National Library of Energy BETA

Sample records for learning effects calculation

  1. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dral, Pavlo O.; von Lilienfeld, O. Anatole; Thiel, Walter

    2015-04-14

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempiricalmore » OM2 method using a set of 6095 constitutional isomers C7H10O2, for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.« less

  2. EFFECT e-learning courses | Open Energy Information

    Open Energy Info (EERE)

    tools User Interface: Spreadsheet Website: www.esmap.orgesmapEFFECT Cost: Free Language: English References: EFFECT e-learning courses1 The EFFECT Model is an Excel-based,...

  3. A Self-Consistent Approach for Calculating the Effective Hydraulic...

    Office of Scientific and Technical Information (OSTI)

    conductivity of a 3D medium with a binary distribution of local hydraulic conductivities. ... The method was applied to estimating the effective hydraulic conductivity of a 2D and 3D ...

  4. An Effective Method to Accurately Calculate the Phase Space Factors for β - β - Decay

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Neacsu, Andrei; Horoi, Mihai

    2016-01-01

    Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. We present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.

  5. Microscopic Calculation of 240Pu Scission with a Finite-Range Effective

    Office of Scientific and Technical Information (OSTI)

    Force (Journal Article) | SciTech Connect Journal Article: Microscopic Calculation of 240Pu Scission with a Finite-Range Effective Force Citation Details In-Document Search Title: Microscopic Calculation of 240Pu Scission with a Finite-Range Effective Force Hartree-Fock-Bogoliubov calculations of hot fission in {sup 240}Pu have been performed with a newly-implemented code that uses the D1S finite-range effective interaction. The hot-scission line is identified in the

  6. From MOOC to MIIC: Can Effective Learning Be Big? | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9:30am to 11:00am Science On Saturday MBG Auditorium From MOOC to MIIC: Can Effective Learning Be Big? Mung Chiang, Arthur LeGrand Doty Professor of Electrical Engineering...

  7. A GPU-based Calculation Method for Near Field Effects of Cherenkov

    Office of Scientific and Technical Information (OSTI)

    Radiation Induced by Ultra High Energy Cosmic Neutrinos (Conference) | SciTech Connect SciTech Connect Search Results Conference: A GPU-based Calculation Method for Near Field Effects of Cherenkov Radiation Induced by Ultra High Energy Cosmic Neutrinos Citation Details In-Document Search Title: A GPU-based Calculation Method for Near Field Effects of Cherenkov Radiation Induced by Ultra High Energy Cosmic Neutrinos Authors: Hu, Chia-Yu ; Chen, Chih-Ching ; /Taiwan, Natl. Taiwan U. ; Chen,

  8. Solvent effects in time-dependent self-consistent field methods. I. Optical response calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bjorgaard, J. A.; Kuzmenko, V.; Velizhanin, K. A.; Tretiak, S.

    2015-01-22

    In this study, we implement and examine three excited state solvent models in time-dependent self-consistent field methods using a consistent formalism which unambiguously shows their relationship. These are the linear response, state specific, and vertical excitation solvent models. Their effects on energies calculated with the equivalent of COSMO/CIS/AM1 are given for a set of test molecules with varying excited state charge transfer character. The resulting solvent effects are explained qualitatively using a dipole approximation. It is shown that the fundamental differences between these solvent models are reflected by the character of the calculated excitations.

  9. Sex-specific tissue weighting factors for effective dose equivalent calculations

    SciTech Connect (OSTI)

    Xu, X.G. [Rensselaer Polytechnic Inst., Troy, NY (United States); Reece, W.D. [Texas A& M Univ., College Station, TX (United States)

    1996-01-01

    The effective dose equivalent was defined in the International Commission on Radiological Protection Publication 26 in 1977 and later adopted by the U.S. Nuclear REgulatory Commission. To calculate organ doses and effective dose equivalent for external exposures using Monte Carlo simulations, sex-specific anthropomorphic phantoms and sex-specific weighting factors are always employed. This paper presents detailed mathematical derivation of a set of sex-specific tissue weighting factors and the conditions which the weighting factors must satisfy. Results of effective dose equivalent calculations using female and male phantoms exposed to monoenergetic photon beams of 0.08, 0.3, and 1.0 MeV are provided and compared with results published by other authors using different sex-specific weighting factors and phantoms. The results indicate that females always receive higher effective dose equivalent than males for the photon energies and geometries considered and that some published data may be wrong due to mistakes in deriving the sex-specific weighting factors. 17 refs., 2 figs., 2 tabs.

