Sample records for left axis total

  1. The transition probability and the probability for the left-most particle's position of the q-totally asymmetric zero range process

    SciTech Connect (OSTI)

    Korhonen, Marko [Department of Mathematics and Statistics, University of Helsinki, FIN-00014 (Finland)] [Department of Mathematics and Statistics, University of Helsinki, FIN-00014 (Finland); Lee, Eunghyun [Centre de Recherches Mathématiques (CRM), Université de Montréal, Quebec H3C 3J7 (Canada)] [Centre de Recherches Mathématiques (CRM), Université de Montréal, Quebec H3C 3J7 (Canada)

    2014-01-15T23:59:59.000Z

    We treat the N-particle zero range process whose jumping rates satisfy a certain condition. This condition is required to use the Bethe ansatz and the resulting model is the q-boson model by Sasamoto and Wadati [“Exact results for one-dimensional totally asymmetric diffusion models,” J. Phys. A 31, 6057–6071 (1998)] or the q-totally asymmetric zero range process (TAZRP) by Borodin and Corwin [“Macdonald processes,” Probab. Theory Relat. Fields (to be published)]. We find the explicit formula of the transition probability of the q-TAZRP via the Bethe ansatz. By using the transition probability we find the probability distribution of the left-most particle's position at time t. To find the probability for the left-most particle's position we find a new identity corresponding to identity for the asymmetric simple exclusion process by Tracy and Widom [“Integral formulas for the asymmetric simple exclusion process,” Commun. Math. Phys. 279, 815–844 (2008)]. For the initial state that all particles occupy a single site, the probability distribution of the left-most particle's position at time t is represented by the contour integral of a determinant.

  2. City: State: Zip: Logo embroidered on left chest

    E-Print Network [OSTI]

    Thomas, David D.

    $ $ $ $ $ $ $ $ Name: Address: City: State: Zip: Phone: Logo embroidered on left chest D. SHORT Black Athletic Grey Maroon Logo embroidered on left chest Left chest pocket Back box pleat for ease of movement Logo embroidered on left chest TOTALS Pre-shrunk 100% cotton Double-needle stitched Adult S M L XL

  3. Polar axis solar collector

    SciTech Connect (OSTI)

    Ludlow, G.T.

    1994-01-04T23:59:59.000Z

    A polar column solar collector is described for use in association with a building, the system having a concave mirror located on the exterior of the building and defining a focal point and a central axis, a mounting column secured to the mirror coaxial therewith, a polar axis column, a hinge swingably connecting the mounting column to the polar axis column for moving the concave mirror to aim it directly at the sun at least over a predetermined period of the daylight hours, a secondary reflector located at the focal point of the concave mirror to receive the sun's rays reflected from the concave mirror, an opening in the concave mirror to receive a concentrated beam of the sun's rays reflected from the secondary reflector and to direct the beam along the mounting column, a third reflector movably located at the junction of the mounting column and the polar axis column to receive the concentrated beam of the sun's rays from the secondary reflector reflected through the opening, and to redirect it along the polar axis column, and a polar column rotator for rotating at least a portion of the polar column to track the movement of the sun. 7 figs.

  4. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08T23:59:59.000Z

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  5. Food habits of axis deer (Axis axis) on the Coastal Plain, Calhoun County, Texas

    E-Print Network [OSTI]

    Smith, John Clarence

    1971-01-01T23:59:59.000Z

    Fluctuations in annual rainfall occur on the study area. Data for 1958 to 1970 were from U. S. Weather Bureau records for Port O' Connor, Texas. 30 Climograph comparing monthly temperature and precipitation at New Delhi, India and Port O' Connor, Texas... bite technique was used to aid in determining the food preference of axis deer. During 156 hours a tame axis doe took 324, 000 bites. Thirty-eight axis deer and 11 white-tailed deer were collected for rumen analysis during the study. Acorns were...

  6. Vertical axis wind turbine airfoil

    DOE Patents [OSTI]

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18T23:59:59.000Z

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  7. Medial Axis Local Planner: Local Planning for Medial Axis Roadmaps

    E-Print Network [OSTI]

    Manavi, Kasra Mehron

    2012-07-16T23:59:59.000Z

    is the Probabilistic Roadman Method (PRM), which generates a graph of the free space of an environment referred to as a roadmap. In this work we describe a new approach to making high clearance paths when using PRM The medial axis is useful for this since...

  8. Two-axis angular effector

    DOE Patents [OSTI]

    Vaughn, Mark R. (Albuquerque, NM); Robinett, III, Rush D. (Tijeras, NM); Phelan, John R. (Albuquerque, NM); Van Zuiden, Don M. (Albuquerque, NM)

    1997-01-21T23:59:59.000Z

    A new class of coplanar two-axis angular effectors. These effectors combine a two-axis rotational joint analogous to a Cardan joint with linear actuators in a manner to produce a wider range of rotational motion about both axes defined by the joint. This new class of effectors also allows design of robotic manipulators having very high strength and efficiency. These effectors are particularly suited for remote operation in unknown surroundings, because of their extraordinary versatility. An immediate application is to the problems which arise in nuclear waste remediation.

  9. Off-axis directional acoustic wave beaming control by an asymmetric rubber heterostructures film

    E-Print Network [OSTI]

    Wang, Ji

    Off-axis directional acoustic wave beaming control by an asymmetric rubber heterostructures film rubber heterostructures film deposited on steel plate in water. The rubber heterostructures film at left side and right side are constructed by alternately stacking rubber-1 and rubber-2 film periodically

  10. AXI LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S.ratios inAS 42.05,AXI LLC Jump to:

  11. Dual Axis Radiographic Hydrodynamic Test Facility | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  12. Helical axis stellarator with noninterlocking planar coils

    DOE Patents [OSTI]

    Reiman, Allan (Princeton, NJ); Boozer, Allen H. (Rocky Hill, NJ)

    1987-01-01T23:59:59.000Z

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  13. TOTAL M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total Spring 2010

    E-Print Network [OSTI]

    Hayes, Jane E.

    202 51 *total new freshmen 684: 636 Lexington campus, 48 Paducah campus MS Total 216 12 5 17 2 0 2 40 248 247 648 45 210 14 *total new freshmen 647: 595 Lexington campus, 52 Paducah campus MS Total 192 14

  14. Automatic 5-axis NC toolpath generation

    E-Print Network [OSTI]

    Balasubramaniam, Mahadevan, 1976-

    2001-01-01T23:59:59.000Z

    Despite over a decade of research, automatic toolpath generation has remained an elusive goal for 5-axis NC machining. This thesis describes the theoretical and practical issues associated with generating collision free ...

  15. Jet shapes with the broadening axis

    E-Print Network [OSTI]

    Larkoski, Andrew James

    Broadening is a classic jet observable that probes the transverse momentum structure of jets. Traditionally, broadening has been measured with respect to the thrust axis, which is aligned along the (hemisphere) jet momentum ...

  16. ON DEVELOPMENT OF TOTALLY IMPLANTABLE VESTIBULAR PROSTHESIS

    E-Print Network [OSTI]

    Tang, William C

    ON DEVELOPMENT OF TOTALLY IMPLANTABLE VESTIBULAR PROSTHESIS Andrei M. Shkel 1 Department vestibular prosthesis. The sensing element of the prosthesis is a custom designed one-axis MEMS gyroscope of the prosthesis on a rate table indicate that the device's output matches the average firing rate of vestibular

  17. Left Coast Electric Formerly Left Coast Conversions | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana: EnergyLandsSouthInformation Left Coast

  18. Actuator assembly including a single axis of rotation locking member

    DOE Patents [OSTI]

    Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.

    2009-12-08T23:59:59.000Z

    An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.

  19. Sandia Energy - Innovative Offshore Vertical-Axis Wind Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertical-Axis Wind Turbine Rotors Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind Innovative Offshore Vertical-Axis Wind Turbine Rotors Innovative...

  20. Sandia National Laboratories: horizontal-axis wind turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    horizontal-axis wind turbine Study Compares Floating-Platform Options for Offshore Vertical-Axis Wind Turbines On December 3, 2014, in Energy, News, News & Events, Partnership,...

  1. Sandia Energy - Innovative Offshore Vertical-Axis Wind Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative Offshore Vertical-Axis Wind Turbine Rotors Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind Innovative Offshore Vertical-Axis Wind Turbine...

  2. Enclosed, off-axis solar concentrator

    DOE Patents [OSTI]

    Benitez, Pablo; Grip, Robert E; Minano, Juan C; Narayanan, Authi A; Plesniak, Adam; Schwartz, Joel A

    2013-11-26T23:59:59.000Z

    A solar concentrator including a housing having receiving wall, a reflecting wall and at least two end walls, the receiving, reflecting and end walls defining a three-dimensional volume having an inlet, wherein a vertical axis of the housing is generally perpendicular to the inlet, a receiver mounted on the receiving wall of the housing, the receiver including at least one photovoltaic cell, wherein a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, at least one clip disposed on the reflecting wall an optical element received within the three-dimensional volume, the optical element including at least one tab, the tab being engaged by the clip to align the optical element with the receiver, and a window received over the inlet to enclose the housing.

  3. A low order model for vertical axis wind turbines

    E-Print Network [OSTI]

    Drela, Mark

    A new computational model for initial sizing and performance prediction of vertical axis wind turbines

  4. High payload six-axis load sensor

    DOE Patents [OSTI]

    Jansen, John F. (Knoxville, TN); Lind, Randall F. (Knoxville, TN)

    2003-01-01T23:59:59.000Z

    A repairable high-payload six-axis load sensor includes a table, a base, and at least three shear-pin load transducers removably mounted between the table and the base. Removable mounting permits easy replacement of damaged shear pins. Preferably, the shear-pin load transducers are responsive to shear forces imparted along the two axes perpendicular to an axis of minimum sensitivity characteristic of the transducer. Responsive to an applied shear force, each shear-pin load transducer can produce an electrical signal proportional to the reaction force. The load sensor can further include a structure for receiving the proportional electrical signals and computing the applied load corresponding to the proportional electrical signals. The computed load can be expressed in terms of a three-dimensional XYZ Cartesian coordinate system.

  5. Medium-solidity Vertical Axis Wind Turbines for use in Urban Environments S. Tullis, A. Fiedler, K. McLaren, S. Ziada

    E-Print Network [OSTI]

    Tullis, Stephen

    high turbine solidities (the ratio of total blade area to turbine swept area), which result in lowMedium-solidity Vertical Axis Wind Turbines for use in Urban Environments S. Tullis, A. Fiedler, K Vertical axis wind turbines are currently experiencing a renewed interest in small- scale applications

  6. Sandia National Laboratories: vertical-axis wind turbine research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vertical-axis wind turbine research Sandia Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind Conference On July 8, 2014, in Computational Modeling...

  7. Vertical axis wind turbine with continuous blade angle adjustment

    E-Print Network [OSTI]

    Weiss, Samuel Bruce

    2010-01-01T23:59:59.000Z

    The author presents a concept for a vertical axis wind turbine that utilizes each blade's entire rotational cycle for power generation. Each blade has its own vertical axis of rotation and is constrained to rotate at the ...

  8. Subhas Chandra Bose: darling of the Axis 

    E-Print Network [OSTI]

    Getz, Marshall Jay

    1993-01-01T23:59:59.000Z

    Bose's Memorandum Of Interest To The Nazis Difficult Days In Berlin 110 118 132 CHAPTER The Voice Of Indian Fascism The Fauj End Of A Dream Page 137 150 164 Volume II TABLE OF CONTENTS VI DARLING OF THE AXIS ill 169 Japan: The Tiny... Superpower Indian Nationalists Look To Japan The Story Of Nohan Singh Bose Looks East Bose Becomes Established In Asia VII NOBODY'S DARLING 169 176 182 192 201 214 "Free India" At Last Noney For The Novement On To Delhi Nother India In Turmoil...

  9. Three-axis asymmetric radiation detector system

    DOE Patents [OSTI]

    Martini, Mario Pierangelo (Oak Ridge, TN); Gedcke, Dale A. (Oak Ridge, TN); Raudorf, Thomas W. (Oak Ridge, TN); Sangsingkeow, Pat (Knoxville, TN)

    2000-01-01T23:59:59.000Z

    A three-axis radiation detection system whose inner and outer electrodes are shaped and positioned so that the shortest path between any point on the inner electrode and the outer electrode is a different length whereby the rise time of a pulse derived from a detected radiation event can uniquely define the azimuthal and radial position of that event, and the outer electrode is divided into a plurality of segments in the longitudinal axial direction for locating the axial location of a radiation detection event occurring in the diode.

  10. Axis Technologies Group Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria PowerAxeon Technology Ltd JumpAxis

  11. Ethics of Cardiac Transplantation in Hypoplastic Left Heart Syndrome

    E-Print Network [OSTI]

    Kon, Alexander A.

    2009-01-01T23:59:59.000Z

    neonates with hypoplastic left heart syndrome. Arch PediatrTabbutt S (2007) Hypoplastic left heart syndrome: consensus,for hypoplastic left heart syndrome. Ann Thorac Surg 72(6):

  12. Vertical axis wind turbine control strategy

    SciTech Connect (OSTI)

    McNerney, G.M.

    1981-08-01T23:59:59.000Z

    Early expensive in automatic operation of the Sandia 17-m vertical axis research wind turbine (VAWT) has demonstrated the need for a systematic study of control algorithms. To this end, a computer model has been developed that uses actual wind time series and turbine performance data to calculate the power produced by the Sandia 17-m VAWT operating in automatic control. The model has been used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long-term energy production. An attempt has been made to generalize these results from local site and turbine characteristics to obtain general guidelines for control algorithm design.

  13. Two-axis tracking solar collector mechanism

    DOE Patents [OSTI]

    Johnson, Kenneth C. (201 W. California Ave., #401, Sunnyvale, CA 94086)

    1990-01-01T23:59:59.000Z

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

  14. Two-axis tracking solar collector mechanism

    DOE Patents [OSTI]

    Johnson, Kenneth C. (201 W. California Ave. #705, Sunnyvale, CA 94086)

    1992-01-01T23:59:59.000Z

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

  15. Two-axis tracking solar collector mechanism

    DOE Patents [OSTI]

    Johnson, K.C.

    1992-12-08T23:59:59.000Z

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion. 16 figs.

  16. Constraining the Doublet Left-Right Model

    E-Print Network [OSTI]

    Silva, Luiz Vale

    2015-01-01T23:59:59.000Z

    Left-Right Models (LRM) attempt at giving an understanding of the violation of parity (or charge-conjugation) by the weak interactions in the SM through a similar description of left- and right-handed currents at high energies. The spontaneous symmetry breaking of the LRM gauge group is triggered by an enlarged Higgs sector, usually consisting of two triplet fields (left-right symmetry breaking) and a bidoublet (electroweak symmetry breaking). I reconsider an alternative LRM with doublet instead of triplet fields. After explaining some features of this model, I discuss constraints on its parameters using electroweak precision observables (combined using the CKMfitter frequentist statistical framework) and neutral-meson mixing observables.

  17. Control system for a vertical axis windmill

    DOE Patents [OSTI]

    Brulle, Robert V. (St. Louis County, MO)

    1983-10-18T23:59:59.000Z

    A vertical axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90.degree. and 270.degree. to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  18. Yaw dynamics of horizontal axis wind turbines

    SciTech Connect (OSTI)

    Hansen, A.C. (Utah Univ., Salt Lake City, UT (United States))

    1992-05-01T23:59:59.000Z

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  19. Three-axis particle impact probe

    DOE Patents [OSTI]

    Fasching, George E. (Morgantown, WV); Smith, Jr., Nelson S. (Morgantown, WV); Utt, Carroll E. (Morgantown, WV)

    1992-01-01T23:59:59.000Z

    Three-axis particle impact probes detect particle impact vectors along x-, y-, and z-axes by spherical probe head mounted on the outer end of a shaft that is flexibly mounted in silicone rubber at the top of a housing so as to enable motion imparted to the head upon impact to be transmitted to a grounded electrode secured to the shaft within the housing. Excitable electrodes are mounted in the housing in a fixed position, spaced apart from the ground electrode and forming, with the ground electrode, capacitor pairs. Movement of the ground electrode results in changes in capacitance, and these difference in capacitance are used for measurement or derivation of momentum vectors along each of the three axes. In one embodiment, the ground electrode is mounted at the base of the shaft and is secured to a silicone rubber layer at the top of the housing, providing for cantilevered movement. In another embodiment, the shaft is mounted at its mid point in a flexible bushing so that it undergoes pivotal movement around that point.

  20. Sustained Growth of the Ex Vivo Ablation Zones' Critical Short Axis Using Gas-cooled Radiofrequency Applicators

    SciTech Connect (OSTI)

    Rempp, Hansjoerg, E-mail: hansjoerg.rempp@med.uni-tuebingen.de [Eberhard Karls University of Tuebingen, Department of Diagnostic and Interventional Radiology (Germany); Scharpf, Marcus [Insitute of Pathology, Eberhard Karls University of Tuebingen, Department of General Pathology and Pathological Anatomy (Germany); Voigtlaender, Matthias [ERBE Elektromedizin GmbH (Germany); Schraml, Christina; Schmidt, Diethard [Eberhard Karls University of Tuebingen, Department of Diagnostic and Interventional Radiology (Germany); Fend, Falko [Insitute of Pathology, Eberhard Karls University of Tuebingen, Department of General Pathology and Pathological Anatomy (Germany); Claussen, Claus D. [Eberhard Karls University of Tuebingen, Department of Diagnostic and Interventional Radiology (Germany); Enderle, Markus D. [ERBE Elektromedizin GmbH (Germany); Pereira, Philippe L. [Klinik fuer Radiologie, Minimalinvasive Therapien und Nuklearmedizin (Germany); Clasen, Stephan [Eberhard Karls University of Tuebingen, Department of Diagnostic and Interventional Radiology (Germany)

    2011-02-15T23:59:59.000Z

    Purpose: To evaluate the ablation zones created with a gas-cooled bipolar radiofrequency applicator performed on ex vivo bovine liver tissue. Materials and Methods: A total of 320 ablations with an internally gas-cooled bipolar radiofrequency applicator were performed on fresh ex vivo bovine liver tissue, varying the ablation time (5, 10, 15, and 20 min), power (20, 30, 40, and 50 W), and gas pressure of the CO{sub 2} used for cooling (585, 600, 615, 630, 645 psi), leading to a total of 80 different parameter combinations. Size and shape of the white coagulation zone were assessed. Results: The largest complete ablation zone was achieved after 20 min of implementing 50 W and 645 psi, resulting in a short axis of mean 46 {+-} 1 mm and a long axis of 56 {+-} 2 mm (mean {+-} standard deviation). Short-axis diameters increased between 5 and 20 min of ablation time at 585 psi (increase of the short axis was 45% at 30 W, 29% at 40 W, and 39% at 50 W). This increase was larger at 645 psi (113% at 30 W, 67% at 40 W, and 70% at 50 W). Macroscopic assessment and NADH (nicotinamide adenine dinucleotide) staining revealed incompletely ablated tissue along the needle track in 18 parameter combinations including low-power settings (20 and 30 W) and different cooling levels and ablation times. Conclusion: Gas-cooled radiofrequency applicators increase the short-axis diameter of coagulation in an ex vivo setting if appropriate parameters are selected.

  1. Event Rates for Off Axis NuMI Experiments

    E-Print Network [OSTI]

    B. Viren

    2006-08-25T23:59:59.000Z

    Neutrino interaction rates for experiments placed off axis in the NuMI beam are calculated. Primary proton beam energy is 120 GeV and four locations at 810 km from target and 6, 12, 30 and 40 km off axis are considered. This report is part of the Joint FNAL/BNL Future Long Baseline Neutrino Oscillation Experiment Study.

  2. 3-Axis Magnetic Sensor Hybrid The Honeywell HMC2003 is a high sensitivity, three-axis magnetic sensor hybrid

    E-Print Network [OSTI]

    Kleinfeld, David

    3-Axis Magnetic Sensor Hybrid HMC2003 The Honeywell HMC2003 is a high sensitivity, three-axis magnetic sensor hybrid assembly used to measure low magnetic field strengths. Honeywell's most sensitive Reference, Traffic Detection, Proximity Detection and Medical Devices Honeywell continues to maintain

  3. Total Light Management

    Broader source: Energy.gov [DOE]

    Presentation covers total light management, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  4. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  5. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  6. Off-axis illumination direct-to-digital holography

    DOE Patents [OSTI]

    Thomas, Clarence E.; Price, Jeffery R.; Voelkl, Edgar; Hanson, Gregory R.

    2004-06-08T23:59:59.000Z

    Systems and methods are described for off-axis illumination direct-to-digital holography. A method of recording an off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis, includes: reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object at an angle with respect to an optical axis defined by a focusing lens; focusing the reference beam and the object beam at a focal plane of a digital recorder to form the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digitally recording the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; Fourier analyzing the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes by transforming axes of the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined as an angle between the reference beam and the object beam; applying a digital filter to cut off signals around an original origin; and then performing an inverse Fourier transform.

  7. Computer Integrated Revision Total Hip Replacement Surgery: Preliminary Report

    E-Print Network [OSTI]

    Taubin, Gabriel

    in a primary case because there is little good bone left and because the surgical manipulations are more deliComputer Integrated Revision Total Hip Replacement Surgery: Preliminary Report Leo Joskowicz1 milling, and the re- duction of bone sacri ced to t the new implant. Our starting points are Robodoc

  8. Dual-axis hole-drilling ESPI residual stress measurements

    SciTech Connect (OSTI)

    Steinzig, Michael [Los Alamos National Laboratory; Schajer, Gary [UNIV OF BRITISH COLUMBIA

    2008-01-01T23:59:59.000Z

    A novel dual-axis ESPI hole-drilling residual stress measurement method is presented. The method enables the evaluation of all the in-plane normal stress components with similar response to measurement errors, significantly lower than with single-axis measurements. A numerical method is described that takes advantage of, and compactly handles, the additional optical data that are available from the second measurement axis. Experimental tests were conducted on a calibrated specimen to demonstrate the proposed method, and the results supported theoretical expectations.

  9. adrenal axis hpa: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    off-axis jet model of GRBs, we can reproduce the observed unusual properties of the prompt emission of GRB980425, such as the extremely low isotropic equivalent gamma-ray...

  10. axis testis transcriptome: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    off-axis jet model of GRBs, we can reproduce the observed unusual properties of the prompt emission of GRB980425, such as the extremely low isotropic equivalent gamma-ray...

  11. axis rfp plasmas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    off-axis jet model of GRBs, we can reproduce the observed unusual properties of the prompt emission of GRB980425, such as the extremely low isotropic equivalent gamma-ray...

  12. Determination of Elastic Twist in Horizontal Axis Wind Turbines (HAWTs)

    SciTech Connect (OSTI)

    Stoddard, F.; Nelson, V.; Starcher, K.; Andrews, B.

    2006-06-01T23:59:59.000Z

    This report presents the results of a project at the Alternative Energy Institute (AEI) which measured and calculated the elastic twist of three representative composite horizontal-axis blades: Carter 300, Gougeon ESI 54, and UTRC 8 kW.

