Sample records for leds events calendar

  1. Diversity Events Calendar

    Broader source: Energy.gov [DOE]

    Training, networking, and career-building conferences like the ones below are valuable ways to engage in diversity issues. Learn about upcoming events on the calendar below, and contact us at...

  2. Events Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Events Calendar Events Calendar October 2014 < prev next > Sun Mon Tue Wed Thu Fri Sat 28 29 30 1 2 3 4 Geothermal Technologies Office Hosts Collegiate Competition 1:00PM to...

  3. Event Calendar - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeeches EnergyActiveTechnologies |Europa EuropaforEvent

  4. Events Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy SustainableAll 50 StatesEqual EmploymentEvents Calendar

  5. LEDS Events Calendar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea Parts andKunshanGroup Namesource History

  6. LEDS Events Calendar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea Parts andKunshanGroup Namesource

  7. Event Calendar - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13Evacuation248 Evaluation ofEvent Calendar

  8. EventMinder : a personal calendar assistant that understands events

    E-Print Network [OSTI]

    Smith, Dustin Arthur

    2007-01-01T23:59:59.000Z

    Calendar applications do not understand calendar entries. This limitation prevents them from offering the range of assistance that can be provided by a human personal assistant. Understanding calendar entries is a difficult ...

  9. Events Calendar | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeeches EnergyActiveTechnologies |EuropaEvents

  10. Events Calendar | ANSER Center | Argonne-Northwestern National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeeches EnergyActiveTechnologies |EuropaEvents Calendar

  11. EventMinder: A Personal Calendar Assistant That Understands Dustin Arthur Smith

    E-Print Network [OSTI]

    Herr, Hugh

    Events by Dustin Arthur Smith Submitted to the Program in Media Arts and Sciences, School of ArchitectureEventMinder: A Personal Calendar Assistant That Understands Events by Dustin Arthur Smith Bachelor of Science in Computer Science Wake Forest University, 2005 Submitted to the Program in Media Arts

  12. Events Calendar | ANSER Center | Argonne-Northwestern National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Show all events in April ALL DAY ANSER Center Symposium - Solar Electricity: Perovskite Solar Cells ANSER Center 8th Annual Symposium Solar Electricity: Perovskite Solar Cells *...

  13. Events Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeeches EnergyActiveTechnologies |Europa

  14. PHYSICS TODAY HOME | JOBS | BUYERS GUIDE | EVENT CALENDAR Heating the Sun's corona | Physics Update home | Ice acoustics for detecting neutrinos

    E-Print Network [OSTI]

    Heller, Eric

    | Physics Update home | Ice acoustics for detecting neutrinos » Tuning vibrations for label-free biologicalPHYSICS TODAY HOME | JOBS | BUYERS GUIDE | EVENT CALENDAR « Heating the Sun's corona by Physics Today on December 29, 2008 11:17 AM | Permalink TrackBack TrackBack URL for this entry: http

  15. News & Events Event Calendar

    E-Print Network [OSTI]

    Papalambros, Panos

    analysis, and system optimzation will be dscussed. High Energy Density Asymmetric Supercapacitors Paul kinetics associated with their redox processes. Supercapacitors (or ultracapacitors) are based on very fast.g. battery or fuel cell). Currently available supercapacitors are very well suited to handle pulses of up

  16. News & Events Event Calendar

    E-Print Network [OSTI]

    Papalambros, Panos

    's work has been incorporated into products such as flywheel energy storage systems and electric vehicles interests are propulsion drives for electric and hybrid electric vehicles, energy harvesting, flywheel

  17. August 2007 NW Michigan Regional Fruit Grower Newsletter CALENDAR OF EVENTS

    E-Print Network [OSTI]

    /31 Pesticide Container Recycling Ends 9/24 Trevor Nichols Field Day Fennville, MI 9/27 Clean Sweep Collection and the outstanding natural resources we have in northern Michigan led me to pursue a B.S. in Resource Ecology

  18. Joint Outreach Task Group Calendar: September 2013

    Broader source: Energy.gov [DOE]

    Joint Outreach Task Group (JOTG)has created a monthly calendar of community events to facilitate interagency and community involvement in these events. September 2013

  19. Model-driven Application Design for a Campus Calendar Network

    E-Print Network [OSTI]

    Glushko, Robert J.

    Model-driven Application Design for a Campus Calendar Network Allison Bloodworth ' websites, or by sending an email with event information to a calendar administrator. This situation Berkeley Calendar Network. Our team created a web-based calendar that can display multiple views of events

  20. Calendar and Events

    E-Print Network [OSTI]

    jan23.pdf, Jan 20, 2012. dec12.pdf, Dec 9, 2011. adcock-ab.pdf, Dec 7, 2011. dec5.pdf, Dec 2, 2011. francis-ab.pdf, Dec 2, 2011. hansen-ab.pdf, Nov 29, 2011.

  1. Calendar and Events

    E-Print Network [OSTI]

    As an application of this classification, it was shown that the nuclear dimension of unital separable simple amenable -absorbing -algebra is at most one if its ...

  2. Event Calendar - BPA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeeches EnergyActiveTechnologies |Europa Europafor

  3. Hanford Event Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged In You|DidYouKnow Hanford Did

  4. AMH Event Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNews Vol.AMERICA'S NATIONAL

  5. RioGrande Wild Turkey Life History and Management Calendar

    E-Print Network [OSTI]

    Locke, Shawn; Cathey, James; Collier, Bret; Hardin, Jason

    2008-05-08T23:59:59.000Z

    This calendar is for landowners and managers who want to manage and improve their wild turkey habitat. The calendar is in easy-to-follow chart form and shows important annual events pertaining to wild turkey life history, habitat management...

  6. Events

    Broader source: Energy.gov [DOE]

    Below is an industry calendar with meetings, conferences, and webinars of interest to the wind energy technology communities.

  7. NALWO CALENDAR 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate - Events - Fermilab at Work -NALWO CALENDAR

  8. NIF Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee theOil & GasPS PeopleCalendar

  9. LED Update

    SciTech Connect (OSTI)

    Johnson, Mark L.; Gordon, Kelly L.

    2006-09-01T23:59:59.000Z

    This article, which will appear in RESIDENTIAL LIGHTING MAGAZINE, interviews PNNL's Kelly Gordon and presents the interview in question and answer format. The topic is a light emitting diode (LED) lighting also known as solid state lighting. Solid state lighting will be a new category in an energy efficient lighting fixture design competition called Lighting for Tomorrow sponsored by the US Department of Energy Emerging Technologies Office, the American Institute for Lighting, and the Consortium for Energy Efficiency. LED technology has been around since the ’60s, but it has been used mostly for indicator lights on electronics equipment. The big breakthrough was the development in the 1990s of blue LEDs which can be combined with the red and green LEDs that already existed to make white light. LEDs produce 25 to 40 lumens of light per watt of energy used, almost as much as a CFL (50 lumens per watt) and much more efficient than incandescent sources, which are around 15 lumens per watt. They are much longer lived and practical in harsh environments unsuitable for incandescent lighting. They are ready for niche applications now, like under-counter lighting and may be practical for additional applications as technological challenges are worked out and the technology is advancing in leaps and bounds.

  10. LED lamp

    DOE Patents [OSTI]

    Galvez, Miguel; Grossman, Kenneth; Betts, David

    2013-11-12T23:59:59.000Z

    There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.

  11. Events Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual World Ethanol & Biofuels Conference 8:30AM to 1:20PM CET Apply for a Paid Internship at the Department of Energy National Labs 10:40AM to 5:00PM EST Climate,...

  12. Events Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 < prev next > Sun Mon Tue Wed Thu Fri Sat 28 29 30 31 1 2 3 Apply for a Paid Internship at the Department of Energy National Labs 10:40AM to 5:00PM EST Hydrogen...

  13. Events Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 2015 < prev next > Sun Mon Tue Wed Thu Fri Sat 28 29 30 1 2 3 4 Rising Voices 3: Learning and Doing - Education and Adaptation through Diverse Ways of Knowing 8:30AM to...

  14. Calendar of Events Film Festival

    E-Print Network [OSTI]

    Qian, Ning

    Heritage: A Companion to Literature and Arts (Garland); C.G. Jung and the Humanities Toward a Hermeneutics

  15. Events Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Task 34 (WREN) Quarterly Webinar 2: Marine Mammal and Avian Behavior at Offshore Wind Farms 11:00AM to 12:30PM EST EECLP Webinar Series-- 3 Residential Energy Efficency...

  16. Events Calendar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|July 14, 2014JulyEnergy’sMany

  17. APS Today: Calendar of Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    en-us Argonne National Laboratory http:www.aps.anl.govImagesargonneheaderlogowhite.jpg http:www.aps.anl.govNewsAPSToday 227 100 Sante Fe Institute 2015 Complex...

  18. Events Calendar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    12:00PM to 9:00PM EDT Webinar: Make Your Building Sing: Building-Retuning to Reduce Energy Waste 7:00PM to 8:00PM EDT EPA ENERGY STAR Webcast: Portfolio Manager Office Hours,...

  19. Events Calendar | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof1-SCORECARD-09-21-11 Page5-03

  20. Events Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas EnergyofIdaho | Department19Energy EvaluatoniMarch 2015

  1. Events Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas EnergyofIdaho | Department19Energy EvaluatoniMarch

  2. Sandia Energy - EC Events Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's SequimReactors ToDecisionDistribution GridECEC

  3. Events Calendar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 at Iowa Wind Turbine Facility |0,Reviews -|ErinA7,

  4. Events Calendar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 at Iowa Wind Turbine Facility |0,Reviews -|ErinA7,August 2015 < prev

  5. Events Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration |10 DOEGoalsEvaluation11of NREL is

  6. Events Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration |10 DOEGoalsEvaluation11of NREL isOctober 2015

  7. Events Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13,Statement |SaverReality | Department of4th Quarter

  8. Calendar Year 1999

    Broader source: Energy.gov (indexed) [DOE]

    > CalendarYear1999NEFINA1.pdf" class"">Inspection Report: INS-O-00-02

  9. Joint Outreach Task Group (JOTG) Upcoming Events

    Broader source: Energy.gov [DOE]

    The JOTG maintains and supports a calendar of events in DOE communities that may be of interest to former workers and their families.

  10. JOINT OUTREACH TASK GROUP (JOTG) Upcoming Events

    Broader source: Energy.gov [DOE]

    JOTG Upcoming Events - January and February 2015 JOTG Upcoming Events - January and February 2015. The JOTG maintains and supports a calendar of events in DOE communities that may be of interest to former workers and their families.

  11. LED Market Intelligence Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early adopters of LED technologies, particularly around dimming capabilities. 16 LED Market Intelligence Report Home Depot Walmart Cree Philips TCP GE LSG Osram Feit Costco...

  12. Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /Email Announcements12:25 p.m. - Emergency toEvents

  13. Conversion of non-calendar to calendar-time based preventive

    E-Print Network [OSTI]

    Fernandez, Emmanuel

    Conversion of non-calendar to calendar-time based preventive maintenance schedules-calendar based preventive maintenance (PM) schedules into calendar-time format for semiconductor manufacturing. Keywords Preventive maintenance, Semiconductors, Programming, Real time scheduling Paper type Research

  14. Upcoming Events | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upcoming Events Mar 12 LDRD Workshop 11:45 am Building 362 Mar 21 2015 Regional National Science Bowl Battery Car Competition 8:00 am Building Offsite Add to your calendar...

  15. LEDs_3LEDs_3 current efficiency

    E-Print Network [OSTI]

    Pulfrey, David L.

    efficiencySec. 8.2 From our toolbox Current efficiency #12;4 Light extraction efficiencyLight extraction extraction efficiencyDesign to improve extraction efficiencySec. 8.4 What are the features of this LED from;6 Various efficienciesVarious efficienciesSecs. 8.4, 8.5 Present record is 56%Wall-plug efficiency Wall

  16. November 2007 Regional Newsletter CALENDAR OF EVENTS

    E-Print Network [OSTI]

    , as well as sessions on pollination, alternative energy, and cider production. Look for a number of special will have three days of educational programs about tart and sweet cherries, apples, and wine grapes. In late and a luncheon, and we will have a Phase I MAEAP Program during one evening. We will also host a wine, cheese

  17. WIPO Calendar of Events | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015Visiting Strong, Smart, andThomas H. Zarges PresidentWICFWIPO

  18. LED Lighting Retrofit

    E-Print Network [OSTI]

    Shaw-Meadow, N.

    2011-01-01T23:59:59.000Z

    ? Municipal Street Lighting Consortium ? American Public Power Association (APPA) ? Demonstration in Energy Efficiency Development (DEED) ? Source of funding and database of completed LED roadway projects 6 Rules of the Road ESL-KT-11-11-57 CATEE 2011..., 2011 ? 9 Solar-Assisted LED Case Study LaQuinta Hotel, Cedar Park, Texas ? Utilizes 18 - ActiveLED Solar-Assisted Parking Lot Lights ? Utilizes ?power management? to extend battery life while handling light output ? Reduces load which reduces PV...

  19. LED Lighting Basics

    Broader source: Energy.gov [DOE]

    Light-Emitting diodes (LEDs) efficiently produce light in a fundamentally different way than any legacy or traditional source of light.

  20. For discussion only Email & Calendaring

    E-Print Network [OSTI]

    Turner, Monica G.

    -its for data center aggregation with all responses as positive or neutral, no responses were negative. ·Three diminution of service Email & Calendaring Data Center Aggregation Computer Bundles Demand Management Space Q1 and calendaring with all responses as positive or neutral, no responses were negative. ·"No brainer

  1. Calendar - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruary 26,Computers »Cafeterias Cafeterias4 Calendar

  2. For your calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProofWorkingEnergyGo modelP eFor your calendar

  3. Sandia National Laboratories: LED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electroluminescence was first reported by H.J. Round in 1907, and the first light-emitting diode (LED) was reported by O.V. Losev in 1927. Not until the birth of semiconductor...

  4. Sandia National Laboratories: LEDs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events, Photovoltaic, Research & Capabilities, Solar, Solid-State Lighting Titanium-dioxide (TiO2) nanoparticles show great promise as fillers to tune the refractive...

  5. Businss Operations Calendar: YY 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workdays WD 228 Holidays All cutoff Business Operations Calendar Y12 - FY 2015 (UPF 980 Shift) walternate Friday SDO S January 15 M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12...

  6. LED MR16 Lamps

    Broader source: Energy.gov [DOE]

    The following CALiPER report provides detailed analysis of LED MR16 lamp performance, covering basic performance characteristics as well as subjective evaluation of beam, shadow, and color quality. Pending reports will offer analysis on performance attributes that are not captured by LM-79 testing. These reports are intended to educate the industry on market trends, potential issues, and important areas for improvement.

  7. Global LED Manufacturing

    Energy Savers [EERE]

    0.20.5W 5630 PPA 0.51.0W 7030 PCT XVGA HDMI UHD 4K2K UHD 8K4K 0.81.2W 3030 EMC 1.22.0W 3535 EMC w Flip-Chip 0.50.8W 2835 PCT ? 1.01.5 W ???? Revolution of LED...

  8. LED Price Tracking Form

    Broader source: Energy.gov [DOE]

    DOE intends to update the SSL Pricing and Efficacy Trend Analysis for Utility Program Planning report on an annual basis, but doing so requires that we have sufficient product and purchase data including acquisition date, purchase price, product category, and rated initial lumens. Those interested in helping collect this data are asked to use the LED Price Tracking FormMicrosoft Excel and follow the instructions for submitting data.

  9. LED PAR38 Lamps

    Broader source: Energy.gov [DOE]

    The following CALiPER reports provide detailed analysis of LED PAR38 lamp performance, covering basic performance characteristics as well as subjective evaluation of beam, shadow, and color quality. Pending reports will offer analysis on flicker, dimming and power quality characteristics; stress testing; and lumen and chromaticity maintenance. These reports are intended to educate the industry on market trends, potential issues, and important areas for improvement.

  10. LED Record Efficacy and Brightness

    Broader source: Energy.gov [DOE]

    Designed for general lighting applications such as street, industrial, and parking garage lighting, the Cree XLamp® power LED sets new records for LED brightness and efficacy, up to 85 lm/W at 350 mA. The XLamp utilizes Cree's performance breakthrough EZBright™ LED chip; both products include technology that was developed in part with R&D funding support from DOE.

  11. ReCalendar: Calendaring and Scheduling Applications with CPU and Energy Resource Guarantees for Mobile Devices

    E-Print Network [OSTI]

    Adve, Sarita

    ReCalendar: Calendaring and Scheduling Applications with CPU and Energy Resource Guarantees scheme for CPU and energy resources, called ReCalendar. The goal is to enable soft real-time applications- cations need predictable management of system resources such as CPU and energy. Resource reservation

  12. ARM - IMB Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, FeatureListGeneral

  13. Technical Calendar Suggestions | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails News Home | ORNL Events and

  14. CALENDAR 2009-2010 Continuing Education

    E-Print Network [OSTI]

    Barthelat, Francois

    . Legal deposit 2009, National Library of Canada and Bibliothèque nationale du Québec ISSN 1718UNIVERSITY CALENDAR 2009-2010 Continuing Education #12;Moving into the role of Dean of Continuing of this Calendar. McGill enjoys a remarkable local, national and international reputation as a centre of excellence

  15. The siting record: An account of the programs of federal agencies and events that have led to the selection of a potential site for a geologic respository for high-level radioactive waste

    SciTech Connect (OSTI)

    Lomenick, T.F.

    1996-03-01T23:59:59.000Z

    This record of siting a geologic repository for high-level radioactive wastes (HLW) and spent fuel describes the many investigations that culminated on December 22, 1987 in the designation of Yucca Mountain (YM), as the site to undergo detailed geologic characterization. It recounts the important issues and events that have been instrumental in shaping the course of siting over the last three and one half decades. In this long task, which was initiated in 1954, more than 60 regions, areas, or sites involving nine different rock types have been investigated. This effort became sharply focused in 1983 with the identification of nine potentially suitable sites for the first repository. From these nine sites, five were subsequently nominated by the U.S. Department of Energy (DOE) as suitable for characterization and then, in 1986, as required by the Nuclear Waste Policy Act of 1982 (NWPA), three of these five were recommended to the President as candidates for site characterization. President Reagan approved the recommendation on May 28, 1986. DOE was preparing site characterization plans for the three candidate sites, namely Deaf Smith County, Texas; Hanford Site, Washington; and YM. As a consequence of the 1987 Amendment to the NWPA, only the latter was authorized to undergo detailed characterization. A final Site Characterization Plan for Yucca Mountain was published in 1988. Prior to 1954, there was no program for the siting of disposal facilities for high-level waste (HLW). In the 1940s and 1950s, the volume of waste, which was small and which resulted entirely from military weapons and research programs, was stored as a liquid in large steel tanks buried at geographically remote government installations principally in Washington and Tennessee.

  16. Ongoing LED RD Challenges (LED droop still challenge)

    Energy Savers [EERE]

    and Nonpolar GaN Semi polar GaN SOLUTION New GaN Crystal Planes * Semipolar planes for blue, green and yellow LEDs A. Romanov et al. : J. Appl. Phys. 100 (2006) 023533. (1122)...

  17. Metacapacitors for LED Lighting: Metacapacitors

    SciTech Connect (OSTI)

    None

    2010-09-02T23:59:59.000Z

    ADEPT Project: The CUNY Energy Institute is developing less expensive, more efficient, smaller, and longer-lasting power converters for energy-efficient LED lights. LEDs produce light more efficiently than incandescent lights and last significantly longer than compact fluorescent bulbs, but they require more sophisticated power converter technology, which increases their cost. LEDs need more sophisticated converters because they require a different type of power (low voltage direct current, or DC) than what's generally supplied by power outlets. The CUNY Energy Institute is developing sophisticated power converters for LEDs that contain capacitors made from new, nanoscale materials. Capacitors are electrical components that are used to store energy. CUNY's unique capacitors are configured with advanced power circuits to more efficiently control and convert power to the LED lighting source. They also eliminate the need for large magnetic components, instead relying on networks of capacitors that can be easily printed on plastic substrate. CUNY's prototype LED power converter already meets DOE's 2020 projections for the energy efficiency of LED power converters.

  18. Sandia National Laboratories: white LED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electroluminescence was first reported by H.J. Round in 1907, and the first light-emitting diode (LED) was reported by O.V. Losev in 1927. Not until the birth of semiconductor...

  19. Sandia National Laboratories: Red LED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electroluminescence was first reported by H.J. Round in 1907, and the first light-emitting diode (LED) was reported by O.V. Losev in 1927. Not until the birth of semiconductor...

  20. Sandia National Laboratories: Blue LED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electroluminescence was first reported by H.J. Round in 1907, and the first light-emitting diode (LED) was reported by O.V. Losev in 1927. Not until the birth of semiconductor...

  1. Maintenance Practices for LED Streetlights

    Broader source: Energy.gov [DOE]

    This April 14, 2014 webinar answered important questions about the maintenance and reliability of LED streetlights, and how to take these issues into account when planning and preparing for a...

  2. LED Lighting Facts®

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting Facts LED Lighting Facts LEDLED

  3. LED lamp power management system and method

    DOE Patents [OSTI]

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.

    2013-03-19T23:59:59.000Z

    An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

  4. LED lamp color control system and method

    DOE Patents [OSTI]

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A.M.

    2013-02-05T23:59:59.000Z

    An LED lamp color control system and method including an LED lamp having an LED controller 58; and a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 determines whether the LED source 80 is in a feedback controllable range, stores measured optical flux for the LED source 80 when the LED source 80 is in the feedback controllable range, and bypasses storing the measured optical flux when the LED source 80 is not in the feedback controllable range.

  5. Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruary 26,Computers »Cafeterias Cafeterias

  6. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne AutomaticsCaledonia,New

  7. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  8. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  9. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  10. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  11. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  12. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  13. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  14. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  15. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  16. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  17. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  18. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  19. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  20. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  1. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  2. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  3. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  4. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  5. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  6. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  7. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  8. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  9. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  10. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  11. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  12. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  13. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  14. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  15. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  16. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  17. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  18. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  19. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  20. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  1. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  2. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  3. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  4. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  5. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  6. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  7. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  8. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  9. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  10. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  11. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  12. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  13. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  14. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  15. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  16. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  17. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  18. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  19. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  20. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  1. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  2. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  3. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80Caldyne

  4. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump

  5. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump

  6. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump

  7. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump

  8. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump

  9. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump

  10. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump

  11. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump

  12. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump

  13. Calendar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump

  14. Calendar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdleBiological Science BiologicalBuildingCEMICLEAN

  15. Multicolor, High Efficiency, Nanotextured LEDs

    SciTech Connect (OSTI)

    Jung Han; Arto Nurmikko

    2011-09-30T23:59:59.000Z

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and green for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) heteroepitaxy of nitrogen-polar LEDs on sapphire, (ii) heteroepitaxy of semipolar (11{bar 2}2) green LEDs on sapphire, (iii) synthesis of quantum-dot loaded nanoporous GaN that emits white light without phosphor conversion, (iv) demonstration of the highest quality semipolar (11{bar 2}2) GaN on sapphire using orientation-controlled epitaxy, (v) synthesis of nanoscale GaN and InGaN medium, and (vi) development of a novel liftoff process for manufacturing GaN thin-film vertical LEDs. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  16. Events Calendar | ANSER Center | Argonne-Northwestern National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that renders the QD films similar to successful bulk semiconductors in terms of key photovoltaic characteristics. The results of spectroscopic measurements are harmonious...

