c w i o d r r p e c i f i e d ; P d m ~ a n c u r r s n o e f r a t h e ~ ~ D f f i a , w h p r w k a n s o f R t h 8 o f t h t GAO ktuunl for Guidance d Fsddnl Apsndro, Core Contract Records See attached description 115.109 NSN STANDARD FORM 115 (REV. 3.91) PREVIOUS EDITION NOT USABLE P-bul by NARA 36 CFR 1228 Enclosure 2 Page 2 of 2 (1) Unit - PNR Contracts and Security ~ivision (2) Description - Contracts for procurement of reactor cores,

35

Vermont 504 Loan Program (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

504 Loan Program (Vermont) 504 Loan Program (Vermont) Vermont 504 Loan Program (Vermont) < Back Eligibility Commercial Agricultural Industrial Construction Installer/Contractor Retail Supplier Fuel Distributor Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Loan Program Provider Vermont Economic Development Authority The Vermont 504 Loan Program makes SBA 504 loans to eligible borrowers whose business net worth is no more than $15 million and whose average net profit after taxes does not exceed $5 million for two prior years. The program uses proceeds of SBA debentures to finance borrowers' business needs. SBA 504 loans are made in conjunction other third party lenders that

36

Vermont.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Vermont Vermont www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

37

Vermont.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Vermont Vermont www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

38

Vermont Climate Change Indicators  

Science Conference Proceedings (OSTI)

Climate change indicators are developed for Vermont in recent decades based on the trends in freeze dates, the length of the growing season, the frozen period of small lakes, and the onset of spring. These trends, which show a consistent pattern ...

Alan K. Betts

2011-04-01T23:59:59.000Z

39

The Vermont Study on Domestic Violence and the Workplace............................................................. 7  

E-Print Network (OSTI)

the Vermont Workplace? A survey of male offenders enrolled in batterer intervention programs in Vermont

Michele Cranwell Schmidt

2011-01-01T23:59:59.000Z

40

Vermont - State Energy Profile Overview - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Vermont Business Energy Conservation Loan Program, Vermont Economic Development Authority. more. Background. Updates. Notes & Sources.

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Vermont/EZFeed Policies | Open Energy Information  

Open Energy Info (EERE)

StateProvince The purpose of the Employment Growth Incentive (VEGI) is to encourage job creation in Vermont by a Vermont company, a Vermont division of a company that plans to...

42

Vermont Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

VermontGasPrices.com (Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com Vermont Gas Prices (Ciudades Selectas) - GasBuddy.com Vermont Gas Prices (Organizado por Condado)...

43

G?)~~&lt;+!T  

Office of Legacy Management (LM)

- - G?)~~<+!T (?-?A / ;--\h \ , ; - \\ HAZARDOUS WASTE - _ I N S T A L L A T I O N ASSESSMENT REPORT BY D A V I D N - F A U V E R MAY 1986 IT kh; E,?$$ C / ~ R / I R ~ WORK PERFORMED UNDER C O N T R A C T NO. D E - A C 0 8 - 8 4 N V 1 0 3 2 7 REYNOLDS E L E C T R I C A L g ENGINEERING C O * , INC POST O F F I C E BOX 14400 LAS VEGAS, NV 8 9 1 1 q DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. HAZARDOUS W A S T E I N S T A L L A T I O N A S S E S S M E N T R E P O R T B Y D A V I D N. F A U V E R MAY 1986 WORK PERFORMED U N D E R C O N T R A C T NO. D E - A C 0 8 - 8 4 N V 1 0 3 2 7 R E Y N O L D S E L E C T R I C A L & E N G I N E E R I N G COW, I N C - P O S T O F F I C E B O X 1 4 4 0 0 L A S VEGAS, N V 8 9 1 1 q This page intentionally left blank DISCLAIMER T h i s r e p o r t was p r e p a r e d as an account o f work sponsored by an agency o

44

Direct Discharge Permit (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Discharge Permit (Vermont) Direct Discharge Permit (Vermont) Eligibility Utility Agricultural Investor-Owned Utility Industrial MunicipalPublic Utility Rural Electric Cooperative...

45

Energy Crossroads: Utility Energy Efficiency Programs Vermont...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vermont Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Green Mountain Power Information for Businesses Central Vermont Public Service...

46

Vermont/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Vermont/Geothermal Vermont/Geothermal < Vermont Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Vermont Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Vermont No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Vermont No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Vermont No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Vermont Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

47

STUDENT MOBILITY IN VERMONT SCHOOLS:.  

E-Print Network (OSTI)

??This dissertation project researched sudent mobilityáľ school changes not due to customary promotionáľ and its educational correlates, for students and schools in Vermont. Student mobilityů (more)

Morgan, Annabelle

48

Wind powering America: Vermont  

DOE Green Energy (OSTI)

Wind resources in the state of Vermont show great potential for wind energy development according to the wind resource assessment conducted by the state, its utilities, and NREL. This fact sheet provides a brief description of the resource assessment and a link to the resulting wind resource map produced by NREL. The fact sheet also provides a description of the state's net metering program, its financial incentives, and green power programs as well as a list of contacts for more information.

NREL

2000-04-11T23:59:59.000Z

49

Microsoft Word - vermont.doc  

Gasoline and Diesel Fuel Update (EIA)

Vermont Vermont NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Nuclear Net Summer Capacity (megawatts) ....................................................................... 1,128 50 Electric Utilities ...................................................................................................... 260 45 Independent Power Producers & Combined Heat and Power ................................ 868 43 Net Generation (megawatthours) ........................................................................... 6,619,990 49 Electric Utilities ...................................................................................................... 720,853 44

50

Vermont | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Vermont Vermont Last updated on 2013-06-03 Current News The Vermont Commercial Building Energy Standards (CBES) became effective January 3, 2012. The CBES incorporates elements of the 2012 IECC. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information 2011 Vermont Commercial Building Energy Standards (CBES) are based on the 2009 IECC. Commercial Building Energy Standards Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Vermont (BECP Report, Sept. 2009) Approximate Energy Efficiency More energy efficient than 2009 IECC Effective Date 01/03/2012 Adoption Date 10/03/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No

51

PP-82 Vermont Electric Power Company, Inc. (VELCO) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Electric Power Company, Inc. (VELCO) PP-82 Vermont Electric Power Company, Inc. (VELCO) Presidental Permit authorizing Vermont Electric Power Company, Inc. (VELCO) to...

52

Vermont Air Pollution Control Regulations, Major Stationary Sources...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Stationary Sources and Major Modifications (Vermont) Vermont Air Pollution Control Regulations, Major Stationary Sources and Major Modifications (Vermont) Eligibility Utility...

53

The Sanderistas and a Metamorphosis of Burlington, Vermont  

E-Print Network (OSTI)

and a Metamorphosis of Burlington, Vermont Bryan Higgins HowConnecticut; and Burlington, Vermont, which elected angeography of Burlington, Vermont. A look at the geographies

Higgins, Bryan

1986-01-01T23:59:59.000Z

54

PP-76 The Vermont Electric Transmission Company | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 The Vermont Electric Transmission Company PP-76 The Vermont Electric Transmission Company Presidential Permit authorizing The Vermont Electric Transmission Company to construct,...

55

Vermont Air Pollution Control Regulations, Ambient Air Quality...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ambient Air Quality Standards (Vermont) Vermont Air Pollution Control Regulations, Ambient Air Quality Standards (Vermont) Eligibility Utility Agricultural Investor-Owned Utility...

56

PP-76-1 The Vermont Electric Transmission Company | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

76-1 The Vermont Electric Transmission Company PP-76-1 The Vermont Electric Transmission Company Presidential Permit authorizing The Vermont Electric Transmission Company to...

57

EA-288 Vermont Electric Cooperative, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Vermont Electric Cooperative, Inc. EA-288 Vermont Electric Cooperative, Inc. Order authorizing Vermont Electric Cooperative, Inc. to export electric energy to Canada EA-288...

58

PP-69 Vermont Electric Cooperative, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 Vermont Electric Cooperative, Inc. PP-69 Vermont Electric Cooperative, Inc. Presidential permit authorizing Vermont Electric Cooperative, Inc. to construct, operate, and maintain...

59

Alternative Fuels Data Center: Vermont Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vermont Information to Vermont Information to someone by E-mail Share Alternative Fuels Data Center: Vermont Information on Facebook Tweet about Alternative Fuels Data Center: Vermont Information on Twitter Bookmark Alternative Fuels Data Center: Vermont Information on Google Bookmark Alternative Fuels Data Center: Vermont Information on Delicious Rank Alternative Fuels Data Center: Vermont Information on Digg Find More places to share Alternative Fuels Data Center: Vermont Information on AddThis.com... Vermont Information This state page compiles information related to alternative fuels and advanced vehicles in Vermont and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

60

Evaluation of a wildlife underpass on Vermont State Highway 289 in Essex, Vermont  

E-Print Network (OSTI)

Scharf, technicians for the Vermont Department of Fish andEVALUATION OF A WILDLIFE UNDERPASS ON VERMONT STATE HIGHWAY289 IN ESSEX, VERMONT John M. Austin and Larry Garland,

Austin, John M.; Garland, Larry

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Vermont Air Pollution Control Regulations, Ambient Air Quality Standards (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

The ambient air quality standards are based on the national ambient air quality standards. The Vermont standards are classified as primary and secondary standards and judged adequate to protect...

62

Forestry Policies (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont) Vermont) Forestry Policies (Vermont) < Back Eligibility Commercial Agricultural Program Info State Vermont Program Type Environmental Regulations Provider Vermont Department of Forests, Parks and Recreation Vermont forests cover nearly 5 million acres, a large portion of the state. These lands are managed by the Vermont Division of Forestry (http://www.vtfpr.org/htm/forestry.cfm). The Division completed its Forest Resources Plan in 2010, which includes discussion of forest wood for energy: http://www.vtfpr.org/htm/documents/VT%20Forest%20Resources%20Plan.pdf In 2007 the Biomass Energy Resource Center issued "The Vermont Wood Fuel Supply Study", a review of the availability, location, estimated cost, and recommendations for woody biomass material from Vermont forests:

63

Small Business Loan Program (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont) Small Business Loan Program (Vermont) Eligibility Commercial Agricultural Industrial Construction InstallerContractor Retail Supplier Fuel Distributor Savings For...

64

Solid Waste Management Rules (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules establish procedures and standards to protect public health and the environment by ensuring the safe, proper, and sustainable management of solid waste in Vermont. The rules apply to...

65

Recovery Act State Memos Vermont  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Vermont For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................ 4

66

Better Buildings Partners: Rutland County, Vermont  

NLE Websites -- All DOE Office Websites (Extended Search)

Rutland County, Vermont Rutland County, Vermont H.E.A.T. Squad Warms Homeowners up to Energy Efficiency Photo of an ornate historical building, with flowering trees beside it. A...

67

Climate Action Plan (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont) Vermont) Climate Action Plan (Vermont) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Climate Policies Provider Vermont Agency of Natural Resources There is a growing scientific consensus that increasing emissions of greenhouse gases to the atmosphere are affecting the temperature and

68

Flexible Capital Fund (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flexible Capital Fund (Vermont) Flexible Capital Fund (Vermont) Flexible Capital Fund (Vermont) < Back Eligibility Commercial Agricultural Construction Rural Electric Cooperative Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Loan Program Provider Vermont Sustainable Jobs Fund The Vermont Sustainable Jobs Fund's Flexible Capital Fund (the "Flex Fund") is designed for companies in Vermont's rural areas that are smaller and work on a less-than global scale, offering a return on investment that does not always meet venture capital levels. These rural companies may need a form of "equity" to fuel growth but need it in lesser amounts and perhaps at lower returns than traditional venture

69

Categorical Exclusion Determinations: Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Vermont Categorical Exclusion Determinations: Vermont Location Categorical Exclusion Determinations issued for actions in Vermont. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2013 CX-010757: Categorical Exclusion Determination The New England Solar cost-Reduction Challenge Partnership CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Vermont, New Hampshire, Rhode Island, Massachusetts, Connecticut Offices(s): Golden Field Office June 14, 2013 CX-010522: Categorical Exclusion Determination Gravity head Energy System (GHES) CX(s) Applied: A9, B3.6 Date: 06/14/2013 Location(s): Vermont, Texas Offices(s): Golden Field Office April 26, 2013 CX-010174: Categorical Exclusion Determination A Comprehensive Investigation of Unsteady Reciprocating Effects on Near-Wall Heat Transfer in Engines

70

VERMONT AGENCY OF TRANSPORTATION WILDLIFE CROSSING TEAM; BUILDING AN INTER-AGENCY PLANNING TOOL TO ADDRESS ECOLOGICAL CONNECTIVITY IN VERMONT  

E-Print Network (OSTI)

He serves as chair of the Vermont Reptile and Amphibianis coordinator of the Vermont Reptile and Amphibian Atlas.biologist with the Vermont Dept. of Fish and Wildlife. John

Slesar, Chris; Morse, Susan C.; Austin, John M.

2003-01-01T23:59:59.000Z

71

Direct Loan Program Subchapter 5 (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Subchapter 5 (Vermont) Subchapter 5 (Vermont) Direct Loan Program Subchapter 5 (Vermont) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Loan Program Provider Vermont Economic Development Authority The Direct Loan Program assists Vermont borrowers in financing fixed assets and in cooperation with commercial banks. The Vermont Economic Development Authority may either make its own direct loan or purchase a portion of a bank loan to enable greater access to debt financing for Vermont businesses. The loan may be used for the purchase of land and buildings, including construction or renovation, and for the purchase and installation

72

Bennington County, Vermont ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bennington County, Vermont ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bennington County, Vermont ASHRAE Standard ASHRAE 169-2006 Climate...

73

Vermont Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Vermont Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Vermont Natural Gas Pipeline and Distribution Use (Million...

74

Vermont Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Vermont Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Vermont Natural Gas Pipeline and...

75

Vermont Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Recovery Act State Memo Vermont Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and...

76

Interview: LaborWorks@NeighborWorks Provides Vermont Contractors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Focus Series LaborWorks@NeighborWorks Provides Vermont Contractors With Help When They Need It NeighborWorks of Western Vermont (NWWVT), a nonprofit home ownership organization...

77

Vermont Propane Retail Sales by Refiners (Thousand Gallons per Day)  

U.S. Energy Information Administration (EIA)

Referring Pages: Propane (Consumer Grade) Sales to End Users Refiner Sales Volumes; Vermont Propane (Consumer Grade) Refiner Sales Volumes; Vermont Sales to End Users ...

78

Agricultural Lighting and Equipment Rebate Program (Vermont)...  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Agricultural Lighting and Equipment Rebate Program (Vermont) This is the approved revision of this page, as...

79

Vermont Gas- Commercial Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Vermont Gas (VGS) offers two energy efficiency programs for commercial customers: the WorkPlace New Construction Program and the WorkPlace Equipment Replacement and Retrofit Program.

80

Investment Tax Credit (Vermont) | Open Energy Information  

Open Energy Info (EERE)

DSIRE 07072012 References DSIRE1 Summary Vermont offers an investment tax credit for installations of renewable energy equipment on business properties. The credit is equal to...

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

GMP - Biomass Electricity Production Incentive (Vermont) | Open...  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon GMP - Biomass Electricity Production Incentive (Vermont) This is the approved revision of this page, as well...

82

Vermont Transco, LLC | Open Energy Information  

Open Energy Info (EERE)

Transco, LLC Jump to: navigation, search Name Vermont Transco, LLC Place Rutland, VT Website http:www.vermonttransco.com References SGIC1 No information has been entered for...

83

VERMONT INCARCERATED WOMENSĺ INITIATIVE DRUG EDUCATION.  

E-Print Network (OSTI)

??The Vermont Agency of Human Services Incarcerated Womenĺs Initiative (IWI), constituted in April of 2005, was instrumental in supporting the development and implementation of aů (more)

Onderwyzer, Susan

2005-01-01T23:59:59.000Z

84

,"Vermont Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","72013" ,"Release...

85

Energy Incentive Programs, Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Vermont Energy Incentive Programs, Vermont October 29, 2013 - 1:19pm Addthis Updated December 2012 What public-purpose-funded energy efficiency programs are available in my state? In 1999, Vermont's state legislature approved legislation giving the Public Service Board (PSB) the authority to establish a systems benefit charge to fund statewide energy efficiency programs via a non-utility entity (in lieu of utility-specific programs). Subsequently, the PSB approved the creation of an "energy efficiency utility" to run energy conservation programs in the state. The program administrator, Efficiency Vermont, had its budget increased by the PSB in 2006 such that funding levels moved from roughly $19 million in 2006 to over $35 million in 2010 (including low income and

86

Categorical Exclusion Determinations: Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 27, 2011 June 27, 2011 CX-006204: Categorical Exclusion Determination Vermont Biofuels Initiative: Green Mountain Spark CX(s) Applied: B3.6 Date: 06/27/2011 Location(s): Burlington, Vermont Office(s): Energy Efficiency and Renewable Energy, Golden Field Office June 17, 2011 CX-006134: Categorical Exclusion Determination Clean Energy Development Fund Renewable Energy Program Market Title - Goddard College Biomass Heating Plant CX(s) Applied: B1.15, B5.1 Date: 06/17/2011 Location(s): Plainfield, Vermont Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 18, 2011 CX-005933: Categorical Exclusion Determination Sustainable Energy For Vermont Schools CX(s) Applied: B5.1 Date: 05/18/2011 Location(s): Burlington, Vermont Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

87

PP-82-2 Vermont Electric Power Company, Inc. (VELCO) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Vermont Electric Power Company, Inc. (VELCO) PP-82-2 Vermont Electric Power Company, Inc. (VELCO) Presidential Permit authorizing Vermont Electric Power Company, Inc. (VELCO) to...

88

PP-66-1 Vermont Electric Power Company, Inc. | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Vermont Electric Power Company, Inc. PP-66-1 Vermont Electric Power Company, Inc. Presidential Permit authorizing Vermont Electric Power Company, Inc. to construct, operate, and...

89

PP-66-2 Vermont Electric Power Company, Inc. | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Vermont Electric Power Company, Inc. PP-66-2 Vermont Electric Power Company, Inc. Presidential Permit authorizing Vermont Electric Power Company, Inc. to construct, operate and...

90

A GIS-based identification of potentially significant wildlife habitats associated with roads in Vermont  

E-Print Network (OSTI)

Capen. 1997. A report on the biophysical regions in Vermont.report prepared for the Vermont Ecomapping Roundtable.scientist with the Vermont Fish and Wildlife Department and

Austin, John M.; Viani, Kevin; Hammond, Forrest; Slesar, Chris

2005-01-01T23:59:59.000Z

91

PP-80-1 Vermont Electric Cooperative, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-1 Vermont Electric Cooperative, Inc. PP-80-1 Vermont Electric Cooperative, Inc. Presidential Permit authorizing Vermont Electric Cooperative, Inc to construct, operate and...

92

Vermont's At-large congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Vermont's At-large congressional district: Energy Resources Vermont's At-large congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Vermont. Contents 1 US Recovery Act Smart Grid Projects in Vermont's At-large congressional district 2 Registered Policy Organizations in Vermont's At-large congressional district 3 Registered Energy Companies in Vermont's At-large congressional district 4 Energy Generation Facilities in Vermont's At-large congressional district US Recovery Act Smart Grid Projects in Vermont's At-large congressional district Vermont Transco, LLC Smart Grid Project Registered Policy Organizations in Vermont's At-large congressional district Clean Energy States Alliance

93

Alternative Fuels Data Center: Vermont Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vermont Points of Vermont Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Vermont Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Vermont Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Vermont Points of Contact on Google Bookmark Alternative Fuels Data Center: Vermont Points of Contact on Delicious Rank Alternative Fuels Data Center: Vermont Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Vermont Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Points of Contact The following people or agencies can help you find more information about Vermont's clean transportation laws, incentives, and funding opportunities.

94

Alternative Fuels Data Center: Vermont Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vermont Laws and Vermont Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Vermont. Your Clean Cities coordinator at

95

Vermont Marble Company, Proctor, Vermont: Otter Creek hydroelectric feasibility report  

DOE Green Energy (OSTI)

Vermont Marble Company (VMCO) owns and operates four hydroelectric projects in a 50-mile reach of Otter Creek in west central Vermont. This study concerns three of the installations - Center Rutland, Beldens, and Huntington Falls. The fourth site is known as Proctor and will be studied separately. All four plants operate as run-of-river stations, and the limited reservoir storage capacity places severe limitations on any other type of operation. The plants are presently operating at much lower outputs than can be obtained, because they do not use the available discharge and head. The results show that, under the assumptions made in this study, Beldens and Huntington Falls can be economically improved. The rehabilitation of the Center Rutland plant did not look economically attractive. However, the improvement of Center Rutland should not be eliminated from further consideration, because it could become economically attractive if the cost of energy starts escalating at a rate of around 10% per year. The study included a brief appraisal of the existing generating facilities and condition of existing concrete structures, a geological reconnaissance of the sites, analysis of the power potential, flood studies, technical and economic investigations and comparative evaluations of the alternatives for developing the streamflow for power generation, selection of the most suitable alternative, financial analysis, preparation of drawings, and preparation of detailed quantity and cost estimates.

None

1979-02-01T23:59:59.000Z

96

Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vermont: Energy Resources Vermont: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5588028,"lon":-72.5778415,"alt":0,"address":"Vermont","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

97

A new town hall for Norwich, Vermont  

E-Print Network (OSTI)

... the public building is not an abstract symbol, but partakes in daily life, which relates to what is timeless and common. The objective of this thesis was to design a new town hall for Norwich, Vermont. The design ...

Harboe, Peter Thomas McIlvaine

1988-01-01T23:59:59.000Z

98

Vermont/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Vermont/Wind Resources Vermont/Wind Resources < Vermont Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Vermont Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

99

Categorical Exclusion Determinations: Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 4, 2010 August 4, 2010 CX-003316: Categorical Exclusion Determination Biomass Heating Project Under Public Serving Institutions Market Title CX(s) Applied: B5.1 Date: 08/04/2010 Location(s): Newport, Vermont Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 4, 2010 CX-003228: Categorical Exclusion Determination Vermont Biofuels Initiative: Bournes CX(s) Applied: B3.6 Date: 08/04/2010 Location(s): Vermont Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 3, 2010 CX-003317: Categorical Exclusion Determination Light Emitting Diode (LED) Lighting Project for Public Serving Institutions Market Title CX(s) Applied: B5.1 Date: 08/03/2010 Location(s): Swanton, Vermont Office(s): Energy Efficiency and Renewable Energy, National Energy

100

Stream Obstruction Regulations (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont law prohibits the installation of a structure, such as a dam, that prevents fish movement, unless an approval has been granted by the Commissioner of Fish and Wildlife....

