National Library of Energy BETA

Sample records for least-cost hybrid renewable

  1. Least cost options for life extension

    SciTech Connect (OSTI)

    Davis, F.; Bradaric, M.

    1995-12-01

    Rehabilitation of existing electric generating capacity offers one of the most cost-effective ways of meeting near-term power needs in many Eastern and Central European countries. In particular, the uncertainty associated with other supply sources and severe capital constraints tends to favor investments which maximize the utilization of existing fossil-fired equipment. However, it is critical that least-cost planning principles, including the consideration of environmental impacts, be applied to the economic analysis of rehabilitation options. This paper draws on Bechtel`s experience in applying least-cost planning to plant rehabilitation studies in Bulgaria, Romania and Slovakia. The examples provided illustrate the importance of least-cost planning and the effect of the value placed on environmental emissions.

  2. Asia Least-Cost Greenhouse Gas Abatement Study | Open Energy...

    Open Energy Info (EERE)

    Gas Abatement Study Jump to: navigation, search Name Asia Least-Cost Greenhouse Gas Abatement Study (ALGAS) AgencyCompany Organization Global Environment Facility,...

  3. Least-cost utility planning consumer participation manual. [Final report

    SciTech Connect (OSTI)

    Mitchell, C.; Wellinghoff, J.; Goldberg, F.

    1989-12-31

    This manual is designed to provide guidance to state consumer advocates and other state consumer groups interested in either initiating and/or participating in an Least-Cost Utility Planning (LCUP) process in their state. Least cost utility planning examined primarily as a regulatory framework to be implemented by an appropriate state authority -- usually the public utility commission -- for the benefit of the state`s citizens and electric utility customers. LCUP is also a planning process to be used by investor owned and public utilities to select, support and justify future expenditures in resource additions. This manual is designed as a ``How-To`` manual for implementing and participating in a statewide LCUP process. Its goal is to guide the reader through the LCUP maze so that meaningful, forward-looking, and cost minimizing electric utility planning can be initiated and sustained in your state.

  4. Least-cost utility planning consumer participation manual

    SciTech Connect (OSTI)

    Mitchell, C.; Wellinghoff, J.; Goldberg, F.

    1989-01-01

    This manual is designed to provide guidance to state consumer advocates and other state consumer groups interested in either initiating and/or participating in an Least-Cost Utility Planning (LCUP) process in their state. Least cost utility planning examined primarily as a regulatory framework to be implemented by an appropriate state authority -- usually the public utility commission -- for the benefit of the state's citizens and electric utility customers. LCUP is also a planning process to be used by investor owned and public utilities to select, support and justify future expenditures in resource additions. This manual is designed as a How-To'' manual for implementing and participating in a statewide LCUP process. Its goal is to guide the reader through the LCUP maze so that meaningful, forward-looking, and cost minimizing electric utility planning can be initiated and sustained in your state.

  5. Applying electrical utility least-cost approach to transportation planning

    SciTech Connect (OSTI)

    McCoy, G.A.; Growdon, K.; Lagerberg, B.

    1994-09-01

    Members of the energy and environmental communities believe that parallels exist between electrical utility least-cost planning and transportation planning. In particular, the Washington State Energy Strategy Committee believes that an integrated and comprehensive transportation planning process should be developed to fairly evaluate the costs of both demand-side and supply-side transportation options, establish competition between different travel modes, and select the mix of options designed to meet system goals at the lowest cost to society. Comparisons between travel modes are also required under the Intermodal Surface Transportation Efficiency Act (ISTEA). ISTEA calls for the development of procedures to compare demand management against infrastructure investment solutions and requires the consideration of efficiency, socioeconomic and environmental factors in the evaluation process. Several of the techniques and approaches used in energy least-cost planning and utility peak demand management can be incorporated into a least-cost transportation planning methodology. The concepts of avoided plants, expressing avoidable costs in levelized nominal dollars to compare projects with different on-line dates and service lives, the supply curve, and the resource stack can be directly adapted from the energy sector.

  6. Gas option: America's least-cost energy strategy

    SciTech Connect (OSTI)

    Lawrence, G.H.

    1980-05-17

    Public energy policy which acknowledges the gas option as having significant potential will increase supply incentives while decreasing demand restraints. The arguments developed by the Mellon Institute and others confirm the need to reject the Title II incremental pricing and the need to implement the Building Energy Performance Standards (BEPS). Positive evidence that proved reserves are higher than was thought has prompted the gas industry to fight incremental pricing as a barrier to a least-cost national energy strategy. BEPS, on the other hand, encourages more efficient use without eliminating industrial use. (DCK)

  7. A municipal guide to least cost utility planning

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The recent track record of ``traditional`` electricity planning, which entails selection of supply side resources to meet forecasted demand, has not been good. There are numerous examples of utilities incorrectly forecasting demand and over-building generating capacity while others underestimated growth and have had to cut demand and find alternate power sources to avoid outages. A potential solution to this problem is the continuing development of Least Cost Utility Plannning (LCUP). Regulatory commissions, consumer advocates and utilities are increasingly relying an LCUP as the most responsible way to avoid construction of new capacity and alleviate anticipated shortages caused by cancellation of construction projects, load growth, or natural replacement of aging capacity. The purpose of this report is to provide municipalities a starting point for evaluating their servicing utilities or states` least cost plan. This was accomplished by: Identifying key issues in LCUP; reviewing examples of the collaborative and classic approaches to LCUP in Illinois, California, New York State and Michigan; cataloging municipal authorities and strategies which can influence or support LCUP activities. Results of the project indicate that through a basic understanding of LCUP processes and issues, municipalities will be in a better position to influence plans or, if necessary, intervene in regulatory proceedings where plans are adopted. Constraints to municipal involvement in LCUP include statutory limitations, resource constraints, and a lack of knowledge of indirect authorities that support the LCUP process.

  8. A municipal guide to least cost utility planning

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The recent track record of traditional'' electricity planning, which entails selection of supply side resources to meet forecasted demand, has not been good. There are numerous examples of utilities incorrectly forecasting demand and over-building generating capacity while others underestimated growth and have had to cut demand and find alternate power sources to avoid outages. A potential solution to this problem is the continuing development of Least Cost Utility Plannning (LCUP). Regulatory commissions, consumer advocates and utilities are increasingly relying an LCUP as the most responsible way to avoid construction of new capacity and alleviate anticipated shortages caused by cancellation of construction projects, load growth, or natural replacement of aging capacity. The purpose of this report is to provide municipalities a starting point for evaluating their servicing utilities or states' least cost plan. This was accomplished by: Identifying key issues in LCUP; reviewing examples of the collaborative and classic approaches to LCUP in Illinois, California, New York State and Michigan; cataloging municipal authorities and strategies which can influence or support LCUP activities. Results of the project indicate that through a basic understanding of LCUP processes and issues, municipalities will be in a better position to influence plans or, if necessary, intervene in regulatory proceedings where plans are adopted. Constraints to municipal involvement in LCUP include statutory limitations, resource constraints, and a lack of knowledge of indirect authorities that support the LCUP process.

  9. Bimode uninterruptible power supply compatibility in renewable hybrid energy systems

    SciTech Connect (OSTI)

    Bower, W. ); O'Sullivan, G. )

    1990-08-01

    Inverters installed in renewable hybrid energy systems are typically used in a stand-alone mode to supply ac power to loads from battery storage when the engine-generator is not being used. Similarities in topology and in the performance requirements of the standby uninterruptible power supply (UPS) system and the hybrid system suggest the UPS could be used in hybrid energy systems. Another alternative to inverters with add-on charging circuits or standby UPS hardware is the Bimode UPS. The bimode UPS uses common circuitry and power components for dc to ac inversion and battery charging. It also provides an automatic and nearly instantaneous ac power transfer function when the engine-generator is started or stopped. The measured operating and transfer characteristics of a bimode UPS in a utility system and in a hybrid system are presented. The applicability of the bimode UPS to hybrid systems and its compatibility in a PV/engine-generator hybrid system are given.

  10. Lagging in least-cost planning: Not as far along as we thought

    SciTech Connect (OSTI)

    Mitchell, C.

    1989-12-01

    A recent survey of least-cost planning among the states reveals a different and less optimistic view than a prior industry effort. Consequences of the difference are important. An Electric Power Research Institute (EPRI) report in December 1988, attempted to identify and rank the status of least-cost utility planning (LCUP) in the U.S. An independent review indicated that the report was not particularly useful for evaluating the current status of LCUP because it failed to identify the key procedural and substantive components of a full featured process. The article exams the ranking systems of the two surveys. The wide divergence between the surveys indicates there is still some confusion and misunderstanding about what LCUP means. 1 fig.

  11. Chapter 4: Advancing Clean Electric Power Technologies | Hybrid Nuclear-Renewable Energy Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Hybrid Nuclear-Renewable Energy Systems Chapter 4: Technology Assessments Introduction and Background This Technology Assessment summarizes the current state of knowledge of nuclear-renewable hybrid

  12. Technology choice in a least-cost expansion analysis framework: Implications for state regulators

    SciTech Connect (OSTI)

    Guziel, K.A.; South, D.W.

    1990-01-01

    It is inevitable that new power plants will need to be constructed in the near future; however, it is unclear which technologies will be selected for these new plants. In a study for the US Department of Energy, the impacts of fuel prices, length of the planning period, and the characteristics of the generating system were examined for their influence on technology choice in 10 representative power pools. It was determined that natural gas combined-cycle technology was generally preferred for base-load and intermediate/cycling capacity when gas prices are low and the planning period is short (10 years). Integrated coal gasification combined-cycle plants were selected to serve most base-load requirements under other conditions. One aspect often overlooked in making a least-cost technology choice is system reliability: nonoptimal technology choices call be made if alternative expansion plans do not have the same level of reliability when discounted system costs are compared. Utilities have become capital averse due to a multitude of regulatory, market, and supply issues. Utilities are looking at natural gas technologies, since they offer rapid construction/deployment, low capital investment, and higher availability than coal-fired technologies. Of concern to state regulators is how to evaluate a least-cost plan. Key parameters studied were based on the following: (1) What is the impact of alternative gas projections on technology choice (2) What influence does the planning horizon (10 versus 30 years) have on technology choice (3) How important are existing system characteristics (e.g., mix of technologies, operating costs, load shape) on technology choice This paper summarizes the analysis framework and presents results for two power pools: Power Pool 1, the American Electric Power (AEP) service territory, and Power Pool 16, with all the utilities in Florida. 7 refs., 17 figs., 2 tabs. (JF)

  13. Review of Jamaica Public Service Company, Ltd. least-cost expansion plan.

    SciTech Connect (OSTI)

    Koritarov, V.; Buehring, W.; Cirillo, R.; Decision and Information Sciences

    2008-02-28

    Argonne National Laboratory has been asked to review the least-cost expansion plan (LCEP) of the Jamaica Public Service Company, Ltd. (JPSCo). The material that has been initially provided to Argonne included: (1) An electronic copy of the data and results from JPSCo's running the WASP electric system expansion planning model, (2) Approximately 20 pages of a document 'JPSCo Generation Expansion Plan', marked 'DRAFT 002', date unknown, and (3) The report 'JPSCo Least Cost Generation Expansion Plans, (1999-2009)', January 1999. It was noticed that the 20 pages from the 'DRAFT 002' document were different from the January 1999 report. An explanation was provided to Argonne that the excerpt was from an earlier draft and that the review should focus on the January 1999 report. Further, the electronic copy of the WASP case did not correspond to either the January 1999 report or to the 20-page excerpt. Again, the reason for these discrepancies was that the WASP case provided to Argonne was an earlier case and not the final one that was presented in the report. Based on the review of the available material, Argonne experts have prepared and submitted to the National Investment Bank of Jamaica (NIBJ) a preliminary draft report containing the initial findings, comments, questions and observations. As many of the comments and questions raised in the preliminary review needed to be discussed with the appropriate staff of JPSCo and other Jamaican experts, a 3-day mission to Jamaica was carried out by one Argonne expert (V. Koritarov) in the period July 20-23, 1999. Besides JPSCo experts, the discussions and the review of the LCEP during the mission included several experts from NIBJ, Ministry of Energy, and the Petroleum Corporation of Jamaica. Mr. Koritarov also worked with the JPSCo technical staff to reconstruct the WASP base case that was used as a basis for the January 1999 report. The first step was to verify that the results obtained after the resimulation of this case

  14. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    SciTech Connect (OSTI)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable

  15. Renewable

    Office of Scientific and Technical Information (OSTI)

    and Sustainable Energy V v y Jo ur na l Renewable Electronic structural and electroch em ... Duan Citation: J. Renewable Sustainable Energy 3, 013102 (2011); doi: 10.10631.3529427 ...

