Sample records for leased bulk argon

  1. Attachment 1: Green Lease Policies and Procedures for Lease Acquisitio...

    Office of Environmental Management (EM)

    1: Green Lease Policies and Procedures for Lease Acquisition Attachment 1: Green Lease Policies and Procedures for Lease Acquisition Green Lease Policies and Procedures for Lease...

  2. Wind Energy Leasing Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

  3. Leasing Texas Rangelands

    E-Print Network [OSTI]

    White, Larry D.; Whitson, Robert E.

    1996-10-25T23:59:59.000Z

    Leasing rangeland for a variety of uses can be a viable alternative to operating the enterprise yourself. This publication gives the landowner sensible guidelines for negotiating a lease, and includes discussions on lessor/lessee objectives....

  4. Leasing Residential PV Systems

    SciTech Connect (OSTI)

    Rutberg, Michael; Bouza, Antonio

    2013-11-01T23:59:59.000Z

    The article discusses the adoption, consequences and current market status of the leasing of residential photovoltaic systems. It addresses attributed energy savings and market potential of residential system leasing.

  5. Y-12 Lease Summary Address* (Description) Square Footage Lease...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 Lease Summary Address* (Description) Square Footage Lease Term Expiration Date Onsite Leases 602 Scarboro Rd (New Hope Center) 137,758 square feet Five years 05042012 301...

  6. Leasing vs. Buying Farm Machinery

    E-Print Network [OSTI]

    Klinefelter, Danny A.; McCorkle, Dean

    2009-06-01T23:59:59.000Z

    Equipment leasing has gained favor with farmers and ranchers in recent years. This publication discusses how to determine lease cost and analyzes lease vs. purchase options. An example of such an analysis is included....

  7. Commonwealth's Energy Leasing Program

    Broader source: Energy.gov [DOE]

    Lease financing administered by the Department of Treasury provides funding for energy efficiency projects in state facilities operated by state agencies, authorities and institutions of the...

  8. Telecommunications Radio Lease

    E-Print Network [OSTI]

    Telecommunications Radio Lease 1. Fax completed form to 979.847.1111. 2. If you do not receive. Note: There is an air time charge for the use of the radios. Radio lease rates depend on the radio type to any of the radios, chargers and accessories until signed back over to the Telecommunications office

  9. Variable Crop Share Leases.

    E-Print Network [OSTI]

    Sartin, Marvin; Sammons, Ray

    1980-01-01T23:59:59.000Z

    )OC lAL45.7 173 1. 1224 Texas Agricultural Extension Service The Texas A&M University System Daniel C. Pfannstiel,Director colleg e Station, Texas / f , ' '~ :';,; ,,: ''': ~ " k , -~. _Variable _Crop Share _Leases ... Marvin... Sartin and Ray Sammons* Renting or leasing farmland is part of many modern farming operations and increases average farm size in U. S. agriculture. Economies of size are vitally import ant to farm operations as they strive to cope with the continuous...

  10. Leasing of State Property (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the Indiana Department of Natural Resources to lease public lands. State-owned land that is under the management and control of the department may be leased to a local...

  11. Evaluating Crop-Share Leases.

    E-Print Network [OSTI]

    Sartin, Marvin; Brints, Norman

    1979-01-01T23:59:59.000Z

    -SHARE LEASES Marvin Sartin and Norman Brints* There are many approaches for evaluating a crop-share lease. The easiest and most commonly used method relies on history and tradition. Throughout most of Texas, share leases have tra ditionally been one...-third for grain and one-fourth for cotton. While such agreements continue, the economic factors governing farming operations have changed, thus creating a need for reexamin ing terms of share leases. An accepted approach to evaluating sharing arrangements...

  12. Lease of Power Privilege Flowchart: Lease of Power Privilege...

    Open Energy Info (EERE)

    of Power Privilege Flowchart: Lease of Power Privilege Contract through End of Construction Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  13. The Solar Argon Abundance

    E-Print Network [OSTI]

    Katharina Lodders

    2007-10-24T23:59:59.000Z

    The solar argon abundance cannot be directly derived by spectroscopic observations of the solar photosphere. The solar Ar abundance is evaluated from solar wind measurements, nucleosynthetic arguments, observations of B stars, HII regions, planetary nebulae, and noble gas abundances measured in Jupiter's atmosphere. These data lead to a recommended argon abundance of N(Ar) = 91,200(+/-)23,700 (on a scale where Si = 10^6 atoms). The recommended abundance for the solar photosphere (on a scale where log N(H) = 12) is A(Ar)photo = 6.50(+/-)0.10, and taking element settling into account, the solar system (protosolar) abundance is A(Ar)solsys = 6.57(+/-)0.10.

  14. Lease Financing Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearning from RomanLease-Financing-Program

  15. Depleted argon from underground sources

    SciTech Connect (OSTI)

    Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

    2011-09-01T23:59:59.000Z

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  16. Commonwealth's Master Equipment Leasing Program

    Broader source: Energy.gov [DOE]

    The [http://www.trs.virginia.gov/debt/MELP%20Guides.aspx Master Equipment Leasing Program] (MELP) ensures that all Commonwealth agencies, authorities and institutions obtain consistent and...

  17. Solar Leasing for Residential Photovoltaic Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-02-01T23:59:59.000Z

    This publication examines the solar lease option for residential PV systems and describes two solar lease programs already in place.

  18. Lease classification of aircraft leasing : a case study of cross-border leases between Korean Air and its subsidiary

    E-Print Network [OSTI]

    Park, Eun Ho, M.B.A. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    Aircraft leasing represents a significant portion of the financial statements of airline firms. Accounting treatment of lease transactions is becoming more complicated as firms attempt to achieve off-balance-sheet outcomes ...

  19. Oil, Gas, and Mining Leases (Nebraska)

    Broader source: Energy.gov [DOE]

    This section contains rules on oil, gas, and mining leases, and grants authority to the State of Nebraska and local governments to issue leases for oil and gas mining and exploration on their lands.

  20. Solar Leasing for Residential Photovoltaic Systems

    Broader source: Energy.gov [DOE]

    This publication examines the solar lease option for residential PV systems and describes two solar lease programs already in place. As a result of the $2,000 cap on the residential ITC being lifted in 2009, the expansion of the solar lease model across the United States may be slower than anticipated. The lease model, though, still offers homeowners some distinct advantages. This publication helps homeowners revisit the comparison between the solar lease and home-equity financing in light of the change to the ITC.

  1. argon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and presents some first results. Christian Regenfus 2009-12-15 5 The Argon Dark Matter Experiment CERN Preprints Summary: The ArDM experiment, a 1 ton liquid argon TPC...

  2. Air Force Enhanced Use Lease

    Broader source: Energy.gov (indexed) [DOE]

    S e r v i c e - E x c e l l e n c e Headquarters U.S. Air Force 1 Air Force Enhanced Use Lease Mr. Brian Brown 16 Oct. 12 I n t e g r i t y - S e r v i c e - E x c e l l e n c e 2...

  3. Understanding Leasing Options for Energy Projects

    E-Print Network [OSTI]

    Davenport, B.

    2005-01-01T23:59:59.000Z

    UNDERSTANDING LEASING OPTIONS FOR ENERGY PROJECTS Baker Davenport Davenport Finance Company Richmond, Virginia Industrials often find it difficult to fund energy projects with internal monies. Energy projects must compete with the company...?s ?core? assets for capital dollars. Leasing can be used to overcome some of these hurdles. Topics of discussion will include several key leasing structures, with benefits and disadvantages noted. Project financing is also discussed as a way...

  4. Lease Operations Environmental Guidance Document

    SciTech Connect (OSTI)

    Bureau of Land Management

    2001-02-14T23:59:59.000Z

    This report contains discussions in nine different areas as follows: (1) Good Lease Operating Practices; (2) Site Assessment and Sampling; (3) Spills/Accidents; (4) Containment and Disposal of Produced Waters; (5) Restoration of Hydrocarbon Impacted Soils; (6) Restoration of Salt Impacted Soils; (7) Pit Closures; (8) Identification, Removal and Disposal of Naturally Occurring Radioactive Materials (NORM); and (9) Site Closure and Construction Methods for Abandonment Wells/Locations. This report is primary directed towards the operation of oil and gas producing wells.

  5. Final Uranium Leasing Program Programmatic Environmental Impact...

    Office of Environmental Management (EM)

    Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and vanadium ores. ULP PEIS...

  6. Attachment 3: Instructions for Use of Green Lease Solicitation...

    Office of Environmental Management (EM)

    3: Instructions for Use of Green Lease Solicitation Paragraph Reference Chart Attachment 3: Instructions for Use of Green Lease Solicitation Paragraph Reference Chart...

  7. Record of Decision for the Uranium Leasing Program Programmatic...

    Energy Savers [EERE]

    Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact Statement Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact...

  8. Lease of Power Privilege Flowchart: Lease of Power Privilege Contract

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana: Energy ResourcesLeanderPreliminary Lease

  9. argon 51: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a 1 ton liquid argon TPCCalorimeter, is designed for the detection of dark matter particles which can scatter off the spinless argon nucleus, producing nuclear recoils....

  10. argon fluorides: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a 1 ton liquid argon TPCCalorimeter, is designed for the detection of dark matter particles which can scatter off the spinless argon nucleus, producing nuclear recoils....

  11. air argon carbon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in gaseous argon CERN Preprints Summary: While developing a liquid argon detector for dark matter searches we investigate the influence of air contamination on the VUV...

  12. argon 32: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a 1 ton liquid argon TPCCalorimeter, is designed for the detection of dark matter particles which can scatter off the spinless argon nucleus, producing nuclear recoils....

  13. argon 33: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a 1 ton liquid argon TPCCalorimeter, is designed for the detection of dark matter particles which can scatter off the spinless argon nucleus, producing nuclear recoils....

  14. Energy Disclosure and Leasing Standards: Best Practices

    Broader source: Energy.gov (indexed) [DOE]

    joining the meeting To limit background noise, please put your phone or audio on mute. Energy Disclosure and Leasing Standards 2 | TAP Webinar eere.energy.gov The Parker Ranch...

  15. Office leases & landlord investment in energy efficiency

    E-Print Network [OSTI]

    Meyer, Brian S. (Brian Stewart)

    2008-01-01T23:59:59.000Z

    What is the relationship between the structure of leases in the Boston office rental market and how much landlords invest in energy efficient building systems for their existing buildings? I am drawn to this question because ...

  16. Mineral Leases by Political Subdivisions (Texas)

    Broader source: Energy.gov [DOE]

    This legislation authorizes local political subdivisions to lease lands they own for the development of mineral interests, including coal and lignite. A public hearing process is required prior to...

  17. A lessee's guide to leasing industrial equipment

    E-Print Network [OSTI]

    Johnson, Jones Eugene

    1959-01-01T23:59:59.000Z

    is included in the agree- ment, the lessee is treading on dangerous ground, The Internal Reve- nue Service will examine such agreements closely and may decide the original transaction was a sale and not a lease. Regardless, whether the lessee actually...A LESSEE'S GUIDE TO LEASING INDUSTRIAL EQUIPMENT A Thesis Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in Partial fulfillment of the requirements for the degree of Master of Business Administration...

  18. Observation of ? mode electron heating in dusty argon radio frequency discharges

    SciTech Connect (OSTI)

    Killer, Carsten; Bandelow, Gunnar; Schneider, Ralf; Melzer, André [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)] [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany); Matyash, Konstantin [Universitätsrechenzentrum, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)] [Universitätsrechenzentrum, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)

    2013-08-15T23:59:59.000Z

    The time-resolved emission of argon atoms in a dusty plasma has been measured with phase-resolved optical emission spectroscopy using an intensified charge-coupled device camera. For that purpose, three-dimensional dust clouds have been confined in a capacitively coupled rf argon discharge with the help of thermophoretic levitation. While electrons are exclusively heated by the expanding sheath (? mode) in the dust-free case, electron heating takes place in the entire plasma bulk when the discharge volume is filled with dust particles. Such a behavior is known as ? mode, first observed in electronegative plasmas. Furthermore, particle-in-cell simulations have been carried out, which reproduce the trends of the experimental findings. These simulations support previous numerical models showing that the enhanced atomic emission in the plasma can be attributed to a bulk electric field, which is mainly caused by the reduced electrical conductivity due to electron depletion.

  19. A framework for determining optimal petroleum leasing

    SciTech Connect (OSTI)

    Robinson, D.R.

    1991-01-01T23:59:59.000Z

    The techniques of auction theory and option theory are combined to allow valuation under both geologic and oil price uncertainty. The primary motivation for developing this framework is to understand the prevalence of leasing in transferring ownership of oil properties. Under a standard oil lease, the landowner sells an oil company the right to explore and develop a tract of land for a fixed period of time. If oil is found, a fraction of the revenues is reserved for the landowner. Compared to the outright sale of the minerals, leasing has the disadvantages of: (1) lowering total oil field value through alteration of investment incentives; (2) providing the seller with a more risk cash flow ; and (3) increasing legal and administrative costs. It is demonstrated here that in lease sales as compared to full mineral interest sales, the relative disadvantages are offset by more effective value transfer to the seller. For the base-case parameters, the optimal lease in a bonus auction gives the seller 28% more value than the sale of the full mineral interest. There is a loss in the leasing process from distortion of development timing incentives.

  20. Guest disorder and high pressure behavior of argon hydrates

    SciTech Connect (OSTI)

    Yang, L.; Tulk, C.A.; Klug, D.D.; Chakoumakos, B.C.; Ehm, L.; Molaison, J.J.; Parise, J.B.; Simonson, J.M. (NRCC); (SBU); (ORNL)

    2010-03-29T23:59:59.000Z

    The structure of argon hydrate was studied at ambient pressure and low temperature, and between 1.7 and 4.2 GPa at 295 K. This analysis produced a single Ar guest atom, positionally disordered off-center in the large cages of sII. Above 1.7 GPa Ar clathrate transformed to a mixture of a body-centered orthorhombic filled-ice phase, which can be viewed as a polytype of ice-Ih, and high pressure forms of pure ice. The guest disorder is further substantiated by analysis of the guest to host ratio in this high pressure filled-ice structure. The bulk modulus of Ar filled-ice found to be 11.7 {+-} 0.4 GPa.

  1. U.S. Army Fort Carson Photovoltaics Project Lease

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NO. DACA45-1-07-6037 DEPARTMENT OF THE ARMY LEASE FORT CARSON MILITARY INSTALLATION EL PAS0 COUNTY, COLORADO THIS LEASE, made on behalf of the United States, between the SECRETARY...

  2. Department of Energy to Continue Managing Uranium Leasing Program...

    Broader source: Energy.gov (indexed) [DOE]

    to approximately 25,000 acres leased to private entities for uranium and vanadium mining. There have been three previous leasing periods on the tracts since the program was...

  3. Oil and Gas- Leases to remove or recover (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act states that a lease or agreement conveying the right to remove or recover oil, natural gas or gas of any other designation from lessor to lessee shall not be valid if such lease does not...

  4. BLM and Forest Service Consider Large-Scale Geothermal Leasing...

    Energy Savers [EERE]

    and Forest Service Consider Large-Scale Geothermal Leasing BLM and Forest Service Consider Large-Scale Geothermal Leasing June 18, 2008 - 4:29pm Addthis In an effort to encourage...

  5. ICARUS and Status of Liquid Argon Technology

    E-Print Network [OSTI]

    Dorota Stefan

    2011-10-07T23:59:59.000Z

    ICARUS is the largest liquid argon TPC detector ever built (~600 ton LAr mass). It operates underground at the LNGS laboratory in Gran Sasso. It has been smoothly running since summer 2010, collecting data with the CNGS beam and with cosmics. Liquid argon TPCs are really "electronic bubble chamber" providing a completely uniform imaging and calorimetry with unprecedented accuracy on massive volumes. ICARUS is internationally considered as a milestone towards the realization of the next generation of massive detectors (~tens of ktons) for neutrino and rare event physics. Results will be presented on the data collected during 2010 with the detector at LNGS.

  6. A Regenerable Filter for Liquid Argon Purification

    SciTech Connect (OSTI)

    Curioni, A.; Fleming, B.T.; /Yale U.; Jaskierny, W.; Kendziora, C.; Krider, J.; Pordes, S.; /Fermilab; Soderberg, Mitchell Paul; Spitz, J.; /Yale U.; Tope, T.; /Fermilab; Wongjirad, T.; /Yale U.

    2009-03-01T23:59:59.000Z

    A filter system for removing electronegative impurities from liquid argon is described. The active components of the filter are adsorbing molecular sieve and activated-copper-coated alumina granules. The system is capable of purifying liquid argon to an oxygen-equivalent impurity concentration of better than 30 parts per trillion, corresponding to an electron drift lifetime of at least 10 ms. Reduction reactions that occur at {approx} 250 C allow the filter material to be regenerated in situ through a simple procedure. In the following work we describe the filter design, performance, and regeneration process.

  7. Scintillation efficiency of liquid argon in low energy neutron-argon scattering

    E-Print Network [OSTI]

    Creus, W; Amsler, C; Ferella, A D; Rochet, J; Scotto-Lavina, L; Walter, M

    2015-01-01T23:59:59.000Z

    Experiments searching for weak interacting massive particles with noble gases such as liquid argon require very low detection thresholds for nuclear recoils. A determination of the scintillation efficiency is crucial to quantify the response of the detector at low energy. We report the results obtained with a small liquid argon cell using a monoenergetic neutron beam produced by a deuterium-deuterium fusion source. The light yield relative to electrons was measured for six argon recoil energies between 11 and 120 keV at zero electric drift field.

  8. argon plasma primera: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the 39Ar content of the underground argon. Underground argon from the Kinder Morgan CO2 plant in Cortez, Colorado was determined to have less than 0.65% of the 39Ar activity in...

  9. argon lar scintillation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recoils in Liquid Argon on Drift Field CERN Preprints Summary: We have exposed a dual-phase Liquid Argon Time Projection Chamber (LAr-TPC) to a low energy pulsed narrowband...

  10. argon compounds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and presents some first results. Christian Regenfus 2009-12-15 5 The Argon Dark Matter Experiment CERN Preprints Summary: The ArDM experiment, a 1 ton liquid argon TPC...

  11. argon 40 target: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    may fractionate the remaining 40 Ar36 Ar Severinghaus, Jeffrey P. 2 The Argon Dark Matter Experiment HEP - Experiment (arXiv) Summary: The ArDM experiment, a 1 ton liquid argon...

  12. argon 31: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    discussed by the neutrino physics community. Rubbia, A 2013-01-01 5 The Argon Dark Matter Experiment HEP - Experiment (arXiv) Summary: The ArDM experiment, a 1 ton liquid argon...

  13. argon chlorides: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and presents some first results. Christian Regenfus 2009-12-15 5 The Argon Dark Matter Experiment CERN Preprints Summary: The ArDM experiment, a 1 ton liquid argon TPC...

  14. argon 49: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and presents some first results. Christian Regenfus 2009-12-15 5 The Argon Dark Matter Experiment CERN Preprints Summary: The ArDM experiment, a 1 ton liquid argon TPC...

  15. argon 34: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    discussed by the neutrino physics community. Rubbia, A 2013-01-01 5 The Argon Dark Matter Experiment HEP - Experiment (arXiv) Summary: The ArDM experiment, a 1 ton liquid argon...

  16. argon 46: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    backgrounds, including beta decays of 39-Ar and 42-Ar in atmospheric argon. A dark matter search using a 2 kg argon target viewed by immersed photomultiplier tubes would allow...

  17. argon 43: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    backgrounds, including beta decays of 39-Ar and 42-Ar in atmospheric argon. A dark matter search using a 2 kg argon target viewed by immersed photomultiplier tubes would allow...

  18. argon 41: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and presents some first results. Christian Regenfus 2009-12-15 5 The Argon Dark Matter Experiment CERN Preprints Summary: The ArDM experiment, a 1 ton liquid argon TPC...

  19. argon 47: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    discussed by the neutrino physics community. Rubbia, A 2013-01-01 5 The Argon Dark Matter Experiment HEP - Experiment (arXiv) Summary: The ArDM experiment, a 1 ton liquid argon...

  20. argon 37 target: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    beam. We study the variation of meson production McDonald, Kirk 2 The Argon Dark Matter Experiment HEP - Experiment (arXiv) Summary: The ArDM experiment, a 1 ton liquid argon...

  1. argon 52: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and presents some first results. Christian Regenfus 2009-12-15 6 The Argon Dark Matter Experiment CERN Preprints Summary: The ArDM experiment, a 1 ton liquid argon TPC...

  2. argon nitrides: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crystals of these nitrides are potentially (more) Du, Li 2011-01-01 8 The Argon Dark Matter Experiment HEP - Experiment (arXiv) Summary: The ArDM experiment, a 1 ton liquid argon...

  3. argon 37: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and presents some first results. Christian Regenfus 2009-12-15 5 The Argon Dark Matter Experiment CERN Preprints Summary: The ArDM experiment, a 1 ton liquid argon TPC...

  4. argon 42: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    backgrounds, including beta decays of 39-Ar and 42-Ar in atmospheric argon. A dark matter search using a 2 kg argon target viewed by immersed photomultiplier tubes would allow...

  5. argon 36: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and presents some first results. Christian Regenfus 2009-12-15 8 The Argon Dark Matter Experiment CERN Preprints Summary: The ArDM experiment, a 1 ton liquid argon TPC...

  6. argon 44: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and presents some first results. Christian Regenfus 2009-12-15 5 The Argon Dark Matter Experiment CERN Preprints Summary: The ArDM experiment, a 1 ton liquid argon TPC...

  7. argon 48: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    discussed by the neutrino physics community. Rubbia, A 2013-01-01 4 The Argon Dark Matter Experiment HEP - Experiment (arXiv) Summary: The ArDM experiment, a 1 ton liquid argon...

  8. argon 35: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    discussed by the neutrino physics community. Rubbia, A 2013-01-01 4 The Argon Dark Matter Experiment HEP - Experiment (arXiv) Summary: The ArDM experiment, a 1 ton liquid argon...

  9. actinica con argon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    discussed by the neutrino physics community. Rubbia, A 2013-01-01 5 The Argon Dark Matter Experiment HEP - Experiment (arXiv) Summary: The ArDM experiment, a 1 ton liquid argon...

  10. argon 39: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atmospheric argon was an important step in the development of direct-detection dark matter experiments using argon as the active target. We report on the design and operation of...

  11. argon 38 target: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p38 MAPK pathway inhibits irinotecan Paris-Sud XI, Universit de 4 The Argon Dark Matter Experiment HEP - Experiment (arXiv) Summary: The ArDM experiment, a 1 ton liquid argon...

  12. argon 39 beams: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atmospheric argon was an important step in the development of direct-detection dark matter experiments using argon as the active target. We report on the design and operation of...

  13. argon 38: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    discussed by the neutrino physics community. Rubbia, A 2013-01-01 6 The Argon Dark Matter Experiment HEP - Experiment (arXiv) Summary: The ArDM experiment, a 1 ton liquid argon...

  14. argon geochronology experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    when ig- United Arab Emirates is the best exposed Hacker, Bradley R. 2 The Argon Dark Matter Experiment HEP - Experiment (arXiv) Summary: The ArDM experiment, a 1 ton liquid argon...

  15. argon iodides: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2693-8. 12;Samarium(II) Iodide Promotes several Johnson, Jeff S. 6 The Argon Dark Matter Experiment HEP - Experiment (arXiv) Summary: The ArDM experiment, a 1 ton liquid argon...

  16. argon 53: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    discussed by the neutrino physics community. Rubbia, A 2013-01-01 5 The Argon Dark Matter Experiment HEP - Experiment (arXiv) Summary: The ArDM experiment, a 1 ton liquid argon...

  17. ,"Wyoming Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, andPrice (DollarsSummary"CoalbedLiquids Lease

  18. Solar lease grant program. Technical progress report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    Progress on a lease program for the installation of a solar water heater with no installation charge is reported. Information on the announcement of the program, the selection of participants, the contractural agreement, progress on installation of equipment, monitoring, and evaluation is summarized. The status of the budget concerned with the program is announced. Forms used for applications for the program and an announcement from Resource Alternatives for Cilco customers are presented.