  17. AUGUST 2004 REGIONAL FRUIT GROWER NEWSLETTER CALENDAR OF EVENTS

    E-Print Network [OSTI]

    Flore, Dept. of Horticulture, MSU For over a decade the cherry industry has been doing more and more September. 2. Avoid exceptionally heavy pruning, particularly of sweet cherries, at this time. 3. Do

  18. Diversity and Inclusion Events Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 2014 < prev next > Sun Mon Tue Wed Thu Fri Sat 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3...

  19. Diversity and Inclusion Events Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 2015 < prev next > Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 National Women's History Month 9:12PM to 3:13AM EST 8 9 10 11 12 13 14 National Women's History Month...

  20. Diversity and Inclusion Events Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2015 < prev next > Sun Mon Tue Wed Thu Fri Sat 28 29 30 31 1 2 3 4 5 6 7 8 9 10 George Washington Carver Recognition Day 1:41PM to 10:42PM EST 11 12 13 14 15 16 17 18 19 20...

  1. Events Calendar | ANSER Center | Argonne-Northwestern National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have emerged as credible contenders to conventional silicon cells photovoltaic devices. Separating light absorption from charge carrier transport dye sensitized mesoscopic...

  2. July 2007 Regional Fruit Grower Newsletter CALENDAR OF EVENTS

    E-Print Network [OSTI]

    system for compliance with agricultural-related laws and regulations as well as environmental good. The Michigan Agricultural Environmental Assurance Program (MAEAP) assesses livestock, farmstead, or cropping management practices. Cherry producers have been leading the way in farmstead verifications. They have been

  3. Events Calendar | ANSER Center | Argonne-Northwestern National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the potential ease and low cost of large scale fabrication with the promise of superior performance over bulk materials. In particular, photovoltaic (PV) devices require transfer...

  4. Events Calendar | ANSER Center | Argonne-Northwestern National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cells (DSCs) were the first to use a three-dimensional nanocrystalline junction for solar electricity production 1. The conversion efficiency for DSC's is currently 13 - 14 % and...

  5. May 2011 Regional Fruit Grower Newsletter CALENDAR OF EVENTS

    E-Print Network [OSTI]

    @msu.edu, 517-355-5191, x 1302 6/3 Parallel 45 "First Friday" Meeting Crane Hill Vineyards, Leelanau Co. Shoot of Elk Rapids on the southeast side of M-31 Dates: May 10, May 24, June 7, June 21 Time: 10-12 pm TRELLIS

  6. Events Calendar | ANSER Center | Argonne-Northwestern National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - 12:00 Yang Yang - "Recent Progress on Organic-Inorganic Hybrid Perovskite-Based Solar Cell" * 1:30 - 2:30 Alex Jen - "Molecular and Interface Engineering for Achieving...

  7. Events Calendar | ANSER Center | Argonne-Northwestern National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamics group at Cambridge University, will deliver an ANSER seminar on 116. Abstract: Dye-sensitized solar cells (DSCs) have unique attributes that afford them prospective...

  8. FEBRUARY 2007 REGIONAL FRUIT GROWER NEWSLETTER 2007 CALENDAR OF EVENTS

    E-Print Network [OSTI]

    . Hobart, Tasmania, Australia 2/7 Michigan Greenhouse Energy Meeting Doherty Hotel, Clare, MI 2/8 Seeds as well as Poland presenting relevant topics--we were so pleased with all the great information provided@msu.edu and specify the speaker's name and/or subject matter. MICHIGAN GREENHOUSE ENERGY MEETING By: Jim Bardenhagen

  9. Diversity and Inclusion Events Calendar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics4Dimitri Kusnezov - Chief Scientist11

  10. Events Calendar | ANSER Center | Argonne-Northwestern National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13Evacuation248 EvaluationMAY 2015 » Su M Tu W

  11. Events Calendar | ANSER Center | Argonne-Northwestern National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13Evacuation248 EvaluationMAY 2015 » Su M Tu

  12. Events Calendar | ANSER Center | Argonne-Northwestern National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13Evacuation248 EvaluationMAY 2015 » Su M

  13. Events Calendar | ANSER Center | Argonne-Northwestern National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13Evacuation248 EvaluationMAY 2015 » Su

  14. WINDExchange: Calendar of Wind Power-Related Events

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,EagaAbout Printable Version Bookmark and

  15. Diversity and Inclusion Events Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T ADRAFTJanuary 2004April 2015 < prev next > Sun

  16. Diversity and Inclusion Events Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T ADRAFTJanuary 2004April 2015 < prev next >

  17. Diversity and Inclusion Events Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| DepartmentStatementDepartmentDiggingDistributed Wind PolicyResponseMay 2015

  18. Diversity and Inclusion Events Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| DepartmentStatementDepartmentDiggingDistributed Wind PolicyResponseMay 2015July

  19. Diversity and Inclusion Events Calendar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy | Departmentthe SantaofTheCentury Challenges2011June 2015

  20. Events Calendar | ANSER Center | Argonne-Northwestern National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /Email Announcements12:25 p.m. -EFRC11/14/13IN July

  1. Events Calendar | ANSER Center | Argonne-Northwestern National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /Email Announcements12:25 p.m. -EFRC11/14/13IN JulyON

  2. Events Calendar | ANSER Center | Argonne-Northwestern National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /Email Announcements12:25 p.m. -EFRC11/14/13IN

  3. Events Calendar | ANSER Center | Argonne-Northwestern National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /Email Announcements12:25 p.m. -EFRC11/14/13INAUGUST

  4. Diversity and Inclusion Events Calendar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011 U.S. DEPARTMENTAssociate Deputy Secretary Williams

  5. High School Co-op Program Recruitment Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recruitment Calendar High School Co-op Program Recruitment Calendar Point your career towards Los Alamos Lab: work with the best minds on the planet in an inclusive environment...

  6. Hanford Site Environmental Report for Calendar Year 2001

    SciTech Connect (OSTI)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.; Morasch, Launa F.

    2002-09-02T23:59:59.000Z

    This report summarizes environmental information for the Hanford Site in Washington State for the calendar year 2001.

  7. Low Emission Development Strategies (LEDS): Technical, Institutional...

    Open Energy Info (EERE)

    Strategies (LEDS): Technical, Institutional and Policy Lessons Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Emission Development Strategies (LEDS): Technical,...

  8. Annual Site Environmental Report. Calendar Year 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    This report summarizes the environmental status of Ames Laboratory for calendar year 1997. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring programs.

  9. University Calendar, Feb. 27, 2012

    E-Print Network [OSTI]

    2012-02-27T23:59:59.000Z

    of the French Quarter. Kevin Gotham, professor of sociology/associate dean of Academic Affairs in the School of Liberal Arts, Tulane University. 7:30 p.m. The Commons, Spooner Hall. Free. Sponsored by The Commons. Call 785-864-6293. Public Event. Fracking...

  10. A Practical Primer to LED Technology

    Broader source: Energy.gov (indexed) [DOE]

    heatsink is what allows the high flux LED to generate much more light An LED (Light Emitting Diode) consists of a chip of semiconducting material treated to create a structure...

  11. LED Watch: The Outlook for OLEDs

    Broader source: Energy.gov [DOE]

    December 2014 LED Watch: The Outlook for OLEDs James Brodrick, U.S. Department of Energy LD+A Magazine

  12. Dual LED/incandescent security fixture

    DOE Patents [OSTI]

    Gauna, Kevin Wayne

    2005-06-21T23:59:59.000Z

    A dual LED and incandescent security lighting system uses a hybrid approach to LED illumination. It combines an ambient LED illuminator with a standard incandescent lamp on a motion control sensor. The LED illuminator will activate with the onset of darkness (daylight control) and typically remain on during the course of the night ("always on"). The LED illumination, typically amber, is sufficient to provide low to moderate level lighting coverage to the wall and ground area adjacent to and under the fixture. The incandescent lamp is integrated with a motion control circuit and sensor. When movement in the field of view is detected (after darkness), the incandescent lamp is switched on, providing an increased level of illumination to the area. Instead of an "always on" LED illuminator, the LEDs may also be switched off when the incandescent lamp is switched on.

  13. Calendar Year 2004 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America UpdateCX-001638:6 Categorical1 Calendar

  14. Calendar Year 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America UpdateCX-001638:6 Categorical13 Calendar

  15. University Calendar, August 21, 2012

    E-Print Network [OSTI]

    2012-08-21T23:59:59.000Z

    day for 90% refund. All-day event, Strong Hall. Sponsored by Office of the Registrar. Call 785-864-4422. Seminar. What You Need to Know to Apply for a Film Internship. Chance Clutter, assistant director; Melissa Johnson, assistant director... 864- 3956. Wilcox Classical Museum 103 Lippincott Hall. Closed over summer term; hours starting Aug. 20: 9 a.m.-4 p.m. Mon.-Fri. Call 864-3153. Antiquities such as vases, coins, small sculptures, lamps and architectural terra cottas, and full...

  16. University Calendar, September 4, 2012

    E-Print Network [OSTI]

    2012-09-04T23:59:59.000Z

    Studies), Alice Kitchen (retired social worker) and Melissa Stiehler (student, Penn Valley Community College). Noon, ECM Center, 1204 Oread Ave. Free. Sponsored by Campus Ministry. Call 785-843- 4933. Public Event. Book Talk: "Angels at Sunset.” Tom...., 10 a.m.-midnight Sun. Call 864-8900. Call 864-3956. Wilcox Classical Museum 103 Lippincott Hall. 9 a.m.-4 p.m. Mon.-Fri. Call 864-3153. Antiquities such as vases, coins, small sculptures, lamps and architectural terra cottas, and full...

  17. LED Linear Lamps and Troffer Lighting

    Broader source: Energy.gov [DOE]

    The CALiPER program performed a series of investigations on linear LED lamps. Each report in the series covers the performance of up to 31 linear LED lamps, which were purchased in late 2012 or 2013. The first report focuses on bare lamp performance of LED T8 replacement lamps and subsequent reports examine performance in various troffers, as well as cost-effectiveness. There is also a concise guidance document that describes the findings of the Series 21 studies and provides practical advice to manufacturers, specifiers, and consumers (Report 21.4: Summary of Linear (T8) LED Lamp Testing , 5 pages, June 2014).

  18. LED Replacements for Linear Fluorescent Lamps Webcast

    Broader source: Energy.gov [DOE]

    In this June 20, 2011 webcast on LED products marketed as replacements for linear fluorescent lamps, Jason Tuenge of the Pacific Northwest National Laboratory (PNNL) discussed current Lighting...

  19. LED Street Lighting Conversion Workshop Presentations

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the National League of Cities Mobile Workshop, LED Street Lighting Conversion: Saving Your Community Money, While Improving Public Safety,...

  20. Sandia National Laboratories: high-brightness LED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnership, Research & Capabilities, Solid-State Lighting Solid state lighting (SSL), which uses light-emitting diodes (LEDs), has the potential to be 10 times more energy...

  1. Sandia National Laboratories: efficient LED lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnership, Research & Capabilities, Solid-State Lighting Solid state lighting (SSL), which uses light-emitting diodes (LEDs), has the potential to be 10 times more energy...

  2. Challenges in LED Research and Development

    Broader source: Energy.gov [DOE]

    View the video about LED lighting technology, where it is headed, and the DOE’s role in its continued R&D.

  3. Municipal Consortium LED Street Lighting Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controls Norma Isahakian, City of Los Angeles Bureau of Street Lighting San Jose's "Smart" LED Streetlights: Controlled Amy Olay, City of San Jose Adaptive Lighting Controls...

  4. Availability Bars for Calendar Scheduling AbstractAndrew Faulring

    E-Print Network [OSTI]

    Myers, Brad A.

    Availability Bars for Calendar Scheduling AbstractAndrew Faulring Carnegie Mellon University 5000 meeting or to what extent an existing meeting can be rescheduled. This paper introduces the "availability. Availability bars, embedded in calendar applications, can help users who manually schedule meetings

  5. Solving the 'Green Gap' in LED Technology

    Broader source: Energy.gov [DOE]

    One long-standing high-priority research area for DOE is to increase the efficiency of deep green LEDs. Although most products today use phosphor conversion (PC) to produce white light from a blue LED, having a good green source could lead to color-mixed white sources that would avoid the losses associated with the PC approach.

  6. Today LED Holiday Lights, Tomorrow the World?

    SciTech Connect (OSTI)

    Gordon, Kelly L.

    2004-12-20T23:59:59.000Z

    This article for The APEM Advantage, the quarterly newsletter of the Association of Professional Energy Managers (APEM) describes the recent increase in the popularity of light emitting diode (LED) lighting and compares LED light output with that of incandescent and compact fluorescent lighting.

  7. Locally Led Conservation The Local Work Group

    E-Print Network [OSTI]

    Grants ­ Conservation Stewardship Program ­ Environmental Quality Incentive Program ­ Farm & Ranch Lands1 Locally Led Conservation & The Local Work Group Mark Habiger NRCS #12;2 What Is "Locally Led Conservation"? · Community Stakeholders ­ 1. Assessing their natural resource conservation needs ­ 2. Setting

  8. LED Light Sources for Projection Display Applications

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    LED Light Sources for Projection Display Applications By Chenhui Peng 04-13-2012 #12;Outline · 1. · The first practical LED is in red color and it is made with gallium arsenide (GaAs). 4http://en.wikipedia.org/wiki/Light with holes and release energy in the form of photons. 5http://en.wikipedia.org/wiki/Light-emitting_diode #12

  9. Financing Guidance for LED Street Lighting Programs

    Broader source: Energy.gov [DOE]

    Financing an LED street lighting replacement program can present a hurdle for many system owners, even if the planned transition offers very favorable economics. Replacing the existing system requires a significant budget, particularly as the scope of the program increases. Cities such as Los Angeles and Seattle have invested many millions of dollars into their (very successful) LED street lighting replacement programs.

  10. High Performance Green LEDs by Homoepitaxial

    SciTech Connect (OSTI)

    Wetzel, Christian; Schubert, E Fred

    2009-11-22T23:59:59.000Z

    This work's objective was the development of processes to double or triple the light output power from green and deep green (525 - 555 nm) AlGaInN light emitting diode (LED) dies within 3 years in reference to the Lumileds Luxeon II. The project paid particular effort to all aspects of the internal generation efficiency of light. LEDs in this spectral region show the highest potential for significant performance boosts and enable the realization of phosphor-free white LEDs comprised by red-green-blue LED modules. Such modules will perform at and outperform the efficacy target projections for white-light LED systems in the Department of Energy's accelerated roadmap of the SSL initiative.

  11. An LED pulser for measuring photomultiplier linearity

    E-Print Network [OSTI]

    Friend, M; Quinn, B

    2011-01-01T23:59:59.000Z

    A light-emitting diode (LED) pulser for testing the low-rate response of a photomultiplier tube (PMT) to scintillator-like pulses has been designed, developed, and implemented. This pulser is intended to simulate 80 ns full width at half maximum photon pulses over the dynamic range of the PMT, in order to precisely determine PMT linearity. This particular design has the advantage that, unlike many LED test rigs, it does not require the use of multiple calibrated LEDs, making it insensitive to LED gain drifts. Instead, a finite-difference measurement is made using two LEDs which need not be calibrated with respect to one another. These measurements give a better than 1% mapping of the response function, allowing for the testing and development of particularly linear PMT bases.

  12. Environmental releases for calendar year 1993

    SciTech Connect (OSTI)

    Thomas, S.P.; Curn, B.L.

    1994-07-01T23:59:59.000Z

    This report presents data on radioactive and nonradioactive materials released into the environment during calendar year 1993 from facilities managed by Westinghouse Hanford Company. As part of this executive summary, comprehensive data summaries of air emissions and liquid effluents in 1993 are displayed in tables. These tables represent the following: radionuclide air emissions data; data on radioactive liquid effluents discharged to the soil; radionuclides discharged to the Columbia River; nonradioactive air emissions data; total volumes and flow rates of 200/600 area liquid effluents. Both summary and detailed presentations of these data are given. When appropriate, comparisons to data from previous years are made.

  13. Calendar Year 2000 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSS Letter - Final.tif8246:792:022:24Potential0 Calendar

  14. Calendar Year 2001 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America UpdateCX-001638:6 Categorical1 Calendar Year

  15. Calendar Year 2002 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America UpdateCX-001638:6 Categorical1 Calendar Year2

  16. Calendar Year 2003 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America UpdateCX-001638:6 Categorical1 Calendar Year23

  17. Calendar Year 2005 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America UpdateCX-001638:6 Categorical1 Calendar5

  18. Calendar Year 2006 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America UpdateCX-001638:6 Categorical1 Calendar56

  19. Calendar Year 2007 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America UpdateCX-001638:6 Categorical1 Calendar567

  20. Calendar Year 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America UpdateCX-001638:6 Categorical1 Calendar5678

  1. Calendar Year 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America UpdateCX-001638:6 Categorical1 Calendar56789

  2. Calendar Year 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America UpdateCX-001638:6 Categorical1 Calendar567890

  3. Calendar Year 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America UpdateCX-001638:6 Categorical1 Calendar5678901

  4. Calendar Year 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America UpdateCX-001638:6 Categorical13 Calendar Year

  5. Calendar Year 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America UpdateCX-001638:6 Categorical13 Calendar Year4

  6. White LED with High Package Extraction Efficiency

    SciTech Connect (OSTI)

    Yi Zheng; Matthew Stough

    2008-09-30T23:59:59.000Z

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W{sub e} using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat generated in the package may cause a deterioration of encapsulant materials, affecting the performance of both the LED die and phosphor, leading to a decrease in the luminous efficacy over lifetime. Recent studies from research groups at Rensselaer Polytechnic Institute found that, under the condition to obtain a white light, about 40% of the light is transmitted outward of the phosphor layer and 60% of the light is reflected inward.1,2 It is claimed that using scattered photon extraction (SPE) technique, luminous efficacy is increased by 60%. In this project, a transparent/translucent monolithic phosphor was used to replace the powdered phosphor layer. In the normal pcLED package, the powdered phosphor is mixed with silicone either to be deposited on the top of LED die forming a chip level conversion (CLC) white LED or to be casted in the package forming a volume conversion white LED. In the monolithic phosphors there are no phosphor powder/silicone interfaces so it can reduce the light scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is inserted in the white LED package between the blue LED die and phosphor layer. It will selectively transmit the blue light from the LED die and reflect the phosphor's yellow inward emission outward. The two technologies try to recover backward light to the outward direction in the pcLED package thereby improving the package extraction efficiency.

  7. High Power UV LED Industrial Curing Systems

    SciTech Connect (OSTI)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14T23:59:59.000Z

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  8. LED Lighting Facts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting Facts LED Lighting Facts LED

  9. Decisions that led to Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    German physicists Otto Hahn and Fritz Strass- mann's claim that they had achieved nuclear fission. He led a team that included Alfred O. C. Nier who was an expert on mass...

  10. LED Essentials- Technology, Applications, Advantages, Disadvantages

    Broader source: Energy.gov [DOE]

    On October 11, 2007, Kevin Dowling, VP of Innovation for Philips Solid-State Lighting Solutions, presented a broad introduction to LED technology, and discussed the technology status, advantages...

  11. LED Color Stability: 10 Important Questions

    Broader source: Energy.gov [DOE]

    This April 15, 2014 webinar examined the causes of color shift, and took a look at existing metrics used to describe color shift/color stability in LED lighting. The lumen maintenance lifetime of...

  12. Text-Alternative Version LED Lighting Forecast

    Broader source: Energy.gov [DOE]

    The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications estimates the energy savings of LED white-light sources over the analysis period of 2013 to 2030....

  13. LEDS GP Success Story: Fostering Coordinated LEDS Support in Kenya (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01T23:59:59.000Z

    The LEDS Global Partnership (LEDS GP) strives to advance climate-resilient, low-emission development through catalyzing collaboration, information exchange, and action on the ground. The Government of Kenya is a key LEDS GP member and offers an inspiring example of how LEDS GP is having an impact globally. The 2012 LEDS Collaboration in Action workshop in London provided an interactive space for members to share experiences on cross-ministerial LEDS leadership and to learn about concrete development impacts of LEDS around the world. Inspired by these stories, the Kenya's Ministry of State for Planning, National Development and Vision 2030 (MPND) began to collaborate closely with the Ministry of Environment and Mineral Resources to create strong links between climate change action and development in the country, culminating in the integration of Kenya's National Climate Change Action Plan and the country's Medium Term Development Plan.

  14. Pittsburgh LED Street Lighting Research Project Performance Criteria

    Broader source: Energy.gov [DOE]

    A Pittsburgh LED Street Lighting Research Project document on Technical and Aesthetic Performance for Business District LED Lighting.

  15. Engineering Research Division publication report, calendar year 1980

    SciTech Connect (OSTI)

    Miller, E.K.; Livingston, P.L.; Rae, D.C. (eds.)

    1980-06-01T23:59:59.000Z

    Each year the Engineering Research Division of the Electronics Engineering Department at Lawrence Livermore Laboratory has issued an internal report listing all formal publications produced by the Division during the calendar year. Abstracts of 1980 reports are presented.

  16. Annual Waste Minimization Summary Report, Calendar Year 2008

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-02-01T23:59:59.000Z

    This report summarizes the waste minimization efforts undertaken by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during calendar year 2008.

  17. A Calendar with Common Sense Erik T. Mueller

    E-Print Network [OSTI]

    to let you know the battery is low while you are asleep. · A calendar manager thinks it is fine, is even open. To counteract this trend we are developing ThoughtTreasure (Mueller, 1998a), a treasure-house

  18. Routine environmental monitoring schedule, calendar year 1995

    SciTech Connect (OSTI)

    Schmidt, J.W.; Markes, B.M.; McKinney, S.M.

    1994-12-01T23:59:59.000Z

    This document provides Bechtel Hanford, Inc. (BHI) and Westinghouse Hanford Company (WHC) a schedule of monitoring and sampling routines for the Operational Environmental Monitoring (OEM) program during calendar year (CY) 1995. Every attempt will be made to consistently follow this schedule; any deviation from this schedule will be documented by an internal memorandum (DSI) explaining the reason for the deviation. The DSI will be issued by the scheduled performing organization and directed to Near-Field Monitoring. The survey frequencies for particular sites are determined by the technical judgment of Near-Field Monitoring and may depend on the site history, radiological status, use and general conditions. Additional surveys may be requested at irregular frequencies if conditions warrant. All radioactive wastes sites are scheduled to be surveyed at least annually. Any newly discovered wastes sites not documented by this schedule will be included in the revised schedule for CY 1995.