  16. Energy Efficiency and Least-Cost Planning: The Best Way to Save Money and Reduce Energy Use in Hawaii

    SciTech Connect (OSTI)

    Mowris, Robert J.

    1990-05-21

    If the 500 MW geothermal project on the Big Island of Hawaii is developed as planned, the Wao Kele O Puna rain forest will be severely damaged or destroyed. If this happens the State will lose one of its most precious resources. It would be tragic for this to happen, since on a least-cost basis, the geothermal project does not make economic sense. Improving energy efficiency in the commercial and residential sectors of Hawaii can save about 500 MW of power at a cost of $700 million.

  17. COMPLEAT (Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies): A planning tool for publicly owned electric utilities. [Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies (Compleat)

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    COMPLEAT takes its name, as an acronym, from Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies. It is an electric utility planning model designed for use principally by publicly owned electric utilities and agencies serving such utilities. As a model, COMPLEAT is significantly more full-featured and complex than called out in APPA's original plan and proposal to DOE. The additional complexity grew out of a series of discussions early in the development schedule, in which it became clear to APPA staff and advisors that the simplicity characterizing the original plan, while highly desirable in terms of utility applications, was not achievable if practical utility problems were to be addressed. The project teams settled on Energy 20/20, an existing model developed by Dr. George Backus of Policy Assessment Associates, as the best candidate for the kinds of modifications and extensions that would be required. The remainder of the project effort was devoted to designing specific input data files, output files, and user screens and to writing and testing the compute programs that would properly implement the desired features around Energy 20/20 as a core program. This report presents in outline form, the features and user interface of COMPLEAT.

  18. Technology choice in a least-cost expansion analysis framework: The impact of gas prices, planning horizon, and system characteristics

    SciTech Connect (OSTI)

    Guziel, K.A.; South, D.W.

    1990-01-01

    The current outlook for new capacity addition by electric utilities is uncertain and tenuous. Regardless of the amount, it is inevitable that new capacity will be needed in the 1990s and beyond. The fundamental question about the addition capacity requirements centers on technology choice and the factors influencing the decision process. We examined technology choices in 10 representative power pools with a dynamic optimization expansion model, the Wien Automatic System Planning (WASP) Package. These 10 power pools were determined to be representative on the basis of a cluster analysis conducted on all 26 power pools in the United States. A least-cost expansion plan was determined for each power pool with three candidate technologies--natural gas combustion turbine (CT), natural gas combined cycle (NGCC), and integrated gasification combined cycle (IGCC)--three alternative gas price tracks, and two planning horizons between the years 1995 and 2020. This paper summarizes the analysis framework and presents results for Power Pool 1, the American Electric Power (AEP) service territory. 7 refs., 9 figs., 1 tab.

  19. Technology choice in a least-cost expansion analysis framework: Effects of gas price, planning period, and system characteristics

    SciTech Connect (OSTI)

    Guziel, K.A.; South, D.W.; Bhatarakamol, S.; Poch, L.A.

    1990-04-01

    The current outlook for new capacity additions by electric utilities is uncertain and tenuous. The fundamental question about the additional capacity requirements center on technology choice and the factors influencing the decision process. Instead of building capital-intensive power plants, utilities have begun relying on natural gas technologies, which permit rapid construction and deployment and low capital investment. Of concern to policymakers and utility planners are the following questions: (1) What is the impact of alternative gas price projections on technology choice (2) What influence does the planning horizon have on technology choice (3) How important are existing system characteristics on technology choice (4) What effect does capital cost, when combined with other technology characteristics in a capacity expansion framework, have on technology choice In this study Argonne National Laboratory examined the impact of these concerns on technology choices in 10 representative power pools with a dynamic optimization expansion model, the Wien Automatic System Planning Package (WASP). At least-cost expansion plan was determined for each power pool with three candidate technologies--natural gas combustion turbine technology (GT), natural gas combined-cycle technology (NGCC), and integrated gasification combined-cycle technology (IGCC)--three alternative fuel price tracks, and two planning periods (10-yr versus 30-yr optimization) between the years 1995 and 2025. The three fuel price tracks represented scenarios for low, medium, and high gas prices. Sensitivity analyses were conducted on IGCC capital cost and unserved energy costs. 21 refs., 79 figs., 21 tabs.

  20. NREL Evaluates Performance of Hydraulic Hybrid Refuse Vehicles (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Renewable Energy Laboratory (NREL) is evaluating the in-service performance of hydraulic hybrid vehicles (HHVs) and comparable conven- tional diesel vehicles operated by Miami- Dade County's Public Works and Waste Management Department in Florida. Launched in March 2015, the study aims to improve understanding of the overall usage and effectiveness of HHVs in refuse operation. The study was designed to help Miami- Dade County determine the ideal routes for maximizing the fuel-saving

  1. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  2. Hybrid and Plug-In Electric Vehicles (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: * Hybrid electric vehicles (HEVs) * Plug-in hybrid electric vehicles (PHEVs) * All-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions. Hybrid Electric Vehicles HEVs are powered by an internal combustion engine (ICE) and by an electric motor that uses energy stored

  3. Matched 'hybrid' systems may hold key to wider use of renewable...

    Open Energy Info (EERE)

    > OpenEI Community Central Dc's picture Submitted by Dc(266) Contributor 17 February, 2015 - 16:11 Read the article from phys.org here: http:phys.orgnews2014-11-hybrid-key-wid...

  4. Renewable Energy in China: Xiao Qing Dao Village Power Wind/Diesel Hybrid Pilot Project

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    In 2000, DOE/NREL and the State Power Corporation of China (SPCC) developed a pilot project to electrify Xiao Qing Dao, a small island located in China's Yellow Sea. The project demonstrates the practicality of renewable energy systems for medium-scale, off-grid applications. It consists of four 10 k-W wind turbines connected to a 30-kW diesel generator, a 40-kW inverter and a battery bank.

  5. Emissions from Medium-Duty Conventional and Diesel-Electric Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ragatz, A.; Duran, A.; Thornton, M.; Walkowicz, K.

    2014-04-02

    This presentation discusses the results of emissions testing for medium-duty conventional and diesel-electric hybrid vehicles. Testing was based on a field evaluation approach that utilized the Fleet DNA drive cycle database and NREL’s Renewable Fuels and Lubricants (ReFUEL) Laboratory chassis dynamometer. Vehicles tested included parcel delivery (Class 6 step vans), beverage delivery (Class 8 tractors), and parcel delivery (Class 7 box trucks) vehicles, all with intended service class medium/heavy heavy-duty diesel (MHDD).
    Results for fuel economy and tailpipe NOx emissions included: diesel hybrid electric vehicles showed an average fuel economy advantage on identified test cycles: Class 6 Step Vans: 26%; Class 7 Box Trucks: 24.7%; Class 8 Tractors: 17.3%. Vehicle miles traveled is an important factor in determining total petroleum and CO2 displacement. Higher NOx emissions were observed over some test cycles: highly drive cycle dependent; engine-out differences may result from different engine operating point; and selective catalyst reduction temperature may play a role, but does not explain the whole story.

  6. Performance Evaluation of Lower-Energy Energy Storage Alternatives for Full-Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Gonder, J.; Cosgrove, J.; Pesaran, A.

    2014-02-11

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle fuel use. However, the incremental cost of HEVs such as the Toyota Prius or Ford Fusion Hybrid remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The b b b b battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can correspondingly improve the vehicle-level cost/benefit relationship. Such an improvement would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The United States Advanced Battery Consortium (USABC) and the U.S. Department of Energy (DOE) Energy Storage Program managers asked the National Renewable Energy Laboratory (NREL) to collaborate with a USABC Workgroup and analyze the trade-offs between vehicle fuel economy and reducing the decade-old minimum energy requirement for power-assist HEVs. NREL’s analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than the previous targets, which prompted USABC to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform, and laboratory as well as in-vehicle evaluation results with alternate energy storage configurations as compared to the production battery system. The alternate energy storage technologies considered include lithium-ion capacitors -- i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery

  7. A least-cost optimisation model of CO{sub 2} capture applied to major UK power plants within the EU-ETS framework

    SciTech Connect (OSTI)

    Kemp, A.G.; Kasim, A.S.

    2008-02-15

    Concerns about the cost of CO{sub 2} capture and sequestration, and the effectiveness of carbon abatement policies loom large in discussions on climate change mitigation. Several writers address the issue from various perspectives. This paper attempts to add relative realism to discussions on CO{sub 2} capture costs and the deployment of carbon capture technology in the UK by using publicly available company data on the long term capacity expansion and CO{sub 2} capture investment programmes of selected power plants in the UK. With an estimated 8 billion plan to install a generation capacity of GW and capture capability of 44 Mt CO{sub 2}/year, it is imperative to optimise this huge potential investment. A least-cost optimisation model was formulated and solved with the LP algorithm available in GAMS. The model was then applied to address a number of issues, including the choice of an optimal carbon abatement policy within the EU-ETS framework. The major findings of the study include (a) the long term total cost curve of CO{sub 2} capture has three phases rising, plateau, rising; (b) alternative capture technologies do not have permanent relative cost advantages or disadvantages; (c) Government incentives encourage carbon capture and the avoidance of emission penalty charges; and (d) the goals of EU-ETS are more effectively realised with deeper cuts in the EUA ratios than merely hiking the emission penalty, as proposed in EU-ETS Phase II.