  13. Magnetically suspended reaction sphere with one-axis hysteresis drive

    E-Print Network [OSTI]

    Zhou, Lei., S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    This thesis presents the design, modeling, implementation, and control of a magnetically suspended reaction sphere with one-axis hysteresis drive (1D-MSRS). The goal of this project is two fold: (a) exploring the design ...

  14. EIS-0228: Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impact of a proposal to construct and operate the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL)...

  15. A two axis mirror positioning system with quadrature encoder output

    E-Print Network [OSTI]

    Woodruff, Rick Bryan

    2007-01-01T23:59:59.000Z

    This project was conducted in support of a solar concentrating technology that required the design and construction of a low cost, two axis rotational drive system with a resolution of one degree or better. The scope of ...

  16. axis rotating states: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 21 22 23 24 25 Next Page Last Page Topic Index 21 Rotation speed and stellar axis inclination from p modes: How CoRoT would see other suns Astrophysics (arXiv) Summary: In the...

  17. axis view techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 An Asymmetric, Energetic Type Ic Supernova Viewed Off-Axis, and a Link to Gamma-Ray Bursts Astrophysics (arXiv) Summary: Type Ic supernovae, the explosions following the...

  18. Total Synthesis of (?)-Himandrine

    E-Print Network [OSTI]

    Movassaghi, Mohammad

    We describe the first total synthesis of (?)-himandrine, a member of the class II galbulimima alkaloids. Noteworthy features of this chemistry include a diastereoselective Diels?Alder reaction in the rapid synthesis of the ...

  19. Asymmetric parametric amplification in nonlinear left-handed transmission lines

    E-Print Network [OSTI]

    Asymmetric parametric amplification in nonlinear left-handed transmission lines David A. Powell amplification in nonlinear left-handed transmission lines, which serve as model systems for nonlinear negative-handed regime. © 2009 American Institute of Physics. DOI: 10.1063/1.3089842 Left-handed transmission lines

  20. Plasma ionization frequency, edge-to-axis density ratio, and density on axis of a cylindrical gas discharge

    SciTech Connect (OSTI)

    Palacio Mizrahi, J. H. [Physics Department, Technion, Haifa 32000 (Israel)

    2014-06-15T23:59:59.000Z

    A rigorous derivation of expressions, starting from the governing equations, for the ionization frequency, edge-to-axis ratio of plasma density, plasma density at the axis, and radially averaged plasma density in a cylindrical gas discharge has been obtained. The derived expressions are simple and involve the relevant parameters of the discharge: Cylinder radius, axial current, and neutral gas pressure. The found expressions account for ion inertia, ion temperature, and changes in plasma ion collisionality.

  1. Modeling the Capacity of Left-Turn and Through Movement Considering Left-Turn Blockage and Spillback at Signalized Intersection with Short Left-Turn Bay

    E-Print Network [OSTI]

    Cho, Kyoung Min

    2010-10-12T23:59:59.000Z

    of grade separation that can do as much as signals do (Roess, Prassas, and McShane, 2004). Left-turns are the most difficult and complex procedures to deal with at a signalized intersection. There are several different ways of left- turns. Different... of the intersection according to several elements such as left-turning and opposing volume related to traffic operation(Roess et al., 2004). Roger et al. suggested general guidelines for selecting more suitable left-turn sequence in each intersection with various...

  2. Total Energy Monitor

    SciTech Connect (OSTI)

    Friedrich, S

    2008-08-11T23:59:59.000Z

    The total energy monitor (TE) is a thermal sensor that determines the total energy of each FEL pulse based on the temperature rise induced in a silicon wafer upon absorption of the FEL. The TE provides a destructive measurement of the FEL pulse energy in real-time on a pulse-by-pulse basis. As a thermal detector, the TE is expected to suffer least from ultra-fast non-linear effects and to be easy to calibrate. It will therefore primarily be used to cross-calibrate other detectors such as the Gas Detector or the Direct Imager during LCLS commissioning. This document describes the design of the TE and summarizes the considerations and calculations that have led to it. This document summarizes the physics behind the operation of the Total Energy Monitor at LCLS and derives associated engineering specifications.

  3. The relationship of physical training and time components of the left ventricle

    E-Print Network [OSTI]

    Bradley, Patrick Walton

    1976-01-01T23:59:59.000Z

    , and post-exercise values. The selected cardiac-cycle time components included. pre-ejection period (PEP); electromechanical lag (EML); isovolumetric contraction period (ICP); left ventricular ejection time (LVET); mechanical systole (MS); total systole... cardiac-cycle time components. 3. Highly physical trained individuals have significantly increased resting and post-exercise pre-ejection periods, significantly increased resting electromechanical lag and isovolumetric contraction periods...

  4. Total Precipitable Water

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

  5. Cosmic strings in $f\\left(R,L_m\\right)$ gravity

    E-Print Network [OSTI]

    Tiberiu Harko; Matthew J. Lake

    2015-01-17T23:59:59.000Z

    We consider Kasner type static, cylindrically symmetric interior string solutions in the $f\\left(R,L_m\\right)$ theory of modified gravity. The physical properties of the string are described by an anisotropic energy-momentum tensor satisfying the condition $T_t^t=T_z^z$; that is, the energy density of the string along the $z$-axis is equal to minus the string tension. As a first step in our study we obtain the gravitational field equations in the $f\\left(R,L_m\\right)$ theory for a general static, cylindrically symmetric metric, and then for a Kasner type metric, in which the metric tensor components have a power law dependence on the radial coordinate $r$. String solutions in two particular modified gravity models are investigated in detail. The first is the so-called "exponential" modified gravity, in which the gravitational action is proportional to the exponential of the sum of the Ricci scalar and matter Lagrangian, and the second is the "self-consistent model", obtained by explicitly determining the gravitational action from the field equations under the assumption of a power law dependent matter Lagrangian. In each case, the thermodynamic parameters of the string, as well as the precise form of the matter Lagrangian, are explicitly obtained.

  6. A Simplified Morphing Blade for Horizontal Axis Wind Turbines

    E-Print Network [OSTI]

    Boyer, Edmond

    A Simplified Morphing Blade for Horizontal Axis Wind Turbines Weijun WANG , St´ephane CARO, Fouad salinas@hotmail.com The aim of designing wind turbine blades is to improve the power capture ability by adjusting the twist of the blade's root and tip. To evaluate the performance of wind turbine blades

  7. accessory left atrial: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23 24 25 Next Page Last Page Topic Index 401 PREDICTION OF REMAINING LIFE OF POWER TRANSFORMERS BASED ON LEFT TRUNCATED AND RIGHT Mathematics Websites Summary: PREDICTION OF...

  8. acute left subclavian: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    signs. We collect Heuberger, Clemens 359 PREDICTION OF REMAINING LIFE OF POWER TRANSFORMERS BASED ON LEFT TRUNCATED AND RIGHT Mathematics Websites Summary: PREDICTION OF...

  9. assess left ventricular: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    signs. We collect Heuberger, Clemens 434 PREDICTION OF REMAINING LIFE OF POWER TRANSFORMERS BASED ON LEFT TRUNCATED AND RIGHT Mathematics Websites Summary: PREDICTION OF...

  10. analgesia improves left: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    signs. We collect Heuberger, Clemens 372 PREDICTION OF REMAINING LIFE OF POWER TRANSFORMERS BASED ON LEFT TRUNCATED AND RIGHT Mathematics Websites Summary: PREDICTION OF...

  11. autoimmunity induces left: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    signs. We collect Heuberger, Clemens 443 PREDICTION OF REMAINING LIFE OF POWER TRANSFORMERS BASED ON LEFT TRUNCATED AND RIGHT Mathematics Websites Summary: PREDICTION OF...

  12. acute left ventricular: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23 24 25 Next Page Last Page Topic Index 461 PREDICTION OF REMAINING LIFE OF POWER TRANSFORMERS BASED ON LEFT TRUNCATED AND RIGHT Mathematics Websites Summary: PREDICTION OF...

  13. ameliorates left ventricular: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    signs. We collect Heuberger, Clemens 433 PREDICTION OF REMAINING LIFE OF POWER TRANSFORMERS BASED ON LEFT TRUNCATED AND RIGHT Mathematics Websites Summary: PREDICTION OF...

  14. asymptomatic left ventricular: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    signs. We collect Heuberger, Clemens 432 PREDICTION OF REMAINING LIFE OF POWER TRANSFORMERS BASED ON LEFT TRUNCATED AND RIGHT Mathematics Websites Summary: PREDICTION OF...

  15. ambulatory left ventricular: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    signs. We collect Heuberger, Clemens 459 PREDICTION OF REMAINING LIFE OF POWER TRANSFORMERS BASED ON LEFT TRUNCATED AND RIGHT Mathematics Websites Summary: PREDICTION OF...

  16. TotalView Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances » Top InnovativeTopoisomeraseTotalView

  17. Vertical-axis wind turbines -- The current status of an old technology

    SciTech Connect (OSTI)

    Berg, D.E.

    1996-12-31T23:59:59.000Z

    Vertical-axis wind turbine technology is not well understood, even though the earliest wind machines rotated about a vertical axis. The operating environment of a vertical-axis wind turbine is quite complex, but detailed analysis capabilities have been developed and verified over the last 30 years. Although vertical-axis technology has not been widely commercialized, it exhibits both advantages and disadvantages compared to horizontal-axis technology, and in some applications, it appears to offer significant advantages.

  18. POLYGRAPHS FOR TERMINATION OF LEFT-LINEAR TERM REWRITING SYSTEMS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    POLYGRAPHS FOR TERMINATION OF LEFT-LINEAR TERM REWRITING SYSTEMS February 2, 2007 Yves GUIRAUD termination of left-linear term rewriting systems (TRSs) by using Albert Burroni's polygraphs, a kind whose termination is proven with a polygraphic interpretation, then we get back the property on the TRS

  19. An overview of craniospinal axis fields and field matching

    SciTech Connect (OSTI)

    Scott, Robin L., E-mail: robinscott631@gmail.com

    2013-01-01T23:59:59.000Z

    Many methods are implemented for craniospinal axis (CSA) radiation treatment (RT). This paper’s goal is to define correctly matched CSA RT fields. Overlap or a space between matched RT fields can create variances of dose and the possibility of negative side effects or disease recurrence, respectively. An accurate CSA RT match procedure is created with localization markers, immobilization devices, equations, feathered matches, safety gap, and portal imaging. A CS match angle is predetermined to optimize patient position before immobilization device fabrication. Various central axis (CA) placements within the brain and spine fields that effect gantry, table, and collimator rotation are described. An overview of the methods used to create CSA RT fields and matches is presented for optimal CSA RT implementation. In addition, to the author’s knowledge, this is the first time that a prone CSA RT with anesthesia has been described.

  20. Tuning the DARHT Axis-II linear induction accelerator focusing

    SciTech Connect (OSTI)

    Ekdahl, Carl A. [Los Alamos National Laboratory

    2012-04-24T23:59:59.000Z

    Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories, and the Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-{mu}s flattop. The Axis-II injector, LIA, kicker, and downstream transport (DST) to the bremsstrahlung converter are described. Adjusting the magnetic focusing and steering elements to optimize the electron-beam transport through an LIA is often called 'tuning.' As in all high-current LIAs, the focusing field is designed to be as close to that of the ideal continuous solenoid as physically possible. In ideal continuous solenoidal transport a smoothly varying beam size can easily be found for which radial forces balance, and the beam is said to be 'matched' to the focusing field. A 'mismatched' beam exhibits unwanted oscillations in size, which are a source of free energy that contributes to emittance growth. This is undesirable, because in the absence of beam-target effects, the radiographic spot size is proportional to the emittance. Tuning the Axis-II LIA is done in two steps. First, the solenoidal focusing elements are set to values designed to provide a matched beam with little or no envelope oscillations, and little or no beam-breakup (BBU) instability growth. Then, steering elements are adjusted to minimize the motion of the centroid of a well-centered beam at the LIA exit. This article only describes the design of the tune for the focusing solenoids. The DARHT Axis-II LIA was required to be re-tuned after installing an accelerator cell to replace a failed solenoid in March of 2012. We took advantage of this opportunity to improve the design of the focusing tune with better models of the remaining partially failed solenoids, better estimates of beam initial conditions, and better values for pulsed-power voltages. As with all previous tunes for Axis-II, this one incorporates measures to mitigate beam-breakup (BBU) instability, image displacement instability (IDI), corkscrew (sweep), and emittance growth. Section II covers the general approach to of design of focusing solenoid tunes for the DARHT Axis-2 LIA. Section III explains the specific requirements and simulations needed to design the tune for the injector, which includes the thermionic electron source, diode, and six induction cells. Section IV explains the requirements and simulations for tuning the main accelerator, which consists of 68 induction cells. Finally, Section V explores sensitivity of the tune to deviations of parameters from nominal, random variations, and uncertainties in values. Four appendices list solenoid settings for this new tune, discuss comparisons of different simulation codes, show halo formation in mismatched beams, and present a brief discussion of the beam envelope equation, which is the heart of the method used to design LIA solenoid tunes.

  1. The NanoMax-TSTM three-axis stage offers an unmatched combination of

    E-Print Network [OSTI]

    Kik, Pieter

    555 Spacer Block to Raise Optical- Axis Height to 125-mm 17 AMA 554 ©2002 MELLES GRIOT MCE 1042 03 holes threaded M2 on 20 centers dimensions: millimeters 17 MAX 302 3-axis stage MELLES GRIOT

  2. Eye Movements During Multi-Axis Whole-Body Rotations CHRISTOPHER J. BOCKISCH,1

    E-Print Network [OSTI]

    Haslwanter, Thomas

    Straumann, and Thomas Hasl- wanter. Eye movements during multi-axis whole-body rotations. J Neurophysiol 89

  3. [Page Intentionally Left Blank] Life Cycle Greenhouse Gas Emissions from

    E-Print Network [OSTI]

    Reuter, Martin

    ..........................................................................11 4.2 Conventional Jet Fuel from Crude Oil2 June #12;[Page Intentionally Left Blank] #12;Life Cycle Greenhouse Gas Emissions from Alternative .......................................5 3.1 Life cycle Greenhouse Gas Emissions

  4. Theory and application of left-handed metamaterials

    E-Print Network [OSTI]

    Pacheco, Joe, 1978-

    2004-01-01T23:59:59.000Z

    Materials with simultaneously negative permittivity and permeability over a certain frequency band were first studied by Veselago in 1968, who termed such media left-handed (LH) due to the LH triad formed by the electric ...

  5. MUJERES TOTAL BIOLOGIA 16 27

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    , PLASTICA Y VISUAL 2 2 EDUCACION FISICA, DEPORTE Y MOTRICIDAD HUMANA 1 1 6 11 TOTAL CIENCIAS Nº DE TESIS

  6. MUJERES ( * ) TOTAL BIOLOGA 16 22

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    , DEPORTE Y MOTRICIDAD HUMANA 0 4 TOTAL FORMACIÓN DE PROFESORADO Y EDUCACIÓN 0 6 ANATOMÍA PATOLÓGICA 2 5

  7. Multi-Fidelity Uncertainty Quantification: Application to a Vertical Axis Wind Turbine Under an

    E-Print Network [OSTI]

    Alonso, Juan J.

    Multi-Fidelity Uncertainty Quantification: Application to a Vertical Axis Wind Turbine Under, USA Designing better vertical axis wind turbines (VAWTs) requires considering the uncertain wind cost. Low-fidelity tools are used extensively in the modeling of vertical axis wind turbines (VAWTs)3

  8. A Low Order Model for Vertical Axis Wind Turbines Isaac M. Asher

    E-Print Network [OSTI]

    Peraire, Jaime

    A Low Order Model for Vertical Axis Wind Turbines Isaac M. Asher , Mark Drela and Jaime Peraire and performance prediction of vertical axis wind turbines is presented. The model uses a 2D hybrid dynamic vortex perpendicular. z perpendicular to the plane (spanwise direction). I. Introduction Darrieus-type vertical axis

  9. Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis

    E-Print Network [OSTI]

    Grujicic, Mica

    -Axis Wind-Turbine Blades M. Grujicic, G. Arakere, B. Pandurangan, V. Sellappan, A. Vallejo, and M. Ozen optimization, fatigue-life assessment, horizon- tal axis wind turbine blades 1. Introduction The depletion for the development of cost-effective glass-fiber reinforced epoxy-matrix composite 5 MW horizontal-axis wind-turbine

  10. Flux Distribution of a Single-Axis Tracking Parabolic Trough Array with Photovoltaic Receiver

    E-Print Network [OSTI]

    . With single-axis tracking the incident solar rays are not in general perpendicular to the trough. NonFlux Distribution of a Single-Axis Tracking Parabolic Trough Array with Photovoltaic Receiver G 0200 Australia E-mail: gregory.burgess@anu.edu.au Abstract Single-axis tracking parabolic troughs

  11. Experimental investigation of the performance of a diffuser-augmented vertical axis wind turbine

    E-Print Network [OSTI]

    Victoria, University of

    Experimental investigation of the performance of a diffuser- augmented vertical axis wind turbine Experimental investigation of the performance of a diffuser-augmented vertical axis wind turbine by Arash The performance of a vertical axis wind turbine with and without a diffuser was studied using direct force

  12. Rapture rhetoric: prophetic epistemology of the Left Behind subculture

    E-Print Network [OSTI]

    Hill, Kristin Dawn

    2009-05-15T23:59:59.000Z

    . Jenkins, Glorious Appearing. (Wheaton, IL: Tyndale House Publishers, Inc, 2005). 8 Glossary, In Bruce David Forbes and Jeanne Halgren Kilde, eds. Rapture, Revelation and the End Times: Exploring the Left Behind Series (New York: Palgrave, 2004), 201...-millennial dispensationalism to the fore. The capstone of these events was the publication of the 16 Bruce David Forbes and Jeanne Halgren Kilde eds., Rapture, Revelation and the End Times: exploring the Left Behind Series...

  13. The Total RNA Story Introduction

    E-Print Network [OSTI]

    Goldman, Steven A.

    The Total RNA Story Introduction Assessing RNA sample quality as a routine part of the gene about RNA sample quality. Data from a high quality total RNA preparation Although a wide variety RNA data interpretation and identify features from total RNA electropherograms that reveal information

  14. Medial-Axis Biased Rapidly-Exploring Random Trees 

    E-Print Network [OSTI]

    Greco, Evan

    2012-05-09T23:59:59.000Z

    , 1998, 1998. [3] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, MAPRM: A probabilistic roadmap planner with sampling on the medial axis of the free space. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), vol. 2, pp. 1024{1031, 1999. [4] J. J. Ku?ner and S.... M. LaValle, RRT-Connect: An eÆcient approach to single- query path planning. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 995{1001, 2000. [5] S. Rodriguez, X. Tang, J. M. Lien, and N. M. Amato, An obstacle-based rapidly- exploring random tree...

  15. Space variations in axis height of the jet stream core 

    E-Print Network [OSTI]

    Leutwyler, Cooke Hearon

    1965-01-01T23:59:59.000Z

    height, of 55 mb be- tween Model I (troughs) and Model II (ridges). However, the present models of the jet stream do not adequately describe the way a jet stream axis varies in height at a given time. The average presented by Reiter (1958... the Ridge cases, the standard deviation was smaller upstream from the reference height than it was downstream. Therefore the mean curves are more representative and useful as models upstream than they are downstream. C HAP TER I I I HEIGHT VARIATIONS...

  16. Off-Axis Parabola Inserter - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeeding access toSpeedingInnovationAxis

  17. Z-Axis Tipper Electromagnetics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, NewYanceyYokayoYorktownYukon,Colorado:Z-Axis

  18. Shock margin testing of a one-axis MEMS accelerometer.

    SciTech Connect (OSTI)

    Parson, Ted Blair; Tanner, Danelle Mary; Buchheit, Thomas Edward

    2008-07-01T23:59:59.000Z

    Shock testing was performed on a selected commercial-off-the-shelf - MicroElectroMechanical System (COTS-MEMS) accelerometer to determine the margin between the published absolute maximum rating for shock and the 'measured' level where failures are observed. The purpose of this testing is to provide baseline data for isolating failure mechanisms under shock and environmental loading in a representative device used or under consideration for use within systems and assemblies of the DOD/DOE weapons complex. The specific device chosen for this study was the AD22280 model of the ADXL78 MEMS Accelerometer manufactured by Analog Devices Inc. This study focuses only on the shock loading response of the device and provides the necessary data for adding influence of environmental exposure to the reliability of this class of devices. The published absolute maximum rating for acceleration in any axis was 4000 G for this device powered or unpowered. Results from this study showed first failures at 8000 G indicating a margin of error of two. Higher shock level testing indicated that an in-plane, but off-axis acceleration was more damaging than one in the sense direction.

  19. IntroductionIntroduction The use of small scale vertical axis wind turbinesThe use of small scale vertical axis wind turbines

    E-Print Network [OSTI]

    Tullis, Stephen

    IntroductionIntroduction The use of small scale vertical axis wind turbinesThe use of small scale vertical axis wind turbines (VAWT) is being studied at McMaster University using(VAWT) is being studied at McMaster University using a prototype wind turbine provided bya prototype wind turbine provided

  20. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q 0.4 3 or More Units... 5.4 0.3 Q Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  1. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 1.9 1.1 Q Q 0.3 Q Do Not Use Central Air-Conditioning... 45.2 24.6 3.6 5.0 8.8 3.2 Use a Programmable...

  2. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q 0.6 3 or More Units... 5.4 3.8 2.9 0.4 Q N 0.2 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  3. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1.3 Q 3 or More Units... 5.4 1.6 0.8 Q 0.3 0.3 Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  4. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.4 1.4 0.7 0.9 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  5. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.3 1.7 0.6 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  6. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.6 Have Equipment But Do Not Use it... 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System......

  7. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.1 0.9 0.2 1.0 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  8. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30.3 Have Equipment But Do Not Use it... 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System......

  9. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.3 3 or More Units... 5.4 0.7 0.5 Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  10. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.3 0.7 2.1 0.3 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  11. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......

  12. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......

  13. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Personal Computers Do Not Use a Personal Computer... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer... 75.6...

  14. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer... 35.5 8.1 5.6 2.5 Use a Personal Computer......

  15. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer... 35.5 6.4 2.2 4.2 Use a Personal Computer......

  16. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer......

  17. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......

  18. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1.3 0.8 0.5 Once a Day... 19.2 4.6 3.0 1.6 Between Once a Day and Once a Week... 32.0 8.9 6.3 2.6 Once a...

  19. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AppliancesTools.... 56.2 11.6 3.3 8.2 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 0.2 Q 0.1 Hot Tub or Spa......

  20. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Tools... 56.2 20.5 10.8 3.6 6.1 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 N N N N Hot Tub or Spa......

  1. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Tools... 56.2 27.2 10.6 9.3 9.2 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 Q Q Q 0.4 Hot Tub or Spa......

  2. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    AppliancesTools.... 56.2 12.2 9.4 2.8 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 Q Q Q Hot Tub or Spa......

  3. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1.3 3.8 Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal Assistance 1 40,000 to 59,999 60,000 to 79,999 80,000...