  19. Environmental releases for calendar year 1994

    SciTech Connect (OSTI)

    Gleckler, B.P.

    1995-07-01T23:59:59.000Z

    This report fulfills the annual environmental release reporting requirements of US Department of Energy (DOE) Orders. This report provides supplemental information to the Hanford Site Environmental Report. The Hanford Site Environmental Report provides an update on the environmental status of the entire Hanford Site. The sitewide annual report summarizes the degree of compliance of the Hanford Site with applicable environmental regulations and informs the public about the impact of Hanford operations on the surrounding environment. Like the Hanford Site Environmental Report, this annual report presents a summary of the environmental releases from facilities managed by the Westinghouse Hanford Company (WHC) and monitored by Bechtel Hanford, Incorporated (BHI). In addition to the summary data, this report also includes detailed data on air emissions, liquid effluents, and hazardous substances released to the environment during calendar year 1994 from these facilities.

  20. Battery Calendar Life Estimator Manual Modeling and Simulation

    SciTech Connect (OSTI)

    Jon P. Christophersen; Ira Bloom; Ed Thomas; Vince Battaglia

    2012-10-01T23:59:59.000Z

    The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

  1. LED Lighting Forecast | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting Facts LED Lighting Facts

  2. LED Outdoor Area Lighting Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting Facts LED LightingOutdoor Area

  3. LED structure with enhanced mirror reflectivity

    DOE Patents [OSTI]

    Bergmann, Michael; Donofrio, Matthew; Heikman, Sten; Schneider, Kevin S; Haberern, Kevin W; Edmond, John A

    2014-04-01T23:59:59.000Z

    Embodiments of the present invention are generally related to LED chips having improved overall emission by reducing the light-absorbing effects of barrier layers adjacent mirror contacts. In one embodiment, a LED chip comprises one or more LEDs, with each LED having an active region, a first contact under the active region having a highly reflective mirror, and a barrier layer adjacent the mirror. The barrier layer is smaller than the mirror such that it does not extend beyond the periphery of the mirror. In another possible embodiment, an insulator is further provided, with the insulator adjacent the barrier layer and adjacent portions of the mirror not contacted by the active region or by the barrier layer. In yet another embodiment, a second contact is provided on the active region. In a further embodiment, the barrier layer is smaller than the mirror such that the periphery of the mirror is at least 40% free of the barrier layer, and the second contact is below the first contact and accessible from the bottom of the chip.

  4. LEDs for Energy Efficient Greenhouse Lighting

    E-Print Network [OSTI]

    Singh, Devesh; Meinhardt-Wollweber, Merve; Roth, Bernhard

    2014-01-01T23:59:59.000Z

    Light energy is an important factor for plant growth. In regions where the natural light source, i.e. solar radiation, is not sufficient for growth optimization, additional light sources are being used. Traditional light sources such as high pressure sodium lamps and other metal halide lamps are not very efficient and generate high radiant heat. Therefore, new sustainable solutions should be developed for energy efficient greenhouse lighting. Recent developments in the field of light source technologies have opened up new perspectives for sustainable and highly efficient light sources in the form of light-emitting diodes, i.e. LEDs, for greenhouse lighting. This review focuses on the potential of LEDs to replace traditional light sources in the greenhouse. In a comparative economic analysis of traditional vs. LED lighting, we show that the introduction of LEDs allows reduction of the production cost of vegetables in the long-run of several years, due to the high energy efficiency, low maintenance cost and lon...

  5. Sustainable LED Fluorescent Light Replacement Technology

    SciTech Connect (OSTI)

    None

    2011-06-30T23:59:59.000Z

    Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle – i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: • Bill-of-Materials (BOM) Builder – Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life. • Environmental Impact Review – Designs are comparable across lifecycle phases, subsystems, and environmental impact category, and can be normalized to a userdefined functional unit. • Drill-down Review – These provide an indepth look at individual lamp designs with the ability to review across subsystem or lifecycle phase.

  6. Low-Cost Illumination-Grade LEDs

    SciTech Connect (OSTI)

    Epler, John

    2013-08-31T23:59:59.000Z

    Solid State Lighting is a cost-effective, energy-conserving technology serving a rapidly expand- ing multi-billion dollar market. This program was designed to accelerate this lighting revolution by reducing the manufacturing cost of Illumination-Grade LEDs. The technical strategy was to investigate growth substrate alternatives to standard planar sapphire, select the most effective and compatible option, and demonstrate a significant increase in Lumen/$ with a marketable LED. The most obvious alternate substrate, silicon, was extensively studied in the first two years of the program. The superior thermal and mechanical properties of Si were expected to improve wavelength uniformity and hence color yield in the manufacture of high-power illumination- grade LEDs. However, improvements in efficiency and epitaxy uniformity on standard c-plane sapphire diminished the advantages of switching to Si. Furthermore, the cost of sapphire decreased significantly and the cost of processing Si devices using our thin film process was higher than expected. We concluded that GaN on Si was a viable technology but not a practical option for Philips Lumileds. Therefore in 2012 and 2013, we sought and received amendments which broadened the scope to include other substrates and extended the time of execution. Proprietary engineered substrates, off-axis (non-c-plane) sapphire, and c-plane patterned sapphire substrates (PSS) were all investigated in the final 18 months of this program. Excellent epitaxy quality was achieved on all three candidates; however we eliminated engineered substrates and non-c-plane sapphire because of their higher combined cost of substrate, device fabrication and packaging. Ultimately, by fabricating a flip-chip (FC) LED based upon c-plane PSS we attained a 42% reduction in LED manufacturing cost relative to our LUXEON Rebel product (Q1-2012). Combined with a flux gain from 85 to 102 Lm, the LUXEON Q delivered a 210% increase in Lm/$ over this time period. The technology was commercialized in our LUXEON Q product in Sept., 2013. Also, the retention of the sapphire increased the robustness of the device, enabling sales of low-cost submount-free chips to lighting manufacturers. Thus, blue LED die sales were initiated in the form of a PSS-FC in February, 2013.

  7. Series Input Modular Architecture for Driving Multiple LEDs

    E-Print Network [OSTI]

    , where each cell drives four 700 mA LEDs. Keywords ­ solid-state lighting, light emitting diodes, LED have been achieved over the past decade in solid state light emitting diodes (LEDs), leading to high

  8. HANFORD SITE NEAR-FACILITY ENVIRONMENTAL MONITORING DATA REPORT FOR CALENDAR YEAR 2003

    SciTech Connect (OSTI)

    Perkins, Craig J.; Coffman, Randy T.; Mckinney, Stephen M.; Mitchell, Ronald M.; Roos, Richard C.

    2004-09-01T23:59:59.000Z

    This document presents the results of near-facility monitoring on the Hanford Site for calendar year 2003.

  9. Site Environmental Report-Calendar Year 2001

    SciTech Connect (OSTI)

    Dan Kayser

    2002-09-03T23:59:59.000Z

    The Laboratory's mission is to conduct fundamental research in the physical, chemical, materials, mathematical sciences and engineering which underlie energy generating, conversion, transmission and storage technologies, environmental improvement, and other technical areas essential to national needs. These efforts will be maintained so as to contribute to the achievement of the Department of Energy's Missions and Goals; more specifically, to increase the general levels of scientific knowledge and capabilities, to prepare engineering and physical sciences students for future scientific endeavors, and to initiate nascent technologies and practical applications arising from our basic scientific programs. The Laboratory will approach all its operations with the safety and health of all workers as a constant objective and with genuine concern for the environment. Ames Laboratory does not conduct classified research. The primary purpose of this report is to summarize the performance of Ames Laboratory's environmental programs, present highlights of significant environmental activities, and confirm compliance with environmental regulations and requirements for calendar year 2001. This report is a working requirement of Department of Energy Order 231.1, Environment, Safety, and Health Reporting''.

  10. Demonstration Assessment of Light Emitting Diode (LED) Street...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report This...

  11. Demonstration Assessment of Light-Emitting Diode (LED) Freezer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting This document is a report...

  12. (Expired) Nationwide Limited Public Interest Waiver for LED Lighting...

    Energy Savers [EERE]

    (Expired) Nationwide Limited Public Interest Waiver for LED Lighting and HVAC Units: February 11, 2010 (Expired) Nationwide Limited Public Interest Waiver for LED Lighting and HVAC...

  13. Energy Department Announces New University-Led Projects to Create...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University-Led Projects to Create More Efficient, Lower Cost Concentrating Solar Power Systems Energy Department Announces New University-Led Projects to Create More Efficient,...

  14. Research Led by Sandia Reveals Leading-Edge Erosion Significantly...

    Broader source: Energy.gov (indexed) [DOE]

    Research Led by Sandia Reveals Leading-Edge Erosion Significantly Reduces Wind Turbine Performance Research Led by Sandia Reveals Leading-Edge Erosion Significantly Reduces Wind...

  15. LED North America - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s - 1 2 3 4 5 6 7 8 9LDRD, What doesLED

  16. White LED with High Package Extraction Efficiency

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item youTheWSRC-TR-97-0100WHITE LED WITH HIGH PACKAGE

  17. SemiLEDs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAir JumpCalifornia | OpenSelawik|SemiLEDs Jump

  18. SunLed Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation,SunElectra Jump to: navigation,SunLed

  19. Recessed LED Downlights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified11Department ofMeetingSynthetic DieselRecessed LED

  20. Calendar for Slice Phase 2 Process (slice/phase2)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.05 Calendar Year 19959 Calendar23452

  1. New and Underutilized Technology: High Bay LED Lighting

    Broader source: Energy.gov [DOE]

    The following information outlines key deployment considerations for high bay LED lighting within the Federal sector.

  2. Text-Alternative Version: LED Essentials- Technology, Applications, Advantages, Disadvantages

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the LED Essentials - Technology, Applications, Advantages, Disadvantages webcast.

  3. Environmental report for calendar year 1989

    SciTech Connect (OSTI)

    Stencel, J.R.; Turrin, R.P.

    1991-03-01T23:59:59.000Z

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for Calendar Year 1989 (CY89). The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations. The objective of the environmental report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. During CY89, there were no accidents, incidents, or occurrences that had a significant impact on PPPL facilities or program operations. The accidental overfilling of an underground storage tank (UST) during 1988, along with the discovery of residual hydrocarbons in the soil of an area used for unloading fuel oil trucks over the last 30 years, has the potential for a minor environmental impact and has resulted in a costly clean up in this area. Surface water analyses for both radioactive and nonradioactive pollutants have shown nothing above normally expected background values. Ambient tritium levels at less than 100 pCi/liter (3.7 Bq/liter) were measured in D-site well water. New groundwater monitoring wells were added in 1989 as a requirement for the groundwater part of our New Jersey Pollutant Discharge Elimination System (NJPDES) permit. Initial sampling of these wells indicated the presence of lead in two shallow wells next to the detention basin. Radiation exposure via airborne effluents into the environment is still at insignificant levels; however, a stack monitor for tritium is planned for 1990 to ensure compliance with new EPA regulations. Off-site surface water, soils, and biota continued to be analyzed for radioactive baselines in CY89. 51 refs., 27 figs., 40 tabs.

  4. Mark your calendars to attend these events Want your events noted here? Make sure they are entered in the VPIMS Calendar!

    E-Print Network [OSTI]

    Bordenstein, Seth

    ; 2301 A VUH Topic: Intro to Anesthesia--Dr. Richardson 9:00a11:00a Anesthesia Knowledge Test (Group 1); 2301 A VUH 12:30p2:30p Anesthesia Knowledge Test (Group 2); 2301 A VUH 3:00p4:00p CA 1 Topic: Overview of Rota on--Dr. Mathews 8:00a4:00p Regional Anesthesia & Acute Pain Course; 4648 TVC

  5. POLICY ON CALENDAR SUBMISSIONS University Policy No: AC1120

    E-Print Network [OSTI]

    Victoria, University of

    1 POLICY ON CALENDAR SUBMISSIONS University Policy No: AC1120 Classification: Academic and Students relevant university policies and procedures, academic policies and regulations, university fees, courses and programs of study. The purpose of this policy is to outline requirements for publishing the University

  6. Mark Your Calendar! Indiana's only statewide wind power

    E-Print Network [OSTI]

    Ginzel, Matthew

    Mark Your Calendar! Indiana's only statewide wind power conference is July 21-22, 2010. WIndiana in Track 1. Wind power supply chain information will be in Track 2. Track 3 is an expanded Community Wind 2010. First, there will be three separate session tracks to choose from. Big Wind will be represented

  7. Ames Laboratory site environmental report, calendar year 1995

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This report summarizes the environmental status of Ames Laboratory for calendar year 1995. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring programs.

  8. Winter Session 2008 Calendar January 2 25, 2008

    E-Print Network [OSTI]

    Adali, Tulay

    Winter Session 2008 Calendar January 2 ­ 25, 2008 November 1 Registration begins November 22 - 23 Campus closed for Thanksgiving Holiday December 24 ­ January 1Campus closed for winter break January 2 First day of winter session Last day to drop for a 100% tuition refund* January 3 Last day to drop

  9. Routine environmental monitoring schedule, calendar year 1998

    SciTech Connect (OSTI)

    McKinney, S.M.

    1997-11-24T23:59:59.000Z

    This document provides the Environmental Restorations Contractor (ERC) and the Project Hanford Management Contractor (PHMC) a schedule in accordance with the HNF-PRO-454, Inactive Waste Sites` HNF-PRO-455, Solid Waste 3 Management4 and BHI-EE-02, Environmental Requirements, of monitoring and sampling, routines for the near-facility environmental monitoring program during calendar year (CY) 1998. Every attempt will be made to consistently follow this schedule; any deviation from this schedule will be documented by an internal memorandum (DSI) explaining the reason for the deviation. The DSI will be issued by the scheduled performing organization and directed to Environmental Monitoring and Investigations. The survey frequencies for particular sites are determined by the technical judgment of Environmental Monitoring and investigations and may depend on the site history, radiological status, use, and general conditions. Additional surveys may be requested at irregular frequencies if conditions warrant. All radioactive wastes sites are scheduled to be surveyed at least annually. Any newly discovered wastes sites not documented by this schedule will be included in the revised schedule for CY 1999. The outside perimeter road surveys of 200 East and West Area and the rail survey from the 300 Area to Columbia Center will be performed in the year 2000 per agreement with Department of Energy, Richland Field Office. This schedule does not discuss staffing needs, nor does it list the monitoring equipment to be used in completing specific routines. Personnel performing routines to meet this schedule shall communicate any need for 1332 assistance in completing these routines to Radiological Control management and Environmental Monitoring and Investigations. After each routine survey is completed, a copy of the survey record, maps, and data sheets will be forwarded to Environmental Monitoring and Investigations. These routine surveys will not be considered complete until this documentation is received. At the end of each month, the ERC and PHMC radiological control organizations shall forward a copy of the Routine Signoff Sheet and a DSI validating the completion of the scheduled routine surveys for that month.

  10. Annual Site Environmental Report Calendar Year 2007

    SciTech Connect (OSTI)

    Dan Kayser-Ames Laboratory

    2007-12-31T23:59:59.000Z

    This report summarizes the environmental status of Ames Laboratory for calendar year 2007. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring activities. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies 11 buildings owned by the Department of Energy (DOE). See the Laboratory's Web page at www.external.ameslab.gov for locations and Laboratory overview. The Laboratory also leases space in ISU owned buildings. In 2007, the Laboratory accumulated and disposed of waste under U.S. Environmental Protection Agency (EPA) issued generator numbers. All waste is handled according to all applicable EPA, State, Local and DOE Orders. In 2006 the Laboratory reduced its generator status from a Large Quantity Generator (LQG) to a Small Quantity Generator (SQG). EPA Region VII was notified of this change. The Laboratory's RCRA hazardous waste management program was inspected by EPA Region VII in April 2006. There were no notices of violations. The inspector was impressed with the improvements of the Laboratory's waste management program over the past ten years. The Laboratory was in compliance with all applicable federal, state, local and DOE regulations and orders in 2007. There were no radiological air emissions or exposures to the general public due to Laboratory activities in 2007. See U.S. Department of Energy Air Emissions Annual Report in Appendix B. As indicated in prior SERs, pollution awareness, waste minimization and recycling programs have been in practice since 1990, with improvements implemented most recently in 2003. Included in these efforts were battery and CRT recycling, waste white paper and green computer paper-recycling. Ames Laboratory also recycles/reuses salvageable metal, used oil, styrofoam peanuts, batteries, fluorescent lamps and telephone books. Ames Laboratory reported to DOE-Ames Site Office (AMSO), through the Laboratory's Self Assessment Report, on its Affirmative Procurement Performance Measure. A performance level of 'A' was achieved in 2007 for Integrated Safety, Health, and Environmental Protection. As reported in Site Environmental Reports for prior years, the Laboratory's Environmental Management System has been integrated into the Laboratory's Integrated Safety Management System since 2005. The integration of EMS into the way the Laboratory does business allows the Laboratory to systematically review, address and respond to the Laboratory's environmental impacts.

  11. Upcoming Events Upcoming Biodiesel Events

    E-Print Network [OSTI]

    Search Upcoming Events Upcoming Biodiesel Events Sustainable Biodiesel Workshop Ocean State Clean Consortium Soy Biodiesel Workshop Lake Michigan Clean Cities September 15, 2010 Purdue Technology Center.eng.iastate.edu/ Biodiesel Congress F.O. Lichts September 22-24, 2010 Mercure Grant Hotel Sao Paulo, Brazil www.agra

  12. Regenerative braking on bicycles to power LED safety flashers

    E-Print Network [OSTI]

    Collier, Ian M

    2005-01-01T23:59:59.000Z

    This work develops a method for capturing some of the kinetic energy ordinarily lost during braking on bicycles to power LED safety flashers. The system is designed to eliminate: (a) battery changing in popular LED flashers, ...

  13. Building highly efficient LEDs in the yellow-green spectrum

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    Argonne and Purdue researchers are peering deep into the atomic structure and composition of LED lights in order to build highly efficient LEDs in the yellow-green spectrum.

  14. EECBG Success Story: Small Nebraska Town Welcomes LEDs and Energy...

    Broader source: Energy.gov (indexed) [DOE]

    historic square, built in the 1850's, is about to become home to something new: LED lights. Learn more. Addthis Related Articles Tecumseh is installing 95 new LED light fixtures...

  15. LED Manufacturing Process Modifications Will Boost Quality and

    E-Print Network [OSTI]

    2012 The Issue Highly energyefficient LightEmitting Diode (LED) lighting products have made great process that will enable LED manufacturers to produce higher quality, energyefficient products at lower

  16. LEDs Go Ivy League: Princeton’s Dillon Gymnasium

    Broader source: Energy.gov [DOE]

    View the video about LED lighting in Dillon Gymnasium, a focal point of sports and recreation at Princeton since 1947. William Evans discusses measurable benefits of LED lighting in the gym and...

  17. Text-Alternative Version: Challenges in LED Research and Development

    Broader source: Energy.gov [DOE]

    Narrator: LEDs have made remarkable progress in the past decade and gained a strong foothold in the US marketplace. In 2012, LED lighting saved an estimated 71 trillion BTUs, equivalent to annual...

  18. June Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Park Open House Event Fuller Lodge - 2132 Central Avenue, Los Alamos, New Mexico, 87544 USA Public Open House with the US Dept. of Energy and National Park Service planning team...

  19. Text-Alternative Version: LED Replacements for Linear Fluorescent Lamps

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the "LED Replacements for Linear Fluorescent Lamps" webcast, held June 20, 2011.

  20. Text-Alternative Version: LEDs for Interior Office Applications

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the LEDs for Interior Office Applications webcast, held March 18, 2010.

  1. Text-Alternative Version: Evaluating LED Street Lighting Solutions

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the Evaluating LED Street Lighting Solutions webcast, held July 20, 2010.

  2. Wind Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Below is an industry calendar with meetings, conferences, and webinars of interest to the wind energy technology communities. IEA Wind Task 34 (WREN) Quarterly Webinar 3:...