  19. EIS-0472: Uranium Leasing Program, Mesa, Montrose, and San Miguel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and vanadium ores. The cooperating...

  20. SEE Action Series: High Performance Leasing Strategies for State...

    Broader source: Energy.gov (indexed) [DOE]

    Real Estate Broker (and Tenant) Education and Engagement Program Solution 6 - Energy Efficiency Code Variance Process High-Performance Leasing Barriers What's needed - *...

  1. Homeowners Guide to Leasing a Solar Electric System (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01T23:59:59.000Z

    This updated fact sheet provides an introduction to solar leases for homeowners who are considering installing a solar electric system on their home.

  2. Geophysics, Geology and Geothermal Leasing Status of the Lightning...

    Open Energy Info (EERE)

    Leasing Status of the Lightning Dock KGRA, Animas Valley, New Mexico Author C. Smith Published New Mexico Geological Society Guidebook, 1978 DOI Not Provided Check for DOI...

  3. Uranium Leasing Program Draft PEIS Public Comment Period Extended...

    Broader source: Energy.gov (indexed) [DOE]

    Uranium Leasing Program Draft PEIS Public Comment Period Extended to May 31, 2013 Draft ULPEIS comment extension community notification041813 (3).pdf More Documents & Publications...

  4. ,"New York Natural Gas Lease and Plant Fuel Consumption (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

  5. ,"New York Natural Gas Lease Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","2272015"...

  6. Effects of Nitrogen contamination in liquid Argon

    E-Print Network [OSTI]

    R. Acciarri; M. Antonello; B. Baibussinov; M. Baldo-Ceolin; P. Benetti; F. Calaprice; E. Calligarich; M. Cambiaghi; N. Canci; F. Carbonara; F. Cavanna; S. Centro; A. G. Cocco; F. Di Pompeo; G. Fiorillo; C. Galbiati; V. Gallo; L. Grandi; G. Meng; I. Modena; C. Montanari; O. Palamara; L. Pandola; F. Pietropaolo; G. L. Raselli; M. Roncadelli; M. Rossella; C. Rubbia; E. Segreto; A. M. Szelc; S. Ventura; C. Vignoli

    2008-04-08T23:59:59.000Z

    A dedicated test of the effects of Nitrogen contamination in liquid Argon has been performed at the INFN-Gran Sasso Laboratory (LNGS, Italy) within the WArP R&D program. A detector has been designed and assembled for this specific task and connected to a system for the injection of controlled amounts of gaseous Nitrogen into the liquid Argon. Purpose of the test is to detect the reduction of the Ar scintillation light emission as a function of the amount of the Nitrogen contaminant injected in the Argon volume. A wide concentration range, spanning from about 10^-1 ppm up to about 10^3 ppm, has been explored. Measurements have been done with electrons in the energy range of minimum ionizing particles (gamma-conversion from radioactive sources). Source spectra at different Nitrogen contaminations are analyzed, showing sensitive reduction of the scintillation yield at increasing concentrations. The rate constant of the light quenching process induced by Nitrogen in liquid Ar has been found to be k(N2)=0.11 micros^-1 ppm^-1. Direct PMT signals acquisition at high time resolution by fast Waveform recording allowed to extract with high precision the main characteristics of the scintillation light emission in pure and contaminated LAr. In particular, the decreasing behavior in lifetime and relative amplitude of the slow component is found to be appreciable from O(1 ppm) of Nitrogen concentrations.

  7. OIL AND GAS LEASING ON THE OUTER CONTINENTAL SHELF

    E-Print Network [OSTI]

    Lotko, William

    the priorities of national energy needs, environmentally sound and safe operations, and fair market return offshore renewable and traditional energy and mineral resources. The MMS also manages approximately 1) that consists of a 5-year schedule of proposed lease sales that shows the size, timing, and location of leasing

  8. Leasing - An Innovative Way to Finance Energy Conservation Improvements

    E-Print Network [OSTI]

    Day, G. C.

    1983-01-01T23:59:59.000Z

    Leasing represents an attractive method of raising 100% of the cost of capital goods and equipment and of obtaining the use of capital goods and equipment over long periods of time for relatively low periodic payments. Typically the cost of lease...

  9. argon plasma atomic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    observed in a complex plasma are presented. The experiments are performed with an argon plasma which is produced under microgravity conditions using a capacitively-coupled rf...

  10. argon laser trabeculoplasty: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gary A. Williams 1999-10-04 122 First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon CERN Preprints Summary: We report on the...

  11. argon laser iridotomy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25 Next Page Last Page Topic Index 121 First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon CERN Preprints Summary: We report on the...

  12. argon complexes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stekhanov; V. I. Umatov 2003-09-02 87 First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon CERN Preprints Summary: We report on the...

  13. argon laser phototherapy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gary A. Williams 1999-10-04 123 First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon CERN Preprints Summary: We report on the...

  14. argon storage tanks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25 Next Page Last Page Topic Index 121 First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon CERN Preprints Summary: We report on the...

  15. argon isotopes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stekhanov; V. I. Umatov 2003-09-02 96 First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon CERN Preprints Summary: We report on the...

  16. argon plasma column: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25 Next Page Last Page Topic Index 1 First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon CERN Preprints Summary: We report on the...

  17. argon 40: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stekhanov; V. I. Umatov 2003-09-02 108 First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon CERN Preprints Summary: We report on the...

  18. atmospheric pressure argon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Aircraft Performance: Atmospheric Pressure FAA Handbook of Aeronautical Knowledge Chap 10 12 - 21% Oxygen - 1% other gases (argon,...

  19. Large area bulk superconductors

    DOE Patents [OSTI]

    Miller, Dean J. (Darien, IL); Field, Michael B. (Jersey City, NJ)

    2002-01-01T23:59:59.000Z

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  20. Natural Gas Lease and Plant Fuel Consumption

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,960 3,958,315storage challenges

  1. Category:BLM Lease | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashton Greens Jump Lease. Add.png Add a new BLM

  2. Commissioning of the ATLAS Liquid Argon Calorimeter

    E-Print Network [OSTI]

    S. Laplace

    2010-05-17T23:59:59.000Z

    The in-situ commissioning of the ATLAS liquid argon calorimeter is taking place since three years. During this period, it has been fully tested by means of frequent calibration runs, and the analysis of the large cosmic muon data samples and of the few beam splash events that occurred on September 10th, 2008. This has allowed to obtain a stable set of calibration constants for the first collisions, and to measure the in-situ calorimeter performances that were found to be at the expected level.

  3. argon dark matter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    argon dark matter First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 The Argon Dark Matter Experiment HEP...

  4. Effect of Emergency Argon on FCF Operational Incidents

    SciTech Connect (OSTI)

    Charles Solbrig

    2011-12-01T23:59:59.000Z

    The following report presents analyses of operational incidents which are considered in the safety analysis of the FCF argon cell and the effect that the operability of the emergency argon system has on the course of these incidents. The purpose of this study is to determine if the emergency argon system makes a significant difference in ameliorating the course of these incidents. Six incidents were considered. The following three incidents were analyzed. These are: 1. Cooling failing on 2. Vacuum Pump Failing on 3. Argon Supplies Failing on. In the remaining three incidents, the emergency argon supply would have no effect on the course of these transients since it would not come on during these incidents. The transients are 1. Loss of Cooling 2. Loss of power (Differs from above by startup delay till the Diesel Generators come on.) 3. Cell rupture due to an earthquake or other cause. The analyses of the first three incidents are reported on in the next three sections. This report is issued realizing the control parameters used may not be optimum, and additional modeling must be done to model the inertia of refrigeration system, but the major conclusion concerning the need for the emergency argon system is still valid. The timing of some events may change with a more accurate model but the differences between the transients with and without emergency argon will remain the same. Some of the parameters assumed in the analyses are Makeup argon supply, 18 cfm, initiates when pressure is = -6 iwg., shuts off when pressure is = -3.1 iwg. 170,000 ft3 supply. Min 1/7th always available, can be cross connected to HFEF argon supply dewar. Emergency argon supply, 900 cfm, initiates when pressure is = -8 iwg. shuts off when pressure is =-4 iwg. reservoir 220 ft3, refilled when tank farm pressure reduces to 1050 psi which is about 110 ft3.

  5. UCF-7.203 Real Property Leasing. (1) The University of Central Florida may lease real property for the use and benefit of approved

    E-Print Network [OSTI]

    Wu, Shin-Tson

    statutory or regulatory requirements for life safety, construction, or disabled access (6) Standard Lease of a future event, such as a change in the Consumer Price Index. Any such clause in a lease shall be null and void and unenforceable. The final cost to the University for the complete term of a lease, including

  6. DOE Extends Public Comment Period for the Draft Uranium Leasing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    25,000 acres - that are leased to private entities for uranium and vanadium mining. No mining operations are active on these lands at this time. DOE is preparing the ULP...

  7. Uranium Leasing Program: Program Summary | Department of Energy

    Energy Savers [EERE]

    then lease them to private industry for mineral exploration and for development and mining of uranium and vanadium ore. A total of 25,000 acres of land in southwestern Colorado,...

  8. High Performance Leasing Strategies for State and Local Governments

    Broader source: Energy.gov [DOE]

    Presentation for the SEE Action Series: High Performance Leasing Strategies for State and Local Governments webinar, presented on January 26, 2013 as part of the U.S. Department of Energy's Technical Assistance Program (TAP).

  9. Rate of return earned by lessees under cash bonus bidding for OCS oil and gas leases

    SciTech Connect (OSTI)

    Mead, W.J. (Univ. of California, Santa Barbara); Moseidjord, A.; Sorensen, P.E.

    1983-10-01T23:59:59.000Z

    An analysis of 1223 oil and gas leases issued between 1954 and 1969 reveals that lessees earned a 10.74% after-tax rate of return on equity on their lease investments. This is competitive with the average rate of return (11.8%) for all US manufacturing corporations over the 1954 to 1980 period. This record shows that firms bidding jointly pay more for their leases, obtain higher-quality leases, and earn higher rates of return of 11.74%. This indicates that bonus bidding tends to produce rational results since higher bonus bids are correlated with fewer dry holes and higher gross value of production or lease. The findings also show that wildcat leases yielded a 10.04% after-tax return compared to 14.59% for drainage leases, which is apparently due to the drainage lease owners having better information after working on adjacent leases. 12 references, 6 tables.

  10. Extreme argon purity in a large, non-evacuated cryostat

    SciTech Connect (OSTI)

    Tope, Terry; Adamowski, Mark; Carls, B.; Hahn, A.; Jaskierny, W.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Skup, E.; Stancari, M.; Yang, T. [Particle Physics Division, Fermilab, P.O. Box 500, Batavia, IL 60510 (United States)

    2014-01-29T23:59:59.000Z

    Liquid Argon Time Projection Chambers (LArTPCs) show promise as scalable devices for the large detectors needed for long-baseline neutrino oscillation physics. Over the last several years at Fermilab a staged approach to developing the technology for large detectors has been developed. The TPC detectors require ultra-pure liquid argon with respect to electronegative contaminants such as oxygen and water. The tolerable electronegative contamination level may be as pure as 60 parts per trillion of oxygen. Three liquid argon cryostats operated at Fermilab have achieved the extreme purity required by TPCs. These three cryostats used evacuation to remove atmospheric contaminants as the first purification step prior to filling with liquid argon. Future physics experiments may require very large detectors with tens of kilotonnes of liquid argon mass. The capability to evacuate such large cryostats adds significant cost to the cryostat itself in addition to the cost of a large scale vacuum pumping system. This paper describes a 30 ton liquid argon cryostat at Fermilab which uses purging to remove atmospheric contaminants instead of evacuation as the first purification step. This cryostat has achieved electronegative contamination levels better than 60 parts per trillion of oxygen equivalent. The results of this liquid argon purity demonstration will strongly influence the design of future TPC cryostats.

  11. High pressure argon ionization chamber systems for the measurement of environmental radiation exposure rates

    E-Print Network [OSTI]

    DeCampo, J A; Raft, P D

    1972-01-01T23:59:59.000Z

    High pressure argon ionization chamber systems for the measurement of environmental radiation exposure rates

  12. Bulk Power Transmission Study

    E-Print Network [OSTI]

    John, T.

    BULK POWER TRANSMISSION STUDY TOMMY JOH~ P. E. Manager of Resource Recovery Waste Management of North America, Inc. Houston, Texas Texans now have a choice. We can become more efficient and maintain our standard of living, or we can... continue business as usual and watch our standard of living erode from competition from other regions. In the past, except for improving reliability, there was no need for a strong transmission system. When Texas generation was primarily gas fueled...

  13. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. I. Argon plasmas

    SciTech Connect (OSTI)

    Boffard, John B., E-mail: jboffard@wisc.edu; Lin, Chun C. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Culver, Cody [Materials Science Program, University of Wisconsin, Madison, WI 53706 (United States); Wang, Shicong; Wendt, Amy E. [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706 (United States); Radovanov, Svetlana; Persing, Harold [Varian Semiconductor Equipment, Applied Materials Inc., Gloucester, MA 01939 (United States)

    2014-03-15T23:59:59.000Z

    Vacuum ultraviolet (VUV) photons emitted from excited atomic states are ubiquitous in material processing plasmas. The highly energetic photons can induce surface damage by driving surface reactions, disordering surface regions, and affecting bonds in the bulk material. In argon plasmas, the VUV emissions are due to the decay of the 1s{sub 4} and 1s{sub 2} principal resonance levels with emission wavelengths of 104.8 and 106.7?nm, respectively. The authors have measured the number densities of atoms in the two resonance levels using both white light optical absorption spectroscopy and radiation-trapping induced changes in the 3p{sup 5}4p?3p{sup 5}4s branching fractions measured via visible/near-infrared optical emission spectroscopy in an argon inductively coupled plasma as a function of both pressure and power. An emission model that takes into account radiation trapping was used to calculate the VUV emission rate. The model results were compared to experimental measurements made with a National Institute of Standards and Technology-calibrated VUV photodiode. The photodiode and model results are in generally good accord and reveal a strong dependence on the neutral gas temperature.

  14. argon ion bombardment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using 4.2 Me... Mahner, E; Kchler, D; Scrivens, R; Costa Pinto, P; Yin Vallgren, C; Bender, M 2011-01-01 46 Acetylene - Argon Plasmas Measured at a Biased Substrate...

  15. argon 36 reactions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of alpha-induced reaction cross sections. Peter Mohr 2014-04-26 8 Partial gamma-ray production cross sections for (n,xng) reactions in natural argon from 1 - 30 MeV...

  16. Photodegradation mechanisms of tetraphenyl butadiene coatings for liquid argon detectors

    E-Print Network [OSTI]

    Jones, Benjamin James Poyner

    We report on studies of degradation mechanisms of tetraphenyl butadiene (TPB) coatings of the type used in neutrino and dark matter liquid argon experiments. Using gas chromatography coupled to mass spectrometry we have ...

  17. argon 1s photoelectron: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microscope; the equation of state and refractive index of argon water along the 300 K isotherm up to about 5 GPa; the dependence on density and pressure of the asymmetric...

  18. argon beam coagulation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O. Palamara; K. Partyka; G. Rameika; B. Rebel; M. Soderberg; J. Spitz; A. M. Szelc; M. Weber; T. Yang; G. P. Zeller 2014-04-18 7 Hadronic calibration of the ATLAS liquid argon...

  19. argon method: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goeldi; S. Janos; I. Kreslo; M. Luethi; C. Rudolf von Rohr; T. Strauss; T. Tolba; M. S. Weber 2014-06-16 2 A method to suppress dielectric breakdowns in liquid argon ionization...

  20. argon 40 beams: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O. Palamara; K. Partyka; G. Rameika; B. Rebel; M. Soderberg; J. Spitz; A. M. Szelc; M. Weber; T. Yang; G. P. Zeller 2014-04-18 9 Hadronic calibration of the ATLAS liquid argon...

  1. argon 38 beams: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O. Palamara; K. Partyka; G. Rameika; B. Rebel; M. Soderberg; J. Spitz; A. M. Szelc; M. Weber; T. Yang; G. P. Zeller 2014-04-18 9 Hadronic calibration of the ATLAS liquid argon...

  2. argon ionization detector: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goeldi; S. Janos; I. Kreslo; M. Luethi; C. Rudolf von Rohr; T. Strauss; T. Tolba; M. S. Weber 2014-06-16 5 A method to suppress dielectric breakdowns in liquid argon ionization...

  3. argon charge imaging: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. Patch; G. Rameika; B. Rebel; B. Rossi; M. Soderberg; J. Spitz; A. M. Szelc; M. Weber; T. Yang; G. Zeller 2011-11-01 7 ArgoNeuT and the Neutrino-Argon Charged Current...

  4. argon 50: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preprints Summary: DarkSide (DS) at Gran Sasso underground laboratory is a direct dark matter search program based on TPCs with liquid argon from underground sources. The DS-50...

  5. argon gas backgrounds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sahin, O; Tapan, I; Ozmutlu, E N 2010-01-01 5 Background studies for a ton-scale argon dark matter detector (ArDM) CERN Preprints Summary: The ArDM project aims at operating a...

  6. argon 45: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preprints Summary: DarkSide (DS) at Gran Sasso underground laboratory is a direct dark matter search program based on TPCs with liquid argon from underground sources. The DS-50...

  7. Oil, Gas, and Minerals, Exploration and Production, Lease of Public Land (Iowa)

    Broader source: Energy.gov [DOE]

    The state, counties and cities and other political subdivisions may lease publicly owned lands for the purpose of oil or gas or metallic minerals exploration and production.  Any such leases shall...

  8. GAO-11-879T, Federal Real Property, Overreliance on Leasing Contribute...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    879T, Federal Real Property, Overreliance on Leasing Contributed to High-Risk Designation GAO-11-879T, Federal Real Property, Overreliance on Leasing Contributed to High-Risk...

  9. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Lease Condensate

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1. Refiner/Reseller2009LeaseProvedProvedProved

  10. New Mexico Crude Oil plus Lease Condensate Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan1Lease Separation780 922

  11. Planning techniques for avoiding sublease treatment on assigning oil and gas leases

    SciTech Connect (OSTI)

    Kells, R.B.

    1984-01-01T23:59:59.000Z

    Many oil and gas leasebrokers and other industry people who have bought and transferred oil and gas leases may have unintentionally exposed themselves to a large potential tax liability, wholly unrelated to their actual economic gain or loss, by transferring oil and gas leases subject to a continuing nonoperating interest such as an overriding royalty interest. This article is concerned with the various tax consequences which may ensue when a nonproducing oil and gas lease is transferred, and provides suggestions for structuring the purchase and sale of nonproducing oil and gas leases to obtain the most favorable tax treatment. Throughout the article the assignment of leases is assumed to be by a leasebroker.

  12. Characteristics of Knock in Hydrogen-Oxygen-Argon SI Engine

    SciTech Connect (OSTI)

    Killingsworth, N; Rapp, V; Flowers, D; Aceves, S; Chen, J; Dibble, R

    2010-02-23T23:59:59.000Z

    A promising approach for improving the efficiency of internal combustion engines is to employ a working fluid with a high specific heat ratio such as the noble gas argon. Moreover, all harmful emissions are eliminated when the intake charge is composed of oxygen, nonreactive argon, and hydrogen fuel. Previous research demonstrated indicated thermal efficiencies greater than 45% at 5.5 compression ratio in engines operating with hydrogen, oxygen, and argon. However, knock limits spark advance and increasing the efficiency further. Conditions under which knock occurs in such engines differs from typical gasoline fueled engines. In-cylinder temperatures using hydrogen-oxygen-argon are higher due to the high specific heat ratio and pressures are lower because of the low compression ratio. Better understanding of knock under these conditions can lead to operating strategies that inhibit knock and allow operation closer to the knock limit. In this work we compare knock with a hydrogen, oxygen, and argon mixture to that of air-gasoline mixtures in a variable compression ratio cooperative fuels research (CFR) engine. The focus is on stability of knocking phenomena, as well as, amplitude and frequency of the resulting pressure waves.

  13. Creating bulk nanocrystalline metal.

    SciTech Connect (OSTI)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01T23:59:59.000Z

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  14. Area- and site-specific geothermal leasing/permitting profiles; updated geothermal leasing/permitting performance assessment

    SciTech Connect (OSTI)

    Beeland, G.V.; Schumann, E.; Wieland, M.

    1982-02-01T23:59:59.000Z

    Sufficient discussion of the elements of the leasing and permitting programs is included to place the information developed in proper context. A table and process flow diagram developed previously which outline the steps in the non-competitive leasing process, is reprinted. Computer printout profiles are presented on 195 identifiable areas in the following states: Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming. Sufficient information on the boundaries of these areas is contained in the report to permit identification of their general location on any map of the appropriate state which shows township and range locations.

  15. Report on audit of the management of the Department of Energy`s leased administrative facilities

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Department is accountable for a large inventory of real property made up of owned, leased, and government-controlled property. The Office of Human Resources and Administration and the Office of Field Management are responsible for the Department`s real property leasing program. These two offices, in conjunction with the Operations Offices in the field, procure space or authorize the procurement of space by contractors. Departmental records from Fiscal Year 1996 showed that approximately $136 million was spent on leased facilities. Of this amount, $60 million was for leases in the Washington, DC metropolitan area and $76 million for leased facilities in the field. The policies governing leasing require that all real property holdings be managed efficiently and economically. The objective of the audit was to determine if the Department was using good business practices to manage its leased space.

  16. PERFORMANCE OF THE LEAD/LIQUID ARGON SHOWER COUNTER SYSTEM OF THE MARK II DETECTOR AT SPEAR

    E-Print Network [OSTI]

    Abrams, G.S.

    2013-01-01T23:59:59.000Z

    of California. PERFORMANCE OF THE LEAD/LIQUID ARGON SHOWERMark II detector is a large lead/liquid argon system of theof-flight information, lead/liquid argon shower counters,

  17. Draft 2-5-06 appendix B: Land Leases

    E-Print Network [OSTI]

    Lee, Jason R.

    background Draft 2-5-06 appendix B: Land Leases appendices tract / Parcel / Buildings acres Wilson (Grizzly Peak Substation) 0.50 The Berkeley Lab main site is a 202 acre parcel of land owned and managed Figure F.1 3 Photo the new Molecular Foundry building earned the u.s. green building council's "silver

  18. Final Environmental assessment for the Uranium Lease Management Program

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The US Department of Energy (DOE) has prepared a programmatic environmental assessment (EA) of the proposed action to continue leasing withdrawn lands and DOE-owned patented claims for the exploration and production of uranium and vanadium ores. The Domestic Uranium Program regulation, codified at Title 10, Part 760.1, of the US Code of Federal Regulations (CFR), gives DOE the flexibility to continue leasing these lands under the Uranium Lease Management Program (ULMP) if the agency determines that it is in its best interest to do so. A key element in determining what is in DOE`s ``best interest`` is the assessment of the environmental impacts that may be attributable to lease tract operations and associated activities. On the basis of the information and analyses presented in the EA for the ULMP, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, as defined in the National Environmental Policy Act (NEPA) of 1969 (42 United States Code 4321 et seq.), as amended.Therefore, preparation of an environmental impact statement is not required for the ULMP,and DOE is issuing this Finding, of No Significant Impact (FONSI).

  19. Bidding optimum bonus for federal offshore oil and gas leases

    SciTech Connect (OSTI)

    Lohrenz, J.

    1987-09-01T23:59:59.000Z

    How a bidder should bid for federal offshore oil and gas leases offered by bonus bidding is detailed. Quantitative answers are given for bidders seeking to maximize value as well as reserves. The winner's curse is delineated. Further, it is shown how bidding as a joint venture rather than solo can diminish bidders' values.