  4. Total..............................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6 2,720

  5. Total................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6 2,720..

  6. Total........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6 2,720..

  7. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6

  8. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q Table

  9. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q TableQ

  10. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q

  11. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q26.7

  12. Total............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1

  13. Total............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1

  14. Total.............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7 28.8 20.6

  15. Total..............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7 28.8

  16. Total..............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7 28.8,171

  17. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7

  18. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.7 21.7

  19. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.7

  20. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.747.1

  1. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.747.1Do

  2. Total................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.747.1Do

  3. Total.................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.

  4. Total.................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4 12.5 12.5

  5. Total.................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4 12.5

  6. Total..................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4 12.578.1

  7. Total..................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4

  8. Total..................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4. 111.1 14.7

  9. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4. 111.1

  10. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4. 111.115.2

  11. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4.

  12. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7

  13. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,033 1,618

  14. Total....................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,033 1,61814.7

  15. Total.......................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,033

  16. Total.......................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.6 17.7

  17. Total.......................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.6 17.74.2

  18. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.6

  19. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.615.1 5.5

  20. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.615.1

  1. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.615.10.7

  2. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:

  3. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not Have

  4. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not Have7.1

  5. Total.........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not

  6. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not25.6 40.7

  7. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not25.6

  8. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not25.65.6

  9. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do

  10. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.6 16.6

  11. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.6

  12. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.67.1

  13. Total...........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.67.10.6

  14. Total...........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2

  15. Total...........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.24.2 7.6

  16. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.24.2

  17. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.24.2Cooking

  18. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1

  19. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not Have

  20. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not HaveDo

  1. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not HaveDoDo

  2. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not

  3. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo Not

  4. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo Not

  5. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo Not20.6

  6. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo

  7. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo7.1 19.0

  8. Total.................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo7.1

  9. Total.................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo7.1...

  10. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do

  11. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1DoCooking

  12. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1DoCooking25.6

  13. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1DoCooking25.65.6

  14. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0

  15. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6 16.6 Personal

  16. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6 16.6 Personal

  17. Total.........................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6 16.6

  18. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May(MillionFeet)July 23,

  19. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May(MillionFeet)July 23,Product:

  20. Total..............................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720 1,970

  1. Total................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720

  2. Total........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720 111.1

  3. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720

  4. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720Q Table

  5. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720Q

  6. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720Q14.7

  7. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6

  8. Total............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1

  9. Total............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1

  10. Total.............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.8 20.6

  11. Total..............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.8 20.6,171

  12. Total..............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.8

  13. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.820.6 25.6

  14. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.820.6

  15. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.820.626.7

  16. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7

  17. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1 19.0 22.7

  18. Total................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1 19.0 22.7

  19. Total.................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1 19.0

  20. Total.................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1 19.014.7

  1. Total.................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1

  2. Total..................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.178.1 64.1

  3. Total..................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.178.1

  4. Total..................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.178.1.

  5. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770

  6. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.2 3.3 1.9

  7. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.2 3.3

  8. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.2 3.3Type

  9. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.2

  10. Total....................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.214.7 7.4

  11. Total.......................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.214.7

  12. Total.......................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.214.75.6

  13. Total.......................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0

  14. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.6 40.7

  15. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.6

  16. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.65.6 17.7

  17. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.65.6

  18. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.65.64.2

  19. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8

  20. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.0 22.7

  1. Total.........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.0

  2. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.025.6

  3. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.025.6.

  4. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.025.6.5.6

  5. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1

  6. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.2 7.6 16.6

  7. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.2 7.6

  8. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.2 7.67.1

  9. Total...........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.2 7.67.10.6

  10. Total...........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.2

  11. Total...........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.24.2 7.6

  12. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.24.2 7.6Do

  13. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.24.2

  14. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.24.2Cooking

  15. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2

  16. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not Have Cooling

  17. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not Have

  18. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo Not

  19. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo NotDo

  20. Total..............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo

  1. Total..............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo0.7

  2. Total..............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo0.7

  3. Total..............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo0.77.1

  4. Total.................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not

  5. Total.................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1 7.0 8.0

  6. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1 7.0

  7. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1 7.05.6

  8. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1

  9. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1Personal

  10. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1Personal4.2

  11. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do

  12. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do 111.1 47.1 19.0

  13. Total.........................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do 111.1 47.1

  14. Totally Corrective Boosting with Cardinality Penalization

    E-Print Network [OSTI]

    Vasil S. Denchev; Nan Ding; Shin Matsushima; S. V. N. Vishwanathan; Hartmut Neven

    2015-04-07T23:59:59.000Z

    We propose a totally corrective boosting algorithm with explicit cardinality regularization. The resulting combinatorial optimization problems are not known to be efficiently solvable with existing classical methods, but emerging quantum optimization technology gives hope for achieving sparser models in practice. In order to demonstrate the utility of our algorithm, we use a distributed classical heuristic optimizer as a stand-in for quantum hardware. Even though this evaluation methodology incurs large time and resource costs on classical computing machinery, it allows us to gauge the potential gains in generalization performance and sparsity of the resulting boosted ensembles. Our experimental results on public data sets commonly used for benchmarking of boosting algorithms decidedly demonstrate the existence of such advantages. If actual quantum optimization were to be used with this algorithm in the future, we would expect equivalent or superior results at much smaller time and energy costs during training. Moreover, studying cardinality-penalized boosting also sheds light on why unregularized boosting algorithms with early stopping often yield better results than their counterparts with explicit convex regularization: Early stopping performs suboptimal cardinality regularization. The results that we present here indicate it is beneficial to explicitly solve the combinatorial problem still left open at early termination.

  15. Dynamic behavior analysis for a six axis industrial machining robot

    E-Print Network [OSTI]

    Bisu, Claudiu-Florinel; Gérard, Alain; K'Nevez, Jean-Yves

    2012-01-01T23:59:59.000Z

    The six axis robots are widely used in automotive industry for their good repeatability (as defined in the ISO92983) (painting, welding, mastic deposition, handling etc.). In the aerospace industry, robot starts to be used for complex applications such as drilling, riveting, fiber placement, NDT, etc. Given the positioning performance of serial robots, precision applications require usually external measurement device with complexes calibration procedure in order to reach the precision needed. New applications in the machining field of composite material (aerospace, naval, or wind turbine for example) intend to use off line programming of serial robot without the use of calibration or external measurement device. For those applications, the position, orientation and path trajectory precision of the tool center point of the robot are needed to generate the machining operation. This article presents the different conditions that currently limit the development of robots in robotic machining applications. We ana...

  16. Nonlinear characterization of a single-axis acoustic levitator

    SciTech Connect (OSTI)

    Andrade, Marco A. B. [Institute of Physics, University of São Paulo, São Paulo (Brazil)] [Institute of Physics, University of São Paulo, São Paulo (Brazil); Ramos, Tiago S.; Okina, Fábio T. A.; Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)] [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)

    2014-04-15T23:59:59.000Z

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  17. Dual-axis resonance testing of wind turbine blades

    DOE Patents [OSTI]

    Hughes, Scott; Musial, Walter; White, Darris

    2014-01-07T23:59:59.000Z

    An apparatus (100) for fatigue testing test articles (104) including wind turbine blades. The apparatus (100) includes a test stand (110) that rigidly supports an end (106) of the test article (104). An actuator assembly (120) is attached to the test article (104) and is adapted for substantially concurrently imparting first and second forcing functions in first and second directions on the test article (104), with the first and second directions being perpendicular to a longitudinal axis. A controller (130) transmits first and second sets of displacement signals (160, 164) to the actuator assembly (120) at two resonant frequencies of the test system (104). The displacement signals (160, 164) initiate the actuator assembly (120) to impart the forcing loads to concurrently oscillate the test article (104) in the first and second directions. With turbine blades, the blades (104) are resonant tested concurrently for fatigue in the flapwise and edgewise directions.

  18. Neutrinoless Double Beta Decay: Low Left-Right Symmetry Scale?

    E-Print Network [OSTI]

    Miha Nemevsek; Fabrizio Nesti; Goran Senjanovic; Vladimir Tello

    2011-12-20T23:59:59.000Z

    Experiments in progress may confirm a nonzero neutrinoless double beta decay rate in conflict with the cosmological upper limit on neutrino masses and thus require new physics beyond the Standard Model. A natural candidate is the Left-Right symmetric theory, which led originally to neutrino mass and the seesaw mechanism. In the absence of cancelations of large Dirac Yukawa couplings, we show how such a scenario would require a low scale of Left-Right symmetry breaking roughly below 10 TeV, tantalizingly close to the LHC reach.

  19. Aberrant Left Inferior Bronchial Artery Originating from the Left Gastric Artery in a Patient with Acute Massive Hemoptysis

    SciTech Connect (OSTI)

    Jiang, Sen, E-mail: jasfly77@vip.163.com; Sun, Xi-Wen, E-mail: xwsun@citiz.net; Yu, Dong, E-mail: yudong_mail@126.com; Jie, Bing, E-mail: jbshh@163.com [Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Radiology (China)] [Shanghai Pulmonary Hospital, Tongji University School of Medicine, Department of Radiology (China)

    2013-10-15T23:59:59.000Z

    Massive hemoptysis is a life-threatening condition, and the major source of bleeding in this condition is the bronchial circulation. Bronchial artery embolization is a safe and effective treatment for controlling hemoptysis. However, the sites of origin of the bronchial arteries (BAs) have numerous anatomical variations, which can result in a technical challenge to identify a bleeding artery. We present a rare case of a left inferior BA that originated from the left gastric artery in a patient with recurrent massive hemoptysis caused by bronchiectasis. The aberrant BA was embolized, and hemoptysis has been controlled for 8 months.

  20. RIGHT CANCELLATIVE AND LEFT AMPLE QUASIVARIETIES AND PROPER COVERS

    E-Print Network [OSTI]

    Gould, Victoria

    RIGHT CANCELLATIVE AND LEFT AMPLE MONOIDS: QUASIVARIETIES AND PROPER COVERS VICTORIA GOULD Abstract, as elsewhere, the idea is to `expand' Date: August 3, 1999. 1991 Mathematics Subject Classi#12;cation. 20 M 10. The diagrams in this paper are drawn using Paul Taylor's commutative diagram package. 1 #12; 2 VICTORIA GOULD

  1. Left Lateralized Enhancement of Orofacial Somatosensory Processing Due

    E-Print Network [OSTI]

    JSLHR Supplement Left Lateralized Enhancement of Orofacial Somatosensory Processing Due to Speech associated with speech articulatory movements affects the perception of speech sounds and vice versa, suggesting an intimate linkage between speech production and perception systems. However, it is unclear which

  2. No Issue Left Behind: Reducing Information Overload in Issue Tracking

    E-Print Network [OSTI]

    Godfrey, Michael W.

    No Issue Left Behind: Reducing Information Overload in Issue Tracking Olga Baysal DIRO Université Science University of Waterloo Waterloo, ON, Canada migod@uwaterloo.ca ABSTRACT Modern software issue-tracking tasks. Categories and Subject Descriptors D.2.2 [Software Engineering]: Design Tools

  3. Left-right-symmetric model parameters: Updated bounds

    SciTech Connect (OSTI)

    Polak, J.; Zralek, M. (Department of Field Theory and Particle Physics, The University of Silesia, Uniwersytecka 4, PL-40-007 Katowice (Poland))

    1992-11-01T23:59:59.000Z

    Using the available updated experimental data, including the last results from the CERN {ital e}{sup +}{ital e{minus}} collider LEP and improved parity-violation results, we find new constraints on the parameters in the left-right-symmetric model in the case of light right-handed neutrinos.

  4. Using Entrez Utilities Web Service with Apache Axis2 for Java Creating a Web Service Client Application

    E-Print Network [OSTI]

    Levin, Judith G.

    Using Entrez Utilities Web Service with Apache Axis2 for Java Creating a Web Service Client Entrez Utilities Web Service using Axis2 for Java. Preinstalled Software You should have Apache Axis2.sh shell script file on Linux) in the bin directory of Axis2 installation. You will use it to generate Web

  5. Control system for a vertical-axis windmill

    DOE Patents [OSTI]

    Brulle, R.V.

    1981-09-03T23:59:59.000Z

    A vertical-axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90 and 270/sup 0/ to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  6. Off-axis electron holography of ferromagnetic multilayer nanowires

    SciTech Connect (OSTI)

    Akhtari-Zavareh, Azadeh; Kavanagh, K. L. [Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A1S6 (Canada); Carignan, L. P. [Apollo Microwaves, 1650 Trans-Canada Highway, Dorval, Quebec H9P 1H7 (Canada); Department of Engineering Physics, École Polytechnique de Montréal, Montréal, Quebec, H3C 3A7 Canada (Canada); Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, Quebec, H3C 3A7 Canada (Canada); Yelon, A.; Ménard, D. [Department of Engineering Physics, École Polytechnique de Montréal, Montréal, Quebec, H3C 3A7 Canada (Canada); Kasama, T. [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Herring, R. [Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada); Dunin-Borkowski, R. E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Institute for Microstructure Research, D-52425 Jülich (Germany); McCartney, M. R. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States)

    2014-07-14T23:59:59.000Z

    We have used electron holography to investigate the local magnetic behavior of isolated ferromagnetic nanowires (NWs) in their remanent states. The NWs consisted of periodic magnetic layers of soft, high-saturation magnetization CoFeB alloys, and non-magnetic layers of Cu. All NWs were fabricated by pulsed-potential electrodeposition in nanoporous alumina membranes. The NW composition and layer thicknesses were measured using scanning transmission electron microscopy and energy dispersive spectroscopy. The magnetization of individual NWs depended upon the thicknesses of the layers and the direction of an external magnetic field, which had been applied in situ. When the CoFeB was thicker than the diameter (50?nm), magnetization was axial for all external field directions, while thinner layers could be randomized via a perpendicular field. In some cases, magnetization inside the wire was detected at an angle with respect to the axis of the wires. In thinner Cu/CoFeB (<10?nm each) multilayer, magnetic field vortices were detected, associated with opposing magnetization in neighbouring layers. The measured crystallinity, compositions, and layer thicknesses of individual NWs were found to be significantly different from those predicted from calibration growths based on uniform composition NWs. In particular, a significant fraction of Cu (up to 50 at.?%) was present in the CoFeB layers such that the measured magnetic induction was lower than expected. These results will be used to better understand previously measured effective anisotropy fields of similar NW arrays.

  7. Advances in total scattering analysis

    SciTech Connect (OSTI)

    Proffen, Thomas E [Los Alamos National Laboratory; Kim, Hyunjeong [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    In recent years the analysis of the total scattering pattern has become an invaluable tool to study disordered crystalline and nanocrystalline materials. Traditional crystallographic structure determination is based on Bragg intensities and yields the long range average atomic structure. By including diffuse scattering into the analysis, the local and medium range atomic structure can be unravelled. Here we give an overview of recent experimental advances, using X-rays as well as neutron scattering as well as current trends in modelling of total scattering data.

  8. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShaleInput Product: TotalCountry:

  9. Dynamic behavior analysis for a six axis industrial machining BISU Claudiu1,a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    .). In the aerospace industry, robot starts to be used for complex applications such as drilling, riveting, fiberDynamic behavior analysis for a six axis industrial machining robot BISU Claudiu1,a , CHERIF Mehdi2-yves.knevez@u-bordeaux1.fr Abstract The six axis robots are widely used in automotive industry for their good

  10. Near wake properties of horizontal axis marine current L. Myers and A.S. Bahaj

    E-Print Network [OSTI]

    Quartly, Graham

    1 Near wake properties of horizontal axis marine current turbines L. Myers and A.S. Bahaj-scale horizontal axis turbine has been have been measured in a large water channel facility. A downstream map with different vertical shear and turbulence distributions. Offshore wind farms are perhaps the most closely

  11. Vibration Analysis of a Vertical Axis Wind Turbine Blade , S.Tullis 2

    E-Print Network [OSTI]

    Tullis, Stephen

    Vibration Analysis of a Vertical Axis Wind Turbine Blade K. Mc Laren 1 , S.Tullis 2 and S.Ziada 3 1 vibration source of a small-scale vertical axis wind turbine currently undergoing field-testing. The turbine at a blade-tip speed ratio (the ratio of the blade rotational velocity to the ambient wind velocity) of 1

  12. Model for the prediction of 3D surface topography in 5-axis milling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Model for the prediction of 3D surface topography in 5-axis milling Sylvain Lavernhe LURPA - ENS surface topography obtained in 5-axis milling in function of the machining conditions. For this purpose to a feed rate prediction model. Thanks to the simulation model of 3D surface topography, the influence

  13. Barium ferrite thin film media with perpendicular c-axis orientation and small grain size

    E-Print Network [OSTI]

    Laughlin, David E.

    Barium ferrite thin film media with perpendicular c-axis orientation and small grain size Zailong, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 Barium ferrite thin films with perpendicular c conditions. The c-axis orientation of barium ferrite thin films is most sensitive to the oxygen partial

  14. Hydrodynamic and Structural Performance of the Transverse Horizontal Axis Water Turbine

    E-Print Network [OSTI]

    Gorban, Alexander N.

    Hydrodynamic and Structural Performance of the Transverse Horizontal Axis Water Turbine Prof. Guy across the flow THAWT Concept Transverse Horizontal Axis Water Turbine · Length limited only by stiffness;Options for tidal stream power (1) · Axial flow turbines ("underwater windmills") ­ "Unducted" » MCT (most

  15. Weak-Axis Behavior of Wide Flange Columns Subjected to Blast

    E-Print Network [OSTI]

    Bruneau, Michel

    the effect of blast loading on wide flange columns loaded perpendicular to the weak axis of bending field detonations. Furthermore, past studies investigating the effect of blast load- ing on wide flangeWeak-Axis Behavior of Wide Flange Columns Subjected to Blast Nagarjun Krishnappa1 ; Michel Bruneau

  16. Hydrothermal synthesis, off-axis electron holography and magnetic properties of Fe3O4 nanoparticles

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    properties investigated using off-axis electron holography and more conventional rock magnetism techniqueHydrothermal synthesis, off-axis electron holography and magnetic properties of Fe3O4 nanoparticles measurements. 1. Introduction The ability of a rock to reliably record the geomagnetic field depends

  17. Performance Testing of a Small Vertical-Axis Wind Turbine , S. Tullis2

    E-Print Network [OSTI]

    Tullis, Stephen

    Performance Testing of a Small Vertical-Axis Wind Turbine R. Bravo1 , S. Tullis2 , S. Ziada3 of electric production [1]. Although most performance testing for small-scale wind turbines is conducted vertical-axis wind turbines (VAWT) in urban settings, full-scale wind tunnel testing of a prototype 3.5 k

  18. Response of a Vertical Axis Wind Turbine to Time Varying Wind Conditions found within the Urban

    E-Print Network [OSTI]

    Tullis, Stephen

    Response of a Vertical Axis Wind Turbine to Time Varying Wind Conditions found within the Urban, 2010 PP 389­401 389 ABSTRACT Experimental testing of a vertical axis wind turbine within the urban of the turbine. Temporal variation of the wind with respect to the direction and velocity fluctuations

  19. Blade Offset and Pitch Effects on a High Solidity Vertical Axis Wind Turbine

    E-Print Network [OSTI]

    Tullis, Stephen

    Blade Offset and Pitch Effects on a High Solidity Vertical Axis Wind Turbine Andrzej J. Fiedler ABSTRACT A high solidity, small scale, 2.5m diameter by 3m high Vertical Axis Wind Turbine (VAWT in an open-air wind tunnel facility to investigate the effects of preset toe-in and toe-out turbine blade

  20. CFD Simulation of Dynamic Thrust and Radial Forces on a Vertical Axis Wind Turbine Blade

    E-Print Network [OSTI]

    Tullis, Stephen

    CFD Simulation of Dynamic Thrust and Radial Forces on a Vertical Axis Wind Turbine Blade K. Mc vibration source of a small scale vertical axis wind turbine. The dynamic loading on the blades of the turbine, as they rotate about the central shaft and travel through a range of relative angles of attack

  1. WIND-TUNNEL STUDY ON AERODYNAMIC PERFORMANCE OF SMALL VERTICAL-AXIS WIND TURBINES

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    1 WIND-TUNNEL STUDY ON AERODYNAMIC PERFORMANCE OF SMALL VERTICAL-AXIS WIND TURBINES J. J. Miau*1 were carried out to study the aerodynamic performance of three vertical axis wind turbines (VAWTs. On the other hand, the characteristics of unsteady flow around the helical wind turbine were studied with a hot

  2. Left-right spin asymmetry in l N ? ? h X

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gamberg, Leonard; Kang, Zhong-Bo; Metz, Andreas; Pitonyak, Daniel; Prokudin, Alexei

    2014-10-01T23:59:59.000Z

    We consider the inclusive production of hadrons in lepton-nucleon scattering. For a transversely polarized nucleon this reaction shows a left-right azimuthal asymmetry, which we compute in twist-3 collinear factorization at leading order in perturbation theory. All non-perturbative parton correlators of the calculation are fixed through information from other hard processes. Our results for the left-right asymmetry agree in sign with recent data for charged pion production from the HERMES Collaboration and from Jefferson Lab. However, the magnitude of the computed asymmetries tends to be larger than the data. Potential reasons for this outcome are identified. We also give predictions for future experiments and highlight in particular the unique opportunities at an Electron Ion Collider.

  3. Generalized lepton number and dark left-right gauge model

    SciTech Connect (OSTI)

    Khalil, Shaaban [Center for Theoretical Physics, British University in Egypt, El Sherouk City, Postal No. 11837, P.O. Box 43 (Egypt); Department of Mathematics, Ain Shams University, Faculty of Science, Cairo 11566 (Egypt); Lee, Hye-Sung; Ma, Ernest [Department of Physics and Astronomy, University of California, Riverside, California 92521 (United States)

    2009-02-15T23:59:59.000Z

    In a left-right gauge model of particle interactions, the left-handed fermion doublet ({nu},e){sub L} is connected to its right-handed counterpart (n,e){sub R} through a scalar bidoublet so that e{sub L} pairs with e{sub R}, and {nu}{sub L} with n{sub R} to form mass terms. Suppose the latter link is severed without affecting the former, then n{sub R} is not the mass partner of {nu}{sub L}, and as we show in this paper, becomes a candidate for dark matter which is relevant for the recent PAMELA and ATIC observations. We accomplish this in a specific nonsupersymmetric model, where a generalized lepton number can be defined, so that n{sub R} and W{sub R}{sup {+-}} are odd under R{identical_to}(-1){sup 3B+L+2j}. Fermionic leptoquarks are also predicted.