  3. Annual Site Environmental Report Calendar Year 2010

    SciTech Connect (OSTI)

    Kayser, Dan

    2011-01-31T23:59:59.000Z

    This report summarizes the environmental status of Ames Laboratory for calendar year 2010. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring activities. In 2010, the Laboratory accumulated and disposed of waste under U.S. Environmental Protection Agency (EPA) issued generator numbers. All waste is handled according to all applicable EPA, State, Local regulations and DOE Orders. In 2006 the Laboratory reduced its generator status from a Large Quantity Generator (LQG) to a Small Quantity Generator (SQG). EPA Region VII was notified of this change. The Laboratory's RCRA hazardous waste management program was inspected by EPA Region VII in April 2006. There were no notices of violations. The inspector was impressed with the improvements of the Laboratory's waste management program over the past ten years. The Laboratory was in compliance with all applicable federal, state, local and DOE regulations and orders in 2010. There were no radiological air emissions or exposures to the general public due to Laboratory activities in 2010. See U.S. Department of Energy Air Emissions Annual Report in Appendix B. As indicated in prior SERs, pollution awareness, waste minimization and recycling programs have been in practice since 1990, with improvements implemented most recently in 2010. Included in these efforts were battery and CRT recycling, miscellaneous electronic office equipment, waste white paper and green computer paper-recycling and corrugated cardboard recycling. Ames Laboratory also recycles/reuses salvageable metal, used oil, foamed polystyrene peanuts, batteries, fluorescent lamps and telephone books. Ames Laboratory reported to DOE-Ames Site Office (AMSO), through the Laboratory's Performance Evaluation Measurement Plan, on its Affirmative Procurement Performance Measure. A performance level of 'A-' was achieved in 2010 for Integrated Safety, Health and Environmental Protection. As reported in Site Environmental Reports for prior years, the Laboratory's Environmental Management System (EMS) has been integrated into the Laboratory's Integrated Safety Management System since 2005. The integration of EMS into the way the Laboratory does business allows the Laboratory to systematically review, address and respond to the Laboratory's environmental impacts. The Laboratory's EMS was audited in April 2009 by DOE-CH. There were four 'Sufficiently in Conformity' findings as a result of the audit. All four findings were tracked in the Laboratory's corrective action database for completion. Beryllium was used routinely at Ames Laboratory in the 1940's and 1950's in processes developed for the production of highly pure uranium and thorium in support of the historic Manhattan Project. Laboratory metallurgists also worked on a process to produce pure beryllium metal from beryllium fluoride. In the early 1950's, beryllium oxide powder was used to produce shaped beryllium and crucibles. As a result of that work, beryllium contamination now exists in many interstitial spaces (e.g., utility chases) and ventilation systems in Wilhelm, Spedding and Metals Development buildings. Extensive characterization and remediation efforts have occurred in 2009 and 2010 in order to better understand the extent of the contamination. Analysis of extensive sampling data suggests that a fairly wide dispersion of beryllium occurred (most likely in the 1950's and 60's) in Wilhelm Hall and in certain areas of Spedding Hall and Metals Development. Area air-sampling results and work-area surface characterizations indicate the exposure potential to current workers, building visitors and the public remains extremely low. This information is now used to guide cleaning efforts and to provide worker protection during remodeling and maintenance activities. Results were shared with the DOE's Former Worker Program to support former worker medical test

  4. Annual Site Environmental Report Calendar Year 2005

    SciTech Connect (OSTI)

    Dan Kayser

    2005-12-31T23:59:59.000Z

    This report summarizes the environmental status of Ames Laboratory for calendar year 2005. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring activities. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies 11 buildings owned by the Department of Energy (DOE). See the Laboratory's Web page at www.external.ameslab.gov for locations and Laboratory overview. The Laboratory also leases space in ISU owned buildings. In 2005, the Laboratory accumulated and disposed of waste under U.S. Environmental Protection Agency (EPA) issued generator numbers. All waste is handled accordingly to all applicable EPA, State, Local and DOE Orders. The most recent RCRA inspection was conducted by EPA Region VII in January 1999. The Laboratory received a notice of violation (NOV) which included five citations. There have been no inspections since then. The citations were minor and were corrected by the Laboratory within the time allocated by the EPA. See correspondence in Appendix D. The Laboratory was in compliance with all applicable federal, state, local and DOE regulations and orders in 2005. There were no radiological air emissions or exposures to the general public due to Laboratory activities in 2005. See U.S. Department of Energy Air Emissions Annual Report in Appendix B. Pollution awareness, waste minimization and recycling programs were implemented in 1990 and updated in 2003. Included in these efforts were battery and CRT recycling, waste white paper and green computer paper-recycling. Ames Laboratory also recycles/reuses salvageable metal, used oil, styrofoam peanuts, batteries, CRTs, fluorescent lamps and telephone books. Ames Laboratory reported to DOE-CH, through the Laboratory's Self Assessment Report, on its Affirmative Procurement Performance Measure. A performance level of ''outstanding'' was achieved in 2005. The Laboratory underwent a voluntary Environmental Management Review (EMR) in 2003. Members of the Environmental Protection Agency (EPA) Region VII and Iowa Department of Natural Resources (IDNR) conducted the EMR in November 2003. The EMR was conducted as part of the process for developing and implementing an Environmental Management System (EMS) at the Laboratory. The final EMR report was received on June 19, 2003. Most of the recommendations were implemented to fulfill the EMS requirements for the ISO 14001:1996 standard. In 2004, the Laboratory ''Self Declared'' that it had fully integrated an EMS with its Integrated Safety Management System (ISMS) and met the requirements of Executive Order 13148. In November of 2005 DOE-CH conducted a self-declaration assessment of the Laboratory's EMS. The assessment found two nonconformities that the Laboratory promptly corrected, allowing the DOE-CH Ames Site Office to accept the Laboratory's self-declaration (See EMS Assessment letter, December 21, 2005 in Appendix D).

  5. Mann LED Elevator Ligh ng: ECI Savings Table Cost (billed)

    E-Print Network [OSTI]

    Lipson, Michal

    the elevators, deter mined an LED replace ment lamp for the ex is ng halogen lamps, cal culated a cost benefitMann LED Elevator Ligh ng: ECI Savings Table Utility Historical Energy Use (MMBtu) Est. FY 2012,000 2 Energy Conservation Initiative (ECI) Project Summary Mann LED Elevator Ligh ng, Facility 1027 Mann

  6. Cree Sets New Benchmarks for LED Efficacy and Brightness

    Broader source: Energy.gov [DOE]

    Cree has successfully created a cool white LED prototype that delivers 107 lm/W at 350mA. This achievement builds on the Cree EZBright® LED chip platform, developed in part with prior funding support from DOE. Cree made the prototype LED under their DOE project focused on developing LED chips incorporating photonic crystal elements for improved light extraction and novel package technology for higher down-conversion efficiency compared to conventional LEDs. Based on a 1 millimeter-square chip, the new prototype LED produces white light with a CCT of 5500K and a CRI of 73. Integration of four of these prototype LEDs can produce luminous flux of more than 450 lumens.

  7. Hanford Site Environmental Report for Calendar Year 2005

    SciTech Connect (OSTI)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.; Morasch, Launa F.

    2006-09-28T23:59:59.000Z

    This report, published annually since 1958, includes information and summary analytical data that (1) provide an overview of activities at the Hanford Site during calendar year 2005; (2) demonstrate the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and U.S. Department of Energy (DOE) policies and directives; (3) characterize Hanford Site environmental management performance; and (4) highlight significant environmental programs.

  8. Hanford Site Environmental Report for Calendar Year 2004

    SciTech Connect (OSTI)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.

    2005-09-29T23:59:59.000Z

    This report, published annually since 1958, includes information and summary analytical data that (1) provide an overview of activities at the Hanford Site during calendar year 2003; (2) demonstrate the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and U.S. Department of Energy (DOE) policies and directives; (3) characterize Hanford Site environmental management performance; and (4) highlight significant environmental programs.

  9. August Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugust August 2015 Events August 2015 event

  10. Computing Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit theInnovationComputationalEnergyEvents Computing Events

  11. Calendar of Events 1996 Louisiana State University Medical Center School of Medicine in New Orleans

    E-Print Network [OSTI]

    Functions for Dendritic Voltage-gated Ion Channels April 10 Jean Jacob-LaBarre, PhD, Department(RocheBioscience);PedroCuatrecasas(Parke-Davis);LeslieCrofford (Univ of Michigan); David Dewitt (Michigan State); Raymond DuBois (Vanderbilt Univ); Helmut Fenner (ETH

  12. January 2008 NW Michigan Regional Fruit Grower Newsletter CALENDAR OF EVENTS

    E-Print Network [OSTI]

    Tustin, Michigan. This is a chance to discuss your project with seasoned CSA growers! The format of this year's program will be two in-depth presentations focusing on "Using Tubing & Vacuum Systems Effectively for Sap Collection" and "Using Your Reverse Osmosis (RO) Equipment Effectively". Both

  13. Time and Event in Aegean Art. Illustrating a Bronze Age Calendar

    E-Print Network [OSTI]

    Younger, John G.

    2007-01-01T23:59:59.000Z

    .G. Yowc9p, The lconography of Late Minoan and Mycenaean Sealstones and Finger Rings. Bristol 1988, 290.12 J.A. M,q.cGILLIVRAy, "Labyrinths and Bull-Leapers." Archaeolog,, 53:6,2000: 53-5. '' Shallow basins framed by columns or piers for supporting a... to provide blood for the thirsty souls of the Underworld). The Mycenae House with the Fresco includes two small nude figures, one black and one red, floating between the two female figures, one of whom has a gold sword. Who the small figures are is not known...

  14. NW Michigan Regional Fruit Grower Newsletter -March 2010 CALENDAR OF EVENTS

    E-Print Network [OSTI]

    , a Good Agricultural Practices - Food Safety Audit program will run from 1:30- 4:00. This program will assist fruit and vegetable growers to prepare for a Good Agricultural Practices (GAP) Food Safety Audit Marketing for Agriculture NWMHRS 4/1 MDA Water Use Reporting Registration Form Due 4/6 Tractor Safety Begins

  15. NW Michigan Regional Fruit Grower Newsletter -November 2011 CALENDAR OF EVENTS

    E-Print Network [OSTI]

    .m. www.localdifference.org/getfarming Click on "Workshops 11/17 Good Agricultural Practices ­ GAP Audit) 533-8818. Is It a Good Time to be a Buyer or Seller of Agricultural Land? Curtis Talley Jr. MSUE, Hart for both buyers and sellers of agricultural land: strong demand for land; interest rates at almost all time

  16. Calendar Deadlines. For events inthe period July13to August 2, notices

    E-Print Network [OSTI]

    Farrell, Anthony P.

    . in Endocrine andCancer Research. Or. Peter W. Gout. Use of Prolactin Dependent Nb Lymphoma Cell Cultures Cancer

  17. Black History Month 2014 Calendar of Events Questions? Email cgrogan@uic.edu

    E-Print Network [OSTI]

    Dai, Yang

    represents the memory of African-American culture and how the Great Migration transformed Blues and Jazz highlight an excruciatingly funny and squirm-inducing evocation of the fault line between race and property

  18. NW Michigan Regional Fruit Grower Newsletter -January 2011 CALENDAR OF EVENTS

    E-Print Network [OSTI]

    manage all aspects of a 10-acre certified organic farm, including passive solar greenhouses used for year://www.maes.msu.edu/nwmihort/getfarming11.pdf Michigan Works Conference Room 1/22 Northern Michigan Small Farm Conference http://smallfarmconference.com/ Grayling High School 1/24 Whole Farm Planning: Holistic Management for Fun & Profit http

  19. Calendar of Research Meetings > News + Events > The Energy Materials Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAESMission Welcomeforat Cornell

  20. New GATEWAY Report Monitors LED System Performance in a High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the light. The Yuma site is an extreme environment: high ambient temperatures and direct solar radiation heat up the luminaires throughout the day, and at sunset the LED...

  1. To Bridge LEDs' Green Gap, Scientists Think Small

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    where LED efficiency plunges, simulations at the U.S. Department of Energy's National Energy Research Scientific Computing Center (NERSC) have shown. Using NERSC's Cray XC30...

  2. LED Luminaire Lifetime: Recommendations for Testing and Reporting

    Broader source: Energy.gov (indexed) [DOE]

    product life, and many relied on the gradual lumen depreciation of the LED (light-emitting diode) source as the best indicator- resulting, on occasion, in unrealistic claims...

  3. LED Provides Effective and Efficient Parking Area Lighting at...

    Broader source: Energy.gov (indexed) [DOE]

    White Light Options for Parking Area Lighting Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report Guide to FEMP-Designated Parking Lot...

  4. The City of Los Angeles LED Streetlight Program

    Broader source: Energy.gov [DOE]

    View the video about the Los Angeles LED streetlight program, featuring an interview with City of Los Angeles Bureau of Street Lighting Director, Ed Ebrahimian.

  5. ORNL-led team demonstrates desalination with nanoporous graphene...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communications 865.576.6448 ORNL-led team demonstrates desalination with nanoporous graphene membrane Researchers created nanopores in graphene (red, and enlarged in the circle...

  6. Article Published on LED Lumen Maintenance and Light Loss Factors...

    Broader source: Energy.gov (indexed) [DOE]

    of a comprehensive lifetime rating - as well as the problematic relationship between SSL lifetime and lumen maintenance - determining an appropriate LLD factor for LED products...

  7. CBEA LED Site Lighting Specification - Version 1.3, Released...

    Energy Savers [EERE]

    Applications Outdoor Area Lighting Home About the Solid-State Lighting Program R&D Program Market-Based Programs SSL Basics Using LEDs Information Resources Financial Opportunities...

  8. Lighting the Great Outdoors: LEDs in Exterior Applications

    SciTech Connect (OSTI)

    Cook, Tyson D. S.; Bryan, Mary M.; Kinzey, Bruce R.; Myer, Michael

    2008-08-17T23:59:59.000Z

    Recent progress in the development of white light LEDs promises great impact by opening up the huge potential for LED illumination in new areas. One such area is general illumination for exterior applications. For example, there are an estimated combined 60.5 million roadway and parking installations in the U.S. These lights account for an estimated 53.3 TWh of electricity usage annually -- nearly 7% of all lighting. If LEDs could provide the same light performance with just 25% greater efficiency, savings of over 13 TWh could be achieved. In 2007, the authors assessed emerging LED lighting technologies in a parking garage and on a city street. The purpose of these tests was to enable a utility to determine whether energy efficiency programs promoting white light LED products might be justified. The results have supported the great promise of LEDs in exterior applications, while also highlighting the barriers that continue to hinder their widespread adoption. Such barriers include 1) inconsistent product quality across manufacturers; 2) lack of key metrics for comparing LEDs to conventional sources; and 3) high upfront cost of LED luminaires compared to conventional luminaires. This paper examines these barriers, ways in which energy-efficiency programs could help to overcome them, and the potential for energy and financial savings from LED lighting in these two exterior applications.

  9. LEDs Go Ivy League: Princeton University and DOE GATEWAY Demonstrations

    Broader source: Energy.gov [DOE]

    View the video about LED lighting at Princeton University, which has dramatically reduced energy costs in a number of installations around campus. William Evans, electrical engineer, describes the...

  10. Adopting LED Technology: What Federal Facility Managers Need to Know

    Broader source: Energy.gov [DOE]

    This document describes the presentation slides for the "Adopting LED Technology: What Federal Facility Managers Need to Know" webinar that took place on September 11, 2014.

  11. Cooking Up New Nanoribbons to Make Better White LEDs | Advanced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    appealing white phosphors based on LEDs. The materials combine the rare-earth element europium with aluminum oxide to form europium aluminate nanoribbons. Powders of europium oxide...

  12. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2006

    SciTech Connect (OSTI)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2007-09-27T23:59:59.000Z

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2006. The report summarizes calendar year (CY) 2006 environmental monitoring data so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs that protect public health and safety and the environment.

  13. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2007

    SciTech Connect (OSTI)

    West Valley Environmental Services LLC (WVES) and URS - Washington Division

    2008-12-17T23:59:59.000Z

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2007. The report summarizes the calendar year (CY) 2007 environmental protection program at the WVDP. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment.

  14. LED Chips and Packaging for 120 LPW SSL Component

    SciTech Connect (OSTI)

    James Ibbetson

    2009-09-30T23:59:59.000Z

    Cree has developed a new, high-efficiency, low-cost, light emitting diode (LED) lamp module that should be capable of replacing standard, halogen, fluorescent and metal halide lamps based on the total cost of ownership. White LEDs are produced by combining one or more saturated color LEDs with a phosphor or other light down-converting media to achieve white broad-band illumination. This two year project addressed LED chip and package efficiency improvements to establish a technology platform suitable for low-cost, high-efficiency commercial luminaires. Novel photonic-crystal LEDs were developed to improve the light extraction efficiency of blue GaN-based LEDs compared to the baseline technology. Improved packaging designs that reduced down-conversion and absorption related light losses, led to a higher overall LED efficiency. Specifically, blue LEDs were demonstrated with light output nearing 600 mW and an external quantum efficiency greater than 60 percent (using 1 mm2 chips at an operating current of 350 mA). The results were achieved using a novel, production capable photonic-crystal LED fabrication process. These LEDs formed the basis for a multi-chip white lamp module prototype, which provided 510 lumens light output at a correlated color temperature (CCT) of 3875 K and an operating current of 350 mA per 1mm2 chip. The overall conversion efficiency at 4100 K improved to ~ 65%. The resulting efficacy is 112 lumens per watt (LPW) â?? a 33% improvement over the start of the project. In addition, a proof-of-concept luminaire was demonstrated that provided a flux of 1700 lumens at a 3842 K CCT.

  15. Low Cost Lithography Tool for High Brightness LED Manufacturing

    SciTech Connect (OSTI)

    Andrew Hawryluk; Emily True

    2012-06-30T23:59:59.000Z

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  16. Semiconductors 4-bit I2C LED dimmer

    E-Print Network [OSTI]

    Berns, Hans-Gerd

    with SMBus · Internal power-on reset · Noise filter on SCL/SDA inputs · 4 open drain outputs directly drive for dimming LEDs in 256 discrete steps for Red/Green/Blue (RGB) color mixing and back light applications to 1.69 second. The open drain outputs directly drive the LEDs with maximum output sink current of 25 m

  17. ARM - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m Documentation DataDatastreamsxsaprhsrhi1-minProductsMicroPulseStratiformCenterEvents

  18. Brookhaven National Laboratory site environmental report for calendar year 1990

    SciTech Connect (OSTI)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1992-01-01T23:59:59.000Z

    Brookhaven National Laboratory (BNL) carries out basic and applied research in the following fields: high-energy nuclear and solid state physics; fundamental material and structure properties and the interactions of matter; nuclear medicine, biomedical and environmental sciences; and selected energy technologies. In conducting these research activities, it is Laboratory policy to protect the health and safety of employees and the public, and to minimize the impact of BNL operations on the environment. This document is the BNL environmental report for the calendar year 1990 for the safety and Environmental Protection division and corners topics on effluents, surveillance, regulations, assessments, and compliance.

  19. ECOLOGICAL MONITORING AND COMPLIANCE PROGRAM CALENDAR YEAR 2005 REPORT

    SciTech Connect (OSTI)

    BECHTEL NEVADA ECOLOGICAL SERVICES

    2006-03-01T23:59:59.000Z

    The Ecological Monitoring and Compliance program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by Bechtel Nevada (BN) during the Calendar Year 2005. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive and protected/regulated species and unique habitat monitoring, (5) habitat restoration monitoring, and (6) biological monitoring at the Non-Proliferation Test and Evaluation Complex (NPTEC).

  20. Annual Site Environmental Report for Calendar Years 2009 to 2010

    SciTech Connect (OSTI)

    Virginia Finley

    2012-08-08T23:59:59.000Z

    This report presents the results of environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for Calendar Years 2009-2010. The report provides the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are released into the environment as a result of PPPL operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2009-2010. The objective of the Site Environmental Report is to document PPPL's efforts to protect the public's health and the environment through its environmental protection, safety, and health programs. __________________________________________________

  1. 2013_0916_FY2014_HAB_calendar.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugust 2011OctoberSeptember3 News4 Calendar

  2. 2014_1121_FY2015_HAB_calendar.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugustDecember 2014 Fri,5 Calendar August 2015 Su

  3. A NEW LED-LED PORTABLE CO2 GAS SENSOR BASED ON AN INTERCHANGEABLE MEMBRANE SYSTEM FOR INDUSTRIAL APPLICATIONS

    E-Print Network [OSTI]

    Lee, Hyowon

    to oxygen scavenging [5]. High CO2 levels (10- 80 %) are desirable for foods such as meat and poultryA NEW LED-LED PORTABLE CO2 GAS SENSOR BASED ON AN INTERCHANGEABLE MEMBRANE SYSTEM FOR INDUSTRIAL APPLICATIONS Abstract A new system for CO2 measurement (0-100%) by based on a paired emitter-detector diode

  4. LOW-COST LED LUMINAIRE FOR GENERAL ILLUMINATION

    SciTech Connect (OSTI)

    Lowes, Ted

    2014-07-31T23:59:59.000Z

    During this two-year Solid-State Lighting (SSL) Manufacturing R&D project Cree developed novel light emitting diode (LED) technologies contributing to a cost-optimized, efficient LED troffer luminaire platform emitting at ~3500K correlated color temperature (CCT) at a color rendering index (CRI) of >90. To successfully achieve program goals, Cree used a comprehensive approach to address cost reduction of the various optical, thermal and electrical subsystems in the luminaire without impacting performance. These developments built on Cree’s high- brightness, low-cost LED platforms to design a novel LED component architecture that will enable low-cost troffer luminaire designs with high total system efficacy. The project scope included cost reductions to nearly all major troffer subsystems as well as assembly costs. For example, no thermal management components were included in the troffer, owing to the optimized distribution of compact low- to mid-power LEDs. It is estimated that a significant manufacturing cost savings will result relative to Cree’s conventional troffers at the start of the project. A chief project accomplishment was the successful development of a new compact, high-efficacy LED component geometry with a broad far-field intensity distribution and even color point vs. emission angle. After further optimization and testing for production, the Cree XQ series of LEDs resulted. XQ LEDs are currently utilized in Cree’s AR series troffers, and they are being considered for use in other platforms. The XQ lens geometry influenced the independent development of Cree’s XB-E and XB-G high-voltage LEDs, which also have a broad intensity distribution at high efficacy, and are finding wide implementation in Cree’s omnidirectional A-lamps.

  5. Optimized Phosphors for Warm White LED Light Engines

    SciTech Connect (OSTI)

    Setlur, Anant; Brewster, Megan; Garcia, Florencio; Hill, M. Christine; Lyons, Robert; Murphy, James; Stecher, Tom; Stoklosa, Stan; Weaver, Stan; Happek, Uwe; Aesram, Danny; Deshpande, Anirudha

    2012-07-30T23:59:59.000Z

    The objective of this program is to develop phosphor systems and LED light engines that have steady-state LED efficacies (using LEDs with a 60% wall-plug efficiency) of 105–120 lm/W with correlated color temperatures (CCT) ~3000 K, color rendering indices (CRI) >85, <0.003 distance from the blackbody curve (dbb), and <2% loss in phosphor efficiency under high temperature, high humidity conditions. In order to reach these goals, this involves the composition and processing optimization of phosphors previously developed by GE in combination with light engine package modification.

  6. LED Lights for All Occasions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting Facts LED Lighting FactsLED

  7. Hanford Site environmental surveillance data report for calendar year 1996

    SciTech Connect (OSTI)

    Bisping, L.E.

    1997-09-01T23:59:59.000Z

    Environmental surveillance at the Hanford Site collects data that provides a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals and metals in Columbia River water and sediment. In addition, Hanford Site wildlife samples were also collected for metals analysis. Pacific Northwest National Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1996 describes the site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1996 by PNNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from river monitoring and sediment data. This volume contains the actual raw data used to create the summaries. The data volume also includes Hanford Site drinking water radiological data.

  8. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 2000

    SciTech Connect (OSTI)

    None

    2001-12-01T23:59:59.000Z

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the Knolls Site, Niskayuna, New York and the Kesselring Site, West Milton, New York and site closure activities at the S1C Site, Windsor, Connecticut, continued to have no adverse effect on human health and the quality of the environment during calendar year 2000. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations. Monitoring programs at the S1C Site were reduced in scope during calendar year 2000 due to completion of site dismantlement activities during 1999.

  9. Team Led by Argonne National Lab Selected as DOE's Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Team Led by Argonne National Lab Selected as DOE's Batteries and Energy Storage Hub On November 30, 2012 In features Energy Department Announces Team to Receive up to 120...

  10. WEBINAR: CAN LEDS PERFORM IN A PERFORMING ARTS BUILDING? | Department...

    Broader source: Energy.gov (indexed) [DOE]

    the Nadine McGuire Theatre + Dance Pavilion at the University of Florida. Can LEDs render skin tones and makeup accurately in a dressing room? Can they provide the vertical...

  11. EECBG Success Story: Solar LED Light Pilot Project Illuminates...

    Energy Savers [EERE]

    courtesy of Lionel Green, Sand Mountain Reporter. A strip of new solar-powered light emitting-diode (LED) streetlights in Boaz, Alabama were installed with grant funds from the...