  20. Profitabilities on federal offshore oil and gas leases: A review

    SciTech Connect (OSTI)

    Lohrenz, J.

    1988-06-01T23:59:59.000Z

    Bonus paid for leases is a controllable factor that delivers a coup de grace to acceptable profits. Elimination of bonus may not make profits robust, but closer to the average for all industries. For profits closer to satisfactory levels, bonuses paid should be lower.

  1. Form:BLM Lease | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,Forked River, NewDENERGY Input the

  2. GEO LEASE COMPETITIVE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604°Wisconsin:FyreStorm Inc JumpGADReportingGEMACLEASE

  3. GEO LEASE NONCOMPETITI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604°Wisconsin:FyreStorm Inc

  4. Adsorption of the first layer of argon on graphite (*) Laboratoire des Composs non St0153chiomtriques,

    E-Print Network [OSTI]

    Boyer, Edmond

    L-9 Adsorption of the first layer of argon on graphite (*) F. Millot Laboratoire des Composés non déterminé des isothermes d'adsorption d'argon sur le graphite entre 55 et 62 K. Nous proposons une interprétation de nos résultats. Abstract. 2014 I have determined a set of adsorption isotherms for argon

  5. ardm argon dark: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 The Argon Dark Matter Experiment (ArDM) HEP - Experiment (arXiv) Summary: The ArDM experiment, a 1 ton...

  6. ORIGINAL PAPER Argon retention properties of silicate glasses and implications

    E-Print Network [OSTI]

    Harrison, Mark

    data from rocks depends on many factors, knowing the Ar transport properties of any dated materialORIGINAL PAPER Argon retention properties of silicate glasses and implications for 40 Ar/39 Ar age fused from igneous-derived cohesive fault rock and igneous rock, and step-heated from $400 to >1,200 °C

  7. Kinetics of Silicothermic Reduction of Calcined Dolomite in Flowing Argon

    E-Print Network [OSTI]

    Liley, David

    of Experimental Rig De oxi dat ion Fu rn ac e TC TC Copper Turning Reduction Furnace Argon Gas Condenser Gas wash. Disadvantages: high impurity, high condenser area #12;© Swinburne University of Technology Aim of the project the fundamental physical chemistry Thermodynamic modelling Kinetic analysis High temperature experiments

  8. argon calorimeters construction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    argon calorimeters construction First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 STATUS OF THE...

  9. Optimum combination of leasing systems on public lands

    SciTech Connect (OSTI)

    McDonald, S.L.

    1984-12-01T23:59:59.000Z

    Bonus bidding for oil and gas leases on public lands has been a reasonably satisfactory system for capturing the average rent available while being neutral with respect to economic decisions such as abandonment. However, it places a heavy burden of risk and uncertainty on the lessee. There is some reason to believe that social gains are to be had from shifting some of the risk and uncertainty to the lessors (governmental units). Profit-share or royalty bidding tends to accomplish such a shift. However, optimality seems to call for a combination of bonus bidding and profit-share (or royalty) bidding, the latter on wildcat tracts and the former on drainage tracts. Profit-share bidding is somewhat superior to royalty bidding, and the best definition of ''profit'' for the purpose is profits in excess of a normal return on investment. The combination suggested above may be especially desirable in a program of accelerated leasing of public lands. 2 figs.

  10. First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon

    E-Print Network [OSTI]

    Back, Henning O; Alton, Andrew; Condon, Christopher; de Haas, Ernst; Galbiati, Cristiano; Goretti, Augusto; Hohmann, Tristan; Ianni, Andrea; Kendziora, Cary; Loer, Ben; Montanari, David; Mosteiro, Pablo; Pordes, Stephen

    2012-01-01T23:59:59.000Z

    We report on the performance and commissioning of a cryogenic distillation column for low radioactivity underground argon at Fermi National Accelerator Laboratory. The distillation column is designed to accept a mixture of argon, helium, and nitrogen and return pure argon with a nitrogen contamination less than 10 ppm. In the first commissioning, we were able to run the distillation column in a continuous mode and produce argon that is 99.9% pure. After running in a batch mode, the argon purity was increased to 99.95%, with 500 ppm of nitrogen remaining. The efficiency of collecting the argon from the gas mixture was between 70% and 81%, at an argon production rate of 0.84-0.98 kg/day.

  11. First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon

    E-Print Network [OSTI]

    H. O. Back; T. Alexander; A. Alton; C. Condon; E. de Haas; C. Galbiati; A. Goretti; T. Hohmann; An. Ianni; C. Kendziora; B. Loer; D. Montanari; P. Mosteiro; S. Pordes

    2012-05-01T23:59:59.000Z

    We report on the performance and commissioning of a cryogenic distillation column for low radioactivity underground argon at Fermi National Accelerator Laboratory. The distillation column is designed to accept a mixture of argon, helium, and nitrogen and return pure argon with a nitrogen contamination less than 10 ppm. In the first commissioning, we were able to run the distillation column in a continuous mode and produce argon that is 99.9% pure. After running in a batch mode, the argon purity was increased to 99.95%, with 500 ppm of nitrogen remaining. The efficiency of collecting the argon from the gas mixture was between 70% and 81%, at an argon production rate of 0.84-0.98 kg/day.

  12. Title 25 USC 3504 Leases, business agreements, and rights-of...

    Open Energy Info (EERE)

    Leases, business agreements, and rights-of-way involving energy development or transmission Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  13. Energy Factors, Leasing Structure and the Market Price of Office Buildings in the U.S.

    E-Print Network [OSTI]

    Jaffee, Dwight; Stanton, Richard; Wallace, Nancy

    2012-01-01T23:59:59.000Z

    requirements in building codes, energy efficiency policiesto improve the building’s energy efficiency. Lease contractsimprove the building’s energy efficiency. We focus first on

  14. File:App Commercial Leases and Easements or Amendment or Residential...

    Open Energy Info (EERE)

    App Commercial Leases and Easements or Amendment or Residential Coastal Easements HOA.pdf Jump to: navigation, search File File history File usage Metadata File:App Commercial...

  15. Fermilab Note: FN-0776-E A Large Liquid Argon Time Projection Chamber for Long-baseline, Off-Axis

    E-Print Network [OSTI]

    McDonald, Kirk

    . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2 Argon Cooling, Supply, and Purification . . . . . . . . . . . . . . . . 27 5.3 Electronics

  16. Dielectronic-Recombination Cross-Sections of Hydrogenlike Argon

    E-Print Network [OSTI]

    Dewitt, D. R.; Schneider, D.; Clark, M. W.; Chen, M. H.; Church, David A.

    1991-01-01T23:59:59.000Z

    PHYSICAL REVIEW A VOLUME 44, NUMBER 11 1 DECEMBER 1991 Dielectronic-recombination cross sections of hytlrogenlike argon D. R. DeWitt, D. Schneider, M. W. Clark, and M. H. Chen Latvrenee Livermore National Laboratory, University of California.... These trapped ions then undergo further ionization and other electron-ion 7185 1991 The American Physical Society DeWITT, SCHNEIDER, CLARK, CHEN, AND CHURCH interactions. In order to study dielectronic recombination in highly charged ions, the drift tubes...

  17. Study on effect of annealing conditions on structural, magnetic and superconducting properties of MgB{sub 2} bulk samples

    SciTech Connect (OSTI)

    Phaneendra, Konduru, E-mail: phaneendra-50@yahoo.com; Asokan, K., E-mail: phaneendra-50@yahoo.com; Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, Vasanth Kung, New Delhi-110067 (India); Awana, V. P. S. [Quantum Phenomena and Applications, National Physical Laboratory, K S Krishnan Marg, New Delhi-110012 (India); Sastry, S. Sreehari [Dept. of Physics, Acharya Nagarjuna University, Guntur-522510 (India)

    2014-04-24T23:59:59.000Z

    Effect of annealing conditions on structural, magnetic and superconducting properties of Magnesium Diboride (MgB{sub 2}) bulk superconductor samples prepared by solid state route method are compared. The samples are made by taking Magnesium and Boron powders in stoichiometric ratio, grounded well and pelletized at pressure of about 10Tonnes. These pellets are annealed in both Argon and vacuum environment separately up to 800°c for two hours. Both the samples show clear superconducting transition at Tc ? 38 k. This is further conformed by AC/DC magnetization (M-T), Resistivity [? (T, H)] measurements under magnetic field up to 14 Tesla as well. Rietveld refinement of X-ray diffraction of both samples conformed the MgB{sub 2} phase formation with P6/mmm space group symmetry. Scanning Electron Microscopy images of the surface revile more agglomeration of grains in case of Argon annealed samples. This result in more critical current density (J{sub c}) of Argon annealed samples than vacuum annealed one calculated from Bean's critical state model. This high Jc is explained in terms of more inter grain connectivity for Argon annealed sample than vacuum annealed sample.

  18. Readiness of the ATLAS Liquid Argon Calorimeter for LHC Collisions

    E-Print Network [OSTI]

    The ATLAS Collaboration

    2010-05-25T23:59:59.000Z

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along eta (averaged over phi) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained using the ATLAS readout, data acquisition, and reconstruction software indicate that the liquid argon calorimeter is well-prepared for collisions at the dawn of the LHC era.

  19. Recent Device Developments with Advanced Bulk Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Device Developments with Advanced Bulk Thermoelectric Materials at RTI Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI Reviews work in engineered...

  20. Thermoelectric Bulk Materials from the Explosive Consolidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bulk Materials from the Explosive Consolidation of Nanopowders Thermoelectric Bulk Materials from the Explosive Consolidation of Nanopowders Describes technique of explosively...

  1. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste...

  2. Recent tax law changes create new opportunities for leasing wind energy property

    SciTech Connect (OSTI)

    Schutzer, George J.

    2010-01-15T23:59:59.000Z

    Recent changes in tax law make leveraged lease transactions far more attractive on paper than they were before the changes. However, changes in the economy and the financial industry and other changes in law counterbalance the favorable tax law changes and make it uncertain whether lease transactions will be used to finance new wind facilities. (author)

  3. The effects of farm program provisions on lease arrangements under uncertainty

    E-Print Network [OSTI]

    Zimmel, Peter Timothy

    1994-01-01T23:59:59.000Z

    In the past, the main reason for share leasing farm land has been to share the price and yield risk with the landowner. Because farm programs reduce price risk, the tenant farmer's preferred lease arrangement may be different today than in prior...

  4. Federal offshore statistics: 1995 - leasing, exploration, production, and revenue as of December 31, 1995

    SciTech Connect (OSTI)

    Gaechter, R.A.

    1997-07-01T23:59:59.000Z

    This report provides data on federal offshore operations for 1995. Information is included for leasing activities, development, petroleum and natural gas production, sales and royalties, revenue from federal offshore leasing, disbursement of federal revenues, reserves and resource estimates, and oil pollution in U.S. and international waters.

  5. Charm contribution to bulk viscosity

    E-Print Network [OSTI]

    M. Laine; Kiyoumars A. Sohrabi

    2015-02-24T23:59:59.000Z

    In the range of temperatures reached in future heavy ion collision experiments, hadronic pair annihilations and creations of charm quarks may take place within the lifetime of the plasma. As a result, charm quarks may increase the bulk viscosity affecting the early stages of hydrodynamic expansion. Assuming thermalization, we estimate the charm contribution to bulk viscosity within the same effective kinetic theory framework in which the light parton contribution has been computed previously. The time scale at which this physics becomes relevant is related to the width of the transport peak associated with the trace anomaly correlator, and is found to be 600 MeV.

  6. Bulk Viscosity of Interacting Hadrons

    E-Print Network [OSTI]

    A. Wiranata; M. Prakash

    2009-09-16T23:59:59.000Z

    We show that first approximations to the bulk viscosity $\\eta_v$ are expressible in terms of factors that depend on the sound speed $v_s$, the enthalpy, and the interaction (elastic and inelastic) cross section. The explicit dependence of $\\eta_v$ on the factor $(\\frac 13 - v_s^2)$ is demonstrated in the Chapman-Enskog approximation as well as the variational and relaxation time approaches. The interesting feature of bulk viscosity is that the dominant contributions at a given temperature arise from particles which are neither extremely nonrelativistic nor extremely relativistic. Numerical results for a model binary mixture are reported.

  7. Assessment of Offshore Wind Energy Leasing Areas for the BOEM New Jersey Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-10-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development and evaluation of the delineations for the New Jersey (NJ) WEA. The overarching objective of this study is to develop a logical process by which the New Jersey WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL identified a selection of leasing areas and proposed delineation boundaries within the established NJ WEA. The primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  8. A Homeowner's Guide to Solar Financing: Leases, Loans, and PPAs

    Broader source: Energy.gov [DOE]

    This guide is designed to help homeowners navigate the complex landscape of residential solar photovoltaic (PV) system financing and select the best option for their needs. It describes three popular residential solar financing choices—leases, PPAs, and loans— and explains the advantages and disadvantages of each, as well as how they compare to a direct cash purchase. It attempts to clarify key solar financing terms and provides a list of questions homeowners might consider before deciding if and how to proceed with installing a solar system. Finally, it provides a list of other resources to help homeowners learn more about financing a solar PV system.

  9. LA, South Onshore Crude Oil plus Lease Condensate Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1 1996-2013 Lease20Production

  10. Lease of Power Privilege Flowchart: Dam Request Through Award of

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana: Energy ResourcesLeanderPreliminary Lease |

  11. Ohio Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0 1 2 3+ Lease

  12. Pennsylvania Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21Year Jan FebFullProved+ Lease

  13. California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (Million Barrels) Crude Oil + Lease

  14. Colorado Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0c.+ Lease Condensate

  15. Arizona Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14Decade Year-0 Year-1DecadeFuel

  16. Arkansas Crude Oil plus Lease Condensate Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14DecadeDecade(Million31 22 28 21 109

  17. Arkansas Lease Condensate Proved Reserves, Reserve Changes, and Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14Sales (Billion Cubic Feet) Arkansas1 1 2 2

  18. Arkansas Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14Sales (Billion CubicFeet) YearFuel

  19. Arkansas Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame Month Previous Year

  20. Associated-Dissolved Natural Gas Estimated Production, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame Month Previous1 0

  1. Associated-Dissolved Natural Gas Reserves Acquisitions, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame Month Previous1Separation 938

  2. Associated-Dissolved Natural Gas Reserves Adjustments, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame Month Previous1Separation

  3. Associated-Dissolved Natural Gas Reserves Extensions, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame Month

  4. CA, Coastal Region Onshore Lease Condensate Proved Reserves, Reserve

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSameCommercial(Million L41 478

  5. CA, Los Angeles Basin Onshore Lease Condensate Proved Reserves, Reserve

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSameCommercial(MillionChanges, and

  6. CA, San Joaquin Basin Onshore Lease Condensate Proved Reserves, Reserve

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550 1,460 1977-2013 Adjustments -8 2

  7. CA, State Offshore Crude Oil plus Lease Condensate Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550 1,460 1977-2013164 167 200 198 211

  8. CA, State Offshore Lease Condensate Proved Reserves, Reserve Changes, and

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550 1,460 1977-2013164 167 200

  9. California Lease Condensate Proved Reserves, Reserve Changes, and

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550Increases (Billion

  10. California Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590Fuel Consumption (Million Cubic Feet)

  11. California Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590Fuel Consumption (Million Cubic

  12. California Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590FuelDecade Year-0 Year-1Same

  13. Colorado Crude Oil plus Lease Condensate Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.Year Jan Feb8,238

  14. Colorado Lease Condensate Proved Reserves, Reserve Changes, and Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million CubicSales (Billion

  15. Colorado Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (MillionFeet) DecadeFuel Consumption

  16. Colorado Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (MillionFeet)2008Year

  17. Estimated Production of Natural Gas, Wet After Lease Separation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1. Refiner/Reseller Motor

  18. Federal Offshore California Crude Oil plus Lease Condensate Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1. Refiner/Reseller2009 2010 2011OverviewNA NA50

  19. Federal Offshore California Lease Condensate Proved Reserves, Reserve

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1. Refiner/Reseller2009 2010

  20. Federal Offshore Texas Crude Oil plus Lease Condensate Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1. Refiner/Reseller2009 Annual Download03 304 252

  1. Federal Offshore Texas Lease Condensate Proved Reserves, Reserve Changes,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1. Refiner/Reseller2009 Annual Download03 304and

  2. Full Service Leased Space Data Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfitted with SCREnginesFull Service Leased

  3. File:03FDAFederalLandLeasing.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual1WAALandUsePlanning.pdf Jump to:FDAFederalLandLeasing.pdf Jump to: navigation, search

  4. File:03FDBTribalLandLeasing.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual1WAALandUsePlanning.pdf Jump to:FDAFederalLandLeasing.pdf Jump to: navigation,

  5. File:03TXAStateGeothermalLease.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf Jump to: navigation, search File File history File3TXAStateGeothermalLease.pdf Jump

  6. Washington Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810 0CubicFeet) Lease and Plant

  7. Property:EnvReviewLeasing | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType JumpDOEInvolveRtoSppEnvReviewLeasing Jump to: navigation,

  8. Florida Crude Oil plus Lease Condensate Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers by Local0 0 0 09

  9. Florida Lease Condensate Proved Reserves, Reserve Changes, and Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercialNov-14 Dec-14 Jan-15

  10. Florida Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar Apr May Jun Jul AugFuel

  11. Florida Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar AprVented and

  12. Illinois Crude Oil plus Lease Condensate Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million CubicThousand0.6 0.566

  13. Illinois Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million381Withdrawals

  14. Indiana Crude Oil plus Lease Condensate Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumptionper Thousand Cubic4 15.8 8 7 13 8

  15. Indiana Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal ConsumptionperFeet) DecadeWithdrawalsFuel

  16. Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197Cubic Feet) Gas, Wet After Lease

  17. NM, East Crude Oil plus Lease Condensate Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185530 474 523 507 362

  18. NM, East Lease Condensate Proved Reserves, Reserve Changes, and Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185530 474 523 50757 60

  19. NM, East Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185530 474 523

  20. NM, West Crude Oil plus Lease Condensate Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185530 474 5231363,46132

  1. NM, West Lease Condensate Proved Reserves, Reserve Changes, and Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185530 47421 20 21 26 29

  2. NM, West Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185530 47421 20 21

  3. Natural Gas Associated-Dissolved Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185530 47421 20

  4. Natural Gas Nonassociated Proved Reserves, Wet After Lease Separation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,960

  5. Natural Gas Reserves Acquisitions, Wet After Lease Separation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,9601. Natural Gas4,365,0888,848

  6. Natural Gas Reserves Adjustments, Wet After Lease Separation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,9601. Natural Gas4,365,0888,84871

  7. Natural Gas Reserves Extensions, Wet After Lease Separation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,9601. Natural

  8. Natural Gas Reserves Revision Decreases, Wet After Lease Separation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,9601. Natural5,195 34,563 38,339

  9. Natural Gas Reserves Revision Increases, Wet After Lease Separation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,9601. Natural5,195 34,563

  10. Natural Gas Reserves Sales, Wet After Lease Separation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,9601. Natural5,195 34,5637,911

  11. Nebraska Crude Oil plus Lease Condensate Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,9601. Natural5,19580 14 21 20 18

  12. Nebraska Lease Condensate Proved Reserves, Reserve Changes, and Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,9601. Natural5,19580 14 21 2011

  13. Nebraska Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (Million Cubic Feet) Nebraska

  14. Nebraska Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (MillionYear Jan Feb Mar

  15. Nevada Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (MillionYearNADecade

  16. New Field Discoveries of Natural Gas, Wet After Lease Separation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan Feb Mar Apr8 0.8 0.8 0.9229

  17. New Mexico Lease Condensate Proved Reserves, Reserve Changes, and

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYearFeet) NewNov-14 Dec-14

  18. New Mexico Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYearFeet)Feet)WithdrawalsFuel

  19. Green Leasing Deployment Portfolio - 2014 BTO Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartmentCounselGlass CoatingEducationfromGreen Lease

  20. Nonassociated Natural Gas Reserves Acquisitions, Wet After Lease Separation

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousand CubicSeparation 29 0Year Jan0CubicAfter Lease910

  1. Texas General Land Office Leasing and Easement Guidelines | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained ByManagement IncDrillbeInformation Leasing and Easement

  2. Title 25 CFR 162: Leases and Permits | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson,Open EnergyTitle 18CFR 645 UtilitiesLeases

  3. Navy Enhanced Use Lease (EUL) website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergy InformationNatura BioNavarroEnhanced Use Lease

  4. Utah Natural Gas Liquids Lease Condensate, Reserves Based Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan FebFeet)Reserves inDecade%Year(Million

  5. Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year JanThousand Cubic Feet) Year Jan

  6. West Virginia Natural Gas Liquids Lease Condensate, Reserves Based

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year JanThousandYearDecade Year-0Production (Million

  7. Bulk viscosity and deflationary universes

    E-Print Network [OSTI]

    J. A. S. Lima; R. Portugal; I. Waga

    2007-08-24T23:59:59.000Z

    We analyze the conditions that make possible the description of entropy generation in the new inflationary model by means of a nearequilibrium process. We show that there are situations in which the bulk viscosity cannot describe particle production during the coherent field oscillations phase.

  8. Bulk Hydrogen Strategic Directions for

    E-Print Network [OSTI]

    Economics Storage Performance Issues Market and Institutional Issues Storage Devices and Technologies-board) Develop new materials to address unique H2 leakage and Embrittlement Considerations Develop Smart Sensors Formations. #12;Breakout Session - Bulk Hydrogen Storage "Take home" messages Economics Cost of Storage vis

  9. Improved constraints on transit time distributions from argon 39: A maximum entropy approach

    E-Print Network [OSTI]

    Holzer, Mark; Primeau, Francois W

    2010-01-01T23:59:59.000Z

    Gull (1991), Bayesian maximum entropy image reconstruction,Atlantic venti- lated? Maximum entropy inversions of bottlefrom argon 39: A maximum entropy approach Mark Holzer 1,2

  10. Hanford Bulk Vitrification Technology Status

    SciTech Connect (OSTI)

    Witwer, Keith S.; Dysland, Eric J.; Bagaasen, Larry M.; Schlahta, Stephan N.; Kim, Dong-Sang; Schweiger, Michael J.; Hrma, Pavel R.

    2007-01-25T23:59:59.000Z

    Research and testing was initiated in 2003 to support the selection of a supplemental treatment technology for Hanford low-activity wastes (LAWs). AMEC’s bulk vitrification process was chosen for full-scale demonstration, and the Demonstration Bulk Vitrification System (DBVS) project was started in 2004. Also known as in-container vitrification™ (ICV™), the bulk vitrification process combines soil, liquid LAW, and additives (B2O3 and ZrO2); dries the mixture; and then vitrifies the material in a batch feed-while-melt process in a refractory lined steel container. The DBVS project was initiated with the intent to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat LAW from Tank 241-S-109 at the U.S. Department of Energy (DOE) Hanford Site. AMEC is adapting its ICV™ technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DBVS project is funded by the DOE Office of River Protection and administered by CH2M HILL Hanford Group, Inc. Since the beginning of the selection process in 2003, testing has utilized crucible-scale, engineering-scale, and full-scale bulk vitrification equipment. Crucible-scale testing, coupled with engineering-scale testing, helps establish process limitations of selected glass formulations. Full-scale testing provides critical design verification of the ICV™ process both before and during operation of the demonstration facility. Initial testing focused on development and validation of the baseline equipment configuration and glass formulation. Subsequent testing was focused on improvements to the baseline configuration. Many improvements have been made to the bulk vitrification system equipment configuration and operating methodology since its original inception. Challenges have been identified and met as part of the parallel testing and design process. A 100% design package for the pilot plant is complete and has been submitted to DOE for review. Additional testing will be performed to support both the DBVS project and LAW treatment for the full Hanford mission. In the near term, this includes testing some key equipment components such as the waste feed dryer and other integrated subsystems, as well as waste form process improvements. Additional testing will be conducted to verify that the system is adaptive to changing feed streams. This paper discusses the progress of the bulk vitrification system from its inception to its current state-of-the-art. Specific attention will be given to the testing and process design improvements that have been completed over the last year. These include the completion of full-scale ICV™ Test FS38C as well as process improvements to the feeding method, temperature control, and molten ionic salt separation control.