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Regulations and Permits Related to Dams (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

Vermont law requires a permit, or a dam order, for the construction, alteration, or removal of dams impounding more than 500,000 cubic feet of water, including any accumulated sediments. Dam...

102

Alternative Regulation (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation (Vermont) Regulation (Vermont) Alternative Regulation (Vermont) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Generating Facility Rate-Making Utility regulators, including the Public Service Board, have applied a new type of regulation, often called "alternative regulation" or "incentive regulation." There are many variants of this type of regulation, but the common foundation is that rates are set differently from the traditional cost-of-service approach. Sometimes there is a performance-based aspect to

103

Vermont Standard Offer for Qualifying SPEED Resources | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Standard Offer for Qualifying SPEED Resources Vermont Standard Offer for Qualifying SPEED Resources Vermont Standard Offer for Qualifying SPEED Resources < Back Eligibility Agricultural Commercial Industrial Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Maximum Rebate Varies by technology Program Info Start Date 09/30/2009 State Vermont Program Type Performance-Based Incentive Rebate Amount Varies by technology Provider VEPP, Inc. '''''Note: The first RFP for the new competitive award process has passed; applications were accepted through May 1, 2013. See the program web site for information regarding future solicitations. ''''' In May 2009, Vermont enacted legislation requiring all Vermont retail electricity providers to purchase electricity generated by eligible

104

VERMONT  

Science Conference Proceedings (OSTI)

... for purchase without the assistance of sales personnel. ... in one receptacle for the purpose of a one-priced sale. ... with a label such as a gun type label. ...

2011-03-21T23:59:59.000Z

105

Vermont Land Use and Development, Act 250 (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Use and Development, Act 250 (Vermont) Land Use and Development, Act 250 (Vermont) Vermont Land Use and Development, Act 250 (Vermont) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Environmental Regulations Provider Agency of Natural Resources The Act 250 program provides a public, quasi-judicial process for reviewing

107

Regional Vermont Agency Provides Work in Tight-Knit Communities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Agency Provides Work in Tight-Knit Communities Vermont Agency Provides Work in Tight-Knit Communities Regional Vermont Agency Provides Work in Tight-Knit Communities June 11, 2010 - 4:33pm Addthis Weatherization auditors and crews assist in making a Vermont home more energy-efficient in New England winters. | Photo Courtesy of Southeastern Vermont Community Action (SEVCA) Agency | Weatherization auditors and crews assist in making a Vermont home more energy-efficient in New England winters. | Photo Courtesy of Southeastern Vermont Community Action (SEVCA) Agency | Joshua DeLung "I think everyone has their heart in it. I think we see weatherization as a really worthy process." Morgan McKane, weatherization auditor at SEVCA Morgan McKane spent most of his career in southeast Vermont working in the

108

Alternative Fuels Data Center: Vermont Laws and Incentives for NEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

NEVs to someone by E-mail NEVs to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for NEVs on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for NEVs on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for NEVs on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for NEVs on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for NEVs on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for NEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for NEVs The list below contains summaries of all Vermont laws and incentives

109

Alternative Fuels Data Center: Vermont Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Other The list below contains summaries of all Vermont laws and incentives

110

Alternative Fuels Data Center: Vermont Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives Listed below are the summaries of all current Vermont laws, incentives, regulations, funding opportunities, and other initiatives related to

111

Alternative Fuels Data Center: Vermont Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Other The list below contains summaries of all Vermont laws and incentives

112

Alternative Fuels Data Center: Vermont Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for EVs The list below contains summaries of all Vermont laws and incentives related to EVs.

113

Vermont Yankee Nucl Pwr Corp | Open Energy Information  

Open Energy Info (EERE)

Yankee Nucl Pwr Corp Jump to: navigation, search Name Vermont Yankee Nucl Pwr Corp Place Vermont Utility Id 19796 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes...

114

Vermont Electric Trans Co Inc | Open Energy Information  

Open Energy Info (EERE)

Trans Co Inc Jump to: navigation, search Name Vermont Electric Trans Co Inc Place Vermont Utility Id 19950 Utility Location Yes Ownership T NERC Location NPCC NERC NPCC Yes ISO NE...

115

Alternative Fuels Data Center: Vermont Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Other The list below contains summaries of all Vermont laws and incentives

116

Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Ethanol The list below contains summaries of all Vermont laws and incentives

117

Alternative Fuels Data Center: Vermont Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Other The list below contains summaries of all Vermont laws and incentives

118

Alternative Fuels Data Center: Vermont Laws and Incentives for Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel to someone by E-mail Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Biodiesel on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Biodiesel on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Biodiesel The list below contains summaries of all Vermont laws and incentives

119

The return of the Eastern Racer to Vermont; successful conservation through proactive project development and interagency collaboration  

E-Print Network (OSTI)

specialist at the Vermont Agency of Transportation. He hasHe serves as chair of the Vermont Reptile and Amphibianis coordinator of the Vermont Reptile and Amphibian Atlas.

Slesar, Chris; Andrews, James S.

2005-01-01T23:59:59.000Z

120

Strategies for restoring ecological connectivity and establishing wildlife passage for the upgrade of Route 78 in Swanton, Vermont: an overview  

E-Print Network (OSTI)

on Black bears in Vermont. Stratton Mountain Black BearStudy. Final Report. Vermont Agency of Natural Resources,biologist with the Vermont Fish and Wildlife Department.

Austin, John M.; Ferguson, Mark; Gingras, Glenn; Bakos, Greg

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Utilizing a Multi-Technique, Multi-Taxa Approach to Monitoring Wildlife Passageways on the Bennington Bypass in Southern Vermont  

E-Print Network (OSTI)

highway in southern Vermont. We are utilizing a variety offor future studies in Vermont and through- out the Unitedas Arizona, Montana and Vermont. Through cooperative efforts

Bellis, Mark A; Jackson, Scott D.; Griffin, Curtice R; Warren, Paige S; Thompson, Alan O

2007-01-01T23:59:59.000Z

122

Alternative Fuels Data Center: Vermont Laws and Incentives for Idle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction to someone by E-mail Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Idle Reduction on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Idle Reduction on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Idle Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Idle Reduction

123

Alternative Fuels Data Center: Vermont Laws and Incentives for Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Tax Incentives

124

Alternative Fuels Data Center: Vermont Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Driving / Idling

125

Alternative Fuels Data Center: Vermont Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Propane (LPG)

126

"1. Vermont Yankee","Nuclear","Entergy Nuclear Vermont Yankee",620  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont" Vermont" "1. Vermont Yankee","Nuclear","Entergy Nuclear Vermont Yankee",620 "2. J C McNeil","Other Renewables","City of Burlington-Electric",52 "3. Bellows Falls","Hydroelectric","TransCanada Hydro Northeast Inc.,",48 "4. Wilder","Hydroelectric","TransCanada Hydro Northeast Inc.,",41 "5. Harriman","Hydroelectric","TransCanada Hydro Northeast Inc.,",41 "6. Berlin 5","Petroleum","Green Mountain Power Corp",35 "7. Vernon","Hydroelectric","TransCanada Hydro Northeast Inc.,",34 "8. Sheldon Springs Hydroelectric","Hydroelectric","Sheldon Vermont Hydro Co., Inc.",24

127

Vermont gasifier project. Final report, Phase I  

DOE Green Energy (OSTI)

This report presents an engineering status report for the Vermont gasifier project. Technical areas of concern are discussed with the cyclone performance, agglomeration problems in the combustor, particlate emissions, valve design, deflagration venting, gasifier and combustion blower surge control, and other related areas. Attachments pertaining to the drawing and specification register are included.

NONE

1995-07-01T23:59:59.000Z

128

Review: Pilgrimage to Vallombrosa: From Vermont to Italy in the Footsteps of George Perkins Marsh by John Elder  

E-Print Network (OSTI)

to Vallombrosa: From Vermont to Italy in the Footsteps ofto Vallombrosa: From Vermont to Italy in the Footsteps of

Miller, Ryder W.

2007-01-01T23:59:59.000Z

129

The Economic Impact of Extending Marriage to Same-Sex Couples in Vermont  

E-Print Network (OSTI)

March 2008). A copy of a Vermont marriage license costs $10.00. Vermont Department of Health. http://Impact on the State of Vermont of Allowing Same-Sex Couples

Ramos, Christopher; Badgett, M.V. Lee; Sears, Brad

2009-01-01T23:59:59.000Z

130

Vermont ľ Sexual Orientation and Gender Identity Law and Documentation of Discrimination  

E-Print Network (OSTI)

1204(b); Civil Unions in Vermont are defined in V.S.A. tit.V.S.A. žž 9700- 18 V.S.A. ž 5075. VERMONT Williams InstituteReport G. Parenting Vermont law permits any person,

Sears, Brad

2009-01-01T23:59:59.000Z

131

The Payroll Tax Credit (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Payroll Tax Credit (Vermont) The Payroll Tax Credit (Vermont) The Payroll Tax Credit (Vermont) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Installer/Contractor Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Corporate Tax Incentive Provider Vermont Economic Progress Council The Payroll Tax Credit provided by the Vermont Economic Progress Council provides a credit against income tax equivalent to a percentage of increased payroll costs. A company with sales less than $10 million may receive equal to 10 percent of its increased costs of salaries and wages in the applicable tax year. The credit was established in 1998 to foster new

132

Alternative Fuels Data Center: Vermont Laws and Incentives for Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

133

Alternative Fuels Data Center: Vermont Laws and Incentives for Hydrogen  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

134

Clean Cities: State of Vermont Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State of Vermont Clean Cities Coalition State of Vermont Clean Cities Coalition The State of Vermont Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. State of Vermont Clean Cities coalition Contact Information Michelle McCutcheon-Schour 802-656-9864 mmschour.uvm@gmail.com Coalition Website Clean Cities Coordinator Michelle McCutcheon-Schour Photo of Michelle McCutcheon-Schour Michelle McCutcheon-Schour is the Coordinator for the State of Vermont Clean Cities which is hosted by the University of Vermont Transportation Research Center (TRC). McCutcheon-Schour served as an intern for the coalition in the summer of 2011 through the Clean Cities University Workforce Development Program, has been working at the TRC since then and

135

Uniform Capacity Tax and Exemption for Solar (Vermont) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uniform Capacity Tax and Exemption for Solar (Vermont) Uniform Capacity Tax and Exemption for Solar (Vermont) Uniform Capacity Tax and Exemption for Solar (Vermont) < Back Eligibility Agricultural Commercial Industrial Low-Income Residential Residential Savings Category Solar Buying & Making Electricity Program Info State Vermont Program Type Property Tax Incentive Rebate Amount 100% property tax exemption for systems 10 kilowatts or less Uniform $4/kilowatt property tax payment Provider Vermont Department of Taxes During the 2012 legislative session, Vermont passed a 100% property tax exemption for solar photovoltaic (PV) systems up to and including 10 kilowatts (kW). For systems greater than 10 kW, the state assesses a uniform $4 per kilowatt (kW). This applies to the equipment, not to the land. The 100% exemption for small PV systems expires January 1, 2023, although a

136

Energy Generation Project Permitting (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generation Project Permitting (Vermont) Generation Project Permitting (Vermont) Energy Generation Project Permitting (Vermont) < Back Eligibility Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Environmental Regulations Provider Agency of Natural Resources The Vermont Energy Generation Siting Policy Commission is mandated to survey best practices for siting approval of electric generation projects (all facilities except for net- and group-net-metered facilities) and for public participation and representation in the siting process, and to report to the Governor and to the Vermont Legislature on their findings by

137

Alternative Fuels Data Center: Vermont Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

138

Alternative Fuels Data Center: Vermont Laws and Incentives for AFV  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

AFV Manufacturer/Retrofitter to someone by E-mail AFV Manufacturer/Retrofitter to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for AFV Manufacturer/Retrofitter on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for AFV Manufacturer/Retrofitter on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for AFV Manufacturer/Retrofitter on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for AFV Manufacturer/Retrofitter on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for AFV Manufacturer/Retrofitter on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for AFV Manufacturer/Retrofitter on AddThis.com... More in this section...

139

Alternative Fuels Data Center: Vermont Laws and Incentives for Climate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Climate Change / Energy Initiatives to someone by E-mail Climate Change / Energy Initiatives to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Climate Change / Energy Initiatives on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Climate Change / Energy Initiatives on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Climate Change / Energy Initiatives on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Climate Change / Energy Initiatives on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Climate Change / Energy Initiatives on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Climate Change / Energy Initiatives on

140

Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Addison County, Vermont ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Addison County, Vermont ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Addison County, Vermont ASHRAE Standard ASHRAE 169-2006 Climate Zone...

142

Commercial Lighting and LED Lighting Incentives (Vermont) | Open...  

Open Energy Info (EERE)

form History Share this page on Facebook icon Twitter icon Commercial Lighting and LED Lighting Incentives (Vermont) This is the approved revision of this page, as well as...

143

Energy Star Homes (New Construction) (Vermont) | Open Energy...  

Open Energy Info (EERE)

Incentive Programs Amount Base Tier HERS RatingTechnical Assistance: Free (750 value) HERS Certificate: Free Vermont Residential Building Energy Standards Certificate:...

144

ENERGY STAR Lighting - Instant Coupons (Vermont) | Open Energy...  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon ENERGY STAR Lighting - Instant Coupons (Vermont) This is the approved revision of this page, as well as...

145

30% Business Tax Credit for Solar (Vermont) | Open Energy Information  

Open Energy Info (EERE)

allocation to select a grant in lieu of the tax credit. Vermont offered the "Business Solar Tax Credit" for installations of solar energy equipment on business properties. The...

146

Efficiency Vermont - Home Performance with ENERGY STAR (Existing...  

Open Energy Info (EERE)

DSIRE Review 2010-03-31 References DSIRE1 Summary Efficiency Vermont works with homeowners on comprehensive energy efficiency projects and offers several financial incentives....

147

,"Vermont Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

148

EVALUATION OF ALTERNATIVE FUNGICIDES FOR ORGANIC APPLE PRODUCTION IN VERMONT.  

E-Print Network (OSTI)

??A major challenge in organic apple production in Vermont is the available fungicide options for apple scab management. The standard lime sulfur/sulfur fungicide program usedů (more)

Cromwell, Morgan

2008-01-01T23:59:59.000Z

149

Alternative Fuels Data Center: Vermont Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dealer to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Alternative Fuel Dealer on Facebook Tweet about Alternative Fuels Data Center:...

150

,"Vermont Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013"...

151

SUSTAINABILITY INDICATORS IN THE VERMONT-REGIONAL FOOD SYSTEM.  

E-Print Network (OSTI)

??Food systems are inherently complex areas of interaction between economic, environmental, and social factors. The local food movement in Vermont presents new opportunities to shapeů (more)

Schattman, Rachel

152

Alternative Fuels Data Center: Vermont Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Aftermarket Conversions to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Aftermarket Conversions on Facebook Tweet about Alternative Fuels...

153

Alternative Fuels Data Center: Vermont Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Purchaser to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Alternative Fuel Purchaser on Facebook Tweet about Alternative Fuels Data...

154

Fuel Source and Environmental Impact Disclosure (Vermont) | Open...  

Open Energy Info (EERE)

suppliers to disclose information on fuel sources and the environmental impacts of electricity generation. Vermont's disclosure standards may address label forms and information...

155

,"Vermont Natural Gas Imports Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12...

156

Ferrisburgh, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ferrisburgh, Vermont: Energy Resources Ferrisburgh, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2056098┬░, -73.2462341┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2056098,"lon":-73.2462341,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

157

Tinmouth, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tinmouth, Vermont: Energy Resources Tinmouth, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.448682┬░, -73.0495501┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.448682,"lon":-73.0495501,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

Killington, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Killington, Vermont: Energy Resources Killington, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6775677┬░, -72.7798247┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6775677,"lon":-72.7798247,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

Buels, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Buels, Vermont: Energy Resources Buels, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2046372┬░, -72.9494461┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2046372,"lon":-72.9494461,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Reading, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vermont: Energy Resources Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4893362┬░, -72.5914616┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4893362,"lon":-72.5914616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Underhill, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Underhill, Vermont: Energy Resources Underhill, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.5258842┬░, -72.9451267┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5258842,"lon":-72.9451267,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

Cornwall, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cornwall, Vermont: Energy Resources Cornwall, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.960893┬░, -73.2103951┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.960893,"lon":-73.2103951,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

Bridport, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bridport, Vermont: Energy Resources Bridport, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9756551┬░, -73.3289141┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9756551,"lon":-73.3289141,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

164

Middlesex, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vermont: Energy Resources Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2928358┬░, -72.6792807┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2928358,"lon":-72.6792807,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

165

Colchester, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Colchester, Vermont: Energy Resources Colchester, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.5439375┬░, -73.1479068┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5439375,"lon":-73.1479068,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

Vermont, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vermont, Wisconsin: Energy Resources Vermont, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0722172┬░, -89.7856786┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0722172,"lon":-89.7856786,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

167

Cavendish, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cavendish, Vermont: Energy Resources Cavendish, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.3820171┬░, -72.608149┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3820171,"lon":-72.608149,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

168

Danby, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Danby, Vermont: Energy Resources Danby, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.3461841┬░, -72.9953817┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3461841,"lon":-72.9953817,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

Weathersfield, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Weathersfield, Vermont: Energy Resources Weathersfield, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.3921862┬░, -72.4494848┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3921862,"lon":-72.4494848,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

170

Chittenden, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chittenden, Vermont: Energy Resources Chittenden, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7078445┬░, -72.9481629┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7078445,"lon":-72.9481629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

Waterbury, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Waterbury, Vermont: Energy Resources Waterbury, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.3378343┬░, -72.756229┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3378343,"lon":-72.756229,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

Middlebury, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Middlebury, Vermont: Energy Resources Middlebury, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0153371┬░, -73.16734┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0153371,"lon":-73.16734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

Weybridge, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Weybridge, Vermont: Energy Resources Weybridge, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0664463┬░, -73.2156751┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0664463,"lon":-73.2156751,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

174

Plymouth, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vermont: Energy Resources Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.5359031┬░, -72.7214873┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.5359031,"lon":-72.7214873,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

175

Barnard, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Barnard, Vermont: Energy Resources Barnard, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.728679┬░, -72.6189876┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.728679,"lon":-72.6189876,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

Hinesburg, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hinesburg, Vermont: Energy Resources Hinesburg, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.3292199┬░, -73.110679┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3292199,"lon":-73.110679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

Cabot, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cabot, Vermont: Energy Resources Cabot, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.4014456┬░, -72.3123248┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4014456,"lon":-72.3123248,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

Ripton, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ripton, Vermont: Energy Resources Ripton, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.973673┬░, -73.0340033┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.973673,"lon":-73.0340033,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

179

Winooski, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Winooski, Vermont: Energy Resources Winooski, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.491438┬░, -73.1856832┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.491438,"lon":-73.1856832,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

180

Panton, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Panton, Vermont: Energy Resources Panton, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1486654┬░, -73.340402┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1486654,"lon":-73.340402,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Vermont Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Volumes Delivered to Consumers

182

Sudbury, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sudbury, Vermont: Energy Resources Sudbury, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7992291┬░, -73.2045583┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7992291,"lon":-73.2045583,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

Clarendon, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Clarendon, Vermont: Energy Resources Clarendon, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.5161807┬░, -72.9698271┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.5161807,"lon":-72.9698271,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

184

Vergennes, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vergennes, Vermont: Energy Resources Vergennes, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1672771┬░, -73.2540111┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1672771,"lon":-73.2540111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

185

Jericho, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jericho, Vermont: Energy Resources Jericho, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.5039395┬░, -72.9976266┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5039395,"lon":-72.9976266,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

186

Calais, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Calais, Vermont: Energy Resources Calais, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.3690953┬░, -72.4581362┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3690953,"lon":-72.4581362,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

Perkinsville, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Perkinsville, Vermont: Energy Resources Perkinsville, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.3736842┬░, -72.5137019┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3736842,"lon":-72.5137019,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

188

Rutland, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rutland, Vermont: Energy Resources Rutland, Vermont: Energy Resources (Redirected from Rutland, VT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6106237┬░, -72.9726065┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6106237,"lon":-72.9726065,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

Brattleboro, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brattleboro, Vermont: Energy Resources Brattleboro, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8509152┬░, -72.5578678┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8509152,"lon":-72.5578678,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

190

Hubbardton, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hubbardton, Vermont: Energy Resources Hubbardton, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7072867┬░, -73.1842783┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7072867,"lon":-73.1842783,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

Starksboro, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Starksboro, Vermont: Energy Resources Starksboro, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2272782┬░, -73.0573427┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2272782,"lon":-73.0573427,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

192

Monkton, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Monkton, Vermont: Energy Resources Monkton, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2095151┬░, -73.1359861┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2095151,"lon":-73.1359861,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

193

Pawlet, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pawlet, Vermont: Energy Resources Pawlet, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.3467399┬░, -73.1762181┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3467399,"lon":-73.1762181,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

194

Woodbury, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Woodbury, Vermont: Energy Resources Woodbury, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.4408888┬░, -72.4164957┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4408888,"lon":-72.4164957,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

195

Poultney, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Poultney, Vermont: Energy Resources Poultney, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.5170132┬░, -73.2362199┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.5170132,"lon":-73.2362199,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

196

Moretown, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Moretown, Vermont: Energy Resources Moretown, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2508918┬░, -72.7609496┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2508918,"lon":-72.7609496,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

197

Wilder, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wilder, Vermont: Energy Resources Wilder, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6728484┬░, -72.3087022┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6728484,"lon":-72.3087022,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Ira, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ira, Vermont: Energy Resources Ira, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.5345134┬░, -73.0620512┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.5345134,"lon":-73.0620512,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

Orwell, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Orwell, Vermont: Energy Resources Orwell, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8039502┬░, -73.2978936┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8039502,"lon":-73.2978936,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