  4. Left-right spin asymmetry in l N ? ? h X

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gamberg, Leonard; Kang, Zhong-Bo; Metz, Andreas; Pitonyak, Daniel; Prokudin, Alexei

    2014-10-01T23:59:59.000Z

    We consider the inclusive production of hadrons in lepton-nucleon scattering. For a transversely polarized nucleon this reaction shows a left-right azimuthal asymmetry, which we compute in twist-3 collinear factorization at leading order in perturbation theory. All non-perturbative parton correlators of the calculation are fixed through information from other hard processes. Our results for the left-right asymmetry agree in sign with recent data for charged pion production from the HERMES Collaboration and from Jefferson Lab. However, the magnitude of the computed asymmetries tends to be larger than the data. Potential reasons for this outcome are identified. We also give predictions formore »future experiments and highlight in particular the unique opportunities at an Electron Ion Collider.« less

  5. Left-Handed W bosons at the LHC

    SciTech Connect (OSTI)

    Bern, Z.; /UCLA; Diana, G.; /Saclay, SPhT; Dixon, L.J.; /CERN /SLAC; Cordero, F.Febres; /Simon Bolivar U.; Forde, D.; /Simon Bolivar U. /NIKHEF, Amsterdam; Gleisberg, T.; Hoeche, S.; /SLAC; Ita, H.; /UCLA; Kosower, D.A.; /Saclay, SPhT; Maitre, D.; /CERN /Durham U.; Ozeren, K.; /UCLA

    2011-05-20T23:59:59.000Z

    The production of W bosons in association with jets is an important background to new physics at the LHC. Events in which the W carries large transverse momentum and decays leptonically lead to large missing energy and are of particular importance. We show that the left-handed nature of the W coupling, combined with valence quark domination at a pp machine, leads to a large left-handed polarization for both W{sup +} and W{sup -} bosons at large transverse momenta. The polarization fractions are very stable with respect to QCD corrections. The leptonic decay of the W{sup +-} bosons translates the common left-handed polarization into a strong asymmetry in transverse momentum distributions between positrons and electrons, and between neutrinos and anti-neutrinos (missing transverse energy). Such asymmetries may provide an effective experimental handle on separating W +jets from top quark production, which exhibits very little asymmetry due to C invariance, and from various types of new physics.

  6. Page (Total 3) Philadelphia University

    E-Print Network [OSTI]

    Page (Total 3) Philadelphia University Faculty of Science Department of Biotechnology and Genetic be used in animals or plants. It can be also used in environmental monitoring, food processing ...etc are developed and marketed in kit format by biotechnology companies. The main source of information is web sites

  7. Robust atlas-based segmentation of highly variable anatomy: left atrium segmentation

    E-Print Network [OSTI]

    Depa, Michal

    Automatic segmentation of the heart’s left atrium offers great benefits for planning and outcome evaluation of atrial ablation procedures. However, the high anatomical variability of the left atrium presents significant ...

  8. Four Days Left to Buy Energy-Efficient Products for a 2009 Tax...

    Broader source: Energy.gov (indexed) [DOE]

    Four Days Left to Buy Energy-Efficient Products for a 2009 Tax Credit Four Days Left to Buy Energy-Efficient Products for a 2009 Tax Credit December 28, 2009 - 7:30am Addthis...

  9. Endovascular Treatment of Two Pseudoaneurysms Originating From the Left Ventricle

    SciTech Connect (OSTI)

    Cwikiel, Wojciech, E-mail: wcwikiel@gmail.com; Keussen, Inger [Skane University Hospital, Department of Radiology (Sweden)] [Skane University Hospital, Department of Radiology (Sweden); Gustafsson, Ronny; Mokhtari, Arash [Skane University Hospital, Department of Thoracic Surgery (Sweden)] [Skane University Hospital, Department of Thoracic Surgery (Sweden)

    2013-12-15T23:59:59.000Z

    A 67-year-old woman resented with an acute type A aortic dissection, which was treated surgically with aortic valve replacement as a composite graft with reimplantation of the coronary arteries. At the end of surgery, a left-ventricular venting catheter was placed through the apex and closed with a buffered suture. Consecutive computed tomography (CT) examinations verified a growing apex pseudoaneurysm. Communication between the ventricle and the pseudoaneurysm was successfully closed with an Amplatz septal plug by the transfemoral route. Follow-up CT showed an additional pseudoaneurysm, which also was successfully closed using the same method.

  10. Repulsive and restoring Casimir forces with left-handed materials

    E-Print Network [OSTI]

    Yaping Yang; Ran Zeng; Shutian Liu; Hong Chen; Shiyao Zhu

    2008-03-24T23:59:59.000Z

    We investigate repulsive Casimir force between slabs containing left-handed materials with controllable electromagnetic properties. The sign of Casimir force is determined by the electric and magnetic properties of the materials, and it is shown that the formation of the repulsive force is related to the wave impedances of two slabs. The sign change of the Casimir force as a function of the distance is studied. Special emphasis is put on the restoring Casimir force which may be found to exist between perfectly conducting material and metamaterial slabs. This restoring force is a natural power for the system oscillation in vacuum and also can be used for system stabilization.

  11. Brain Abscess Associated with Isolated Left Superior Vena Cava Draining into the Left Atrium in the Absence of Coronary Sinus and Atrial Septal Defect

    SciTech Connect (OSTI)

    Erol, Ilknur [Baskent University Faculty of Medicine, Department of Pediatrics, Pediatric Neurology Unit (Turkey)], E-mail: ilknur_erol@yahoo.co; Cetin, I. Ilker [Baskent University Faculty of Medicine, Department of Pediatrics, Pediatric Cardiology Unit (Turkey); Alehan, Fuesun [Baskent University Faculty of Medicine, Department of Pediatrics, Pediatric Neurology Unit (Turkey); Varan, Birguel [Baskent University Faculty of Medicine, Department of Pediatrics, Pediatric Cardiology Unit (Turkey); Ozkan, Sueleyman [Baskent University Faculty of Medicine, Department of Cardiovascular Surgery (Turkey); Agildere, A. Muhtesem [Baskent University Faculty of Medicine, Department of Radiology (Turkey); Tokel, Kursad [Baskent University Faculty of Medicine, Department of Pediatrics, Pediatric Cardiology Unit (Turkey)

    2006-06-15T23:59:59.000Z

    A previously healthy 12-year-old girl presented with severe headache for 2 weeks. On physical examination, there was finger clubbing without apparent cyanosis. Neurological examination revealed only papiledema without focal neurologic signs. Cerebral magnetic resonance imaging showed the characteristic features of brain abscess in the left frontal lobe. Cardiologic workup to exclude a right-to-left shunt showed an abnormality of the systemic venous drainage: presence of isolated left superior vena cava draining into the left atrium in the absence of coronary sinus and atrial septal defect. This anomaly is rare, because only a few other cases have been reported.

  12. Knots in $SU\\left(M|N\\right) $ Chern-Simons Field Theory

    E-Print Network [OSTI]

    Xin Liu

    2010-06-04T23:59:59.000Z

    Knots in the Chern-Simons field theory with Lie super gauge group $SU\\left(M|N\\right) $ are studied, and the $% S_{L}\\left(\\alpha,\\beta,z\\right) $ polynomial invariant with skein relations are obtained under the fundamental representation of $\\mathfrak{su}\\left(M|N\\right) $.

  13. This Page Intentionally Left Blank Next-Generation Ecosystem Experiments (NGEE Arctic)

    E-Print Network [OSTI]

    Lincoln #12;This Page Intentionally Left Blank #12;#12;Next-Generation Ecosystem Experiments--Arctic iv#12;This Page Intentionally Left Blank #12;Next-Generation Ecosystem Experiments (NGEE Arctic This Page Intentionally Left Blank #12;Next-Generation Ecosystem Experiments--Arctic Contents v CONTENTS

  14. INVERSE SPECTRAL AND SCATTERING THEORY FOR THE HALF-LINE LEFT DEFINITE

    E-Print Network [OSTI]

    INVERSE SPECTRAL AND SCATTERING THEORY FOR THE HALF-LINE LEFT DEFINITE STURM-LIOUVILLE PROBLEM C will prove some uniqueness results for inverse spec- tral theory and inverse scattering for the left definite is via the inverse spectral theory for the left definite problem, which also is not very well developed

  15. Total Adjusted Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May(MillionFeet)JulyEnd Use: Total

  16. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010(Billion

  17. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010(Billion120,814 136,932

  18. U.S. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010(Billion120,814

  19. U.S. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010(Billion120,814Pipeline

  20. U.S. Total Stocks

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009Feet)

  1. Off-axis variable focus and aberration control mirrors and method

    DOE Patents [OSTI]

    Himmer, Phillip A.; Dickensheets, David L.

    2009-02-24T23:59:59.000Z

    An optical element with multi-layer composites that deforms to reduce optical aberrations in off-axis optic. Methods are also described in relation to the optical element.

  2. Development of novel high-performance six-axis magnetically levitated instruments for nanoscale applications 

    E-Print Network [OSTI]

    Verma, Shobhit

    2005-11-01T23:59:59.000Z

    This dissertation presents two novel 6-axis magnetic-levitation (maglev) stages that are capable of nanoscale positioning. These stages have very simple and compact structure that is advantageous to meet requirements in ...

  3. Measurement of c-axis angular orientation in calcite (CaCO3) nanocrystals using

    E-Print Network [OSTI]

    Coppersmith, Susan N.

    Measurement of c-axis angular orientation in calcite (CaCO3) nanocrystals using X-ray absorption are demonstrated here on geologic calcite (CaCO3) and used to investigate the prismatic layer of a mollusk shell

  4. Multi-DOF precision positioning methodology using two-axis Hall-effect sensors

    E-Print Network [OSTI]

    Kawato, Yusuke

    2006-08-16T23:59:59.000Z

    A novel sensing methodology using two-axis Hall-effect sensors is proposed, where the absolute positioning of a device atop any magnet matrix is possible. This methodology has the capability of micrometer-order positioning resolution as well...

  5. Design and development of a two-axis reluctance based actuator for hexflex nano-positioner

    E-Print Network [OSTI]

    Liles, Howard J

    2010-01-01T23:59:59.000Z

    An endeavor was conducted to explore the design and development of a two-axis linear reluctance actuator for use as a part of a nano-positioner with the application of serving as a small scale kinematic coupling assembly ...

  6. Content-based fused off-axis object illumination direct-to-digital holography

    DOE Patents [OSTI]

    Price, Jeffery R.

    2006-05-02T23:59:59.000Z

    Systems and methods are described for content-based fused off-axis illumination direct-to-digital holography. A method includes calculating an illumination angle with respect to an optical axis defined by a focusing lens as a function of data representing a Fourier analyzed spatially heterodyne hologram; reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object the object beam incident upon the object at the illumination angle; focusing the reference beam and the object beam at a focal plane of a digital recorder to from the content-based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording the content based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.

  7. Left-right supersymmetry after the Higgs boson discovery

    E-Print Network [OSTI]

    Mariana Frank; Dilip Kumar Ghosh; Katri Huitu; Santosh Kumar Rai; Ipsita Saha; Harri Waltari

    2014-12-31T23:59:59.000Z

    We perform a thorough analysis of the parameter space of the minimal left-right supersymmetric model in agreement with the LHC data. The model contains left- and right-handed fermionic doublets, two Higgs bidoublets, two Higgs triplet representations, and one singlet, insuring a charge-conserving vacuum. We impose the condition that the model complies with the experimental constraints on supersymmetric particles masses and on the doubly-charged Higgs bosons, and require that the parameter space of the model satisfy the LHC data on neutral Higgs signal strengths at $2\\sigma$. We choose benchmark scenarios by fixing some basic parameters and scanning over the rest. The LSP in our scenarios is always the lightest neutralino. We find that the signals for $H\\to \\gamma \\gamma$ and $H \\to VV^\\star$ are correlated, while $H \\to b \\bar b$ is anti-correlated with all the other decay modes, and also that the contribution from singly-charged scalars dominate that of the doubly-charged scalars in $H\\to \\gamma \\gamma$ and $H \\to Z\\gamma$ loops, contrary to Type-II seesaw models. We also illustrate the range for mass spectrum of the LRSUSY model in light of planned measurements of the branching ratio of $H\\to \\gamma \\gamma$ to 10% level.

  8. Design and Test of a Vertical-Axis Wind Turbine with Pitch Control J. J. Miau1,a

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Design and Test of a Vertical-Axis Wind Turbine with Pitch Control J. J. Miau1,a , S. Y. Liang2 , R, USA a jjmiau@mail.ncku.edu.tw Keywords: vertical-axis wind turbine, pitch control, wind of a small vertical-axis wind turbine. Benefits gained can be shown by the experimental and numerical results

  9. First Light of the 1.6 meter off-axis New Solar Telescope at Big Bear Solar Observatory

    E-Print Network [OSTI]

    -axis configurations, the NST adopts a unique off-axis optical design. Since the Secondary Mirror (SM) and SM supportFirst Light of the 1.6 meter off-axis New Solar Telescope at Big Bear Solar Observatory Wenda Caoab, Nicolas Gorceixb, Roy Coulterb, Aaron Coulterb, Philip R. Goodeab aCenter for Solar-Terrestrial Research

  10. First Measurement of $?_?$ and $?_e$ Events in an Off-Axis Horn-Focused Neutrino Beam

    E-Print Network [OSTI]

    P. Adamson; A. A. Aguilar-Arevalo; C. E. Anderson; A. O. Bazarko; M. Bishai; S. J. Brice; B. C. Brown; L. Bugel; J. Cao; B. C. Choudhary; L. Coney; J. M. Conrad; D. C. Cox; A. Curioni; Z. Djurcic; D. A. Finley; B. T. Fleming; R. Ford; H. R. Gallagher; F. G. Garcia; G. T. Garvey; C. Green; J. A. Green; D. Harris; T. L. Hart; E. Hawker; J. Hylen; R. Imlay; R. A. Johnson; G. Karagiorgi; P. Kasper; T. Katori; T. Kobilarcik; S. Kopp; I. Kourbanis; S. Koutsoliotas; E. M. Laird; S. K. Linden; J. M. Link; Y. Liu; Y. Liu; L. Loiacono; W. C. Louis; A. Marchionni; K. B. M. Mahn; W. Marsh; G. McGregor; M. D. Messier; W. Metcalf; P. D. Meyers; F. Mills; G. B. Mills; J. Monroe; C. D. Moore; J. K. Nelson; R. H. Nelson; V. T. Nguyen; P. Nienaber; J. A. Nowak; S. Ouedraogo; R. B. Patterson; Z. Pavlovic; D. Perevalov; C. C. Polly; E. Prebys; J. L. Raaf; H. Ray; B. P. Roe; A. D. Russell; V. Sandberg; R. Schirato; D. Schmitz; M. H. Shaevitz; F. C. Shoemaker; W. Smart; D. Smith; M. Sodeberg; M. Sorel; P. Spentzouris; I. Stancu; R. J. Stefanski; M. Sung; H. A. Tanaka; R. Tayloe; M. Tzanov; P. Vahle; R. Van de Water; B. Viren; M. O. Wascko; D. H. White; M. J. Wilking; H. J. Yang; F. X. Yumiceva; G. P. Zeller; E. D. Zimmerman; R. Zwaska

    2009-07-21T23:59:59.000Z

    We report the first observation of off-axis neutrino interactions in the MiniBooNE detector from the NuMI beamline at Fermilab. The MiniBooNE detector is located 745 m from the NuMI production target, at 110 mrad angle ($6.3^{\\circ}$) with respect to the NuMI beam axis. Samples of charged current quasi-elastic $\

  11. Method for non-contact particle manipulation and control of particle spacing along an axis

    DOE Patents [OSTI]

    Goddard, Gregory Russ; Kaduchak, Gregory; Jett, James Hubert; Graves, Steven Wayde

    2012-09-11T23:59:59.000Z

    Method and system for uniformly spacing particles in a flowing system comprising suspending particles in an elongated fluid filled cavity; exposing said cavity to an axial acoustic standing wave field, wherein said axial acoustic standing wave field drives said particles to nodal and anti-nodal positions along the center axis of said cavity to result in uniformly spaced particles; and focusing said particles to the center axis of said cavity.

  12. The experimental and theoretical investigaton of a horizontal-axis wind turbine 

    E-Print Network [OSTI]

    Milburn, Robert Terrance

    1977-01-01T23:59:59.000Z

    THE EXPERIMENTAL AND THEORETICAL INVESTIGATION OF A HORIZONTAL-AXIS WIND TURBINE A Thesis by ROBERT TERRANCE MILBURN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE August 1977 Major Subject: Aerospace Engineering THE EXPERIMENTAL AND THEORETICAL INVESTIGATION OF A HORIZONTAL-AXIS WIND TURBINE A Thesis by ROBERT TERRANCE MILBURN Approved as to style and content by: (Chairman of Committee) (Head...

  13. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  14. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  15. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  16. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  17. Fused off-axis object illumination direct-to-digital holography with a plurality of illumination sources

    DOE Patents [OSTI]

    Price, Jeffery R.; Bingham, Philip R.

    2005-11-08T23:59:59.000Z

    Systems and methods are described for rapid acquisition of fused off-axis illumination direct-to-digital holography. A method of recording a plurality of off-axis object illuminated spatially heterodyne holograms, each of the off-axis object illuminated spatially heterodyne holograms including spatially heterodyne fringes for Fourier analysis, includes digitally recording, with a first illumination source of an interferometer, a first off-axis object illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording, with a second illumination source of the interferometer, a second off-axis object illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.

  18. The left invariant metric in the general linear group

    E-Print Network [OSTI]

    Andruchow, Esteban; Recht, Lazaro; Varela, Alejandro

    2011-01-01T23:59:59.000Z

    Left invariant metrics induced by the p-norms of the trace in the matrix algebra are studied on the general lineal group. By means of the Euler-Lagrange equations, existence and uniqueness of extremal paths for the length functional are established, and regularity properties of these extremal paths are obtained. Minimizing paths in the group are shown to have a velocity with constant singular values and multiplicity. In several special cases, these geodesic paths are computed explicitly. In particular the Riemannian geodesics, corresponding to the case p=2, are characterized as the product of two one-parameter groups. It is also shown that geodesics are one-parameter groups if and only if the initial velocity is a normal matrix. These results are further extended to the context of compact operators with p-summable spectrum, where a differential equation for the spectral projections of the velocity vector of an extremal path is obtained.

  19. Mathematical modeling applied to the left ventricle of heart

    E-Print Network [OSTI]

    Ranjbar, Saeed

    2014-01-01T23:59:59.000Z

    Background: How can mathematics help us to understand the mechanism of the cardiac motion? The best known approach is to take a mathematical model of the fibered structure, insert it into a more-or-less complex model of cardiac architecture, and then study the resulting fibers of activation that propagate through the myocardium. In our paper, we have attempted to create a novel software capable of demonstrate left ventricular (LV) model in normal hearts. Method: Echocardiography was performed on 70 healthy volunteers. Data evaluated included: velocity (radial, longitudinal, rotational and vector point), displacement (longitudinal and rotational), strain rate (longitudinal and circumferential) and strain (radial, longitudinal and circumferential) of all 16 LV myocardial segments. Using these data, force vectors of myocardial samples were estimated by MATLAB software, interfaced in the echocardiograph system. Dynamic orientation contraction (through the cardiac cycle) of every individual myocardial fiber could ...

  20. Total termination of term rewriting is undecidable

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Total termination of term rewriting is undecidable Hans Zantema Utrecht University, Department Usually termination of term rewriting systems (TRS's) is proved by means of a monotonic well­founded order. If this order is total on ground terms, the TRS is called totally terminating. In this paper we prove that total

  1. Total Petroleum Systems and Assessment Units (AU)

    E-Print Network [OSTI]

    Torgersen, Christian

    Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

  2. AXIS: An instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF

    SciTech Connect (OSTI)

    Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Tommasini, R.; Carpenter, A. C.; Palmer, N. E.; Zacharias, R.; Felker, B.; Holder, J. P.; Allen, F. V.; Bell, P. M.; Bradley, D.; Montesanti, R.; Landen, O. L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)

    2014-11-15T23:59:59.000Z

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV–200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  3. CFD Analysis Of Particle Transport In Axi-Symmetric Tubes Under The Influence Of Thermophoretic Force

    SciTech Connect (OSTI)

    Abarham, Mehdi [University of Michigan; Zamankhan, Parsa [University of Michigan; Hoard, John W. [University of Michigan; Styles, Dan [Ford Motor Company; Sluder, Scott [ORNL; Storey, John Morse [ORNL; Lance, Michael J [ORNL; Assanis, Dennis [University of Michigan

    2013-01-01T23:59:59.000Z

    In this study, we developed two frameworks to investigate the thermophoretic particulate deposition in non-isothermal tube flows conveying particles ranging from 10 to 300 nm; a one dimensional model where the variables are assumed to be uniform in each cross section perpendicular to the tube axis and an axi-symmetric model where the aforementioned assumption is relaxed. In the one dimensional model, the rate of mass deposition along the inner surface of the tube is computed based on the local thermophoretic velocity of the particulate phase at the wall. This velocity is proportional to the radial gradient of the temperature at the wall and is calculated via some empirical correlations for heat transfer in tube flows. In the axi-symmetric model, the rate of deposition is computed through the Fick s law after solving the species transport equation for the solid phase. We included the formation of the soot layer through moving the gas solid interface in both models. The tube effectiveness (the ratio of actual heat transfer to the maximum possible heat transfer) decreases due to the formation of the layer. Model outputs including deposited mass along the tube wall and the tube effectiveness drop have been compared against experiments. While the computed results through both models agree with the trend of experimental data, the axi-symmetric results are closer to the experiments in most cases. The calculated deposited mass is smaller (and closer to experiments) for the axi-symmetric model compared to the one dimensional model in all cases. This indicates that the axi-symmetric model estimates the deposited mass more accurately.

  4. aair-pacing induces left: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    signs. We collect Heuberger, Clemens 349 PREDICTION OF REMAINING LIFE OF POWER TRANSFORMERS BASED ON LEFT TRUNCATED AND RIGHT Mathematics Websites Summary: PREDICTION OF...

  5. The role of the pituitary-adrenal axis in mild shock-induced hypoalgesia

    E-Print Network [OSTI]

    Biles, Mandy Kathleen

    1991-01-01T23:59:59.000Z

    THE ROLE OF THE PITUITARY-ADRENAL AXIS IN MILD SHOCK-INDUCED HYPOALGESIA A Thesis by MANDY KATHLEEN BILES Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August 1991 Major Subject: Psychology THE ROLE OF THE PITUITARY-ADRENAL AXIS IN MILD SHOCK-INDUCED HYPOALGESIA A Thesis by MANDY KATHLEEN BILES Approved as to style and content by: ames W. Grau (Chair of Committee) S eve Worchel...

  6. Minimal left ideals of centralizer near-rings

    E-Print Network [OSTI]

    Gilliam, Debbie Irene

    1981-01-01T23:59:59.000Z

    )(x) - hpgp(x) where ( k + x if K(x) = k and x P b, k+b gp(x) = f 0 otherwise k if x = k+b hp(x) = 0 if x P k+b As in case 2a, gp and hp are 1n C. For x such that R(x) = k and x p b, k+b, Rp(x) = hp(t(x)+gp(x)) - hpgp(x) = hp(k+k+x) - hp(k+x) hp...(x) hp(k+x) = 0. For x such that K(x) 0 and x f k+b, Q(x) = hp(x) - hp(x) = 0. We have left to cons1der tp(b) and Q(k+b). When x = b, Kp(b) = hp(k+b) - hp(b) = k. There are two possible values of tp(k+b); this is because K(k+b) = 0 or E(k+b) = k...