  12. MOF Coating a Promising Path to White LEDs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (MOF); the structure was determined at Beamline 11.3.1. Coating a blue light-emitting diode (LED) with this compound readily generates white light with high luminous...

  13. Text-Alternative Version: LED Color Stability Webinar

    Broader source: Energy.gov [DOE]

    Michael Royer: All right, welcome ladies and gentleman. I'm Michael Royer of Pacific Northwest National Laboratory, and I'd like to welcome you to today's webinar on LED Color Stability, Ten...

  14. Measured Off-Grid LED Lighting System Performance

    E-Print Network [OSTI]

    Granderson, Jessica

    2009-01-01T23:59:59.000Z

    Budget: The Economics of Off-Grid Lighting for SmallA. Jacobson. 2007. "The Off-Grid Lighting Market in WesternTesting for Emerging Off-grid White-LED Illumination Systems

  15. Implementing and Sustaining Operator Led Energy Efficiency Improvements

    E-Print Network [OSTI]

    Hoyle, A.; Knight, N.; Rutkowski, M.

    2011-01-01T23:59:59.000Z

    , to significantly reduce energy consumption, the site must focus on a strategic approach which involves developing, implementing and sustaining a client specific program of energy optimization. We discuss ways of sustaining energy performance through operator led...

  16. Sandia National Laboratories: AlGaAs LEDs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electroluminescence was first reported by H.J. Round in 1907, and the first light-emitting diode (LED) was reported by O.V. Losev in 1927. Not until the birth of semiconductor...

  17. Advances in Chip Technology, Packaging Enable White LED Breakthroughs

    Broader source: Energy.gov [DOE]

    Significant advances in chip technology have enabled Cree, Inc.'s Santa Barbara Technology Center to demonstrate white LEDs with record efficacies as high as 74 lumens per watt - on par with...

  18. Laboratory Evaluation of LED T8 Replacement Lamp Products

    SciTech Connect (OSTI)

    Richman, Eric E.; Kinzey, Bruce R.; Miller, Naomi J.

    2011-05-23T23:59:59.000Z

    A report on a lab setting analysis involving LED lamps intended to directly replace T8 fluorescent lamps (4') showing light output, power, and economic comparisons with other fluorescent options.

  19. WEBINAR: LED LIGHTING IN A PERFORMING ARTS BUILDING

    Broader source: Energy.gov [DOE]

    Can LEDs render skin tones and makeup accurately in a dressing room? Can they provide the vertical footcandles in a studio to make dancers' bodies visible, or deliver acting studio lighting to...

  20. Demonstrating LED and Fiber Optic Lighting in Commissary Applications

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—covers goals of the project and applications for light-emitting diodes (LEDs) and fiber optic lighting.

  1. af led lyskilder: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effective Fabrication of a Solar PV Panel for LED Lighting CiteSeer Summary: Abstract Solar cells are very fragile so they need a encapsulant and encasing for protection and...

  2. White LED Benchmark of 65 Lumens Per Watt Achieved

    Broader source: Energy.gov [DOE]

    Novel chip design and the balance of multiple interrelated design parameters have enabled Cree, Inc.'s Santa Barbara Technology Center to demonstrate white LEDs with efficacies greater than 65 lumens per watt at 350 mA. The results are particularly significant because they were achieved with a pre-production prototype chip using the same package used in Cree's commercially available XLamp® 7090 high power LED, rather than a laboratory device.

  3. Integrated LED-based luminare for general lighting

    DOE Patents [OSTI]

    Dowling, Kevin J.; Lys, Ihor A.; Roberge, Brian; Williamson, Ryan C.; Roberts, Ron; Datta, Michael; Mollnow, Tomas; Morgan, Frederick M.

    2013-03-05T23:59:59.000Z

    Lighting apparatus and methods employing LED light sources are described. The LED light sources are integrated with other components in the form of a luminaire or other general purpose lighting structure. Some of the lighting structures are formed as Parabolic Aluminum Reflector (PAR) luminaires, allowing them to be inserted into conventional sockets. The lighting structures display beneficial operating characteristics, such as efficient operation, high thermal dissipation, high output, and good color mixing.

  4. An Integrated Solid-State LED Luminaire for General Lighting

    SciTech Connect (OSTI)

    Kevin Dowling; Fritz Morgan Ihor Lys; Mike Datta; Bernd Keller; Thomas Yuan

    2009-03-31T23:59:59.000Z

    A strong systems approach to designing and building practical LED-based replacement lamps is lacking. The general method of taking high-performance LEDs and marrying them to standard printed circuit boards, drivers and a heat sink has fallen short of the promise of LED lighting. In this program, a top-down assessment of requirements and a bottom-up reinvention of LED sources, electronics, optics and mechanics have resulted in the highest performance lamp possible. The team, comprised of Color Kinetics, the leaders in LED lighting and Cree, the leaders in LED devices took an approach to reinvent the package, the driver and the overall form and aesthetic of a replacement source. The challenge was to create a new benchmark in LED lighting - the resultant lamp, a PAR38 equivalent, met the light output, color, color quality and efficacy marks set out in the program as well as being dimmable, which is important for market acceptance. The approach combined the use of multiple source die, a chip-on-board approach, a very efficient driver topology, the use of both direct emission and phosphor conversion, and a unique faceted optic to avoid the losses, artifacts and hotspots of lensed approaches. The integral heat sink provided a mechanical base and airflow using a chimney-effect for use in a wide variety of locations and orientations. These research results led to a much better understanding of the system effects of component level technologies. It was clear that best-of-breed sub-system results do not necessarily result in the best end result for the complete system. In doing this work, we did not neglect the practical aspects of these systems. These were not rarified results and commercially impractical but lent themselves to eventual commercial products in the marketplace. The end result - a high performance replacement lamp - will save significant energy while providing a high-quality light source.

  5. Sequential event prediction

    E-Print Network [OSTI]

    Letham, Benjamin

    In sequential event prediction, we are given a “sequence database” of past event sequences to learn from, and we aim to predict the next event within a current event sequence. We focus on applications where the set of the ...

  6. Summary of the Hanford Site Environmental Report for Calendar Year 2004

    SciTech Connect (OSTI)

    Hanf, Robert W.; Morasch, Launa F.; Poston, Ted M.; Dirkes, Roger L.

    2005-09-26T23:59:59.000Z

    This booklet summarizes the information contained in ''Hanford Site Environmental Report for Calendar Year 2004.'' The Hanford Site environmental report, published annually since 1958, includes information and summary data that provide an overview of the activities at DOE's Hanford Site.

  7. Summary of the Hanford Site Environmental Report for Calendar Year 2005

    SciTech Connect (OSTI)

    Hanf, Robert W.; Morasch, Launa F.; Poston, Ted M.; Dirkes, Roger L.

    2006-09-28T23:59:59.000Z

    This small booklet provides highlights of the environmental monitoring at the Hanford Site during 2005. It is a summary of the information contained in the larger report: Hanford Site Environmental Monitoring for Calendar Year 2005.

  8. Exploring the biography and artworks of Picasso with interactive calendars and timelines

    E-Print Network [OSTI]

    Meneses, Luis

    2009-05-15T23:59:59.000Z

    that is often returned as a result is unable to provide the required affordances and constraints that users need and desire to conduct scholarly research properly. The following thesis proposes the implementation of timelines and calendar-based interfaces...

  9. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004

    SciTech Connect (OSTI)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2005-09-30T23:59:59.000Z

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004.

  10. Nevada Test Site environmental data report for calendar year 1996

    SciTech Connect (OSTI)

    Black, S.C.; Townsend, Y.E. [eds.; Kinnison, R.R.

    1998-03-01T23:59:59.000Z

    US Department of Energy (DOE) Order 5400.1, ``General Environmental Protection Program,`` establishes environmental protection program requirements, authorities, and responsibilities for DOE operations. These mandates require compliance with applicable federal, state, and local environmental protection regulations. During calendar year (CY) 1996, environmental protection and monitoring programs were conducted at the Nevada Test Site and other DOE Nevada Operations Office (DOE/NV)-managed sites in Nevada and across the US. A detailed discussion of these environmental protection and monitoring programs and summary data and assessments for environmental monitoring results are provided in the DOE/NV Annual Site Environmental Report-1996 (ASER), DOE/NV/11718-137. This document provides summary data results and detailed assessments for the environmental monitoring conducted for all DOE/NV-managed sites in CY1996.

  11. Hanford Site Environmental Surveillance Data Report for Calendar Year 2008

    SciTech Connect (OSTI)

    Bisping, Lynn E.

    2009-08-11T23:59:59.000Z

    Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2008" (PNNL-18427), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

  12. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 1999

    SciTech Connect (OSTI)

    None

    2000-12-01T23:59:59.000Z

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the three KAPL Sites [Knolls Site, Niskayuna, New York; Kesselring Site, West Milton, New York; S1C Site, Windsor, Connecticut] during calendar year 1999 resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations.

  13. Pacific Northwest National Laboratory Site Environmental Report for Calendar Year 2011

    SciTech Connect (OSTI)

    Duncan, Joanne P.; Fritz, Brad G.; Tilden, Harold T.; Stoetzel, Gregory A.; Stegen, Amanda; Barnett, J. M.; Su-Coker, Jennifer; Moon, Thomas W.; Ballinger, Marcel Y.; Dirkes, Roger L.; Opitz, Brian E.

    2012-09-01T23:59:59.000Z

    The PNNL Site Environmental Report for Calendar Year 2011 was prepared pursuant to the requirements of Department of Energy (DOE) Order 231.1B, "Environment, Safety and Health Reporting" to provide a synopsis of calendar year 2011 information related to environmental management performance and compliance efforts. It summarizes site compliance with federal, state, and local environmental laws, regulations, policies, directives, permits, and orders and environmental management performance.

  14. Pacific Northwest National Laboratory Annual Site Environmental Report for Calendar Year 2012

    SciTech Connect (OSTI)

    Duncan, Joanne P.; Ballinger, Marcel Y.; Fritz, Brad G.; Tilden, Harold T.; Stoetzel, Gregory A.; Barnett, J. M.; Su-Coker, Jennifer; Stegen, Amanda; Moon, Thomas W.; Becker, James M.; Raney, Elizabeth A.; Chamness, Michele A.; Mendez, Keith M.

    2013-09-01T23:59:59.000Z

    The PNNL Annual Site Environmental Report for Calendar Year 2012 was prepared pursuant to the requirements of Department of Energy (DOE) Order 231.1B, "Environment, Safety and Health Reporting" to provide a synopsis of calendar year 2012 information related to environmental management performance and compliance efforts. It summarizes site compliance with federal, state, and local environmental laws, regulations, policies, directives, permits, and orders and environmental management performance.

  15. An LED-based Flasher System for VERITAS

    E-Print Network [OSTI]

    Hanna, D; McCutcheon, M; Nikkinen, L; 10.1016/j.nima.2009.10.107

    2009-01-01T23:59:59.000Z

    We describe a flasher system designed for use in monitoring the gains of the photomultiplier tubes used in the VERITAS gamma-ray telescopes. This system uses blue light-emitting diodes (LEDs) so it can be operated at much higher rates than a traditional laser-based system. Calibration information can be obtained with better statistical precision with reduced loss of observing time. The LEDs are also much less expensive than a laser. The design features of the new system are presented, along with measurements made with a prototype mounted on one of the VERITAS telescopes.

  16. Global Rebalancing: US Protection versus Europe-led reflation

    E-Print Network [OSTI]

    Irvin, George; Izurieta, Alex

    2006-01-01T23:59:59.000Z

    impact of a Europe-led reflation is re-enforced by the strong income and trade linkages with middle- income and poor regions of the world (eg, Eastern Europe, Latin America and Africa)18. An EU-led reflation supposes a set of demand... switching on the required scale within an acceptable time frame. The central point is that the extra growth cannot come entirely or even chiefly from Asia (where resources are already stretched to the limit), but must come from a combination of renewed EU...

  17. LED Luminaire Lifetime: Recommendations For Testing and Reporting |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting Facts LED Lighting

  18. LED Performance Specification Series: T8 Replacement Lamps

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting Facts LED LightingOutdoor

  19. LED T8 Replacement Lamps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting Facts LED LightingOutdoorLEDT8

  20. LEDs Ready for Takeoff at Louisiana Airport | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting Facts LED

  1. U-155: WebCalendar Access Control and File Inclusion Bugs Let Remote Users Potentially Execute Arbitrary Code

    Broader source: Energy.gov [DOE]

    Two vulnerabilities were reported in WebCalendar. A remote user may be able to execute arbitrary PHP code on the target system.

  2. An Brief Overview Of Using LEDs In Lab

    E-Print Network [OSTI]

    Baas, Bevan

    Diodes · A Light-Emitting Diode (LED) is a special type of diode that emits photons (light) when current ­ Forward biased Diode Operation 0 V 5 V Current ~0 high (too high)5 V 0 V I anode cathode #12;3 Light-Emitting

  3. Small Area Array-Based LED Luminaire Design

    SciTech Connect (OSTI)

    Thomas Yuan

    2008-01-09T23:59:59.000Z

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency LED luminaire designs based on small area array-based gallium nitride diodes. Novel GaN-based LED array designs are described, specifically addressing the thermal, optical, electrical and mechanical requirements for the incorporation of such arrays into viable solid-state LED luminaires. This work resulted in the demonstration of an integrated luminaire prototype of 1000 lumens cool white light output with reflector shaped beams and efficacy of 89.4 lm/W at CCT of 6000oK and CRI of 73; and performance of 903 lumens warm white light output with reflector shaped beams and efficacy of 63.0 lm/W at CCT of 2800oK and CRI of 82. In addition, up to 1275 lumens cool white light output at 114.2 lm/W and 1156 lumens warm white light output at 76.5 lm/W were achieved if the reflector was not used. The success to integrate small area array-based LED designs and address thermal, optical, electrical and mechanical requirements was clearly achieved in these luminaire prototypes with outstanding performance and high efficiency.

  4. Ultratech Develops an Improved Lithography Tool for LED Wafer Manufacturing

    Broader source: Energy.gov [DOE]

    Ultratech modified an existing lithography tool used for semiconductor manufacturing to better meet the cost and performance targets of the high-brightness LED manufacturing industry. The goal was to make the equipment compatible with the wide range of substrate diameters and thicknesses prevalent in the industry while reducing the capital cost and the overall cost of ownership (COO).

  5. Development and Evaluation of an Advanced LED Warning System for

    E-Print Network [OSTI]

    Minnesota, University of

    .dot.state.mn.us/stateaid/sa_traffic_safety.html #12;Project Need · ITS Safety Plan: ITS Critical Strategy 5: Use Intersection Collision Warning.g. radar) · Utilize alternative energy source (solar and/or wind) · Utilize LED blinker signs #12;Before;Stop Case 2: #12;Roll-through Case: #12;Acknowledgments and Special Thanks · Local Road Research Board

  6. Biofuels in the ASEAN Low Emission Development Strategies (LEDS) Forum

    E-Print Network [OSTI]

    9/20/2012 1 Biofuels in the ASEAN Low Emission Development Strategies (LEDS) Forum Bangkok, Thailand 19-21 September 2012 Biofuel Policy Group Asian Institute of Technology Outline of the Presentation 1. Objectives of this Presentation 2. Background 3. Status of Biofuel Development in ASEAN 4

  7. Heterostructures for Increased Quantum Efficiency in Nitride LEDs

    SciTech Connect (OSTI)

    Davis, Robert

    2010-09-30T23:59:59.000Z

    Task 1. Development of an advanced LED simulator useful for the design of efficient nitride-based devices. Simulator will contain graphical interface software that can be used to specify the device structure, the material parameters, the operating conditions and the desired output results. I-4 Task 2. Theoretical and experimental investigations regarding the influence on the microstructure, defect concentration, mechanical stress and strain and IQE of controlled changes in the chemistry and process route of deposition of the buffer layer underlying the active region of nitride-based blue- and greenemitting LEDs. I-9 Task 3. Theoretical and experimental investigations regarding the influence on the physical properties including polarization and IQE of controlled changes in the geometry, chemistry, defect density, and microstructure of components in the active region of nitride-based blue- and green-emitting LEDs. II-37 Task 4. Theoretical and experimental investigations regarding the influence on IQE of novel heterostructure designs to funnel carriers into the active region for enhanced recombination efficiency and elimination of diffusion beyond this region. II-52 Task 5. Theoretical and experimental investigations regarding the influence of enhanced p-type doping on the chemical, electrical, and microstructural characteristics of the acceptor-doped layers, the hole injection levels at Ohmic contacts, the specific contact resistivity and the IQE of nitride-based blue- and green-emitting LEDs. Development and optical and electrical characterization of reflective Ohmic contacts to n- and p-type GaN films. I

  8. 130 LPW 1000 Lm Warm White LED for Illumination

    SciTech Connect (OSTI)

    Soer, Wouter

    2012-06-14T23:59:59.000Z

    An illumination-grade warm-white LED, having correlated color temperature (CCT) between 2700 and 3500 K and capable of producing 1000 lm output at over 130 lm/W at room temperature, has been developed in this program. The high-power warm-white LED is an ideal source for use in indoor and outdoor lighting applications. Over the two year period, we have made the following accomplishments: • Developed a low-cost high-power white LED package and commercialized a series of products with CCT ranging from 2700 to 5700 K under the product name LUXEON M; • Demonstrated a record efficacy of 124.8 lm/W at a flux of 1023 lm, CCT of 3435 K and color rendering index (CRI) over 80 at room temperature in the productized package; • Demonstrated a record efficacy of 133.1 lm/W at a flux of 1015 lm, CCT of 3475 K and CRI over 80 at room temperature in an R&D package. The new high-power LED package is a die-on-ceramic surface mountable LED package. It has four 2 mm2 InGaN pump dice, flip-chip attached to a ceramic submount in a 2x2 array configuration. The submount design utilizes a design approach that combines a high-thermal- conductivity ceramic core for die attach and a low-cost and low-thermal-conductivity ceramic frame for mechanical support and as optical lens carrier. The LED package has a thermal resistance of less than 1.25 K/W. The white LED fabrication also adopts a new batch level (instead of die-by-die) phosphor deposition process with precision layer thickness and composition control, which provides not only tight color control, but also low cost. The efficacy performance goal was achieved through the progress in following key areas: (1) high-efficiency royal blue pump LED development through active region design and epitaxial growth quality improvement (funded by internal programs); (2) improvement in extraction efficiency from the LED package through improvement of InGaN-die-level and package-level optical extraction efficiency; and (3) improvement in phosphor system efficiency by improving the lumen equivalent (LE) and phosphor package efficiency (PPE) through improvement in phosphor-package interactions. The high-power warm-white LED product developed has been proven to have good reliability through extensive reliability tests. The new kilo-lumen package has been commercialized under the product name LUXEON M. As of the end of the program, the LUXEON M product has been released in the following CCT/CRI combinations: 3000K/70, 4000K/70, 5000K/70, 5700K/70, 2700K/80, 3000K/80 and 4000K/80. LM-80 tests for the products with CCTs of 4000 K and higher have reached 8500 hours, and per IESNA TM-21-11 have established an L70 lumen maintenance value of >51,000 hours at A drive current and up to 120 °C board temperature.

  9. A Touch Panel using Silicone Rubber with embedded IR-LEDs Yuichiro Sakamoto,

    E-Print Network [OSTI]

    Tanaka, Jiro

    LED LED FTIR FTIR FTIR FTIR FTIR LED LED A Touch Panel using Silicone Rubber with embedded Shizuki and Jiro Tanaka In this paper, we present a novel touch panel using silicone rubber with embedded are difficult to detect for one made of acryl panel Moreover, it integrates IR-LEDs silicone rubber for multi

  10. LED Retrofit Project in TSH Basement On July 14 2014, McMaster Facilities Services completed an energy conservation lighting

    E-Print Network [OSTI]

    Haykin, Simon

    replaced with the new LED (light emitting diode) tubes. LEDs have better lighting quality, lower energy

  11. OSRAM SYLVANIA Develops High-Efficiency LED Troffer Replacement

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, OSRAM SYLVANIA is developing a high-efficiency LED 2'x2' troffer replacement that is expected to be commercially available in the spring of 2012 and to be cost-competitive with existing troffers of that size. It is projected to have a light output of up to 4,000 lumens, an efficacy of more than 100 lm/W, and a CCT of 3500K.

  12. KLA-Tencor's Inspection Tool Reduces LED Manufacturing Costs

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, KLA-Tencor is developing an improved inspection tool for LED manufacturing that promises to significantly increase overall process yields and minimize expensive waste. The power of the inspection tool lies in optical detection techniques coupled with defect source analysis software to statistically correlate front-end geometric anomalies in the substrate to killer defects on the back end of the manufacturing line, which give rise to an undesirable or unusable end product.

  13. Observed Minimum Illuminance Threshold for Night Market Vendors in Kenya who use LED Lamps

    E-Print Network [OSTI]

    Johnstone, Peter

    2009-01-01T23:59:59.000Z

    data logger equipped rechargeable LED lamps, monitoring theadoption of the LED lamps, and a follow-up survey.s kiosk illuminated by an LED lamp Radecsky, K. , P.

  14. Assessing the Performance of 5mm White LED Light Sources for Developing-Country Applications

    E-Print Network [OSTI]

    Mills, Evan

    2007-01-01T23:59:59.000Z

    lamp calibrated by Labsphere Spectral measurements - LEDs inLEDs we tested is exceptionally good (as good or better than many compact fluorescent lamps),lamp. Off-grid lighting products using the poorer LEDs would

  15. Argonne National Laboratory Site Environmental Report for Calendar Year 2013

    SciTech Connect (OSTI)

    Davis, T. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Gomez, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Moos, L. P. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-09-02T23:59:59.000Z

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2013. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with environmental management, sustainability efforts, environmental corrective actions, and habitat restoration. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, Argonne, and other) and are compared with applicable standards intended to protect human health and the environment. A U.S. Department of Energy (DOE) dose calculation methodology, based on International Commission on Radiological Protection (ICRP) recommendations and the U.S. Environmental Protection Agency’s (EPA) CAP-88 Version 3 computer code, was used in preparing this report.

  16. Argonne National Laboratory site environmental report for calendar year 2007.

    SciTech Connect (OSTI)

    Golchert, N. W.; Davis, T. M.; Moos, L. P.; ESH /QA Oversight

    2008-09-09T23:59:59.000Z

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2007. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's CAP-88 Version 3 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  17. Argonne National Laboratory Site Environmental report for calendar year 2009.

    SciTech Connect (OSTI)

    Golchert, N. W.; Davis, T. M.; Moos, L. P.

    2010-08-04T23:59:59.000Z

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2009. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, Argonne, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy (DOE) dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's (EPA) CAP-88 Version 3 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  18. Argonne National Laboratory site enviromental report for calendar year 2008.

    SciTech Connect (OSTI)

    Golchert, N. W.; Davis, T. M.; Moos, L. P.