Whiting, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Whiting, Vermont: Energy Resources Whiting, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8639503┬░, -73.2003929┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8639503,"lon":-73.2003929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Waitsfield, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Waitsfield, Vermont: Energy Resources Waitsfield, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1900592┬░, -72.8248379┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1900592,"lon":-72.8248379,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

202

Fayston, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fayston, Vermont: Energy Resources Fayston, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2074374┬░, -72.8756638┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2074374,"lon":-72.8756638,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

Qualifying RPS State Export Markets (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont) Vermont) Qualifying RPS State Export Markets (Vermont) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Vermont as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

204

Achieving Universal Coverage through Comprehensive Health Reform: The Vermont Experience ľ Evaluation Results  

E-Print Network (OSTI)

Vermontĺs comprehensive health reform law, the Health Care Affordability Acts (HCAA) for Vermonters, was passed in 2006 with the following three goals in mind: 1. To achieve universal access to affordable health insurance for all Vermonters 2. To improve quality of care and contain costs through health system reform

Ronald Deprez; Sherry Glied; Kira Rodriguez; Bill Perry; Brian Robertson; Nina Schwabe

2011-01-01T23:59:59.000Z

205

VERMONT YANKEE NUCLEAR POWER STATION- NRC LICENSE  

E-Print Network (OSTI)

your application for a renewed license of your Vermont Yankee Nuclear Power Station. The enclosed report documents the result of the inspection which was discussed with members of your staff on May 24, 2007, at a publicly observed exit meeting conducted at the Latchis Theater in Brattleboro, VY. The purpose of this inspection was to examine the plant activities and documents that supported the application for a renewed license of the Vermont Yankee Nuclear Power Station. The inspection reviewed the screening and scoping of non-safety related systems, structures, and components, as required in 10 CFR 54.4(a)(2), and determined whether the proposed aging management programs are capable of reasonably managing the effects of aging. These NRC inspection activities constitute one of several inputs into the NRC review process for license renewal applications. The inspection team concluded screening and scoping of nonsafety-related systems, structures, and components, were implemented as required in 10 CFR 54.4(a)(2), and the aging management portions of the license renewal activities were conducted as described in the License Renewal Application. The inspection results supported a conclusion that the

Mr. Theodore; A. Sullivan

2007-01-01T23:59:59.000Z

206

Peach Bottom and Vermont Yankee Nuclear Power Plants  

Science Conference Proceedings (OSTI)

A dramatic and extraordinary instance of state and local government control of nuclear power, the purchase by New York of the Shoreham plant is nonetheless indicative of the political demands that some states confront for additional involvement in the regulation of the radiological hazards associated with commercial nuclear power plants. Although the Supreme Court has appeared to expand, in the eight years since PG&E and Silkwood, the acceptable extent of state regulation, some states, in addition to New York, have acquired, with the acquiescence of the NRC, a degree of involvement that exceeds the role for state and local governments provided by the Court. For example, the Commonwealth of Pennsylvania concluded with the Philadelphia Electric Company (PECO) in June 1989 an agreement that commits PECO to various initiatives, not otherwise required under NRC regulations, for the safe operation of the Peach Bottom nuclear power plant in Pennsylvania. In July 1991 the State of Vermont and Vermont Yankee Nuclear Power Corporation (Vermont Yankee) concluded an agreement similar to that concluded between Pennsylvania and PECO. The agreement also commits Vermont Yankee to certain initiatives, not otherwise required under NRC regulations, related to its operation of the Vermont Yankee nuclear power plant in Vermont. The agreement was precipitated by a challenge to an application, submitted to the NRC by Vermont Yankee in April 1989, to amend the Vermont Yankee plant license to extend its expiration date from December 11, 2007 to March 21, 2012. The amendment would allow the Vermont Yankee plant to operate for forty full years.

NONE

1992-12-31T23:59:59.000Z

207

Vermont -- A Versatile Monitoring Toolkit for IPFIX and PSAMP  

E-Print Network (OSTI)

In this paper, we present Vermont, a flexible network monitoring toolkit for packet filtering and packet sampling, flow accounting, and flow aggregation. This toolkit supports the export and collection of IPFIX/PSAMP compliant monitoring data. Packet capturing is based on the well-known pcap library, which enables deployment on various hardware platforms and operating systems. Apart from an overview to Vermont's architecture, we present evaluation results with regard to performance, interoperability, and robustness. Furthermore, we compare Vermont to other open-source implementations of monitoring probes with respect to supported features and functionality.

Ronny T. Lampert; Christoph Sommer; Gerhard MŘnz; Falko Dressler

2006-01-01T23:59:59.000Z

208

In cooperation with the Vermont Agency of Natural Resources Department of Environmental Conservation SIMULATION OF THE EFFECTS OF STREAMBED-MANAGEMENT PRACTICES ON FLOOD LEVELS IN VERMONT  

E-Print Network (OSTI)

resulted in rapid runoff and severe flooding in parts of Vermont. During the storm, streambed and streambank erosion

unknown authors

1997-01-01T23:59:59.000Z

209

Vermont Manufacturing Plant Opens with Support from the Recovery Act |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Manufacturing Plant Opens with Support from the Recovery Vermont Manufacturing Plant Opens with Support from the Recovery Act Vermont Manufacturing Plant Opens with Support from the Recovery Act December 6, 2010 - 12:00am Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Steven Chu issued a statement highlighting today's ribbon cutting event at SBE, Inc.'s new production plant in Barre, Vermont .The plant will manufacture electric vehicle direct current bus capacitors, components for next generation advanced vehicles. The facility was funded in part by a $8.5 million grant through the American Recovery and Reinvestment Act, also known as the stimulus bill "Today's ribbon cutting puts Barre at the forefront of green innovation in America's automotive industry," said Secretary Chu. "This is another

210

Town of Readsboro, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Readsboro, Vermont (Utility Company) Readsboro, Vermont (Utility Company) Jump to: navigation, search Name Town of Readsboro Place Vermont Service Territory Vermont Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 15718 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cable Television Rate 15 Commercial Commercial and Industrial Time of Use Rate 63 Commercial Commercial and Industrial Time of Use Rate 65 Commercial Commercial and Industrial Time of Use- Critical Peak Rider Commercial

211

Village of Ludlow, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Ludlow, Vermont (Utility Company) Ludlow, Vermont (Utility Company) Jump to: navigation, search Name Village of Ludlow Place Vermont Service Territory Vermont Website www.ludlow.vt.us/ Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 11305 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 01 Residential Residential 05 Off Peak Water Heating Residential 06 General Service Single Phase 06 General Service Single Phase CT Metering

212

Village of Lyndonville, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Lyndonville, Vermont (Utility Company) Lyndonville, Vermont (Utility Company) Jump to: navigation, search Name Lyndonville Village of Place Vermont Service Territory Vermont Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 11359 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Large (GL) Commercial General Service Small (GS) Commercial Load Management (GS) Commercial Load Management (RE) Commercial

213

Village of Morrisville, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Vermont (Utility Company) Vermont (Utility Company) Jump to: navigation, search Name Village of Morrisville Place Vermont Service Territory Vermont Website www.mwlvt.com/ Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 12989 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Schedule 2 Commercial Commercial Time-of-Day Rate Schedule 8 Commercial

214

Vermont/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Vermont/Wind Resources/Full Version Vermont/Wind Resources/Full Version < VermontÔÇÄ | Wind Resources Jump to: navigation, search Print PDF Vermont Wind Resources VermontMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

215

Vermont Manufacturing Plant Opens with Support from the Recovery Act |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Manufacturing Plant Opens with Support from the Recovery Vermont Manufacturing Plant Opens with Support from the Recovery Act Vermont Manufacturing Plant Opens with Support from the Recovery Act December 6, 2010 - 12:00am Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Steven Chu issued a statement highlighting today's ribbon cutting event at SBE, Inc.'s new production plant in Barre, Vermont .The plant will manufacture electric vehicle direct current bus capacitors, components for next generation advanced vehicles. The facility was funded in part by a $8.5 million grant through the American Recovery and Reinvestment Act, also known as the stimulus bill "Today's ribbon cutting puts Barre at the forefront of green innovation in America's automotive industry," said Secretary Chu. "This is another

216

Village of Enosburg Falls, Vermont (Utility Company) | Open Energy  

Open Energy Info (EERE)

Enosburg Falls, Vermont (Utility Company) Enosburg Falls, Vermont (Utility Company) Jump to: navigation, search Name Village of Enosburg Falls Place Vermont Service Territory Vermont Website www.villageofenosburgfall Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 5915 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Demand Rate - Rate 04 Industrial

217

Construction or Extended Operation of Nuclear Plant (Vermont) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction or Extended Operation of Nuclear Plant (Vermont) Construction or Extended Operation of Nuclear Plant (Vermont) Construction or Extended Operation of Nuclear Plant (Vermont) < Back Eligibility Investor-Owned Utility Utility Program Info State Vermont Program Type Siting and Permitting Any petition for approval of construction of a nuclear energy generating plant within the state, or any petition for approval of the operation of a nuclear energy generating plant beyond the date established in a certificate of public good issued under this title, must be submitted to the public service board no later than four years before the date upon which the approval may take effect. Upon receipt of a petition for approval of construction or operation as provided under this section, the public service board shall notify the

218

Vermont Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Vermont Regions Vermont Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Vermont Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Vermont Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

219

Vermont Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Vermont Regions Vermont Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Vermont Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Vermont Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

220

Clean Energy Development Fund (CEDF) (Vermont) | Open Energy...  

Open Energy Info (EERE)

31 million in total). Legislation enacted in 2012 authorized 3 million in appropriations from the Vermont general fund to the CEDF as long as the general fund is in the...

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Vermont Natural Gas Number of Residential Consumers (Number of...  

Gasoline and Diesel Fuel Update (EIA)

Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

222

Vermont Natural Gas Vehicle Fuel Consumption (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Consumption (Million Cubic Feet) Vermont Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

223

Vermont Natural Gas % of Total Residential Deliveries (Percent...  

Annual Energy Outlook 2012 (EIA)

% of Total Residential Deliveries (Percent) Vermont Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

224

Vermont Heat Content of Natural Gas Deliveries to Consumers ...  

Annual Energy Outlook 2012 (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Vermont Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1...

225

Vermont Natural Gas Total Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption (Million Cubic Feet) Vermont Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

226

Vermont Natural Gas Number of Industrial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

227

Vermont Natural Gas Input Supplemental Fuels (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Input Supplemental Fuels (Million Cubic Feet) Vermont Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

228

Vermont Natural Gas Number of Commercial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

229

Alternative Fuels Data Center: Vermont Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Gas Tax Natural gas used to propel a motor vehicle is not subject to the state gasoline tax, but is subject to sales and use tax. (Reference Vermont Statutes Title 32,...

230

Vermont Natural Gas Imports (No intransit Receipts) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(No intransit Receipts) (Million Cubic Feet) Vermont Natural Gas Imports (No intransit Receipts) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

231

Vermont Natural Gas Imports Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Vermont Natural Gas Imports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

232

,"Vermont U.S. Natural Gas Imports & Exports"  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Natural Gas Imports & Exports" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont...

233

Village of Hyde Park, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Hyde Park, Vermont (Utility Company) Hyde Park, Vermont (Utility Company) Jump to: navigation, search Name Hyde Park Village of Place Vermont Service Territory Vermont Website www.hydeparkvt.com/watera Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 9144 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric (AE) Residential General Service (GS) Commercial Large General Service Industrial Residential (RS) Residential Security Lights - Ded. Pole Lighting

234

Town of Stowe, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Vermont (Utility Company) Vermont (Utility Company) Jump to: navigation, search Name Town of Stowe Place Vermont Service Territory Vermont Website www.townofstowevt.org/ Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 27316 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial 20-Single Phase Commercial Commercial Demand 25 Commercial Commercial Demand 25 Primary Metering Discount Commercial Commercial Demand 25 Transformer Ownership Discount Commercial

235

US hydropower resource assessment for Vermont  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Vermont.

Conner, A.M.; Francfort, J.E.

1996-02-01T23:59:59.000Z

236

Emergency management span of control optimizing organizational structures to better prepare Vermont for the next major or catastrophic disaster .  

E-Print Network (OSTI)

??During a statewide disaster in Vermont, one of the most important actions Vermont Emergency Management should take during the response phase is to maintain awarenessů (more)

Schumacher, Ludwig J.

2008-01-01T23:59:59.000Z

237

SEU design consideration for MESFETs on LT GaAs  

SciTech Connect

Computer simulation results are reported on transistor design and single-event charge collection modeling of metal-semiconductor field effect transistors (MESFETs) fabricated in the Vitesse H-GaAsIII{reg_sign} process on Low Temperature grown (LT) GaAs epitaxial layers. Tradeoffs in Single Event Upset (SEU) immunity and transistor design are discussed. Effects due to active loads and diffusion barriers are examined.

Weatherford, T.R.; Radice, R.; Eskins, D. [Naval Postgraduate School, Monterey, CA (United States)] [and others

1997-12-01T23:59:59.000Z

238

Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Vermont laws and incentives

239

Alternative Fuels Data Center: Vermont Laws and Incentives for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Natural Gas The list below contains summaries of all Vermont laws and incentives

240

Jobs, sustainable heating coming to Vermont city | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jobs, sustainable heating coming to Vermont city Jobs, sustainable heating coming to Vermont city Jobs, sustainable heating coming to Vermont city March 15, 2010 - 6:07pm Addthis A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo Joshua DeLung What will the project do? Their new woodchip-fired combined heat and power system will heat the Capitol Complex, the city's schools, City Hall and as many as 156 other buildings in the downtown area. Montpelier, Vt., netted $8 million in American Recovery and Reinvestment Act funding in January for a woodchip-fired combined heat and power system. The money will help build a 1.8 million kWh-generating plant that will heat the Capitol Complex, the city's schools, City Hall and as many

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Jobs, sustainable heating coming to Vermont city | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jobs, sustainable heating coming to Vermont city Jobs, sustainable heating coming to Vermont city Jobs, sustainable heating coming to Vermont city March 15, 2010 - 6:07pm Addthis A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo Joshua DeLung What will the project do? Their new woodchip-fired combined heat and power system will heat the Capitol Complex, the city's schools, City Hall and as many as 156 other buildings in the downtown area. Montpelier, Vt., netted $8 million in American Recovery and Reinvestment Act funding in January for a woodchip-fired combined heat and power system. The money will help build a 1.8 million kWh-generating plant that will heat the Capitol Complex, the city's schools, City Hall and as many

242

City of Burlington-Electric, Vermont (Utility Company) | Open Energy  

Open Energy Info (EERE)

Burlington-Electric, Vermont (Utility Company) Burlington-Electric, Vermont (Utility Company) Jump to: navigation, search Name City of Burlington-Electric Place Vermont Utility Id 2548 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General (LG) Rate Demand is less than 25KW- Net Metered Renewable

243

Vermont Wind Measurement Company Still Strong | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Wind Measurement Company Still Strong Vermont Wind Measurement Company Still Strong Vermont Wind Measurement Company Still Strong April 9, 2010 - 3:16pm Addthis NRG's new building utilizes solar power, but their products measure wind potential. | Photo courtesy NRG Systems NRG's new building utilizes solar power, but their products measure wind potential. | Photo courtesy NRG Systems Joshua DeLung NRG Systems, of Hinesburg, Vt., has made products to help its customers measure and understand the potential of wind energy since 1982. Now, because of additional opportunities the Recovery Act has created for renewable energy companies, small businesses such as NRG Systems are poised to grow with the increased demand for proven wind measurement and turbine control equipment. NRG Systems' customers are primarily developers, utilities and research

244

Telephoning for Energy Efficiency in Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Telephoning for Energy Efficiency in Vermont Telephoning for Energy Efficiency in Vermont Telephoning for Energy Efficiency in Vermont November 8, 2010 - 3:59pm Addthis Eldred French had the basement in his home (pictured above) insulated and sealed by local contractors. | Photo Courtesy of NWWVT Eldred French had the basement in his home (pictured above) insulated and sealed by local contractors. | Photo Courtesy of NWWVT Stephen Graff Former Writer & editor for Energy Empowers, EERE Most telethons raise money for charities or events and have local celebrities and even dancing children. But the subdued, small telethon in Shrewsbury, Vt., in a unique twist, didn't ask for money: town volunteers offered up a home energy audit-at a fraction of the typical cost-to the person on the other end to help

245

Vermont Transco, LLC Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Transco, LLC Smart Grid Project Transco, LLC Smart Grid Project Jump to: navigation, search Project Lead Vermont Transco, LLC Country United States Headquarters Location Rutland, Vermont Recovery Act Funding $68,928,650.00 Total Project Value $137,857,302.00 Coverage Area Coverage Map: Vermont Transco, LLC Smart Grid Project Coordinates 43.6106237┬░, -72.9726065┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

246

Vermont Wind Measurement Company Still Strong | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Wind Measurement Company Still Strong Vermont Wind Measurement Company Still Strong Vermont Wind Measurement Company Still Strong April 9, 2010 - 3:16pm Addthis NRG's new building utilizes solar power, but their products measure wind potential. | Photo courtesy NRG Systems NRG's new building utilizes solar power, but their products measure wind potential. | Photo courtesy NRG Systems Joshua DeLung NRG Systems, of Hinesburg, Vt., has made products to help its customers measure and understand the potential of wind energy since 1982. Now, because of additional opportunities the Recovery Act has created for renewable energy companies, small businesses such as NRG Systems are poised to grow with the increased demand for proven wind measurement and turbine control equipment. NRG Systems' customers are primarily developers, utilities and research

247

Central Vermont Pub Serv Corp | Open Energy Information  

Open Energy Info (EERE)

Pub Serv Corp Pub Serv Corp Jump to: navigation, search Name Central Vermont Pub Serv Corp Place Vermont Service Territory Vermont Website www.cvps.com Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 3292 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules

248

Vermont Public Pwr Supply Auth | Open Energy Information  

Open Energy Info (EERE)

Public Pwr Supply Auth Public Pwr Supply Auth Jump to: navigation, search Name Vermont Public Pwr Supply Auth Place Vermont Utility Id 19780 Utility Location Yes Ownership P NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ÔćĹ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Vermont_Public_Pwr_Supply_Auth&oldid=411933"

249

Vermont Electric Power Co, Inc | Open Energy Information  

Open Energy Info (EERE)

Co, Inc Co, Inc Jump to: navigation, search Name Vermont Electric Power Co, Inc Place Vermont Utility Id 19792 Utility Location Yes Ownership T NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ÔćĹ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Vermont_Electric_Power_Co,_Inc&oldid=411931" Categories: EIA Utility Companies and Aliases Utility Companies

250

Telephoning for Energy Efficiency in Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Telephoning for Energy Efficiency in Vermont Telephoning for Energy Efficiency in Vermont Telephoning for Energy Efficiency in Vermont November 8, 2010 - 3:59pm Addthis Eldred French had the basement in his home (pictured above) insulated and sealed by local contractors. | Photo Courtesy of NWWVT Eldred French had the basement in his home (pictured above) insulated and sealed by local contractors. | Photo Courtesy of NWWVT Stephen Graff Former Writer & editor for Energy Empowers, EERE Most telethons raise money for charities or events and have local celebrities and even dancing children. But the subdued, small telethon in Shrewsbury, Vt., in a unique twist, didn't ask for money: town volunteers offered up a home energy audit-at a fraction of the typical cost-to the person on the other end to help

251

From: Jim Burson &lt;jburson@swtransco.coop>  

NLE Websites -- All DOE Office Websites (Extended Search)

Jim Burson Jim Burson &lt;jburson@swtransco.coop> To: "dswpwrmrk@wapa.gov" CC: Donald Kimball , Patrick Ledger , Richard Kurtz Date: 10/20/10 8:25 AM Subject: ED5-Palo Verde Hub Project (SPPR Proposal) Attachments: westernspprsupport.docx.pdf Dear Mr. Moe: Southwest Transmission Cooperative, Inc. (SWTC) is a customer of Western Area Power Administration (Western). We have multiply Parker- Davis Project transmission service contracts with Western. SWTC agrees with the attached SPPR letter, supporting the expansion of the Parker-Davis Project to include the ED5-Palo Verde Hub project referred to in Western's October 6th open meeting as the "SPPR

252

CASMO-3/SIMULATE-3 benchmarking against Vermont Yankee  

Science Conference Proceedings (OSTI)

The cross-section generation code CASMO-3 and the advanced nodal code SIMULATE-3 are used to model Vermont Yankee (VY) cycles 9 through 13. Vermont Yankee is a small, high-power density boiling water reactor (BWR)-3 reactor. Cycles 9 through 13 were chosen for benchmarking because they have high-enrichment cores and use gamma-sensing traversing in-core probes (TIPs). To judge the merit of the new CASMO-3/SIMULATE-3 model, the results are compared to the old CASMO-2/SIMULATE-2 model. The figures of merit are consistent hot and cold eigenvalues near 1.0 and accurate reproduction of the plant TIP readings.

Hubbard, B.Y.; Morin, D.J.; Pappas, J.; Potter, R.C.; Woehlke, R.A. (Yankee Atomic Electric Co., Bolton, MA (USA))

1989-11-01T23:59:59.000Z

253

Wind resource mapping of the state of Vermont  

DOE Green Energy (OSTI)

This paper summarizes the results of a wind mapping project and a validation study for the state of Vermont. The computerized wind resource mapping technique used for this project was developed at the National Renewable Energy Laboratory (NREL). The technique uses Geographic Information System (GIS) software and produces high resolution (1km{sup 2}) wind resource maps.

Elliott, D.; Schwartz, M.; Nierenberg, R.

2000-12-13T23:59:59.000Z

254

Sustainable Energy Resources for Consumers (SERC) Vermont Highlight (Fact Sheet)  

DOE Green Energy (OSTI)

Case study on Vermont's innovative strategy for helping low-income families save energy through its Sustainable Energy Resources for Consumers (SERC) program. The DOE Weatherization Assistance Program (WAP) granted Vermont to give its weatherization clients access to solar energy systems and one-on-one assistance from energy efficiency coaches to help clients achieve meaningful and long-lasting reductions in their energy bills. Vermont-SERC is administered by the Vermont Office of Economic Opportunity and is carried out by five local weatherization agencies. The purpose of the program is to identify technologies and new approaches-in this case, solar energy and energy efficiency coaches-that can improve weatherization services to low-income clients. The program selects households that have previously received weatherization services. This has several advantages. First, the clients already understand how weatherization works and are willing to strive for additional energy savings. Second, the weatherization agencies are working with clients who have previously had weatherization and therefore have complete energy usage data from utility bills collected during the first energy upgrade installation. This allows the agencies to select the best potential candidates for solar energy. Agencies have existing knowledge of the homes and can pre-screen them for potential structural problems or lack of south-facing exposure.