  10. K-effective of the world: and other concerns for Monte Carlo Eigenvalue calculations

    SciTech Connect (OSTI)

    Brown, Forrest B

    2010-01-01

    Monte Carlo methods have been used to compute k{sub eff} and the fundamental model eigenfunction of critical systems since the 1950s. Despite the sophistication of today's Monte Carlo codes for representing realistic geometry and physics interactions, correct results can be obtained in criticality problems only if users pay attention to source convergence in the Monte Carlo iterations and to running a sufficient number of neutron histories to adequately sample all significant regions of the problem. Recommended best practices for criticality calculations are reviewed and applied to several practical problems for nuclear reactors and criticality safety, including the 'K-effective of the World' problem. Numerical results illustrate the concerns about convergence and bias. The general conclusion is that with today's high-performance computers, improved understanding of the theory, new tools for diagnosing convergence (e.g., Shannon entropy of the fission distribution), and clear practical guidance for performing calculations, practitioners will have a greater degree of confidence than ever of obtaining correct results for Monte Carlo criticality calculations.

  11. First principle calculations of effective exchange integrals: Comparison between SR (BS) and MR computational results

    SciTech Connect (OSTI)

    Yamaguchi, Kizashi; Nishihara, Satomichi; Saito, Toru; Yamanaka, Shusuke; Kitagawa, Yasutaka; Kawakami, Takashi; Yamada, Satoru; Isobe, Hiroshi; Okumura, Mitsutaka

    2015-01-22

    First principle calculations of effective exchange integrals (J) in the Heisenberg model for diradical species were performed by both symmetry-adapted (SA) multi-reference (MR) and broken-symmetry (BS) single reference (SR) methods. Mukherjee-type (Mk) state specific (SS) MR coupled-cluster (CC) calculations by the use of natural orbital (NO) references of ROHF, UHF, UDFT and CASSCF solutions were carried out to elucidate J values for di- and poly-radical species. Spin-unrestricted Hartree Fock (UHF) based coupled-cluster (CC) computations were also performed to these species. Comparison between UHF-NO(UNO)-MkMRCC and BS UHF-CC computational results indicated that spin-contamination of UHF-CC solutions still remains at the SD level. In order to eliminate the spin contamination, approximate spin-projection (AP) scheme was applied for UCC, and the AP procedure indeed corrected the error to yield good agreement with MkMRCC in energy. The CC double with spin-unrestricted Brueckner's orbital (UBD) was furthermore employed for these species, showing that spin-contamination involved in UHF solutions is largely suppressed, and therefore AP scheme for UBCCD removed easily the rest of spin-contamination. We also performed spin-unrestricted pure- and hybrid-density functional theory (UDFT) calculations of diradical and polyradical species. Three different computational schemes for total spin angular momentums were examined for the AP correction of the hybrid (H) UDFT. HUDFT calculations followed by AP, HUDFT(AP), yielded the S-T gaps that were qualitatively in good agreement with those of MkMRCCSD, UHF-CC(AP) and UB-CC(AP). Thus a systematic comparison among MkMRCCSD, UCC(AP) UBD(AP) and UDFT(AP) was performed concerning with the first principle calculations of J values in di- and poly-radical species. It was found that BS (AP) methods reproduce MkMRCCSD results, indicating their applicability to large exchange coupled systems.

  12. 3D calculation of Tucson-Melbourne 3NF effect in triton binding energy

    SciTech Connect (OSTI)

    Hadizadeh, M. R.; Tomio, L.; Bayegan, S.

    2010-08-04

    As an application of the new realistic three-dimensional (3D) formalism reported recently for three-nucleon (3N) bound states, an attempt is made to study the effect of three-nucleon forces (3NFs) in triton binding energy in a non partial wave (PW) approach. The spin-isospin dependent 3N Faddeev integral equations with the inclusion of 3NFs, which are formulated as function of vector Jacobi momenta, specifically the magnitudes of the momenta and the angle between them, are solved with Bonn-B and Tucson-Melbourne NN and 3N forces in operator forms which can be incorporated in our 3D formalism. The comparison with numerical results in both, novel 3D and standard PW schemes, shows that non PW calculations avoid the very involved angular momentum algebra occurring for the permutations and transformations and it is more efficient and less cumbersome for considering the 3NF.