  11. Calculational comparison of DT, neon, and argon implosions

    SciTech Connect (OSTI)

    Stevens, J.C.

    1980-10-28T23:59:59.000Z

    A number of laboratories have been doing laser driven implosions of pure neon and argon gas as a diagnostic of the peak imploded conditions. The relationship of these implosions to DT implosions has been unclear. This paper will explore the physics of these higher Z gases and show that they are fundamentally easier to compress than DT gas. Specifically, this paper will show that, for the same initial mass density, and the same capsule design and drive conditions, the calculated peak compressed density is dependent on the type of fill gas, being substantially higher for Ne and Ar implosions than for DT implosions.

  12. LIQUID ARGON CRYOGENICS AT FERMILAB Ben Carls Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS Experimental Run Schedules Check-InLIQUID ARGON

  13. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Massachusetts Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Parker, Z.; Fields, M.; Scott, G.; Elliott, D.; Draxl, C.

    2013-12-01T23:59:59.000Z

    The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development of three delineated leasing area options for the Massachusetts (MA) WEA and the technical evaluation of these leasing areas. The overarching objective of this study is to develop a logical process by which the MA WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL worked with BOEM to identify an appropriate number of leasing areas and proposed three delineation alternatives within the MA WEA based on the boundaries announced in May 2012. A primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  14. Modelling of bulk superconductor magnetization

    E-Print Network [OSTI]

    Ainslie, M. D.; Fujishiro, H.

    2015-03-30T23:59:59.000Z

    synchronous motor. It may also be possible to use superconducting materials of different Tcs and a dual cooling system to develop an in-situ FC magnetization process for YBCO bulk plates using the superconducting stator coils of an electric machine... . Furthermore, the relative ease of fabrication of MgB2 materials, as well as their long coherence length [10], lower anisotropy and strongly linked supercurrent flow in untextured polycrystalline samples [11,12], has enabled a number of different processing...

  15. Neutrino-Argon Interaction with GENIE Event Generator

    SciTech Connect (OSTI)

    Chesneanu, Daniela [Faculty of Physics, University of Bucharest, Bucharest (Romania); National Institute for Nuclear Physics and Engineering 'Horia Hulubei' Bucharest-Magurele (Romania)

    2010-11-24T23:59:59.000Z

    Neutrinos are very special particles, have only weak interactions, except gravity, and are produced in very different processes in Nuclear and Particle Physics. Neutrinos are, also, messengers from astrophysical objects, as well as relics from Early Universe. Therefore, its can give us information on processes happening in the Universe, during its evolution, which cannot be studied otherwise. The underground instrumentation including a variety of large and very large detectors, thanks to technical breakthroughs, have achieved new fundamental results like the solution of the solar neutrino puzzle and the evidence for Physics beyond the Standard Model of elementary interactions in the neutrino sector with non-vanishing neutrino masses and lepton flavour violation.Two of the LAGUNA(Large Apparatus studying Grand Unification and Neutrino Astrophysics) detectors, namely: GLACIER (Giant Liquid Argon Charge Imaging ExpeRiment) and LENA (Low Energy Neutrino Astrophysics) could be emplaced in 'Unirea' salt mine from Slanic-Prahova, Romania. A detailed analysis of the conditions and advantages is necessary. A few results have been presented previously. In the present work, we propose to generate events and compute the cross sections for interactions between neutrino and Argon-40, to estimate possible detection performances and event types. For doing this, we use the code GENIE(G lowbar enerates E lowbar vents for N lowbar eutrino I lowbar nteraction E lowbar xperiments). GENIE Code is an Object-Oriented Neutrino MC Generator supported and developed by an international collaboration of neutrino interaction experts.

  16. Analysis of the accounting treatment for long-term leases and their disclosure in financial statements

    E-Print Network [OSTI]

    Cook, Thomas E

    1964-01-01T23:59:59.000Z

    tbe Internal Revenue service pen dits such a shift Obf asseta without requirimg s change in the composite depreciation rate? Chilra is a real tan advantage to leasing gosever? ic could turn into e disadvantage if it caused the Xnternal Revenue... the yields offered by bonds2 Tho answer is quite obvious. The investor considers the company to have assumed the capital risk invplved by its commit- ments under the lease. He regards his invest@cut, therefore, es a loan based on the lease, which is seen...

  17. Heat and Metal Transfer in Gas Metal Arc Welding Using Argon and Helium

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Heat and Metal Transfer in Gas Metal Arc Welding Using Argon and Helium P.G. JONSSON, T.W. EAGAR transfer in gas metal arc welding (GMAW) of mild steel using argon and helium shielding gases. Major dif properties. Various findings from the study include that an arc cannot be stru~k in a pure helium atmosphere

  18. Effect of argon addition on plasma parameters and dust charging in hydrogen plasma

    SciTech Connect (OSTI)

    Kakati, B., E-mail: bharatkakati15@gmail.com; Kausik, S. S.; Saikia, B. K. [Centre of Plasma Physics-Institute for Plasma Research, Nazirakhat, Sonapur, Kamrup 782402, Assam (India); Bandyopadhyay, M.; Saxena, Y. C. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2014-10-28T23:59:59.000Z

    Experimental results on effect of adding argon gas to hydrogen plasma in a multi-cusp dusty plasma device are reported. Addition of argon modifies plasma density, electron temperature, degree of hydrogen dissociation, dust current as well as dust charge. From the dust charging profile, it is observed that the dust current and dust charge decrease significantly up to 40% addition of argon flow rate in hydrogen plasma. But beyond 40% of argon flow rate, the changes in dust current and dust charge are insignificant. Results show that the addition of argon to hydrogen plasma in a dusty plasma device can be used as a tool to control the dust charging in a low pressure dusty plasma.

  19. Leasing of Nuclear Power Plants With Using Floating Technologies

    SciTech Connect (OSTI)

    Kuznetsov, Yu.N.; Gabaraev, B.A.; Reshetov, V.A.; Moskin, V.A. [Federal State Unitary Enterprise, N.A. Dollezhal' Scientific-Research and Design Institute of Power Engineering (Russian Federation)

    2002-07-01T23:59:59.000Z

    The proposal to organize and realize the international program on leasing of Nuclear Power Plant (NPP) reactor compartments is brought to the notice of potential partners. The proposal is oriented to the construction of new NPPs or to replacement of worked-out reactor units of the NPPs in operation on the sites situated near water area and to the use of afloat technologies for construction, mounting and transportation of reactor units as a Reactor Compartment Block Module (RCBM). According to the offered project the RCBM is fabricated in factory conditions at the largest Russian defense shipbuilding plant - State Unitary Enterprise 'Industrial Association SEVMASHPREDPRIYATIE' (SEVMASH) in the city of Severodvinsk of the Arkhangelsk region. After completion of assembling, testing and preliminary licensing the RCBM is given buoyancy by means of hermetic sealing and using pontoons and barges. The RCBM delivery to the NPP site situated near water area is performed by sea route. The RCBM is brought to the place of its installation with the use of appropriate hydraulic structures (canals, shipping locks), then is lowered on the basement constructed beforehand and incorporated into NPP scheme, of which the components are installed in advance. Floating means can be detached from the RCBM and used repeatedly for other RCBMs. Further procedure of NPP commissioning and its operation is carried out according to traditional method by power company in the framework of RCBM leasing with enlisting the services of firm-manufacturer's specialists either to provide reactor plant operation and concomitant processes or to perform author's supervision of operation. After completion of lifetime and reactor unloading the RCBM is dismantled with using the same afloat technology and taken away from NPP site to sea area entirely, together with its structures (reactor vessel, heat exchangers, pumps, pipelines and other equipment). Then RCBM is transported by shipping route to a firm-manufacturer, for subsequent reprocessing, utilization and storage. Nuclear fuel and radioactive wastes are removed from NPP site also. Use of leasing method removes legal problems connected with the transportation of radioactive materials through state borders as the RCBM remains a property of the state-producer at all stages of its life cycle. (authors)

  20. Hanford bulk vitrification technology status

    SciTech Connect (OSTI)

    Witwer, K.S.; Dysland, E.J. [AMEC Nuclear Holdings Ltd., GeoMelt Division, Richland, Washington (United States); Bagaasen, L.M.; Schlahta, S.; Kim, D.S.; Schweiger, M.J.; Hrma, P. [Pacific Northwest National Laboratory, Richland, Washington (United States)

    2007-07-01T23:59:59.000Z

    Research and testing was initiated in 2003 to support the selection of a supplemental treatment technology for Hanford low-activity wastes (LAWs). AMEC's bulk vitrification process was chosen for full-scale demonstration, and the Demonstration Bulk Vitrification System (DBVS) project was started in 2004. Also known as In-Container Vitrification{sup TM} (ICV{sup TM}), the bulk vitrification process combines soil, liquid LAW, and additives (B{sub 2}O{sub 3} and ZrO{sub 2}); dries the mixture; and then vitrifies the material in a batch feed-while-melt process within a disposable, refractory-lined steel container. The DBVS project was initiated with the intent to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat LAW from Tank 241-S-109 at the U.S. Department of Energy (DOE) Hanford Site. Since the beginning of the selection process in 2003, testing has utilized crucible-scale, engineering-scale, and full-scale bulk vitrification equipment. Crucible-scale testing, coupled with engineering-scale testing, helps establish process limitations of selected glass formulations. Full-scale testing provides critical design verification of the ICV{sup TM} process both before and during operation of the demonstration facility. Initial testing focused on development and validation of the melt container and the glass formulation. Subsequent testing was focused on improvements to the baseline configuration. Challenges have been identified and met as part of the parallel testing and design process. A 100% design package for the pilot plant is complete and has been submitted to DOE for review. Additional testing will be performed to support both the DBVS project and LAW treatment for the full Hanford mission. In the near term, this includes testing some key equipment components such as the waste feed mixer-dryer and other integrated subsystems, as well as waste form process improvements. Additional testing will be conducted to verify that the system is adaptive to changing feed streams. This paper discusses the progress of the bulk vitrification system from its inception to its current state-of- the-art. Specific attention will be given to the testing and process design improvements that have been completed over the last year. These include the completion of full-scale ICV{sup TM} Test FS38C as well as process improvements to the feeding method, temperature control, and molten ionic salt separation control. AMEC is adapting its ICV{sup TM} technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL) and design support from DMJN H and N. CH2M HILL Hanford Group, Inc. is the Prime Contractor for the DOE Office of River Protection for the DBVS contract. (authors)

  1. Western Gulf of Mexico lease sale draws weak response

    SciTech Connect (OSTI)

    Koen, A.D.

    1992-08-24T23:59:59.000Z

    This paper reports that puny participation in the federal lease sale for the western Gulf of Mexico reflected a lack of open acreage on attractive prospects and the crisis sweeping the U.S. offshore oil and gas industry. Thirty-eight companies participating in the Minerals Management Service's Outer Continental Shelf Sale 141 offered 81 bids for 61 tracts in the western gulf planning area. That was the fewest bids offered in a western gulf sale since operators offered 52 bids for 41 tracts at Sale 105 in August 1986. The only Gulf of Mexico minerals sale to attract less bonus money was the MMS sulfur and salt sale in the central gulf in February 1988 in which $20.8 million was exposed.

  2. California Crude Oil plus Lease Condensate Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550 1,460CubicYear Jan,835 2,939 3,009

  3. 31 TAC, part 4, chapter 155, rule 155.42 Mining Leases on Properties...

    Open Energy Info (EERE)

    library Legal Document- RegulationRegulation: 31 TAC, part 4, chapter 155, rule 155.42 Mining Leases on Properties Subject to ProspectLegal Abstract These regulations outline the...

  4. EIS-0472: Uranium Leasing Program, Mesa, Montrose, and San Miguel Counties, Colorado

    Broader source: Energy.gov [DOE]

    This EIS evaluated the potential environmental impacts of management alternatives for DOE’s Uranium Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and vanadium ores.

  5. Cal. PRC Section 6909 - Oil and Gas and Mineral Leases: Geothermal...

    Open Energy Info (EERE)

    09 - Oil and Gas and Mineral Leases: Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Cal. PRC Section 6909 -...

  6. The future of lease accounting and its impact on corporate real estate decisions

    E-Print Network [OSTI]

    Canon, Timothy R. (Timothy Robert)

    2011-01-01T23:59:59.000Z

    This thesis explores the likely impacts the proposed changes to lease accounting would have on corporate real estate decisions. The Financial Accounting Standards Board (SFASB) and the International Accounting Standards ...

  7. Management Controls over the Department of Energy's Uranium Leasing Program, OAS-M-08-05

    Broader source: Energy.gov [DOE]

    The Department of Energy's Uranium Leasing Program was established by the Atomic Energy Act of 1954 to develop a supply of domestic uranium to meet the nation's defense needs. Pursuant to the Act,...

  8. Tax advantages of a deferred minimum annual royalty provision in oil and gas leases

    SciTech Connect (OSTI)

    Martin, R.B. Jr.

    1981-12-01T23:59:59.000Z

    This article describes how a deferred minimum annual royalty provision can serve to meet conflicting economic demands without adverse tax consequences. A deferred minimum annual royalty provision is an economic hybrid of a production royalty and a lease bonus. To a lessor, it has the advantage of guaranteeing a minimum return without regard to production. It should also encourage prompt development of the lease since a lessee will desire to void incurring subsequent minimum annual royalties on unproductive acreage. To an accrual-basis lessee, it has greater tax advantages than a lease bonus because it is deductible in the year paid or incurred. Although it exposes the lessee to more economic risk, this risk can be reduced through proper planning. In appropriate circumstances, a deferred minimum annual-royalty provision may therefore be worthy of consideration by either or both parties in an oil- and gas-leasing transaction. 44 references.

  9. Federal offshore oil and gas lease bonus bid rejections: viewpoints of bidders and owners

    SciTech Connect (OSTI)

    Lohrenz, J.; Dougherty, E.L.

    1983-03-01T23:59:59.000Z

    The Federal Government currently estimates values of leases offered in offshore oil and gas sales. After sales, the estimates are compared with highest bonus bids to decide whether to issue a lease or not. Over the past decade the Government has opted via this process not to issue leases on approximately one out of seven leases receiving bonus bids. The Government avows this assures fair market value is received. The authors believe this avowal is hogwash. The authors support this belief with logical argument, quantitative analysis, and statistical study. They conclude that by following the current policy, the Federal Government acting as agent for all of us, the collected people and owners of the lands in question, is acting to the detriment of the account they should serve. Alternative policies are proposed which both increase the efficiency of bringing offshore oil and gas resources to use and decrease the expense the Government burdens the owners with.

  10. Government Leasing Policy and the Multi-Stage Investment Timing Game in Offshore Petroleum Production

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia; Leighty, Wayne

    2007-01-01T23:59:59.000Z

    The case of o?shore petroleum leases. Quarterly Journal of100 (401), 367-390. [29] Petroleum Production Tax website. (timing game in o?shore petroleum production. Working paper.

  11. The influence of deer hunting leases on land values in Brazos County, Texas

    E-Print Network [OSTI]

    Andrews, Francis Boyd

    1965-01-01T23:59:59.000Z

    THE INFLUENCE OF DEER HUNTING LEASES ON LAND VALUES IN BRAZOS COUNTY, TEXAS 1959-1963 A Thesis FRANCIS BOYD ANDREWS Submitted to the Graduate College of the Texas AAM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1965 Major Subject: Agricultural Economics THE INFLUENCE OF DEER HUNTING LEASES ON LAND VALUES IN HRAZOS COUNTY, TEXAS 1959-196& A Thesis FRANCIS BOYD ANDREWS Approved as to style and content by: - ~ C airman of Committee...

  12. Federal Offshore Statistics, 1993. Leasing, exploration, production, and revenue as of December 31, 1993

    SciTech Connect (OSTI)

    Francois, D.K.

    1994-12-31T23:59:59.000Z

    This document contains statistical data on the following: federal offshore lands; offshore leasing activity and status; offshore development activity; offshore production of crude oil and natural gas; federal offshore oil and natural gas sales volume and royalties; revenue from federal offshore leases; disbursement of federal offshore revenue; reserves and resource estimates of offshore oil and natural gas; oil pollution in US and international waters; and international activities and marine minerals. A glossary is included.

  13. ,"Pennsylvania Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ Lease Condensate ProvedGas, Wet After Lease Separation

  14. ,"U.S. Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePriceExpected Future Production+ Lease Condensate

  15. ,"U.S. Lease Condensate Proved Reserves, Reserve Changes, and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePriceExpected FutureLease Condensate Proved

  16. ,"Florida Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+ Lease Condensate ProvedLiquids Lease

  17. Characterization of SF6/Argon Plasmas for Microelectronics Applications

    SciTech Connect (OSTI)

    HEBNER, GREGORY A.; ABRAHAM, ION C.; WOODWORTH, JOSEPH R.

    2002-03-01T23:59:59.000Z

    This report documents measurements in inductively driven plasmas containing SF{sub 6}/Argon gas mixtures. The data in this report is presented in a series of appendices with a minimum of interpretation. During the course of this work we investigated: the electron and negative ion density using microwave interferometry and laser photodetachment; the optical emission; plasma species using mass spectrometry, and the ion energy distributions at the surface of the rf biased electrode in several configurations. The goal of this work was to assemble a consistent set of data to understand the important chemical mechanisms in SF{sub 6} based processing of materials and to validate models of the gas and surface processes.

  18. Effect of the levitating microparticle cloud on radiofrequency argon plasma

    SciTech Connect (OSTI)

    Mitic, S.; Pustylnik, M. Y.; Klumov, B. A.; Morfill, G. E. [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse 1, 85741, Garching (Germany)

    2010-06-16T23:59:59.000Z

    The effect of a levitating cloud of microparticles on the parameters of a radiofrequency (RF) plasma has been studied by means of two experimental techniques. Axial distributions of 1s excited states of argon were measured by a self-absorption method. A correction of a standard self-absorption method for the extinction of the light by the levitating microparticles is proposed. In addition the electron temperature was estimated using the optical emission spectroscopy. Measurements at the same discharge conditions in a microparticle-free discharge and discharge, containing a cloud of levitating microparticles, revealed the non-local influence of the microparticle cloud on the discharge plasma. The most probable cause of this influence is the disturbance of the ionization balance by the levitating microparticles.

  19. Light Emission of Argon Discharges: Importance of Heavy Particle Processes

    SciTech Connect (OSTI)

    Hartmann, Peter [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, POB 49, H-1525 Budapest (Hungary)

    2004-12-01T23:59:59.000Z

    Simulation studies on argon glow discharges established between flat disc electrodes, at pressure x electrode separation (pd) of 45 Pa cm are reported, with special attention to heavy-particle processes including excitation-induced light emission. The discharges are investigated through self-consistent hybrid modelling, consisting of a fluid description for components near local hydrodynamic equilibrium (slow electrons and ions), and Monte Carlo treatment of energetic electrons and heavy particles (ions and neutral atoms). The light emission profiles are analyzed for a wide range of operating conditions. The numerical results for the relative intensities and the shapes of the negative glow (created by electron impact excitation) and the cathode glow (created by heavy particle impact excitation) are in good agreement with experimental data obtained by Maric et al.

  20. Liquid Argon Cryogenic Detector Calibration by Inelastic Scattering of Neutrons

    E-Print Network [OSTI]

    Sergey Polosatkin; Evgeny Grishnyaev; Alexander Dolgov

    2014-07-10T23:59:59.000Z

    A method for calibration of cryogenic liquid argon detector response to recoils with certain energy -8.2 keV - is proposed. The method utilizes a process of inelastic scattering of monoenergetic neutrons produced by fusion DD neutron generator. Features of kinematics of inelastic scattering cause sufficient (forty times) increase in count rate of useful events relative to traditional scheme exploited elastic scattering with the same recoil energy and compatible energy resolution. The benefits of the proposed scheme of calibration most well implemented with the use of tagged neutron generator as a neutron source that allows to eliminate background originated from casual coincidence of signals on cryogenic detector and additional detector of scattered neutrons.

  1. Large area liquid argon detectors for interrogation systems

    SciTech Connect (OSTI)

    Gary, Charles; Kane, Steve; Firestone, Murray I.; Smith, Gregory [Adelphi Technology LLC, Purdue Technology Center, 5225 Exploration Drive, Indianapolis, IN 46241 (United States); Gozani, Tsahi; Brown, Craig; Kwong, John; King, Michael J. [Rapiscan Laboratories, 520 Almanor Avenue, Sunnyvale, CA 94085 (United States); Nikkel, James A.; McKinsey, Dan [Physics Department, Yale University, New Haven, CT 06520 (United States)

    2013-04-19T23:59:59.000Z

    Measurements of the efficiency, pulse shape, and energy and time resolution of liquid argon (LAr) detectors are presented. Liquefied noble gas-based (LNbG) detectors have been developed for the detection of dark matter and neutrinoless double-beta decay. However, the same qualities that make LNbG detectors ideal for these applications, namely their size, cost, efficiency, pulse shape discrimination and resolution, make them promising for portal screening and the detection of Special Nuclear Materials (SNM). Two 18-liter prototype detectors were designed, fabricated, and tested, one with pure LAr and the other doped with liquid Xe (LArXe). The LArXe detector presented the better time and energy resolution of 3.3 ns and 20% at 662 KeV, respectively. The total efficiency of the detector was measured to be 35% with 4.5% of the total photons detected in the photopeak.

  2. Economic evaluation of scheduling outer continental shelf oil and gas lease sales

    SciTech Connect (OSTI)

    Hutton, E.T.

    1987-01-01T23:59:59.000Z

    Previous OCS studies and studies of auction participation have tended to examine either demand or supply issues. This study develops a model of supply and demand for leasing of tracts for the development of OCS oil and gas. An econometric model of the demand for leases is specified using results in the literature on bidding behavior. This estimated demand function is then integrated with supply concerns to develop a mathematical optimization model of supply and demand for leases. This integrated model is used to examine historic and future rates of leasing and the resulting receipt of cash-bonus bids by the government. Alternative specifications of the model are compared to quantify the change in cash bonus revenues associated with various legislative mandates and OCS policy issues. The first policy issue examined is the potential loss in cash bonus revenues which may result from the equitable sharing clause in the OCS Lands Act, whereby the federal lease schedule is required to consider the regional distribution of benefits and costs. Secondly, the recent accelerated leasing of tracts is considered, given that the bids in a particular sale are found to depend upon the total amount of resources offered annually. Finally, the multiple objectives of OCS legislation are considered in terms of the impact on bonus bid revenues.

  3. EA-1113: Lease of Parcel ED-1 of the Oak Ridge Reservation By The East Tennessee Economic Council

    Broader source: Energy.gov [DOE]

    Lease of Parcel ED-1 of the Oak Ridge Reservation By The East Tennessee Economic Council This EA evaluates the potential environmental impacts for the proposed lease of 957.16 acres of the Oak Ridge Reservation to the East Tennessee Economic Council. ETEC proposes to develop an industrial park on the leased site to provide employment opportunities for DOE and contractor employees affected by decreased federal funding.

  4. Addition of photosensitive dopants to the D0 liquid argon calorimeter

    SciTech Connect (OSTI)

    Amos, N.A.; Anderson, D.F.

    1992-10-01T23:59:59.000Z

    The addition of photosensitive dopants to liquid argon greatly enhances the signal from heavily ionizing particles. Since binding energy losses we correlated with the heavily ionizing component in hadronic showers, the addition of photosensitive dopants has been suggested as a mechanism to tune the e/[pi] ratio in liquid argon calorimeters. A measurement was performed at the FNAL test beam, adding 4 ppM tetramethylgermanium to the D[phi] uranium-liquid argon calorimeter. An increase in response for electromagnetic and hadronic showers was observed, with no net change in the e/[pi] ratio.