Not Available

2012-01-01T23:59:59.000Z

255

Vermont Natural Gas Vehicle Fuel Consumption (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Vermont Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0...

256

Sustainable Energy Resources for Consumers (SERC) Vermont Highlight (Fact Sheet)  

SciTech Connect

Case study on Vermont's innovative strategy for helping low-income families save energy through its Sustainable Energy Resources for Consumers (SERC) program. The DOE Weatherization Assistance Program (WAP) granted Vermont to give its weatherization clients access to solar energy systems and one-on-one assistance from energy efficiency coaches to help clients achieve meaningful and long-lasting reductions in their energy bills. Vermont-SERC is administered by the Vermont Office of Economic Opportunity and is carried out by five local weatherization agencies. The purpose of the program is to identify technologies and new approaches-in this case, solar energy and energy efficiency coaches-that can improve weatherization services to low-income clients. The program selects households that have previously received weatherization services. This has several advantages. First, the clients already understand how weatherization works and are willing to strive for additional energy savings. Second, the weatherization agencies are working with clients who have previously had weatherization and therefore have complete energy usage data from utility bills collected during the first energy upgrade installation. This allows the agencies to select the best potential candidates for solar energy. Agencies have existing knowledge of the homes and can pre-screen them for potential structural problems or lack of south-facing exposure.

2012-01-01T23:59:59.000Z

257

From: Ed Roman &lt;EROMAN@smud.org>  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ed Roman Ed Roman &lt;EROMAN@smud.org> To: CC: , "Howard Hirahara" Date: 4/3/2009 10:30 AM Subject: SMUD'S COMMENTS AND QUESTIONS ON THE PROPOSED TIP Attachments: AGM ES 09-006 Commnet Letter on TIP.pdf Attached are comments of the Sacramento Municipal Utility District (SMUD) on the proposed principles, policies and practices that the Western Area Power Administration (Western) plans to use to implement the authority provided to it in section 402 of the American Recovery and Reinvestment Act of 2009 (Recovery Act). These comments are provided in response to the Notice of Proposed Program and Request for Public Comments as posted by the Western Area Power Administration (Western) in

258

Jersey Central Power & Lt Co | Open Energy Information  

Open Energy Info (EERE)

(Redirected from JCP&L) (Redirected from JCP&L) Jump to: navigation, search Name Jersey Central Power & Lt Co Place Ohio Utility Id 9726 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS (General Service) Commercial GST (General Service Time-Of-Day) Commercial

259

Guidelines for Working at Voltages &lt; 240 Volts  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidelines for Working at Voltages < 240 Volts Guidelines for Working at Voltages &lt; 240 Volts February 4, 2005---DRAFT NOTE: Working hot is a LAST ALTERNATIVE. Electrical hot work is defined as: Working on or near exposed conducting parts that are or might become energized at 50V or more. Refer to Electrical Safety Flowchart for Working On or Near Live Parts. Engineered methods to prevent exposed sources of 50V and greater are to be implemented wherever practical. Only QUALIFIED PERSONNEL {as defined in NFPA 70E Article 110.6(D) 2004 edition} as authorized by the CAT/supervisor/division can perform such work. Refer to Qualified Electrical Worker Flow Chart. Training requirements: ES&H 114 (LOTO) / ES&H 375 (NFPA 70E) / ES&H 371 (electrical worker) - Observe Electrical Safe Work Practices. Refer to

260

From: Mohave Sun Power &lt;mohavesunpower@gmail.com>  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mohave Sun Power Mohave Sun Power &lt;mohavesunpower@gmail.com> To: Date: 4/3/2009 5:12 PM Subject: public comments to Western Transmission Infrastructure Program Regarding Western's Transmission Infrastructure Program ("Program") for Recovery Act funding, we submit the following public comments. All of these comments are to better clarify the "Project Readiness" criteria critical to the Program's success. They are characteristics of projects that have a higher chance of getting financed with provisions of the Recovery Act: 1. We believe that Western should put a higher priority on projects that are already in a Western LGIP queue. The justification for this higher priority is that these projects have made substantial progress

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Aesthetic Theory and Landscape Protection: The Many Meanings of Beauty and Their Implications for the Design, Control and Protection of Vermont's Landscape  

E-Print Network (OSTI)

1984). 19. See C. ZULICK, THE VERMONT BACKROAt M \\NI--" \\NCIN Y.S 2d 235 (1976). 126. Vermont Elec. Power Co. v. Bandel,Ist Cir. 1982). 35. See VERMONT NATURAL RESOURCES COUNCIL

Brooks, Richard O.; Lavigne, Peter

1985-01-01T23:59:59.000Z

262

Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

263

Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

264

TECHNICAL AND ECONOMIC FEASIBILITY OF BIODIESEL PRODUCTION IN VERMONT: EVIDENCE FROM A FARM-SCALE STUDY AND A COMMERCIAL-SCALE SIMULATION ANALYSIS.  

E-Print Network (OSTI)

??Concerns about VermontĹs dairy farm viability, greenhouse gas emissions, and reliance on fossil fuels have prompted growing interest in the production of biodiesel and oilseedů (more)

Stebbins, Emily

265

PUTTING AESTHETICS IN ITS PLACE IN THE VERMONT WIND POWER DEBATE.  

E-Print Network (OSTI)

??In the last decade, Vermonters have debated the benefits and costs of wind power in the state. Media accounts of the debate have portrayed oppositionŚparticularlyů (more)

Miles, Brian

266

Stances on the Land: Political Perspectives on Land Use Governance in Vermont.  

E-Print Network (OSTI)

??Vermont, like many rural places in the developed world, has been the destination of many urban migrants seeking lifestyle amenities unavailable in the city. Thisů (more)

Young, Thomas Hugh Niven

2012-01-01T23:59:59.000Z

267

Arsenic Distribution and Speciation in Antigorite-Rich Rocks from Vermont, USA .  

E-Print Network (OSTI)

??Summary Serpentinites from the northern Vermont were examined for the distribution and abundance of As. XRD and electron microprobe showed the samples are composed ofů (more)

Niu, Lijie

2011-01-01T23:59:59.000Z

268

Flushing sprawl down the drain : is TIF an option for Vermont growth center wastewater projects?.  

E-Print Network (OSTI)

??In keeping with a long history of striving to preserve its traditional settlement pattern and promote smart growth, Vermont's most recent growth management policies encourageů (more)

Markarian, Molly E. (Molly Elizabeth)

2007-01-01T23:59:59.000Z

269

Wind Resource Mapping of the State of Vermont  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Mapping of the Resource Mapping of the State of Vermont November 1999 * NREL/CP-500-27507 D. Elliott and M. Schwartz National Renewable Energy Laboratory R. Nierenberg Consulting Meteorologist Presented at Windpower '99 Burlington, Vermont June 20 - 23, 1999 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published

270

Chester-Chester Depot, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chester-Chester Depot, Vermont: Energy Resources Chester-Chester Depot, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.25705┬░, -72.58773┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.25705,"lon":-72.58773,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Graniteville-East Barre, Vermont: Energy Resources | Open Energy  

Open Energy Info (EERE)

Graniteville-East Barre, Vermont: Energy Resources Graniteville-East Barre, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1543632┬░, -72.4747801┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1543632,"lon":-72.4747801,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Rutland County, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rutland County, Vermont: Energy Resources Rutland County, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6448675┬░, -72.9932969┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6448675,"lon":-72.9932969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

273

Essex Junction, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, Vermont: Energy Resources Junction, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.4906054┬░, -73.1109604┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4906054,"lon":-73.1109604,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Lamoille County, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lamoille County, Vermont: Energy Resources Lamoille County, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.6433418┬░, -72.6314026┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6433418,"lon":-72.6314026,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Village of Orleans, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Orleans Village of Orleans Village of Place Vermont Service Territory Vermont Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 14261 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Industrial Industrial Municipal Service Commercial Residential Residential Average Rates Residential: $0.1230/kWh Commercial: $0.1350/kWh Industrial: $0.1460/kWh References ÔćĹ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

276

Village of Northfield, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Northfield Northfield Place Vermont Service Territory Vermont Website www.northfield-vt.gov/tex Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 13789 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate: GS Commercial Large Power Consumption Rate: A Industrial Large Power Consumption Rate: B (New Tariff) Industrial Large Power Consumption: ED Industrial Residential Rate: R Residential Street and Highway Lighting Rate: SL - 20 LED 37 Watts Lighting

277

Village of Jacksonville, Vermont (Utility Company) | Open Energy  

Open Energy Info (EERE)

Village of Village of Place Vermont Service Territory Vermont Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 9610 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Industrial Industrial Municipal LED Streetlights Lighting Municipal Street Lights 175 watt Lighting Residential Residential Residential LED Security Light Lighting Residential Security Light 175 watt Lighting Average Rates Residential: $0.1690/kWh

278

Chittenden County, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chittenden County, Vermont: Energy Resources Chittenden County, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.3959289┬░, -72.9962431┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3959289,"lon":-72.9962431,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

Middletown Springs, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Springs, Vermont: Energy Resources Springs, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4856255┬░, -73.1181624┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4856255,"lon":-73.1181624,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Windsor County, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Windsor County, Vermont: Energy Resources Windsor County, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4369244┬░, -72.6151169┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4369244,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

West Windsor, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vermont: Energy Resources Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4744768┬░, -72.4968189┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4744768,"lon":-72.4968189,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

South Barre, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Barre, Vermont: Energy Resources Barre, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1770059┬░, -72.5056602┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1770059,"lon":-72.5056602,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

Town of Hardwick, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Town of Hardwick Town of Hardwick Place Vermont Service Territory Vermont Website hardwickvt.org/government Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 8104 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate 02 Commercial Industrial and Large Commercial 03 Industrial Residential Rate 01 Residential Seasonal Rate 04 Commercial

284

Village of Swanton, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Village of Swanton Village of Swanton Place Vermont Service Territory Vermont Website www.swanton.net/ Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 18371 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Schedule "B" Commercial Commercial Service Schedule "B" water Heater Rider Commercial

285

South Burlington, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Burlington, Vermont: Energy Resources Burlington, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.4669941┬░, -73.1709604┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4669941,"lon":-73.1709604,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Caledonia County, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Caledonia County, Vermont: Energy Resources Caledonia County, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.55051┬░, -72.0481907┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.55051,"lon":-72.0481907,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Vermont Yankee simulator qualification: large-break LOCA  

Science Conference Proceedings (OSTI)

Yankee Atomic Electric Company (YAEC) has developed simulator benchmark capabilities for the Seabrook, Maine Yankee, and Vermont Yankee Nuclear Power Station (VYNPS) simulators. The goal is to establish that each simulator has a satisfactory real-time response for different scenarios that will enhance operator training. Vermont Yankee purchased a full-scope plane simulator for the VYNPS, a four-unit boiling water reactor with a Mark-I containment. The following seven benchmark cases were selected by YAEC and VYNPC to supplement the Simulator Acceptance Test Program: (1) control rod swap; (2) partial reactor scram; (3) recirculation pump trip; (4) main steam isolation valve (MSIV) closure without scram, (5) main steamline break, (6) small-break loss-of-coolant accident (LOCA), and (7) large-break LOCA. Five simulator benchmark sessions have been completed. Each session identified simulator capabilities and limitations that needed correction. This paper discusses results from the latest large-break LOCA case.

Loomis, J.N.; Fernandez, R.T.

1987-01-01T23:59:59.000Z

288

Village of Johnson, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Johnson Village of Johnson Village of Place Vermont Service Territory Vermont Website www.townofjohnson.com/Gov Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 9806 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Johnson State College Commercial Standard Large Commercial Commercial Standard Public Authority Commercial Standard Residential Residential Standard Small Commercial Commercial Standard Street Light Lighting Average Rates Residential: $0.1610/kWh

289

Certificate of Public Good--Gas and Electric (Vermont) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Certificate of Public Good--Gas and Electric (Vermont) Certificate of Public Good--Gas and Electric (Vermont) Certificate of Public Good--Gas and Electric (Vermont) < Back Eligibility Agricultural Commercial Construction Developer Investor-Owned Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Siting and Permitting This Public Service Board rule limits the construction of electric and natural gas facilities and restricts the amounts that companies can buy from non-Vermont sources. No company, as defined in section 201 of this title, may in any way purchase electric capacity or energy from outside the state; invest in an electric generation or transmission facility located

290

Macromodeling and demonstration of the LT6600 amplifier and lowpass filter  

E-Print Network (OSTI)

The goal of this thesis is to demonstrate the abilities of the Sevastopoulos-LaPorte active low-pass filter topology in Linear Technology Corporation's LT6600 integrated circuit (IC). The thesis is split into two parts, ...

Pei, Cheng-Wei, 1981-

2004-01-01T23:59:59.000Z

291

Polarized structure function sigma_lt' for kaon electroproduction in the nucleon resonance region  

SciTech Connect

The first measurements of the polarized structure function $\\sigma_{LT'}$ for the reaction $p(\\vec e,e'K^+)\\Lambda$ in the nucleon resonance region are reported. Measurements are included from threshold up to $W$=2.05~GeV for central values of $Q^2$ of 0.65 and 1.00~GeV$^2$, and nearly the entire kaon center-of-mass angular range. $\\sigma_{LT'}$ is the imaginary part of the longitudinal-transverse response and is expected to be sensitive to interferences between competing intermediate $s$-channel resonances, as well as resonant and non-resonant processes. The results for $\\sigma_{LT'}$ are comparable in magnitude to previously reported results from CLAS for $\\sigma_{LT}$, the real part of the same response. An intriguing sign change in $\\sigma_{LT'}$ is observed in the high $Q^2$ data at $W\\approx 1.9$~GeV. Comparisons to several existing model predictions are shown.

Rakhsha Nasseripour; B. Raue; Daniel Carman; Pawel Ambrozewicz

2008-02-19T23:59:59.000Z

292

Vermont State Briefing Book on low-level radioactive waste management  

Science Conference Proceedings (OSTI)

The Vermont State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Vermont. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Vermont. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Vermont.

Not Available

1981-07-01T23:59:59.000Z

293

Flushing sprawl down the drain : is TIF an option for Vermont growth center wastewater projects?  

E-Print Network (OSTI)

In keeping with a long history of striving to preserve its traditional settlement pattern and promote smart growth, Vermont's most recent growth management policies encourage municipalities to plan for and accommodate ...

Markarian, Molly E. (Molly Elizabeth)

2007-01-01T23:59:59.000Z

294

Spotlight on Rutland County, Vermont: How Local Ties Lead to Local Wins  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2011 Version 2 April 2011 Version 2 betterbuildings.energy.gov/neighborhoods Spotlight on Rutland County, Vermont: How Local Ties Lead to Local Wins Driving Demand The Better Buildings Neighborhood Program is part of the national Better Buildings Initiative led by the U.S. Department of Energy. To learn how the Better Buildings Neighborhood Program is making homes more comfortable and businesses more lucrative and to read more from this Spotlight series, visit betterbuildings.energy.gov/neighborhoods. Neighbors Excel in Spreading the Value of Energy Efficiency in Rutland, Vermont Building on their understanding of homeowners in Rutland County, Vermont, NeighborWorks of Western Vermont (NWWVT) has enlisted well-respected local citizens and organizations to spread the word about home energy efficiency

295

Weatherization Grows in the Green Mountain State (Vermont): Weatherization Assistance Close-Up Fact Sheet  

Science Conference Proceedings (OSTI)

Vermont demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

D& R International

2001-10-10T23:59:59.000Z

296

Synoptic-Scale Precursors to Significant Cold-Season Precipitation Events in Burlington, Vermont  

Science Conference Proceedings (OSTI)

Several classes of significant cold-season precipitation events occurring in Burlington, Vermont (KBTV), during the 33-yr period from 1963 to 1995, are studied with the objective of identifying large-scale circulation precursors to the more ...

Paul A. Sisson; John R. Gyakum

2004-10-01T23:59:59.000Z

297

The debate over re-licensing the Vermont Yankee nuclear power plant  

Science Conference Proceedings (OSTI)

In 2009, the NRC's Atomic Safety and Licensing Board approved a 20-year license extension for the Vermont Yankee Nuclear Power plant. Less than seven months later, the Vermont State Senate voted 26-4 to block the required certificate for public good. How did a plant seen as likely to be re-licensed become the first in 20 years to be rejected in a public vote? (author)

Watts, Richard; Hines, Paul; Dowds, Jonathan

2010-05-15T23:59:59.000Z

298

Small Wind Electric Systems: A Vermont Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Vermont Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-04-01T23:59:59.000Z

299

Small Wind Electric Systems: A Vermont Consumer's Guide  

DOE Green Energy (OSTI)

The Vermont Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information.

O'Dell, K.

2001-10-01T23:59:59.000Z

300

Global carbon impacts of using forest harvest residues for district heating in Vermont  

DOE Green Energy (OSTI)

Forests in Vermont are selectively logged periodically to generate wood products and useful energy. Carbon remains stored in the wood products during their lifetime and in fossil fuel displaced by using these products in place of energy-intensive products. Additional carbon is sequestered by new forest growth, and the forest inventory is sustained using this procedure. A significant portion of the harvest residue can be used as biofuel in central plants to generate electricity and thermal energy, which also displaces the use of fossil fuels. The impact of this action on the global carbon balance was analyzed using a model derived from the Graz/Oak Ridge Carbon Accounting Model (GORCAM). The analysis showed that when forests are harvested only to manufacture wood products, more than 100 years are required to match the sequestered carbon present if the forest is left undisturbed. If part of the harvest residue is collected and used as biofuel in place of oil or natural gas, it is possible to reduce this time to about 90 years, but it is usually longer. Given that harvesting the forest for products will continue, carbon emission benefits relative to this practice can start within 10 to 70 years if part of the harvest residue is used as biofuel. This time is usually higher for electric generation plants, but it can be reduced substantially by converting to cogeneration operation. Cogeneration makes possible a ratio of carbon emission reduction for district heating to carbon emission increase for electricity generation in the range of 3 to 5. Additional sequestering benefits can be realized by using discarded wood products as biofuels.

McLain, H.A.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Vermont Biofuels Initiative: Local Production for Local Use to Supply a Portion of Vermont├ó┬?┬?s Energy Needs  

SciTech Connect

The Vermont Biofuels initiative (VBI) is the Vermont Sustainable Jobs Fund├ó┬?┬?s (VSJF) biomass-to-biofuels market development program. Vermont is a small state with a large petroleum dependency for transportation (18th in per capita petroleum consumption) and home heating (55% of all households use petroleum for heating). The VBI marks the first strategic effort to reduce Vermont├ó┬?┬?s dependency on petroleum through the development of homegrown alternatives. As such, it supports the four key priorities of the U.S. Department of Energy├ó┬?┬?s Multi-year Biomass Plan: 1.) Dramatically reduce dependence on foreign oil; 2.) Promote the use of diverse, domestic and sustainable energy resources; 3.) Reduce carbon emissions from energy production and consumption; 4.) Establish a domestic bioindustry. In 2005 VSJF was awarded with a $496,000 Congressionally directed award from U.S. Senator Patrick Leahy. This award was administered through the U.S. Department of Energy (DE-FG36- 05GO85017, hereafter referred to as DOE FY05) with $396,000 to be used by VSJF for biodiesel development and $100,000 to be used by the Vermont Department of Public Service for methane biodigester projects. The intent and strategic focus of the VBI is similar to another DOE funded organization├ó┬?┬? the Biofuels Center of North Carolina├ó┬?┬?in that it is a nonprofit driven, statewide biofuels market development effort. DOE FY05 funds were expensed from 2006 through 2008 for seven projects: 1) a feedstock production, logistics, and biomass conversion research project conducted by the University of Vermont Extension; 2) technical assistance in the form of a safety review and engineering study of State Line Biofuels existing biodiesel production facility; 3) technical assistance in the form of a safety review and engineering study of Borderview Farm├ó┬?┬?s proposed biodiesel production facility; 4) technology and infrastructure purchases for capacity expansion at Green Technologies, LLC, a waste vegetable biodiesel producer; 5) technical assistance in the form of feasibility studies for AgNorth Biopower LLC├ó┬?┬?s proposed multi-feedstock biodigester; 6) technology and infrastructure purchases for the construction of a ├ó┬?┬?Cow Power├ó┬?┬Ł biodigester at Gervais Family Farm; and 7) the education and outreach activities of the Vermont Biofuels Association. DOE FY05 funded research, technical assistance, and education and outreach activities have helped to provide Vermont farmers and entrepreneurs with important feedstock production, feedstock logistics, and biomass conversion information that did not exist prior as we work to develop an instate biodiesel sector. The efficacy of producing oilseed crops in New England is now established: Oilseed crops can grow well in Vermont, and good yields are achievable given improved harvesting equipment and techniques. DOE FY05 funds used for technology and infrastructure development have expanded Vermont├ó┬?┬?s pool of renewable electricity and liquid fuel generation. It is now clear that on-farm energy production provides an opportunity for Vermont farmers and entrepreneurs to reduce on-farm expenditures of feed and fuel while providing for their energy security. Meanwhile they are developing new value-added revenue sources (e.g., locally produced livestock meal), retaining more dollars in the local economy, and reducing greenhouse gas emissions.

Scott Sawyer; Ellen Kahler

2009-05-31T23:59:59.000Z

302

Louisiana oyster CuLtCh ProjeCt General Project DescriPtion  

E-Print Network (OSTI)

secondary production. estiMateD cost The estimated cost to implement the Louisiana Oyster Cultch Project is $15,582,600. (Estimated costs for some of the projects were updated from those provided in the DERPLouisiana oyster CuLtCh ProjeCt General Project DescriPtion The Louisiana Oyster Cultch Project

303

Jersey Central Power & Lt Co (New Jersey) | Open Energy Information  

Open Energy Info (EERE)

Co (New Jersey) Co (New Jersey) Jump to: navigation, search Name Jersey Central Power & Lt Co Place New Jersey Utility Id 9726 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0523/kWh Commercial: $0.0561/kWh Industrial: $0.1420/kWh References ÔćĹ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=Jersey_Central_Power_%26_Lt_Co_(New_Jersey)&oldid=412648" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs

304

Review of the natural circulation effect in the Vermont Yankee spent-fuel pool  

Science Conference Proceedings (OSTI)

A 7429-node, three-dimensional computer model of the Vermont Yankee spent-fuel pool was set up and run using the porous media model of the TEMPEST computer code. The results of this analysis show that natural circulation is sufficient to ensure adequate cooling, regardless of the loading pattern used or the orientation of the cooling system discharge nozzle.