  8. Dynamic Analysis of Hybrid Energy Systems under Flexible Operation and Variable Renewable Generation -- Part I: Dynamic Performance Analysis and Part II: Dynamic Cost

    SciTech Connect (OSTI)

    Humberto E. Garcia; Amit Mohanty; Wen-Chiao Lin; Robert S. Cherry

    2013-04-01

    Dynamic analysis of hybrid energy systems (HES) under flexible operation and variable renewable generation is considered in order to better understand various challenges and opportunities associated with the high system variability arising from the integration of renewable energy into the power grid. Unique consequences are addressed by devising advanced HES solutions in which multiple forms of energy commodities, such as electricity and chemical products, may be exchanged. Dynamic models of various unit operations are developed and integrated within two different HES options. One HES option, termed traditional, produces electricity only and consists of a primary heat generator (PHG) (e.g., a small modular reactor), a steam turbine generator, a wind farm, and a battery storage. The other HES option, termed advanced, includes not only the components present in the traditional option but also a chemical plant complex to repurpose excess energy for non-electricity services, such as for the production of chemical goods (e.g., transportation fuel). In either case, a given HES is connected to the power grid at a point of common coupling and requested to deliver a certain electricity generation profile as dictated by a regional power grid operator based on a predicted demand curve. Dynamic analysis of these highly-coupled HES are performed to identify their key dynamical properties and limitations and to prescribe solutions for best managing and mitigating the high variability introduced from incorporating renewable energy into the energy mix. A comparative dynamic cost analysis is also conducted to determine best HES options. The cost function includes a set of metrics for computing fixed costs, such as fixed operations and maintenance (O&M) and overnight capital costs, and also variable operational costs, such as cost of variability, variable O&M cost, and cost of environmental impact, together with revenues. Assuming different options for implementing PHG (e

  9. Research Needs for Fusion-Fission Hybrid Systems. Report of the Research Needs Workshop (ReNeW) Gaithersburg, Maryland, September 30 - October 2, 2009

    SciTech Connect (OSTI)

    2009-09-30

    Largely in anticipation of a possible nuclear renaissance, there has been an enthusiastic renewal of interest in the fusion-fission hybrid concept, driven primarily by some members of the fusion community. A fusion-fission hybrid consists of a neutron-producing fusion core surrounded by a fission blanket. Hybrids are of interest because of their potential to address the main long-term sustainability issues related to nuclear power: fuel supply, energy production, and waste management. As a result of this renewed interest, the U.S. Department of Energy (DOE), with the participation of the Office of Fusion Energy Sciences (OFES), Office of Nuclear Energy (NE), and National Nuclear Security Administration (NNSA), organized a three-day workshop in Gaithersburg, Maryland, from September 30 through October 2, 2009. Participants identified several goals. At the highest level, it was recognized that DOE does not currently support any R&D in the area of fusion-fission hybrids. The question to be addressed was whether or not hybrids offer sufficient promise to motivate DOE to initiate an R&D program in this area. At the next level, the workshop participants were asked to define the research needs and resources required to move the fusion-fission concept forward. The answer to the high-level question was given in two ways. On the one hand, when viewed as a standalone concept, the fusion-fission hybrid does indeed offer the promise of being able to address the sustainability issues associated with conventional nuclear power. On the other hand, when participants were asked whether these hybrid solutions are potentially more attractive than contemplated pure fission solutions (that is, fast burners and fast breeders), there was general consensus that this question could not be quantitatively answered based on the known technical information. Pure fission solutions are based largely on existing both fusion and nuclear technology, thereby prohibiting a fair side-by-side comparison

  10. US Hybrid Corp | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: US Hybrid Corp Place: California Sector: Renewable Energy, Vehicles Product: US Hybrid Corporation is a California-based company specializing in...

  11. NREL: Transportation Research - Renewable Fuels and Lubricants...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Fuels and Lubricants Laboratory Photo of a heavy-duty truck being driven on a chassis ... prototype engines, and hybrid powertrains for next-generation vehicle technologies. ...

  12. Renewal Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewal Individual Permit Renewal Application The Permit expires March 31, 2014 and existing permit conditions will be in effect until a new permit is issued. The Permittees submitted a renewal application to EPA on March 27, 2014. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Individual Permit Renewal Application February 10, 2015 NPDES Permit No. NM0030759, Supplemental Information for Permit Renewal Application

  13. Financing Opportunities for Renewable Energy Development in Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cost Recovery System (MACRS), which ... the first 10 years of renewable energy production. Hybrid wind-diesel systems ... Microturbines (2 MW) In Service 12312016 ...

  14. Renewable Energy

    Broader source: Energy.gov [DOE]

    Learn how the Energy Department's investments in clean, renewable energy technologies -- including wind, solar and geothermal sources -- are helping strengthen the American economy.

  15. Hawkeye Renewables formerly Midwest Renewables | Open Energy...

    Open Energy Info (EERE)

    (formerly Midwest Renewables) Place: Iowa Falls, Iowa Zip: 50126 Product: Midwest bioethanol producer References: Hawkeye Renewables (formerly Midwest Renewables)1 This...

  16. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy The WIPP Site Holds Promise as an Ideal Source of Renewable Energy Encompassing 16 square miles of open Chihuahuan desert with abundant sunshine and minimal surface roughness, the WIPP site is ideal for either solar- or wind-generated electricity production, demonstration or testing. In fact, WIPP is striving to take advantage of its abundance of sunshine and wind. The Department of Energy's Office of Environmental Management has created what is being called the Energy Park

  17. Renewable Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen NREL Hydrogen Technologies and Systems Center Dr. Robert J. Remick November 16, 2009 NREL/PR-560-47433 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. U.S. Dependence on Imported Oil National Renewable Energy Laboratory Innovation for Our Energy Future 2 Energy Solutions are Challenging We need a balanced portfolio of options- including clean, domestic energy

  18. Energy Storage for Variable Renewable Energy Resource Integration - A Regional Assessment for the Northwest Power Pool (NWPP)

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Jin, Chunlian; Balducci, Patrick J.; Elizondo, Marcelo A.; Guo, Xinxin; Nguyen, Tony B.; Tuffner, Francis K.; Viswanathan, Vilayanur V.

    2011-03-20

    This paper addresses the following key questions in the discussion on the integration of renewable energy resources in the Pacific Northwest power grid: a) what will be the future balancing requirement to accommodate a simulated expansion of wind energy resources from 3.3 GW in 2008 to 14.4 GW in 2019 in the Northwest Power Pool (NWPP), and b) what are the most cost effective technological solutions for meeting the balancing requirements in the Northwest Power Pool (NWPP). A life-cycle analysis was performed to assess the least-cost technology option for meeting the new balancing requirement. The technologies considered in this study include conventional turbines (CT), sodium sulfur (NaS) batteries, lithium ion (Li-ion) batteries, pumped hydro energy storage (PH), and demand response (DR). Hybrid concepts that combine 2 or more of the technologies above are also evaluated. This analysis was performed with collaboration by the Bonneville Power Administration and funded by the Energy Storage Systems Program of the U.S. Department of Energy.

  19. Developing Government Renewable Energy Projects

    SciTech Connect (OSTI)

    Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

    2012-07-01

    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

  20. Renewable Energy Standard

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: H.B. 40, enacted in June 2015, created Vermont's Renewable Energy Standard and repeals the Sustainably Priced Energy Enterprise Development program's renewable energy goals. The Renewable...

  1. National Renewable Energy Laboratory Renewable Energy Opportunity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with support from the U.S. Department of Energy, U.S. Environmental Protection Agency, ... DEVELOPMENT STRATEGIES NATIONAL RENEWABLE ENERGY LABORATORY RENEWABLE ENERGY OPPORTUNITY ...

  2. Type: Renewal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 INCITE Awards Type: Renewal Title: -Ab Initio Dynamical Simulations for the Prediction of Bulk Properties‖ Principal Investigator: Theresa Windus, Iowa State University Co-Investigators: Brett Bode, Iowa State University Graham Fletcher, Argonne National Laboratory Mark Gordon, Iowa State University Monica Lamm, Iowa State University Michael Schmidt, Iowa State University Scientific Discipline: Chemistry: Physical INCITE Allocation: 10,000,000 processor hours Site: Argonne National

  3. Renewable Energy 101 (Presentation)

    SciTech Connect (OSTI)

    Walker, A.

    2012-03-01

    Presentation given at the 2012 Department of Homeland Security Renewable Energy Roundtable as an introduction to renewable technologies and applications.

  4. REAP Renewable Energy Fair

    Broader source: Energy.gov [DOE]

    The Renewable Energy Alaska Project (REAP) is hosting their annual Renewable Energy Fair at Fairview Elementary School.

  5. Bioenergy Feedstock Library and Least-Cost Formulation

    Broader source: Energy.gov (indexed) [DOE]

    Garold Gresham Victor Walker (CoPI) Jeff Lacey (CoPI) Idaho National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted ...

  6. Secured electrical supply at least cost: Coal, gas, nuclear, hydro

    SciTech Connect (OSTI)

    Gavor, J.; Stary, O.; Vasicek, J.

    1995-12-01

    Electric power sector in East Central European countries finds in a difficult period. In the situation of demand stagnation, enormous investments must be realized in a very short time. Today`s decisions in the development strategy will influence the long term future of the industry. The optimal structure of the sources is one of the most important problem to be solved. Paper describes the current structure of the sources in electric power sector in the Czech Republic. The importance of coal, oil and gas, nuclear and hydro in electric power generation is compared. Taking into account the different position in the load coverage, economy of individual sources is evaluated and basic results of discounted cash flow calculations are presented. Information on specific investment programs and projects are included and further trends are estimated.

  7. Hybrid2 - The hybrid power system simulation model

    SciTech Connect (OSTI)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van; Manwell, J.F.

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  8. Hybrid Air-Cooled Condenser - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Air-Cooled Condenser National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Geothermal energy has been a viable energy source...

  9. Large-Scale Renewable Energy Guide: Developing Renewable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities Large-Scale Renewable Energy Guide: Developing Renewable Energy ...

  10. Guide to Purchasing Green Power: Renewable Electricity, Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity, ...

  11. Natural Innovative Renewable Energy formerly Northwest Iowa Renewable...

    Open Energy Info (EERE)

    Innovative Renewable Energy formerly Northwest Iowa Renewable Energy Jump to: navigation, search Name: Natural Innovative Renewable Energy (formerly Northwest Iowa Renewable...

  12. PPM Atlantic Renewable Formerly Atlantic Renewable Energy Corp...

    Open Energy Info (EERE)

    PPM Atlantic Renewable Formerly Atlantic Renewable Energy Corp Jump to: navigation, search Name: PPM Atlantic Renewable (Formerly Atlantic Renewable Energy Corp) Place: Virginia...

  13. PPC Renewables | Open Energy Information

    Open Energy Info (EERE)

    PPC Renewables Jump to: navigation, search Name: PPC Renewables Place: Greece Sector: Renewable Energy Product: The renewables division of Public Power Corp. of Greece (PPC)....

  14. First Renewables | Open Energy Information

    Open Energy Info (EERE)

    search Name: First Renewables Place: United Kingdom Sector: Biomass, Renewable Energy, Wind energy Product: First Renewables owns and operates a portfolio of renewable...