  13. The effects of digital elevation model resolution on the calculation and predictions of topographic wetness indices.

    SciTech Connect (OSTI)

    Drover, Damion, Ryan

    2011-12-01

    One of the largest exports in the Southeast U.S. is forest products. Interest in biofuels using forest biomass has increased recently, leading to more research into better forest management BMPs. The USDA Forest Service, along with the Oak Ridge National Laboratory, University of Georgia and Oregon State University are researching the impacts of intensive forest management for biofuels on water quality and quantity at the Savannah River Site in South Carolina. Surface runoff of saturated areas, transporting excess nutrients and contaminants, is a potential water quality issue under investigation. Detailed maps of variable source areas and soil characteristics would therefore be helpful prior to treatment. The availability of remotely sensed and computed digital elevation models (DEMs) and spatial analysis tools make it easy to calculate terrain attributes. These terrain attributes can be used in models to predict saturated areas or other attributes in the landscape. With laser altimetry, an area can be flown to produce very high resolution data, and the resulting data can be resampled into any resolution of DEM desired. Additionally, there exist many maps that are in various resolutions of DEM, such as those acquired from the U.S. Geological Survey. Problems arise when using maps derived from different resolution DEMs. For example, saturated areas can be under or overestimated depending on the resolution used. The purpose of this study was to examine the effects of DEM resolution on the calculation of topographic wetness indices used to predict variable source areas of saturation, and to find the best resolutions to produce prediction maps of soil attributes like nitrogen, carbon, bulk density and soil texture for low-relief, humid-temperate forested hillslopes. Topographic wetness indices were calculated based on the derived terrain attributes, slope and specific catchment area, from five different DEM resolutions. The DEMs were resampled from LiDAR, which is a laser altimetry remote sensing method, obtained from the USDA Forest Service at Savannah River Site. The specific DEM resolutions were chosen because they are common grid cell sizes (10m, 30m, and 50m) used in mapping for management applications and in research. The finer resolutions (2m and 5m) were chosen for the purpose of determining how finer resolutions performed compared with coarser resolutions at predicting wetness and related soil attributes. The wetness indices were compared across DEMs and with each other in terms of quantile and distribution differences, then in terms of how well they each correlated with measured soil attributes. Spatial and non-spatial analyses were performed, and predictions using regression and geostatistics were examined for efficacy relative to each DEM resolution. Trends in the raw data and analysis results were also revealed.

  14. Effective and efficient optics inspection approach using machine learning algorithms

    SciTech Connect (OSTI)

    Abdulla, G; Kegelmeyer, L; Liao, Z; Carr, W

    2010-11-02

    The Final Optics Damage Inspection (FODI) system automatically acquires and utilizes the Optics Inspection (OI) system to analyze images of the final optics at the National Ignition Facility (NIF). During each inspection cycle up to 1000 images acquired by FODI are examined by OI to identify and track damage sites on the optics. The process of tracking growing damage sites on the surface of an optic can be made more effective by identifying and removing signals associated with debris or reflections. The manual process to filter these false sites is daunting and time consuming. In this paper we discuss the use of machine learning tools and data mining techniques to help with this task. We describe the process to prepare a data set that can be used for training and identifying hardware reflections in the image data. In order to collect training data, the images are first automatically acquired and analyzed with existing software and then relevant features such as spatial, physical and luminosity measures are extracted for each site. A subset of these sites is 'truthed' or manually assigned a class to create training data. A supervised classification algorithm is used to test if the features can predict the class membership of new sites. A suite of self-configuring machine learning tools called 'Avatar Tools' is applied to classify all sites. To verify, we used 10-fold cross correlation and found the accuracy was above 99%. This substantially reduces the number of false alarms that would otherwise be sent for more extensive investigation.

  15. Application of a generalized matrix averaging method for the calculation of the effective properties of thin multiferroic layers

    SciTech Connect (OSTI)

    Starkov, A. S.; Starkov, I. A.

    2014-11-15

    It is proposed to use a generalized matrix averaging (GMA) method for calculating the parameters of an effective medium with physical properties equivalent to those of a set of thin multiferroic layers. This approach obviates the need to solve a complex system of magnetoelectroelasticity equations. The required effective characteristics of a system of multiferroic layers are obtained using only operations with matrices, which significantly simplifies calculations and allows multilayer systems to be described. The proposed approach is applicable to thin-layer systems, in which the total thickness is much less than the system length, radius of curvature, and wavelengths of waves that can propagate in the system (long-wave approximation). Using the GMA method, it is also possible to obtain the effective characteristics of a periodic structure with each period comprising a number of thin multiferroic layers.

  16. Effect of shell drilling stiffness on response calculations of rectangular plates and tubes of rectangular cross-section under compression.