  7. Transmyocardial drilling revascularization combined with heparinized bFGF-incorporating stent activates resident cardiac stem cells via SDF-1/CXCR4 axis

    SciTech Connect (OSTI)

    Zhang, Guang-Wei [Department of Cardiac Surgery and Neurology, The First Hospital of China Medical University, Shenyang 110001 (China)] [Department of Cardiac Surgery and Neurology, The First Hospital of China Medical University, Shenyang 110001 (China); Wen, Ti [College of Life Science, Nankai University, Tianjin 300036 (China)] [College of Life Science, Nankai University, Tianjin 300036 (China); Gu, Tian-Xiang, E-mail: cmugtx@sina.com [Department of Cardiac Surgery and Neurology, The First Hospital of China Medical University, Shenyang 110001 (China)] [Department of Cardiac Surgery and Neurology, The First Hospital of China Medical University, Shenyang 110001 (China); Li-Ling, Jesse [Department of Medical Genetics, China Medical University, Shenyang 110001 (China) [Department of Medical Genetics, China Medical University, Shenyang 110001 (China); Institute of Medical Genetics, School of Life Science and Key Laboratory for Bio-resources and Eco-environment of the Ministry of Education, Sichuan University, Chengdu 610064 (China); Wang, Chun; Zhao, Ye; Liu, Jing; Wang, Ying [Department of Cardiac Surgery and Neurology, The First Hospital of China Medical University, Shenyang 110001 (China)] [Department of Cardiac Surgery and Neurology, The First Hospital of China Medical University, Shenyang 110001 (China); Liu, Tian-Jun; Lue, Feng [Institute of Biomedical Engineering, Peking Union Medical College, Beijing 100730 (China)] [Institute of Biomedical Engineering, Peking Union Medical College, Beijing 100730 (China)

    2012-02-15T23:59:59.000Z

    Objective: To investigate whether transmyocardial drilling revascularization combined with heparinized basic fibroblast growth factor (bFGF)-incorporating degradable stent implantation (TMDRSI) can promote myocardial regeneration after acute myocardial infarction (AMI). Methods: A model of AMI was generated by ligating the mid-third of left anterior descending artery (LAD) of miniswine. After 6 h, the animals were divided into none-treatment (control) group (n = 6) and TMDRSI group (n = 6). For TMDRSI group, two channels with 3.5 mm in diameter were established by a self-made drill in the AMI region, into which a stent was implanted. Expression of stromal cell-derived factor-1{sub {alpha}} (SDF-1{sub {alpha}}) and CXC chemokine receptor 4 (CXCR4), cardiac stem cell (CSC)-mediated myocardial regeneration, myocardial apoptosis, myocardial viability, and cardiac function were assessed at various time-points. Results: Six weeks after the operation, CSCs were found to have differentiated into cardiomyocytes to repair the infarcted myocardium, and all above indices showed much improvement in the TMDRSI group compared with the control group (P < 0.001). Conclusions: The new method has shown to be capable of promoting CSCs proliferation and differentiation into cardiomyocytes through activating the SDF-1/CXCR4 axis, while inhibiting myocardial apoptosis, thereby enhancing myocardial regeneration following AMI and improving cardiac function. This may provide a new strategy for myocardial regeneration following AMI. -- Highlights: Black-Right-Pointing-Pointer The effects of TMDR and bFGF-stent on myocardial regeneration were studied in a pig model of AMI. Black-Right-Pointing-Pointer TMDR and bFGF-stent implantation activated CSCs via the SDF-1/CXCR4 axis. Black-Right-Pointing-Pointer CSC-mediated myocardial regeneration improved cardiac function. Black-Right-Pointing-Pointer It may be a new therapeutic strategy for AMI.

  8. Total System Performance Assessment Peer Review Panel

    Broader source: Energy.gov [DOE]

    Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain.

  9. 8, 31433162, 2008 Total ozone over

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 8, 3143­3162, 2008 Total ozone over oceanic regions M. C. R. Kalapureddy et al. Title Page Chemistry and Physics Discussions Total column ozone variations over oceanic region around Indian sub­3162, 2008 Total ozone over oceanic regions M. C. R. Kalapureddy et al. Title Page Abstract Introduction

  10. 5, 1133111375, 2005 NH total ozone

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 5, 11331­11375, 2005 NH total ozone increase S. Dhomse et al. Title Page Abstract Introduction On the possible causes of recent increases in NH total ozone from a statistical analysis of satellite data from License. 11331 #12;ACPD 5, 11331­11375, 2005 NH total ozone increase S. Dhomse et al. Title Page Abstract

  11. 6, 39133943, 2006 Svalbard total ozone

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 6, 3913­3943, 2006 Svalbard total ozone C. Vogler et al. Title Page Abstract Introduction Discussions Re-evaluation of the 1950­1962 total ozone record from Longyearbyen, Svalbard C. Vogler 1 , S. Br total ozone C. Vogler et al. Title Page Abstract Introduction Conclusions References Tables Figures Back

  12. About Total Lubricants USA, Inc. Headquartered in Linden, New Jersey, Total Lubricants USA provides

    E-Print Network [OSTI]

    Fisher, Kathleen

    New Jersey, Total Lubricants USA provides advanced quality industrial lubrication productsAbout Total Lubricants USA, Inc. Headquartered in Linden, New Jersey, Total Lubricants USA provides. A subsidiary of Total, S.A., the world's fourth largest oil company, Total Lubricants USA still fosters its

  13. Photographs on front cover (clockwise, from upper left): (upper left) Visible mercury at contact between alluvium and slate bedrock, Sailor Flat Mine, Greenhorn Creek drainage, Nevada County, California; total length of ruler is

    E-Print Network [OSTI]

    at contact between alluvium and slate bedrock, Sailor Flat Mine, Greenhorn Creek drainage, Nevada County

  14. Extremely Soft X-ray Flash as the indicator of off-axis orphan GRB afterglow

    E-Print Network [OSTI]

    Urata, Yuji; Yamazaki, Ryo; Sakamoto, Takanori

    2015-01-01T23:59:59.000Z

    We verified the off-axis jet model of X-ray flashes (XRFs) and examined a discovery of off-axis orphan gamma-ray burst (GRBs) afterglows. The XRF sample was selected on the basis of the following three factors: (1) a constraint on the lower peak energy of the prompt spectrum $E^{src}_{obs}$, (2) redshift measurements, and (3) multi-color observations of an earlier (or brightening) phase. XRF020903 was the only sample selected basis of these criteria. A complete optical multi-color afterglow light curve of XRF020903 obtained from archived data and photometric results in literature showed an achromatic brightening around 0.7 days. An off-axis jet model with a large observing angle (0.21 rad, which is twice the jet opening half-angle, $\\theta_{jet}$) can naturally describe the achromatic brightening and the prompt X-ray spectral properties. This result indicates the existence of off-axis orphan GRB afterglow light curves. Events with a larger viewing angle ($>\\sim2\\theta_{jet}$) could be discovered using an 8-m ...

  15. Rotation Angle for the Optimum Tracking of One-Axis Trackers

    SciTech Connect (OSTI)

    Marion, W. F.; Dobos, A. P.

    2013-07-01T23:59:59.000Z

    An equation for the rotation angle for optimum tracking of one-axis trackers is derived along with equations giving the relationships between the rotation angle and the surface tilt and azimuth angles. These equations are useful for improved modeling of the solar radiation available to a collector with tracking constraints and for determining the appropriate motor revolutions for optimum tracking.

  16. Test plan for the 34 meter vertical axis wind turbine test bed located at Bushland, Texas

    SciTech Connect (OSTI)

    Stephenson, W.A.

    1986-12-01T23:59:59.000Z

    A plan is presented for the testing and evaluation of a new 500 kw vertical axis wind turbine test bed. The plan starts with the initial measurements made during construction, proceeds through evaluation of the design, the development of control methods, and finally to the test bed phase where new concepts are evaluated and in-depth studies are performed.

  17. Endogenous opioids and attenuated hypothalamic-pituitary-adrenal axis responses to immune challenge in pregnant rats 

    E-Print Network [OSTI]

    Russell, J. A.; Ochedalski, T; Meddle, S. L.; Ma, S.; Brunton, P. J.; Douglas, A. J.

    2005-01-01T23:59:59.000Z

    , but not pregnant, rats. However, naloxone infused directly into the PVN increased noradrenaline release after IL-1{beta} in pregnant rats. Thus, the HPA axis responses to immune signals are suppressed in pregnancy at the level of pPVN CRH neurons through an opioid...

  18. Axis control using model predictive control: identification and friction effect reduction

    E-Print Network [OSTI]

    Boyer, Edmond

    Axis control using model predictive control: identification and friction effect reduction Pedro this numerical model is used to synthetize a predictive GPC controller reducing the impact of the friction Rodriguez-Ayerbe, Didier Dumur, Sylvain Lavernhe** * SUPELEC- E3S, Automatic Control, 3 rue Joliot Curie

  19. First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal

    E-Print Network [OSTI]

    First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal for designing laser cavities, spectrographs and adaptive optics retinal imaging systems. The use, range respectively. This is discussed using examples from adaptive optics retinal imaging systems. The performance

  20. Towards Finding Relevant Information Graphics: Identifying the Independent and Dependent Axis from User-written Queries

    E-Print Network [OSTI]

    Carberry, Sandra

    Towards Finding Relevant Information Graphics: Identifying the Independent and Dependent Axis from of Computer and Information Science University of Delaware Newark, DE 19716 Abstract Information graphics (non-pictorial graphics such as bar charts and line graphs) contain a great deal of knowl- edge. Information retrieval

  1. Method for non-contact particle manipulation and control of particle spacing along an axis

    DOE Patents [OSTI]

    Goddard, Gregory Russ; Kaduchak, Gregory; Jett, James Hubert; Graves, Steven Wayde

    2013-09-10T23:59:59.000Z

    One or more of the embodiments of the present invention provide for a method of non-contact particle manipulation and control of particle spacing along an axis which includes axial and radial acoustic standing wave fields. Particles are suspended in an aqueous solution, and this solution then flows into the cylindrical flow channel. While the solution flows through the flow channel, the outer structure of the flow channel is vibrated at a resonant frequency, causing a radial acoustic standing wave field to form inside the flow channel in the solution. These radial acoustic standing waves focus the particles suspended in the solution to the center axis of the cylindrical flow channel. At the same time, a transducer is used to create an axial acoustic standing wave field in the flow channel parallel to the axis of the flow channel. This drives the particles, which are already being focused to the center axis of the flow channel, to nodes or anti-nodes of the axial standing wave at half-wavelength intervals, depending on whether the particles are more or less dense and more or less compressible than the surrounding fluid.

  2. Microstructure dependence of the c-axis critical current density in second-generation YBCO tapes.

    SciTech Connect (OSTI)

    Jia, Y.; Welp, U.; Crabtree, G. W.; Kwok, W. K.; Malozemoff, A. P.; Rupich, M. W.; Fleshler, S.; Clem, J. R. (Materials Science Division); (American Superconductor Corp.); (Ames Lab.); (Iowa State Univ.)

    2011-10-01T23:59:59.000Z

    C-axis current flow in high temperature superconductor (HTS) tape-shaped wires arises in configurations where the local wire axis is not perpendicular to the local magnetic field, such as in power cables with helically wound HTS tapes. The c-axis critical current density J{sub c}{sup c} has been recently found to be orders of magnitude lower than the ab-plane critical current density J{sub c}{sup ab}. Here we report on J{sub c}{sup c} (77 K, sf) values of various YBa{sub 2}Cu{sub 3}O{sub 7}-based (YBCO) tapes with different microstructures. Our results show that the value of J{sub c}{sup c} (77 K, sf) decreases significantly with increasing concentration of ab-plane stacking faults in YBCO thin films and that the critical current anisotropy {gamma} = J{sub c}{sup ab}/J{sub c}{sup c} can reach values as high as 2070, implying that in the highest-anisotropy tape, {approx}20% of the tape width carries c-axis current in a helically wound power cable.

  3. Microstructure dependence of the c-axis critical current density in second generation YBCO tapes

    SciTech Connect (OSTI)

    Jia, Y. Welp, U. Crabtree, G.W.; Kwok, W.K.; Malozemoff, A.P.; Rupich, M.W.; Fleshler, S.; Clem, J.R.

    2011-10-31T23:59:59.000Z

    C-axis current flow in high temperature superconductor (HTS) tape-shaped wires arises in configurations where the local wire axis is not perpendicular to the local magnetic field, such as in power cables with helically wound HTS tapes. The c-axis critical current density J{sub c}{sup c} has been recently found to be orders of magnitude lower than the ab-plane critical current density J{sub c}{sup ab}. Here we report on J{sub c}{sup c} (77 K, sf) values of various YBa{sub 2}Cu{sub 3}O{sub 7}-based (YBCO) tapes with different microstructures. Our results show that the value of J{sub c}{sup c} (77 K, sf) decreases significantly with increasing concentration of ab-plane stacking faults in YBCO thin films and that the critical current anisotropy {gamma} = J{sub c}{sup ab}/J{sub c}{sup c} can reach values as high as 2070, implying that in the highest-anisotropy tape, {approx}20% of the tape width carries c-axis current in a helically wound power cable.

  4. On the probability of major-axis precession in triaxial ellipsoidal potentials

    E-Print Network [OSTI]

    P. A. Thomas; S. Vine; F. R. Pearce

    1993-08-09T23:59:59.000Z

    Orbits in triaxial ellipsoidal potentials precess about either the major or minor axis of the ellipsoid. In standard perturbation theory it can be shown that a circular orbit will precess about the minor axis if its angular momentum vector lies in a region bounded by two great circles which pass through the intermediate axis and which are inclined with minimum separation $i_T$ from the minor axis. We test the accuracy of the standard formula for $i_T$ by performing orbit integrations to determine $i_S$, the simulated turnover angle corresponding to $i_T$. We reach two principal conclusions: (i) $i_S$ is usually greater than $i_T$, by as much as 12 degrees even for moderate triaxialities, $A/1.2

  5. PID Controller Synthesis with Shifted Axis Pole Assignment for a Class of MIMO Systems

    E-Print Network [OSTI]

    Gundes, A. N.

    PID Controller Synthesis with Shifted Axis Pole Assignment for a Class of MIMO Systems A. N. G-output plants, a systematic synthesis is developed for stabilization using Proportional+Integral+Derivative (PID-zero of the plant. Plant classes that admit PID controllers with this property include stable and unstable multi

  6. MAGNETIC NEUTRON SCATTERING. And Recent Developments in the Triple Axis Spectroscopy

    E-Print Network [OSTI]

    Johnson, Peter D.

    Chapter 1 MAGNETIC NEUTRON SCATTERING. And Recent Developments in the Triple Axis Spectroscopy Igor.................................................................................... 2 2. Neutron interaction with matter and scattering cross-section ........ 6 2.1 Basic scattering theory and differential cross-section................ 7 2.2 Neutron interactions and scattering lengths

  7. On some sharp spectral inequalities for Schrödinger operators on semi-axis

    E-Print Network [OSTI]

    Pavel Exner; Ari Laptev; Muhammad Usman

    2013-01-21T23:59:59.000Z

    In this paper we obtain sharp Lieb-Thirring inequalities for a Schr\\"odinger operator on semi-axis with a matrix potential and show how they can be used to other related problems. Among them are spectral inequalities on star graphs and spectral inequalities for Schr\\"odinger operators on half-spaces with Robin boundary conditions.

  8. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1998

    SciTech Connect (OSTI)

    Haagenstad, T.

    1999-01-15T23:59:59.000Z

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP) to protect workers, soils, water, and biotic and cultural resources in and around the facility.

  9. 1-and 2-Axis Magnetic Sensors HMC1001/1002/1021/1022

    E-Print Network [OSTI]

    Kleinfeld, David

    1- and 2-Axis Magnetic Sensors HMC1001/1002/1021/1022 The Honeywell HMC100x and HMC102x magnetic and HMC102x sensors utilize Honeywell's Anisotropic Magnetoresistive (AMR) technology that provides-gauss to 6 gauss. Honeywell's Magnetic Sensors are among the most sensitive and reliable low-field sensors

  10. Development of a Rig and Testing Procedures for the Experimental Investigation of Horizontal Axis Kinetic Turbines

    E-Print Network [OSTI]

    Victoria, University of

    Kinetic Turbines by Catalina Lartiga B.Sc., Catholic University of Chile, 2001 A Thesis Submitted Turbines by Catalina Lartiga B.Sc., Catholic University of Chile, 2001 Supervisory Committee Dr. Curran system to characterize the non-dimensional performance coefficients of hor- izontal axis kinetic turbines

  11. Multistability in nonlinear left-handed transmission lines David A. Powell,a

    E-Print Network [OSTI]

    Multistability in nonlinear left-handed transmission lines David A. Powell,a Ilya V. Shadrivov; published online 2 July 2008 Employing a nonlinear left-handed transmission line as a model system, we, which at higher power may result in chaotic dynamics of the transmission line. © 2008 American Institute

  12. Optimal Switching with Quasi-Left-Continuous Switching Costs that Can Change Sign

    E-Print Network [OSTI]

    Glendinning, Paul

    for the switching problem in terms of interconnected Snell envelopes. We also prove the existence of an optimalOptimal Switching with Quasi-Left-Continuous Switching Costs that Can Change Sign Randall Martyr of Mathematics, The University of Manchester #12;Optimal switching with quasi-left-continuous switching costs

  13. Optimization Online - Total variation superiorization schemes in ...

    E-Print Network [OSTI]

    S.N. Penfold

    2010-10-08T23:59:59.000Z

    Oct 8, 2010 ... Total variation superiorization schemes in proton computed tomography ... check improved the image quality, in particular image noise, in the ...

  14. ,"New Mexico Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","331...

  15. ,"New York Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","2272015"...

  16. Accepted Article Preview: Published ahead of advance online publication Transcription Factor/microRNA Axis Blocks Melanoma

    E-Print Network [OSTI]

    Shamir, Ron

    /microRNA Axis Blocks Melanoma Invasion Program by miR-211 Targeting NUAK1 Rachel E Bell, Mehdi Khaled, Dvir Levy, Transcription Factor/microRNA Axis Blocks Melanoma Invasion Program by miR-211 Targeting NUAK1 Blocks Melanoma Invasion Program by miR-211 Targeting NUAK1 Rachel E. Bella,h , Mehdi Khaledb

  17. Abstract--This paper describes the design and operation of the Multi-Axis Cartesian-based Arm Rehabilitation

    E-Print Network [OSTI]

    Abstract-- This paper describes the design and operation of the Multi-Axis Cartesian-based Arm on the development of the Multi-Axis Cartesian-based Arm Rehabilitation Machine (MACARM) ­ a new cable robot Rehabilitation Machine (MACARM), a new cable (wire) robot for upper limb rehabilitation. The prototype

  18. RESEARCH ARTICLE An Alternating Direction Method for Total ...

    E-Print Network [OSTI]

    2014-08-13T23:59:59.000Z

    where the soft-thresholding operator T is defined componentwise as. T (x, ?)i ... left-hand-side of the above system is positive definite and tridiagonal. Hence ...

  19. TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION

    E-Print Network [OSTI]

    Skogestad, Sigurd

    TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA S RENSEN a generalization of previously proposed batch distillation schemes. A simple feedback control strategy for total re verify the simulations. INTRODUCTION Although batch distillation generally is less energy e cient than

  20. Total correlations as fully additive entanglement monotones

    E-Print Network [OSTI]

    Gerardo A. Paz-Silva; John H. Reina

    2007-04-05T23:59:59.000Z

    We generalize the strategy presented in Refs. [1, 2], and propose general conditions for a measure of total correlations to be an entanglement monotone using its pure (and mixed) convex-roof extension. In so doing, we derive crucial theorems and propose a concrete candidate for a total correlations measure which is a fully additive entanglement monotone.

  1. Fish schooling as a basis for vertical axis wind turbine farm design

    E-Print Network [OSTI]

    Whittlesey, Robert W; Dabiri, John O

    2010-01-01T23:59:59.000Z

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighbouring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely-spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbours, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially-isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooli...

  2. Magnetic axis safety factor of finite $\\beta$ spheromaks and transition from spheromaks to toroidal magnetic bubbles

    E-Print Network [OSTI]

    Bellan, Paul M

    2015-01-01T23:59:59.000Z

    The value of the safety factor on the magnetic axis of a finite-beta spheromak is shown to be a function of beta in contrast to what was used in P. M. Bellan, Phys. Plasmas 9, 3050 (2002); this dependence on beta substantially reduces the gradient of the safety factor compared to the previous calculation. The method for generating finite-beta spheromak equilibria is extended to generate equilibria describing toroidal magnetic "bubbles" where the hydrodynamic pressure on the magnetic axis is less than on the toroid surface. This "anti-confinement" configuration can be considered an equilibrium with an inverted beta profile and is relevant to interplanetary magnetic clouds as these clouds have lower hydrodynamic pressure in their interior than on their surface.

  3. Influence of thermal agitation on the electric field induced precessional magnetization reversal with perpendicular easy axis

    SciTech Connect (OSTI)

    Cheng, Hongguang, E-mail: chenghg7932@gmail.com; Deng, Ning [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)] [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2013-12-15T23:59:59.000Z

    We investigated the influence of thermal agitation on the electric field induced precessional magnetization switching probability with perpendicular easy axis by solving the Fokker-Planck equation numerically with finite difference method. The calculated results show that the thermal agitation during the reversal process crucially influences the switching probability. The switching probability can be achieved is only determined by the thermal stability factor ? of the free layer, it is independent on the device dimension, which is important for the high density device application. Ultra-low error rate down to the order of 10{sup ?9} can be achieved for the device of thermal stability factor ? of 40. Low damping factor ? material should be used for the free layer for high reliability device applications. These results exhibit potential of electric field induced precessional magnetization switching with perpendicular easy axis for ultra-low power, high speed and high density magnetic random access memory (MRAM) applications.

  4. Sun-relative pointing for dual-axis solar trackers employing azimuth and elevation rotations.

    SciTech Connect (OSTI)

    Riley, Daniel M.; Hansen, Clifford W.

    2014-04-01T23:59:59.000Z

    Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam onto the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.

  5. Axi-symmetrical flow reactor for .sup.196 Hg photochemical enrichment

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA)

    1991-01-01T23:59:59.000Z

    The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, .sup.196 Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired .sup.196 Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith.

  6. Axi-symmetrical flow reactor for [sup 196]Hg photochemical enrichment

    DOE Patents [OSTI]

    Grossman, M.W.

    1991-04-30T23:59:59.000Z

    The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, [sup 196]Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired [sup 196]Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith. 10 figures.

  7. Method and apparatus for maintaining equilibrium in a helical axis stellarator

    DOE Patents [OSTI]

    Reiman, A.; Boozer, A.

    1984-10-31T23:59:59.000Z

    Apparatus for maintaining three-dimensional MHD equilibrium in a plasma contained in a helical axis stellarator includes a resonant coil system, having a configuration such that current therethrough generates a magnetic field cancelling the resonant magnetic field produced by currents driven by the plasma pressure on any given flux surface resonating with the rotational transform of another flux surface in the plasma. Current through the resonant coil system is adjusted as a function of plasma beta.