  5. Nanofluidics, from bulk to interfaces

    E-Print Network [OSTI]

    Lyderic Bocquet; Elisabeth Charlaix

    2009-09-03T23:59:59.000Z

    Nanofluidics has emerged recently in the footsteps of microfluidics, following the quest of scale reduction inherent to nanotechnologies. By definition, nanofluidics explores transport phenomena of fluids at the nanometer scales. Why is the nanometer scale specific ? What fluid properties are probed at nanometric scales ? In other words, why 'nanofluidics' deserves its own brand name ? In this critical review, we will explore the vast manifold of length scales emerging for the fluid behavior at the nanoscales, as well as the associated mechanisms and corresponding applications. We will in particular explore the interplay between bulk and interface phenomena. The limit of validity of the continuum approaches will be discussed, as well as the numerous surface induced effects occuring at these scales, from hydrodynamic slippage to the various electro-kinetic phenomena originating from the couplings between hydrodynamics and electrostatics. An enlightening analogy between ion transport in nanochannels and transport in doped semi-conductors will be discussed.

  6. Engineering properties of shallow sediments in West Delta and South Pass Outer Continental Shelf Lease Areas, offshore Louisiana

    E-Print Network [OSTI]

    Helwick, Sterling J

    1977-01-01T23:59:59.000Z

    , and sandy silt (WD024 1 WD028 ly WD029 1 WD029 2& WD029 3 1 1 These designations identify borehole locations. WD refers to West Delta OCS Lease Area, and SP refers to South Pass OCS Lease Area. The next three digits identify the number of the lease block... AREA SEDIMENTS IN DEPTH INTERVAL 2Ir50' 0-50 M 89'20' Fig. 4 ? General lithology of borehole sediments in the upper 50 m. The number next to each borehole location is used to distinguish boreholes located in the same lease block. 18 WD029-5, WD...

  7. Influence of ion-to-atom ratio on the microstructure of evaporated molybdenum thin films grown using low energy argon ions

    SciTech Connect (OSTI)

    Yadav, Praveen Kumar, E-mail: praveenyadav@rrcat.gov.in; Nayak, Maheswar; Rai, Sanjay Kumar; Lodha, Gyanendra Singh [X-ray Optics Section, Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Sant, Tushar; Sharma, Surinder Mohan [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mukherjee, Chandrachur [Mechanical and Optical Support Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2014-03-15T23:59:59.000Z

    The authors report the effect of argon ion to molybdenum atom ratio (r) on the microstructure of low energy (70?eV) argon ion assisted electron beam evaporated Mo thin films. Surface roughness, morphology, and crystallinity of Mo films are found to strongly depend on “r.” Increase of “r” from 0 to 100 induces gradual loss in crystallinity, reduction in surface roughness and systematic increase in density of the film. For “r”???100, average atomic density of the film approaches the bulk value (97%) with lowest surface roughness. Further, increasing “r” up to 170 reduces the atomic density, increases roughness, and increase in crystallinity induced by low energy Ar ion beam. The observed surface roughness and grain size determined by x-ray reflectivity and glancing incidence x-ray diffraction correlate well with atomic force microscopy measurements. This study demonstrates that for r?=?100 one gets lowest roughness Mo film with highest density and nearly amorphous microstructure. The growth model is discussed by structural zone model.

  8. Characterization of argon arc source in the infrared J. M. Bridges and A. L. Migdall

    E-Print Network [OSTI]

    Migdall, Alan

    metrologia Characterization of argon arc source in the infrared J. M. Bridges and A. L. Migdall path. Although a resistor of 0,25 is used for ignition, the arc requires no ballast during Metrologia

  9. Simulations of argon accident scenarios in the ATLAS experimental cavern a safety analysis

    E-Print Network [OSTI]

    Balda, F

    2002-01-01T23:59:59.000Z

    Some characteristic accidents in the ATLAS experimental cavern (UX15) are simulated by means of STAR-CD, a code using the "Finite-Volume" method. These accidents involve different liquid argon leaks from the barrel cryostat of the detector, thus causing the dispersion of the argon into the Muon Chamber region and the evaporation of the liquid. The subsequent temperature gradients and distribution of argon concentrations, as well as their evolution in time are simulated and discussed, with the purpose of analysing the dangers related to asphyxiation and to contact with cryogenic fluids for the working personnel. A summary of the theory that stands behind the code is also given. In order to validate the models, an experimental test on a liquid argon spill performed earlier is simulated, showing that the program is able to output reliable results. At the end, some safety-related recommendations are listed.

  10. Commercialization of Bulk Thermoelectric Materials for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Commercialization of Bulk Thermoelectric Materials for Power Generation Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation Distributed Bio-Oil...

  11. Bulk viscosity in kaon condensed matter

    E-Print Network [OSTI]

    Debarati Chatterjee; Debades Bandyopadhyay

    2007-05-30T23:59:59.000Z

    We investigate the effect of $K^-$ condensed matter on bulk viscosity and r-mode instability in neutron stars. The bulk viscosity coefficient due to the non-leptonic process $n \\rightleftharpoons p + K^-$ is studied here. In this connection, equations of state are constructed within the framework of relativistic field theoretical models where nucleon-nucleon and kaon-nucleon interactions are mediated by the exchange of scalar and vector mesons. We find that the bulk viscosity coefficient due to the non-leptonic weak process in the condensate is suppressed by several orders of magnitude. Consequently, kaon bulk viscosity may not damp the r-mode instability in neutron stars.

  12. Inorganic Nanocrystal Bulk Heterojunctions - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Inorganic Nanocrystal Bulk Heterojunctions Brookhaven National Laboratory Contact BNL About This...

  13. Hyperon bulk viscosity in strong magnetic fields

    E-Print Network [OSTI]

    Monika Sinha; Debades Bandyopadhyay

    2009-06-06T23:59:59.000Z

    We study the bulk viscosity of neutron star matter including $\\Lambda$ hyperons in the presence of quantizing magnetic fields. Relaxation time and bulk viscosity due to both the non-leptonic weak process involving $\\Lambda$ hyperons and direct Urca processes are calculated here. In the presence of a strong magnetic field of $10^{17}$ G, the hyperon bulk viscosity coefficient is reduced whereas bulk viscosity coefficients due to direct Urca processes are enhanced compared with their field free cases when many Landau levels are populated by protons, electrons and muons.

  14. Work at FNAL to achieve long electron drift lifetime in liquid argon

    SciTech Connect (OSTI)

    Finley, D.; Jaskierny, W.; Kendziora, C.; Krider, J.; Pordes, S.; Rapidis, P.A.; Tope, T.; /Fermilab

    2006-10-01T23:59:59.000Z

    This note records some of the work done between July 2005 and July 2006 to achieve long (many milliseconds) electron drift lifetimes in liquid argon at Fermilab. The work is part of a process to develop some experience at Fermilab with the technology required to construct a large liquid argon TPC. This technology has been largely developed by the ICARUS collaboration in Europe and this process can be seen as technology transfer. The capability to produce liquid argon in which electrons have drift lifetimes of several milliseconds is crucial to a successful device. Liquid argon calorimeters have been successfully operated at Fermilab; their electro-negative contaminants are at the level of 10{sup -7} while the TPC we are considering requires a contamination level at the level of 10{sup -11}, tens of parts per trillion (ppt). As well as demonstrating the ability to produce liquid argon at this level of purity, the work is part of a program to test the effect on the electron drift time of candidate materials for the construction of a TPC in liquid argon.

  15. Bulk Storage Program Compliance Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Bulk Storage Program Compliance Written Program Cornell University 5/8/2013 #12;Bulk Storage.......................................................... 5 4.2.2 Aboveground Petroleum Storage Tanks­ University activities/operations designed to prevent releases of oil from Aboveground Petroleum Storage Tanks (ASTs) required to comply with following

  16. ,"Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrude Oil + Lease

  17. ,"U.S. Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlantGrossDistillateReserves+ Lease

  18. Associated-Dissolved Natural Gas Reserves Sales, Wet After Lease Separation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame MonthLease Separation662 564

  19. Delaware Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0 Year-1Feet) DecadeWithdrawalsLease

  20. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1. Refiner/Reseller2009LeaseProved

  1. Idaho Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-MonthExportsLease and Plant

  2. The Bulk Viscosity of a Pion Gas

    E-Print Network [OSTI]

    Egang Lu; Guy D. Moore

    2011-01-31T23:59:59.000Z

    We compute the bulk viscosity of a gas of pions at temperatures below the QCD crossover temperature, for the physical value of pion mass, to lowest order in chiral perturbation theory. Bulk viscosity is controlled by number-changing processes which become exponentially slow at low temperatures when the pions become exponentially dilute, leading to an exponentially large bulk viscosity zeta ~ (F_0^8/m_\\pi^5) exp(2m_\\pi/T), where F_0 = 93 MeV is the pion decay constant.

  3. Bulk viscosity of N=2* plasma

    E-Print Network [OSTI]

    Alex Buchel; Chris Pagnutti

    2009-03-02T23:59:59.000Z

    We use gauge theory/string theory correspondence to study the bulk viscosity of strongly coupled, mass deformed SU(N_c) N=4 supersymmetric Yang-Mills plasma, also known as N=2^* gauge theory. For a wide range of masses we confirm the bulk viscosity bound proposed in arXiv:0708.3459. For a certain choice of masses, the theory undergoes a phase transition with divergent specific heat c_V ~ |1-T_c/T|^(-1/2). We show that, although bulk viscosity rapidly grows as T -> T_c, it remains finite in the vicinity of the critical point.

  4. Improved TPB-coated Light Guides for Liquid Argon TPC Light Detection Systems

    E-Print Network [OSTI]

    Z. Moss; L. Bugel; G. Collin; J. M. Conrad; B. J. P. Jones; J. Moon; M. Toups; T. Wongjirad

    2015-03-25T23:59:59.000Z

    Scintillation light produced in liquid argon (LAr) must be shifted from 128 nm to visible wavelengths in light detection systems used for liquid argon time-projection chambers (LArTPCs). To date, LArTPC light collection systems have employed tetraphenyl butadiene (TPB) coatings on photomultiplier tubes (PMTs) or plates placed in front of the PMTs. Recently, a new approach using TPB-coated light guides was proposed. In this paper, we report on light guides with improved attenuation lengths above 100 cm when measured in air. This is an important step in the development of meter-scale light guides for future LArTPCs. Improvements come from using a new acrylic-based coating, diamond-polished cast UV transmitting acrylic bars, and a hand-dipping technique to coat the bars. We discuss a model for connecting bar response in air to response in liquid argon and compare this to data taken in liquid argon. The good agreement between the prediction of the model and the measured response in liquid argon demonstrates that characterization in air is sufficient for quality control of bar production. This model can be used in simulations of light guides for future experiments.

  5. INVESTIGATION OF BULK POWER MIDWEST REGION

    E-Print Network [OSTI]

    Laughlin, Robert B.

    INVESTIGATION OF BULK POWER MARKETS MIDWEST REGION November 1, 2000 The analyses and conclusions Energy Regulatory Commission, any individual Commissioner, or the Commission itself #12;3-i Contents Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 A. Description of the Midwest

  6. Decision Models for Bulk Energy Transportation Networks

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    emissions prices? How would CO2 regulations impact coal, gas, electricity, & SO2 markets? 3. Disruptions1 Decision Models for Bulk Energy Transportation Networks Electrical Engineering Professor Jim Mc: · integrated fuel, electricity networks · environmental impacts · electricity commodity markets · behavior

  7. Operation of a high purity germanium crystal in liquid argon as a Compton suppressed radiation spectrometer

    E-Print Network [OSTI]

    John L. Orrell; Craig E. Aalseth; John F. Amsbaugh; Peter J. Doe; Todd W. Hossbach

    2006-10-11T23:59:59.000Z

    A high purity germanium crystal was operated in liquid argon as a Compton suppressed radiation spectrometer. Spectroscopic quality resolution of less than 1% of the full-width half maximum of full energy deposition peaks was demonstrated. The construction of the small apparatus used to obtain these results is reported. The design concept is to use the liquid argon bath to both cool the germanium crystal to operating temperatures and act as a scintillating veto. The scintillation light from the liquid argon can veto cosmic-rays, external primordial radiation, and gamma radiation that does not fully deposit within the germanium crystal. This technique was investigated for its potential impact on ultra-low background gamma-ray spectroscopy. This work is based on a concept initially developed for future germanium-based neutrinoless double-beta decay experiments.

  8. Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.

    2013-04-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to BOEM on the identification and delineation of offshore leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM in 2012. This report focuses on NREL's evaluation of BOEM's Rhode Island/Massachusetts (RIMA) WEA leasing areas. The objective of the NREL evaluation was to assess the proposed delineation of the two leasing areas and determine if the division is reasonable and technically sound. Additionally, the evaluation aimed to identify any deficiencies in the delineation. As part of the review, NREL performed the following tasks: 1. Performed a limited review of relevant literature and RIMA call nominations. 2. Executed a quantitative analysis and comparison of the two proposed leasing areas 3. Conducted interviews with University of Rhode Island (URI) staff involved with the URI Special Area Management Plan (SAMP) 4. Prepared this draft report summarizing the key findings.

  9. Designing a water leasing market for the Mimbres River, New Mexico.

    SciTech Connect (OSTI)

    Reno-Trujillo, Marissa Devan; Tidwell, Vincent Carroll; Broadbent, Craig [Illinois Wesleyan University; Brookshire, David [University of New Mexico; Coursey, Don [University of Chicago; Jackson, Charles. [New Mexico Office of the State Engineer; Polley, Adam [New Mexico Office of the State Engineer; Stevenson, Bryan [New Mexico Office of the State Engineer

    2013-04-01T23:59:59.000Z

    The objective of this study is to develop a conceptual framework for establishing water leasing markets in New Mexico using the Mimbres River as a test case. Given the past and growing stress over water in New Mexico and the Mimbres River in particular, this work will develop a mechanism for the short term, efficient, temporary transfer of water from one user to another while avoiding adverse effects on any user not directly involved in the transaction (i.e., third party effects). Toward establishing a water leasing market, five basic tasks were performed, (1) a series of stakeholder meetings were conducted to identify and address concerns and interests of basin residents, (2) several gauges were installed on irrigation ditches to aid in the monitoring and management of water resources in the basin, (3) the hydrologic/market model and decision support interface was extended to include the Middle and Lower reaches of the Mimbres River, (4) experiments were conducted to aid in design of the water leasing market, and (5) a set of rules governing a water leasing market was drafted for future adoption by basin residents and the New Mexico Office of the State Engineer.

  10. CIT Group Inc., 2011. All Rights Reserved. Overview of the Aircraft Leasing Industry

    E-Print Network [OSTI]

    held for sale; data as of 9/30/2010 Excludes liquidating Consumer Segment with portfolio assets of $9B: Loans Leases Fractional Share Financing · Customer base primarily corporate users · Expanding scope, Connecticut, Los Angeles, Chicago. CIT Transportation Leveraged Finance Commercial Airlines Business Aircraft

  11. REQUEST FOR LEASED SPACE 3. FROM: (REQUESTING DIVISION) 4. FOR: (USER GROUP)

    E-Print Network [OSTI]

    for payment of rent, moving expenses, and other related costs. 4. Vacated area is to be backfilled by . B Spaces (Government Vehicles) BUDGET NO. PRINT NAME AND TITLE PHONE NO. DATE 15. SIGNATURE (BUSINESS Lease Initiate Sole Source DATE APPROVED DATE19. DEPARTMENT OF ENERGY PRINT NAME AND TITLEAPPROVAL

  12. Constraints to leasing and development of federal resources: OCS oil and gas and geothermal. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    Chapter I identifies possible technological, economic, and environmental constraints to geothermal resource development. Chapter II discusses constraints relative to outer continental shelf and geothermal resources. General leasing information for each resource is detailed. Chapter III summarizes the major studies relating to development constraints. 37 refs. (PSB)

  13. Federal offshore oil and gas lease bonus bid rejection policy: Past and present

    SciTech Connect (OSTI)

    Lohrenz, J.; Dougherty, E.L.

    1983-11-01T23:59:59.000Z

    Policy concerning rejection of bids for U.S. government federal offshore oil and gas leases offered to the market recently has been changed. Technical analyses presaging this change are given here. An initial technical assessment of the new policy compared with the old is presented.

  14. You've leased your land, but haven't been paid! Now what?

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    the lessee 60 to 90 days to pay. (This allows them time to complete a title search.) If you were working the most sense. You entered into a contact. They haven't fulfilled their obligations, so now is the time outlining the problem and state the terms of the lease: they have 30 or 60 (typically) days to make payment

  15. Analysis of the premitting processes associated with exploration of Federal OCS leases. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-11-01T23:59:59.000Z

    Under contract to the Office of Leasing Policy Development (LPDO), Jack Faucett Associates is currently undertaking the description and analysis of the Outer Continental Shelf (OCS) regulatory process to determine the nature of time delays that affect OCS production of oil and gas. This report represents the results of the first phase of research under this contract, the description and analysis of regulatory activity associated with exploration activities on the Federal OCS. Volume 1 contains the following three sections: (1) study results; (2) Federal regulatory activities during exploration of Federal OCS leases which involved the US Geological Survey, Environmental Protection Agency, US Coast Guard, Corps of Engineers, and National Ocean and Atmospheric Administration; and (3) state regulatory activities during exploration of Federal OCS leases of Alaska, California, Louisiana, Massachusetts, New Jersey, North Carolina, and Texas. Volume II contains appendices of US Geological Survey, Environmental Protection Agency, Coast Guard, Corps of Engineers, the Coastal Zone Management Act, and Alaska. The major causes of delay in the regulatory process governing exploration was summarized in four broad categories: (1) the long and tedious process associated with the Environmental Protection Agency's implementation of the National Pollutant Discharge Elimination System Permit; (2) the lack of mandated time periods for the completion of individual activities in the permitting process; (3) the lack of overall coordination of OCS exploratory regulation; and (4) the inexperience of states, the Federal government and industry relating to the appropriate level of regulation for first-time lease sale areas.

  16. DNR offers 284 tracts in lease Sale 40

    SciTech Connect (OSTI)

    Not Available

    1983-11-01T23:59:59.000Z

    The State of Alaska's Department of Natural Resources, Division of Minerals and Energy Management, offered 284 tracts of submerged lands in Cook Inlet and uplands on Kalgin Island, the Kenai Peninsula, the west side of Cook Inlet and in the lower Susitna Valley. State geologists classify the area as low in its potential for commercial discoveries of oil, but many companies feel that Cook Inlet has some promise. Major oil companies offered the highest cash bonus bids, but independents and speculators managed to pick up the bulk of the 284 tracts offered.

  17. File:Leasing Easement Guidelines.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametstak.pdf JumpIntermediatesaleEnergy

  18. Geophysics, Geology and Geothermal Leasing Status of the Lightning Dock

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) | Open Energy(Blackwell,

  19. Geothermal Leasing 101: Federal, State and Private Lands | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) |InformationInfrared Images | OpenInformation

  20. FABRICATION OF A TITANIUM MICROELECTRODE CHIP TO INVESTIGATE BULK TITANIUM

    E-Print Network [OSTI]

    MacDonald, Noel C.

    FABRICATION OF A TITANIUM MICROELECTRODE CHIP TO INVESTIGATE BULK TITANIUM MICROMACHININING, USA Abstract Bulk titanium has a number of attractive characteristics that are favorable of a microelectrode chip for particle trapping and fundamental microfluidic studies. Keywords: bulk titanium

  1. Boltzmann expansion in a radiofrequency conical helicon thruster operating in xenon and argon

    SciTech Connect (OSTI)

    Charles, C.; Boswell, R. [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)] [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Takahashi, K. [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia) [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Department of Electrical Engineering, Tohoku University, Sendai 980-9579 (Japan)

    2013-06-03T23:59:59.000Z

    A low pressure ({approx}0.5 mTorr in xenon and {approx}1 mTorr in argon) Boltzmann expansion is experimentally observed on axis within a magnetized (60 to 180 G) radiofrequency (13.56 MHz) conical helicon thruster for input powers up to 900 W using plasma parameters measured with a Langmuir probe. The axial forces, respectively, resulting from the electron and magnetic field pressures are directly measured using a thrust balance for constant maximum plasma pressure and show a higher fuel efficiency for argon compared to xenon.

  2. Attosecond time delay in valence photoionization and photorecombination of argon: a TDLDA study

    E-Print Network [OSTI]

    Magrakvelidze, Maia; Dixit, Gopal; Ivanov, Misha; Chakraborty, Himadri S

    2015-01-01T23:59:59.000Z

    We determine and analyze the quantum phases and time delays in photoionization and photorecombination of valence 3p and 3s electrons of argon using the Kohn-Sham local density functional approach. The time-dependent local density approximation (TDLDA) is used to account for the electron correlation. Resulting attosecond Wigner-Smith time delays show excellent agreements with two recent independent experiments on argon that measured the relative 3s-3p time delay in photoionization [Physical Review Letters {\\bf 106}, 143002 (2011)] and the delay in 3p photorecombination [Physical Review Letters {\\bf 112}, 153002 (2014)

  3. Argon: performance insulation for shared storage servers Matthew Wachs, Michael Abd-El-Malek, Eno Thereska, Gregory R. Ganger

    E-Print Network [OSTI]

    Argon: performance insulation for shared storage servers Matthew Wachs, Michael Abd-El-Malek, Eno) of the throughput it would get alone. Argon uses automatically- configured prefetch/write-back sizes to insulate services, based on their observed access patterns, to insulate the hit rate each achieves from the access

  4. Laser propagation and energy absorption by an argon spark C. V. Bindhu, S. S. Harilal,a)

    E-Print Network [OSTI]

    Tillack, Mark

    Laser propagation and energy absorption by an argon spark C. V. Bindhu, S. S. Harilal,a) M. S The laser propagation and energy absorption of an argon spark induced by a laser at different pressures is investigated. 8 ns pulses from a frequency-doubled Q-switched Nd:YAG laser are used to create the spark

  5. Energy of the quasi-free electron in supercritical argon near the critical point C.M. Evans1,

    E-Print Network [OSTI]

    Evans, Cherice M.

    Energy of the quasi-free electron in supercritical argon near the critical point C.M. Evans1 to the interaction between argon and the quasi-free electron arising from field ionization of the dopant. The energy by the ionic core, V0(P) is the quasi-free electron energy in the perturbing medium, and P is the perturber

  6. ArgonCube: a novel, fully-modular approach for the realization of large-mass liquid argon TPC neutrino detectors

    E-Print Network [OSTI]

    Amsler, C; Asaadi, J; Auger, M; Barbato, F; Bay, F; Bishai, M; Bleiner, D; Borgschulte, A; Bremer, J; Cavus, E; Chen, H; De Geronimo, G; Ereditato, A; Fleming, B; Goldi, D; Hanni, R; Kose, U; Kreslo, I; La Mattina, F; Lanni, F; Lissauer, D; Luthi, M; Lutz, P; Marchionni, A; Mladenov, D; Nessi, M; Noto, F; Palamara, O; Raaf, J L; Radeka, V; Rudolph Von Rohr, Ch; Smargianaki, D; Soderberg, M; Strauss, Th; Weber, M; Yu, B; Zeller, G P; Zeyrek, M; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2015-01-01T23:59:59.000Z

    The Liquid Argon Time Projection Chamber is a prime candidate detector for future neutrino oscillation physics experiments, underground neutrino observatories and proton decay searches. A large international project based on this technology is currently being considered at the future LBNF facility in the United States on the very large mass scale of 40 kton. In this document, following the long standing R&D work conducted over the last years in several laboratories in Europe and in the United States, we intend to propose a novel Liquid Argon TPC approach based on a fully-modular, innovative design, the ArgonCube. The related R&D work will proceed along two main directions; one aimed at on the assessment of the proposed modular detector design, the other on the exploitation of new signal readout methods. Such a strategy will provide high performance while being cost-effective and robust at the same time. According to our plans, we will firstly realize a detector prototype hosted in a cryostat that is a...