  15. Ramona Ecotourism Hybrid Renewable Energy Project

    Broader source: Energy.gov (indexed) [DOE]

    modular array * VRLA (Value Regulated Lead Acid) battery banks * 25Kw propane generator * Propane storage tank * Currently installing Data Loggers Southwest Wind Power ...

  16. Renewable Energy Powers Renewable Energy Lab, Employees

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Powers Renewable Energy Lab, Employees For more information contact: Mike Marsh (303) 275-4085 email: marshm@tcplink.nrel.gov Golden, Colo., July 9, 1997 -- The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) does more than just research renewable energy. It runs on it. And so do NREL employees. Site Operations Director John Shaffer today announced that the laboratory will purchase 4,000 kilowatt hours from Public Service Company of Colorado's (PSC)

  17. Renewable Hydrogen Production at Hickam Air Force Base | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy at Hickam Air Force Base Renewable Hydrogen Production at Hickam Air Force Base Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA renewable_hydrogen_workshop_nov16_quinn.pdf (920.39 KB) More Documents & Publications Hickam Air Force Base Fuel Cell Vehicles: Early Implementation Experience Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Hawaii

  18. CSP Heat Integration for Baseload Renewable Energy Deployment | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Concentrating Solar Power » CSP Heat Integration for Baseload Renewable Energy Deployment CSP Heat Integration for Baseload Renewable Energy Deployment --This project has been closed-- In October 2013, DOE announced an award under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program to advance the state of the art in CSP hybrid plants, which incorporate thermal and or chemical energy from a CSP system into a fossil fueled

  19. Renewable Energy Innovations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We are applying our expertise in chemical and materials science to provide innovations in renewable energy generation, storage, and use. 4 08 FACT SHEET Renewable Energy ...

  20. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  1. Renewable energy technology characterizations

    SciTech Connect (OSTI)

    None, None

    1997-12-01

    The Renewable Energy Technology Characterizations describe the technical and economic status of the major emerging renewable energy options for electricity supply.

  2. Renewable Energy Standard

    Broader source: Energy.gov [DOE]

    In 2007, Minnesota legislation modified the state's 2001 voluntary renewable energy objective to create a mandatory renewable portfolio standard (RPS). Public utilities (i.e., investor-owned...

  3. National Renewable Energy Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RENEWABLE ENERGY AND ENERGY EFFICIENCY SCIENCE PROJECTS 1 SCIENCE PROECTS IN RENEWABLE ENERGY AND ENERGY EFFICIENCY A guide for Secondary School Teachers Authors and ...

  4. Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Certificates, and On-Site Renewable Generation | Department of Energy Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Document describes renewable electricity, renewable energy certificates, and on-site renewable generation, which agencies and organizations can consider to diversify their energy supply and

  5. Federal Off-Site Renewable Energy Purchases and Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Certificates | Department of Energy Renewable Energy Procurement » Federal Off-Site Renewable Energy Purchases and Renewable Energy Certificates Federal Off-Site Renewable Energy Purchases and Renewable Energy Certificates If developing an on-site renewable energy project is impractical, federal agencies can purchase renewable energy from off-site renewable energy projects or purchase renewable energy certificates (RECs). Renewable energy purchases do not require project financing and can

  6. Evaluating Renewable Portfolio Standards and Carbon Cap Scenarios in the U.S. Electric Sector

    SciTech Connect (OSTI)

    Bird, Lori; Chapman, Caroline; Logan, Jeff; Sumner, Jenny; Short, Walter

    2010-05-01

    This report examines the impact of various renewable portfolio standards (RPS) and cap-and-trade policy options on the U.S. electricity sector, focusing mainly on renewable energy generation. The analysis uses the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that simulates the least-cost expansion of electricity generation capacity and transmission in the United States to examine the impact of an emissions cap--similar to that proposed in the Waxman-Markey bill (H.R. 2454)--as well as lower and higher cap scenarios. It also examines the effects of combining various RPS targets with the emissions caps. The generation mix, carbon emissions, and electricity price are examined for various policy combinations to simulate the effect of implementing policies simultaneously.

  7. King County Metro Transit Hybrid Articulated Buses: Interim Evaluation Results

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    King County Metro Transit Hybrid Articulated Buses: Interim Evaluation Results K. Chandler Battelle K. Walkowicz National Renewable Energy Laboratory Technical Report NREL/TP-540-39742 April 2006 King County Metro Transit Hybrid Articulated Buses: Interim Evaluation Results K. Chandler Battelle K. Walkowicz National Renewable Energy Laboratory Prepared under Task No. FC06.3000 Technical Report NREL/TP-540-39742 April 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado

  8. Novera Renewable Energy formerly Novera Macquarie Renewable Energy...

    Open Energy Info (EERE)

    formerly Novera Macquarie Renewable Energy Limited NMRE Jump to: navigation, search Name: Novera Renewable Energy (formerly Novera Macquarie Renewable Energy Limited - NMRE) Place:...

  9. E ON Climate Renewables UK formerly Powergen Renewable Energy...

    Open Energy Info (EERE)

    UK formerly Powergen Renewable Energy Holdings Jump to: navigation, search Name: E.ON Climate & Renewables UK (formerly Powergen Renewable Energy Holdings) Place: Coventry,...

  10. Alaska's renewable energy potential.

    SciTech Connect (OSTI)

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  11. Renewable energy annual 1996

    SciTech Connect (OSTI)

    1997-03-01

    This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.

  12. FEMP Renewable Energy Overview

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    This four-page overview describes how Federal agencies can contact the Department of Energy's Federal Energy Management Program (FEMP) to obtain assistance in acquiring renewable energy systems, renewable fuels, and renewable ("green") power for use in their facilities and vehicles. Renewable resources, technologies, and fuels are described, as well as Federal goals for using clean, sustainable renewable energy; the current goal is to supply 2.5% of the Federal Government's energy with renewable sources by 2005. Also included is a description of the resources and technologies themselves and associated benefits.

  13. Philippines: Small-scale renewable energy update

    SciTech Connect (OSTI)

    1997-12-01

    This paper gives an overview of the application of small scale renewable energy sources in the Philippines. Sources looked at include solar, biomass, micro-hydroelectric, mini-hydroelectric, wind, mini-geothermal, and hybrid. A small power utilities group is being spun off the major utility, to provide a structure for developing rural electrification programs. In some instances, private companies have stepped forward, avoiding what is perceived as overwhelming beaurocracy, and installed systems with private financing. The paper provides information on survey work which has been done on resources, and the status of cooperative programs to develop renewable systems in the nation.

  14. Scottish Renewables | Open Energy Information

    Open Energy Info (EERE)

    Scottish Renewables Place: Glasgow, Scotland, United Kingdom Zip: G2 6LD Sector: Renewable Energy Product: Scottish Renewables Forum is a Company Limited by Guarantee, registered...

  15. Whirlwind Renewables | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Whirlwind Renewables Place: Huddersfield, England, United Kingdom Sector: Renewable Energy, Wind energy Product: Whirlwind Renewables Limited...

  16. Renewables Marketplace | Open Energy Information

    Open Energy Info (EERE)

    Marketplace Jump to: navigation, search Name: Renewables Marketplace Place: Palm Desert, California Zip: 92211 Sector: Renewable Energy Product: The Renewables Marketplace is a...

  17. Biofuels and Renewable Energy Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Conventional Renewable Energy Wind Power Hydro Power Power System INL Home Biofuels and Renewable Energy Renewable energy resources are expected to play major role in...

  18. Renewable Energy Trust Fund

    Broader source: Energy.gov [DOE]

    The renewable energy fund, known as the Massachusetts Renewable Energy Trust Fund, is supported by a non-bypassable surcharge of $0.0005 per kilowatt-hour (0.5 mill/kWh), imposed on customers of...

  19. Renewable Energy Standard

    Broader source: Energy.gov [DOE]

    Utilities subject to the RES must obtain renewable energy credits (RECs**) from eligible renewable resources to meet 15% of their retail electric load by 2025 and thereafter. Of this percentage, ...

  20. Beyond Diesel - Renewable Diesel

    SciTech Connect (OSTI)

    Not Available

    2002-07-01

    CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

  1. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-09-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  2. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-11-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  3. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2013-04-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  4. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  5. Estimating Renewable Energy Costs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

  6. Renewables and Sector Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE)

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Community Renewable Energy Success Stories Webinar series presentation by Susanna Sutherland, City of Knoxville, Tennessee, on financing solar energy systems.

  7. Phasing Renewable Energy Implementation

    Office of Energy Efficiency and Renewable Energy (EERE)

    If conventional or other renewable energy funding cannot be procured, or if an agency is working towards a higher goal for renewable energy usage that cannot be met with the current budget,...

  8. Renewable Energy Growth Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2014, Act H 7727 created the Renewable Energy Growth (REG) program with the goal to promote installation of grid connected renewable energy within the load zones of electric distribution...

  9. Assessing Renewable Energy Options

    Broader source: Energy.gov [DOE]

    Federal agencies should assess renewable energy options for each specific project when integrating renewable energy in new building construction or major renovations. This section covers the preliminary screening, screening, feasibility study, and sizing and designing systems phases.

  10. Fernald Preserve Renewable Energy

    Broader source: Energy.gov [DOE]

    Fernald Preserve Renewable Energy Brochure – Providing energy that is clean, abundant, reliable, and affordable

  11. PGE Renewable Development Fund

    Broader source: Energy.gov [DOE]

    PGE is accepting applications for 2016 Renewable Development Fund awards through June 27 (5:00 PM PDT).

  12. PPL Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Jump to: navigation, search Name: PPL Renewable Energy Sector: Renewable Energy Product: PPL Renewable Energy develops, owns, operates and maintains renewable...

  13. Renewable energy annual 1995

    SciTech Connect (OSTI)

    1995-12-01

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

  14. The RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD

    Office of Energy Efficiency and Renewable Energy (EERE)

    The broader goal of the RPS is to achieve various benefits associated with renewable energy. These benefits relate to the environment, resource diversity, technology advancement, and in-state...

  15. National Renewable Energy Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Energy Program Review Roger Taylor Manger State, Local & Tribal Integrated Application Group National Renewable Energy Laboratory November 5-8, 2007 Major DOE National Laboratories Brookhaven Brookhaven Pacific Northwest Pacific Northwest Lawrence Berkeley Lawrence Berkeley Lawrence Livermore Lawrence Livermore h h h h h INEL INEL National Renewable National Renewable Energy Laboratory Energy Laboratory Los Alamos Los Alamos Sandia Sandia Argonne Argonne Oak Ridge Oak Ridge Defense

  16. National Renewable Energy Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Annual Review Roger Taylor November 17, 2008 National Renewable Energy Laboratory Innovation for Our Energy Future Major DOE National Laboratories Brookhaven Pacific Northwest Lawrence Berkeley Lawrence Livermore          INEL National Renewable Energy Laboratory Los Alamos Sandia Argonne Oak Ridge   Defense Program Labs  Office of Science Labs  Energy Efficiency and Renewable Energy Lab  Environmental Management Lab  Fossil Energy Lab NETL 

  17. Renewable Generation Requirement

    Broader source: Energy.gov [DOE]

    According to the annual compliance report prepared by the Electric Reliability Council of Texas (ERCOT), the program administrator for the Texas Renewable Energy Credit Trading Program, Texas sur...