    2009-09-02T23:59:59.000Z

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2008. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's CAP-88 Version 3 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  19. Argonne National Laboratory site environmental report for calendar year 2006.

    SciTech Connect (OSTI)

    Golchert, N. W.; ESH /QA Oversight

    2007-09-13T23:59:59.000Z

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2006. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's CAP-88 Version 3 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  20. Argonne National Laboratory site environmental report for calendar year 2004.

    SciTech Connect (OSTI)

    Golchert, N. W.; Kolzow, R. G.

    2005-09-02T23:59:59.000Z

    This report discusses the accomplishments of the environmental protection program at Argonne National Laboratory (ANL) for calendar year 2004. The status of ANL environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of ANL operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the ANL site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and ANL effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, ANL, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's CAP-88 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  1. Annual Waste Minimization Summary Report, Calendar Year 2009

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2010-02-07T23:59:59.000Z

    This report summarizes the waste minimization efforts undertaken by National Security Technologies, LLC, for the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during calendar year 2009. This report was developed in accordance with the requirements of the Nevada Test Site Resource Conservation and Recovery Act Permit (No. NEV HW0021), and as clarified in a letter dated April 21, 1995, from Paul Liebendorfer of the Nevada Division of Environmental Protection to Donald Elle of the U.S. Department of Energy, Nevada Operations Office. The NNSA/NSO Pollution Prevention (P2) Program establishes a process to reduce the volume and toxicity of waste generated by NNSA/NSO activities and ensures that proposed methods of treatment, storage, and/or disposal of waste minimize potential threats to human health and the environment. The following information provides an overview of the P2 Program, major P2 accomplishments during the reporting year, a comparison of the current year waste generation to prior years, and a description of efforts undertaken during the year to reduce the volume and toxicity of waste generated by NNSA/NSO.

  2. Annual Waste Minimization Summary Report Calendar Year 2007

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2008-02-01T23:59:59.000Z

    This report summarizes the waste minimization efforts undertaken by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during calendar year (CY) 2007. This report was developed in accordance with the requirements of the Nevada Test Site (NTS) Resource Conservation and Recovery Act (RCRA) Permit (number NEV HW0021), and as clarified in a letter dated April 21, 1995, from Paul Liebendorfer of the Nevada Division of Environmental Protection to Donald Elle of the U.S. Department of Energy, Nevada Operations Office. The NNSA/NSO Pollution Prevention (P2) Program establishes a process to reduce the volume and toxicity of waste generated by the NNSA/NSO and ensures that proposed methods of treatment, storage, and/or disposal of waste minimize potential threats to human health and the environment. The following information provides an overview of the P2 Program, major P2 accomplishments during the reporting year, a comparison of the current year waste generation to prior years, and a description of efforts undertaken during the year to reduce the volume and toxicity of waste generated by the NNSA/NSO.

  3. Sequim Site Radionuclide Air Emissions Report for Calendar Year 2012

    SciTech Connect (OSTI)

    Snyder, Sandra F.; Barnett, J. M.; Gervais, Todd L.

    2013-04-01T23:59:59.000Z

    This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and ashington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. This report meets the calendar year 2012 Sequim Site annual reporting requirement for its operations as a privately-owned facility as well as its federally-contracted status that began in October 2012. Compliance is indicated by comparing the estimated dose to the maximally exposed individual (MEI) with the 10 mrem/yr Environmental Protection Agency (EPA) standard. The MSL contains only sources classified as fugitive emissions. Despite the fact that the regulations are intended for application to point source emissions, fugitive emissions are included with regard to complying with the EPA standard. The dose to the Sequim Site MEI due to routine operations in 2012 was 9E-06 mrem (9E-08 mSv). No non-routine emissions occurred in 2012. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  4. Application Summary Report 22: LED MR16 Lamps

    SciTech Connect (OSTI)

    Royer, Michael P.

    2014-07-23T23:59:59.000Z

    This report analyzes the independently tested photometric performance of 27 LED MR16 lamps. It describes initial performance based on light output, efficacy, distribution, color quality, electrical characteristics, and form factor, with comparisons to a selection of benchmark halogen MR16s and ENERGY STAR qualification thresholds. Three types of products were targeted. First, CALiPER sought 3000 K lamps with the highest rated lumen output (i.e., at least 500 lm) or a claim of equivalency to a 50 W halogen MR16 or higher. The test results indicate that while the initial performance of LED MR16s has improved across the board, market-available products still do not produce the lumen output and center beam intensity of typical 50 W halogen MR16 lamps. In fact, most of the 18 lamps in this category had lower lumen output and center beam intensity than a typical 35 W halogen MR16 lamp. Second, CALiPER sought lamps with a CRI of 90 or greater. Only four manufacturers were identified with a product in this category. CALiPER testing confirmed the performance of these lamps, which are a good option for applications where high color fidelity is needed. A vast majority of the LED MR16 lamps have a CRI in the low 80s; this is generally acceptable for ambient lighting, but may not always be acceptable for focal lighting. For typical LED packages, there is a fundamental tradeoff between CRI and efficacy, but the lamps in the high-CRI group in this report still offer comparable performance to the rest of the Series 22 products in other performance areas. Finally, CALiPER sought lamps with a narrow distribution, denoted as a beam angle less than 15°. Five such lamps were purchased. Notably, no lamp was identified as having high lumen output (500 lumens or greater), high CRI (90 or greater), a narrow distribution (15° or less), and an efficacy greater than 60 lm/W. This would be an important achievement for LED MR16s especially if output could reach approximately 700 800 lumens, or the approximate equivalent of a 50 W halogen MR16 lamp. Many factors beyond photometric performance should be considered during specification. For example, performance over time, transformer and dimmer compatibility, and total system performance are all critical to a successful installation. Subsequent CALiPER reports will investigate more complex issues.

  5. LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification

    Broader source: Energy.gov [DOE]

    This March 26, 2009 webcast presented information about the Commercial Building Energy Alliances' (CBEA) efforts to explore the viability of LED site lighting in commercial parking lots. LED...

  6. High Efficacy Green LEDs by Polarization Controlled MOVPE

    SciTech Connect (OSTI)

    Wetzel, Christian

    2013-03-31T23:59:59.000Z

    Amazing performance in GaInN/GaN based LEDs has become possible by advanced epitaxial growth on a wide variety of substrates over the last decade. An immediate push towards product development and worldwide competition for market share have effectively reduced production cost and generated substantial primary energy savings on a worldwide scale. At all times of the development, this economic pressure forced very fundamental decisions that would shape huge industrial investment. One of those major aspects is the choice of epitaxial growth substrate. The natural questions are to what extend a decision for a certain substrate will limit the ultimate performance and to what extent, the choice of a currently more expensive substrate such as native GaN could overcome any of the remaining performance limitations. Therefore, this project has set out to explore what performance characteristic could be achieved under the utilization of bulk GaN substrate. Our work was guided by the hypotheses that line defects such as threading dislocations in the active region should be avoided and the huge piezoelectric polarization needs to be attenuated – if not turned off – for higher performing LEDs, particularly in the longer wavelength green and deep green portions of the visible spectrum. At their relatively lower performance level, deep green LEDs are a stronger indicator of relative performance improvements and seem particular sensitive to the challenges at hand. The project therefore made use of recently developed non-polar and semipolar bulk GaN substrates that were made available at Kyma Technologies by crystallographic cuts from thick polar growth of GaN. This approach naturally leads to rather small pieces of substrates, cm along the long side while mm along the short one. Small size and limited volume of sample material therefore set the limits of the ensuing development work. During the course of the project we achieved green and deep green LEDs in all those crystal growth orientations: polar c-plane, non- polar a-plane, non-polar m-plane, and semipolar planes. The active region in those structures shows dramatically reduced densities of threading dislocations unless the wavelength was extended as far as 510 nm and beyond. With the appearance of such defects, the light output power dropped precipitously supporting the necessity to avoid any and all of such defects to reach the active region. Further aspects of the non-polar growth orientation proved extremely promising for the development of such structures. Chief among them is our success to achieve extremely uniform quantum wells in these various crystal orientations that prove devoid of any alloy fluctuation beyond the theoretical limit of a binominal distribution. This became very Rensselaer Wetzel DE?EE0000627 3 directly apparent in highly advanced atom probe tomography performed in collaboration at Northwestern University. Furthermore, under reduced or absence of piezoelectric polarization, green emitters in those growth geometries exhibit an unsurpassed wavelength stability over very wide excitation and drive current ranges. Such a performance had not been possible in any polar c-plane growth and now places green LEDs in terms of wavelength stability up par with typical 450 nm blue emitters. The project also incorporated enabling opportunities in the development of micro and nano- patterned substrate technologies. Originally developped as a means to enhance generated light extraction we have demonstrated that the method of nano-patterning, in contrast to micro- patterning also results in a substantial reduction of threading dislocation generation. In green LEDs, we thereby see equal contributions of enhanced light extraction and reduced defect generation to a threefold enhancement of the green light output power. These results have opened entirely new approaches for future rapid and low cost epitaxial material development by avoidance of thick defect accommodation layers. All methods developed within this project have meanwhile widely been publicized by the members o

  7. Feedback-Controlled LED Photobioreactor for Photophysiological Studies of Cyanobacteria

    SciTech Connect (OSTI)

    Melnicki, Matthew R.; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Stolyar, Sergey; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alex S.

    2013-04-09T23:59:59.000Z

    A custom photobioreactor (PBR) was designed to enable automatic light adjustments using computerized feedback control. A black anodized aluminum enclosure, constructed to surround the borosilicate reactor vessel, prevents the transmission of ambient light and serves as a mount for arrays of light-emitting diodes (LEDs). The high-output LEDs provide narrow-band light of either 630 or 680 nm for preferential excitation of the cyanobacterial light-harvesting pigments, phycobilin or chlorophyll a, respectively. Custom developed software BioLume provides automatic control of optical properties and a computer feedback loop can automatically adjust the incident irradiance as necessary to maintain a fixed transmitted light through the culture, based on user-determined set points. This feedback control serves to compensate for culture dynamics which have optical effects, (e.g., changing cell density, pigment adaptations) and thus can determine the appropriate light conditions for physiological comparisons or to cultivate light-sensitive strains, without prior analyses. The LED PBR may also be controlled as a turbidostat, using a feedback loop to continuously adjust the rate of media-dilution based on the transmitted light measurements, with a fast and precise response. This cultivation system gains further merit as a high-performance analytical device, using non-invasive tools (e.g., dissolved gas sensors, online mass spectrometry) to automate real-time measurements, thus permitting unsupervised experiments to search for optimal growth conditions, to monitor physiological responses to perturbations, as well as to quantitate photophysiological parameters using an in situ light-saturation response routine.

  8. Synthesis and luminescence properties of rare earth activated phosphors for near UV-emitting LEDs for efficacious generation of white light

    E-Print Network [OSTI]

    Han, Jinkyu

    2013-01-01T23:59:59.000Z

    high-color-rendering LED lamps using oxyfluoride andin white LED. (a) Typical LED lamp package. (b) Uniformin white LED. (a) Typical LED lamp package. (b) Uniform

  9. Considerations When Comparing LED and Conventional Lighting | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluor Federal Services -Energy Using LEDs »

  10. LED Holiday Lights: Festive, Safe, and Efficient! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM to 2:05PMDOE-STD-1107-97LSEED:LDVFrequentlyLED

  11. LEDs: The Future of Lighting is Here | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting Facts LEDLEDs on Semipolar

  12. LED Lighting on the National Mall | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » MethaneJohnsonKristina Pflanz About Us KristinaLED

  13. #AskEnergySaver: LED Lights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of Bad CholesteroliManage#AskEnergySaver: LED Lights #AskEnergySaver:

  14. Reducing LED Costs Through Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.June 8,PastRadiationReducing LED Costs

  15. LED Traffic Lights Get Buy American Stamp | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999 InspectionVolunteersKarenThisDepartment ofLED traffic lights

  16. Weldon Spring Site Environmental Report for calendar year 1994

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This report for Calendar Year 1994 has been prepared to provide information about the public safety and environmental protection programs conducted by the Weldon Spring Site Remedial Action Project (WSSRAP). The Weldon Spring site is located in southern St. Charles County, Missouri, approximately 48 km (30 mi) west of St. Louis. The site consists of two main areas, the Weldon Spring Chemical Plant and raffinate pits and the Weldon Spring Quarry. The chemical plant, raffinate pits, and quarry are located on Missouri State Route 94, southwest of US Route 40/61. The objectives of the Site Environmental Report are to present a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmental and health protection standards and requirements. The report also presents the status of remedial activities and the results of monitoring these activities to assess their impacts on the public and environment. This report includes monitoring data from routine radiological and nonradiological sampling activities. These data include estimates of dose to the public from the Weldon Spring site, estimates of effluent releases, and trends in groundwater contaminant levels. Additionally, applicable compliance requirements, quality assurance programs, and special studies conducted in 1994 to support environmental protection programs are discussed. Dose estimates presented in this report are based on hypothetical exposure scenarios of public use of areas near the site. In addition, release estimates have been calculated on the basis of 1994 National Pollutant Discharge Elimination System (NPDES) and air monitoring data. Effluent discharges from the site under routine NPDES and National Emission Standards for Hazardous Air Pollutants (NESHAPS) monitoring were below permitted levels.

  17. Weldon Spring Site Environmental Report for Calendar Year 1995

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    This Weldon Spring Site Environmental Report for Calendar Year 1995 has been prepared to provide information about the public safety and environmental protection programs conducted by the Weldon Spring Site Remedial Action Project (WSSRAP). The Weldon Spring site is located in southern St. Charles County, Missouri, approximately 48 km (30 mi) west of St. Louis. The site consists of two main areas, the Weldon Spring Chemical Plant and raffinate pits and the Weldon Spring Quarry. The chemical plant, raffinate pits, and quarry are located on Missouri State Route 94, southwest of U.S. Route 40/61. The objectives of the Site Environmental Report are to present a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmental and health protection standards and requirements. The report also presents the status of remedial activities and the results of monitoring these activities to assess their impacts on the public and environment. This report includes monitoring data from routine radiological and nonradiological sampling activities. These data include estimates of dose to the public from the Weldon Spring site, estimates of effluent releases, and trends in groundwater contaminant levels. Additionally, applicable compliance requirements, quality assurance programs, and special studies conducted in 1995 to support environmental protection programs are discussed. Dose estimates presented in this report are based on hypothetical exposure scenarios for public use of areas near the site. In addition, release estimates have been calculated on the basis of 1995 National Pollutant Discharge Elimination System (NPDES) and air monitoring data. Effluent discharges from the site under routine NPDES and National Emission Standards for Hazardous Air Pollutants (NESHAPs) monitoring were below permitted levels.

  18. Ames Laboratory annual site environmental report, calendar year 1996

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This report summarizes the environmental status of Ames Laboratory for calendar year 1996. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring programs. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies twelve buildings owned by the Department of Energy (DOE). The Laboratory also leases space in ISU owned buildings. Laboratory activities involve less than ten percent of the total chemical use and approximately one percent of the radioisotope use on the ISU campus. In 1996, the Office of Assurance and Assessment merged with the Environment, Safety and Health Group forming the Environment, Safety, Health and Assurance (ESH and A) office. In 1996, the Laboratory accumulated and disposed of wastes under US Environmental Protection Agency (EPA) issued generator numbers. Ames Laboratory submitted a Proposed Site Treatment Plan to EPA in December 1995. This plan complied with the Federal Facilities Compliance Act (FFCA). It was approved by EPA in January 1996. The consent agreement/consent order was issued in February 1996. Pollution awareness, waste minimization and recycling programs, implemented in 1990 and updated in 1994, continued through 1996. Included in these efforts were a waste white paper and green computer paper recycling program. Ames Laboratory also continued to recycle salvageable metal and used oil, and it recovered freon for recycling. All of the chemical and nearly all of the radiological legacy wastes were properly disposed by the end of 1996. Additional radiological legacy waste will be properly disposed during 1997.

  19. Monticello Mill Tailings Site environmental report for calendar year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This report contains information pertaining to environmental activities conducted during calendar year 1992 at and near the inactive uranium millsite in Monticello, Utah. Environmental activities conducted at the Monticello Mill Tailings Site (MMTS) during 1992 included those associated with remedial action and compliance monitoring. Compliance monitoring consisted of both radiological and nonradiological monitoring of air, surface water, and ground water. Radiological and nonradiological air monitoring at the MMTS included measurements of atmospheric radon, particulate matter, and gamma radiation. Air particulate monitoring for radiological and nonradiological constituents was conducted at one location on and two locations off the millsite with high-volume particulate samplers. The maximum airborne concentrations of radium-226, thorium-230, and total uranium at all locations were several orders of magnitude below the regulatory limits specified by DOE Order 5400.5. Surface water monitoring included water quality measurements within Montezuma Creek. During 1992, maximum levels of selenium; gross alpha, gross beta, total dissolved solids, and iron exceeded their respective state standards in one or more samples collected from upstream, on-site, and downstream locations. Ground-water monitoring was conducted for two aquifers underlying the millsite. The shallow aquifer is contaminated by leached products of uranium mill tailings. During 1992, Uranium Mill Tailings Radiation Control Act and state of Utah ground-water standards for arsenic, barium, nitrate, chromium, lead, selenium, molybdenum, uranium-234 and -238, gross alpha particle activity, and radium-226 and -228 were exceeded in one or more alluvial wells. This well will continue to be sampled to determine if the presence of these constituents was anomalous or if the measurements represented contamination in the aquifer.

  20. Slutrapport for PSO 337-068 Udvikling af LED lyskilder og lamper

    E-Print Network [OSTI]

    bulb. - two LED pendants/lamps, a LED table lamp and a chair with LED lighting developed by designers Cluster lampe 13 Teknisk design af Cluster 15 Konklusion 16 Lysflyder 17 Hvordan opstod ideen om en LEDSlutrapport for PSO 337-068 Udvikling af LED lyskilder og lamper Carsten Dam-Hansen, Paul Michael

  1. Dynamics of Charged Events

    SciTech Connect (OSTI)

    Bachas, Constantin [Laboratoire de Physique Theorique de l'Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris cedex (France); Bunster, Claudio [Centro de Estudios Cientificos (CECS), Avenida Arturo Prat 514, Valdivia (Chile); Henneaux, Marc [Physique Theorique et Mathematique, Universite Libre de Bruxelles and International Solvay Institutes, ULB Campus Plaine C.P. 231, 1050 Bruxelles (Belgium); Centro de Estudios Cientificos (CECS), Avenida Arturo Prat 514, Valdivia (Chile)

    2009-08-28T23:59:59.000Z

    In three spacetime dimensions the world volume of a magnetic source is a single point, an event. We make the event dynamical by regarding it as the imprint of a flux-carrying particle impinging from an extra dimension. This can be generalized to higher spacetime dimensions and to extended events. We exhibit universal observable consequences of the existence of events and argue that events are as important as particles or branes. We explain how events arise on the world volume of membranes in M theory, and in a Josephson junction in superconductivity.

  2. Calendar -- Fernald Preserve Calendar

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111A Lithologic andRECORD OF DECISION:L^_. .?

  3. DISCOUNTED EVENT PERMIT REQUEST

    E-Print Network [OSTI]

    DISCOUNTED EVENT PERMIT REQUEST Discounted daily parking rates are available for CSM events where or the daily scratch off permits: COMMUTER LOTS: $3.00 / day GENERAL LOTS: $4.00 / day Please e-mail or drop

  4. Sandia National Laboratories: Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE website. Using the kinetic Wulff plot to design and control nonpolar and semipolar GaN heteroepitaxy On January 19, 2012, in Energy, Energy Efficiency, Events, News & Events,...

  5. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report

    SciTech Connect (OSTI)

    Zohner, S.K.

    2000-05-30T23:59:59.000Z

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  6. Journal of Power Sources 141 (2005) 298306 Calendar life performance of pouch lithium-ion cells

    E-Print Network [OSTI]

    Popov, Branko N.

    2005-01-01T23:59:59.000Z

    Journal of Power Sources 141 (2005) 298­306 Calendar life performance of pouch lithium-ion cells, end-of-charge voltage and the type of storage condition over the performance pouch lithium-ion cells. Keywords: Aging; Storage life; Capacity loss; Lithium-ion; Open-circuit voltage 1. Introduction

  7. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report

    SciTech Connect (OSTI)

    S. K. Zohner

    1999-10-01T23:59:59.000Z

    This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

  8. Uranium Mill Tailings Remedial Action Project Annual Environmental Monitoring Report calendar year 1992: Volume 2

    SciTech Connect (OSTI)

    none,

    1993-12-31T23:59:59.000Z

    This report contains environmental monitoring information for the following UMTRA sites for the 1992 Calendar Year: Lakeview, OR; Lowman, ID; Mexican Hat, UT; Monument Valley, AZ; Rifle, CO; Riverton, WY; Shiprock, NM; Spook, WY; Tuba City, AZ. Each site report contains a site description, compliance summary, environmental program information, environmental radiological and non-radiological program information, water resources protection, and quality assurance information.

  9. For Fall Calendars THE UNIVERSITY OF CHICAGO'S SMART MUSEUM OF ART

    E-Print Network [OSTI]

    He, Chuan

    to temporary exhibitions as well as those that are home to longer-standing installations of the SmartFor Fall Calendars THE UNIVERSITY OF CHICAGO'S SMART MUSEUM OF ART MARKS 40th ANNIVERSARY SEASON. 27, 2014; commemorates Smart's inaugural 1974 exhibition of modern sculpture, and marks first time

  10. Vehicle Traffic Control Signal Heads— Light Emitting Diode Circular Signal Supplement (VTCSH-LED). This replaced the so-called Interim LED Purchase Specifications,

    E-Print Network [OSTI]

    S. Behura

    Engineers ’ (ITE) specification for light-emitting diode (LED) circular traffic signals recently was updated (June 27, 2005) and published under the name

  11. spring 2012 spring2012CALENDAR OF CLASSES AND EVENTS CARE Services and Elder Care 643-7754

    E-Print Network [OSTI]

    Doudna, Jennifer A.

    training. Ergonomics@Work 643-2540 Ergonomics@Work promotes ergonomics in campus work environments through, and the Computer Ergonomics Matching Funds Program. Health*Matters 643-4646 Health*Matters, in partnership FOR FACULTY AND STAFF SCHEDULEOFWORKSHOPS FORFACULTYANDSTAFF ergonomics

  12. Impact of the 3Cs of Batteries on PHEV Value Proposition: Cost, Calendar Life, and Cycle Life (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Smith, K.; Markel, T.

    2009-06-01T23:59:59.000Z

    Battery cost, calendar life, and cycle life are three important challenges for those commercializing plug-in hybrid electric vehicles; battery life is sensitive to temperature and solar loading.