  7. High Heat Flux Thermoelectric Module Using Standard Bulk Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design...

  8. Regulatory Roadmap Workshop for Federal Bulk Transmission Regulations...

    Open Energy Info (EERE)

    for bulk transmission. Date: Tuesday, 29 July, 2014 - 09:30 - 15:30 Location: NREL Education Center Auditorium Golden, Colorado Groups: Federal Bulk Transmission Regulatory...

  9. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

  10. The influence of molecular orientation on organic bulk heterojunction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The influence of molecular orientation on organic bulk heterojunction solar cells The influence of molecular orientation on organic bulk heterojunction solar cells Print Monday, 28...

  11. Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...

    Broader source: Energy.gov (indexed) [DOE]

    Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

  12. Soil Landscape Assessment atSoil Landscape Assessment at D I l d L A C d KD I l d L A C d KDog Island Lease Area, Cedar KeyDog Island Lease Area, Cedar Key

    E-Print Network [OSTI]

    Florida, University of

    Soil Landscape Assessment atSoil Landscape Assessment at D I l d L A C d KD I l d L A C d KDog Island Lease Area, Cedar KeyDog Island Lease Area, Cedar Key #12;Soil SampleSoil Sample LocationsLocationsLocationsLocations #12;Soil ElevationSoil Elevation (Bathymetry)(Bathymetry)(Bathymetry)(Bathymetry) 1.5 ft NAD881.5 ft

  13. EA-1113: Lease of Parcel ED-1 of the Oak Ridge Reservation By The East Tennessee Council

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts associated with the proposed lease of 957.16 acres of the Oak Ridge Reservation to the East Tennessee Economic Council (ETEC). ETEC proposes ...

  14. Micro benchtop optics by bulk silicon micromachining

    DOE Patents [OSTI]

    Lee, Abraham P. (Walnut Creek, CA); Pocha, Michael D. (Livermore, CA); McConaghy, Charles F. (Livermore, CA); Deri, Robert J. (Pleasanton, CA)

    2000-01-01T23:59:59.000Z

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  15. MicroBooNE, A Liquid Argon Time Projection Chamber (LArTPC) Neutrino Experiment

    SciTech Connect (OSTI)

    Katori, Teppei

    2011-07-01T23:59:59.000Z

    Liquid Argon time projection chamber (LArTPC) is a promising detector technology for future neutrino experiments. MicroBooNE is a upcoming LArTPC neutrino experiment which will be located on-axis of Booster Neutrino Beam (BNB) at Fermilab, USA. The R&D efforts on this detection method and related neutrino interaction measurements are discussed.

  16. Constraints on origin and evolution of Red Sea brines from helium and argon isotopes

    E-Print Network [OSTI]

    Winckler, Gisela

    Constraints on origin and evolution of Red Sea brines from helium and argon isotopes Gisela November 2000 Abstract Brines from three depressions along the axis of the Red Sea, the Atlantis II II and the Discovery brines originating from locations in the central Red Sea show 4 He

  17. INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES Hypersonic flows of argon, nitrogen, oxygen,

    E-Print Network [OSTI]

    Riabov, Vladimir V.

    the Direct Simulation Monte-Carlo (DSMC) technique under transition rarefied-gas flow conditions (Knudsen structure (the shape of shock waves and the stagnation point location), skin friction, pressure distribution and gas mixtures were used in simulations of planetary atmospheres. The flow pattern near a torus in argon

  18. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    SciTech Connect (OSTI)

    Sharma, Rohit [Satyam Institute of Engineering and Technology, Amritsar 143107 (India)] [Satyam Institute of Engineering and Technology, Amritsar 143107 (India); Singh, Kuldip [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)] [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)

    2014-03-15T23:59:59.000Z

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Z?, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter ?(= T{sub e}/T{sub h}) has been investigated for the ground and excited state helium and argon plasmas at pressures 1?atm, 10?atm, and 100?atm in the temperature range from 6000?K to 60?000?K. For a given value of non-equilibrium parameter, the relationship of Z? with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter.

  19. Generation of High Harmonics in Argon, Hydrogen and Their Mixture with Neon

    E-Print Network [OSTI]

    Sayrac, Muhammed

    2013-06-03T23:59:59.000Z

    electronic motion and to control electron dynamics. HHG easily reaches to XUV region and is enabling attosecond pulse generation. In this thesis we focused to generate attosecond pulses by using noble gases and their mixtures. We used only argon gas, only...

  20. Effect of hydrogen in an argon GTAW shielding gas: Arc characteristics and bead morphology

    SciTech Connect (OSTI)

    Onsoeien, M.; Olson, D.L.; Liu, S. (Colorado School of Mines, Golden, CO (United States). Center for Welding and Joining Research); Peters, R. (Delft Technological Univ. (Netherlands))

    1995-01-01T23:59:59.000Z

    The influence of hydrogen additions to an argon shielding gas on the heat input and weld bead morphology was investigated using the gas tungsten arc welding process. Variations in weld bead size and shape with hydrogen additions were related to changes in the ability of the arc to generate heat and not to generate perturbations in the weld pool caused by Marangoni fluid flow.

  1. ,"Pennsylvania Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ Lease Condensate ProvedGas, Wet After Lease

  2. ,"U.S. Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePriceExpected Future Production+ LeaseDry

  3. Thermal relics in cosmology with bulk viscosity

    E-Print Network [OSTI]

    A. Iorio; G. Lambiase

    2014-11-28T23:59:59.000Z

    In this paper we discuss some consequences of cosmological models in which the primordial cosmic matter is described by a relativistic imperfect fluid. The latter takes into account the dissipative effects (bulk viscosity) arising from different cooling rates of the fluid components in the expanding Universe. We discuss, in particular, the effects of the bulk viscosity on Big Bang Nucleosynthesis and on the thermal relic abundance of particles, looking at recent results of PAMELA experiment. The latter has determined an anomalous excess of positron events, that cannot be explained by the conventional cosmology and particle physics.

  4. New Approachesfor Bulk Power System Restoration

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    New Approachesfor Bulk Power System Restoration by AbbasKETABI M.Sc in Electrical EngineeringUniversity of Technology Department of Electrical Engineering, Teheran, Iran Supervisors: SHARIF Professor: Ali M. RANJBAR and complexity. Both factors increase the risk of major power outages. After a blackout, power needs

  5. Bulk viscosity in a cold CFL superfluid

    E-Print Network [OSTI]

    Cristina Manuel; Felipe Llanes-Estrada

    2007-07-18T23:59:59.000Z

    We compute one of the bulk viscosity coefficients of cold CFL quark matter in the temperature regime where the contribution of mesons, quarks and gluons to transport phenomena is Boltzmann suppressed. In that regime dissipation occurs due to collisions of superfluid phonons, the Goldstone modes associated to the spontaneous breaking of baryon symmetry. We first review the hydrodynamics of relativistic superfluids, and remind that there are at least three bulk viscosity coefficients in these systems. We then compute the bulk viscosity coefficient associated to the normal fluid component of the superfluid. In our analysis we use Son's effective field theory for the superfluid phonon, amended to include scale breaking effects proportional to the square of the strange quark mass m_s. We compute the bulk viscosity at leading order in the scale breaking parameter, and find that it is dominated by collinear splitting and joining processes. The resulting transport coefficient is zeta=0.011 m_s^4/T, growing at low temperature T until the phonon fluid description stops making sense. Our results are relevant to study the rotational properties of a compact star formed by CFL quark matter.

  6. Planning techniques for avoiding sublease treatment on assigning oil and gas leases

    SciTech Connect (OSTI)

    Kells, R.B.

    1983-06-01T23:59:59.000Z

    The negative tax consequences that may occur upon transfer of a nonproducing oil and gas lease are discussed. It is usually assumed that income taxes are computed on their actual economic gain, however, taxes are computed often on income that is far greater an amount than the economic gain. Suggestionss are made for structuring the sales to obtain the most-favorable tax arrangement. It is also suggested that legislation be enacted to provide for sale treatment in the instance when a lessee assigns a lease but still retains a continuing non-operating interest. Taxing discrepancies that now exist between oil/gas properties and those of other minerals would also be lessened by such legislation. 48 references.

  7. Federal offshore statistics: 1992. Leasing, exploration, production, and revenues as of December 31, 1992

    SciTech Connect (OSTI)

    Francois, D.K.

    1993-12-31T23:59:59.000Z

    The Outer Continental Shelf Lands Act, enacted in 1953 and amended several times, charges the Secretary of the Interior with the responsibility for administering and managing mineral exploration and development of the outer continental shelf, as well as for conserving its natural resources. This report documents the following: Federal offshore lands; offshore leasing activity and status; offshore development activity; offshore production of crude oil and natural gas; Federal offshore oil and natural gas sales volume and royalties; revenue from Federal offshore leases; disbursement of Federal offshore revenue; reserves and resource estimates of offshore oil and natural gas; oil pollution in US and international waters; and international activities and marine minerals. 11 figs., 83 tabs.

  8. ,"Ohio Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbed Methane Proved ReservesLiquids Lease

  9. ,"Pennsylvania Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ Lease Condensate Proved Reserves (Million Barrels)"

  10. ,"Pennsylvania Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ Lease Condensate Proved Reserves (MillionPriceLiquids

  11. ,"Texas--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlantGross Withdrawals

  12. ,"U.S. Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+Liquids Lease Condensate, Proved Reserves (Million

  13. ,"Alaska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPriceShareCrude Oil + Lease

  14. ,"California Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,Crude Oil + Lease

  15. ,"Florida Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+ Lease Condensate Proved Reserves

  16. ,"Illinois Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+NonassociatedPrice (Dollars+ Lease

  17. ,"Indiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+NonassociatedPrice+ Lease Condensate

  18. ,"Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (DollarsVolumeCoalbed Methane Proved Reserves+ Lease

  19. ,"Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future Production (MillionCrude Oil + Lease

  20. ,"New Mexico Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,Dry NaturalConsumptionLiquids Lease

  1. Environmental Assessment for the Leasing of Facilities and Equipment to USEC Inc.

    SciTech Connect (OSTI)

    N /A

    2002-10-18T23:59:59.000Z

    The U.S. Department of Energy (DOE) Oak Ridge Operations Office (DOE-ORO) has prepared this Environmental Assessment (EA) for the lease of facilities and equipment to USEC Inc. (USEC), which would be used in its Gas Centrifuge Research and Development (R&D) Project at the East Tennessee Technology Park (ETTP) [hereinafter referred to as the USEC EA]. The USEC EA analyzes the potential environmental impacts of DOE leasing facility K-101 and portions of K-1600, K-1220 and K-1037 at the ETTP to USEC for a minimum 3-year period, with additional option periods consistent with the Oak Ridge Accelerated Clean-up Plan (ACP) Agreement. In July 2002, USEC notified DOE that it intends to use certain leased equipment at an off-site facility at the Centrifuge Technology Center (CTC) on the Boeing Property. The purpose of the USEC Gas Centrifuge R&D Project is to develop an economically attractive gas centrifuge machine and process using DOE's centrifuge technology.

  2. Modeling direct interband tunneling. I. Bulk semiconductors

    SciTech Connect (OSTI)

    Pan, Andrew, E-mail: pandrew@ucla.edu [Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); Chui, Chi On [Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095 (United States)

    2014-08-07T23:59:59.000Z

    Interband tunneling is frequently studied using the semiclassical Kane model, despite uncertainty about its validity. Revisiting the physical basis of this formula, we find that it neglects coupling to other bands and underestimates transverse tunneling. As a result, significant errors can arise at low and high fields for small and large gap materials, respectively. We derive a simple multiband tunneling model to correct these defects analytically without arbitrary parameters. Through extensive comparison with band structure and quantum transport calculations for bulk InGaAs, InAs, and InSb, we probe the accuracy of the Kane and multiband formulas and establish the superiority of the latter. We also show that the nonlocal average electric field should be used when applying either of these models to nonuniform potentials. Our findings are important for efficient analysis and simulation of bulk semiconductor devices involving tunneling.

  3. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming leg, Carol

    2010-06-08T23:59:59.000Z

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  4. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H. (Albuquerque, NM); El-Kady, Ihab F. (Albuquerque, NM); McCormick, Frederick (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Fleming, legal representative, Carol (Albuquerque, NM)

    2010-11-23T23:59:59.000Z

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  5. Bulk viscosity in heavy ion collision

    E-Print Network [OSTI]

    Victor Roy; A. K. Chaudhuri

    2012-01-20T23:59:59.000Z

    The effect of a temperature dependent bulk viscosity to entropy density ratio~($\\zeta/s$) along with a constant shear viscosity to entropy density ratio~($\\eta/s$) on the space time evolution of the fluid produced in high energy heavy ion collisions have been studied in a relativistic viscous hydrodynamics model. The boost invariant Israel-Stewart theory of causal relativistic viscous hydrodynamics is used to simulate the evolution of the fluid in 2 spatial and 1 temporal dimension. The dissipative correction to the freezeout distribution for bulk viscosity is calculated using Grad's fourteen moment method. From our simulation we show that the method is applicable only for $\\zeta/s<0.004$.

  6. A measurement of the absorption of liquid argon scintillation light by dissolved nitrogen at the part-per-million level

    E-Print Network [OSTI]

    Jones, Benjamin James Poyner

    We report on a measurement of the absorption length of scintillation light in liquid argon due to dissolved nitrogen at the part-per-million (ppm) level. We inject controlled quantities of nitrogen into a high purity volume ...

  7. Temporal phenomena in inductively coupled chlorine and argon-chlorine discharges

    SciTech Connect (OSTI)

    Corr, C.S.; Steen, P.G.; Graham, W.G. [School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland (United Kingdom)

    2005-04-04T23:59:59.000Z

    Reproducible modulations in low-pressure, inductively coupled discharges operating in chlorine and argon-chlorine mixtures have been observed and studied. Changes in the light output, floating potential, negative ion fraction, and charged particle densities were observed. Here we report two types of unstable operational modes in an inductively coupled discharge. On the one hand, when the discharge was matched, to minimize reflected power, instabilities were observed in argon-chlorine plasmas over limited operating conditions of input power and gas pressure. The instability window decreased with increasing chlorine content and was observed for chlorine concentrations between 30% and 60% only. However, when operating at pressures below 5 mTorr and the discharge circuit detuned to increase the reflected power, modulations were observed in a pure chlorine discharge. These modulations varied in nature from a series of sharp bursts to a very periodic behavior and can be controlled, by variation of the matching conditions, to produce an apparent pulsed plasma environment.

  8. Measurement of sodium-argon cluster ion recombination by coherent microwave scattering

    SciTech Connect (OSTI)

    Wu Yue; Sawyer, Jordan; Zhang Zhili [Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville Tennessee 37996 (United States); Shneider, Mikhail N. [Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Viggiano, Albert A. [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States)

    2012-03-12T23:59:59.000Z

    This present work demonstrates a non-intrusive measurement of the rate constant for sodium-argon cluster ions (Na{sup +}{center_dot}Ar) recombining with electrons. The measurements begin with resonance enhanced multi-photon ionization of the Na followed by coherent microwave scattering (radar) to monitor the plasma density. The Na{sup +}{center_dot}Ar adduct was formed in a three-body reaction. The plasma decay due to recombination reactions was monitored as a function of time and modeled to determine the rate constant. At 473 K, the rate constant is 1.8{sub -0.5}{sup +0.7}x10{sup -6}cm{sup 3}/s in an argon buffer at 100 Torr and initial Na number density of 5.5 x 10{sup 10} cm{sup -3}.

  9. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

    1990-01-01T23:59:59.000Z

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  10. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

    1991-01-01T23:59:59.000Z

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  11. Accelerating universes driven by bulk particles

    SciTech Connect (OSTI)

    Brito, F.A. [Departamento de Fisica, Universidade Federal de Campina Grande, 58109-970 Campina Grande, Paraiba (Brazil); Cruz, F.F.; Oliveira, J.F.N. [Departamento de Matematica, Universidade Regional do Cariri, 63040-000 Juazeiro do Norte, Ceara (Brazil)

    2005-04-15T23:59:59.000Z

    We consider our universe as a 3d domain wall embedded in a 5d dimensional Minkowski space-time. We address the problem of inflation and late time acceleration driven by bulk particles colliding with the 3d domain wall. The expansion of our universe is mainly related to these bulk particles. Since our universe tends to be permeated by a large number of isolated structures, as temperature diminishes with the expansion, we model our universe with a 3d domain wall with increasing internal structures. These structures could be unstable 2d domain walls evolving to fermi-balls which are candidates to cold dark matter. The momentum transfer of bulk particles colliding with the 3d domain wall is related to the reflection coefficient. We show a nontrivial dependence of the reflection coefficient with the number of internal dark matter structures inside the 3d domain wall. As the population of such structures increases the velocity of the domain wall expansion also increases. The expansion is exponential at early times and polynomial at late times. We connect this picture with string/M-theory by considering BPS 3d domain walls with structures which can appear through the bosonic sector of a five-dimensional supergravity theory.

  12. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, R.J.; Cecchi, J.L.

    1991-08-20T23:59:59.000Z

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.

  13. Relativistic configuration-interaction calculation of $K\\alpha$ transition energies in beryllium-like argon

    E-Print Network [OSTI]

    Yerokhin, V A; Fritzsche, S

    2014-01-01T23:59:59.000Z

    Relativistic configuration-interaction calculations have been performed for the energy levels of the low-lying and core-excited states of beryllium-like argon, Ar$^{14+}$. These calculations include the one-loop QED effects as obtained by two different methods, the screening-potential approach as well as the model QED operator approach. The calculations are supplemented by a systematic estimation of uncertainties of theoretical predictions.

  14. Increased Efficiency in SI Engine with Air Replaced by Oxygen in Argon Mixture

    SciTech Connect (OSTI)

    Killingsworth, N J; Rapp, V H; Flowers, D L; Aceves, S M; Chen, J; Dibble, R

    2010-01-13T23:59:59.000Z

    Basic engine thermodynamics predicts that spark ignited engine efficiency is a function of both the compression ratio of the engine and the specific heat ratio of the working fluid. In practice the compression ratio of the engine is often limited due to knock. Both higher specific heat ratio and higher compression ratio lead to higher end gas temperatures and increase the likelihood of knock. In actual engine cycles, heat transfer losses increase at higher compression ratios and limit efficiency even when the knock limit is not reached. In this paper we investigate the role of both the compression ratio and the specific heat ratio on engine efficiency by conducting experiments comparing operation of a single-cylinder variable-compression-ratio engine with both hydrogen-air and hydrogen-oxygen-argon mixtures. For low load operation it is found that the hydrogen-oxygen-argon mixtures result in higher indicated thermal efficiencies. Peak efficiency for the hydrogen-oxygen-argon mixtures is found at compression ratio 5.5 whereas for the hydrogen-air mixture with an equivalence ratio of 0.24 the peak efficiency is found at compression ratio 13. We apply a three-zone model to help explain the effects of specific heat ratio and compression ratio on efficiency. Operation with hydrogen-oxygen-argon mixtures at low loads is more efficient because the lower compression ratio results in a substantially larger portion of the gas to reside in the adiabatic core rather than in the boundary layer and in the crevices, leading to less heat transfer and more complete combustion.

  15. VUV generation by adiabatically expanded and excited by a DC electrical discharge Argon gas

    SciTech Connect (OSTI)

    Pipergias, K.; Yasemidis, D.; Reppa, E.; Pentaris, D.; Efthimiopoulos, T. [Laser, Non linear and Quantum Optics Labs, Physics Department University of Patras, Patras, Greece 26500 (Greece); Merlemis, N. [Laser, Non linear and Quantum Optics Labs, Physics Department University of Patras, Patras, Greece 26500 (Greece); TEI of Athens, Phys. Chem. and Mater. Tech. Department, Athens, Greece, 12 210 (Greece); Giannetas, V. [Physics Department, University of Patras, Patras, Greece 26500 (Greece)

    2010-11-10T23:59:59.000Z

    We investigate the emission of Argon (Ar) gas which is adiabatically expanded through a nozzle and excited using a DC electrical discharge. Because of the expansion and the electronic excitation, Ar dimers and clusters are formed, which give radiation in the second (2nd) and in the third (3rd) continua of Ar, centered at about 126 and 254 nm respectively. We particularly focus our study on the 2nd continuum, in order to develop a laser at this wavelength.

  16. Energy of the Quasi-free Electron in Argon and Krypton C. M. Evans1,

    E-Print Network [OSTI]

    Findley, Gary L.

    Energy of the Quasi-free Electron in Argon and Krypton C. M. Evans1, and G. L. Findley2, 1 these data, a new local Wigner- Seitz model for the density dependent energy V0(P) of a quasi-free electron/medium polarization energy, and includes the thermal kinetic energy of the quasi-free electron. Using this model, V0(P

  17. A steerable UV laser system for the calibration of liquid argon time projection chambers

    E-Print Network [OSTI]

    A. Ereditato; I. Kreslo; M. Lüthi; C. Rudolf von Rohr; M. Schenk; T. Strauss; M. Weber; M. Zeller

    2014-10-04T23:59:59.000Z

    A number of liquid argon time projection chambers (LAr TPC's) are being build or are proposed for neutrino experiments on long- and short baseline beams. For these detectors a distortion in the drift field due to geometrical or physics reasons can affect the reconstruction of the events. Depending on the TPC geometry and electric drift field intensity this distortion could be of the same magnitude as the drift field itself. Recently, we presented a method to calibrate the drift field and correct for these possible distortions. While straight cosmic ray muon tracks could be used for calibration, multiple coulomb scattering and momentum uncertainties allow only a limited resolution. A UV laser instead can create straight ionization tracks in liquid argon, and allows one to map the drift field along different paths in the TPC inner volume. Here we present a UV laser feed-through design with a steerable UV mirror immersed in liquid argon that can point the laser beam at many locations through the TPC. The straight ionization paths are sensitive to drift field distortions, a fit of these distortion to the linear optical path allows to extract the drift field, by using these laser tracks along the whole TPC volume one can obtain a 3D drift field map. The UV laser feed-through assembly is a prototype of the system that will be used for the MicroBooNE experiment at the Fermi National Accelerator Laboratory (FNAL).

  18. Oxygen contamination in liquid Argon: combined effects on ionization electron charge and scintillation light

    E-Print Network [OSTI]

    R. Acciarri; M. Antonello; B. Baibussinov; M. Baldo-Ceolin; P. Benetti; F. Calaprice; E. Calligarich; M. Cambiaghi; N. Canci; F. Carbonara; F. Cavanna; S. Centro; A. G. Cocco; F. Di Pompeo; G. Fiorillo; C. Galbiati; V. Gallo; L. Grandi; G. Meng; I. Modena; C. Montanari; O. Palamara; L. Pandola; F. Pietropaolo; G. L. Raselli; M. Roncadelli; M. Rossella; C. Rubbia; E. Segreto; A. M. Szelc; F. Tortorici; S. Ventura; C. Vignoli

    2008-04-08T23:59:59.000Z

    A dedicated test of the effects of Oxygen contamination in liquid Argon has been performed at the INFN-Gran Sasso Laboratory (LNGS, Italy) within the WArP R&D program. Two detectors have been used: the WArP 2.3 lt prototype and a small (0.7 lt) dedicated detector, coupled with a system for the injection of controlled amounts of gaseous Oxygen. Purpose of the test with the 0.7 lt detector is to detect the reduction of the long-lived component lifetime of the Argon scintillation light emission at increasing O2 concentration. Data from the WArP prototype are used for determining the behavior of both the ionization electron lifetime and the scintillation long-lived component lifetime during the O2-purification process activated in closed loop during the acquisition run. The electron lifetime measurements allow to infer the O2 content of the Argon and correlate it with the long-lived scintillation lifetime data. The effect of Oxygen contamination on the scintillation light has been thus measured over a wide range of O2 concentration, spanning from about 10^-3 ppm up to about 10 ppm. The rate constant of the light quenching process induced by Oxygen in LAr has been found to be k'(O2)=0.54+-0.03 micros^-1 ppm^-1.