  18. Renewables and Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 0 50 100 150 200 250 300 2000 2006 2012 2018 ...

  19. Renewable Portfolio Standard

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: H.B. 263 was enacted in April 2015, allowing distribution cooperatives to earn renewable energy certificates for energy generated by geothermal heat pumps. 

  20. Renewable Energy Portfolio Standard

    Office of Energy Efficiency and Renewable Energy (EERE)

    Maryland's Renewable Energy Portfolio Standard, enacted in May 2004 and revised numerous times since, requires electricity suppliers (all utilities and competitive retail suppliers) to use renewa...

  1. Renewable Energy Feasibility Study

    Broader source: Energy.gov [DOE]

    After a Federal agency has identified probable technologies through the screening process, a detailed review of the feasibility and economic viability of each renewable energy technology, also...

  2. Renewable Resource Standard

    Broader source: Energy.gov [DOE]

    Eligible Technologies Eligible renewable resources include wind; solar; geothermal; existing hydroelectric projects (10 megawatts or less); certain new hydroelectric projects (up to 15 megawatts...

  3. Renewable energy: an overview

    SciTech Connect (OSTI)

    Not Available

    1984-09-01

    Renewable energy technologies use the energy from non-depletable sources: sunshine, water flow and vegatation. The most common renewable energy devices are solar collectors, windmills, woodburning stoves, and hydroelectric turbines. Variations of some of these devices have been used for decades. Today, efficient versions are being developed to reduce our use of non-renewable resources, such as oil, natural gas and coal. Many of the systems utilizing renewable energy require a large initial investment but can offer long-term savings over the life of the system.

  4. Renewable RFI (Generic)

    Open Energy Info (EERE)

    benefits of the opportunity - Maximize the land opportunity for the development of renewable generation on the specified installation. -Reduce the SHV carbon footprint....

  5. Renewable Energy Program Grants

    Broader source: Energy.gov [DOE]

    The Michigan Energy Office (MEO), within the Michigan Agency for Energy (MAE), provides funding for renewable energy activities on a recurring basis, subject to availability of funds. Eligible...

  6. high renewable energy penetration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high renewable energy penetration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future ...

  7. Renewable Energy Standard

    Office of Energy Efficiency and Renewable Energy (EERE)

    In October 2008, Michigan enacted the Clean, Renewable, and Efficient Energy Act (Public Act 295), requiring the state's investor-owned utilities, alternative retail suppliers, electric...

  8. Renewable Portfolio Standard

    Office of Energy Efficiency and Renewable Energy (EERE)

    Massachusetts' 1997 electric-utility restructuring legislation created the framework for a renewable portfolio standard (RPS). In April 2002, the Massachusetts Department of Energy Resources (DOER)...

  9. Renewable Electricity Overview

    Broader source: Energy.gov (indexed) [DOE]

    National Renewable Energy Laboratory Innovation for Our Energy Example Results: Costs and ... performance and reliability - Wind Forecasting - In situ 'health' monitoring - Gearbox ...

  10. Careers in Renewable Energy

    SciTech Connect (OSTI)

    Waggoner, T.

    2001-01-15

    This publication describes the job opportunities, technologies, and market for each of the major renewable energy fields (wind power, solar power, bioenergy, geothermal energy, and hydropower).

  11. Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States

    SciTech Connect (OSTI)

    Wiser, Ryan; Barbose, Galen; Holt, Edward

    2010-10-01

    Among the available options for encouraging the increased deployment of renewable electricity, renewables portfolio standards (RPS) have become increasingly popular. The RPS is a relatively new policy mechanism, however, and experience with its use is only beginning to emerge. One key concern that has been voiced is whether RPS policies will offer adequate support to a wide range of renewable energy technologies and applications or whether, alternatively, RPS programs will favor a small number of the currently least-cost forms of renewable energy. This report documents the design of and early experience with state-level RPS programs in the United States that have been specifically tailored to encourage a wider diversity of renewable energy technologies, and solar energy in particular. As shown here, state-level RPS programs specifically designed to support solar have already proven to be an important, albeit somewhat modest, driver for solar energy deployment, and those impacts are projected to continue to build in the coming years. State experience in supporting solar energy with RPS programs is mixed, however, and full compliance with existing requirements has not been achieved. The comparative experiences described herein highlight the opportunities and challenges of applying an RPS to specifically support solar energy, as well as the importance of policy design details to ensuring that program goals are achieved.

  12. Renewable Energy in Alaska

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  13. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.; Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

  14. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

  15. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

  16. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

  17. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

  18. Renewables and air quality

    SciTech Connect (OSTI)

    Wooley, D.R.

    2000-08-01

    The US heavy reliance on fossil fuels is a central obstacle to improving air quality and preventing catastrophic climate change. To solve this problem will require a combination of financial incentives and market rules that strongly encourage development of renewable energy resources to meet electric power demand. One promising policy option is to allow renewable energy resources to directly participate in air pollution emission trading mechanisms. Currently, the clean air benefits of renewable energy generally go unrecognized by regulators, under-appreciated by consumers and uncompensated by markets. Renewable energy is a key clean air alternative to conventional electricity generation, and the development of renewables could be stimulated by changes to the Clean Air Act's emissions trading programs. As Congress revisits clean air issues over the next several years, renewable energy representatives could push for statutory changes that reward the renewable energy industry for the air quality benefits it provides. By also becoming involved in key US Environmental Protection Agency (EPA) and state rule-making cases, the renewables industry could influence the structure of emissions trading programs and strengthen one of the most persuasive arguments for wind, solar and biomass energy development.

  19. Renewable Energy Annual

    Reports and Publications (EIA)

    2012-01-01

    Presents five chapters covering various aspects of the renewable energy marketplace, along with detailed data tables and graphics. Particular focus is given to renewable energy trends in consumption and electricity; manufacturing activities of solar thermal collectors, solar photovoltaic cells/modules, and geothermal heat pumps; and green pricing and net metering programs. The Department of Energy provides detailed offshore

  20. 2016 Bioenergizeme Infographic Challenge: Renewable Alternatives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Alternatives: Cellulosic Ethanol 2016 Bioenergizeme Infographic Challenge: Renewable Alternatives: Cellulosic Ethanol 2016 Bioenergizeme Infographic Challenge: Renewable ...

  1. First Gen Renewables FGRI | Open Energy Information

    Open Energy Info (EERE)

    Gen Renewables FGRI Jump to: navigation, search Name: First Gen Renewables (FGRI) Place: Pasing City, Philippines Zip: 1600 Sector: Renewable Energy Product: The renewable arm of...

  2. Purchasing Renewable Power for Federal Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchasing Renewable Power for Federal Facilities Purchasing Renewable Power for Federal Facilities Federal agencies can purchase renewable power or renewable energy certificates ...

  3. Advanced Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Jump to: navigation, search Name: Advanced Renewable Energy Place: Italy Sector: Biomass, Renewable Energy, Wind energy Product: Advanced Renewable Energy Ltd...

  4. Rahimafrooz Renewable Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Ltd Jump to: navigation, search Name: Rahimafrooz Renewable Energy Ltd. Place: Dhaka, Bangladesh Zip: 1212 Sector: Renewable Energy Product: Renewable energy...

  5. Renewable Energy RFPs | OpenEI Community

    Open Energy Info (EERE)

    Renewable Energy RFPs Home > Renewable Energy RFPs > Posts by term > Renewable Energy RFPs Content Group Activity By term Q & A Feeds Term: renewable energy certificates Type Term...

  6. Sinohydro Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Sinohydro Renewable Energy Jump to: navigation, search Name: Sinohydro Renewable Energy Place: Beijing Municipality, China Sector: Renewable Energy Product: Beijing-based renewable...

  7. Outland Renewable Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Outland Renewable Energy LLC Jump to: navigation, search Name: Outland Renewable Energy, LLC Place: Chaska, Minnesota Zip: 55318 Sector: Renewable Energy Product: Outland Renewable...

  8. Renewable Energy RFPs | OpenEI Community

    Open Energy Info (EERE)

    Renewable Energy RFPs Home > Renewable Energy RFPs > Posts by term > Renewable Energy RFPs Content Group Activity By term Q & A Feeds Term: Renewable Energy Type Term Title Author...

  9. Renewable Hawaii Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Renewable Hawaii Inc Place: Hawaii Sector: Renewable Energy Product: Renewables subsidiary of Hawaii Power Company. References: Renewable...

  10. Renew 300: Advancing Renewable Energy in Affordable Housing

    Office of Energy Efficiency and Renewable Energy (EERE)

    This program encourages organizations to make public commitments toward the federal renewable energy target of 300 megawatts of onsite or community-scale renewable energy capacity. Organizations...

  11. Property:RenewableFuelStandard/RenewableBiofuel | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardRenewableBiofuel Jump to: navigation, search This is a property of type Number. Pages...

  12. Renewable Energy Projections as Published in the National Renewable...

    Open Energy Info (EERE)

    Projections as Published in the National Renewable Energy Action Plans of the European Member States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy...

  13. RENEW300: Advancing Renewable Energy at HUD-Assisted Housing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minneapolis RENEW300: Advancing Renewable Energy at HUD-Assisted Housing - Minneapolis June 24, 2016 8:00AM to 4:00PM CDT Minneapolis, Minnesota

  14. Hybrid Solar GHP Simulator

    Energy Science and Technology Software Center (OSTI)

    2012-12-11

    This project provides an easy-to-use, menu-driven, software tool for designing hybrid solar-geothermal heat pump systems (GHP) for both heating- and cooling-dominated buildings. No such design tool currently exists. In heating-dominated buildings, the design approach takes advantage of glazed solar collectors to effectively balance the annual thermal loads on the ground with renewable solar energy. In cooling-dominated climates, the design approach takes advantage of relatively low-cost, unglazed solar collectors as the heat rejecting component. The primarymore » benefit of hybrid GHPs is the reduced initial cost of the ground heat exchanger (GHX). Furthermore, solar thermal collectors can be used to balance the ground loads over the annual cycle, thus making the GHX fully sustainable; in heating-dominated buildings, the hybrid energy source (i.e., solar) is renewable, in contrast to a typical fossil fuel boiler or electric resistance as the hybrid component; in cooling-dominated buildings, use of unglazed solar collectors as a heat rejecter allows for passive heat rejection, in contrast to a cooling tower that consumes a significant amount of energy to operate, and hybrid GHPs can expand the market by allowing reduced GHX footprint in both heating- and cooling-dominated climates. The design tool allows for the straight-forward design of innovative GHP systems that currently pose a significant design challenge. The project lays the foundations for proper and reliable design of hybrid GHP systems, overcoming a series of difficult and cumbersome steps without the use of a system simulation approach, and without an automated optimization scheme. As new technologies and design concepts emerge, sophisticated design tools and methodologies must accompany them and be made usable for practitioners. Lack of reliable design tools results in reluctance of practitioners to implement more complex systems. A menu-driven software tool for the design of hybrid solar GHP systems

  15. Programs in Renewable Energy

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    Our nation faces significant challenges as we enter the 1990s: securing a reliable supply of competitively priced energy, improving the quality of our environment, and increasing our share of foreign markets for goods and services. The US Department of Energy's (DOE) Programs in Renewable Energy are working toward meeting these challenges by developing the technologies that make use of our nation's largest energy resource: renewable energy. The sunlight, wind biomass, flowing water, ocean energy, and geothermal energy that make up the renewable energy resource can be found throughout our nation. These resources can provide all the forms of energy our nation needs: liquid fuels, electricity, and heating and cooling. Renewable energy meets about 10% of our need for these forms of energy today, yet the potential contribution is many times greater. DOE's Programs in Renewable Energy are working side-by-side with American industry to develop the technologies that convert renewable energy resources into practical, cost-competitive energy. After a decade of progress in research, several of these technologies are poised to make large contributions during the 1990s and beyond. This booklet provides an overview of the renewable energy programs and their plans for FY 1990. Sources of additional information are listed at the back of the booklet. 48 figs., 4 tabs.