Wheeler, C.L.

1988-01-01T23:59:59.000Z

305

SB Electronics Breaks Ground on New Factory | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SB Electronics Breaks Ground on New Factory SB Electronics Breaks Ground on New Factory SB Electronics Breaks Ground on New Factory April 29, 2010 - 5:22pm Addthis U.S. Rep. Peter Welch (from left), Vermont Lt. Gov. Brian Dubie, SBE board member Win Hunter, SBE board chair Stan Fishkin, Assi U.S. Rep. Peter Welch (from left), Vermont Lt. Gov. Brian Dubie, SBE board member Win Hunter, SBE board chair Stan Fishkin, Assi Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy A Vermont company broke ground on a new factory that will produce cutting-edge technology for electric and hybrid cars and create more than 100 jobs. The event ushering in SB Electronics' power ring capacitor facility in Barre was attended by Vermont Gov. Jim Douglas and federal, state and local

306

An Analysis of Restorative Justice in Vermont: Assessing the Relationships Between the Attitudes of Citizens and the Practices of the Department of Corrections.  

E-Print Network (OSTI)

??The purpose of this study was to examine the relationship between the attitudes of citizens in Vermont and the newly instated restorative justice programs ofů (more)

Melbardis, Dustin Robert

2012-01-01T23:59:59.000Z

307

Vermont Yankee's benefits and concerns operating with Axially zoned GE9 fuel  

Science Conference Proceedings (OSTI)

Vermont Yankee (VY) is a 368-assembly, D-lattice, boiling water reactor (BWR)/4. The current cycle 16 contains 252 GE9 assemblies with axial zoning of gadolinium and enrichment, 112 GE8 assemblies with axially zoned gadolinium, and 4 Siemens 9 x 9-IX lead qualification assemblies. In this paper, the performance of the GE9-dominated core is evaluated against previous cores containing less sophisticated fuel designs.

Woehlke, R.A. (Yankee Atomic Electric Co., Bolton, MA (United States))

1993-01-01T23:59:59.000Z

308

u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETEIU.&lt;UNATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

lt;UNATION Page I of2 RECIPIENT:Naviganl Consulting STATE: MA PROJECf TITLE: Offshore Wind Removing Market Barriers Funding Opportunity Announc:ement Number Procurement Instrument Number NEPA Control Number em Number DE-FOA-0000414, topic area 1.1 DE-EEOOO5360 GF()"()()()S360-OO1 0 Based on my review ofthe information concerning the proposed ac:tlon, as NEPA Compliance Officer (authori7-ed under DOE Order 451.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Informati on gatherin g, analysis, and dissemination Information gathering (including, but nollimited 10. literature surveys, inventories, site visits, and aUdits). data analysis (induding, but not limited to, computer modeling), document preparation (induding, but not limited to, conceptual design,

309

U.S. DEP.&lt;\RTlVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

<\RTlVIENT OF ENERGY &lt;\RTlVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlvIINATION RECIPIENT:Ohio Department of Development STATE: OH PROJECT SEP ARRA - Solid Waste Authority of Central Ohio TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number EE0000165 GFO-0000165-017 GOO Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

310

Energy Cost Calculator for Commercial Heat Pumps (5.4 >=&lt; 20 Tons) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps (5.4 >=< 20 Tons) Heat Pumps (5.4 >=&lt; 20 Tons) Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) October 8, 2013 - 2:22pm Addthis Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Project Type New Installation Replacement New Installation Condenser Type Air Source Water Source Air Source Existing Capacity * ton - Existing Cooling Efficiency * EER - Existing Heating Efficiency * COP - Existing IPLV Efficiency * IPLV - New Capacity ton 10 tons New Cooling Efficiency EER 10.1 EER New Heating Efficiency COP 3.2 COP New IPLV Efficiency IPLV 10.4 IPLV Energy Cost $ per kWh $0.06 per kWh

311

To: Mansueti, Lawrence &lt;Lawrence.Mansueti@hq.doe.gov>  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

&lt;ecchimento@comcast.net> To: Mansueti, Lawrence Sent: Fri Nov 18 10:58:43 2005 Subject: Letter (9/12/05) for filing in DOE DCPSC Docket #EO-05-01 Mr. Mansueti, Would you please file for consideration the attached letter, originally sent to FERC, in DOE's Docket No. EO-05-01 regarding the DCPSC complaint? Thank you. Elizabeth Chimento and Poul Hertel 1200 North Pitt Street 1217 Michigan Court Alexandria, VA 22314 Alexandria, VA 22314 September 12, 2005 Joseph T. Kelliher, Chairman Federal Energy Regulatory Commission 888 First Street, N.E. Washington, D.C. 20426 Re: District of Columbia Public Service Commission Emergency Petition and Complaint Docket No. EL05-145-000 Dear Chairman Kelliher:

312

Effort, Burden, What Do They Really Mean? Assessing The Fairness Of School Funding Alternatives In Vermont  

E-Print Network (OSTI)

. On February 5, 1997 the Vermont Supreme Court declared the state's system for funding public education unconstitutional in case of Amanda Brigham v. State of Vermont. Now two years later, the state has made radical and sweeping changes in the form of The Equal Educational Opportunity Act of 1997 (Act 60). Act 60 has been greeted with a variety of responses by Vermont citizens and the media, being framed as a socialist plot to a much needed reform. In the wake of extensive criticisms of Act 60, a variety of modifications and alternate proposals have emerged. The objective of this study is to begin by asking the questions -- What has Act 60 accomplished so far? And what key issues are yet to be addressed? Among the key concerns is the way in which the question of taxpayer equity has been addressed by simply imposing a uniform statewide property tax rate. This study finds that while Act 60 has remedied some disparities in tax rates and per pupil spending, it has not remedied variance in...

Bruce D. Baker

1999-01-01T23:59:59.000Z

313

A&lt;ACD6B;GAQ=CD4Q  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alt;ACD6B;GAQ=CD4Q =DCA3Q EG7@<9F5Q !' (*$!%), &", %!(#+, HIOKLMJPNMQ :8Q(%,1-Q .WAFTWbe?#Q 9TT@Xe (3* e.AO AW:K e&T[ O"Q- W:OY d  ]L *aA <[YI ^Ae) IWA= YTWe 0T: Oe 4WTF W:M Xe3C >Ae %RS[:Ke2:YITO:Ke+O_IWTONAOY:Ke5TKH=ce %

314

Final report on the use of wood as a heat source and the quality of insulation in Vermont households  

SciTech Connect

The State of Vermont Energy Office conducted a study to provide the quantitative attitudinal and behavioral information essential to assessing the use of wood as a heat source in the state. General results show that 54% of all home owners in Vermont burn wood to some degree, 47% use wood as a supplementary heat source, 9% use wood as a primary source, and the extent to which wood is used does not differ by geographic area. Results on household uses (cooking and heating) are summarized. A summary of queries on insulation attitudes, awareness, and practices shows that a majority of homeowners believe they have adequate insulation, but are unaware of R factor. In Vermont, about one-fourth of homeowners improved their insulation in the last three years. (MCW)

1976-01-01T23:59:59.000Z

315

THIS PAGE INTENTIONALLY LEFT BLANK  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THIS PAGE INTENTIONALLY LEFT BLANK THIS PAGE INTENTIONALLY LEFT BLANK i U.S. DEPARTMENT OF ENERGY CRITICAL MATERIALS STRATEGY DECEMBER 2011 ii THIS PAGE INTENTIONALLY LEFT BLANK iii TABLE OF CONTENTS FOREWORD ........................................................................................................................................................... 1 ACKNOWLEDGEMENTS .......................................................................................................................................... 2 EXECUTIVE SUMMARY ........................................................................................................................................... 3 CHAPTER 1. INTRODUCTION .................................................................................................................................. 8

316

,"Vermont Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_svt_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_svt_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:57 AM"

317

BWR (boiling-water reactor) radiation control: In-plant demonstration at Vermont Yankee: Final report  

Science Conference Proceedings (OSTI)

Results of the RP1934 program, which was established by EPRI in 1981 to demonstrate the adequacy of BRAC program (RP819) principles for BWR radiation control at Vermont Yankee, are presented. Evaluations were performed of the effectiveness of optimization of purification system performance, control of feedwater dissolved oxygen concentrations, minimization of corrosion product and ionic transport, and improved startup, shutdown, and layup practices. The impact on shutdown radiation levels of these corrective actions was assessed based on extensive primary system radiation survey and component gamma scan data. Implementation of the BRAC recommendations was found to be insufficient to reduce the rate of activity buildup on out-of-core surfaces at Vermont Yankee, and additional corrective actions were found necessary. Specifically, replacement of cobalt-bearing materials in the control rod drive pins and rollers and feedwater regulating valves was pursued as was installation of electropolished 316 stainless steel during a recirculation piping replacement program. Aggressive programs to further reduce copper concentrations in the reactor water by improving condensate demineralizer efficiency and to minimize organic ingress to the power cycle by reducing organic concentrations in recycled radwaste also were undertaken. Evaluations of the impact on activity buildup of several pretreatment processes including prefilming in moist air, preexposure to high temperature water containing zinc, and electropolishing also were performed in a test loop installed in the reactor water cleanup system. A significant beneficial impact of electropolishing was shown to be present for periods up to 6000 hours.

Palino, G.F.; Hobart, R.L.; Sawochka, S.G.

1987-10-01T23:59:59.000Z

318

MATH 337, by T. Lakoba, University of Vermont 140 15 The Heat equation in 2 and 3 spatial dimensions  

E-Print Network (OSTI)

the Heat equation (15.1), we cover domain D with a two-dimensional grid. As we have just noted above also discretize the time variable with a step size . Then the three-dimensional grid for the 2D HeatMATH 337, by T. Lakoba, University of Vermont 140 15 The Heat equation in 2 and 3 spatial

Lakoba, Taras I.

319

The Meaning of Success: Young Women and High Academic Achievement in Rapidly Developed Areas. A Comparative Study of Contemporary Rural Vermont, USA and Leinster, Ireland.  

E-Print Network (OSTI)

??This thesis is an in-depth, comparative international study on young womenĺs high academic achievement in rural Leinster (Ireland) and Vermont (USA). The research analyses howů (more)

Fuller, Wendy Irene

2010-01-01T23:59:59.000Z

320

Small Wind Electric Systems: A Vermont Consumer's Guide  

SciTech Connect

Small Wind Electric Systems: A Vermont Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

2007-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A comparison of factors impacting on radiation buildup at the Vermont Yankee and Monticello BWRs (boiling-water reactors): Interim report  

SciTech Connect

Design and operating features of the Monticello and Vermont Yankee BWRs were compared in an attempt to explain why shutdown radiation levels at Vermont Yankee were significantly higher than at Monticello. The plants were shown to be similar in many respects, for example, condenser and feedwater system design and materials, condensate treatment system design, feedwater iron and copper concentrations, reactor water piping materials and fabrication techniques, reactor water cleanup system flowrates and equipment type, fuel cycle lengths, and fuel failure history. Differences were noted in core power density, jet pump design, reactor water conductivity, volume of radwaste recycle, and the amount of Stellite bearing materials in the feedwater system. Corrosion films on reactor system decontamination flanges from the two plants also were very different. At Monticello, the film was typical of that observed at other BWRs. The Vermont Yankee film contained significantly higher levels of zinc, chromium, and cobalt. Since reactor water Co-60 concentrations at Monticello were about twice those at Vermont Yankee, the Vermont Yankee corrosion film must exhibit a greater tendency to incorporate Co-60.

Palino, G.F.; Hobart, R.L.; Sawochka, S.G.

1987-03-01T23:59:59.000Z

322

Solar-energy-system performance evaluation, Cathedral Square, Burlington, Vermont, July-December 1981  

DOE Green Energy (OSTI)

The Cathedral Square solar site is a 10-story multiunit apartment building in Vermont. Its active solar energy system is designed to supply 51% of the hot water load, and consists of 1798 square feet of flat plate collectors, 2699-gallon water tank in an enclosed mechanical room on the roof, and two auxiliary natural gas boilers to supply hot water to immersed heat exchanger in an auxiliary storage tank. The measured solar fraction was only 28%, not 51%, which, it is concluded, is an unreasonable expectation. Other performance data include the solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance. Monthly performance data are given for the solar system overall, and for the collector, storage, and hot water subsystems. Also included are insolation data, typical storage fluid temperatures, domestic hot water consumption, and solar heat exchangers inlet/outlet temperatures, and typical domestic hot water subsystem temperatures. In addition, the system operating sequence and solar energy utilization are given. Appended are a system description, performance evaluation techniques, long-term weather data. (LEW)

Welch, K.M.

1981-01-01T23:59:59.000Z

323

A survey of carbon monoxide and nitrogen dioxide in indoor ice arenas in Vermont  

Science Conference Proceedings (OSTI)

Because of the history of health problems traceable to the exhaust of ice resurfacing machines, state sanitarians used detector tubes to measure carbon monoxide (CO) and nitrogen dioxide (NO[sub 2]) levels in enclosed ice arenas in Vermont during high school hockey games. Five of eight arenas had average game CO measurements of 30 ppm carbon monoxide or more. Two of the three periods of play had average CO readings in excess of 100 ppm in one arena. Only six arenas had the complete series of nitrogen dioxide measurements. One had an average game NO[sub 2] level of 1.2 ppm. Two had one or more periods of play that averaged in excess of 0.5 ppm. Despite the ample documentation of the hazards of operating combustion-powered resurfacing machines inside enclosed ice arenas, a significant portion of the arenas had undesirable levels of carbon monoxide or nitrogen dioxide. Ice arenas should be routinely monitored for air contaminants. Considerations should be given to the purchase of electric ice resurfacing machines for new arenas and arenas that have air contamination that cannot be resolved with ventilation.

Paulozzi, L.J. (Vermont Health Dept., Burlington, VT (United States)); Spengler, R.F.; Vogt, R.L.; Carney, J.K.

1993-12-01T23:59:59.000Z

324

Valuing Good Health in Vermont: The Costs and Benefits of Earned Health Care Time  

E-Print Network (OSTI)

Policymakers across the country are increasingly interested in ensuring that workers can earn paid time off to use when they are sick. In addition to concerns about workers ĺ ability to respond to their own health needs, there is growing recognition that, with so many dual-earner and single-parent families, family members ĺ health needs also sometimes require workers to take time off from their job. Allowing workers with contagious illness to avoid unnecessary contact with co-workers and customers has important public health benefits. Earned health care time also protects workers from being disciplined or fired when they are too sick to work, helps families and communities economically by preventing lost income due to illness, and offers savings to employers by reducing turnover and minimizing absenteeism. Legislators in Vermont are considering Bill H.208, ôAn Act Relating to Absence from Work for Health Care and Safety. ö Using the parameters of the proposed legislation and publicly available data, the Institute for Womenĺs Policy Research (IWPR) estimates the anticipated costs and some of the anticipated benefits of the law for employers providing new leave, as well as some of the benefits for employees. The briefing paper uses data collected by the U.S. Bureau of Labor Statistics, the Centers for Disease

unknown authors

2013-01-01T23:59:59.000Z

325

DOE/EA-1503: Finding of No Significant Impact for the Vermont Electric Power Company Proposed Northern Loop Project Environmental Assessment (01/21/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Electric Power Company Vermont Electric Power Company FE Dockets PP-66-2 and PP-82-3 Background Under Executive Order (EO) 10485, as amended by EO 12038, no person may construct, operate, maintain, or connect facilities at the international border of the United States for the transmission of electric energy between the United States and a foreign country without first obtaining a Presidential permit from the Department of Energy (DOE). On June 21, 1979, DOE issued Presidential Permit PP-66 to Citizens Utilities Company (now Citizens Communications Company; "Citizens") for one 120,000-volt (120-kV) electric transmission line that crosses the United States border with Canada near Derby Line, Vermont, and interconnects with similar transmission facilities in Canada owned by Hydro-Quebec.

326

On left and right model categories and left and right Bousfield localizations  

E-Print Network (OSTI)

We verify the existence of left Bousfield localizations and of enriched left Bousfield localizations, and we prove a collection of useful technical results characterizing certain fibrations of (enriched) left Bousfield ...

Barwick, Clark Edward

327

* ^ -^. ┬ź*'*: IV: .&lt;:.**  

Gasoline and Diesel Fuel Update (EIA)

* ^ -^. ┬ź*'*: IV: .<:.**,.,? '* -^^V; , *"'^"T-'^T * .^'^ **'*--'"-* *'*V-; "'^ v ^V ^^-^^;-'jl^'-^^i5^^v>^Ll-';.i┬╗S-'^^^ * . '"* L"".'"-'?_,. -*'-_*:'?'. v>;': |: ,^% ;'. >' 4-.**;- *"-.''' * Lite -^ t.-^┬╗!, m ". *Bfc' Table 8. Foreign Crude Oil and Natural Gas Liquids Reserve Interest for FRS Companies, 1983 and Percent Change from 1982 Crude Oil and Reserves Total OECD Foreign___Canada___Europe Africa___Mtdeast Other Eastern Hemisphere Other Western Hemisphere 1983 (million barrels) Total Crude and |GL

328

&lt;AVS>  

NLE Websites -- All DOE Office Websites (Extended Search)

Antelope Valley Station to Neset Transmission Project Antelope Valley Station to Neset Transmission Project This environmental impact statement (EIS) prepared by the U.S. Department of Agriculture (USDA), Rural Utilities Service (RUS) provides information about the potential environmental impacts of the proposed Antelope Valley Station (AVS) to Neset Transmission Project. This project, proposed by Basin Electric Power Cooperative (Basin Electric), would include a new 345-kilovolt (kV) transmission line connecting the existing AVS, Charlie Creek, Williston, and Neset substations and the newly proposed Judson and Tande 345-kV substations. In addition to the approximately 190 miles of new 345-kV transmission line, the project would also construct two new 345 kV substations (Judson Substation west of Williston and Tande Substation southeast of Tioga), and several miles of 230-kV transmission line to connect the 345-kV transmission line into the existing area system.

329

Tesis LT.PDF  

Open Energy Info (EERE)

DETERMINACION DE LA IRRADIANCION SOLAR SOBRE EL DETERMINACION DE LA IRRADIANCION SOLAR SOBRE EL TERRITORIO DE CUBA A PARTIR DE IM├üGENES DE SATELITES. Autores: Israel Borrajero Montejo * Lourdes Lavastida** Juan Carlos Pelaez Chavez* Instituto de Meteorolog├şa de Cuba La investigaci├│n se realizo dentro del ac├ípite relacionado con la radiaci├│n solar del Proyecto SWERA para Cuba * Grupo de Radiaci├│n Solar del Centro de F├şsica de la Atm├│sfera del Instituto de Meteorolog├şa de Cuba Ministerio de Ciencia Tecnolog├şa y Medio Ambiente ** Dpto de Informaci├│n de Satelites del Centro Nacional de Pronostico Instituto de Meteorolog├şa de Cuba Ministerio de Ciencia Tecnolog├şa y Medio Ambiente 2 Introducci├│n. El Sol, fuente de vida, es la energ├şa m├ís importante disponible en el planeta y

330

Left-over Windows Cause Window Clutter... But What Causes Left-over Windows?  

E-Print Network (OSTI)

Left-over Windows Cause Window Clutter... But What Causes Left-over Windows? Julie Wagner1 that they can return to later. However, users also struggle with window clutter, facing an increasing number of `left-over windows' that get in the way. Our goal is to understand how users create and cope with left

331

This page is intentionally left blank.  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Electric Power Monthly June 2012 1 Executive Summary This page is intentionally left blank.

332

Pollution on the Federal Lands I: Air Pollution Law  

E-Print Network (OSTI)

The court distinguished Vermont v. Thomas, 850 F.2d 99 (2dReg. 80,085-86; see also Vermont v. Thomas, 850 F.2d 99,the issues raised by Vermont's petition "are best left to

Glicksman, Robert L.

1993-01-01T23:59:59.000Z

333

Ethics of Cardiac Transplantation in Hypoplastic Left Heart Syndrome  

E-Print Network (OSTI)

neonates with hypoplastic left heart syndrome. Arch PediatrTabbutt S (2007) Hypoplastic left heart syndrome: consensus,for hypoplastic left heart syndrome. Ann Thorac Surg 72(6):

Kon, Alexander A.

2009-01-01T23:59:59.000Z

334

Vermont Hazardous Waste Management Regulations (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations are intended to protect public health and the environment by comprehensively regulating the generation, storage, collection, transport, treatment, disposal, use, reuse, and...

335

Left-Wing Extremism: The Current Threat  

SciTech Connect

Left-wing extremism is ''alive and well'' both in the US and internationally. Although the current domestic terrorist threat within the U. S. is focused on right-wing extremists, left-wing extremists are also active and have several objectives. Leftist extremists also pose an espionage threat to U.S. interests. While the threat to the U.S. government from leftist extremists has decreased in the past decade, it has not disappeared. There are individuals and organizations within the U.S. who maintain the same ideology that resulted in the growth of left-wing terrorism in this country in the 1970s and 1980s. Some of the leaders from that era are still communicating from Cuba with their followers in the U.S., and new leaders and groups are emerging.

Karl A. Seger

2001-04-30T23:59:59.000Z

336

Assessment of the Impacts of Green Mountain Power Corporation's Wind Power Facility on Breeding and Migrating Birds in Searsburg, Vermont: July 1996--July 1998  

DOE Green Energy (OSTI)

A 6-megawatt, 11 turbine wind power development was constructed by Green Mountain Power Corporation in Searsburg, southern Vermont, in 1996. To determine whether birds were impacted, a series of modified BA (Before, After) studies was conducted before construction (1993-1996), during (1996), and after (1997) construction on the project site. The studies were designed to monitor changes in breeding bird community (species composition and abundance) on the site, examine the behavior and numbers of songbirds migrating at night over the site and hawks migrating over the site in daylight, and search for carcasses of birds that might have collided with the turbines.