  13. Intel Led OpenMP Training Session at NERSC This Wednesday March...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Led OpenMP Training Session at NERSC This Wednesday March 25 Intel Led OpenMP Training Session at NERSC This Wednesday March 25 March 24, 2015 by Katie Antypas (0 Comments) This...

  14. Fabrication of InGaP LEDs on a graded buffer substrate

    E-Print Network [OSTI]

    Martínez, Josué F

    2007-01-01T23:59:59.000Z

    Introduction: Computer display panels create a vast color palette by combining color from three light emitting diodes (LEDs), each producing red, green, or blue light. The light from these three LEDs is chosen so that the ...

  15. Have You Used LED Lighting? Tell Us About It. | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    It. May 7, 2009 - 5:00am Addthis This week, John shared his experiences with light-emitting diode (LED) lighting. In a future blog, he'll share more about LED lighting. Have you...

  16. An Investigation into the Perception of Color under LED White Composite Spectra with Modulated Color Rendering

    E-Print Network [OSTI]

    O'Reilly, Una-May

    emitting diodes, LEDs. We examined seven LED white composite spectra with different color rendering of a pilot study that evaluates the perceptual impact of modulation of color rendering using multi-chip light

  17. Development and Industrialization of InGaN/GaN LEDs on Patterned...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of InGaNGaN LEDs on Patterned Sapphire Substrates for Low Cost Emitter Architecture Development and Industrialization of InGaNGaN LEDs on Patterned Sapphire...

  18. Key Events Timeline

    Broader source: Energy.gov [DOE]

    This document lists key events beginning with the April 20 fire on the Deepwater Horizon through July 28th. Updated July 28, 2010.

  19. Text-Alternative Version: Model Specification for LED Roadway Luminaires Webcast

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the "Model Specification for LED Roadway Luminaires" webcast, held November 15, 2011.

  20. Text-Alternative Version: Successful Selection of LED Streetlight Luminaires Webcast

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the "Successful Selection of LED Streetlight Luminaires" webcast, held March 6, 2013.

  1. TESLA-FEL 2007-03 Application of low cost GaAs LED as neutron

    E-Print Network [OSTI]

    neutrons in unbiased Gallium Arsenide (GaAs) Light Emitting Diodes (LED) resulted in a reduction Keywords: COTS components, Displacement damage, Electron Linear Accelerator, GaAs Light emitting diode (LED) Gallium Arsenide (GaAs) light emitting diode (LED) for the assessment of integrated neutron fluence

  2. UV-LED LITHOGRAPHY FOR 3-D HIGH ASPECT RATIO MICROSTRUCTURE PATTERNING

    E-Print Network [OSTI]

    in microfabrication. Table 1 compares the performance of UV-LEDs with a mercury lamp for several key parametersUV-LED LITHOGRAPHY FOR 3-D HIGH ASPECT RATIO MICROSTRUCTURE PATTERNING Jungkwun `JK' Kim*, Seung of Technology, Atlanta, GA, USA ABSTRACT This paper presents a UV lithography method that utilizes a UV-LED

  3. Color shift reduction of a multi-domain IPS-LCD using RGB-LED backlight

    E-Print Network [OSTI]

    Wu, Shin-Tson

    -emitting diodes (LEDs) and cold-cathode fluorescent lamp (CCFL) backlights. Simulation results indicateColor shift reduction of a multi-domain IPS- LCD using RGB-LED backlight Ruibo Lu, Qi Hong, Zhibing that the LED backlight exhibits a wider color gamut, better angular color uniformity, and 2-4X smaller static

  4. Issues, Models and Solutions for Triac Modulated Phase Dimming of LED Lamps

    E-Print Network [OSTI]

    Lehman, Brad

    Issues, Models and Solutions for Triac Modulated Phase Dimming of LED Lamps Dustin Rand (Raytheon Edison socket LED lamps directly from residential phase modulated dimmer switches. In order to explain brightness "White Light" LEDs have experts predicting that the "bright white replacement lamp" could trigger

  5. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2013

    SciTech Connect (OSTI)

    Rendall, John D. [CH2MHILL • B& W West Valley, LLC (CHBWV); Steiner, Alison F. [CH2MHILL • B& W West Valley, LLC (CHBWV); Pendl, Michael P. [CH2MHILL • B& W West Valley, LLC (CHBWV)

    2014-09-16T23:59:59.000Z

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2013. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2013. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2013 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  6. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2009

    SciTech Connect (OSTI)

    West Valley Environmental Services LLC (WVES) and URS Corporation

    2010-09-17T23:59:59.000Z

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2009. The report, prepared by the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2009. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program by the DOE ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2009 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  7. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2012

    SciTech Connect (OSTI)

    Rendall, John D. [CH2M HILL • B& W West Valley, LLC (CHBWV); Steiner, Alison F. [URS Professional Solutions (URSPS); Klenk, David P. [CH2M HILL • B& W West Valley, LLC (CHBWV)

    2013-09-19T23:59:59.000Z

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2012. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2012. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2012 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  8. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2011

    SciTech Connect (OSTI)

    CH2M HILL • B& W West Valley, LLC

    2012-09-27T23:59:59.000Z

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2011. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2011. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2011 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  9. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2010

    SciTech Connect (OSTI)

    CH2MHILL • B& W West Valley, LLC

    2011-09-28T23:59:59.000Z

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2010. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2010. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations and directives, evaluation of data collected in 2010 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  10. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2008

    SciTech Connect (OSTI)

    West Valley Environmental Services LLC (WVES) and URS - Washington Division

    2009-09-24T23:59:59.000Z

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2008. The report summarizes the calendar year (CY) 2008 environmental monitoring program data at the WVDP so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of the environment, continual improvement, prevention and/or minimization of pollution, public outreach, and stakeholder involvement. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2008 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  11. Ecological Monitoring and Compliance Program Fiscal/Calendar Year 2004 Report

    SciTech Connect (OSTI)

    Bechtel Nevada

    2005-03-01T23:59:59.000Z

    The Ecological Monitoring and Compliance program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada Test Site and ensures compliance with laws and regulations pertaining to Nevada Test Site biota. This report summarizes the program's activities conducted by Bechtel Nevada during the Fiscal Year 2004 and the additional months of October, November, and December 2004, reflecting a change in the monitoring period to a calendar year rather than a fiscal year as reported in the past. This change in the monitoring period was made to better accommodate information required for the Nevada Test Site Environmental Report, which reports on a calendar year rather than a fiscal year. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive species and unique habitat monitoring, (5) habitat restoration monitoring, and (6) biological monitoring at the Hazardous Materials Spill Center.

  12. Event-by-Event Fission with FREYA

    SciTech Connect (OSTI)

    Randrup, J; Vogt, R

    2010-11-09T23:59:59.000Z

    The recently developed code FREYA (Fission Reaction Event Yield Algorithm) generates large samples of complete fission events, consisting of two receding product nuclei as well as a number of neutrons and photons, all with complete kinematic information. Thus it is possible to calculate arbitrary correlation observables whose behavior may provide unique insight into the fission process. The presentation first discusses the present status of FREYA, which has now been extended up to energies where pre-equilibrium emission becomes significant and one or more neutrons may be emitted prior to fission. Concentrating on {sup 239}Pu(n,f), we discuss the neutron multiplicity correlations, the dependence of the neutron energy spectrum on the neutron multiplicity, and the relationship between the fragment kinetic energy and the number of neutrons and their energies. We also briefly suggest novel fission observables that could be measured with modern detectors.

  13. Annual Site Environmental Report of the Lawrence Berkeley Laboratory, Calendar year 1992

    SciTech Connect (OSTI)

    Balgobin, D.A.; Javandel, I.; Pauer, R.O.; Schleimer, G.E.; Thorson, P.A. [eds.

    1993-05-01T23:59:59.000Z

    This Annual Site Environmental Report summarizes LBL environmental activities in calendar year (CY) 1992. The purpose of this Report is to present summary environmental information in order to characterize site environmental management performance, confirm compliance with environmental standards and requirements, and highlight significant programs and efforts. Its format and content are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, ``General Environmental Protection Program.``

  14. Weldon spring site environmental report for calendar year 1996. Revision 0

    SciTech Connect (OSTI)

    NONE

    1997-07-23T23:59:59.000Z

    This Site Environmental Report for Calendar Year 1996 describes the environmental monitoring programs at the Weldon Spring Site Remedial Action Project (WSSRAP). The objectives of these programs are to assess actual or potential exposure to contaminant effluents from the project area by providing public use scenarios and dose estimates, to demonstrate compliance with Federal and State permitted levels and regulations, and to summarize trends and/or changes in contaminant concentrations identified through environmental monitoring.

  15. Hanford Site Environmental Surveillance Master Sampling Schedule for Calendar Year 2011

    SciTech Connect (OSTI)

    Bisping, Lynn E.

    2011-01-21T23:59:59.000Z

    This document contains the calendar year 2011 schedule for the routine collection of samples for the Surface Environmental Surveillance Project and the Drinking Water Monitoring Project. Each section includes sampling locations, sampling frequencies, sample types, and analyses to be performed. In some cases, samples are scheduled on a rotating basis. If a sample will not be collected in 2011, the anticipated year for collection is provided. Maps showing approximate sampling locations are included for media scheduled for collection in 2011.

  16. Hanford Site Environmental Surveillance Master Sampling Schedule for Calendar Year 2005

    SciTech Connect (OSTI)

    Bisping, Lynn E.

    2005-01-19T23:59:59.000Z

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs. This document contains the calendar year 2005 schedules for the routine and non-routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project.

  17. Hanford Site Environmental Surveillance Master Sampling Schedule for Calendar Year 2007

    SciTech Connect (OSTI)

    Bisping, Lynn E.

    2007-01-31T23:59:59.000Z

    This document contains the calendar year 2007 schedule for the routine collection of samples for the Surface Environmental Surveillance Project and Drinking Water Monitoring Project. Each section includes sampling locations, sampling frequencies, sample types, and analyses to be performed. In some cases, samples are scheduled on a rotating basis and may not be collected in 2007 in which case the anticipated year for collection is provided. Maps showing approximate sampling locations are included for media scheduled for collection in 2007.

  18. Sandia National Laboratories, California pollution prevention annual program report for calendar year 2005.

    SciTech Connect (OSTI)

    Farren, Laurie J. (Sandia National Laboratories, Livermore, CA)

    2005-07-01T23:59:59.000Z

    The annual program report provides detailed information about all aspects of the SNL/CA Pollution Prevention Program for a given calendar year. It functions as supporting documentation to the ''SNL/CA Environmental Management System Program Manual''. The 2005 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Pollution Prevention Program, one of six programs that supports environmental management at SNL/CA.

  19. Sandia National Laboratories California Environmental Monitoring Program Annual Report for Calendar Year 2005.

    SciTech Connect (OSTI)

    Holland, Robert C.

    2006-02-01T23:59:59.000Z

    The annual program report provides detailed information about all aspects of the SNL/CA Environmental Monitoring Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2005 Update program report describes the activities undertaken during the past year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/CA.

  20. A calendar and transcription of selected letters by Elmer Blaney Harris: 1902-1905

    E-Print Network [OSTI]

    Bowie, Charles Caldwell

    1989-01-01T23:59:59.000Z

    similarly numbered letters. And when the numbers assigned to the letter and the envelope do not match, I have recorded the number of the envelope in parentheses immediately after the des- ignation ENV. In such cases, I have allowed the number... with the abbreviation ENV. In the course of creating this calendar, I have been able to match some of the letters with separately numbered, emp- ty envelopes with similar dates. Like the mismatched correspondence mentioned above, however, the numbers...

  1. Westinghouse Hanford Company effluent report for 300, 400, and 1100 Area operations for calendar year 1989

    SciTech Connect (OSTI)

    McCarthy, M.J.

    1990-09-01T23:59:59.000Z

    The report tabulates both radioactive and nonradioactive liquid and airborne effluent data for 300, 400, and 1100 Area operations at the Hanford Site. The 300 Area is primarily a research and development area. The 400 Area houses the Fast Flux Test Facility. The 1100 Area contains central stores and vehicle maintenance facilities. Releases to the environment from Westinghouse Hanford Company operations within these areas during calendar year 1989 were both consistent with previous years and within regulatory limits. 2 refs., 10 tabs.

  2. National Emission Standards for Hazardous Air Pollutants—Calendar Year 2010 INL Report for Radionuclides (2011)

    SciTech Connect (OSTI)

    Mark Verdoorn; Tom Haney

    2011-06-01T23:59:59.000Z

    This report documents the calendar Year 2010 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy's Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, 'Protection of the Environment,' Part 61, 'National Emission Standards for Hazardous Air Pollutants,' Subpart H, 'National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.'

  3. DUAL USE OF LEDS: SIGNALING AND COMMUNICATIONS IN ITS Grantham Pang, Chi-ho Chan, Hugh Liu, Thomas Kwan

    E-Print Network [OSTI]

    Pang, Grantham

    of an incandescent lamp is 800 hours while the life expectancy of LED is 10-23 years. This result shows that LED has : · LED indicator lamps (as in some dashboard, traffic signals, card readers). · LED displays (1 DUAL USE OF LEDS: SIGNALING AND COMMUNICATIONS IN ITS Grantham Pang, Chi-ho Chan, Hugh Liu

  4. DVU Featured Training & Events ...

    Energy Savers [EERE]

    Featured Training & Events Form Please complete this form in its entirety and email to AskTheDvu@hq.doe.gov 1. Course Title: 2. Course StartEnd Date: 3. StartEnd Time (Time zone...

  5. Monte Carlo event generators

    SciTech Connect (OSTI)

    Frixione, Stefano [INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy)

    2005-10-06T23:59:59.000Z

    I review recent progress in the physics of parton shower Monte Carlos, emphasizing the ideas which allow the inclusion of higher-order matrix elements into the framework of event generators.

  6. Seismic event classification system

    DOE Patents [OSTI]

    Dowla, Farid U. (Castro Valley, CA); Jarpe, Stephen P. (Brentwood, CA); Maurer, William (Livermore, CA)

    1994-01-01T23:59:59.000Z

    In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities.

  7. Seismic event classification system

    DOE Patents [OSTI]

    Dowla, F.U.; Jarpe, S.P.; Maurer, W.

    1994-12-13T23:59:59.000Z

    In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities. 21 figures.

  8. Fuel Cell Technologies Office: Past Events EventsDetail

    Broader source: Energy.gov (indexed) [DOE]

    Events Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Past Events EventsDetail to someone by E-mail Share Fuel Cell Technologies Office: Past...

  9. WhiteOptics' Low-Cost Reflector Composite Boosts LED Fixture Efficiency

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, WhiteOptics has developed a composite coating that can be used to improve efficiency in backlit, indirect, and cavity-mixing LED luminaire designs by maximizing light reflection and output. The highly diffuse coating, which is based on a novel high-reflectance particle technology, allows for uniform distribution of light without exaggerating the point-source nature of the LEDs, and is intended to offer an overall system cost-improving solution for LED optics.

  10. LED exit signs: Improved technology leads the way to energy savings

    SciTech Connect (OSTI)

    Sardinsky, R.; Hawthorne, S.

    1994-12-31T23:59:59.000Z

    Recent innovations in light-emitting diode (LED) exit signs may make LED signs the best choice among the energy efficient options available. In the past, LED signs have offered low power consumption, projected long lamp life, and low maintenance requirements. Now, the best of the LED signs also offer improved optical designs that reduce their already low power consumption while improving visibility and appearance, and even reduce their cost. LED exit signs are gaining market share, and E Source expects this technology to eventually dominate over incandescent, compact fluorescent, and electroluminescent signs. More research is needed, however, to confirm manufacturers` claims of 20-year operating lives for LED signs. Conservative estimates place the number of exit signs in US buildings at about 40 million. Although each sign represents a very small part of a building`s load, exit signs are ready targets for energy efficiency upgrades -- they operate continuously and most use inefficient incandescent sources. With an LED sign, annual energy and maintenance costs can be reduced by more than 90 percent compared to a typical incandescent sign. Low annual costs help to offset the LED sign`s relatively high first cost. More than 25 utilities offer DSM incentives for energy efficient exit signs, and efficient alternatives are becoming more readily available. Recent improvements in optical designs enable many LED signs to visually out perform other sources. In addition to these benefits, LED exit signs have lower life cycle cost than most other options. The biggest barrier to their success, however, is that their first cost has been considerably higher than competing technologies. LED sign prices are falling rapidly, though, because manufacturers are continually improving optical designs of the fixtures to use fewer LEDs and thus even less energy while providing better performance.

  11. Philips Lumileds Achieves 139 lm/W in a Neutral White LED

    Broader source: Energy.gov [DOE]

    Philips Lumileds' LUXEON Rebel LED can now deliver 139 lm/W in a neutral white LED. The top bin LED, developed with a single InGaN die and phosphor conversion, shows high-performance characteristics up to 139 lm/W and 138 lumens at 350 mA, with a forward voltage of 2.83 V. The CCT of the device is 5385K and the CRI is 70.

  12. Text-Alternative Version: MSSLC Member Case Studies- LED Street Lighting Programs Webinar

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the "MSSLC Member Case Studies - LED Street Lighting Programs" webcast, held May 8, 2013.

  13. Text Alternative Version: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the "Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products" webcast, held March 28, 2013.

  14. New Family of Tiny Crystals Glow Bright in LED Lights | Advanced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crystals that glow different colors may be the missing ingredient for white light-emitting diode (LED) lighting that illuminates homes and offices as effectively as natural...

  15. Scalable Light Module for Low-Cost, High Efficiency LED Luminaires...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost, High Efficiency LED Luminaires More Documents & Publications Low-Cost Light-Emitting Diode Luminaire for General Illumination 2015 Project Portfolio 2014 Solid-State...

  16. Text-Alternative Version: CALiPER Series 21 on LED Linear Lamps and Troffer Lighting

    Broader source: Energy.gov [DOE]

    Following is a text version of a video about CALiPER Application Report Series 21 on LED Linear Lamps and Troffer Lighting.

  17. Text-Alternative Version: LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR®

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR® webcast.

  18. LED Linear Lamps and Troffer Lighting: CALiPER Report Series 21

    ScienceCinema (OSTI)

    Beeson, Tracy; Miller, Naomi

    2014-06-23T23:59:59.000Z

    Video about CALiPER Report Series 21 on LED Linear Lamps and Troffer Lighting, featuring interviews with Tracy Beeson and Naomi Miller of Pacific Northwest National Laboratory.

  19. Researchers Say They've Solved the Mystery of LED Lighting "Droop...

    Broader source: Energy.gov (indexed) [DOE]

    Sciences Team. Despite being cool, ultra-efficient and long lasting, the light-emitting diode (LED) faces a problem called "efficiency droop." New findings from simulations...

  20. LEDS Tool: Step-By-Step Guidance to a Long-Term Framework for...

    Open Energy Info (EERE)

    OpenEI Keyword(s): LEDS Guidance Developing Implementing Process Language: "English, Spanish; Castilian" is not in the list of possible values (Abkhazian, Achinese, Acoli,...

  1. 2015 DOE SSL R&D Workshop LED Topic Table Questions to Consider

    Broader source: Energy.gov [DOE]

    This document was distributed during the LED Topic Table portion of the DOE SSL R&D Workshop and aimed to prompt discussion on the following topics:

  2. Law School Event Composting Guide

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Law School Event Composting Guide HLS SUSTAINABILITY PROGRAM JANUARY 2011 Thank you for your interest in event composting! Separating materials for composting is easy, and organic materials comprise a significant portion of event waste. Composting instead

  3. Strategic Petroleum Reserve site environmental report for calendar year 1997

    SciTech Connect (OSTI)

    NONE

    1998-11-01T23:59:59.000Z

    The purpose of this Site Environmental Report (SER) is to characterize site environmental management performance, confirm compliance with environmental standards and requirements, and highlight significant programs and efforts for the US Department of Energy (DOE) Strategic Petroleum Reserve (SPR). The SER, provided annually in accordance with DOE order 5400.1, serves the public by summarizing monitoring data collected to assess how the SPR impacts the environment. The SER provides a balanced synopsis of non-radiological monitoring and regulatory compliance data and affirms that the SPR has been operating within acceptable regulatory limits. Included in this report is a describe of each site`s environment, an overview of the SPR environmental program, and a recapitulation of special environmental activities and events associated with each SPR site during 1997. Two of these highlights include decommissioning of the Weeks Island site, involving the disposition of 11.6 million m{sup 3} (73 million barrels) of crude oil inventory, as well as the degasification of over 12.6 million m{sup 3} (79.3 million barrels) of crude oil inventory at the Big Hill and Bryan Mound facilities.

  4. Laboratory Events | Brookhaven National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    highly sensitive surface enhanced Raman spectroscopy (SERS) and localized surface plasmon resonance (LSPR) based sensors. 29 No events scheduled 30 No events scheduled 31 MAY...

  5. Temporal Event Conceptualization

    E-Print Network [OSTI]

    Kumar, Krishna

    1987-01-01T23:59:59.000Z

    events at a time t such that Ends(qq, t, ) and Cont(rlq, t) is true?). In order to express the relationship between such events we need to introduce four more relationships to the set in Fig 1. These additional relations are shown pictorially in Fig 2.... They are sa (starts after), sb (starts before), ss (starts simultaneously) and (null or indeterminate). Informally, rlt (sa) re holds at an instant t if Starts(rlr, ts ), Starts(rlq, tr ), Cont(qq, t), Cont(qq, t) and tt & tz &t . This relation...

  6. Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas EnergyofIdaho | Department19EnergyEvents Events The

  7. Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas EnergyofIdaho | Department19EnergyEvents Events

  8. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education Team Visits12 [Events,, 2013 [Events] Call

  9. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education Team Visits12 [Events,, 2013 [Events]

  10. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education Team Visits12 [Events,, 2013 [Events]New

  11. Strategic Petroleum Reserve Site Environmental Report for calendar year 1994

    SciTech Connect (OSTI)

    NONE

    1995-05-31T23:59:59.000Z

    The purpose of this Site Environmental Report (SER) is to characterize site environmental management performance, confirm compliance with environmental standards and requirements, and highlight significant programs and efforts. The SER, provided annually in accordance with Department of Energy DOE Order 5400.1, serves the public by summarizing monitoring data collected to assess how the Strategic Petroleum Reserve (SPR) impacts the environment. This report (SER) provides a balanced synopsis of non-radiological monitoring and regulatory compliance data and affirms that the SPR has been operating within acceptable regulatory limits. Included in this report is a description of each site`s environment, an overview of the SPR environmental program, and a recapitulation of special environmental activities and events associated with each SPR site during 1994. Two of these highlights include decommissioning of the Weeks Island facility (disposition of 73 million barrels of crude oil inventory) as well as the degasification of up to 144 million barrels of crude oil inventory at the Bayou Choctaw, Big Hill, Bryan Mound, and West Hackberry facilities. The decision to decommission the Weeks Island facility is a result of diminishing mine integrity from ground water intrusion. Degasifying the crude oil is required to reduce potentially harmful emissions that would occur during oil movements. With regard to still another major environmental action, 43 of the original 84 environmental findings from the 1992 DOE Tiger Team Assessment were closed by the end of 1994. Spills to the environment, another major topic, indicates a positive trend. Total volume of oil spilled in 1994 was only 39 barrels, down from 232 barrels in 1993, and the total volume of brine spilled was only 90 barrels, down from 370 barrels in 1993. The longer term trend for oil and brine spills has declined substantially from 27 in 1990 down to nine in 1994.