  16. Schoeller Renewables | Open Energy Information

    Open Energy Info (EERE)

    Schoeller Renewables Jump to: navigation, search Name: Schoeller Renewables Place: Germany Sector: Solar, Wind energy Product: Germany-based subsidiary of Schoeller Industries that...

  17. Nautilus Renewables | Open Energy Information

    Open Energy Info (EERE)

    equity and investment banking firm, in order to break into the renewable energy and waste management markets. References: Nautilus Renewables1 This article is a stub. You...

  18. Renewable Energy and Climate Change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy and Climate Change Symposium in Honor of 2009 and 2010 ACS Fellows in ... Engineering Chemistry -- Cellulose and Renewable Materials, Chemicals, Fuels, and Energy ...

  19. Renewable Energy Training and Education

    Broader source: Energy.gov [DOE]

    Multiple resources exist to train Federal agency personnel to integrate renewable energy into Federal new construction or major renovation projects. Even if the agency is outsourcing renewable...

  20. Iberdrola Renewables | Open Energy Information

    Open Energy Info (EERE)

    Iberdrola Renewables Jump to: navigation, search Name: Iberdrola Renewables Address: 1125 NW Couch Street Place: Portland, Oregon Zip: 97209 Region: Pacific Northwest Area Sector:...

  1. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  2. Illinois Renewable Energy Conference 2015

    Broader source: Energy.gov [DOE]

    The Illinois Renewable Energy Conference will feature plenary speakers and breakout sessions in tracks on policy, technical information, and case studies for wind and other renewable technologies....

  3. APS- Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    Through the Renewable Incentive Program, Arizona Public Service (APS) offers customers who install solar water heating systems the opportunity to sell the renewable energy credits (RECs) associat...

  4. Alteris Renewables | Open Energy Information

    Open Energy Info (EERE)

    and currently employs 120 people 2. References Alteris Renewables Linked In Retrieved from "http:en.openei.orgwindex.php?titleAlterisRenewables&oldid768...

  5. Renewable Natural Gas- Developer Perspective

    Broader source: Energy.gov [DOE]

    Breakout Session 3-C: Renewable Gaseous FuelsRenewable Natural Gas - Developer PerspectiveDavid Ross, Managing Director, MultiGen International, LLC

  6. Western Renewable Energy Zones (Presentation)

    SciTech Connect (OSTI)

    Hein, J.

    2011-06-01

    This presentation summarizes recent developments and trends pertaining to competitive renewable energy zones, transmission planning and the integration of renewable generation resources.

  7. Renewable Connections | Open Energy Information

    Open Energy Info (EERE)

    Connections Jump to: navigation, search Name: Renewable Connections Place: london, Greater London, United Kingdom Sector: Renewable Energy, Services Product: London-based...

  8. Renewable Funding | Open Energy Information

    Open Energy Info (EERE)

    Funding Jump to: navigation, search Name: Renewable Funding Place: Oakland, CA Website: www.renewfund.com References: Renewable Funding1 Information About Partnership with NREL...

  9. Rivertop Renewables | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Rivertop Renewables Place: Missoula, Montana Zip: P.O. Box 8165 Sector: Renewable Energy Product: Montana based startup focused on creating...

  10. Renewable Energy Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    Eligible renewable resources include wind, solar, biomass, landfill gas, anaerobic digestion, hydroelectricity, and geothermal energy. Facilities must use renewable energy to produce electricity...

  11. King County Metro Transit Hybrid Articulated Buses: Final Evaluation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    King County Metro Transit Hybrid Articulated Buses: Final Evaluation Results K. Chandler Battelle K. Walkowicz National Renewable Energy Laboratory Technical Report NREL/TP-540-40585 December 2006 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 King County Metro Transit Hybrid Articulated Buses: Final Evaluation Results K. Chandler Battelle K. Walkowicz National Renewable Energy Laboratory Prepared under Task No. FC07.3000 Technical Report

  12. TRNSYS HYBRID wind diesel PV simulator

    SciTech Connect (OSTI)

    Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J.

    1996-12-31

    The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.

  13. Renewables Portfolio Standard

    Broader source: Energy.gov [DOE]

    New Jersey's Renewable Portfolio Standard (RPS) was first adopted in 1999 and has been updated several times. The total RPS requirement in New Jersey including solar carve out is 24.39% by EY 2028....

  14. Renewable Auction Mechanism (RAM)

    Broader source: Energy.gov [DOE]

    The Renewable Auction Mechanism (RAM) was approved by the California Public Utilities Commission (CPUC) in December 2010 with a goal of installing 1,500 megawatts (MW) of new distributed generation...

  15. Alaska Renewable Energy Fair

    Broader source: Energy.gov [DOE]

    The 10th annual Alaska Renewable Energy Fair on the downtown parkstrip in Anchorage is fun for the whole family! Come down and enjoy the live music, crafts, great local food, informational booths,...

  16. Renewable Energy Renaissance Zones

    Office of Energy Efficiency and Renewable Energy (EERE)

    For the purposes of renaissance zone designation, “renewable energy facility” means a facility that creates energy, fuels, or chemicals directly from the wind, the sun, trees, grasses, bio-solids,...

  17. Renewable Portfolio Standard

    Broader source: Energy.gov [DOE]

    In January 2005, the District of Columbia Council enacted a Renewable Portfolio Standard (RPS) that applies to all retail electricity sales in the District. In October 2008 the RPS was amended by...

  18. Renewable Energy Standard

    Office of Energy Efficiency and Renewable Energy (EERE)

    Notes: In July 2015, the Tenth Circuit Court of Appeals upheld the constitutionality Colorado's renewable energy standard (Energy & Environment Legal, et al v. Epel, et al, case number 14-1216). 

  19. Renewable Energy Professional Certification

    Broader source: Energy.gov [DOE]

    Department of Labor and Training issues Renewable Energy Professional (REP) Certificate to any individual who is currently registered contractor in RI and fulfills at least one of the qualifications:

  20. Renewable Energy Finance Workshop

    Open Energy Info (EERE)

    Agenda - December 10 th , 2012 Renewable Energy Finance Workshop 12:00 - 12:15 WELCOME AND INTRODUCTIONS- Richard Kauffman 12:15 - 12:25 PRESIDENTIAL PRIORITIES - Jon Powers & Rick...

  1. Renewable Heat NY

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: On August 2015, NYSERDA increased the incentive levels for technologies offered under the Renewable Heat NY program. In general, new incentives fund up to 45% of the total project cost, which...

  2. Renewable Portfolio Standard

    Office of Energy Efficiency and Renewable Energy (EERE)

    In October 1999, Wisconsin enacted Act 9, becoming the first state to enact a renewable portfolio standard (RPS) without having restructured its electric utility industry. The RPS sets a total goal...

  3. Renewables Portfolio Standard

    Broader source: Energy.gov [DOE]

    Note: SB 350, signed on October 7, 2015, made a number of changes to California's Renewables Portfolio Standard (RPS). Most notably, SB 350 extended the timeline and requirements under the RPS to...

  4. Renewable energy projects approved

    Broader source: Energy.gov [DOE]

    Two renewable energy projects representing a $100 million-plus investment by Las Vegas-based Nevada Power Co.—a cost likely to be covered over time by the utility's customers—were approved Wednesday by state regulators.

  5. Renewable Energy Goal

    Broader source: Energy.gov [DOE]

    In May 2010, the Oklahoma Legislature enacted the Oklahoma Energy Security Act (see H.B. 3028), establishing a renewable energy goal for electric utilities operating in the state. The goal calls...

  6. Renewable Portfolio Standard

    Broader source: Energy.gov [DOE]

    Maine's original Renewable Resource Portfolio Requirement was passed as part of the state's 1997 electric utility restructuring law.  In 1999, Maine's Public Utility Commission (PUC) adopted rules...

  7. Renewable Portfolio Standard

    Broader source: Energy.gov [DOE]

    Class I - New Renewable Energy. This class addresses electricity or “useful thermal energy” generated by any of the following resources, provided the generator began operation after January 1, 20...

  8. Renewable Energy Manufacturing Program

    Broader source: Energy.gov [DOE]

    Note: The initial application deadline for the Renewable Energy Manufacturing Program is June 30, 2016. Applications will be accepted following that date only if there are remaining funds available...

  9. Renewable Energy Grant Program

    Broader source: Energy.gov [DOE]

    The Alaska Energy Authority has issued recommendations to the Legislature and Governor for Round 9 of the the Renewable Energy Fund Grant Program. The list of ranked applications may be found at...

  10. Solar Renewable Energy Credits

    Broader source: Energy.gov [DOE]

     In January 2005, the District of Columbia (D.C.) Council enacted a Renewable Portfolio Standard (RPS) with a solar carve-out that applies to all retail electricity sales in the District. In...

  11. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

  12. Hawaii Renewable Hydrogen Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Hydrogen Program State & Regional Initiatives Webinar 14 October 2009 Mitch Ewan Hydrogen Systems Program Manager Hawaii Natural Energy Institute Chenoa Farnsworth Partner Kolohala Holdings, LLP Overview * Hawaii's Energy Situation * Mitch Ewan * Hawaii Power Park Project * Mitch Ewan * The Renewables-to-Hydrogen Fund * Chenoa Farnsworth Hawaii - Most Petroleum Dependent State Petroleum dependence for electricity - top six states Highest Electricity Prices in U.S. Hawaii and US

  13. Renewable Energy Economic Potential

    Broader source: Energy.gov [DOE]

    The report describes a geospatial analysis method to estimate the economic potential of several renewable resources available for electricity generation in the United States. Economic potential, one measure of renewable generation potential, is defined in this report as the subset of the available resource technical potential where the cost required to generate the electricity (which determines the minimum revenue requirements for development of the resource) is below the revenue available in terms of displaced energy and displaced capacity.