  19. Status of the ATLAS Liquid Argon Calorimeter and its performance after one year of LHC operation

    E-Print Network [OSTI]

    "Hoffman, J A; The ATLAS collaboration

    2011-01-01T23:59:59.000Z

    The ATLAS experiment is designed to study the proton-proton collisions produced at the LHC with a centre-of-mass energy of 14 TeV. Liquid argon (LAr) sampling calorimeters are used in ATLAS for all electromagnetic calorimetry covering the pseudorapidity region ?<3.2, as well as for hadronic calorimetry from ?=1.4 to ?=4.8. The calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic (EMEC), hadronic (HEC) and forward (FCAL) calorimeters. The lead-liquid argon sampling technique with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the endcap (EMEC). This geometry allows a uniform acceptance over the whole azimuthal range without any gap. The hadronic endcap calorimeter (HEC) uses a copper-liquid argon sampling technique with plate geometry and is subdivided into two wheels in depth per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules featuring cylindrical electrodes with thin...

  20. Environmental Assessment on the leasing of the Strategic Petroleum Reserve, St. James Terminal, St. James Parish, Louisiana

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    The US Department of Energy (DOE) proposes to lease the Strategic Petroleum Reserve`s (SPR) St. James Terminal to private industry. The St. James Terminal consists of six storage tanks, a pumping station, two maine docks and ancillary facilities. DOE believes that the St. James Terminal presents an opportunity to establish a government- industry arrangement that could more effectively use this asset to serve the nations`s oil distribution needs, reduce the operational cost of the SPR, and provide a source of revenue for the Government. DOE solicited interest in leasing its distribution facilities in a notice published March 16, 1994. In response, industry has expressed interest in leasing the St. James Terminal, as well as several DOE pipelines, to enhance the operation of its own facilities or to avoid having to construct new ones. Under such a lease, industry use would be subordinate to DOE use in the event of a national energy emergency. This Environmental Assessment describes the proposed leasing operation, its alternatives, and potential environmental impacts. Based on this analyses, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) OF 1969 and has issued the Finding of No Significant Impact (FONSI).

  1. VEHICLE LEASE This form is an agreement between a University of Michigan (U-M) department and U-M Parking and Transportation

    E-Print Network [OSTI]

    Kirschner, Denise

    VEHICLE LEASE This form is an agreement between a University of Michigan (U-M) department and U-M Parking and Transportation Services (PTS) Fleet Services to lease a vehicle. Form-1470 or mail/deliver to 1213 Kipke Drive Zip 2002 Department Information U-M Vehicle # Shortcode Parking

  2. Solar Land Lease Issues Below is a list of issues developed in consultation with staff at the State Energy Office, the N.C. Solar Center and

    E-Print Network [OSTI]

    landowners should investigate in considering a lease offered for land used for a solar farm (the list exist for a solar farm and possibly to secure agreements for the sale of power from the project. 3. Make. It discusses a number of background requirements for solar farms as well as major elements of lease documents

  3. The Economic Case for Bulk Energy Storage in Transmission Systems

    E-Print Network [OSTI]

    The Economic Case for Bulk Energy Storage in Transmission Systems with High Percentages to Engineer the Future Electric Energy System #12;#12;The Economic Case for Bulk Energy Storage Economic Case for Bulk Energy Storage in Transmission Sys- tems with High Percentages of Renewable

  4. Bulk viscosity of gauge theory plasma at strong coupling

    E-Print Network [OSTI]

    Alex Buchel

    2007-09-01T23:59:59.000Z

    We propose a lower bound on bulk viscosity of strongly coupled gauge theory plasmas. Using explicit example of the N=2^* gauge theory plasma we show that the bulk viscosity remains finite at a critical point with a divergent specific heat. We present an estimate for the bulk viscosity of QGP plasma at RHIC.

  5. Bulk viscosity and r-modes of neutron stars

    E-Print Network [OSTI]

    Debarati Chatterjee; Debades Bandyopadhyay

    2008-08-08T23:59:59.000Z

    The bulk viscosity due to the non-leptonic process involving hyperons in $K^-$ condensed matter is discussed here. We find that the bulk viscosity is modified in a superconducting phase. Further, we demonstrate how the exotic bulk viscosity coefficient influences $r$-modes of neutron stars which might be sources of detectable gravitational waves.

  6. Towards bulk based preconditioning for quantum dotcomputations

    SciTech Connect (OSTI)

    Dongarra, Jack; Langou, Julien; Tomov, Stanimire; Channing,Andrew; Marques, Osni; Vomel, Christof; Wang, Lin-Wang

    2006-05-25T23:59:59.000Z

    This article describes how to accelerate the convergence of Preconditioned Conjugate Gradient (PCG) type eigensolvers for the computation of several states around the band gap of colloidal quantum dots. Our new approach uses the Hamiltonian from the bulk materials constituent for the quantum dot to design an efficient preconditioner for the folded spectrum PCG method. The technique described shows promising results when applied to CdSe quantum dot model problems. We show a decrease in the number of iteration steps by at least a factor of 4 compared to the previously used diagonal preconditioner.

  7. Bulk viscosity effects on elliptic flow

    E-Print Network [OSTI]

    G. S. Denicol; T. Kodama; T. Koide; Ph. Mota

    2009-09-30T23:59:59.000Z

    The effects of bulk viscosity on the elliptic flow $v_{2}$ are studied using realistic equation of state and realistic transport coefficients. We find that thebulk viscosity acts in a non trivial manner on $v_{2}$. At low $p_{T}$, the reduction of $v_{2}$ is even more effective compared to the case of shear viscosity, whereas at high $p_{T}$, an enhancement of $v_{2}$ compared to the ideal case is observed. We argue that this is caused by the competition of the critical behavior of the equation of state and the transport coefficients.

  8. Active neutron multiplicity counting of bulk uranium

    SciTech Connect (OSTI)

    Ensslin, N.; Krick, M.S.; Langner, D.G.; Miller, M.C.

    1991-01-01T23:59:59.000Z

    This paper describes a new nondestructive assay technique being developed to assay bulk uranium containing kilogram quantities of {sup 235}U. The new technique uses neutron multiplicity analysis of data collected with a coincidence counter outfitted with AmLi neutron sources. We have calculated the expected neutron multiplicity count rate and assay precision for this technique and will report on its expected performance as a function of detector design characteristics, {sup 235 }U sample mass, AmLi source strength, and source-to-sample coupling. 11 refs., 2 figs., 2 tabs.

  9. RAPID/Bulk Transmission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: EnergyOnline Permitting SystemsBulk

  10. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Maryland Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-06-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's evaluation of the delineation proposed by the Maryland Energy Administration (MEA) for the Maryland (MD) WEA and two alternative delineations. The objectives of the NREL evaluation were to assess MEA's proposed delineation of the MD WEA, perform independent analysis, and recommend how the MD WEA should be delineated.

  11. BLM issues final EIS for Tract C-a offsite lease

    SciTech Connect (OSTI)

    Not Available

    1986-12-01T23:59:59.000Z

    In October, 1986, the US Bureau of Land Management, White River Resource Area, issued the Final Environmental Impact Statement concerning Rio Blanco Oil Shale Company's request to lease an offtract site for disposal of overburden and spent shale from Tract C-a. A major issue which pitted Rio Blanco Oil Shale Company against many other members of the oil shale community was the covering up of oil shale resources on 84 Mesa. The oil shale resource under 84 Mesa may contain as much oil in place as Tract C-a itself. Some of the significant points concerning this issue are discussed. A summary of environmental consequences is given. 5 figures.

  12. Rhode Island Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Yeara3,663 3,430Feet) Lease

  13. New Mexico--East Natural Gas Liquids Lease Condensate, Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels) Liquids Lease Condensate, Proved

  14. New Mexico--West Natural Gas Liquids Lease Condensate, Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels) Liquids LeaseBarrels) Crude

  15. U.S. Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSSCoalWithdrawals (Million Cubic Feet) U.S.Lease

  16. ,"North Dakota Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNG StorageConsumption (MMcf)"Liquids Lease

  17. ,"Ohio Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbed Methane ProvedNetGas, Wet After Lease

  18. ,"Oklahoma Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbed Methane ProvedNetGas,Liquids Lease

  19. ,"Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrudeGas, Wet After

  20. ,"Texas State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrudeGas,Crude Oil +

  1. ,"U.S. Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlantGrossDistillateReserves+ Leaseplus

  2. ,"U.S. Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+Liquids LeaseAnnual",2014Processing"Proved

  3. Arizona Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14Decade Year-0 Year-1DecadeFueland

  4. Arkansas Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14DecadeDecade(Million

  5. Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14Sales (Billion CubicFeet) YearFueland

  6. Associated-Dissolved Natural Gas New Field Discoveries, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame Month Previous1 0Separation,

  7. CA, Coastal Region Onshore Crude Oil plus Lease Condensate Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSameCommercial(Million L41 478 564 620

  8. CA, Los Angeles Basin Onshore Crude Oil plus Lease Condensate Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSameCommercial(Million L41Reserves

  9. CA, San Joaquin Basin Onshore Crude Oil plus Lease Condensate Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion

  10. Colorado Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.Year Jan Feb

  11. Colorado Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (MillionFeet) DecadeFuel

  12. Federal Offshore U.S. Crude Oil plus Lease Condensate Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1. Refiner/Reseller2009 Annualand Production

  13. Federal Offshore U.S. Lease Condensate Proved Reserves, Reserve Changes,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1. Refiner/Reseller2009 Annualandand

  14. File:03HIAReservedLandMineralLeasingProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual1WAALandUsePlanning.pdf Jump to:FDAFederalLandLeasing.pdf Jump

  15. File:03HIBStateMineralLeasingProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual1WAALandUsePlanning.pdf Jump to:FDAFederalLandLeasing.pdf

  16. File:03UTAStateGeothermalResourceLeasing.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealandORCEncroachment.pdf Jump to: navigation, search File File historyUTAStateGeothermalResourceLeasing.pdf

  17. U.S. Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr(Percent)Babb, MT Havre,Lease Fuel

  18. U.S. Natural Gas Liquids Lease Condensate, Proved Reserves Acquisitions

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr(Percent)Babb, MT Havre,Lease(Million

  19. Table 8. Lease condensate proved reserves, reserves changes, and production, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:1 Table 7:TotalLease

  20. C.R.S. 36-1-147 Geothermal Leases | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility JumpBurleighGeothermal Leases Jump to:

  1. Texas - RRC District 2 Onshore Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb Mar Apr MayLease Separation,

  2. Texas - RRC District 2 Onshore Natural Gas, Wet After Lease Separation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb Mar Apr MayLease

  3. Texas - RRC District 2 Onshore Nonassociated Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb Mar Apr MayLeaseSeparation, Proved

  4. Texas - RRC District 3 Onshore Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb Mar Apr MayLeaseSeparation,

  5. Texas--RRC District 1 Natural Gas Liquids Lease Condensate, Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year JanExpected(Million Barrels) Liquids Lease

  6. Federal Offshore--Gulf of Mexico Natural Gas Lease Fuel Consumption

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves, WetGas (Million

  7. Florida Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved

  8. Florida Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar Apr May Jun Jul AugFueland

  9. Indiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal ConsumptionperFeet)

  10. NM, East Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185

  11. NM, West Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185530 474 523136

  12. Nebraska Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,9601. Natural5,1958

  13. Nebraska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (Million Cubic Feet) Nebraskaand Plant

  14. Nevada Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (MillionYearNADecadeand Plant Fuel

  15. Title 30 USC 226 Lease of Oil and Gas Lands | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePty LtdOpen Energy USC 226 Lease of Oil

  16. Texas--RRC District 1 Natural Gas Liquids Lease Condensate, Reserves Based

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation, ProvedProcessed (Million CubicProvedProduction (Million

  17. Texas--RRC District 10 Natural Gas Liquids Lease Condensate, Reserves Based

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation, ProvedProcessed (MillionProduction (BillionProduction

  18. Texas--RRC District 2 Onshore Natural Gas Liquids Lease Condensate,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation, ProvedProcessedReserves Based Production (Million

  19. Texas--RRC District 3 Onshore Natural Gas Liquids Lease Condensate,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation, ProvedProcessedReserves BasedCubic Feet)

  20. Texas--RRC District 4 Onshore Natural Gas Liquids Lease Condensate,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation, ProvedProcessedReserves BasedCubicProduction3Reserves Based

  1. Texas--RRC District 5 Natural Gas Liquids Lease Condensate, Reserves Based

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation, ProvedProcessedReservesProductionProduction (Million

  2. Texas--RRC District 6 Natural Gas Liquids Lease Condensate, Reserves Based

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (Billion Cubic Feet) Decade Year-0Production

  3. Texas--RRC District 7B Natural Gas Liquids Lease Condensate, Reserves Based

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (Billion Cubic Feet)Proved

  4. Texas--RRC District 7C Natural Gas Liquids Lease Condensate, Reserves Based

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (Billion CubicProved Reserves

  5. Texas--RRC District 8 Natural Gas Liquids Lease Condensate, Reserves Based

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (Billion CubicProvedProductionProduction (Million

  6. Texas--RRC District 8A Natural Gas Liquids Lease Condensate, Reserves Based

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (BillionProved Reserves (BillionReserves

  7. Texas--RRC District 9 Natural Gas Liquids Lease Condensate, Reserves Based

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (BillionProved(Million Barrels)

  8. Texas--State Offshore Natural Gas Liquids Lease Condensate, Reserves Based

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production

  9. ,"California - Coastal Region Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead PricePriceShaleonshCrude Oil + Lease

  10. ,"Florida Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+ Lease CondensateWellhead PriceGas, Wet

  11. ,"Kansas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (DollarsVolume (MMcf)"Liquids Lease Condensate,

  12. ,"Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (DollarsVolumeCoalbed MethaneNetGas, Wet After Lease

  13. ,"Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, Wet AfterCrude Oil + Lease

  14. ,"Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, WetGas, Wet After Lease

  15. ,"Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future ProductionNetPriceGas, Wet After Lease

  16. ,"Nebraska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future ProductionNetPriceGas, WetThrough+ Lease

  17. ,"North Dakota Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNG Storage NetPriceCoalbed Methane Proved+ Lease

  18. Property:NEPA TMP/LeaseToApplication | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid JumpEligSysSize JumpTechDscPropertyLeaseToApplication

  19. ,"Texas (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to ElectricLNGLiquids Lease Condensate,

  20. ,"Texas--RRC District 3 Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDryCoalbedCoalbedLiquids Lease

  1. ,"Texas--RRC District 6 Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlant Liquids, ExpectedLiquids Lease

  2. ,"Texas--RRC District 7C Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlant Liquids,Liquids Lease Condensate,

  3. ,"Texas--RRC District 8 Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlant Liquids,Liquids LeaseCoalbedLiquids

  4. ,"Texas--RRC District 8A Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlant Liquids,LiquidsLiquids Lease

  5. The Bulk Channel in Thermal Gauge Theories

    E-Print Network [OSTI]

    Harvey B. Meyer

    2010-02-17T23:59:59.000Z

    We investigate the thermal correlator of the trace of the energy-momentum tensor in the SU(3) Yang-Mills theory. Our goal is to constrain the spectral function in that channel, whose low-frequency part determines the bulk viscosity. We focus on the thermal modification of the spectral function, $\\rho(\\omega,T)-\\rho(\\omega,0)$. Using the operator-product expansion we give the high-frequency behavior of this difference in terms of thermodynamic potentials. We take into account the presence of an exact delta function located at the origin, which had been missed in previous analyses. We then combine the bulk sum rule and a Monte-Carlo evaluation of the Euclidean correlator to determine the intervals of frequency where the spectral density is enhanced or depleted by thermal effects. We find evidence that the thermal spectral density is non-zero for frequencies below the scalar glueball mass $m$ and is significantly depleted for $m\\lesssim\\omega\\lesssim 3m$.

  6. Measurement of the elastic scattering cross section of neutrons from argon and neon

    E-Print Network [OSTI]

    S. MacMullin; M. Kidd; R. Henning; W. Tornow; C. R. Howell; M. Brown

    2012-12-12T23:59:59.000Z

    Background: The most significant source of background in direct dark matter searches are neutrons that scatter elastically from nuclei in the detector's sensitive volume. Experimental data for the elastic scattering cross section of neutrons from argon and neon, which are target materials of interest to the dark matter community, were previously unavailable. Purpose: Measure the differential cross section for elastic scattering of neutrons from argon and neon in the energy range relevant to backgrounds from (alpha,n) reactions in direct dark matter searches. Method: Cross-section data were taken at the Triangle Universities Nuclear Laboratory (TUNL) using the neutron time-of-flight technique. These data were fit using the spherical optical model. Results: The differential cross section for elastic scatting of neutrons from neon at 5.0 and 8.0 MeV and argon at 6.0 MeV was measured. Optical-model parameters for the elastic scattering reactions were determined from the best fit to these data. The total elastic scattering cross section for neon was found to differ by 6% at 5.0 MeV and 13% at 8.0 MeV from global optical-model predictions. Compared to a local optical-model for 40Ar, the elastic scattering cross section was found to differ from the data by 8% at 6.0 MeV. Conclusions: These new data are important for improving Monte-Carlo simulations and background estimates for direct dark matter searches and for benchmarking optical models of neutron elastic scattering from these nuclei.

  7. Ultrasonic attenuation and volume viscosity in liquid argon, nitrogen and helium

    E-Print Network [OSTI]

    Singer, James Robert

    1967-01-01T23:59:59.000Z

    /cm . Measurements taken at densities from 2 1. 06 to 1. 42 g/cm result in values of 2. 3 to 0. 8 for the ratio of volume to shear viscosity. These values are compared with theoretical predictions of other investigators. It appears that the volume viscosity...ULTRASOM IC A'ITEN UAT IOM AMD VOLUME VISCOSITY IM LIQUID ARGON, "IITROGEV AMD MET IUM A Thesis by JAMES ROBFRT SI'%GER Submitted to the Graduate College of the Texas AgM University in partial fulfillment of the requirements for the degree...

  8. First measurement of neutrino and antineutrino coherent charged pion production on argon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Acciarri, R. [Fermi National Accelerator Lab., Batavia, IL (United States); Adams, C. [Yale Univ., New Haven, CT (United States); Asaadi, J. [Syracuse Univ., NY (United States); Baller, B. [Fermi National Accelerator Lab., Batavia, IL (United States); Bolton, T. [Kansas State Univ., Manhattan, KS (United States); Bromberg, C. [Michigan State Univ., East Lansing, MI (United States); Cavanna, F. [Yale Univ., New Haven, CT (United States); Univ. dell' Aquila, L'Aquila (Italy); Church, E. [Yale Univ., New Haven, CT (United States); Edmunds, D. [Michigan State Univ., East Lansing, MI (United States); Ereditato, A. [Univ. of Bern, Bern (Switzerland); Farooq, S. [Kansas State Univ., Manhattan, KS (United States); Fleming, B. [Yale Univ., New Haven, CT (United States); Greenlee, H. [Fermi National Accelerator Lab., Batavia, IL (United States); Hatcher, R. [Fermi National Accelerator Lab., Batavia, IL (United States); Horton-Smith, G. [Kansas State Univ., Manhattan, KS (United States); James, C. [Fermi National Accelerator Lab., Batavia, IL (United States); Klein, E. [Yale Univ., New Haven, CT (United States); Lang, K. [Univ. of Texas, Austin, TX (United States); Laurens, P. [Michigan State Univ., East Lansing, MI (United States); Mehdiyev, R. [Univ. of Texas, Austin, TX (United States); Page, B. [Michigan State Univ., East Lansing, MI (United States); Palamara, O. [Yale Univ., New Haven, CT (United States); Univ. of Texas, Austin, TX (United States); Partyka, K. [Yale Univ., New Haven, CT (United States); Rameika, G. [Fermi National Accelerator Lab., Batavia, IL (United States); Rebel, B. [Fermi National Accelerator Lab., Batavia, IL (United States); Santos, E. [Imperial College, London (United Kingdom); Schukraft, A. [Fermi National Accelerator Lab., Batavia, IL (United States); Soderberg, M. [Syracuse Univ., NY (United States); Fermi National Accelerator Lab., Batavia, IL (United States); Spitz, J. [Yale Univ., New Haven, CT (United States); Szelc, A.? M. [Yale Univ., New Haven, CT (United States); Weber, M. [Univ. of Bern, Bern (Switzerland); Yang, T. [Fermi National Accelerator Lab., Batavia, IL (United States); Zeller, G. P. [Fermi National Accelerator Lab., Batavia, IL (United States)

    2014-12-01T23:59:59.000Z

    We report on the first cross section measurements for charged current coherent pion production by neutrinos and antineutrinos on argon. These measurements are performed using the ArgoNeuT detector exposed to the NuMI beam at Fermilab. The cross sections are measured to be 2.6 +1.2-1.0 (stat)+0.3-0.4(syst) × 10?³?cm² / Ar for neutrinos at a mean energy of 9.6 GeV and 5.5+2.6-2.1(stat)+0.6-0.7(syst) × 10?³? cm² / Ar for antineutrinos at a mean energy of 3.6 GeV.

  9. The Physics Analysis of a Gas Attenuator with Argon as a Working Gas

    SciTech Connect (OSTI)

    Ryutov,, D.D.

    2010-12-07T23:59:59.000Z

    A gas attenuator is an important element of the LCLS facility. The attenuator must operate in a broad range of x-ray energies, provide attenuation coefficient between 1 and 10{sup 4} with the accuracy of 1% and, at the same time, be reliable and allow for many months of un-interrupted operation. S. Shen has recently carried out a detailed design study of the attenuator based on the use of nitrogen as a working gas. In this note we assess the features of the attenuator based on the use of argon. We concentrate on the physics issues, not the design features.

  10. Preparation of a primary argon beam for the CERN fixed target physics

    SciTech Connect (OSTI)

    Küchler, D., E-mail: detlef.kuchler@cern.ch; O’Neil, M.; Scrivens, R. [CERN, BE Department, 1211 Geneva 23 (Switzerland)] [CERN, BE Department, 1211 Geneva 23 (Switzerland); Thomae, R. [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa)] [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa)

    2014-02-15T23:59:59.000Z

    The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar{sup 11+} beam from the 14.5 GHz ECR ion source and the linear accelerator (Linac3) at CERN.

  11. Ionization of Water Clusters is Mediated by Exciton Energy Transfer from Argon Clusters

    SciTech Connect (OSTI)

    Golan, Amir; Ahmed, Musahid

    2012-01-25T23:59:59.000Z

    The exciton energy deposited in an argon cluster, (Arn ,< n=20>) using VUV radiation is transferred to softly ionize doped water clusters, ((H2O)n, n=1-9) leading to the formation of non-fragmented clusters. Following the initial excitation, electronic energy is channeled to ionize the doped water cluster while evaporating the Ar shell, allowing identification of fragmented and complete water cluster ions. Examination of the photoionization efficiency curve shows that cluster evaporation from excitons located above 12.6 eV are not enough to cool the energized water cluster ion, and leads to their dissociation to (H2O)n-2H+ (protonated) clusters.

  12. Economic Recovery Tax Act of 1981: its effect on negotiating oil lease bonus payments

    SciTech Connect (OSTI)

    Nixon, C.; Fambrough, J.