  8. Method and apparatus for maintaining equilibrium in a helical axis stellarator

    DOE Patents [OSTI]

    Reiman, Allan (Princeton, NJ); Boozer, Allen (Rocky Hill, NJ)

    1987-01-01T23:59:59.000Z

    Apparatus for maintaining three-dimensional MHD equilibrium in a plasma contained in a helical axis stellerator includes a resonant coil system, having a configuration such that current therethrough generates a magnetic field cancelling the resonant magnetic field produced by currents driven by the plasma pressure on any given flux surface resonating with the rotational transform of another flux surface in the plasma. Current through the resonant coil system is adjusted as a function of plasma beta.

  9. LEFT VERSUS RIGHT HEMISPHERE DIFFERENCES IN BRAIN CONNECTIVITY: 4-TESLA HARDI TRACTOGRAPHY IN 569 TWINS

    E-Print Network [OSTI]

    Thompson, Paul

    LEFT VERSUS RIGHT HEMISPHERE DIFFERENCES IN BRAIN CONNECTIVITY: 4-TESLA HARDI TRACTOGRAPHY IN 569) and 112 adolescents (age 12-16) with 4-Tesla 105-gradient high- angular resolution diffusion imaging. We

  10. Abandoned Property Abandoned and unclaimed property left in residential facilities, on breezeways, in stairwells, laundry

    E-Print Network [OSTI]

    Boyce, Richard L.

    , in stairwells, laundry rooms, or on the premises may be disposed of within 24 hours. Property left kitchens with ventilation hoods. Microwave cooking may occur in all residential rooms. Washing machines

  11. Guidelines for left-turn bays at unsignalized access locations on arterial roadways

    E-Print Network [OSTI]

    Hawley, Patrick Emmett

    1994-01-01T23:59:59.000Z

    It has long been recognized that effective access management along arterial streets can alleviate traffic congestion. A major goal within access management is to limit the speed differential between turning and through vehicles. Left-turn bays...

  12. Author Event: Meira Levinson's No Citizen Left Behind While teaching at an all-Black middle

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    , political, and civic action, not just private self-improvement. --Meira Levinson, No Citizen Left Behind, students must learn how to re- shape power relationships through public, political, and civic action

  13. Total to withdraw from Qatar methanol - MTBE?

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    Total is rumored to be withdrawing from the $700-million methanol and methyl tert-butyl ether (MTBE) Qatar Fuel Additives Co., (Qafac) project. The French company has a 12.5% stake in the project. Similar equity is held by three other foreign investors: Canada`s International Octane, Taiwan`s Chinese Petroleum Corp., and Lee Change Yung Chemical Industrial Corp. Total is said to want Qafac to concentrate on methanol only. The project involves plant unit sizes of 610,000 m.t./year of MTBE and 825,000 m.t./year of methanol. Total declines to comment.

  14. A modified greedy channel router with net assignment at the left edge

    E-Print Network [OSTI]

    Oh, Chuldong

    1987-01-01T23:59:59.000Z

    A MODIFIED GREEDY CHANNEL ROUTER WITH NET ASSIGNMENT AT THE LEFT EDGE A Thesis by CHULDONG OH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August... 1987 Major Subject: Electrical Engineering A MODIFIED GREEDY CHANNEL ROUTER WITH NET ASSIGNMENT AT THE LEFT EDGE A Thesis by CHULDONG OH Approved as to style and content by: Karan L. Watson (Chairman of Committee) hilip S. Noe (Member...

  15. Echocardiographic and scintigraphic methods of left ventricular ejection fraction determination in dogs: a comparative study

    E-Print Network [OSTI]

    Steyn, Phillip Franswa

    1989-01-01T23:59:59.000Z

    ECHOCARDIOGRAPHIC AND SCINTI GRAPHIC METHODS OF LEFT VENTRICULAR EJECTION FRACTION DETERMINATION IN DOGS; A COMPARATIVE STUDY A THESIS BY PHILLIP FRANSWA STEYN Submitted to the Office of Graduate Studies Texas ARM University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE MAY 1989 Major subject: Veterinary Medical Sciences ECHOCARDIOGRAPHIC AND SCINTIGRAPHIC METHODS OF LEFT VENTRICULAR EJECTION FRACTION DETERMINATION IN DOGS; A COMPARATIVE STUDY A THESIS...

  16. Examining Associations between Emotional Facial Expressions, Relative Left Frontal Cortical Activity, and Task Persistence

    E-Print Network [OSTI]

    Price, Thomas

    2012-10-19T23:59:59.000Z

    -Chairs of Committee, Eddie Harmon-Jones Brandon J. Schmeichel Committee Members, Rebecca Schlegel Kelly Haws Head of Department, Ludy Benjamin August 2012 Major Subject: Psychology iii ABSTRACT Examining Associations between Emotional... Facial Expressions, Relative Left Frontal Cortical Activity, and Task Persistence. (August 2012) Thomas Franklin Price V, B.A., Gettysburg College Chair of Advisory Committee: Dr. Eddie Harmon-Jones Past research associated relative left frontal...

  17. TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION

    E-Print Network [OSTI]

    Skogestad, Sigurd

    TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA SØRENSEN in this paper provides a generalization of previously proposed batch distillation schemes. A simple feedback been built and the experiments verify the simulations. INTRODUCTION Although batch distillation

  18. Total Energy Management in General Motors

    E-Print Network [OSTI]

    DeKoker, N.

    1979-01-01T23:59:59.000Z

    This paper presents an overview of General Motors' energy management program with special emphasis on energy conservation. Included is a description of the total program organization, plant guidelines, communication and motivation techniques...

  19. Total synthesis and study of myrmicarin alkaloids

    E-Print Network [OSTI]

    Ondrus, Alison Evelynn, 1981-

    2009-01-01T23:59:59.000Z

    I. Enantioselective Total Synthesis of Tricyclic Myrmicarin Alkaloids An enantioselective gram-scale synthesis of a key dihydroindolizine intermediate for the preparation of myrmicarin alkaloids is described. Key transformations ...

  20. Enantioselective Total Synthesis of (?)-Acylfulvene and (?)- Irofulven

    E-Print Network [OSTI]

    Movassaghi, Mohammad

    We report our full account of the enantioselective total synthesis of (?)-acylfulvene (1) and (?)-irofulven (2), which features metathesis reactions for the rapid assembly of the molecular framework of these antitumor ...

  1. Total synthesis of cyclotryptamine and diketopiperazine alkaloids

    E-Print Network [OSTI]

    Kim, Justin, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    I. Total Synthesis of the (+)-12,12'-Dideoxyverticillin A The fungal metabolite (+)-12,12'-dideoxyverticillin A, a cytotoxic alkaloid isolated from a marine Penicillium sp., belongs to a fascinating family of densely ...

  2. Total Ore Processing Integration and Management

    SciTech Connect (OSTI)

    Leslie Gertsch; Richard Gertsch

    2003-12-31T23:59:59.000Z

    This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 October through 31 December of 2003.

  3. Total Building Air Management: When Dehumidification Counts

    E-Print Network [OSTI]

    Chilton, R. L.; White, C. L.

    1996-01-01T23:59:59.000Z

    , total air management of sensible and latent heat, filtration and zone pressure was brought about through the implementation of non-integrated, composite systems. Composite systems typically are built up of multi-vendor equipment each of which perform...

  4. Tool fabrication system for micro/nano milling—function analysis and design of a six-axis Wire EDM machine

    E-Print Network [OSTI]

    Cheng, X.; Wang, Z. G.; Kobayashi, S.; Nakamoto, K.; Yamazaki, K.

    2010-01-01T23:59:59.000Z

    axis Wire EDM machine X. Cheng & Z. G. Wang & S. Kobayashi &Tool fabrication X. Cheng (*) : Z. G. Wang : K. Yamazaki

  5. Dynamics of a horizontal cylinder oscillating as a wave energy converter about an off-centred axis

    E-Print Network [OSTI]

    Lucas, Jorge

    2011-11-22T23:59:59.000Z

    The hydrodynamic properties of a horizontal cylinder which is free to pitch about an off-centred axis are studied and used to derive the equations of motion of a wave energy converter which extracts energy from incoming ...

  6. Thermomechanical Actuator-Based Three-Axis Optical Scanner for High-Speed Two-Photon Endomicroscope Imaging

    E-Print Network [OSTI]

    Chen, Shih-Chi

    This paper presents the design and characterization of a three-axis thermomechanical actuator-based endoscopic scanner for obtaining ex vivo two-photon images. The scanner consisted of two sub-systems: 1) an optical system ...

  7. The experimental and theoretical investigaton of a horizontal-axis wind turbine

    E-Print Network [OSTI]

    Milburn, Robert Terrance

    1977-01-01T23:59:59.000Z

    . Design details of the wind turbine are discussed by the sections shown in the figure . Main Su ort Assembl The 3/4 in. diameter rotor shaft is supported at each end by roller bearings. Each bearing is clamped between two aluminum blocks. A flange...THE EXPERIMENTAL AND THEORETICAL INVESTIGATION OF A HORIZONTAL-AXIS WIND TURBINE A Thesis by ROBERT TERRANCE MILBURN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER...

  8. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition

    SciTech Connect (OSTI)

    Li, Ye; Karri, Naveen K.; Wang, Qi

    2014-04-30T23:59:59.000Z

    Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studies on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.

  9. National Fuel Cell and Hydrogen Energy Overview: Total Energy...

    Office of Environmental Management (EM)

    and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the Total Energy USA...

  10. Asymptomatic Chronic Dislocation of a Cemented Total Hip Prosthesis

    E-Print Network [OSTI]

    Salvi, Andrea Emilio; Florschutz, Anthony Vatroslav; Grappiolo, Guido

    2014-01-01T23:59:59.000Z

    Dislocation of Hip Prosthesis dislocation after total hipa Cemented Total Hip Prosthesis * Mellino Mellini HospitalDislocation of a total hip prosthesis is a painful and

  11. Total Cross Sections for Neutron Scattering

    E-Print Network [OSTI]

    C. R. Chinn; Ch. Elster; R. M. Thaler; S. P. Weppner

    1994-10-19T23:59:59.000Z

    Measurements of neutron total cross-sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross-sections for neutron scattering from $^{16}$O and $^{40}$Ca are calculated as a function of energy from $50-700$~MeV laboratory energy with a microscopic first order optical potential derived within the framework of the Watson expansion. Although these results are already in qualitative agreement with the data, the inclusion of medium corrections to the propagator is essential to correctly predict the energy dependence given by the experiment.

  12. Total Blender Net Input of Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShaleInput Product: Total Input Natural

  13. A multichannel magnetic probe system for analysing magnetic fluctuations in helical axis plasmas

    SciTech Connect (OSTI)

    Haskey, S. R.; Blackwell, B. D.; Seiwald, B.; Hole, M. J.; Pretty, D. G.; Howard, J.; Wach, J. [Plasma Research Laboratory, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)] [Plasma Research Laboratory, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2013-09-15T23:59:59.000Z

    The need to understand the structure of magnetic fluctuations in H-1NF heliac [S. Hamberger et al., Fusion Technol. 17, 123 (1990)] plasmas has motivated the installation of a sixteen former, tri-axis helical magnetic probe Mirnov array (HMA). The new array complements two existing poloidal Mirnov arrays by providing polarisation information, higher frequency response, and improved toroidal resolution. The helical placement is ideal for helical axis plasmas because it positions the array as close as possible to the plasma in regions of varying degrees of favourable curvature in the magnetohydrodynamic sense, but almost constant magnetic angle. This makes phase variation with probe position near linear, greatly simplifying the analysis of the data. Several of the issues involved in the design, installation, data analysis, and calibration of this unique array are presented including probe coil design, frequency response measurements, mode number identification, orientation calculations, and mapping probe coil positions to magnetic coordinates. Details of specially designed digitally programmable pre-amplifiers, which allow gains and filters to be changed as part of the data acquisition initialisation sequence and stored with the probe signals, are also presented. The low shear heliac geometry [R. Jiménez-Gómez et al., Nucl. Fusion 51, 033001 (2011)], flexibility of the H-1NF heliac, and wealth of information provided by the HMA create a unique opportunity for detailed study of Alfvén eigenmodes, which could be a serious issue for future fusion reactors.

  14. Comparing generic models for interplanetary shocks and magnetic clouds axis configurations at 1 AU

    E-Print Network [OSTI]

    Janvier, Miho; Demoulin, Pascal; Masias-Meza, Jimmy; Lugaz, Noe

    2015-01-01T23:59:59.000Z

    Interplanetary Coronal Mass Ejections are the manifestation of solar transient eruptions, which can significantly modify the plasma and magnetic conditions in the heliosphere. They are often preceded by a shock, and a magnetic flux rope is detected in situ in a third to half of them. The main aim of this study is to obtain the best quantitative shape for the flux rope axis and for the shock surface from in situ data obtained during spacecraft crossings of these structures. We first compare the orientation of the flux ropes axes and shock normals obtained from independent data analyses of the same events, observed in situ at 1AU from the Sun. Then, we carry out an original statistical analysis of axes/shock normals by deriving the statistical distributions of their orientations. We fit the observed distributions using the distributions derived from several synthetic models describing these shapes. We show that the distributions of axis/shock orientations are very sensitive to their respective shape. One classi...

  15. Total Building Air Management: When Dehumidification Counts 

    E-Print Network [OSTI]

    Chilton, R. L.; White, C. L.

    1996-01-01T23:59:59.000Z

    to heat rejection to contain the size of the ground loop. In areas where seasonal heating is required, but cooling remains the dominant load, a hybrid heat rejection system can be specified. A hybrid system consists of a ground loop sized for total...

  16. Implementation of the left-right symmetric model in FeynRules/CalcHep

    E-Print Network [OSTI]

    Aviad Roitgrund; Gad Eilam; Shaouly Bar-Shalom

    2014-01-14T23:59:59.000Z

    We present an implementation of the manifest left-right symmetric model in FeynRules/CalcHep. The different aspects of the model are briefly described alongside the corresponding elements of the model file. The model file is validated and can be easily translated also to other Feynman diagram calculators, such as MadGraph, Sherpa, etc. The implementation of the left-right symmetric model in FeynRules/CalcHep is a useful step for studying new physics signals with the data generated at the LHC.

  17. Implementation of the left-right symmetric model in FeynRules/CalcHep

    E-Print Network [OSTI]

    Roitgrund, Aviad; Bar-Shalom, Shaouly

    2014-01-01T23:59:59.000Z

    We present an implementation of the manifest left-right symmetric model in FeynRules/CalcHep. The different aspects of the model are briefly described alongside the corresponding elements of the model file. The model file is validated and can be easily translated also to other Feynman diagram calculators, such as MadGraph, Sherpa, etc. The implementation of the left-right symmetric model in FeynRules/CalcHep is a useful step for studying new physics signals with the data generated at the LHC.

  18. OGJ300; Smaller list, bigger financial totals

    SciTech Connect (OSTI)

    Beck, R.J.; Biggs, J.B.

    1991-09-30T23:59:59.000Z

    This paper reports on Oil and Gas Journal's list of the largest, publicly traded oil and gas producing companies in the U.S. which is both smaller and larger this year than it was in 1990. It's smaller because it covers fewer companies. Industry consolidation has slashed the number of public companies. As a result, the former OGJ400 has become the OGJ300, which includes the 30 largest limited partnerships. But the assets-ranked list is larger because important financial totals - representing 1990 results - are significantly higher than those of a year ago, despite the lower number of companies. Consolidation of the U.S. producing industry gained momentum throughout the 1980s. Unable to sustain profitability in a period of sluggish energy prices and, for many, rising costs, companies sought relief through mergers or liquidation of producing properties. As this year's list shows, however, surviving companies have managed to grow. Assets for the OGJ300 group totaled $499.3 billion in 1990 - up 6.3% from the 1989 total of last year's OGJ400. Stockholders' equity moved up 5.3% to $170.7 billion. Stockholders' equity was as high as $233.8 billion in 1983.

  19. Extended Kalman filtering applied to a two-axis robotic arm with flexible links

    SciTech Connect (OSTI)

    Lertpiriyasuwat, V.; Berg, M.C.; Buffinton, K.W.

    2000-03-01T23:59:59.000Z

    An industrial robot today uses measurements of its joint positions and models of its kinematics and dynamics to estimate and control its end-effector position. Substantially better end-effector position estimation and control performance would be obtainable if direct measurements of its end-effector position were also used. The subject of this paper is extended Kalman filtering for precise estimation of the position of the end-effector of a robot using, in addition to the usual measurements of the joint positions, direct measurements of the end-effector position. The estimation performances of extended Kalman filters are compared in applications to a planar two-axis robotic arm with very flexible links. The comparisons shed new light on the dependence of extended Kalman filter estimation performance on the quality of the model of the arm dynamics that the extended Kalman filter operates with.

  20. Customized airfoils and their impact on VAWT (Vertical-Axis Wind Turbine) cost of energy

    SciTech Connect (OSTI)

    Berg, D.E.

    1990-01-01T23:59:59.000Z

    Sandia National Laboratories has developed a family of airfoils specifically designed for use in the equatorial portion of a Vertical-Axis Wind Turbine (VAWT) blade. An airfoil of that family has been incorporated into the rotor blades of the DOE/Sandia 34-m diameter VAWT Test Bed. The airfoil and rotor design process is reviewed. Comparisons with data recently acquired from flow visualization tests and from the DOE/Sandia 34-m diameter VAWT Test Bed illustrate the success that was achieved in the design. The economic optimization model used in the design is described and used to evaluate the effect of modifications to the current Test Bed blade. 1 tab., 11 figs., 13 refs.

  1. Cosmic Rotation Axis, Birefrigence and Axions to detect Primordial torsion fields

    E-Print Network [OSTI]

    L. C. Garcia de Andrade

    2001-11-19T23:59:59.000Z

    Nodland Ralston (PRL,1997) investigated the cosmological anisotropy of electromagnetic fields.In this paper we show that it is possible obtain a torsion correction to Nodland-Ralston action starting from the massive Proca electrodynamics in Riemannian spacetime and performing the minimal coupling with torsion.We end up with an action which contains the Nodland Ralston action without breaking the gauge invariance.This mechanism however gives a photon a mass generated by the nonlinear torsion terms.The torsion vector is along the cosmic rotation axis and interacts with the massive photon.This method which breaks conformal invariance allow us to determine a primordial torsion of the order $10^{-29}eV$ from the well-known photon mass limits.

  2. Determination and distribution of left ventricular size as measured by noncontrast CT in the Multi-Ethnic Study of Atherosclerosis.

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    of Cardiovascular Computed Tomography. Bild DE, Bluemke DA,filtration rate and computed tomography based leftof 4 th quartile of computed tomography derived left

  3. Backward wave propagation in left-handed media with isotropic and anisotropic

    E-Print Network [OSTI]

    Mojahedi, Mohammad

    Backward wave propagation in left-handed media with isotropic and anisotropic permittivity tensors medium is investigated from a purely wave propagation point of view. The functional form for the index-velocity vectors are antiparallel. It is shown that, in the case considered, the backward-wave propagation can

  4. PREDICTION OF REMAINING LIFE OF POWER TRANSFORMERS BASED ON LEFT TRUNCATED AND RIGHT

    E-Print Network [OSTI]

    PREDICTION OF REMAINING LIFE OF POWER TRANSFORMERS BASED ON LEFT TRUNCATED AND RIGHT CENSORED of the remaining life of high-voltage power transform- ers is an important issue for energy companies because of the need for planning maintenance and capital expenditures. Lifetime data for such transformers

  5. Doppler effects in a left-handed material: a first-principle theoretical study

    E-Print Network [OSTI]

    Sanshui Xiao; Min Qiu

    2005-09-01T23:59:59.000Z

    The Doppler effects for the reflected wave from a moving media are systemically analyzed in this paper. The theoretical formula for the Doppler shift in the left-handed material, which is described by Drude's dispersion model, is presented. This formula is examined by first-principles numerical experiments, which are in agreement with the theoretical results.

  6. Disjunctive Partial Deduction of a Right-to-Left String-Matching Algorithm

    E-Print Network [OSTI]

    Rosenblueth, David A.

    Nacional Aut#19;onoma de M#19;exico Apdo. 20-726, 01000 M#19;exico D.F. Abstract In spite of its practical importance, the Boyer{Moore string-matching algorithm has hardly been studied in the context of partial- ants of a di#11;erent (right-to-left) algorithm, devised by Boyer and Moore, are considerably faster

  7. ENGINEERING & SCIENCE fall 201014 Left: Looking like a knight in a chain-mail hood,

    E-Print Network [OSTI]

    ENGINEERING & SCIENCE fall 201014 Left: Looking like a knight in a chain-mail hood, Koch dons not with a penchant for horror cinema, but with a toothache. "I was teaching a course at the Marine Biological processes is beginning to throw light on how the conscious mind works. #12;fall 2010 ENGINEERING & SCIENCE

  8. TotalView | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6 16.6TotalView

  9. 2013 Retail Power Marketers Sales- Total

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y M E2003CommercialTotal (Data

  10. 2013 Utility Bundled Retail Sales- Total

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand8)Commercial (DataTotal (Data

  11. EQUUS Total Return Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyerTier2 Submit SoftwareEPB JumpEQUUS Total

  12. 2013 Total Electric Industry- Sales (Megawatthours

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi" ,"Plant","Primary1. TotalRevenue for

  13. Positron interactions with water–total elastic, total inelastic, and elastic differential cross section measurements

    SciTech Connect (OSTI)

    Tattersall, Wade [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia) [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, 4810 Queensland (Australia); Chiari, Luca [Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001, South Australia (Australia)] [Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001, South Australia (Australia); Machacek, J. R.; Anderson, Emma; Sullivan, James P. [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)] [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); White, Ron D. [Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, 4810 Queensland (Australia)] [Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, 4810 Queensland (Australia); Brunger, M. J. [Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001, South Australia (Australia) [Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001, South Australia (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Buckman, Stephen J. [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia) [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Garcia, Gustavo [Instituto de F?sica Fundamental, Consejo Superior de Investigationes Cient?ficas (CSIC), Serrano 113-bis, E-28006 Madrid (Spain)] [Instituto de F?sica Fundamental, Consejo Superior de Investigationes Cient?ficas (CSIC), Serrano 113-bis, E-28006 Madrid (Spain); Blanco, Francisco [Departamento de F?sica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain)] [Departamento de F?sica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2014-01-28T23:59:59.000Z

    Utilising a high-resolution, trap-based positron beam, we have measured both elastic and inelastic scattering of positrons from water vapour. The measurements comprise differential elastic, total elastic, and total inelastic (not including positronium formation) absolute cross sections. The energy range investigated is from 1 eV to 60 eV. Comparison with theory is made with both R-Matrix and distorted wave calculations, and with our own application of the Independent Atom Model for positron interactions.