Kerlinger, P.

2002-03-01T23:59:59.000Z

337

Feasibility Study of Economics and Performance of Solar Photovoltaics at the VAG Mine Site in Eden and Lowell, Vermont. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Vermont Asbestos Group (VAG) Mine site in Eden, Vermont, and Lowell, Vermont, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

Simon, J.; Mosey, G.

2013-04-01T23:59:59.000Z

338

As you may kn&&lt;' the~de&tment of &~er& (D&j 1s involved'in'a pronram  

Office of Legacy Management (LM)

As you may kn&<' the~de&tment of &~er& (D&j 1s involved'in'a pronram As you may kn&&lt;' the~de&tment of &~er& (D&j 1s involved'in'a pronram '. to'chiiracterlze the radjologital cbndif~on of ,sites formerly used byythe . . . ., Manhattan Engineer Dlstrlct (NED) and/or Atomjc Energy Co$n~~lssiqq (AEC); in.. the development of 'nuclear energy.. As part..of this -programi' DOE is 1~ I+ preparing, ,a' series of. brJef~ summaries ,-of .the' history:. of' tho ,#D/AEC~ : : ..; 'i ..relatecl activities and 'Conditions at .thc. sneclfic. sites. The surnaaries~ are to 'document the activities 'frcmi the ~nitlation 'of a contract with' j.'., F:ED/AEC,-to the terminationof the firial.F1EO/AEC contract; The ,historical .: '_ ,,:~,st&naries aIs. briefly' describe the. currant .conditi,on of .each site.

339

&lt;GrandPrairie>  

NLE Websites -- All DOE Office Websites (Extended Search)

Grande Praire Wind Farm, O'Neill, NE Grande Praire Wind Farm, O'Neill, NE The Western Area Power Administration (Western), an agency of the Department of Energy (DOE), intends to prepare an environmental impact statement (EIS) on the proposed interconnection of the Grande Prairie Wind Farm (Project) in Holt County, near the city of O'Neill, Nebraska. Grande Prairie Wind, LLC (Grande Prairie), a subsidiary of Midwest Wind Energy Development Group, LLC, has applied to Western to interconnect their proposed Project to Western's power transmission system. Western is issuing this notice to inform the public and interested parties about Western's intent to prepare an EIS, conduct a public scoping process, and invite the public to comment on the scope, proposed action, alternatives, and other issues to be addressed in the EIS.

340

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

equipment. The program offers a rebate incentive for efficient lighting technologies, boilers, ventilation systems, and refrigerators. A receipt or invoice for purchased equipment...

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Vermont Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Imports Price 8.51 9.74 6.34 6.54 5.81 4.90 1989-2012 Pipeline and Distribution Use Price 1982-2005 Citygate Price 10.03 10.66 9.33 8.29 7.98 6.63 1984-2012 Residential Price 15.99 18.31 17.29 16.14 16.17 16.73 1980-2012 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2012 Commercial Price 12.79 14.31 12.96 11.82 11.90 12.09 1980-2012 Percentage of Total Commercial Deliveries included in Prices 100 100 100 100 100 100 1990-2012 Industrial Price 9.08 9.60 7.93 6.57 6.09 4.89 1997-2012 Percentage of Total Industrial Deliveries included in Prices 78.0 79.6 77.9 77.1 80.9 100.0 1997-2012 Electric Power Price 7.72 9.14 5.66 5.73 5.26 4.14 1997-2012

342

Climate Action Plan (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

There is a growing scientific consensus that increasing emissions of greenhouse gases to the atmosphere are affecting the temperature and variability of the Earthĺs climate. Recognizing the...

343

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Renewable Energy April 19, 2010 CX-002104: Categorical Exclusion Determination Street Light and Signal Relamping CX(s) Applied: B5.1 Date: 04192010 Location(s):...

344

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the building, and improvements to thermal envelope, power, heating, ventilation and cooling systems, lighting, and energy efficiency HVAC equipment are generally eligible....

345

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 14, 2010 A 5 Million Boost for Midsize Wind Turbines and Grid Connectivity With better forecasting, utilities can more reliably connect variable power sources such as...

346

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

utilizing anaerobic digestion of agricultural products, byproducts or wastes to generate electricity. GMP purchases the renewable energy credits for up to 0.04 per kWh with full...

347

Vermont Natural Gas Summary  

U.S. Energy Information Administration (EIA) Indexed Site

478 274 137 93 85 1989-2013 Commercial 404 347 201 108 85 83 1989-2013 Industrial 302 286 247 206 204 233 2001-2013 Vehicle Fuel 0 0 0 0 0 0 2010-2013 Electric Power 4 4 1 4 4 3...

348

Alternative Regulation (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

Utility regulators, including the Public Service Board, have applied a new type of regulation, often called "alternative regulation" or "incentive regulation." There are many variants of this type...

349

Department of Energy - Vermont  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplier

Institutional
Multi-Family Residential
Systems Integrator

350

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

per square foot of natural gas over the past year are eligible for this program, as are multi-family buildings. Typical measures include blown-in cellulose insulation for walls...

351

Vermont Natural Gas Summary  

Gasoline and Diesel Fuel Update (EIA)

8.51 9.74 6.34 6.54 5.81 1989-2011 Pipeline and Distribution Use 1982-2005 Citygate 10.03 10.66 9.33 8.29 7.98 6.63 1984-2012 Residential 15.99 18.31 17.29 16.14 16.17 16.73...

352

Stormwater Permits (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

Stormwater permits are required for the construction of a new generation facility, the reconstruction or expansion of a facility, the operation of a generation facility which discharges stormwater...

353

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

or lighting) and for a variety of equipment including plate coolers, variable speed milk transfer systems, heat recovery units, milk vacuum pumps VFD and sap vacuum pumps VFD,...

354

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 14, 2011 EA-1814: Final Environmental Assessment City of Montpelier Combined Heat and Power and District Energy System July 12, 2011 EA-1814: DOE Notice of Availability...

355

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-002589: Categorical Exclusion Determination Clean Energy Development Fund - Renewable Energy Program - Burlington City Market Co-op Solar CX(s) Applied: B5.1 Date: 03242010...

356

Vermont Pasture Network Calendar  

E-Print Network (OSTI)

, cleaning grain, the milling process, and packaging flour. He'll also discuss the history of milling for a tour of Wild Hive Farm Community Grain Project and a look at how local milling plays an important role

Hayden, Nancy J.

357

Vermont Natural Gas Prices  

U.S. Energy Information Administration (EIA) Indexed Site

20.00 22.97 23.69 1989-2013 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2013 Commercial Price 11.53 11.62 11.68 11.97...

358

Vermont Natural Gas Prices  

U.S. Energy Information Administration (EIA) Indexed Site

16.14 16.17 16.73 1980-2012 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2012 Commercial Price 12.79 14.31 12.96 11.82...

359

Vermont Natural Gas Prices  

U.S. Energy Information Administration (EIA) Indexed Site

7.20 7.16 1989-2013 Residential Price 15.21 14.73 14.78 15.10 15.61 17.74 1989-2013 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0...

360

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

property taxes would still apply). Eligible systems include, but are not limited to, "windmills, facilities for the collection of solar energy or the conversion of organic matter...

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Asymmetric parametric amplification in nonlinear left-handed transmission lines  

E-Print Network (OSTI)

We study parametric amplification in nonlinear left-handed transmission lines, which serve as model systems for nonlinear negative index metamaterials. We experimentally demonstrate amplification of a weak pump signal in three regimes: with the signal in the left-handed band, with the signal in the stop band, and with the signal at a defect frequency. In particular, we demonstrate the amplification of the incident wave by up to 15dB in the left-handed regime.

Powell, David A; Kivshar, Yuri S

2008-01-01T23:59:59.000Z

362

Leptonic dipole moments in the left-right supersymmetric ... - Springer  

Science Conference Proceedings (OSTI)

doscalar Higgs boson can give significant contributions to dipole moments at two loop level, coming from Barr-Zee. Fig. 2. Chargino, neutralino and left-rightá...

363

Vertical Wind Shear Associated with Left-Moving Supercells  

Science Conference Proceedings (OSTI)

Vertical wind shear parameters are presented for 60 left-moving supercells across the United States, 53 of which produced severe hail (?1.9 cm). Hodographs corresponding to environments of left-moving supercells have a tendency to be more linear ...

Matthew J. Bunkers

2002-08-01T23:59:59.000Z

364

Multistability in nonlinear left-handed transmission lines  

E-Print Network (OSTI)

Employing a nonlinear left-handed transmission line as a model system, we demonstrate experimentally the multi-stability phenomena predicted theoretically for microstructured left-handed metamaterials with a nonlinear response. We show that the bistability is associated with the period doubling which at higher power may result in chaotic dynamics of the transmission line.

Powell, David A; Kivshar, Yuri S

2008-01-01T23:59:59.000Z

365

Template:DivStartLeft | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Template Edit History Facebook icon Twitter icon ┬╗ Template:DivStartLeft Jump to: navigation, search This is the 'DivStartLeft' template. It is used in conjuction with Template:DivEnd to put surround the "free text" area in the geothermal region template. Usage It should be called in the following format: {{DivStartLeft}} Retrieved from "http://en.openei.org/w/index.php?title=Template:DivStartLeft&oldid=403880" Categories: Templates Formatting Templates What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

366

Tool selectivity in left occipitotemporal cortex develops without vision  

Science Conference Proceedings (OSTI)

Previous studies have provided evidence for a tool-selective region in left lateral occipitotemporal cortex LOTC. This region responds selectively to pictures of tools and to characteristic visual tool motion. The present human fMRI study tested whether ...

Marius V. Peelen; Stefania Bracci; Xueming Lu; Chenxi He; Alfonso Caramazza; Yanchao Bi

2013-08-01T23:59:59.000Z

367

Measurement and device design of left-handed metamaterials  

E-Print Network (OSTI)

The properties of a variety of left-handed metamaterial (LHM) structures are analyzed and measured to verify consistent behavior between theory an measurements. The structures are simulated using a commercial software ...

Thomas Zachary M. (Zachary Michael)

2005-01-01T23:59:59.000Z

368

Factors hindering the development of small-scale municipal hydropower: a case study of the Black River project in Springfield, Vermont  

DOE Green Energy (OSTI)

There are many good reasons to use New England's small-scale hydropower resources to generate electricity. But current production capacity in the three northern states is only 1300 MW, just 35% of the 3710 MW estimated to be available to the states. Though the benefits of properly designed projects seem substantial, many factors combine to hinder their development. The Black River project in Springfield, Vermont, exemplifies the problem. Even after the two has invested over five years and $1 million in its effort to develop 30 MW of capacity, it still has not received either federal or state approval to proceed with construction. The first 4 years of the Springfield experience are described and factors that have greatly increased the cost and planning time for the project are identified. The purpose is to identify changes that could facilitate efforts to develop small-scale hydropower at other acceptable sites. On the basis of this experience it is recommended that: after issuance of a FERC permit, a preliminary determination of the project's impacts should be made by FERC officials; if environmental impacts are solely local or limited, environmental analysis/determination should be placed in the hands of the state; short-form licensing should be used for all run-of-river hydro projects that utilize and do not significantly modify existing water impoundment areas and do not significantly alter downstream flow patterns; and a hydro ombudsman with power at the state level should be established to facilitate governmental inter-agency coordination and project-related information transfer: one-stop licensing. (LCL)

Peters, E.; Berger, G.; Amlin, J.; Meadows, D.

1979-03-01T23:59:59.000Z

369

Front Row (left to right): Bryan Reed, Wayne King, Nigel Browning ...  

DTEM ľ Team Members: Front Row (left to right): Bryan Reed, Wayne King, Nigel Browning, Judy Kim, Michael Armstrong Back Row (left to right): Thomas LaGrange ...

370

Efficiency Vermont - newLIGHT Incentive Program (Vermont) | Open...  

Open Energy Info (EERE)

Incentive Programs Amount Lighting: 35-125 depending on the equipment installed LED Exit Sign: 35 Sensors: 40-200 depending on the equipment installed Expiration Date 12...

371

Vermont Village Green Program (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

obtain proposals from eligible organizations for projects that implement renewable energy district heating projects (including combined heat and power). Preference will be given to...

372

Right-Left Asymmetry of Radiation from Fission  

E-Print Network (OSTI)

The effect of the right-left asymmetry is considered in the predicted earlier electric dipole radiation from fission fragments arising due to the Strutinski-Denisov induced polarisation mechanism. The magnitude of the asymmetry parameter is on the level of 10^-3. That is in agreement with the recent experimental data on the radiative ROT effect in ^{235}U fission induced by cold polarised neutrons.

F. F. Karpeshin

2007-10-09T23:59:59.000Z

373

Underground Storage Tank Program (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

374

Vermont Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear",620,55.0,"4,782",72.2 "Hydro and Pumped Storage",324,28.7,"1,347",20.3 "Natural Gas","-","-",4,0.1 "Other Renewable1",84,7.5,482,7.3 "Petroleum",100,8.9,5,0.1 "Total","1,128",100.0,"6,620",100.0 "1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable."

375

Vermont Electricity Restructuring not Active  

U.S. Energy Information Administration (EIA)

... The Governor created a task force to study restructuring activities regionally and nationally; the effects of Hydro-Quebec contracts on ...

376

Underground Injection Control Rule (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

This rule regulates injection wells, including wells used by generators of hazardous or radioactive wastes, disposal wells within an underground source of drinking water, recovery of geothermal...

377

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

378

Microsoft Word - vermont.doc  

U.S. Energy Information Administration (EIA) Indexed Site

landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. 2 Other gases includes blast furnace gas, propane...

379

Project update: The Vermont gasifier  

DOE Green Energy (OSTI)

Biomass is a proven option for electricity generation. A diverse range of biopower producers includes electric utilities, independent power producers, and the pulp and paper industry. To help expand opportunities for biomass power production, the U.S. Department of Energy established the Biopower Program and is sponsoring efforts to increase the productivity of dedicated energy crops. The Program aims to double biomass conversion efficiencies, thus reducing biomass power generation costs. These efforts will promote industrial and agricultural growth, improve the environment, create jobs, increase U.S. energy security, and provide new export markets.

Shepherd, P.

2000-06-02T23:59:59.000Z

380

Radiological Emergency Response Plan (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes a radiological emergency response plan fund, into which any entity operating a nuclear reactor or storing nuclear fuel and radioactive waste in this state (referred to...

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

G&lt; TEI-779 MASTER  

Office of Legacy Management (LM)

c*£ c*£ & G< TEI-779 MASTER (fA/L-y-yj. U. S. DEPARTMENT OF THE INTERIOR GEOLOGIC INVESTIGATIONS IN SUPPORT OF PROJECT CHARIOT, PHASE 111, IN THE VICINITY OF CAPE THOMPSON, NORTH- WESTERN ALASKA Preliminary Report By Reuben Kachadoorian Russell H. Campbell George W. Moore David W. Scholl January 1961 Arthur H. Lachenbruch Rex V. Allen Gordon W. Greene Roger M. Waller B. Vaughn Marshall Marvin J. Slaughter David F. Barnes This report is preliminary and has not been edited for con- formity with Geological Survey format and nomenclature. Geological Survey Washington, D. C. Prepared by Geological Survey for the UNITED STATES ATOMIC ENERGY COMMISSION Office of Technical Information L E G A L N O T I C E This report was prepared as an account of Government sponsored work. Neither the United

382

ORNL/RASA-84/LT6  

Office of Legacy Management (LM)

W. D. Cottrell - RASAFUSRAP Project Director R. W. Doane - Survey Field Supervisor Work performed as part of the RADIOLOGICAL SURVEY ACTIVITIES PROGRAM Prepared by the OAK...

383

The Dissipation of a Left-Moving Cell in a Severe Storm Environment  

Science Conference Proceedings (OSTI)

Observations have shown that thunderstorms sometimes undergo updraft splitting, where one updraft moves to the right of the mean tropospheric wind and the other to the left. Observations also show that the left-moving updraft tends to dissipate ...

Lewis D. Grasso

2000-08-01T23:59:59.000Z

384

RIGHT-LEFT ASYMMETRY OF RADIATION FROM FISSION  

E-Print Network (OSTI)

The effect of the right-left asymmetry is considered in the predicted earlier electric dipole radiation from fission fragments arising due to the StrutinskiŚ Denisov induced polarisation mechanism. The magnitude of the asymmetry parameter is on the level of 10 ?3. That is in agreement with the recent experimental data on the radiative ROT effect in 235 U fission induced by cold polarised neutrons. PACS: 24.80.+y, 24.75.+i, 24.70.+s Key words: Fission, asymmetry, radiation, ROT-effect

F. F. Karpeshin

2008-01-01T23:59:59.000Z

385

Left-handed metamaterial design for Cerenkov radiation  

SciTech Connect

The design of a new type of left-handed material (LHM), having two dimensions of negative permittivities and one dimension of negative permeability, is presented in this paper for the observation and demonstration of the LH properties of Cerenkov radiation, which is a transverse magnetic (TM) electromagnetic wave. For a unit cell's dimension of 5 mm, a LH band is observed between 6 and 7 GHz upon a TM incidence. We also use an antenna array to model a traveling current source, representing a single frequency component of a moving charged particle, demonstrating the feasibility and basis of observing backward Cerenkov radiation experimentally with LHM.

Wu BaeIan; Lu Jie; Kong, J.A.; Chen Min [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States)

2007-12-01T23:59:59.000Z

386

Electron Beam Instability in Left-Handed Media  

E-Print Network (OSTI)

We predict that two electron beams can develop an instability when passing through a slab of left-handed media (LHM). This instability, which is inherent only for LHM, originates from the backward Cherenkov radiation and results in a self-modulation of the beams and radiation of electromagnetic waves. These waves leave the sample via the rear surface of the slab (the beam injection plane) and form two shifted bright circles centered at the beams. A simulated spectrum of radiation has well-separated lines on top of a broad continuous spectrum, which indicates dynamical chaos in the system. The radiation intensity and its spectrum can be controlled either by the beams' current or by the distance between the two beams.

Yury P. Bliokh; Sergey Savel'ev; Franco Nori

2008-04-08T23:59:59.000Z

387

Low scale left-right symmetry and warm dark matter  

SciTech Connect

We study the scenario which incorporates dark matter in the minimal left-right symmetric theory at the TeV scale. The only viable candidate is found to be the lightest right-handed neutrino with a mass of keV. In order to satisfy the dark matter relic abundance, the relic yield is diluted by late decays of the two heavier neutrinos. We point out that the QCD phase transition temperature coincidences with the typical freeze-out temperature governed by super-weak right-handed interactions. This helps to alleviate the problem of overproduction and a careful numerical study reveals a narrow window for the mass of the right-handed gauge boson, which is within the reach of the LHC.

Nemevsek, Miha [ICTP, Strada Costiera 11, 34151 Trieste (Italy)

2013-05-23T23:59:59.000Z

388

Rapture rhetoric: prophetic epistemology of the Left Behind subculture  

E-Print Network (OSTI)

This thesis provides a rhetorical analysis of prophetic texts, non-fiction premillennialist dispensational studies, the fictional series, Left Behind and interviews with seriesĺ readers. This thesis argues that prophetic rhetoric constitutes an epistemological position whereby Rapture believers create knowledge, cast knowledge as good or evil and finally act as gatekeepers to determine what can and should be known. Rapture subculture is composed of both a hard core and a set of narrative believers, those who have acquired the nomenclature, but perhaps not the dogmatic belief in a Rapture, Tribulation, Armageddon, and Millennium schema. The process of turning narrative believers into hard core believers relies on the use of a range of topoi, appeals to authority, evil and time. Rapture rhetoric, aimed at bolstering the beliefs of the hard core and cultivating the beliefs of those still undecided, relies on the process of transfer to gain acceptance for one claim based on acceptance of another and then relies on narrative plasticity to enlarge the basis for those accepted claims. These arguments are exchanged for stories in the fictional Left Behind series, whereby the characters, institutions and knowledge of the end-times becomes encapsulated in an easy-to-read and simple-to-relate tale that codes knowledge as either good knowledge revealed from God or evil knowledge acquired through human understanding. These narratives and arguments both get used among prophetic believers to explain their lives and their world, internally and externally to the prophetic subculture, in order to convince more narrative believers of the truth of their claims. Prophetic communities develop knowledge products, cultural entailments and cultural manifestations of prophetic belief to serve as symbols of the end-times narrative. Rapture subculture, based on prophetic beliefs, is not monolithic; however, this thesis is able to draw some broad generalizations about the prophetic community and the rhetoric they use to explain their claims within their ranks and to the outside world.

Hill, Kristin Dawn

2007-08-01T23:59:59.000Z

389

Review and evaluation of the RELAP5YA computer code and the Vermont Yankee LOCA (Loss-of-Coolant Accident) licensing analysis model for use in small and large break BWR (Boiling Water Reactor) LOCAS  

SciTech Connect

A review has been completed of the RELAP5YA computer code to determine its acceptability for performing licensing analyses. The review was limited to Boiling Water Reactor (BWR) reactor applications. In addition, a Loss-Of-Coolant Accident (LOCA) licensing analysis method, using the RELAP5YA computer code, has been reviewed. This method is applicable to the Vermont Yankee Nuclear Power Station to perform full break spectra LOCA and fuel cycle independent analyses. The review of the RELAP5YA code consisted of an evaluation of all Yankee Atomic Electric Company (YAEC) incorporated modifications to the RELAP5/MOD1 Cycle 18 computer code from which the licensing version of the code originated. Qualifying separate and integral effects assessment calculations were reviewed to evaluate the validity and proper implementation of the various added models. The LOCA licensing method was assessed by reviewing two RELAP5YA system input models and evaluating several small and large break qualifying transient calculations. A review of the RELAP5YA code modifications and their assessments, as well as the submitted LOCA licensing method, is given and the results of the review are provided.

Jones, J.L.