    1982-09-01T23:59:59.000Z

    The Economic Recovery Tax Act of 1981, with its declining individual income tax rates, has made it more attractive in many cases for both the lessor (landowner) and lessee (oil and gas company) to have bonus lease payments paid and received on the installment basis rather than as a lump-sum. While the reduction in the maximum individual tax rate from 70 percent to 50 percent reduces some of the advantages of installment reporting, many moderate income lessors should still be able to benefit by this strategy. Both the lessor and lessee can utilize equations (1) and (2) when negotiating oil lease bonus payments to maximize their after-tax returns. The equations are flexible enough to allow for analysis of delays rentals, advance royalties, and minimum royalties as well. Since the after-tax discount rate has a significant impact on the resulting present values obtained, caution should be used in determining both the lessor's and lessee's rates. If the lessor and lessee have different discount rates due to alternative investment opportunities, the relative benefits of the lump-sum versus installment strategy may change. (JMT)

  13. Lease of Parcel ED-1 of the Oak Ridge Reservation by the East Tennessee Economic Council

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    The US Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1113) for the proposed lease of 957.16 acres of the Oak Ridge Reservation (ORR) to the East Tennessee Economic Council (ETEC), a non-profit community organization, for a period of 10 years, with an option for renewal. ETEC proposes to develop an industrial park on the leased site to provide employment opportunities for DOE and contractor employees affected by decreased federal funding. Based on the results of the analysis reported in the EA and implementation of mitigation measures defined in this Finding of No Significant Impact (FONSI), DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement (EIS) is not necessary, and DOE is issuing this mitigated FONSI. DOE will implement a Mitigation Action Plan for this project and provide annual reports on mitigation and monitoring.

  14. Rotary adsorbers for continuous bulk separations

    DOE Patents [OSTI]

    Baker, Frederick S. (Oak Ridge, TN)

    2011-11-08T23:59:59.000Z

    A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.

  15. DEVELOPMENT OF THE BULK TRITIUM SHIPPING PACKAGING

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2008-09-14T23:59:59.000Z

    A new radioactive shipping packaging for transporting bulk quantities of tritium, the Bulk Tritium Shipping Package (BTSP), has been designed for the Department of Energy (DOE) as a replacement for a package designed in the early 1970s. This paper summarizes significant design features and describes how the design satisfies the regulatory safety requirements of the Code of Federal Regulations and the International Atomic Energy Agency. The BTSP design incorporates many improvements over its predecessor by implementing improved testing, handling, and maintenance capabilities, while improving manufacturability and incorporating new engineered materials. This paper also discusses the results from testing of the BTSP to 10 CFR 71 Normal Conditions of Transport and Hypothetical Accident Condition events. The programmatic need of the Department of Energy (DOE) to ship bulk quantities of tritium has been satisfied since the late 1970s by the UC-609 shipping package. The current Certificate of Conformance for the UC-609, USA/9932/B(U) (DOE), will expire in late 2011. Since the UC-609 was not designed to meet current regulatory requirements, it will not be recertified and thereby necessitates a replacement Type B shipping package for continued DOE tritium shipments in the future. A replacement tritium packaging called the Bulk Tritium Shipping Package (BTSP) is currently being designed and tested by Savannah River National Laboratory (SRNL). The BTSP consists of two primary assemblies, an outer Drum Assembly and an inner Containment Vessel Assembly (CV), both designed to mitigate damage and to protect the tritium contents from leaking during the regulatory Hypothetical Accident Condition (HAC) events and during Normal Conditions of Transport (NCT). During transport, the CV rests on a silicone pad within the Drum Liner and is covered with a thermal insulating disk within the insulated Drum Assembly. The BTSP packaging weighs approximately 500 lbs without contents and is 50-1/2 inches high by 24-1/2 inches in outside diameter. With contents the gross weight of the BTSP is 650 lbs. The BTSP is designed for the safe shipment of 150 grams of tritium in a solid or gaseous state. To comply with the federal regulations that govern Type B shipping packages, the BTSP is designed so that it will not lose tritium at a rate greater than the limits stated in 10CFR 71.51 of 10{sup -6} A2 per hour for the 'Normal Conditions of Transport' (NCT) and an A2 in 1 week under 'Hypothetical Accident Conditions' (HAC). Additionally, since the BTSP design incorporates a valve as part of the tritium containment boundary, secondary containment features are incorporated in the CV Lid to protect against gas leakage past the valve as required by 10CFR71.43(e). This secondary containment boundary is designed to provide the same level of containment as the primary containment boundary when subjected to the HAC and NCT criteria.

  16. Organic hybrid planar-nanocrystalline bulk heterojunctions

    DOE Patents [OSTI]

    Forrest, Stephen R.; Yang, Fan

    2013-04-09T23:59:59.000Z

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  17. On bulk viscosity and moduli decay

    E-Print Network [OSTI]

    M. Laine

    2010-11-21T23:59:59.000Z

    This pedagogically intended lecture, one of four under the header "Basics of thermal QCD", reviews an interesting relationship, originally pointed out by Bodeker, that exists between the bulk viscosity of Yang-Mills theory (of possible relevance to the hydrodynamics of heavy ion collision experiments) and the decay rate of scalar fields coupled very weakly to a heat bath (appearing in some particle physics inspired cosmological scenarios). This topic serves, furthermore, as a platform on which a number of generic thermal field theory concepts are illustrated. The other three lectures (on the QCD equation of state and the rates of elastic as well as inelastic processes experienced by heavy quarks) are recapitulated in brief encyclopedic form.

  18. DEPLOYMENT OF THE BULK TRITIUM SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Blanton, P.

    2013-10-10T23:59:59.000Z

    A new Bulk Tritium Shipping Package (BTSP) was designed by the Savannah River National Laboratory to be a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The BTSP was certified by the National Nuclear Safety Administration in 2011 for shipments of up to 150 grams of Tritium. Thirty packages were procured and are being delivered to various DOE sites for operational use. This paper summarizes the design features of the BTSP, as well as associated engineered material improvements. Fabrication challenges encountered during production are discussed as well as fielding requirements. Current approved tritium content forms (gas and tritium hydrides), are reviewed, as well as, a new content, tritium contaminated water on molecular sieves. Issues associated with gas generation will also be discussed.

  19. Organic hybrid planar-nanocrystalline bulk heterojunctions

    DOE Patents [OSTI]

    Forrest, Stephen R. (Ann Arbor, MI); Yang, Fan (Piscataway, NJ)

    2011-03-01T23:59:59.000Z

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  20. Analysis of the permitting processes associated with exploration of Federal OCS leases. Final report. Volume II. Appendices

    SciTech Connect (OSTI)

    Not Available

    1980-11-01T23:59:59.000Z

    Under contract to the Office of Leasing Policy Development (LPDO), Jack Faucett Associates is currently undertaking the description and analysis of the Outer Continental Shelf (OCS) regulatory process to determine the nature of time delays that affect OCS production of oil and gas. This report represents the results of the first phase of research under this contract, the description and analysis of regulatory activity associated with exploration activities on the Federal OCS. Volume 1 contains the following three sections: (1) study results; (2) Federal regulatory activities during exploration of Federal OCS leases which involved the US Geological Survey, Environmental Protection Agency, US Coast Guard, Corps of Engineers, and National Ocean and Atmospheric Administration; and (3) state regulatory activities during exploration of Federal OCS leases of Alaska, California, Louisiana, Massachusetts, New Jersey, North Carolina and Texas. Volume II contains appendices of US Geological Survey, Environmental Protection Agency, Coast Guard, Corps of Engineers, the Coastal Zone Management Act, and Alaska. The major causes of delay in the regulatory process governing exploration was summarized in four broad categories: (1) the long and tedious process associated with the Environmental Protection Agency's implementation of the National Pollutant Discharge Elimination System Permit; (2) thelack of mandated time periods for the completion of individual activities in the permitting process; (3) the lack of overall coordination of OCS exploratory regulation; and (4) the inexperience of states, the Federal government and industry relating to the appropriate level of regulation for first-time lease sale areas.

  1. Theoretical investigation of the effect of hydrogen addition on the formation and properties of soliton in direct current argon plasma

    SciTech Connect (OSTI)

    Saikia, P., E-mail: partha.008@gmail.com; Goswami, K. S.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur, Kamrup, Assam-782 402 (India)] [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur, Kamrup, Assam-782 402 (India)

    2014-03-15T23:59:59.000Z

    In this study the effect of hydrogen addition on the formation and properties of soliton in direct-current (DC) argon plasma is theoretically investigated. By coupling fluid equations with Poisons equation for such multi-component plasma, the Mach number and amplitude of the soliton are determined following pseudo potential method. Addition of hydrogen in argon discharge leads to the decrease of electron, Ar{sup +} ion density while a reverse trend was observed for ArH{sup +} and hydrogen like ions. It was found that presence of hydrogen like ions in argon plasma affects the formation of soliton with its amplitude significantly decreases as concentration of hydrogen increases. On the other hand, increase in ion to electron temperature ratios of the lighter ions in the discharge also has a significant influence on the amplitude and formation of soliton. The inverse relation between solitons width and amplitude is found to be consistent for the entire range of study.

  2. Macroscopic and direct light propulsion of bulk graphene material

    E-Print Network [OSTI]

    Zhang, Tengfei; Wu, Yingpeng; Xiao, Peishuang; Yi, Ningbo; Lu, Yanhong; Ma, Yanfeng; Huang, Yi; Zhao, Kai; Yan, Xiao-Qing; Liu, Zhi-Bo; Tian, Jian-Guo; Chen, Yongsheng

    2015-01-01T23:59:59.000Z

    It has been a great challenge to achieve the direct light manipulation of matter on a bulk scale. In this work, the direct light propulsion of matter was observed on a macroscopic scale for the first time using a bulk graphene based material. The unique structure and properties of graphene and the morphology of the bulk graphene material make it capable of not only absorbing light at various wavelengths but also emitting energetic electrons efficiently enough to drive the bulk material following Newtonian mechanics. Thus, the unique photonic and electronic properties of individual graphene sheets are manifested in the response of the bulk state. These results offer an exciting opportunity to bring about bulk scale light manipulation with the potential to realize long-sought proposals in areas such as the solar sail and space transportation driven directly by sunlight.

  3. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    SciTech Connect (OSTI)

    Adam B. Sefkow and Samuel A. Cohen

    2009-04-09T23:59:59.000Z

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ~ 200?300 ?D,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength.

  4. Transport mechanisms and experimental evidence of positively charged dust particles in an argon plasma

    SciTech Connect (OSTI)

    Brown, D.A.; Hareland, W.A. [Sandia National Labs., Albuquerque, NM (United States); Collins, S.M. [Univ. of Arizona, Tucson, AZ (United States)

    1995-12-31T23:59:59.000Z

    It is well known that dense particle clouds often reside within the steady-state plasma; however, particle transport in the critical post-plasma period has not yet been fully explored. To better understand and characterize particle behavior, charge and transport properties of dust particles in an argon plasma, contained within a Gaseous Electronics Conference (GEC) reference cell, were studied in the steady-state and post-plasma regimes of a 500 mTorr, 25 W argon discharge. Using separate water chillers to control independently the temperatures of the upper and lower electrodes, various temperature gradients were imposed on the plasma and thermophoretic transport of the particle clouds observed for both steady and decaying discharges. Next, using a pulsed rf power supply and a tuned Langmuir probe, the decay times of electrons and ions were measured in the afterglow. Finally, utilizing high-speed video in concert with 10 mW He-Ne laser light, post-plasma particle trajectories were observed for various electric fields and electrode temperatures. Results were then compared to calculations from a net force model that included gravity, the electric field, fluid flow, ion drag, and thermophoresis. It was found that temperature gradients greater than {approximately} 10 C/cm significantly altered particle cloud configurations in steady plasmas, and provided a strong transport mechanism in the afterglow. Electrically, the measured ion density decay time was approximately equal to that of the electrons, consistent with ambipolar diffusion.

  5. Argon–oxygen dc magnetron discharge plasma probed with ion acoustic waves

    SciTech Connect (OSTI)

    Saikia, Partha, E-mail: partha.008@gmail.com; Saikia, Bipul Kumar; Goswami, Kalyan Sindhu [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur, Kamrup, Assam 782 402 (India); Phukan, Arindam [Madhabdev College, Narayanpur, Lakhimpur, Assam 784164 (India)

    2014-05-15T23:59:59.000Z

    The precise determination of the relative concentration of negative ions is very important for the optimization of magnetron sputtering processes, especially for those undertaken in a multicomponent background produced by adding electronegative gases, such as oxygen, to the discharge. The temporal behavior of an ion acoustic wave excited from a stainless steel grid inside the plasma chamber is used to determine the relative negative ion concentration in the magnetron discharge plasma. The phase velocity of the ion acoustic wave in the presence of negative ions is found to be faster than in a pure argon plasma, and the phase velocity increases with the oxygen partial pressure. Optical emission spectroscopy further confirms the increase in the oxygen negative ion density, along with a decrease in the argon positive ion density under the same discharge conditions. The relative negative ion concentration values measured by ion acoustic waves are compared with those measured by a single Langmuir probe, and a similarity in the results obtained by both techniques is observed.

  6. Expected performance of an ideal liquid argon neutrino detector with enhanced sensitivity to scintillation light

    E-Print Network [OSTI]

    M. Sorel

    2014-09-05T23:59:59.000Z

    Scintillation light is used in liquid argon (LAr) neutrino detectors to provide a trigger signal, veto information against cosmic rays, and absolute event timing. In this work, we discuss additional opportunities offered by detectors with enhanced sensitivity to scintillation light, that is with light collection efficiencies of about $10^{-3}$. We focus on two key detector performance indicators for neutrino oscillation physics: calorimetric neutrino energy reconstruction and neutrino/antineutrino separation in a non-magnetized detector. Our results are based on detailed simulations, with neutrino interactions modelled according to the GENIE event generator, while the charge and light responses of a large LAr ideal detector are described by the Geant4 and NEST simulation tools. A neutrino energy resolution as good as 3.3\\% RMS for 4 GeV electron neutrino charged-current interactions can in principle be obtained in a large detector of this type, by using both charge and light information. By exploiting muon capture in argon and scintillation light information to veto muon decay electrons, we also obtain muon neutrino identification efficiencies of about 50\\%, and muon antineutrino misidentification rates at the few percent level, for few-GeV neutrino interactions that are fully contained. We argue that the construction of large LAr detectors with sufficiently high light collection efficiencies is in principle possible.

  7. Numerical study on microwave-sustained argon discharge under atmospheric pressure

    SciTech Connect (OSTI)

    Yang, Y.; Hua, W., E-mail: huaw@scu.edu.cn; Guo, S. Y. [School of Electronics and Information Engineering, Sichuan University, Chengdu 610065 (China)] [School of Electronics and Information Engineering, Sichuan University, Chengdu 610065 (China)

    2014-04-15T23:59:59.000Z

    A numerical study on microwave sustained argon discharge under atmospheric pressure is reported in this paper. The purpose of this study is to investigate both the process and effects of the conditions of microwave-excited gas discharge under atmospheric pressure, thereby aiding improvements in the design of the discharge system, setting the appropriate working time, and controlling the operating conditions. A 3D model is presented, which includes the physical processes of electromagnetic wave propagation, electron transport, heavy species transport, gas flow, and heat transfer. The results can be obtained by means of the fluid approximation. The maxima of the electron density and gas temperature are 4.96?×?10{sup 18} m{sup ?3} and 2514.8?K, respectively, and the gas pressure remains almost unchanged for typical operating conditions with a gas flow rate of 20 l/min, microwave power of 1000 W, and initial temperature of 473?K. In addition, the conditions (microwave power, gas flow rate, and initial temperature) of discharge are varied to obtain deeper information about the electron density and gas temperature. The results of our numerical study are valid and clearly describe both the physical process and effects of the conditions of microwave-excited argon discharge.

  8. Operation of a GERDA Phase I prototype detector in liquid argon and nitrogen

    E-Print Network [OSTI]

    M. Barnabé Heider; A. Bakalyarov; L. Bezrukov; C. Cattadori; O. Chkvorets; K. Gusev; M. Hult; I. Kirpichnikov; V. Lebedev; G. Marissens; P. Peiffer; S. Schönert; M. Shirchenko; A. Smolnikov; A. Vasenko; S. Vasiliev; S. Zhukov

    2008-12-20T23:59:59.000Z

    The GERDA (GERmanium Detector Array) experiment aiming to search for the neutrinoless double beta decay of 76Ge at the Laboratori Nazionali Del Gran Sasso (LNGS), Italy, will operate bare enriched high-purity germanium (HPGe) detectors in liquid argon. GERDA Phase I will use the enriched diodes from the previous Heidelberg-Moscow (HdM) and IGEX experiments. With the HPGe detectors mounted in a low-mass holder, GERDA aims at an excellent energy resolution and extremely low background. The goal is to check the claim for the neutrinoless double beta decay evidence in the HdM 76Ge experiment within one year of data taking. Before dismounting the enriched diodes from their cryostat, the performance parameters of the HdM and the IGEX detectors have been measured. The diodes have been removed from their cryostats, their dimensions measured and they have been put under va-cuum in a transportation container. They are now being refurbished for GERDA Phase I at Canberra Semiconductor NV. Before operating the enriched diodes, a non-enriched HPGe p-type detector mounted in a low-mass holder is operated in the liquid argon test facility of the GERDA Detector Laboratory (GDL) at LNGS. Since January 2006, the testing of the prototype detector is being carried out in the GDL as well as at the site of the detector manufacturer.

  9. Growth of tungsten nanoparticles in direct-current argon glow discharges

    SciTech Connect (OSTI)

    Kishor Kumar, K.; Coueedel, L.; Arnas, C. [Laboratoire de Physique des Interactions Ioniques et Moleculaires, CNRS-Aix-Marseille Universite, 13397 Marseille (France)

    2013-04-15T23:59:59.000Z

    The growth of nanoparticles from the sputtering of a tungsten cathode in DC argon glow discharges is reported. The study was performed at fixed argon pressure and constant discharge current. The growth by successive agglomerations is evidenced. First, tungsten nanocrystallites agglomerate into primary particles, the most probable size of which being {approx}30 nm. Primary particles of this size are observed for all plasma durations and always remain the most numerous in the discharge. Primary particles quickly agglomerate to form particles with size up to {approx}150 nm. For short plasma duration, log-normal functions describe accurately the dust particle size distributions. On the contrary, for long discharge durations, a second hump appears in the distributions toward large particle sizes. In the meantime, the discharge voltage, electron density, and emission line intensities strongly evolve. Their evolutions can be divided in four separate phases and exhibit unusual distinctive features compared to earlier observations in discharges in which particles were growing. The evolution of the different parameters is explained by a competition between the surface state of the tungsten cathode and the influence of the growing nanoparticles. The differences with sputtering glow discharges and chemically active plasmas suggest that the nanoparticle growth and its influence on discharge parameters is system and material dependent.

  10. An experimental study of atmospheric pressure dielectric barrier discharge (DBD) in argon

    SciTech Connect (OSTI)

    Subedi, D. P. [Department of Natural Sciences, School of Science, Kathmandu University, Dhulikhel (Nepal); Tyata, R. B. [Department of Natural Sciences, School of Science, Kathmandu University, Dhulikhel, Nepal and Department of Electrical, Khwopa College of Engineering, Libali-2, Bhaktapur (Nepal); Shrestha, R. [Department of Natural Sciences, School of Science, Kathmandu University, Dhulikhel, Nepal and Department of Physics, Basu College, Kalighat, Byasi, Bhaktapur (Nepal); Wong, C. S. [Plasma Technology Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-05T23:59:59.000Z

    In this paper, experimental results on atmospheric pressure argon dielectric barrier discharge (DBD) have been presented. The discharge was generated using a high voltage (0 to 20 kV) power supply operating at frequency of 10 to 30 kHz and was studied by means of electrical and optical measurements. A homogeneous and steady discharge was observed between the electrodes with gap spacing from 1 mm to 3 mm and with a dielectric barrier of thickness 1.5 mm while argon gas is fed at a controlled flow rate of 2liter per min. The electron temperature (T{sub e}) and electron density (n{sub e}) of the plasma have been determined by means of optical emission spectroscopy. Our results show that the electron density is of the order of 10{sup 16} cm{sup ?3} while the electron temperature is estimated to be ? 1 eV. The homogeneity and non-thermal nature of the discharge were utilized in the investigation of the change in wettabilty of a polymer sample subjected to the treatment by the discharge. Contact angle analysis showed that the discharge was effective in improving the wettability of low density Polyethylene (LDPE) polymer sample after the treatment.

  11. DETERMINATION DE LA FONCTION DE DISTRIBUTION DE L'ENERGIE ELECTRONIQUE DANS DES COLONNES POSITIVES D'HELIUM ET D'HELIUM-ARGON

    E-Print Network [OSTI]

    Boyer, Edmond

    D'HELIUM ET D'HELIUM-ARGON P. Davy P. Rabache Laboratoire de Physique Electronique, Universite de) have been determined in helium, and helium-argon positiv columns. Between q 06 and q 3 torr, for currents varying between 25 and 400mA, the EDF in helium i s a Maxwell one with a lack of fast electrons

  12. ENVIRONMENTAL BIOTECHNOLOGY Effect of bulk liquid BOD concentration on activity

    E-Print Network [OSTI]

    Nerenberg, Robert

    BOD. FISH results indicated increasing abundance of heterotrophs with increasing bulk liquid BOD); however, competition of heterotrophs and nitrifiers in biofilm systems limits nitrification rates

  13. Optimization Online - Real-Time Dispatchability of Bulk Power ...

    E-Print Network [OSTI]

    Wei Wei

    2015-03-16T23:59:59.000Z

    Mar 16, 2015 ... Real-Time Dispatchability of Bulk Power Systems with Volatile Renewable Generations. Wei Wei (wei-wei04 ***at*** mails.tsinghua.edu.cn)

  14. Economic manufacturing of bulk metallic glass compositions by microalloying

    DOE Patents [OSTI]

    Liu, Chain T.

    2003-05-13T23:59:59.000Z

    A method of making a bulk metallic glass composition includes the steps of:a. providing a starting material suitable for making a bulk metallic glass composition, for example, BAM-11; b. adding at least one impurity-mitigating dopant, for example, Pb, Si, B, Sn, P, to the starting material to form a doped starting material; and c. converting the doped starting material to a bulk metallic glass composition so that the impurity-mitigating dopant reacts with impurities in the starting material to neutralize deleterious effects of the impurities on the formation of the bulk metallic glass composition.

  15. New nano structure approaches for bulk thermoelectric materials

    E-Print Network [OSTI]

    Kim, Jeonghoon

    2010-01-01T23:59:59.000Z

    in bulk thermoelectric materials", M. Mater. Res. Soc.Thermoelectricity", Materials Reserach Society Symposium,Johnson, D. C. , Eds. Materials Research Society: Boston,

  16. Factors influencing photocurrent generation in organic bulk heterojunc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Factors influencing photocurrent generation in organic bulk heterojunction solar cells: interfacial energetics and blend microstructure April 29, 2009 at 3pm36-428 Jenny Nelson...

  17. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Broader source: Energy.gov (indexed) [DOE]

    Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Vehicle Technologies Office Merit Review 2014: Nanostructured...

  18. Bulk viscosity of QCD matter near the critical temperature

    E-Print Network [OSTI]

    D. Kharzeev; K. Tuchin

    2007-05-29T23:59:59.000Z

    Kubo's formula relates bulk viscosity to the retarded Green's function of the trace of the energy-momentum tensor. Using low energy theorems of QCD for the latter we derive the formula which relates the bulk viscosity to the energy density and pressure of hot matter. We then employ the available lattice QCD data to extract the bulk viscosity as a function of temperature. We find that close to the deconfinement temperature bulk viscosity becomes large, with viscosity-to-entropy ratio zeta/s about 1.

  19. On Eling-Oz formula for the holographic bulk viscosity

    E-Print Network [OSTI]

    Alex Buchel

    2011-05-09T23:59:59.000Z

    Recently Eling and Oz [1] proposed a simple formula for the bulk viscosity of holographic plasma. They argued that the formula is valid in the high temperature (near-conformal) regime, but is expected to break down at low temperatures. We point out that the formula is in perfect agreement with the previous computations of the bulk viscosity of the cascading plasma [2,3], as well as with the previous computations of the bulk viscosity of N=2^* plasma [4,5]. In the latter case it correctly reproduces the critical behaviour of the bulk viscosity in the vicinity of the critical point with the vanishing speed of sound.

  20. Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    semipolar light-emitting diodes (LEDs) on low-defect bulk gallium nitride (GaN) substrates. Peak internal quantum efficiency (IQE) values of greater than 80% are...