  14. Solar Total Energy Project final test report

    SciTech Connect (OSTI)

    Nelson, R.F.; Abney, L.O.; Towner, M.L. (Georgia Power Co., Shenandoah, GA (USA))

    1990-09-01T23:59:59.000Z

    The Solar Total Energy Project (STEP), a cooperative effort between the United States Department of Energy (DOE) and Georgia Power Company (GPC) located at Shenandoah, Georgia, has undergone several design modifications based on experience from previous operations and test programs. The experiences encountered were discussed in detail in the Solar Total Energy Project Summary Report'' completed in 1987 for DOE. Most of the proposed changes discussed in this report were installed and tested in 1987 as part of two 15-day test programs (SNL Contract No. 06-3049). However, several of the suggested changes were not completed before 1988. These plant modifications include a new distributed control system for the balance of plant (BOP), a fiber a optical communications ring for the field control system, and new control configuration reflecting the new operational procedures caused by the plant modifications. These modifications were tested during a non-consecutive day test, and a 60-day field test conducted during the autumn of 1989. These test were partially funded by SNL under Contract No. 42-4859, dated June 22, 1989. Results of these tests and preliminary analysis are presented in this test summary report. 9 refs., 19 figs., 7 tabs.

  15. Feasibility of high volume sampling for determination of total suspended particulate matter and trace metals

    SciTech Connect (OSTI)

    van der Meulen, A.; Hofschreuder, P.; van de Vate, J.F.; Oeseburg, F.

    1984-02-01T23:59:59.000Z

    The feasibility of the high volume sampling method (HVS) in extended control networks for the routine determination of total suspended particulate matter and trace metals, particularly traffic lead, has been explored. The HVS coarse particle sampling effectiveness obtained in wind tunnel studies is assumed to be indicative of the effectiveness under typical ambient meteorological conditions. For TSP, available data indicate the mass of the coarse fraction above 5 ..mu..m to range between about 10% and 90% of the total mass. Subsequently, when sampling TSP the total mass can be underestimated by up to appoximately 30%; the corresponding standard deviation is as high as approximately 15%. Differences in coarse particle sampling characteristics can result in systematic inter-HVS deviations up to 20% of the total mass. Traffic lead consists of a direct automotive tailpipe component (by and large below 30 ..mu..m) and a vehicular resuspended one (some 100-300 ..mu..m). Near the road the total (i.e., direct + resuspended) mass of traffic lead collected ranges from 70% to 120% of the direct automotive emissions; the corresponding TSP standard deviation can be as high as 15% owing to the contribution of resuspended lead. Away from the road (>50m) the resuspended component is depleted substantially due to deposition. Subsequently, the mass collected ranges between 70% and 110% of the direct lead; the standard deviation can be as high as 10%. The evaluation of the applicability of HVS under extreme wind speed situations is beyond the scope of this work. Under such conditions the coarse particle sampling effectiveness could be affected considerably. Hence under extreme situations the applicability of HVS should be left to the discretion of the user. 33 references.

  16. UPRE method for total variation parameter selection

    SciTech Connect (OSTI)

    Wohlberg, Brendt [Los Alamos National Laboratory; Lin, Youzuo [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Total Variation (TV) Regularization is an important method for solving a wide variety of inverse problems in image processing. In order to optimize the reconstructed image, it is important to choose the optimal regularization parameter. The Unbiased Predictive Risk Estimator (UPRE) has been shown to give a very good estimate of this parameter for Tikhonov Regularization. In this paper we propose an approach to extend UPRE method to the TV problem. However, applying the extended UPRE is impractical in the case of inverse problems such as de blurring, due to the large scale of the associated linear problem. We also propose an approach to reducing the large scale problem to a small problem, significantly reducing computational requirements while providing a good approximation to the original problem.

  17. Project Profile: Transformational Approach to Reducing the Total...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics Project Profile: Transformational Approach to Reducing the Total System Costs of...

  18. Enantioselective total syntheses of acylfulvene, irofulven, and the agelastatins

    E-Print Network [OSTI]

    Siegel, Dustin S. (Dustin Scott), 1980-

    2010-01-01T23:59:59.000Z

    I. Enantioselective Total Synthesis of (-)-Acylfulvene, and (-)-Irofulven We report the enantioselective total synthesis of (-)-acylfulvene and (-)-irofulven, which features metathesis reactions for the rapid assembly of ...

  19. Total synthesis of Class II and Class III Galbulimima Alkaloids

    E-Print Network [OSTI]

    Tjandra, Meiliana

    2010-01-01T23:59:59.000Z

    I. Total Synthesis of All Class III Galbulimima Alkaloids We describe the total synthesis of (+)- and (-)-galbulimima alkaloid 13, (-)-himgaline anad (-)-himbadine. The absolute stereochemistry of natural (-)-galbulimima ...

  20. In vivo tibial force measurement after total knee arthroplasty

    E-Print Network [OSTI]

    D'Lima, Darryl David

    2007-01-01T23:59:59.000Z

    and Colwell, C. W. , Jr. : The press-fit condylar total kneeColwell, C. W. , Jr. : Press-fit condylar design total knee

  1. NREL: Building America Total Quality Management - 2015 Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Total Quality Management - 2015 Peer Review NREL: Building America Total Quality Management - 2015 Peer Review Presenter: Stacey Rothgeb, NREL View the...

  2. Management of Dish Concentrator Off-Axis Reflections G. Burgess, P. Scott, J. Preston and K. Lovegrove

    E-Print Network [OSTI]

    -state temperatures of the irradiated receiver trusses were modelled using Strand7 FEM software. A custom written ray of these high concentrations is that off-axis reflections from the dish mirror #12;Solar2010, the 48th Au from the ideal paraboloid. 2 adjusted to allow for the difference in the lunar to solar angular

  3. EXAMPLES OF DAMAGE DETECTION IN REAL-LIFE SETTINGS BASED ON THE POSITION OF THE NEUTRAL AXIS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    EXAMPLES OF DAMAGE DETECTION IN REAL-LIFE SETTINGS BASED ON THE POSITION OF THE NEUTRAL AXIS discussed in this paper is to create damage detection methods based on universal parameters an appropriate parameter and validate that it can be used to detect damage in real-life settings. The centroid

  4. Field mapping by off-axis electron holography: from devices to the detection of single dopant atoms.

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Field mapping by off-axis electron holography: from devices to the detection of single dopant atoms. 3. Ernst-Ruska Center for Microscopy and Spectroscopy with Electrons, Research Centre Julich, D-52425 Julich, Germany. david.cooper@cea.fr Keywords: electron holography, dopant potentials, strain

  5. Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind

    E-Print Network [OSTI]

    Dabiri, John O.

    Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical an alternative approach to wind farming that has the potential to concurrently reduce the cost, size-axis wind turbine arrays John O. Dabiria) Graduate Aeronautical Laboratories and Bioengineering, California

  6. Left-right spin asymmetry in l N ? ? h X

    SciTech Connect (OSTI)

    Gamberg, Leonard; Kang, Zhong-Bo; Metz, Andreas; Pitonyak, Daniel; Prokudin, Alexei

    2014-10-01T23:59:59.000Z

    We consider the inclusive production of hadrons in lepton-nucleon scattering. For a transversely polarized nucleon this reaction shows a left-right azimuthal asymmetry, which we compute in twist-3 collinear factorization at leading order in perturbation theory. All non-perturbative parton correlators of the calculation are fixed through information from other hard processes. Our results for the left-right asymmetry agree in sign with recent data for charged pion production from the HERMES Collaboration and from Jefferson Lab. However, the magnitude of the computed asymmetries tends to be larger than the data. Potential reasons for this outcome are identified. We also give predictions for future experiments and highlight in particular the unique opportunities at an Electron Ion Collider.

  7. Left-Right Symmetric Models at the High-Intensity Frontier

    E-Print Network [OSTI]

    Castillo-Felisola, Oscar; Helo, Juan C; Kovalenko, Sergey G; Ortiz, Sebastian E

    2015-01-01T23:59:59.000Z

    We study constraints on Left-Right Symmetric models from searches of semileptonic decays of $D$, $D_{s}$, $B$ mesons, mediated by heavy neutrinos $N$ with masses $m_N\\sim $ GeV that go on their mass shell leading to a resonant enhancement of the rates. Using these processes we examine, as a function of $m_N$ and $M_{W_R}$, the physics reach of the recently proposed high-intensity beam dump experiment SHiP, which is expected to produce a large sample of $D_s$ mesons. We compare these results with the corresponding reach of neutrinoless double beta decay experiments, as well as like-sign dilepton searches with displaced vertices at the LHC. We conclude that the SHiP experiment has clear advantages in probing the Left-Right Symmetric models for heavy neutrinos in the GeV mass range.

  8. Left-right models with light neutrino mass prediction and dominant neutrinoless double beta decay rate

    E-Print Network [OSTI]

    M. K. Parida; Sudhanwa Patra

    2013-01-14T23:59:59.000Z

    In TeV scale left-right symmetric models, new dominant predictions to neutrinoless double beta decay and light neutrino masses are in mutual contradiction because of large contribution to the latter through popular seesaw mechanisms. We show that in a class of left-right models with high-scale parity restoration, these results coexist without any contravention with neutrino oscillation data and the relevant formula for light neutrino masses is obtained via gauged inverse seesaw mechanism. The most dominant contribution to the double beta decay is shown to be via $W^-_L- W^-_R$ mediation involving both light and heavy neutrino exchanges, and the model predictions are found to discriminate whether the Dirac neutrino mass is of quark-lepton symmetric origin or without it. We also discuss associated lepton flavor violating decays.

  9. Neutrino exotica in the skew E{sub 6} left-right model

    SciTech Connect (OSTI)

    Ma, Ernest

    2000-11-01T23:59:59.000Z

    With the particle content of the 27 representation of E{sub 6}, a skew left-right supersymmetric gauge model was proposed many years ago, with a variety of interesting phenomenological implications. The neutrino sector of this model offers a natural framework for obtaining small Majorana masses for {nu}{sub e}, {nu}{sub {mu}}, and {nu}{sub {tau}}, with the added bonus of accommodating 2 light sterile neutrinos.

  10. Refine your search Select options from the menu on the left hand

    E-Print Network [OSTI]

    Yener, Aylin

    ://psu.summon.serialssolutions.comhttp://psu.summon.serialssolutions.com F I N A L LY : RESEARCH AS EASYAS 1-2-3 #12;1 Enter search term into search box. 2 Refine results relevant articles were published in that year. Include or Exclude subject terms from your searchRefine your search Select options from the menu on the left hand side of the results screen

  11. Left-Right Symmetry: from LHC to Neutrinoless Double Beta Decay

    E-Print Network [OSTI]

    Vladimir Tello; Miha Nemevsek; Fabrizio Nesti; Goran Senjanovi?; Francesco Vissani

    2011-03-29T23:59:59.000Z

    The Large Hadron Collider has a potential to probe the scale of left-right symmetry restoration and the associated lepton number violation. Moreover, it offers hope of measuring the right-handed leptonic mixing matrix. We show how this, together with constraints from lepton flavor violating processes, can be used to make predictions for neutrinoless double beta decay. We illustrate this deep connection in the case of the type-II seesaw.

  12. Left-Right Symmetry: From the LHC to Neutrinoless Double Beta Decay

    SciTech Connect (OSTI)

    Tello, Vladimir [SISSA, Trieste (Italy); Nemevsek, Miha [ICTP, Trieste (Italy); Jozef Stefan Institute, Ljubljana (Slovenia); Nesti, Fabrizio [Universita di Ferrara, Ferrara (Italy); Senjanovic, Goran [ICTP, Trieste (Italy); Vissani, Francesco [LNGS, INFN, Assergi (Italy)

    2011-04-15T23:59:59.000Z

    The Large Hadron Collider has the potential to probe the scale of left-right symmetry restoration and the associated lepton number violation. Moreover, it offers the hope of measuring the right-handed leptonic mixing matrix. We show how this, together with constraints from lepton flavor violating processes, can be used to make predictions for neutrinoless double beta decay. We illustrate this connection in the case of the type-II seesaw.

  13. Ruptured Left Gastric Artery Aneurysm: Unique Presentation with Hemothorax and Hemomediastinum

    SciTech Connect (OSTI)

    Lee, Michael K.S., E-mail: mkslee@optusnet.com.au; Vrazas, John I. [St. Vincent's Hospital, Department of Radiology (Australia)

    2006-06-15T23:59:59.000Z

    Although splanchnic artery aneurysms are uncommon and remain mostly asymptomatic, they are associated with a high mortality rate when they rupture. We discuss the case of a 66-year-old woman who had successful embolization of a left gastric artery aneurysm after presenting with acute chest pain and the unusual computed tomography findings of hemothorax and hemomediastinum. To our knowledge, only one other similar case has been published in the literature.

  14. Dual axis radiographic hydrodynamic test facility. Final environmental impact statement, Volume 2: Public comments and responses

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    On May 12, 1995, the U.S. Department of Energy (DOE) issued the draft Dual Axis Radiographic Hydrodynamic Test Facility Environmental Impact Statement (DARHT EIS) for review by the State of New Mexico, Indian Tribes, local governments, other Federal agencies, and the general public. DOE invited comments on the accuracy and adequacy of the draft EIS and any other matters pertaining to their environmental reviews. The formal comment period ran for 45 days, to June 26, 1995, although DOE indicated that late comments would be considered to the extent possible. As part of the public comment process, DOE held two public hearings in Los Alamos and Santa Fe, New Mexico, on May 31 and June 1, 1995. In addition, DOE made the draft classified supplement to the DARHT EIS available for review by appropriately cleared individuals with a need to know the classified information. Reviewers of the classified material included the State of New Mexico, the U.S. Environmental Protection Agency, the Department of Defense, and certain Indian Tribes. Volume 2 of the final DARHT EIS contains three chapters. Chapter 1 includes a collective summary of the comments received and DOE`s response. Chapter 2 contains the full text of the public comments on the draft DARHT EIS received by DOE. Chapter 3 contains DOE`s responses to the public comments and an indication as to how the comments were considered in the final EIS.

  15. Search for W'->tb resonances with left- and right-handed couplings to fermions

    SciTech Connect (OSTI)

    Abazov, Victor Mukhamedovich; /Dubna, JINR; Abbott, Braden Keim; /Oklahoma U.; Acharya, Bannanje Sripath; /Tata Inst.; Adams, Mark Raymond; /Illinois U., Chicago; Adams, Todd; /Florida State U.; Alexeev, Guennadi D.; /Dubna, JINR; Alkhazov, Georgiy D.; /St. Petersburg, INP; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls; Alverson, George O.; /Northeastern U.; Alves, Gilvan Augusto; /Rio de Janeiro, CBPF; Ancu, Lucian Stefan; /Nijmegen U. /Fermilab

    2011-01-01T23:59:59.000Z

    We present a search for the production of a heavy gauge boson, W{prime}, that decays to third-generation quarks, by the D0 Collaboration in p{bar p} collisions at {radical}s = 1.96 TeV. We set 95% confidence level upper limits on the production cross section times branching fraction. For the first time, we set limits for arbitrary combinations of left- and right-handed couplings of the W{prime} boson to fermions. For couplings with the same strength as the standard model W boson, we set the following limits for M(W{prime}) > m({nu}{sub R}): M(W{prime}) > 863 GeV for purely left-handed couplings, M(W{prime}) > 885 GeV for purely right-handed couplings, and M(W{prime}) > 916 GeV if both left- and right-handed couplings are present. The limit for right-handed couplings improves for M(W{prime}) < m({nu}{sub R}) to M(W{prime}) > 890 GeV.

  16. Soil Test P vs. Total P in Wisconsin Soils

    E-Print Network [OSTI]

    Balser, Teri C.

    Soil Test P vs. Total P in Wisconsin Soils Larry G. Bundy & Laura W. Good Department of Soil Science University of Wisconsin-Madison #12;Introduction · Soil test P is often measured · Little information is available on total P content of soils · Why do we care about total P now? ­ Soil total P

  17. Total Operators and Inhomogeneous Proper Values Equations

    E-Print Network [OSTI]

    Jose G. Vargas

    2015-03-27T23:59:59.000Z

    Kaehler's two-sided angular momentum operator, K + 1, is neither vector-valued nor bivector-valued. It is total in the sense that it involves terms for all three dimensions. Constant idempotents that are "proper functions" of K+1's components are not proper functions of K+1. They rather satisfy "inhomogeneous proper-value equations", i.e. of the form (K + 1)U = {\\mu}U + {\\pi}, where {\\pi} is a scalar. We consider an equation of that type with K+1 replaced with operators T that comprise K + 1 as a factor, but also containing factors for both space and spacetime translations. We study the action of those T's on linear combinations of constant idempotents, so that only the algebraic (spin) part of K +1 has to be considered. {\\pi} is now, in general, a non-scalar member of a Kaehler algebra. We develop the system of equations to be satisfied by the combinations of those idempotents for which {\\pi} becomes a scalar. We solve for its solutions with {\\mu} = 0, which actually also makes {\\pi} = 0: The solutions with {\\mu} = {\\pi} = 0 all have three constituent parts, 36 of them being different in the ensemble of all such solutions. That set of different constituents is structured in such a way that we might as well be speaking of an algebraic representation of quarks. In this paper, however, we refrain from pursuing this identification in order to emphasize the purely mathematical nature of the argument.

  18. Structural effects of unsteady aerodynamic forces on horizontal-axis wind turbines

    SciTech Connect (OSTI)

    Miller, M.S.; Shipley, D.E. [Univ. of Colorado, Boulder, CO (United States). BioServe Space Technologies

    1994-08-01T23:59:59.000Z

    Due to its renewable nature and abundant resources, wind energy has the potential to fulfill a large portion of this nation`s energy needs. The simplest means of utilizing wind energy is through the use of downwind, horizontal-axis wind turbines (HAWT) with fixed-pitch rotors. This configuration regulates the peak power by allowing the rotor blade to aerodynamically stall. The stall point, the point of maximum coefficient of lift, is currently predicted using data obtained from wind tunnel tests. Unfortunately, these tests do not accurately simulate conditions encountered in the field. Flow around the tower and nacelle coupled with inflow turbulence and rotation of the turbine blades create unpredicted aerodynamic forces. Dynamic stall is hypothesized to occur. Such aerodynamic loads are transmitted into the rotor and tower causing structural resonance that drastically reduces the design lifetime of the wind turbine. The current method of alleviating this problem is to structurally reinforce the tower and blades. However, this adds unneeded mass and, therefore, cost to the turbines. A better understanding of the aerodynamic forces and the manner in which they affect the structure would allow for the design of more cost effective and durable wind turbines. Data compiled by the National Renewable Energy Laboratory (NREL) for a downwind HAWT with constant chord, untwisted, fixed-pitch rotors is analyzed. From these data, the actual aerodynamic characteristics of the rotor are being portrayed and the potential effects upon the structure can for the first time be fully analyzed. Based upon their understanding, solutions to the problem of structural resonance are emerging.

  19. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    SciTech Connect (OSTI)

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01T23:59:59.000Z

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  20. Percutaneous Radiofrequency Ablation for the Treatment of Liver Neoplasms in the Caudate Lobe Left of the Vena Cava: Electrode Placement Through the Left Lobe of the Liver Under CT-Fluoroscopic Guidance

    SciTech Connect (OSTI)

    Yamakado, Koichiro, E-mail: yama@clin.medic.mie-u.ac.jp; Nakatsuka, Atsuhiro; Akeboshi, Masao; Takaki, Haruyuki; Takeda, Kan [Mie University School of Medicine, Department of Radiology (Japan)

    2005-06-15T23:59:59.000Z

    Five hepatocellular carcinomas and one liver metastasis located in the caudate lobe left of the inferior vena cava were successfully treated by radiofrequency (RF) ablation by placing the RF electrode into each tumor through the left lobe of the liver under the CT-fluoroscopic guidance. All tumors were free of enhancement on dynamic contrast-enhanced CT during the mean follow-up period of 6.3 months. There were no major complications related to the procedures.

  1. T.Q.M.: Total Quality Management or total quackery and mismanagement

    SciTech Connect (OSTI)

    Stallard, T.F.

    1996-12-31T23:59:59.000Z

    The concept of total quality management (TQM) is outlined. The basic idea of TQM is that quality products and services will lead a company to greater financial success than will mass quantities of inferior products. The following topics are outlined: standard labs and TQM;TQM benefits to be gained by standard labs; TQM at standard labs is quality improvement system (QIS), TQM, reduces of attitude. QIS team leader training agenda; and the safety connection.

  2. Managerial information behaviour: Relationships among Total Quality Management orientation, information use environments, and managerial roles

    E-Print Network [OSTI]

    Simard, C; Rice, Ronald E

    2006-01-01T23:59:59.000Z

    TQM orientations: total quality control (TQC) and totalIts Implications for Total Quality Control and Total QualityWilenski, 1967). Total Quality Control, organizational

  3. Near-resonant second-order nonlinear susceptibility in c-axis oriented ZnO nanorods

    SciTech Connect (OSTI)

    Liu, Weiwei; Wang, Kai; Long, Hua; Wang, Bing, E-mail: wangbing@hust.edu.cn; Lu, Peixiang, E-mail: lupeixiang@hust.edu.cn [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Chu, Sheng [School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2014-08-18T23:59:59.000Z

    Near-resonant second-harmonic generation (SHG) in c-axis oriented ZnO nanorods is studied under the femtosecond laser with wavelength from 780?nm to 810?nm. A highly efficient SHG is obtained, which is attributed to the d{sub 131} component of the second-order nonlinear susceptibility. The largest d{sub 131} value is estimated to be 10.2?pm/V at the pumping wavelength of 800?nm, which indicates a large SHG response of the c-axis oriented ZnO nanorods in the near-resonant region. Theoretical calculation based on finite-difference time-domain simulation suggests a four-fold local-field enhancement of the SHG.

  4. Treatment of an Iatrogenic Left Internal Mammary Artery to Pulmonary Artery Fistula with a Bovine Pericardium Covered Stent

    SciTech Connect (OSTI)

    Heper, Gulumser [SSK Ihtisas Hospital, Department of Cardiology (Turkey)], E-mail: heperg@hotmail.com; Barcin, Cem; Iyisoy, Atila; Tore, Hasan F. [Gulhane Military Medical Academy, Department of Cardiology (Turkey)

    2006-10-15T23:59:59.000Z

    We report a case with an acquired fistula between the left internal mammary artery and the pulmonary artery following coronary bypass surgery treated with a bovine pericardium covered stent. We also reviewed similar cases reported previously.

  5. Using Near Detector Data to Make Far Detector Predictions in an On-Axis Long-Baseline Experiment

    SciTech Connect (OSTI)

    Whitehead, L. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2011-10-06T23:59:59.000Z

    Various techniques have been developed in long-baseline neutrino oscillation experiments to leverage near detector data to form predictions for the far detector spectrum and backgrounds. I will review the techniques used in MINOS, an on-axis long-baseline neutrino experiment that uses Fermilab's NuMI beam. The extrapolation methods used in the MINOS muon neutrino and anti-neutrino disappearance measurements and electron neutrino appearance search will be covered.

  6. Non-polar InGaN quantum dot emission with crystal-axis oriented linear polarization

    E-Print Network [OSTI]

    Reid, Benjamin P. L.; Kocher, Claudius; Zhu, Tongtong; Oehler, Fabrice; Chan, Christopher C. S.; Oliver, Rachel A.; Taylor, Robert A.