1987-01-01T23:59:59.000Z

390

This page intentionally left blank. California Solar Initiative, CPUC Staff Progress Report, April 2008 2  

E-Print Network (OSTI)

#12;This page intentionally left blank. California Solar Initiative, CPUC Staff Progress Report................................................................................................................ 5 2. Go Solar California! Overview............................................................................................... 8 2.1 California Solar Initiative Program History

391

Neutralino dark matter in the left-right supersymmetric model  

SciTech Connect

We study the neutralino sector of the left-right supersymmetric model. In addition to the possibilities available in the minimal supersymmetric model, the neutralino states can be superpartners of the U(1){sub B-L} gauge boson, the neutral SU(2){sub R} gauge boson, or of the Higgs triplets. We analyze neutralino masses and determine the parameter regions for which the lightest neutralino can be one of the new pure states. We then calculate the relic density of the dark matter for each of these states and impose the constraints coming from the {rho} parameter, the anomalous magnetic moment of the muon, b{yields}s{gamma}, as well as general supersymmetric mass bounds. The lightest neutralino can be the bino, or the right-wino, or the neutral triplet Higgsino, all of which have different couplings to the standard model particles from the usual neutralinos. A light bino satisfies all the experimental constraints and would be the preferred dark matter candidate for light supersymmetric scalar masses, while the right-wino would be favored by intermediate supersymmetric mass scales. The neutral triplet Higgs fermion satisfies the experimental bounds only in a small region of the parameter space, for intermediate to heavy supersymmetric scalar masses.

Demir, Durmus A. [Department of Physics, Izmir Institute of Technology, IZTECH, TR35430, Izmir (Turkey); Frank, Mariana; Turan, Ismail [Department of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6 (Canada)

2006-06-01T23:59:59.000Z

392

Black Dwarf Black Dwarf Black Dwarf Dark core of a low mass star left when  

E-Print Network (OSTI)

Black Dwarf Black Dwarf Black Dwarf Dark core of a low mass star left when a white dwarf cools. Black dwarfs disappear from view. Mass: 0.5 - 1.4 SM StarPower Points: 1 Dark core of a low mass star left when a white dwarf cools. Black dwarfs, like the charcoal briquette pictured in the sky, are made

Bechtold, Jill

393

Automatic segmentation of the left ventricle cavity and myocardium in MRI data  

Science Conference Proceedings (OSTI)

A novel approach for the automatic segmentation has been developed to extract the epi-cardium and endo-cardium boundaries of the left ventricle (lv) of the heart. The developed segmentation scheme takes multi-slice and multi-phase magnetic resonance ... Keywords: Clustering, Left ventricle, Level-set, MRI, Myocardium, Segmentation

M. Lynch; O. Ghita; P. F. Whelan

2006-04-01T23:59:59.000Z

394

Detection and Interpretation of Left-Moving Severe Thunderstorms Using the WSR-88D: A Case Study  

Science Conference Proceedings (OSTI)

Left-moving supercells, which rotate anticyclonically, are much less common than their right-moving counterparts but are nevertheless capable of producing severe weather. On 26 May 1992, a severe left-moving thunderstorm over east Texas developed ...

John W. Nielsen-Gammon; William L. Read

1995-03-01T23:59:59.000Z

395

LEFT VERSUS RIGHT HEMISPHERE DIFFERENCES IN BRAIN CONNECTIVITY: 4-TESLA HARDI TRACTOGRAPHY IN 569 TWINS  

E-Print Network (OSTI)

LEFT VERSUS RIGHT HEMISPHERE DIFFERENCES IN BRAIN CONNECTIVITY: 4-TESLA HARDI TRACTOGRAPHY IN 569) and 112 adolescents (age 12-16) with 4-Tesla 105-gradient high- angular resolution diffusion imaging. We

Thompson, Paul

396

The left posterior superior temporal gyrus participates specifically in accessing lexical phonology  

Science Conference Proceedings (OSTI)

Impairments in phonological processing have been associated with damage to the region of the left posterior superior temporal gyrus (pSTG), but the extent to which this area supports phonological processing, independent of semantic processing, is less ...

William W. Graves; Thomas J. Grabowski; Sonya Mehta; Prahlad Gupta

2008-09-01T23:59:59.000Z

397

Determination of three-dimensional left ventricle motion to analyze ventricular dyssyncrony in SPECT images  

Science Conference Proceedings (OSTI)

A method to compute three-dimension (3D) left ventricle (LV) motion and its color coded visualization scheme for the qualitative analysis in SPECT images is proposed. It is used to investigate some aspects of Cardiac Resynchronization Therapy (CRT). ...

Marina De Sß Rebelo; Ann Kirstine Hummelgaard Aarre; Karen-Louise Clemmesen; Simone Cristina Soares BrandŃo; Maria Clementina Giorgi; JosÚ Clßudio Meneghetti; Marco Antonio Gutierrez

2010-01-01T23:59:59.000Z

398

An exploration on long-distance communications between left-behind children and their parents in China  

Science Conference Proceedings (OSTI)

In China, hundreds of millions of migrant workers have moved to cities or coastal regions for more or better-paid jobs and have left their children behind at their rural homes. Separated by thousands of kilometers, these "left-behind" children and their ... Keywords: left-behind children, long-distance communication, mobile mediated contact

Lu Pan; Feng Tian; Fei Lu; Xiaolong (Luke) Zhang; Ying Liu; Wenxin Feng; Guozhong Dai; Hongan Wang

2013-02-01T23:59:59.000Z

399

Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind December 21, 2011 - 11:26am Addthis These two General Electric wind turbines, erected in January 2011 on the Frey Farm landfill adjacent to Turkey Hill Dairy's ice cream and sweet iced tea plant in Lancaster County, Penn., are expected to produce 7.5 million kWh of electricity annually. | Photo courtesy of Lancaster County Solid Waste Management Authority. These two General Electric wind turbines, erected in January 2011 on the Frey Farm landfill adjacent to Turkey Hill Dairy's ice cream and sweet iced tea plant in Lancaster County, Penn., are expected to produce 7.5 million kWh of electricity annually. | Photo courtesy of Lancaster County Solid

400

The signing of the 19th Meeting Record. Seated are Alexandre Jakovsky, left, of  

NLE Websites -- All DOE Office Websites (Extended Search)

signing of the 19th Meeting Record. Seated are Alexandre Jakovsky, left, of the Russian Federation signing of the 19th Meeting Record. Seated are Alexandre Jakovsky, left, of the Russian Federation Ministry of Atomic Energy, and John O'Fallon, of the U.S. Department of Energy. Behind them are Fermilab Director John Peoples (far left), U.S. and Russian delegates and Fermilab Directorate staff. Photos by Reidar Hahn by Leila Belkora, Office of Public Affairs When Russian delegates to the Joint Coordinating Committee for Research on the Fundamental Properties of Matter came to Fermilab November 13 and 14 to discuss U.S.- Russian collaboration on high-energy physics research, they had every reason to feel at home. The first high-energy physics experiment ever carried out at Fermilab was a joint Soviet-U.S. collaboration that began taking data "as soon as

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Shrewsbury, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

089588┬░, -72.8667686┬░ 089588┬░, -72.8667686┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.5089588,"lon":-72.8667686,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

Rochester, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

745094┬░, -72.8078849┬░ 745094┬░, -72.8078849┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8745094,"lon":-72.8078849,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Ludlow, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

959056┬░, -72.7006518┬░ 959056┬░, -72.7006518┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3959056,"lon":-72.7006518,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

404

Richmond, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

72.9929016┬░ 72.9929016┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4053306,"lon":-72.9929016,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

405

Milton, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

7701┬░, -73.1104112┬░ 7701┬░, -73.1104112┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6397701,"lon":-73.1104112,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

406

Shelburne, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

806065┬░, -73.227626┬░ 806065┬░, -73.227626┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3806065,"lon":-73.227626,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

Hancock, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

52┬░, -72.8412203┬░ 52┬░, -72.8412203┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9261752,"lon":-72.8412203,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

408

Goshen, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

495084┬░, -73.0220563┬░ 495084┬░, -73.0220563┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8495084,"lon":-73.0220563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

Bolton, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

28323┬░, -72.8806764┬░ 28323┬░, -72.8806764┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3728323,"lon":-72.8806764,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Chester, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

628528┬░, -72.5950919┬░ 628528┬░, -72.5950919┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.2628528,"lon":-72.5950919,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

Windsor, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

03494┬░, -72.3848131┬░ 03494┬░, -72.3848131┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4803494,"lon":-72.3848131,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

Duxbury, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

270012┬░, -72.7526175┬░ 270012┬░, -72.7526175┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3270012,"lon":-72.7526175,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

Vermont Gas- Residential Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

The Equipment Replacement program offers rebates for residential customers who replace existing heating equipment or water heater with a more energy efficient one. Rebates vary depending on...

414

Baltimore, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

351┬░, -72.5731478┬░ 351┬░, -72.5731478┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.360351,"lon":-72.5731478,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

Charlotte, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

741┬░, -73.2609586┬░ 741┬░, -73.2609586┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3097741,"lon":-73.2609586,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

Bridgewater, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

25┬░, -72.6250967┬░ 25┬░, -72.6250967┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.588125,"lon":-72.6250967,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

417

Addison, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

71┬░, -73.302622┬░ 71┬░, -73.302622┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0886671,"lon":-73.302622,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

Brandon, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

981195┬░, -73.0876119┬░ 981195┬░, -73.0876119┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7981195,"lon":-73.0876119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

419

Woodstock, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

2362┬░, -72.5184275┬░ 2362┬░, -72.5184275┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6242362,"lon":-72.5184275,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

Sharon, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

45128┬░, -72.454262┬░ 45128┬░, -72.454262┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7845128,"lon":-72.454262,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Weston, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

11853┬░, -72.7931534┬░ 11853┬░, -72.7931534┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.2911853,"lon":-72.7931534,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

Plainfield, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

781151┬░, -72.4264926┬░ 781151┬░, -72.4264926┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2781151,"lon":-72.4264926,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

Salisbury, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

4511┬░, -73.0998363┬░ 4511┬░, -73.0998363┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8964511,"lon":-73.0998363,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

Granville, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

856┬░, -72.8462217┬░ 856┬░, -72.8462217┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9847856,"lon":-72.8462217,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Berlin, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

2046196┬░, -72.6145498┬░ 2046196┬░, -72.6145498┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2046196,"lon":-72.6145498,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Mendon, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

514565┬░, -72.9270504┬░ 514565┬░, -72.9270504┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6514565,"lon":-72.9270504,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

427

Leicester, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

667293┬░, -73.1078914┬░ 667293┬░, -73.1078914┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8667293,"lon":-73.1078914,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

Proctor, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

25┬░, -73.0356641┬░ 25┬░, -73.0356641┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6606225,"lon":-73.0356641,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

429

Bristol, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

333912┬░, -73.0790076┬░ 333912┬░, -73.0790076┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1333912,"lon":-73.0790076,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

Marshfield, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

508912┬░, -72.3539917┬░ 508912┬░, -72.3539917┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3508912,"lon":-72.3539917,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Burlington, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

8825┬░, -73.212072┬░ 8825┬░, -73.212072┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4758825,"lon":-73.212072,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

Essex, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

9459┬░, -73.0637136┬░ 9459┬░, -73.0637136┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5009459,"lon":-73.0637136,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

Bethel, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

333999┬░, -72.6339902┬░ 333999┬░, -72.6339902┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8333999,"lon":-72.6339902,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

Wells, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

172937┬░, -73.2042744┬░ 172937┬░, -73.2042744┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4172937,"lon":-73.2042744,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

435

Wallingford, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

717372┬░, -72.9773268┬░ 717372┬░, -72.9773268┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4717372,"lon":-72.9773268,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

436

Waltham, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

284┬░, -73.2425607┬░ 284┬░, -73.2425607┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1409284,"lon":-73.2425607,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

437

Benson, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

0079┬░, -73.3112252┬░ 0079┬░, -73.3112252┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7070079,"lon":-73.3112252,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

Northfield, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

511723┬░, -72.6564986┬░ 511723┬░, -72.6564986┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1511723,"lon":-72.6564986,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

Roxbury, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

0942287┬░, -72.7328886┬░ 0942287┬░, -72.7328886┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0942287,"lon":-72.7328886,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

Westford, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

6119942┬░, -73.0087453┬░ 6119942┬░, -73.0087453┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6119942,"lon":-73.0087453,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Williston, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

4375513┬░, -73.068181┬░ 4375513┬░, -73.068181┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4375513,"lon":-73.068181,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

442

Shoreham, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

936708┬░, -73.3159515┬░ 936708┬░, -73.3159515┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8936708,"lon":-73.3159515,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

443

Barre, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

1970055┬░, -72.5020494┬░ 1970055┬░, -72.5020494┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1970055,"lon":-72.5020494,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

444

Vermont Number of Natural Gas Consumers  

Annual Energy Outlook 2012 (EIA)

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

445

Vermont Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

446

Better Buildings Neighborhood Program: Rutland County, Vermont  

NLE Websites -- All DOE Office Websites (Extended Search)

offering low-cost loans for equipment required to expand contracting businesses to meet demand. Contact Ludy Biddle lbiddle@nwwvt.org 802-438-2303 x 221 U.S. Department of Energy...

447

Retail Unbundling - Vermont - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In 2007, the Board approved VGS tariffs providing interruptible service, including transportation-only service and bundled-sales service.

448

Water Pollution Control Permit Regulations (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations outline the permits and permitting processes for point discharges to surface waters and outline the monitoring and reporting requirements.

449

Vermont Number of Natural Gas Consumers  

Gasoline and Diesel Fuel Update (EIA)

34,081 34,937 35,929 37,242 38,047 38,839 1987-2011 Sales 34,081 38,047 38,839 1997-2011 Commercial Number of Consumers 4,861 4,925 4,980 5,085 5,137 5,256 1987-2011 Sales 4,861...

450

Vermont Natural Gas Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Prices are in ...

451

Vermont Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Gas volumes ...

452

Revealing Burlington : Vermont architecture on the edge  

E-Print Network (OSTI)

This project explores building in the most urban environment of a state that identifies with its ruralness. The site, located at the top of a steep bluff in Burlington at the edge between the city's downtown core and its ...

Gates, Jeremy M., 1975-

2005-01-01T23:59:59.000Z

453

Revealing Burlington : Vermont architecture on the edge.  

E-Print Network (OSTI)

??This project explores building in the most urban environment of a state that identifies with its ruralness. The site, located at the top of aů (more)

Gates, Jeremy M., 1975-

2005-01-01T23:59:59.000Z

454

ppmp_housinganimals University of Vermont  

E-Print Network (OSTI)

, based on the insect's physiology. While the caterpillar lives in a common terrestrial macroenvironment

Bermingham, Laura Hill

455

The Employee Training Tax Credit (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

The Employee Training Tax Credit covers training expenses of up to $400 per qualified employee for employees located in eligible downtown areas and received Aid to Needy Families with Children or...

456

Interconnection Standards (Vermont) | Open Energy Information  

Open Energy Info (EERE)

must have a utility-accessible, lockable disconnect switch--unless the system is inverter based and the utility has waived the requirement in writing and in the case of small...

457

Royalton, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

159007┬░, -72.545654┬░ 159007┬░, -72.545654┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8159007,"lon":-72.545654,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

Warren, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

2005┬░, -72.8559474┬░ 2005┬░, -72.8559474┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.112005,"lon":-72.8559474,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

Springfield, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

84078┬░, -72.4823117┬░ 84078┬░, -72.4823117┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.2984078,"lon":-72.4823117,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

Worcester, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

36678┬░, -72.5498326┬░ 36678┬░, -72.5498326┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3736678,"lon":-72.5498326,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Pittsford, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

067329┬░, -73.0281647┬░ 067329┬░, -73.0281647┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7067329,"lon":-73.0281647,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

462

Lincoln, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

928┬░, -72.9970612┬░ 928┬░, -72.9970612┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1058928,"lon":-72.9970612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

Andover, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

772967┬░, -72.6967616┬░ 772967┬░, -72.6967616┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.2772967,"lon":-72.6967616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

464

Pittsfield, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

722884┬░, -72.8128828┬░ 722884┬░, -72.8128828┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7722884,"lon":-72.8128828,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

465

Hartland, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

406265┬░, -72.3989804┬░ 406265┬░, -72.3989804┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.5406265,"lon":-72.3989804,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

466

Hartford, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

61┬░, -72.3384249┬░ 61┬░, -72.3384249┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6606261,"lon":-72.3384249,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

467

Montpelier, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

600593┬░, -72.5753869┬░ 600593┬░, -72.5753869┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2600593,"lon":-72.5753869,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

468

Stockbridge, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

61774┬░, -72.753715┬░ 61774┬░, -72.753715┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7861774,"lon":-72.753715,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

469

Norwich, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

153482┬░, -72.307869┬░ 153482┬░, -72.307869┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7153482,"lon":-72.307869,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

Rutland, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

106237┬░, -72.9726065┬░ 106237┬░, -72.9726065┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6106237,"lon":-72.9726065,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

Huntington, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

2.9873439┬░ 2.9873439┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3253324,"lon":-72.9873439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

Building Energy Standards (Vermont) | Open Energy Information  

Open Energy Info (EERE)

and fuel bills by an average of 25% in the housing units served; To reduce total fossil fuel consumption across all buildings by an additional 0.5% each year, leading to a total...

473

eEnergy Vermont Case Study  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VEC and are now installing smart meters, communication systems, SCADA systems, and distribution automation equipment including switches, regulators, and circuit monitors. eEnergy...

474

RIGHT AND LEFT MODULES OVER THE FROBENIUS SKEW POLYNOMIAL RING IN THE F-FINITE CASE  

E-Print Network (OSTI)

, over a complete (Noetherian) local ring R of prime characteristic for which the Frobenius homomorphism between the category of left modules over the Frobenius skew polynomial ring R[x, f] that are Artinian as R-modules and the category of right R[x, f]-modules that are Noetherian as R-modules. 0

Yoshino, Yuji

475

Retrieval of Relational Information: A Role for the Left Inferior Prefrontal Cortex  

E-Print Network (OSTI)

Retrieval of Relational Information: A Role for the Left Inferior Prefrontal Cortex Rajendra D- eas of prefrontal cortex and medial temporal lobe structures (MTL) in episodic retrieval tasks and nonrelational retrieval of studied pairs of words. For relational re- trieval, a list of either studied

Schacter, Daniel

476

Study on the relationship between left-turn traffic operations and safety at signalized intersections  

E-Print Network (OSTI)

Intersections are the most complex locations in a traffic system and are likely to have a higher crash count than any other location in the system. Intersection safety is related to traffic operations, such as traffic signal and approaching volume. The objective of this study is to determine the contributing factor for left-turn crashes at signalized intersections by a statistical modeling process and to develop crash prediction models. Potential contributing factors representing the characteristic of a left-turn operation were identified and considered for inclusion in crash prediction models. HCS (Highway Capacity Software) 2000 was utilized for computing some traffic indicators such as volume to capacity ratio for potential inclusion in the models. Three years of crash data were collected in the College Station area. The Signal timing and Volume data were obtained from public works in College Station. The volume data was sorted into three time periods and signal timing data were obtained for three different time periods: AM, noon, and PM. The division of time periods results from timing plans being changed for different periods. Relationship between crash count and each factor was explored to identify whether the factor has the potential to influence the crash count. Afterwards, the prediction models were developed using the negative binomial structure because of many zero samples. Akaike Information Criteria was used for selecting the model having the best fit. Wald tables provided that variables have significance in affecting the left-turn crash count. Left-turn type, sequence, volume, control delay, and post speed limit were identified as significant factors impacting left-turn crash count at a signalized intersection.

Lee, Sunghoon

2007-08-01T23:59:59.000Z

477

Lepton Number Violating Signals of the Top Partners in the Left-Right Twin Higgs Model  

E-Print Network (OSTI)

We study the collider signatures of the left-right twin Higgs model in the case that the right-handed neutrino mass is less than the mass of the right-handed gauge boson. In this scenario, new leptonic decay chains open up, allowing the particles which cancel the one-loop quadratic divergences of the Higgs, the right-handed gauge bosons and top-partners, to be discovered. Half of these events contain same-sign leptons without missing energy, which have no genuine standard model background and for which the backgrounds are purely instrumental. These signals may be used to complement other collider searches, and in certain regions of parameter space, may be the only way to observe the particles responsible for natural electroweak symmetry breaking in the left-right twin Higgs model.

Hock-Seng Goh; Christopher A. Krenke

2009-11-30T23:59:59.000Z

478

A left-right symmetric model with SU(2)-triplet fermions  

E-Print Network (OSTI)

We consider an $SU(3)_c \\otimes SU(2)_L \\otimes SU(2)_R \\otimes U(1)_{B-L}$ left-right symmetric model with three Higgs scalars including an $SU(2)_L$ doublet, an $SU(2)_R$ doublet and an $SU(2)_L \\otimes SU(2)_R$ bidoublet. In addition to usual SU(2)-doublet fermions, our model contains SU(2)-triplet fermions with Majorana masses. The neutral components of the left-handed triplets can contribute a canonical seesaw while the neutral components of the right-handed triplets associated with the right-handed neutrinos can contribute a double/inverse-type seesaw. Our model can be embedded into an SO(10) grand unification theory where the triplets belong to the $45=(1,3,1,0) \\oplus (1,1,3,0)\\oplus ...$ representations.

Pei-Hong Gu

2011-10-27T23:59:59.000Z

479

THE INITIAL MASS FUNCTION MODELED BY A LEFT TRUNCATED BETA DISTRIBUTION  

Science Conference Proceedings (OSTI)

The initial mass function for stars is usually fitted by three straight lines, which means it has seven parameters. The presence of brown dwarfs (BDs) increases the number of straight lines to four and the number of parameters to nine. Another common fitting function is the lognormal distribution, which is characterized by two parameters. This paper is devoted to demonstrating the advantage of introducing a left truncated beta probability density function, which is characterized by four parameters. The constant of normalization, the mean, the mode, and the distribution function are calculated for the left truncated beta distribution. The normal beta distribution that results from convolving independent normally distributed and beta distributed components is also derived. The chi-square test and the Kolmogorov-Smirnov test are performed on a first sample of stars and BDs that belongs to the massive young cluster NGC 6611, and on a second sample that represents the masses of the stars of the cluster NGC 2362.