  14. New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results K. Chandler and E. Eberts Battelle L. Eudy National Renewable Energy Laboratory Technical Report NREL/TP-540-38843 January 2006 New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results K. Chandler and E. Eberts Battelle L. Eudy National Renewable Energy Laboratory Prepared under Task No. FC06.3000 Technical Report NREL/TP-540-38843 January 2006 National Renewable Energy Laboratory 1617 Cole

  15. PROJECT PROFILE: Mechanically Stacked Hybrid Photovoltaic Tandems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Mechanically Stacked Hybrid Photovoltaic Tandems PROJECT PROFILE: Mechanically Stacked Hybrid Photovoltaic Tandems Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $999,999 Tandem cell architectures present a path toward higher module efficiencies over single junction designs. This project will develop a gallium indium phosphide (GaInP) on silicon mechanically stacked voltage-matched

  16. Analysis of Hybrid Hydrogen Systems: Final Report

    SciTech Connect (OSTI)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  17. PROJECT PROFILE: Opportunistic Hybrid Communications Systems for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed PV Coordination (SuNLaMP) | Department of Energy PROJECT PROFILE: Opportunistic Hybrid Communications Systems for Distributed PV Coordination (SuNLaMP) PROJECT PROFILE: Opportunistic Hybrid Communications Systems for Distributed PV Coordination (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram: Systems Integration Location: National Renewable Energy Laboratory, Golden, CO SunShot Award Amount: $2,709,398 As more distributed solar power is added to the electric power grid and

  18. Report on the study of the tax and rate treatment of renewable energy projects

    SciTech Connect (OSTI)

    Hadley, S.W.; Hill, L.J.; Perlack, R.D.

    1993-12-01

    This study was conducted in response to the requirements of Section 1205 of the Energy Policy Act of 1992 (EPACT), which states: The Secretary (of Energy), in conjunction with State regulatory commissions, shall undertake a study to determine if conventional taxation and ratemaking procedures result in economic barriers to or incentives for renewable energy power plants compared to conventional power plants. The purpose of the study, therefore, is not to compare the cost-effectiveness of different types of renewable and conventional electric generating plants. Rather, it is to determine the relative impact of conventional ratemaking and taxation procedures on the selection of renewable power plants compared to conventional ones. To make this determination, we quantify the technical and financial parameters of renewable and conventional electric generating technologies, and hold them fixed throughout the study. Then, we vary taxation and ratemaking procedures to determine their effects on the financial criteria that investor-owned electric utilities (IOUs) and nonutility electricity generators (NUGs) use to make technology-adoption decisions. In the planning process of a typical utility, the opposite is usually the case. That is, utilities typically hold ratemaking and taxation procedures constant and look for the least-cost mix of resources, varying the values of engineering and financial parameters of generating plants in the process.

  19. Quick Guide: Renewable Energy Certificates (RECs)

    SciTech Connect (OSTI)

    2011-07-18

    Guide for Federal agencies considering renewable energy certificate (REC) purchases to fulfill Federal renewable energy requirements.

  20. 2008 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Gelman, Rachel

    2009-07-01

    This Renewable Energy Data Book for 2008 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced waterpower, hydrogen, renewable fuels, and clean energy investments.

  1. 2009 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Gelman, Rachel

    2010-08-01

    This Renewable Energy Data Book for 2009 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced waterpower, hydrogen, renewable fuels, and clean energy investments.

  2. 2014 Renewable Energy Data Book

    Broader source: Energy.gov [DOE]

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  3. 2014 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Beiter, Philipp

    2015-11-15

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  4. 2014 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Beiter, Philipp

    2015-11-01

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  5. 2010 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Gelman, Rachel

    2011-10-01

    This Renewable Energy Data Book for 2010 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced waterpower, hydrogen, renewable fuels, and clean energy investments.

  6. 2008 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    This Renewable Energy Data Book for 2008 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  7. 2011 Renewable Energy Data Book

    SciTech Connect (OSTI)

    R. Gelman

    2013-02-01

    This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  8. Assessing Your Renewable Energy Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Assessing Your Renewable Energy Resources Roger Taylor Principal Project Manager Tribal Energy Program 10/27/2010 NATIONAL RENEWABLE ENERGY LABORATORY Clear Sky Direct (Beam) Global (Total) Diffuse (Sky) NATIONAL RENEWABLE ENERGY LABORATORY Partly Cloudy Sky Direct (Beam) Global (Total) Diffuse (Sky) NATIONAL RENEWABLE ENERGY

  9. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Renewable Electricity Profile 2010 Alabama profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 32,417 100.0 Total Net Summer Renewable Capacity 3,855 11.9 Geothermal - - Hydro Conventional 3,272 10.1 Solar - - Wind - - Wood/Wood Waste 583 1.8 MSW/Landfill

  10. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Renewable Electricity Profile 2010 Alaska profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 2,067 100.0 Total Net Summer Renewable Capacity 422 20.4 Geothermal - - Hydro Conventional 414 20.1 Solar - - Wind 7 0.4 Wood/Wood Waste - - MSW/Landfill Gas - -

  11. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Renewable Electricity Profile 2010 Arizona profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,392 100.0 Total Net Summer Renewable Capacity 2,901 11.9 Geothermal - - Hydro Conventional 2,720 10.1 Solar 20 - Wind 128 - Wood/Wood Waste 583 1.8

  12. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Renewable Electricity Profile 2010 Connecticut profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 8,284 100.0 Total Net Summer Renewable Capacity 281 3.4 Geothermal - - Hydro Conventional 122 1.5 Solar - - Wind - -

  13. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Renewable Electricity Profile 2010 Delaware profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,389 100.0 Total Net Summer Renewable Capacity 10 0.3 Geothermal - - Hydro Conventional - - Solar - - Wind 2 0.1 Wood/Wood

  14. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia Renewable Electricity Profile 2010 District of Columbia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source - Primary Renewable Energy Generation Source - Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 790 100.0 Total Net Summer Renewable Capacity - - Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - -

  15. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Renewable Electricity Profile 2010 Georgia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 36,636 100.0 Total Net Summer Renewable Capacity 2,689 7.3 Geothermal - - Hydro Conventional 2,052 5.6 Solar - - Wind - - Wood/Wood Waste 617 1.7 MSW/Landfill Gas

  16. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas Renewable Electricity Profile 2010 Kansas profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,543 100.0 Total Net Summer Renewable Capacity 1,082 8.6 Geothermal - - Hydro Conventional 3 * Solar - - Wind 1,072 8.5 Wood/Wood Waste - - MSW/Landfill Gas 7 0.1 Other Biomass - -

  17. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Renewable Electricity Profile 2010 Louisiana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,744 100.0 Total Net Summer Renewable Capacity 517 1.9 Geothermal - - Hydro Conventional 192 0.7 Solar - - Wind - - Wood/Wood Waste 311 1.2 MSW/Landfill Gas - -

  18. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Renewable Electricity Profile 2010 Maryland profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,516 100.0 Total Net Summer Renewable Capacity 799 6.4 Geothermal - - Hydro Conventional 590 4.7 Solar 1 * Wind 70 0.6 Wood/Wood Waste 3 * MSW/Landfill Gas

  19. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Renewable Electricity Profile 2010 Massachusetts profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 13,697 100.0 Total Net Summer Renewable Capacity 566 4.1 Geothermal - - Hydro Conventional 262 1.9 Solar 4 * Wind 10 0.1 Wood/Wood

  20. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Renewable Electricity Profile 2010 Mississippi profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 15,691 100.0 Total Net Summer Renewable Capacity 235 1.5 Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste 235 1.5 MSW/Landfill Gas - -

  1. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri Renewable Electricity Profile 2010 Missouri profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,739 100.0 Total Net Summer Renewable Capacity 1,030 4.7 Geothermal - - Hydro Conventional 564 2.6 Solar - - Wind 459 2.1 Wood/Wood Waste - - MSW/Landfill Gas

  2. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Renewable Electricity Profile 2010 Montana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 5,866 100.0 Total Net Summer Renewable Capacity 3,085 52.6 Geothermal - - Hydro Conventional 2,705 46.1 Solar - - Wind 379 6.5 Wood/Wood Waste - - MSW/Landfill

  3. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska Renewable Electricity Profile 2010 Nebraska profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,857 100.0 Total Net Summer Renewable Capacity 443 5.6 Geothermal - - Hydro Conventional 278 3.5 Solar - - Wind 154 2.0 Wood/Wood Waste - - MSW/Landfill Gas 6

  4. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire Renewable Electricity Profile 2010 New Hampshire profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 4,180 100.0 Total Net Summer Renewable Capacity 671 16.1 Geothermal - - Hydro Conventional 489 11.7 Solar - - Wind 24 0.6 Wood/Wood Waste 129 3.1

  5. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey Renewable Electricity Profile 2010 New Jersey profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 18,424 100.0 Total Net Summer Renewable Capacity 230 1.2 Geothermal - - Hydro Conventional 4 * Solar 28 0.2 Wind 8 * Wood/Wood

  6. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Renewable Electricity Profile 2010 North Carolina profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 27,674 100.0 Total Net Summer Renewable Capacity 2,499 9.0 Geothermal - - Hydro Conventional 1,956 7.1 Solar 35 0.1 Wind - - Wood/Wood Waste 481 1.7

  7. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Renewable Electricity Profile 2010 Pennsylvania profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 45,575 100.0 Total Net Summer Renewable Capacity 1,984 4.4 Geothermal - - Hydro Conventional 747 1.6 Solar 9 * Wind 696 1.5 Wood/Wood Waste 108 0.2

  8. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island Renewable Electricity Profile 2010 Rhode Island profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,782 100.0 Total Net Summer Renewable Capacity 28 1.6 Geothermal - - Hydro Conventional 3 0.2 Solar - - Wind 2 0.1

  9. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Renewable Electricity Profile 2010 South Carolina profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 23,982 100.0 Total Net Summer Renewable Capacity 1,623 6.8 Geothermal - - Hydro Conventional 1,340 5.6 Solar - - Wind - - Wood/Wood Waste 255 1.1

  10. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Renewable Electricity Profile 2010 South Dakota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,623 100.0 Total Net Summer Renewable Capacity 2,223 61.3 Geothermal - - Hydro Conventional 1,594 44.0 Solar - - Wind 629 17.3 Wood/Wood Waste - -

  11. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee Renewable Electricity Profile 2010 Tennessee profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,417 100.0 Total Net Summer Renewable Capacity 2,847 13.3 Geothermal - - Hydro Conventional 2,624 12.3 Solar - - Wind 29 0.1 Wood/Wood Waste 185 0.9

  12. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Renewable Electricity Profile 2010 Vermont profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,128 100.0 Total Net Summer Renewable Capacity 408 36.2 Geothermal - - Hydro Conventional 324 28.7 Solar - - Wind 5 0.5 Wood/Wood Waste 76 6.7 MSW/Landfill Gas 3

  13. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Renewable Electricity Profile 2010 Virginia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 24,109 100.0 Total Net Summer Renewable Capacity 1,487 6.2 Geothermal - - Hydro Conventional 866 3.6 Solar - - Wind - - Wood/Wood Waste 331 1.4 MSW/Landfill Gas

  14. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia Renewable Electricity Profile 2010 West Virginia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 16,495 100.0 Total Net Summer Renewable Capacity 715 4.3 Geothermal - - Hydro Conventional 285 1.7 Solar - - Wind 431 2.6 Wood/Wood Waste - - MSW/Landfill Gas - -