    2015-04-28T23:59:59.000Z

    the internal electric field present as a consequence of their wurtzite crystal structure. Recently however, excep- tionally small QDs16 or growth on a non-polar crystal plane17 have been used to demonstrate coherently driven Rabi oscillations18... corresponding to the [0001] crystal axis, many with a polarization degree of 1, a consequence of the strain inherent in the wurtzite crystal structure. This strain induced asymmetry causes one fine-structure component of the emission to be suppressed, meaning...

  7. A chiral route to pulling optical forces and left-handed optical torques

    E-Print Network [OSTI]

    Canaguier-Durand, Antoine

    2015-01-01T23:59:59.000Z

    We analyze how chirality can generate pulling optical forces and left-handed torques by cross-coupling linear-to-angular momenta between the light field and the chiral object. In the dipolar regime, we reveal that such effects can emerge from a competition between non-chiral and chiral contributions to dissipative optical forces and torques, a competition balanced by the strength of chirality of the object. We extend the analysis to large chiral spheres where the interplay between chirality and multipolar resonances can give rise to a break of symmetry that flips the signs of both optical forces and torques.

  8. Left-right symmetric model with {mu}{r_reversible}{tau} symmetry

    SciTech Connect (OSTI)

    Gomez-Izquierdo, Juan Carlos; Perez-Lorenzana, Abdel [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del I.P.N., Apdo. Post. 14-740, 07000 Mexico D.F. (Mexico)

    2009-04-20T23:59:59.000Z

    We present a Left-right symmetric model with a (Z{sub 2}){sup 3} discrete symmetry which realizes softly broken {mu}{r_reversible}{tau} symmetry, which is broken at tree level in the effective neutrino mass matrix by mass difference in the diagonal Dirac mass terms. Lepton mixings arise from Majorana mass matrix. We determined {theta}{sub 13}, and the deviation from maximal value of {theta}{sub ATM} in terms of the hierarchy scale, m{sub 3}, and a single free parameter, h{sub s}.

  9. Phase-constant-nonreciprocal composite right/left-handed metamaterials based on coplanar waveguides

    SciTech Connect (OSTI)

    Porokhnyuk, Andrey, E-mail: d1821008@edu.kit.ac.jp; Ueda, Tetsuya; Kado, Yuichi [Department of Electronics, Kyoto Institute of Technology, Kyoto 606-8585 (Japan); Itoh, Tatsuo [Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States)

    2014-05-07T23:59:59.000Z

    The purely phase-constant-nonreciprocal composite right-left handed metamaterial structure is proposed based on coplanar waveguides loaded with a ferrite layer. The structure exhibits considerably large nonreciprocity in phase constant which depends on the effective magnetization and whose magnitude can remain in leaky wave region of wavenumbers or can overcome a boundary to slow wave region. The nonreciprocity in amplitude of transmission coefficients, on the other hand, is effectively reduced by using a cavity-backed design to prevent undesired nonreciprocal radiation loss.

  10. Shared-savings firm goes out of business: PMI users left with unserviced, malfunctioning equipment

    SciTech Connect (OSTI)

    Galvin, C.

    1983-05-23T23:59:59.000Z

    Some customers of Performance Management Inc. (PMI) are left with non-functioning and the possible removal of equipment now that the shared-savings financing firm has gone out of business. PMI's departure from the contracts leaves no service or maintenance funds for the 50 to 100 installations in the field. Officials from most of the equipment manufacturers denied knowledge of PMI, which dealt only with independent installers and customers under a contract that called for users to share energy savings with PMI in exchange for PMI financing for installation and service. (DCK)

  11. Coffin v. Left Hand Ditch Co., 6 Colo. 443 (1882) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York: EnergyCoeur d Alene Fiber Fuels IncCoffeyv. Left

  12. Rotation speed and stellar axis inclination from p modes: How CoRoT would see other suns

    E-Print Network [OSTI]

    J. Ballot; R. A. Garcia; P. Lambert

    2006-03-24T23:59:59.000Z

    In the context of future space-based asteroseismic missions, we have studied the problem of extracting the rotation speed and the rotation-axis inclination of solar-like stars from the expected data. We have focused on slow rotators (at most twice solar rotation speed), firstly because they constitute the most difficult case and secondly because some of the CoRoT main targets are expected to have slow rotation rates. Our study of the likelihood function has shown a correlation between the estimates of inclination of the rotation axis i and the rotational splitting deltanu of the star. By using the parameters, i and deltanu*=deltanu sin(i), we propose and discuss new fitting strategies. Monte Carlo simulations have shown that we can extract a mean splitting and the rotation-axis inclination down to solar rotation rates. However, at the solar rotation rate we are not able to correctly recover the angle i although we are still able to measure a correct deltanu* with a dispersion less than 40 nHz.

  13. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1997

    SciTech Connect (OSTI)

    Haagenstad, H.T.

    1998-01-15T23:59:59.000Z

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared by the US Department of Energy (DOE) as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP). This MAPAR provides a status on specific DARHT facility design- and construction-related mitigation actions that have been initiated in order to fulfill DOE`s commitments under the DARHT MAP. The functions of the DARHT MAP are to (1) document potentially adverse environmental impacts of the Phased Containment Option delineated in the Final EIS, (2) identify commitments made in the Final EIS and ROD to mitigate those potential impacts, and (3) establish Action Plans to carry out each commitment (DOE 1996). The DARHT MAP is divided into eight sections. Sections 1--5 provide background information regarding the NEPA review of the DARHT project and an introduction to the associated MAP. Section 6 references the Mitigation Action Summary Table which summaries the potential impacts and mitigation measures; indicates whether the mitigation is design-, construction-, or operational-related; the organization responsible for the mitigation measure; and the projected or actual completion data for each mitigation measure. Sections 7 and 8 discuss the Mitigation Action Plan Annual Report and Tracking System commitment and the Potential Impacts, Commitments, and Action Plans respectively. Under Section 8, potential impacts are categorized into five areas of concern: General Environment, including impacts to air and water; Soils, especially impacts affecting soil loss and contamination; Biotic Resources, especially impacts affecting threatened and endangered species; Cultural/Paleontological Resources, especially impacts affecting the archeological site known as Nake`muu; and Human Health and Safety, especially impacts pertaining to noise and radiation. Each potential impact includes a brief statement of the nature of the impact and its cause(s). The commitment made to mitigate the potential impact is identified and the Action Plan for each commitment is described in detail, with a description of actions to be taken, pertinent time frames for the actions, verification of mitigation activities, and identification of agencies/organizations responsible for satisfying the requirements of the commitment.

  14. Project Functions and Activities Definitions for Total Project...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exactly is included in total estimated cost (TEC) and total project cost (TPC). g4301-1chp6.pdf -- PDF Document, 46 KB Writer: John Makepeace Subjects: Administration Management...

  15. average neutron total: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Total Cross Sections for Neutron Scattering Nuclear Theory (arXiv) Summary: Measurements of neutron total...

  16. Project Functions and Activities Definitions for Total Project Cost

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter provides guidelines developed to define the obvious disparity of opinions and practices with regard to what exactly is included in total estimated cost (TEC) and total project cost (TPC).

  17. anorrectal total reporte: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    markets including finance, energy, healthcare, telecommunications, unknown authors 5 Computer Integrated Revision Total Hip Replacement Surgery: Preliminary Report Computer...

  18. MUJERES ( * ) TOTAL ANATOMA, HISTOLOGA Y NEUROCIENCIA 4 10

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    , DEPORTE Y MOTRICIDAD HUMANA 1 1 TOTAL FORMACIÓN DE PROFESORADO Y EDUCACIÓN 4 6 Nº de tesis leídas y

  19. Quantitative analysis of SCIAMACHY carbon monoxide total column measurements

    E-Print Network [OSTI]

    Laat, Jos de

    , SCIAMACHY CO total column retrievals are of sufficient quality to provide useful new information]. Ground-based FTIR measurements provide high quality total column measurements but have very limitedQuantitative analysis of SCIAMACHY carbon monoxide total column measurements A. T. J. de Laat,1,2 A

  20. Summertime total ozone variations over middle and polar latitudes

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Summertime total ozone variations over middle and polar latitudes 1234567 89A64BC7DEF72B4 467342 $7D425BE27B725CE9393BE647 #12;Summertime total ozone variations over middle and polar latitudes and summertime ozone over middle and polar latitudes is analyzed using zonally averaged total ozone data. Short

  1. Strong P invariance, neutron EDM and minimal Left-Right parity at LHC

    E-Print Network [OSTI]

    Alessio Maiezza; Miha Nemevšek

    2014-10-15T23:59:59.000Z

    In the minimal Left-Right model the choice of left-right symmetry is twofold: either generalized parity $\\mathcal P$ or charge conjugation $\\mathcal C$. In the minimal model with spontaneously broken strict $\\mathcal P$, a large tree-level contribution to strong CP violation can be computed in terms of the spontaneous phase $\\alpha$. Searches for the neutron electric dipole moments then constrain the size of $\\alpha$. Following the latest update on indirect CP violation in the kaon sector, a bound on $W_R$ mass at $20 \\text{TeV}$ is set. Possible ways out of this bound, either by an additional relaxation mechanism or explicit breaking of $\\mathcal P$ are considered. To this end, the chiral loop of the neutron electric dipole moment at next-to-leading order is re-computed and provides an estimate of the weak contribution. Combining this constraint with other CP violating observables in the kaon sector allows for $M_{W_R} \\gtrsim 3 \\text{TeV}$. On the other hand, $\\mathcal C$-symmetry is free from such constraints, leaving the right-handed scale within the experimental reach.

  2. Nonlinear coupling of left and right handed circularly polarized dispersive Alfvén wave

    SciTech Connect (OSTI)

    Sharma, R. P., E-mail: rpsharma@ces.iitd.ac.in; Sharma, Swati, E-mail: swati.sharma704@gmail.com; Gaur, Nidhi, E-mail: nidhiphysics@gmail.com [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2014-07-15T23:59:59.000Z

    The nonlinear phenomena are of prominent interests in understanding the particle acceleration and transportation in the interplanetary space. The ponderomotive nonlinearity causing the filamentation of the parallel propagating circularly polarized dispersive Alfvén wave having a finite frequency may be one of the mechanisms that contribute to the heating of the plasmas. The contribution will be different of the left (L) handed mode, the right (R) handed mode, and the mix mode. The contribution also depends upon the finite frequency of the circularly polarized waves. In the present paper, we have investigated the effect of the nonlinear coupling of the L and R circularly polarized dispersive Alfvén wave on the localized structures formation and the respective power spectra. The dynamical equations are derived in the presence of the ponderomotive nonlinearity of the L and R pumps and then studied semi-analytically as well as numerically. The ponderomotive nonlinearity accounts for the nonlinear coupling between both the modes. In the presence of the adiabatic response of the density fluctuations, the nonlinear dynamical equations satisfy the modified nonlinear Schrödinger equation. The equations thus obtained are solved in solar wind regime to study the coupling effect on localization and the power spectra. The effect of coupling is also studied on Faraday rotation and ellipticity of the wave caused due to the difference in the localization of the left and the right modes with the distance of propagation.

  3. Three-dimensional structure of the flow inside the left ventricle of the human heart

    E-Print Network [OSTI]

    Fortini, S; Espa, S; Cenedese, A

    2014-01-01T23:59:59.000Z

    The laboratory models of the human heart left ventricle developed in the last decades gave a valuable contribution to the comprehension of the role of the fluid dynamics in the cardiac function and to support the interpretation of the data obtained in vivo. Nevertheless, some questions are still open and new ones stem from the continuous improvements in the diagnostic imaging techniques. Many of these unresolved issues are related to the three-dimensional structure of the left-ventricular flow during the cardiac cycle. In this paper we investigated in detail this aspect using a laboratory model. The ventricle was simulated by a flexible sack varying its volume in time according to a physiologically shaped law. Velocities measured during several cycles on series of parallel planes, taken from two orthogonal points of view, were combined together in order to reconstruct the phase averaged, three-dimensional velocity field. During the diastole, three main steps are recognized in the evolution of the vortical str...

  4. On neutrinoless double beta decay in the minimal left-right symmetric model

    E-Print Network [OSTI]

    Wei-Chih Huang; J. Lopez-Pavon

    2014-04-14T23:59:59.000Z

    We analyze the general phenomenology of neutrinoless double beta decay in the minimal left-right symmetric model. We study under which conditions a New Physics dominated neutrinoless double beta decay signal can be expected in the future experiments. We show that the correlation among the different contributions to the process, which arises from the neutrino mass generation mechanism, can play a crucial role. We have found that, if no fine tuned cancellation is involved in the light active neutrino contribution, a New Physics signal can be expected mainly from the $W_R-W_R$ channel. An interesting exception is the $W_L-W_R$ channel which can give a dominant contribution to the process if the right-handed neutrino spectrum is hierarchical with $M_1\\lesssim$ MeV and $M_2,M_3\\gtrsim$ GeV. We also discuss if a New Physics signal in neutrinoless double beta decay experiments is compatible with the existence of a successful Dark Matter candidate in the left-right symmetric models. It turns out that, although it is not a generic feature of the theory, it is still possible to accommodate such a signal with a KeV sterile neutrino as Dark matter.

  5. Analysis of agonist dissociation constants as assessed by functional antagonism in guinea pig left atria

    SciTech Connect (OSTI)

    Molenaar, P.; Malta, E.

    1986-04-01T23:59:59.000Z

    In electrically driven guinea pig left atria, positive inotropic responses to (-)-isoprenaline and the selective beta 1-adrenoceptor agonist RO363 were obtained in the absence and in the presence of the functional antagonists adenosine, carbachol, gallopamil, nifedipine, and Ro 03-7894. Each of the functional antagonists reduced the maximum response to both agonists and produced nonparallel rightward shifts in the cumulative concentration effect curves. For both agonists, dissociation constants (KA) were calculated using the equation described by Furchgott (1966) for irreversible antagonism. For RO363, which is a partial agonist with high agonist activity, the equations outlined for functional interaction by Mackay (1981) were also employed to calculate KA values. The KA values obtained by each method were compared with the dissociation constants (KD) for the two agonists determined from their ability to displace the radioligand (-)-(/sup 125/I)iodocyanopindolol from beta 1-adrenoceptors in guinea pig left atrial membrane preparations. The estimates of KA varied substantially from KD values. The KD values were taken as more accurate estimates of the true values for the dissociation constants because a high degree of correlation exists between pKD and pD2 values for a number of other beta-adrenoceptor agonists that behave as partial agonists and between pKD and pKB values for a number of beta-adrenoceptor antagonists. Thus, it appears that there are serious limitations in the current theory for using functional antagonism as a means of obtaining agonist dissociation constants.

  6. Respiration Induced Heart Motion and Indications of Gated Delivery for Left-Sided Breast Irradiation

    SciTech Connect (OSTI)

    Qi, X. Sharon, E-mail: xiangrong.qi@ucdenver.edu [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Hu, Angela [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Wang Kai [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Newman, Francis [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Crosby, Marcus; Hu Bin; White, Julia; Li, X. Allen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States)

    2012-04-01T23:59:59.000Z

    Purpose: To investigate respiration-induced heart motion for left-sided breast irradiation using a four-dimensional computed tomography (4DCT) technique and to determine novel indications to assess heart motion and identify breast patients who may benefit from a gated treatment. Methods and Materials: Images of 4DCT acquired during free breathing for 20 left-sided breast cancer patients, who underwent whole breast irradiation with or without regional nodal irradiation, were analyzed retrospectively. Dose distributions were reconstructed in the phases of 0%, 20%, and 50%. The intrafractional heart displacement was measured in three selected transverse CT slices using D{sub LAD} (the distance from left ascending aorta to a fixed line [connecting middle point of sternum and the body] drawn on each slice) and maximum heart depth (MHD, the distance of the forefront of the heart to the line). Linear regression analysis was used to correlate these indices with mean heart dose and heart dose volume at different breathing phases. Results: Respiration-induced heart displacement resulted in observable variations in dose delivered to the heart. During a normal free-breathing cycle, heart-induced motion D{sub LAD} and MHD changed up to 9 and 11 mm respectively, resulting in up to 38% and 39% increases of mean doses and V{sub 25.2} for the heart. MHD and D{sub LAD} were positively correlated with mean heart dose and heart dose volume. Respiratory-adapted gated treatment may better spare heart and ipsilateral-lung compared with the conventional non-gated plan in a subset of patients with large D{sub LAD} or MHD variations. Conclusion: Proposed indices offer novel assessment of heart displacement based on 4DCT images. MHD and D{sub LAD} can be used independently or jointly as selection criteria for respiratory gating procedure before treatment planning. Patients with great intrafractional MHD variations or tumor(s) close to the diaphragm may particularly benefit from the gated treatment.

  7. A Monolithic Approach to Fabricating Low-Cost, Millimeter-Scale Multi-Axis Force Sensors for Minimally-Invasive Surgery

    E-Print Network [OSTI]

    A Monolithic Approach to Fabricating Low-Cost, Millimeter-Scale Multi-Axis Force Sensors-manufacturing alignment and assembly. The sensor and its custom-fabricated signal conditioning circuitry fit within a 1x1x

  8. Neutrinoless double-$?$ decay in TeV scale Left-Right symmetric models

    E-Print Network [OSTI]

    Joydeep Chakrabortty; H. Zeen Devi; Srubabati Goswami; Sudhanwa Patra

    2012-04-11T23:59:59.000Z

    In this paper we study in detail the neutrinoless double beta decay in left-right symmetric models with right-handed gauge bosons at TeV scale which is within the presently accessible reach of colliders. We discuss the different diagrams that can contribute to this process and identify the dominant ones for the case where the right-handed neutrino is also at the TeV scale. We calculate the contribution to the effective mass governing neutrinoless double beta decay assuming type-I, and type-II dominance and discuss what are the changes in the effective mass due to the additional contributions. We also discuss the effect of the recent Daya-Bay and RENO measurements on $\\sin^2\\theta_{13}$ on the effective mass in different scenarios.

  9. A simple reform for treating the loss of accuracy of Humlicek's W4 algorithm near the real axis

    E-Print Network [OSTI]

    Zaghloul, Mofreh R

    2015-01-01T23:59:59.000Z

    We present a simple reform for treating the reported problem of loss-of-accuracy near the real axis of Humlicek's w4 algorithm, widely used for the calculation of the Faddeyeva or complex probability function. The reformed routine maintains the claimed accuracy of the algorithm over a wide and fine grid that covers all the domain of the real part, x, of the complex input variable, z=x+iy, and values for the imaginary part in the range y=[10-30, 10+30

  10. Use of off-axis injection as an alternative to geometrically merging beams in an energy-recovering linac

    DOE Patents [OSTI]

    Douglas, David R. (York County, VA)

    2012-01-10T23:59:59.000Z

    A method of using off-axis particle beam injection in energy-recovering linear accelerators that increases operational efficiency while eliminating the need to merge the high energy re-circulating beam with an injected low energy beam. In this arrangement, the high energy re-circulating beam and the low energy beam are manipulated such that they are within a predetermined distance from one another and then the two immerged beams are injected into the linac and propagated through the system. The configuration permits injection without geometric beam merging as well as decelerated beam extraction without the use of typical beamline elements.

  11. Magnetic domain structure in nanocrystalline Ni-Zn-Co spinel ferrite thin films using off-axis electron holography

    SciTech Connect (OSTI)

    Zhang, D., E-mail: dzhang28@asu.edu [School of Engineering for Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287-6106 (United States); Ray, N. M.; Petuskey, W. T. [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 (United States); Smith, D. J.; McCartney, M. R. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States)

    2014-08-28T23:59:59.000Z

    We report a study of the magnetic domain structure of nanocrystalline thin films of nickel-zinc ferrite. The ferrite films were synthesized using aqueous spin-spray coating at low temperature (?90?°C) and showed high complex permeability in the GHz range. Electron microscopy and microanalysis revealed that the films consisted of columnar grains with uniform chemical composition. Off-axis electron holography combined with magnetic force microscopy indicated a multi-grain domain structure with in-plane magnetization. The correlation between the magnetic domain morphology and crystal structure is briefly discussed.

  12. CIGNA Study Uncovers Relationship of Disabilities to Total Benefits...

    Office of Environmental Management (EM)

    findings of a new study reveal an interesting trend. Integrating disability programs with health care programs can potentially lower employers' total benefits costs and help...

  13. $787 Million Total in Small Business Contract Funding Awarded...

    National Nuclear Security Administration (NNSA)

    787 Million Total in Small Business Contract Funding Awarded in FY2009 by DOE Programs in Oak Ridge | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS...

  14. Residential Energy Consumption Survey Results: Total Energy Consumptio...

    Open Energy Info (EERE)

    Residential Energy Consumption Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) The Residential Energy Consumption Survey (RECS) is a national survey...

  15. Analysis of Serum Total and Free PSA Using Immunoaffinity Depletion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Immunoaffinity Depletion Coupled to SRM: Correlation with Clinical Immunoassay Tests. Analysis of Serum Total and Free PSA Using Immunoaffinity Depletion Coupled to SRM:...

  16. Correlation Of Surface Heat Loss And Total Energy Production...

    Open Energy Info (EERE)

    Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Correlation...

  17. Order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays

    E-Print Network [OSTI]

    Dabiri, John O

    2010-01-01T23:59:59.000Z

    Modern wind farms require significant land resources to separate each wind turbine from the adjacent turbine wakes. These aerodynamic constraints limit the amount of power that can be extracted from a given wind farm footprint. We conducted full-scale field tests of vertical-axis wind turbines in counter-rotating configurations under natural wind conditions. Whereas wind farms consisting of propeller-style turbines produce 2 to 3 watts of power per square meter of land area, these field tests indicate that power densities approaching 100 W m^-2 can be achieved by arranging vertical-axis wind turbines in layouts that enable them to extract energy from adjacent wakes. In addition, we calculated that the global wind resource available to 10-m tall turbines based on the present approach is approximately 225 trillion watts (TW), which significantly exceeds the global wind resource available to 80-m tall, propeller-style wind turbines, approximately 75 TW. This improvement is due to the closer spacing that can be a...

  18. Appendix 22 Draft Nutrient Management Plan and Total Maximum Daily

    E-Print Network [OSTI]

    Appendix 22 Draft Nutrient Management Plan and Total Maximum Daily Load for Flathead Lake, Montana. #12;11/01/01 DRAFT i October 30, 2001 Draft Nutrient Management Plan and Total Maximum Daily Load..............................................................................................................................2-11 SECTION 3.0 APPLICABLE WATER QUALITY STANDARDS

  19. Adaptive Management Team Total Dissolved Gas in the

    E-Print Network [OSTI]

    Adaptive Management Team Total Dissolved Gas in the Columbia and Snake Rivers Evaluation of the 115 Percent Total Dissolved Gas Forebay Requirement Washington State Department of Ecology and State of Oregon Department of Environmental Quality Final January 2009 Publication no. 09-10-002 #12;Publication and Contact

  20. STATE OF CALIFORNIA MAXIMUM RATED TOTAL COOLING CAPACITY

    E-Print Network [OSTI]

    /09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-MECH-27-HERS Maximum Rated Total Cooling Capacity of the installed system (Btu/hr) 3b Sum of the ARI Rated Total Cooling Capacities of multiple systems installed Cooling Capacities of the installed cooling systems must be calculated and entered in row 3b. 4a MRTCC