Zaninetti, Lorenzo, E-mail: zaninetti@ph.unito.it [Dipartimento di Fisica, Via Pietro Giuria 1, I-10125 Torino (Italy)

2013-03-10T23:59:59.000Z

480

Refine your search Select options from the menu on the left hand  

E-Print Network (OSTI)

://psu.summon.serialssolutions.comhttp://psu.summon.serialssolutions.com F I N A L LY : RESEARCH AS EASYAS 1-2-3 #12;1 Enter search term into search box. 2 Refine results relevant articles were published in that year. Include or Exclude subject terms from your searchRefine your search Select options from the menu on the left hand side of the results screen

Yener, Aylin

Note: This page contains sample records for the topic "left vermont lt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Four Days Left to Buy Energy-Efficient Products for a 2009 Tax Credit! |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Four Days Left to Buy Energy-Efficient Products for a 2009 Tax Four Days Left to Buy Energy-Efficient Products for a 2009 Tax Credit! Four Days Left to Buy Energy-Efficient Products for a 2009 Tax Credit! December 28, 2009 - 7:30am Addthis Allison Casey Senior Communicator, NREL Black Friday sales have never been enough to entice me to brave the crowds after Thanksgiving. I'm just not that dedicated to shopping. After-Christmas sales, however, are another story. Sometimes those sales are just too good to pass up. If you're planning to take advantage of some of those great sales, you may want to see if there are any deals out there for energy-efficient purchases-but time is running out if you want to get a tax credit when you file your 2009 taxes in April. You have just four days to make your purchase for this year's tax credit. See the products that are eligible for

482

Four Days Left to Buy Energy-Efficient Products for a 2009 Tax Credit! |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Four Days Left to Buy Energy-Efficient Products for a 2009 Tax Four Days Left to Buy Energy-Efficient Products for a 2009 Tax Credit! Four Days Left to Buy Energy-Efficient Products for a 2009 Tax Credit! December 28, 2009 - 7:30am Addthis Allison Casey Senior Communicator, NREL Black Friday sales have never been enough to entice me to brave the crowds after Thanksgiving. I'm just not that dedicated to shopping. After-Christmas sales, however, are another story. Sometimes those sales are just too good to pass up. If you're planning to take advantage of some of those great sales, you may want to see if there are any deals out there for energy-efficient purchases-but time is running out if you want to get a tax credit when you file your 2009 taxes in April. You have just four days to make your purchase for this year's tax credit. See the products that are eligible for

483

A Dosimetric Analysis of IMRT and Multistatic Fields Techniques for Left Breast Radiotherapy  

Science Conference Proceedings (OSTI)

The purpose of this study was to analyze the dosimetric difference between intensity-modulated radiation therapy (IMRT) using 3 or 5 beams and multistatic field technique (MSF) in radiotherapy of the left breast. We made comparative analysis of two kinds of radiotherapy that can achieve improved dose homogeneity. First is a MSF that uses both major and small irradiation fields at the same time. The other is IMRT using 3 or 5 beams with an inverse planning system using multiple static multileaf collimators. We made treatment plans for 16 early left breast cancer patients who were randomly selected and had undergone breast conserving surgery and radiotherapy, and analyzed them in the dosimetric aspect. For the mean values of V{sub 95} and dose homogeneity index, no statistically significant difference was observed among the three therapies. Extreme hot spots receiving >110% of prescribed dose were not found in any of the three methods. Using Tukey's test, IMRT showed a significantly larger increase in exposure dose to the ipsilateral lung and the heart than MSF in the low-dose area, but in the high-dose area, MSF showed a slight increase. To improve dose homogeneity, the application of MSF, which can be easily planned and applied more widely, is considered optimal as an alternative to IMRT for radiotherapy of early left breast cancer.

Moon, Seong Kwon [Department of Radiation Oncology, Soonchunhyang University Hospital, Bucheon-Si, Gyeonggi-do (Korea, Republic of); Kim, Yeon Sil [Department of Radiation Oncology, Catholic University of Korea, Seoul St. Mary's Hospital, Seoul (Korea, Republic of); Kim, Soo Young [Department of Preventive Medicine, Eulji University Hospital, Daejeon (Korea, Republic of); Lee, Mi Jo; Keum, Hyun Sup; Kim, Seung Jin; Youn, Seon Min [Department of Radiation Oncology, Eulji University Hospital, Daejeon (Korea, Republic of)

2011-10-01T23:59:59.000Z

484

Manhattan Project: San Ildefonso Pueblo Party&lt;/FONT>  

Office of Scientific and Technical Information (OSTI)

SAN ILDEFONSO PUEBLO PARTY SAN ILDEFONSO PUEBLO PARTY Los Alamos (December 1945) Resources > Photo Gallery San Ildefonso Pueblo party, December 1945 A special 1995 issue of the monthly publication of the Los Alamos National Laboratory, "Dateline: Los Alamos," described the party this way: "On a cold December night in 1945, the San Ildefonso Pueblo, a tribe of Native Americans living next to Los Alamos, invited a group of Los Alamos square dancers to their pueblo for an evening of fun and entertainment. The two communities had seen a lot of each other during the war as men and women from the pueblo commuted daily to work at Los Alamos. The association produced a cross fertilization of cultures. "Bernice Brode wrote: 'Some of us had more Indian crafts in our Army apartments than the Indians had in their homes, (and) modern American conveniences such as refrigerators and linoleum began cropping up in the pueblo.' At the dance, the Indians performed for the square dancers and the square dancers performed for the Indians. After the demonstrations, members from the two groups began dancing with each other. Charlie Masters, a teacher at the Los Alamos school, wrote: 'This fiesta-hoedown I like to remember as the climax of our relations with the natives.'

485

Pending LT LNG Export Apps (12-6-13).xlsx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Current Current Processing Position Company DOE/FE Docket No. 1 Cameron LNG, LLC 11-162-LNG 2 Jordan Cove Energy Project, L.P. 12-32-LNG 3 LNG Development Company, LLC (d/b/a Oregon LNG) 12-77-LNG 4 Cheniere Marketing, LLC 12-97-LNG 5 Excelerate Liquefaction Solutions I, LLC 12-146-LNG 6 Carib Energy (USA) LLC 11-141-LNG 7 Gulf Coast LNG Export, LLC 12-05-LNG 8 Southern LNG Company, L.L.C. 12-100-LNG 9 Gulf LNG Liquefaction Company, LLC 12-101-LNG 10 CE FLNG, LLC 12-123-LNG 11 Golden Pass Products LLC 12-156-LNG 12 Pangea LNG (North America) Holdings, LLC 12-184-LNG 13 Trunkline LNG Export, LLC 13-04-LNG 14 Freeport-McMoRan Energy LLC 13-26-LNG 15 Sabine Pass Liquefaction, LLC 13-30-LNG 16 Sabine Pass Liquefaction, LLC 13-42-LNG 17 Venture Global LNG, LLC 13-69-LNG 18 Eos LNG LLC 13-116-LNG 19 Barca LNG LLC

486

Jersey Central Power & Lt Co | Open Energy Information  

Open Energy Info (EERE)

Place Ohio Place Ohio Utility Id 9726 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS (General Service) Commercial GST (General Service Time-Of-Day) Commercial RS Residential RT Residential Average Rates No Rates Available The following table contains monthly sales and revenue data for Jersey

487

Ghrelin Suppression and Fat Loss after Left Gastric Artery Embolization in Canine Model  

Science Conference Proceedings (OSTI)

Purpose: To evaluate the effects of left gastric artery embolization (LGAE) on plasma ghrelin levels, abdominal fat, and body weight in beagles. Methods: The institutional animal care and use committee approved this study. Fifteen healthy adult beagles (12 male and three female animals) were randomly divided into three experimental groups: LGAE was proceeded with mixed emulsion of bleomycin A{sub 5} hydrochloride and lipiodol (group A), and polyvinyl alcohol particles (group B). Transcatheter saline injections in the left gastric artery were performed as a control. Weight and fasting plasma ghrelin levels were obtained at baseline and at weekly intervals for 8 weeks after the procedure in all animals. All animals were scanned and measured by multidetector computed tomography at baseline and at week 8 for evaluation of abdominal fat. Results: In LGAE-treated animals, plasma ghrelin and body weight significantly decreased compared to control animals (group A: P = 0.007 and P = 0.000; group B: P = 0.004 and P = 0.000, respectively). Subcutaneous fat size was also significantly reduced (P = 0.011 and P = 0.027 for groups A and B, respectively). The decreasing percentage in ghrelin levels at week 6 (peak of recovery) of LGAE-treated animals were negatively correlated with the size of area supplied by left gastric artery (r = -0.693, P = 0.026). Conclusion: LGAE could suppress the plasma concentration of ghrelin, which results in subcutaneous fat size reduction and weight loss. Compensatory ghrelin production might occur in the remnant gastric fundus after LGAE.

Bawudun, Dilmurat [Xinjiang Medical University, Department of Interventional Radiology, First Affiliated Hospital (China); Xing Yan; Liu Wenya, E-mail: wenyaliu2002@hotmail.com; Huang Yujie [Xinjiang Medical University, Imaging Center, First Affiliated Hospital (China); Ren Weixin [Xinjiang Medical University, Department of Interventional Radiology, First Affiliated Hospital (China); Ma Mei [Xinjiang Medical University, Animal Research Center, First Affiliated Hospital (China); Xu Xiaodong [Xinjiang Medical University, Department of Interventional Radiology, First Affiliated Hospital (China); Teng Gaojun [Southeast University, Department of Radiology, Zhong-da Hospital (China)

2012-12-15T23:59:59.000Z

488

Neutrinos and Lepton Flavour Violation in the Left-Right Twin Higgs Model  

E-Print Network (OSTI)

We analyse the lepton sector of the Left-Right Twin Higgs Model. This model offers an alternative way to solve the "little hierarchy" problem of the Standard Model. We show that one can achieve an effective see-saw to explain the origin of neutrino masses and that this model can accommodate the observed neutrino masses and mixings. We have also studied the lepton flavour violation process l_1 -> l_2 \\gamma and discussed how the experimental bound from these branching ratios constrains the scale of symmetry breaking of this Twin Higgs model.

Asmaa Abada; Irene Hidalgo

2007-11-08T23:59:59.000Z

489

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forestry Policies (Vermont) Vermont Commercial Agricultural Vermont Department of Forests, Parks and Recreation...

490

Vermont Air Pollution Control Regulations, Major Stationary Sources and Major Modifications (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

This section of the air quality standards applies to all major sources and major modifications and outlines the required control technology to achieve the most stringent emission rate. Emission...

491

Left ventricular performance in type-II diabetics with first acute myocardial infarction: A radionuclide assessment  

Science Conference Proceedings (OSTI)

To assess myocardial performance in diabetics following acute myocardial infarction (AMI), resting gated radionuclide studies with Tc-99m were performed within two weeks of the onset of symptoms in matched groups of 18 type-II diabetics with their first clinical AMI (D-AMI), 20 nondiabetics with their first AMI (ND-AMI), and 20 nondiabetic noncardiac controls. Eighty-three percent of D-AMI and 50% of ND-AMI had left ventricular ejection fractions below 2 SD of normal. Diabetics had a significantly lower resting LVEF than nondiabetics (p<0.05). All patients with LVEF < 35% were diabetics. LV mean ejection and filling rates were similar in diabetics and nondiabetics. While 72% of diabetics showed abnormal wall motion in 5 or more segments (out of 9), only 45% of the nondiabetics were this extensively affected. Seventy-two percent of the diabetics showed one or more of akinesis and 39% had one or more areas of dyskinesis, compared to 30% and 5% of the nondiabetics respectively. The authors conclude that the extent, as well as the severity of the left ventricular impairment is more evident in the diabetics than in the nondiabetics, following the first acute MI.

Amin, E.M.; Karimeddini, M.K.; El-Haieg, M.O.; Dey, H.M.; Antar, M.A.

1985-05-01T23:59:59.000Z

492

Exploration of decaying dark matter in a left-right symmetric model  

E-Print Network (OSTI)

$SU(2)_L$ triplet scalars appear in models motivated for the left-right symmetry, neutrino masses and dark matter (DM), etc.. If the triplets are the main decay products of the DM particle, and carry nonzero lepton numbers, they may decay dominantly into lepton pairs, which can naturally explain the current experimental results reported by PAMELA and Fermi-LAT or ATIC. We discuss this possibility in an extended left-right symmetric model in which the decay of DM particle is induced by tiny soft charge-conjugation ($C$) violating interactions, and calculate the spectra for cosmic-ray positrons, neutrinos and gamma-rays. We show that the DM signals in the flux of high energy neutrinos can be significantly enhanced, as the triplets couple to both charged leptons and neutrinos with the same strength. In this scenario, the predicted neutrino-induced muon flux can be several times larger than the case in which DM particle only directly decays into charged leptons. In addition, the charged components of the triplet may give an extra contribution to the high energy gamma-rays through internal bremsstrahlung process, which depends on the mass hierarchy between the DM particle and the triplet scalars.

Wan-Lei Guo; Yue-Liang Wu; Yu-Feng Zhou

2010-01-03T23:59:59.000Z

493

Respiration Induced Heart Motion and Indications of Gated Delivery for Left-Sided Breast Irradiation  

SciTech Connect

Purpose: To investigate respiration-induced heart motion for left-sided breast irradiation using a four-dimensional computed tomography (4DCT) technique and to determine novel indications to assess heart motion and identify breast patients who may benefit from a gated treatment. Methods and Materials: Images of 4DCT acquired during free breathing for 20 left-sided breast cancer patients, who underwent whole breast irradiation with or without regional nodal irradiation, were analyzed retrospectively. Dose distributions were reconstructed in the phases of 0%, 20%, and 50%. The intrafractional heart displacement was measured in three selected transverse CT slices using D{sub LAD} (the distance from left ascending aorta to a fixed line [connecting middle point of sternum and the body] drawn on each slice) and maximum heart depth (MHD, the distance of the forefront of the heart to the line). Linear regression analysis was used to correlate these indices with mean heart dose and heart dose volume at different breathing phases. Results: Respiration-induced heart displacement resulted in observable variations in dose delivered to the heart. During a normal free-breathing cycle, heart-induced motion D{sub LAD} and MHD changed up to 9 and 11 mm respectively, resulting in up to 38% and 39% increases of mean doses and V{sub 25.2} for the heart. MHD and D{sub LAD} were positively correlated with mean heart dose and heart dose volume. Respiratory-adapted gated treatment may better spare heart and ipsilateral-lung compared with the conventional non-gated plan in a subset of patients with large D{sub LAD} or MHD variations. Conclusion: Proposed indices offer novel assessment of heart displacement based on 4DCT images. MHD and D{sub LAD} can be used independently or jointly as selection criteria for respiratory gating procedure before treatment planning. Patients with great intrafractional MHD variations or tumor(s) close to the diaphragm may particularly benefit from the gated treatment.

Qi, X. Sharon, E-mail: xiangrong.qi@ucdenver.edu [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Hu, Angela [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Wang Kai [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Newman, Francis [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Crosby, Marcus; Hu Bin; White, Julia; Li, X. Allen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States)

2012-04-01T23:59:59.000Z

494

Probing Heavy-Light Neutrino Mixing in Left-Right Seesaw Models at the LHC  

E-Print Network (OSTI)

We show that in TeV-scale left-right (L-R) symmetric seesaw models, there are new dominant contributions to the collider signals of heavy Majorana neutrinos arising from the heavy-light neutrino mixing, which directly probe the seesaw matrix in a certain class of models. We propose a way to distinguish this contribution from the widely discussed one that only probes the Majorana nature of the heavy right-handed neutrinos, by analyzing some simple kinematical variables. We find that in this class of L-R seesaw models the existing LHC data already yield slightly stronger constraints on the heavy-light neutrino mixing than those derived for standard seesaw models, and the improvement will be significant as more data are collected.

Chien-Yi Chen; P. S. Bhupal Dev; R. N. Mohapatra

2013-06-10T23:59:59.000Z

495

Who Should Administer Energy-Efficiency Programs?  

E-Print Network (OSTI)

Utility: Efficiency Vermontĺs First Two Years,ö Published inand Development Authority Vermont Public Service BoardCity and Long Island. ) Vermont Vermont chose to hold off

Blumstein, Carl; Goldman, Charles; Barbose, Galen L.

2003-01-01T23:59:59.000Z

496

New Technique for the Preservation of the Left Common Carotid Artery in Zone 2a Endovascular Repair of Thoracic Aortic Aneurysm  

Science Conference Proceedings (OSTI)

To describe a technique for the preservation of the left common carotid artery (CCA) in zone 2 endovascular repair of thoracic aortic aneurysm. This technique involves the placement of a guide wire into the left CCA via the right brachial artery before stent graft deployment to enable precise visualization and protection of the left CCA during the whole procedure. Of the 107 patients with thoracic endovascular aortic repair in our study, 32 (30%) had the left subclavian artery intentionally covered (landing zone 2). Eight (25%) of those 32 had landing zone 2a-the segment distally the origin of the left CCA, halfway between the origin of the left CCA and the left subclavian artery. In all patients, a guide wire was positioned into the left CCA via the right brachial artery before stent graft deployment. It is a retrospective study in design. In seven patients, stent grafts were positioned precisely. In the remaining patient, the positioning was imprecise; the origin of the left CCA was partially covered by the graft. A stent was implanted into the left CCA to restore the flow into the vessel. All procedures were performed successfully. The technique of placing a guide wire into the left CCA via the right brachial artery before stent graft deployment is a safe and effective method that enables the precise visualization of the left CCA during the whole procedure. Moreover, in case of inadvertent complete or partial coverage of the origin of the left CCA, it supplies safe and quick access to the artery for stent implantation.

Juszkat, Robert, E-mail: radiologiamim@wp.pl; Kulesza, Jerzy; Zarzecka, Anna [Poznan University of Medical Sciences, Department of Radiology (Poland); Jemielity, Marek [Poznan University of Medical Sciences, Department of Cardiac Surgery (Poland); Staniszewski, Ryszard; Majewski, Waclaw [Poznan University of Medical Sciences, Department of General and Vascular Surgery (Poland)

2011-02-15T23:59:59.000Z

497

Right/left assignment in drift chambers and proportional multiwire chambers (PWC's) using induced signals  

DOE Patents (OSTI)

Improved multiwire chamber having means for resolving the left/right ambiguity in the location of an ionizing event. The chamber includes a plurality of spaced parallel anode wires positioned between spaced planar cathodes. Associated with each of the anode wires are a pair of localizing wires, one positioned on either side of the anode wire. The localizing wires are connected to a differential amplifier whose output polarity is determined by whether the ionizing event occurs to the right or left of the anode wire.

Walenta, Albert H. (Upton, NY)

1979-01-01T23:59:59.000Z

498

Image-Guided Radiotherapy for Left-Sided Breast Cancer Patients: Geometrical Uncertainty of the Heart  

SciTech Connect

Purpose: To quantify the geometrical uncertainties for the heart during radiotherapy treatment of left-sided breast cancer patients and to determine and validate planning organ at risk volume (PRV) margins. Methods and Materials: Twenty-two patients treated in supine position in 28 fractions with regularly acquired cone-beam computed tomography (CBCT) scans for offline setup correction were included. Retrospectively, the CBCT scans were reconstructed into 10-phase respiration correlated four-dimensional scans. The heart was registered in each breathing phase to the planning CT scan to establish the respiratory heart motion during the CBCT scan ({sigma}{sub resp}). The average of the respiratory motion was calculated as the heart displacement error for a fraction. Subsequently, the systematic ({Sigma}), random ({sigma}), and total random ({sigma}{sub tot}={radical}({sigma}{sup 2}+{sigma}{sub resp}{sup 2})) errors of the heart position were calculated. Based on the errors a PRV margin for the heart was calculated to ensure that the maximum heart dose (D{sub max}) is not underestimated in at least 90% of the cases (M{sub heart} = 1.3{Sigma}-0.5{sigma}{sub tot}). All analysis were performed in left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions with respect to both online and offline bony anatomy setup corrections. The PRV margin was validated by accumulating the dose to the heart based on the heart registrations and comparing the planned PRV D{sub max} to the accumulated heart D{sub max}. Results: For online setup correction, the cardiac geometrical uncertainties and PRV margins were N-Ary-Summation = 2.2/3.2/2.1 mm, {sigma} = 2.1/2.9/1.4 mm, and M{sub heart} = 1.6/2.3/1.3 mm for LR/CC/AP, respectively. For offline setup correction these were N-Ary-Summation = 2.4/3.7/2.2 mm, {sigma} = 2.9/4.1/2.7 mm, and M{sub heart} = 1.6/2.1/1.4 mm. Cardiac motion induced by breathing was {sigma}{sub resp} = 1.4/2.9/1.4 mm for LR/CC/AP. The PRV D{sub max} underestimated the accumulated heart D{sub max} for 9.1% patients using online and 13.6% patients using offline bony anatomy setup correction, which validated that PRV margin size was adequate. Conclusion: Considerable cardiac position variability relative to the bony anatomy was observed in breast cancer patients. A PRV margin can be used during treatment planning to take these uncertainties into account.

Topolnjak, Rajko; Borst, Gerben R.; Nijkamp, Jasper [Radiotherapy Department, Netherlands Cancer Institute/Antoni van Leeuwenhoek Huis, Amsterdam (Netherlands); Sonke, Jan-Jakob, E-mail: j.sonke@nki.nl [Radiotherapy Department, Netherlands Cancer Institute/Antoni van Leeuwenhoek Huis, Amsterdam (Netherlands)

2012-03-15T23:59:59.000Z

499

Professional Learning Communities in improved Illinois elementary schools| The value of Professional Learning Communities for leaders of Illinois elementary schools formerly in "No Child Left Behind" status.  

E-Print Network (OSTI)

?? The "No Child Left Behind" (NCLB) reauthorization of the Elementary and Secondary Education Act of 1965 has created a system, which potentially labeled 82%ů (more)

Thomas, Steven James

2013-01-01T23:59:59.000Z

500

PHOTO BY PAUL EFIRD From left, Jay Maurer, director of photography, Kevin O'Connor, host of DIY's "This  

E-Print Network (OSTI)

PHOTO BY PAUL EFIRD From left, Jay Maurer, director of photography, Kevin O'Connor, host of DIY segments in Knoxville Latest DIY show is fresh spin on `This Old House' By Larisa Brass Tuesday, April 6 by the DIY Network this July. "This New House," produced by former executive producer of PBS's "This Old