  15. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin Renewable Electricity Profile 2010 Wisconsin profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 17,836 100.0 Total Net Summer Renewable Capacity 1,267 7.1 Geothermal - - Hydro Conventional 492 2.8 Solar - - Wind 449 2.5 Wood/Wood Waste 239 1.3

  16. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Renewable Electricity Profile 2010 Wyoming profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,986 100.0 Total Net Summer Renewable Capacity 1,722 21.6 Geothermal - - Hydro Conventional 307 3.8 Solar - - Wind 1,415 17.7 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - -

  17. Community Renewable Energy Deployment Briefing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Energy Advisory Board Community Renewable Energy Deployment Briefing June 9, 2010 Steve Lindenberg Senior Advisor, Renewable Energy Office of Energy Efficiency and Renewable Energy U.S. Department of Energy For Official Use Only DOE Renewable Deployment * EERE supports renewable deployment in many forms - Publications and Presentations in many venues - Web access to various resources and references - Annual market evaluations and analysis for progress to goals - Outreach programs to

  18. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Alaska Renewable Electricity Profile 2010 Alaska profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 2,067 100.0 Total Net Summer Renewable Capacity 422 20.4 Geothermal - - Hydro Conventional 414 20.1 Solar - - Wind 7 0.4 Wood/Wood Waste - - MSW/Landfill Gas - -

  19. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Arizona Renewable Electricity Profile 2010 Arizona profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,392 100.0 Total Net Summer Renewable Capacity 2,901 11.9 Geothermal - - Hydro Conventional 2,720 10.1 Solar 20 - Wind 128 - Wood/Wood Waste 583 1.8

  20. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Connecticut Renewable Electricity Profile 2010 Connecticut profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 8,284 100.0 Total Net Summer Renewable Capacity 281 3.4 Geothermal - - Hydro Conventional 122 1.5 Solar - - Wind - -

  1. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Delaware Renewable Electricity Profile 2010 Delaware profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,389 100.0 Total Net Summer Renewable Capacity 10 0.3 Geothermal - - Hydro Conventional - - Solar - - Wind 2 0.1 Wood/Wood

  2. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    District of Columbia Renewable Electricity Profile 2010 District of Columbia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source - Primary Renewable Energy Generation Source - Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 790 100.0 Total Net Summer Renewable Capacity - - Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - -

  3. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Georgia Renewable Electricity Profile 2010 Georgia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 36,636 100.0 Total Net Summer Renewable Capacity 2,689 7.3 Geothermal - - Hydro Conventional 2,052 5.6 Solar - - Wind - - Wood/Wood Waste 617 1.7 MSW/Landfill Gas

  4. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Kansas Renewable Electricity Profile 2010 Kansas profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,543 100.0 Total Net Summer Renewable Capacity 1,082 8.6 Geothermal - - Hydro Conventional 3 * Solar - - Wind 1,072 8.5 Wood/Wood Waste - - MSW/Landfill Gas 7 0.1 Other Biomass - -

  5. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Louisiana Renewable Electricity Profile 2010 Louisiana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,744 100.0 Total Net Summer Renewable Capacity 517 1.9 Geothermal - - Hydro Conventional 192 0.7 Solar - - Wind - - Wood/Wood Waste 311 1.2 MSW/Landfill Gas - -

  6. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Maryland Renewable Electricity Profile 2010 Maryland profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,516 100.0 Total Net Summer Renewable Capacity 799 6.4 Geothermal - - Hydro Conventional 590 4.7 Solar 1 * Wind 70 0.6 Wood/Wood Waste 3 * MSW/Landfill Gas

  7. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Massachusetts Renewable Electricity Profile 2010 Massachusetts profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 13,697 100.0 Total Net Summer Renewable Capacity 566 4.1 Geothermal - - Hydro Conventional 262 1.9 Solar 4 * Wind 10 0.1 Wood/Wood

  8. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Mississippi Renewable Electricity Profile 2010 Mississippi profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 15,691 100.0 Total Net Summer Renewable Capacity 235 1.5 Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste 235 1.5 MSW/Landfill Gas - -

  9. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Missouri Renewable Electricity Profile 2010 Missouri profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,739 100.0 Total Net Summer Renewable Capacity 1,030 4.7 Geothermal - - Hydro Conventional 564 2.6 Solar - - Wind 459 2.1 Wood/Wood Waste - - MSW/Landfill Gas

  10. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Montana Renewable Electricity Profile 2010 Montana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 5,866 100.0 Total Net Summer Renewable Capacity 3,085 52.6 Geothermal - - Hydro Conventional 2,705 46.1 Solar - - Wind 379 6.5 Wood/Wood Waste - - MSW/Landfill

  11. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Nebraska Renewable Electricity Profile 2010 Nebraska profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,857 100.0 Total Net Summer Renewable Capacity 443 5.6 Geothermal - - Hydro Conventional 278 3.5 Solar - - Wind 154 2.0 Wood/Wood Waste - - MSW/Landfill Gas 6

  12. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Hampshire Renewable Electricity Profile 2010 New Hampshire profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 4,180 100.0 Total Net Summer Renewable Capacity 671 16.1 Geothermal - - Hydro Conventional 489 11.7 Solar - - Wind 24 0.6 Wood/Wood Waste 129 3.1

  13. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Jersey Renewable Electricity Profile 2010 New Jersey profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 18,424 100.0 Total Net Summer Renewable Capacity 230 1.2 Geothermal - - Hydro Conventional 4 * Solar 28 0.2 Wind 8 * Wood/Wood

  14. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Carolina Renewable Electricity Profile 2010 North Carolina profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 27,674 100.0 Total Net Summer Renewable Capacity 2,499 9.0 Geothermal - - Hydro Conventional 1,956 7.1 Solar 35 0.1 Wind - - Wood/Wood Waste 481 1.7

  15. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Pennsylvania Renewable Electricity Profile 2010 Pennsylvania profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 45,575 100.0 Total Net Summer Renewable Capacity 1,984 4.4 Geothermal - - Hydro Conventional 747 1.6 Solar 9 * Wind 696 1.5 Wood/Wood Waste 108 0.2

  16. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Rhode Island Renewable Electricity Profile 2010 Rhode Island profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,782 100.0 Total Net Summer Renewable Capacity 28 1.6 Geothermal - - Hydro Conventional 3 0.2 Solar - - Wind 2 0.1

  17. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Carolina Renewable Electricity Profile 2010 South Carolina profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 23,982 100.0 Total Net Summer Renewable Capacity 1,623 6.8 Geothermal - - Hydro Conventional 1,340 5.6 Solar - - Wind - - Wood/Wood Waste 255 1.1

  18. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Dakota Renewable Electricity Profile 2010 South Dakota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,623 100.0 Total Net Summer Renewable Capacity 2,223 61.3 Geothermal - - Hydro Conventional 1,594 44.0 Solar - - Wind 629 17.3 Wood/Wood Waste - -

  19. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Tennessee Renewable Electricity Profile 2010 Tennessee profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,417 100.0 Total Net Summer Renewable Capacity 2,847 13.3 Geothermal - - Hydro Conventional 2,624 12.3 Solar - - Wind 29 0.1 Wood/Wood Waste 185 0.9

  20. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Vermont Renewable Electricity Profile 2010 Vermont profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,128 100.0 Total Net Summer Renewable Capacity 408 36.2 Geothermal - - Hydro Conventional 324 28.7 Solar - - Wind 5 0.5 Wood/Wood Waste 76 6.7 MSW/Landfill Gas 3

  1. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Virginia Renewable Electricity Profile 2010 Virginia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 24,109 100.0 Total Net Summer Renewable Capacity 1,487 6.2 Geothermal - - Hydro Conventional 866 3.6 Solar - - Wind - - Wood/Wood Waste 331 1.4 MSW/Landfill Gas

  2. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    West Virginia Renewable Electricity Profile 2010 West Virginia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 16,495 100.0 Total Net Summer Renewable Capacity 715 4.3 Geothermal - - Hydro Conventional 285 1.7 Solar - - Wind 431 2.6 Wood/Wood Waste - - MSW/Landfill Gas - -

  3. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Wisconsin Renewable Electricity Profile 2010 Wisconsin profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 17,836 100.0 Total Net Summer Renewable Capacity 1,267 7.1 Geothermal - - Hydro Conventional 492 2.8 Solar - - Wind 449 2.5 Wood/Wood Waste 239 1.3

  4. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Wyoming Renewable Electricity Profile 2010 Wyoming profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,986 100.0 Total Net Summer Renewable Capacity 1,722 21.6 Geothermal - - Hydro Conventional 307 3.8 Solar - - Wind 1,415 17.7 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - -

  5. NREL: News - Hybrid Buses Operate With Lower Emissions, Greater Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Hybrid Buses Operate With Lower Emissions, Greater Fuel Efficiency Golden, Colo., August 1, 2002 A recently released study by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) concludes that hybrid buses operate with lower emissions and greater fuel efficiency than conventional diesel buses. The yearlong evaluation of 10 prototype diesel hybrid-electric buses in the Metropolitan Transportation Authority's New York City Transit (NYCT) fleet of

  6. Renewable energy and utility regulation

    SciTech Connect (OSTI)

    Not Available

    1991-04-10

    This report summarizes the results of a joint project on renewable energy of the National Association of Regulatory Utility Commissioners (NARUC) and the US DOE. NARUC'S Task Force on Renewable Energy conducted a review of the current state of renewable energy technologies to evaluate their potential and extract key policy lessons from experience already gained in deployment of these technologies in numerous states. The main focus of this effort has been to clarify how utility regulators affect the development of renewable energy resources. The goal of the project was twofold: (1) identify the factors that have led to success or failure or renewable energy technologies in various energy markets, and (2) to develop an agenda on renewable energy and utility regulation for NARUC and the DOE. This report consists of three sections: renewable energy contributions, costs and potential; factors affecting development of renewable energy resources; and a renewable energy agenda for NARUC.

  7. Renewable energy and utility regulation

    SciTech Connect (OSTI)

    Not Available

    1991-04-10

    This report summarizes the results of a joint project on renewable energy of the National Association of Regulatory Utility Commissioners (NARUC) and the US DOE. NARUC`S Task Force on Renewable Energy conducted a review of the current state of renewable energy technologies to evaluate their potential and extract key policy lessons from experience already gained in deployment of these technologies in numerous states. The main focus of this effort has been to clarify how utility regulators affect the development of renewable energy resources. The goal of the project was twofold: (1) identify the factors that have led to success or failure or renewable energy technologies in various energy markets, and (2) to develop an agenda on renewable energy and utility regulation for NARUC and the DOE. This report consists of three sections: renewable energy contributions, costs and potential; factors affecting development of renewable energy resources; and a renewable energy agenda for NARUC.

  8. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    DeMeo, E.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

  9. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

  10. Renewable liquid reflection grating

    DOE Patents [OSTI]

    Ryutov, Dmitri D.; Toor, Arthur

    2003-10-07

    A renewable liquid reflection grating. Electrodes are operatively connected to a conducting liquid in an arrangement that produces a reflection grating and driven by a current with a resonance frequency. In another embodiment, the electrodes create the grating by a resonant electrostatic force acting on a dielectric liquid.