  12. Strategic petroleum reserve site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-31T23:59:59.000Z

    The purpose of this Site Environmental Report (SER) is to characterize site environmental management performance, confirm compliance with environmental standards and requirements, and highlight significant programs and efforts. Included in this report is a description of each site`s environment, an overview of the Strategic Petroleum Reserve (SPR) environmental program, and a recapitulation of special environmental activities and events associated with each SPR site during 1995. Two of these highlights include decommissioning of 3 the weeks Island facility, involving the disposition of 11.6 million m{sup 3} (73 million barrels) of crude oil inventory, as well as the degasification of over 4.5 million m{sup 3} (30 million barrels) of crude oil inventory at the Bryan Mound and West Hackberry facilities. The decision to decommission the weeks Island facility is a result of diminishing mine integrity from ground water intrusion. Transfer of Weeks Island oil began in November, 1995 with 2.0 million m{sup 3} (12.5 million barrels) transferred by December 31, 1995. Degasifying the crude oil is a major pollution prevention initiative because it will reduce potentially harmful emissions that would occur during oil movements by three or more orders of magnitude. Spills to the environment, another major topic, indicates a positive trend. There were only two reportable oil and three reportable brine spills during 1995, down from a total of 10 reportable spills in 1994. Total volume of oil spilled in 1995 was 56.3 m{sup 3} (354 barrels), and the total volume of brine spilled was 131.1 m{sup 3} (825 barrels). The longer term trend for oil and brine spills has declined substantially from 27 in 1990 down to five in 1995. All of the spills were reported to appropriate agencies and immediately cleaned up, with no long term impacts observed.

  13. TRUE COLORS: LEDS AND THE RELATIONSHIP BETWEEN CCT, CRI, OPTICAL SAFETY, MATERIAL DEGRADATION, AND PHOTOBIOLOGICAL STIMULATION

    SciTech Connect (OSTI)

    Royer, Michael P.

    2014-08-30T23:59:59.000Z

    This document analyzes the optical, material, and photobiological hazards of LED light sources compared to conventional light sources. It documents that LEDs generally produce the same amount of blue light, which is the primary contributor to the risks, as other sources at the same CCT. Duv may have some effect on the amount of blue light, but CRI does not.

  14. The evolving price of household LED lamps: Recent trends and historical comparisons for the US market

    SciTech Connect (OSTI)

    Gerke, Brian F.; Ngo, Allison T.; Alstone, Andrea L.; Fisseha, Kibret S.

    2014-10-14T23:59:59.000Z

    In recent years, household LED light bulbs (LED A lamps) have undergone a dramatic price decline. Since late 2011, we have been collecting data, on a weekly basis, for retail offerings of LED A lamps on the Internet. The resulting data set allows us to track the recent price decline in detail. LED A lamp prices declined roughly exponentially with time in 2011-2014, with decline rates of 28percent to 44percent per year depending on lumen output, and with higher-lumen lamps exhibiting more rapid price declines. By combining the Internet price data with publicly available lamp shipments indices for the US market, it is also possible to correlate LED A lamp prices against cumulative production, yielding an experience curve for LED A lamps. In 2012-2013, LED A lamp prices declined by 20-25percent for each doubling in cumulative shipments. Similar analysis of historical data for other lighting technologies reveals that LED prices have fallen significantly more rapidly with cumulative production than did their technological predecessors, which exhibited a historical decline of 14-15percent per doubling of production.

  15. CONSTRUCTING AN ELASTIC TOUCH PANEL WITH EMBEDDED IR-LEDS USING SILICONE RUBBER

    E-Print Network [OSTI]

    Tanaka, Jiro

    CONSTRUCTING AN ELASTIC TOUCH PANEL WITH EMBEDDED IR-LEDS USING SILICONE RUBBER Yuichiro Sakamoto a technique for the construction of an elastic touch panel using silicone rubber. The technique is similar is made of transparent silicone rubber rather than acrylic. Moreover, we embedded infrared LEDs within

  16. Department of Mechanical Engineering Spring 2013 Lumax Lighting 2: LED Industrial High Bay Light Fixture

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical Engineering Spring 2013 Lumax Lighting 2: LED Industrial High Bay Light Fixture Overview The problem that our sponsor, Rich Taylor, presented to the team was to design a light fixture for an industrial setting using high power LED lights. The challenge

  17. Cree's High-Power White LED Delivers 121 lm/W

    Broader source: Energy.gov [DOE]

    Cree's commercial high-power white LEDs can now deliver 121 lm/W at 35A/cm2 current density. These particular Cree XLamp® XP-G LEDs deliver 267 lumens at a drive current of 700 mA and an operating...

  18. LED Lighting Flicker and Potential Health Concerns: IEEE Standard PAR1789 Update

    E-Print Network [OSTI]

    Lehman, Brad

    LED Lighting Flicker and Potential Health Concerns: IEEE Standard PAR1789 Update Arnold Wilkins for mitigating health risks to viewers" has been formed to advise the lighting industry, ANSI/NEMA, IEC, EnergyStar and other standards groups about the emerging concern of flicker in LED lighting. This paper introduces

  19. Proposal -Interactive City Lighting LED based lighting systems have enabled radically new

    E-Print Network [OSTI]

    Proposal - Interactive City Lighting Abstract LED based lighting systems have also be integrated with sensors and smart environments. This has opened up a new world. The use of the LED as a potential means for providing interactive city lighting for social

  20. Largest-area Photonic Crystal LED Fabricated Demonstrates Uniform Light Emission

    Broader source: Energy.gov [DOE]

    Lumileds Lighting, the University of New Mexico, and Sandia National Laboratories teamed to demonstrate uniform light emission from the largest-area III-Nitride photonic crystal LED (1 x 1 mm2) ever fabricated. Most previous photonic crystal LED research has relied on small-area patterns written by slow, serial-writing electron-beam lithography.

  1. Westinghouse Hanford Company effluent discharges and solid waste management report for calendar year 1989: 200/600 Areas

    SciTech Connect (OSTI)

    Brown, M.J.; P'Pool, R.K.; Thomas, S.P.

    1990-05-01T23:59:59.000Z

    This report presents calendar year 1989 radiological and nonradiological effluent discharge data from facilities in the 200 Areas and the 600 Area of the Hanford Site. Both summary and detailed effluent data are presented. In addition, radioactive and nonradioactive solid waste storage and disposal data for calendar year 1989 are furnished. Where appropriate, comparisons to previous years are made. The intent of the report is to demonstrate compliance of Westinghouse Hanford Company-operated facilities with administrative control values for radioactive constituents and applicable guidelines and standards (including Federal permit limits) for nonradioactive constituents. 11 refs., 20 tabs.

  2. Hanford Site Environmental Surveillance Master Sampling Schedule for Calendar Year 2006

    SciTech Connect (OSTI)

    Bisping, Lynn E.

    2006-01-27T23:59:59.000Z

    This document contains the calendar year 2006 schedules for the routine and non-routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project. Each section includes sampling locations, sample types, and analyses to be performed. In some cases, samples are scheduled on a rotating basis and may not be collected in 2006 in which case the anticipated year for collection is provided. The project document package (PDP) for Surface Environmental Surveillance contains the milestone control log for the issuing of CY06 Environmental Surveillance Master Sampling Schedule WBS 4.2.3.21.3.03, milestone: RL00430306 (4830106-12).

  3. Site environmental report for calendar year 1996: Yucca Mountain site, Nye County, Nevada

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    The environmental program established by the Yucca Mountain Site Characterization Office (YMSCO) has been designed and implemented to protect, maintain, and restore environmental quality, minimize potential threats to the environment and the public, and comply with environmental policies and US Department of Energy (DOE) Orders. In accordance with DOE Order 5400.1, General Environmental Protection Program (DOE, 1990a), to be superseded by DOE Order 231.1 (under review), the status of the Yucca Mountain Site Characterization Project (YMP) environmental program has been summarized in this annual Site Environmental Report (SER) to characterize performance, document compliance with environmental requirements, and highlight significant programs and efforts during calendar year 1996.

  4. National Emission Standards for Hazardous Air Pollutants—Calendar Year 2012 INL Report for Radionuclides (2013)

    SciTech Connect (OSTI)

    Mark Verdoorn; Tom Haney

    2013-06-01T23:59:59.000Z

    This report documents the calendar year 2011 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy’s Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, “Protection of the Environment,” Part 61, “National Emission Standards for Hazardous Air Pollutants,” Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.” The effective dose equivalent to the maximally exposed individual member of the public was 4.58E-02 mrem per year, 0.46 percent of the 10 mrem standard.

  5. National Emission Standards for Hazardous Air Pollutants—Calendar Year 2013 INL Report for Radionuclides (2014)

    SciTech Connect (OSTI)

    Mark Verdoorn; Tom Haney

    2014-06-01T23:59:59.000Z

    This report documents the calendar year 2011 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy’s Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, “Protection of the Environment,” Part 61, “National Emission Standards for Hazardous Air Pollutants,” Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.” The effective dose equivalent to the maximally exposed individual member of the public was 4.58E-02 mrem per year, 0.46 percent of the 10 mrem standard.

  6. National Emission Standards for Hazardous Air Pollutants—Calendar Year 2011 INL Report for Radionuclides (2012)

    SciTech Connect (OSTI)

    Mark Verdoorn; Tom Haney

    2012-06-01T23:59:59.000Z

    This report documents the calendar year 2011 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy's Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, 'Protection of the Environment,' Part 61, 'National Emission Standards for Hazardous Air Pollutants,' Subpart H, 'National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.' The effective dose equivalent to the maximally exposed individual member of the public was 4.58E-02 mrem per year, 0.46 percent of the 10 mrem standard.

  7. An Efficient LED System-in-Module for General Lighting Applications

    SciTech Connect (OSTI)

    None

    2008-09-14T23:59:59.000Z

    The objective of the project was to realize an LED-based lighting technology platform for general illumination, starting with LED chips, and integrating the necessary technologies to make compact, user-friendly, high-efficiency, energy-saving sources of controlled white (or variable-colored) light. The project is to build the system around the LEDs, and not to work on the LEDs themselves, in order that working products can be introduced soon after the LEDs reach suitable efficiency for mass-production of high-power light sources for general illumination. Because the light sources are intended for general illumination, color must be accurately maintained, requiring feedback control in the electronics. The project objective has been realized and screw base demonstrators, based on the technology developed in the project, have been built.

  8. DOE CALiPER Program, Report 20.1 Subjective Evaluation of Beam Quality, Shadow Quality, and Color Quality for LED PAR38 Lamps

    SciTech Connect (OSTI)

    Royer, Michael P.; Poplawski, Michael E.; Miller, Naomi J.

    2013-10-01T23:59:59.000Z

    This report focuses on human-evaluated characteristics, including beam quality, shadow quality, and color quality. Using a questionnaire that included rank ordering, opinions on 27 of the Report 20 PAR38 lamps were gathered during a demonstration event for members of the local Illuminating Engineering Society (IES) chapter. This was not a rigorous scientific experiment, and the data should not be extrapolated beyond the scope of the demonstration. The results suggest that many of the LED products compared favorably to halogen PAR38 benchmarks in all attributes considered. LED lamps using a single-emitter design were generally preferred for their beam quality and shadow quality, and the IES members ranking of color quality did not always match the rank according to the color rendering index (CRI).

  9. Optical Wireless based on High Brightness Visible LEDs Grantham Pang, Thomas Kwan, Hugh Liu, Chi-Ho Chan

    E-Print Network [OSTI]

    Pang, Grantham

    and encoded with audio or data signal. Hence, an LED indicator lamp or traffic light can become an information for incandescent lamps [3,4]. This advancement has led to the production of large- area full-color LED displaysOptical Wireless based on High Brightness Visible LEDs Grantham Pang, Thomas Kwan, Hugh Liu, Chi

  10. 78.1: Ultra Compact Polarization Recycling System for White Light LED based Pico-Projection System

    E-Print Network [OSTI]

    78.1: Ultra Compact Polarization Recycling System for White Light LED based Pico-Projection System polarization recycling system, for white light LED based projectors, is proposed. White light LED is applied. In this paper, we propose an ultra compact polarization recycling system for white light LED based projection

  11. Pottebaum et al. Event Definition for Intelligent Resource Management Event Definition for the Application of Event

    E-Print Network [OSTI]

    Paliouras, George

    of resource management (use case and demand side) and event processing (technology and supply side). MethodsPottebaum et al. Event Definition for Intelligent Resource Management Event Definition for the Application of Event Processing to Intelligent Resource Management Jens Pottebaum University of Paderborn, C

  12. Superconducting Super Collider site environmental report for calendar year 1991. Pre-operational

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This is the first annual SER prepared for the SSC project. It is a pre-operational report, intended primarily to describe the baseline characterization of the Ellis County, Texas site that has been developed subsequent to the Environmental Impact Statement (EIS) and the Supplemental Environmental impact Statement (SEIS). As such, the emphasis will be on environmental compliance efforts, including monitoring and mitigation programs. The SER also reports on the measures taken to meet the commitments made in the EIS and SEIS. These measures are detailed in the Mitigation Action Plan (MAP) (Department of Energy (DOE), 1991), which was prepared following the signing of the Record of Decision (ROD) to construct the SSC in Texas. The SER will continue to be preoperational until the first high-energy (20 trillion electron volt or TeV) protons collisions are observed, at which point the SSC will become operational. At that time, the SER will place more emphasis on the radiological monitoring program. This SER will report on actions taken in 1991 or earlier and briefly mention some of those planned for calendar year 1992. AU actions completed in 1992 will be addressed in the SER for calendar year 1992.

  13. Hanford Site environmental data for calendar year 1994: Surface and Columbia River

    SciTech Connect (OSTI)

    Bisping, L.E.

    1995-07-01T23:59:59.000Z

    Environmental monitoring at the Hanford Site, located in southeastern Washington State, is conducted by Battelle Memorial Institute, Pacific Northwest Division, as part of its contract to operate the Pacific Northwest Laboratory (PNL) for the US Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals. Pacific Northwest Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1994 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1994 b PNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface and river monitoring data. This volume contains the actual raw data used to create the summaries.

  14. Quality and Performance of LED Flashlights in Kenya: Common End User Preferences and Complaints

    SciTech Connect (OSTI)

    Tracy, Jenny; Jacobson, Arne; Mills, Evan

    2009-09-14T23:59:59.000Z

    Flashlights that use LED technology have quickly emerged as the dominant source of portable lighting in Kenya. While flashlights do not normally provide a substitute for kerosene and other highly inefficient fuels, they are an important early manifestation of LED lighting in the developing world that can serve as a platform - or deterrent - to the diffusion of the technology into the broader off-grid lighting market. The lead acid batteries embedded in flashlights also represent an important source of hazardous waste, and flashlight durability is thus an important determinant of the rate of waste disposal. Low-cost LED flashlights with prices from $1 to $4 are now widely available in shops and markets throughout Kenya. The increased penetration of LED technology in the flashlight market is significant, as over half of all Kenyan households report owning a flashlight (Kamfor, 2002). While this shift from conventional incandescent technology to modern LEDs may appear to be a promising development, end users that our research team interviewed expressed a number of complaints about the quality and performance of these new flashlights. This raises concerns about the interests of low-income flashlight users, and it may also indicate the onset of a broader market spoiling effect for off-grid lighting products based on LED technology (Mills and Jacobson, 2008; Lighting Africa, 2007). The quality of low-cost LED flashlights can contribute to market spoiling because these products appear to represent the first contact that most Kenyans have with LED technology. In this report, our team uses interviews with 46 end users of flashlights to collect information about their experiences, perceptions, and preferences. We focus especially on highlighting common complaints from respondents about the flashlights that they have used, as well as on noting the features that they indicated were important when evaluating the quality of a flashlight. In previous laboratory tests, researchers from our team found a wide range of quality and performance among battery powered LED lights (Granderson, et al. 2008).

  15. Sandia Energy - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy Storage SystemsEvents Home

  16. Solar extreme events

    E-Print Network [OSTI]

    Hudson, Hugh S

    2015-01-01T23:59:59.000Z

    Solar flares and CMEs have a broad range of magnitudes. This review discusses the possibility of "extreme events," defined as those with magnitudes greater than have been seen in the existing historical record. For most quantitative measures, this direct information does not extend more than a century and a half into the recent past. The magnitude distributions (occurrence frequencies) of solar events (flares/CMEs) typically decrease with the parameter measured or inferred (peak flux, mass, energy etc. Flare radiation fluxes tend to follow a power law slightly flatter than $S^{-2}$, where S represents a peak flux; solar particle events (SPEs) follow a still flatter power law up to a limiting magnitude, and then appear to roll over to a steeper distribution, which may take an exponential form or follow a broken power law. This inference comes from the terrestrial $^{14}$C record and from the depth dependence of various radioisotope proxies in the lunar regolith and in meteorites. Recently major new observation...

  17. Vapochromic LED

    DOE Patents [OSTI]

    Kunugi, Yoshihito (Hiroshima, JP); Mann, Kent R. (North Oaks, MN); Miller, Larry L. (Minnetonka, MN); Exstrom, Christopher L. (Kearney, NE)

    2003-06-17T23:59:59.000Z

    A sandwich device was prepared by electrodeposition of an insoluble layer of oligomerized tris(4-(2-thienyl)phenyl)amine onto conducting indium-tin oxide coated glass, spin coating the stacked platinum compound, tetrakis(p-decylphenylisocyano)platinum tetranitroplatinate, from toluene onto the oligomer layer, and then coating the platinum complex with aluminum by vapor deposition. This device showed rectification of current and gave electroluminescence. The electroluminescence spectrum (.lambda..sub.max =545 nm) corresponded to the photoluminescence spectrum of the platinum complex. Exposure of the device to acetone vapor caused the electroemission to shift to 575 nm. Exposure to toluene vapor caused a return to the original spectrum. These results demonstrate a new type of sensor that reports the arrival of organic vapors with an electroluminescent signal. The sensor comprises (a) a first electrode; (b) a hole transport layer formed on the first electrode; (c) a sensing/emitting layer formed on the hole transport layer, the sensing/emitting layer comprising a material that changes color upon exposure to the analyte vapors; (d) an electron conductor layer formed on the sensing layer; and (e) a second electrode formed on the electron conductor layer. The hole transport layer emits light at a shorter wavelength than the sensing/emitting layer and at least the first electrode comprises an optically transparent material.

  18. Vapochromic LED

    DOE Patents [OSTI]

    Kunugi, Yoshihito (Hiroshima, JP); Mann, Kent R. (North Oaks, MN); Miller, Larry L. (Minnetonka, MN); Exstrom, Christopher L. (Kearney, NE)

    2002-01-15T23:59:59.000Z

    A sandwich device was prepared by electrodeposition of an insoluble layer of oligomerized tris(4-(2-thienyl)phenyl)amine onto conducting indium-tin oxide coated glass, spin coating the stacked platinum compound, tetrakis(p-decylphenylisocyano)platinum tetranitroplatinate, from toluene onto the oligomer layer, and then coating the platinum complex with aluminum by vapor deposition. This device showed rectification of current and gave electroluminescence. The electroluminescence spectrum (.mu..sub.max =545 nm) corresponded to the photoluminescence spectrum of the platinum complex. Exposure of the device to acetone vapor caused the electroemission to shift to 575 nm. Exposure to toluene vapor caused a return to the original spectrum. These results demonstrate a new type of sensor that reports the arrival of organic vapors with an electroluminescent signal. The sensor comprises (a) a first electrode; (b) a hole transport layer formed on the first electrode; (c) a sensing/emitting layer formed on the hole transport layer, the sensing/emitting layer comprising a material that changes color upon exposure to the analyte vapors; (d) an electron conductor layer formed on the sensing layer; and (e) a second electrode formed on the electron conductor layer. The hole transport layer emits light at a shorter wavelength than the sensing/emitting layer and at least the first electrode comprises an optically transparent material.

  19. Philips Lumileds Is Exploring the Use of Silicon Substrates to Lower the Cost of LEDs

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, Philips Lumileds is exploring the use of nitride epitaxy on 150mm silicon substrates to produce low-cost, warm-white, high-performance general-illumination LEDs. Most LEDs are made with C-plane sapphire substrates, but silicon—at roughly half a penny per square millimeter—is much cheaper, and it's also easier to obtain. Philips Lumileds is attempting to adapt the use of silicon to the manufacture of LEDs, drawing upon the knowledge base and depreciated equipment of the computer industry, which has been using silicon substrates for decades.

  20. High Efficiency m-plane LEDs on Low Defect Density Bulk GaN Substrates

    SciTech Connect (OSTI)

    David, Aurelien

    2012-10-15T23:59:59.000Z

    Solid-state lighting is a key technology for reduction of energy consumption in the US and worldwide. In principle, by replacing standard incandescent bulbs and other light sources with sources based on light-emitting diodes (LEDs), ultimate energy efficiency can be achieved. The efficiency of LEDs has improved tremendously over the past two decades, however further progress is required for solid- state lighting to reach its full potential. The ability of an LED at converting electricity to light is quantified by its internal quantum efficiency (IQE). The material of choice for visible LEDs is Gallium Nitride (GaN), which is at the basis of blue-emitting LEDs. A key factor limiting the performance of GaN LEDs is the so-called efficiency droop, whereby the IQE of the LED decreases significantly at high current density. Despite decades of research, efficiency droop remains a major issue. Since high-current operation is necessary for practical lighting applications, reducing droop is a major challenge for the scientific community and the LED industry. Our approach to solving the droop issue is the use of newly available low-defect-density bulk GaN non-polar substrates. In contrast to the standard foreign substrates (sapphire, silicon carbide, silicon) used in the industry, we have employed native bulk GaN substrates with very low defect density, thus ensuring exquisite material quality and high IQE. Whereas all commercial LEDs are grown along the c-plane crystal direction of GaN, we have used m-plane non-polar substrates; these drastically modify the physical properties of the LED and enable a reduction of droop. With this approach, we have demonstrated very high IQE performance and low droop. Our results focused on violet and blue LEDs. For these, we have demonstrated very high peak IQEs and current droops of 6% and 10% respectively (up to a high current density of 200A.cm-2). All these results were obtained under electrical operation. These high IQE and low droop values are in line with the program’s milestones. They demonstrate that bulk non-polar GaN substrates represent a disruptive technology for LED performance. Application of this technology to real-world products is feasible, provided that the cost of GaN substrates is compatible with the market’s requirement.