    SciTech Connect (OSTI)

    Gorman, Jhana; Hales, Jason Dean; Corona, Edmundo

    2010-05-01

    This report considers the calculation of the quasi-static nonlinear response of rectangular flat plates and tubes of rectangular cross-section subjected to compressive loads using quadrilateralshell finite element models. The principal objective is to assess the effect that the shell drilling stiffness parameter has on the calculated results. The calculated collapse load of elastic-plastic tubes of rectangular cross-section is of particular interest here. The drilling stiffness factor specifies the amount of artificial stiffness that is given to the shell element drilling Degree of freedom (rotation normal to the plane of the element). The element formulation has no stiffness for this degree of freedom, and this can lead to numerical difficulties. The results indicate that in the problems considered it is necessary to add a small amount of drilling tiffness to obtain converged results when using both implicit quasi-statics or explicit dynamics methods. The report concludes with a parametric study of the imperfection sensitivity of the calculated responses of the elastic-plastic tubes with rectangular cross-section.

  17. Quantum Mechanical Calculations of Charge Effects on gating the KcsA channel

    SciTech Connect (OSTI)

    Kariev, Alisher M.; Znamenskiy, Vasiliy S.; Green, Michael E.

    2007-02-06

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. A series of ab initio (density functional) calculations were carried out on side chains of a set of amino acids, plus water, from the (intracellular) gating region of the KcsA K+ channel. Their atomic coordinates, except hydrogen, are known from X-ray structures [D.A. Doyle, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, R. MacKinnon, The structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science 280 (1998) 6977; R. MacKinnon, S.L. Cohen, A. Kuo, A. Lee, B.T. Chait, Structural conservation in prokaryotic and eukaryotic potassium channels, Science 280 (1998) 106109; Y. Jiang, A. Lee, J. Chen, M. Cadene, B.T. Chait, R. MacKinnon, The open pore conformation of potassium channels. Nature 417 (2001) 523526], as are the coordinates of some water oxygen atoms. The 1k4c structure is used for the starting coordinates. Quantum mechanical optimization, in spite of the starting configuration, places the atoms in positions much closer to the 1j95, more tightly closed, configuration. This state shows four water molecules forming a basket under the Q119 side chains, blocking the channel. When a hydrated K+ approaches this basket, the optimized system shows a strong set of hydrogen bonds with the K+ at defined positions, preventing further approach of the K+ to the basket. This optimized structure with hydrated K+ added shows an ice-like 12 molecule nanocrystal of water. If the water molecules exchange, unless they do it as a group, the channel will remain blocked. The basket itself appears to be very stable, although it is possible that the K+ with its hydrating water molecules may be more mobile, capable of withdrawing from the gate. It is also not surprising that water essentially freezes, or forms a kind of glue, in a nanometer space; this agrees with experimental results on a rather different, but similarly sized (nm dimensions) system [K.B. Jinesh, J.W.M. Frenken, Capillary condensation in atomic scale friction: how water acts like a glue, Phys. Rev. Lett. 96 (2006) 166103/14].

  18. Ballistic electron transport calculation of strained germanium-tin fin field-effect transistors

    SciTech Connect (OSTI)

    Lan, H.-S.; Liu, C. W.

    2014-05-12

    The dependence of ballistic electron current on Sn content, sidewall orientations, fin width, and uniaxial stress is theoretically studied for the GeSn fin field-effect transistors. Alloying Sn increases the direct ? valley occupancy and enhances the injection velocity at virtual source node. (112{sup }) sidewall gives the highest current enhancement due to the rapidly increasing ? valley occupancy. The non-parabolicity of the ? valley affects the occupancy significantly. However, uniaxial tensile stress and the shrinkage of fin width reduce the ? valley occupancy, and the currents are enhanced by increasing occupancy of specific indirect L valleys with high injection velocity.

  19. SRU Calculator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculator SRU Calculator About SRUs You can use this form to estimate your mass storage charges (in SRUs). SRUs are calculated on a daily basis. Enter your estimated daily average number of files and data storage and your yearly estimate of data transferred to and from the HPSS system. Click on Calculate and your SRU charge will appear in the light blue boxes. Enter average daily values for the allocation year Number of files*: Amount of data stored*: GB Enter total HPSS I/O for the allocation

  20. Effect of a detailed radial core expansion reactivity feedback model on ATWS calculations using SASSYS/SAS4A

    SciTech Connect (OSTI)

    Wigeland, R.A.

    1986-01-01

    The present emphasis on inherent safety and inherently safe designs for liquid-metal reactors has resulted in a need to represent the various reactivity feedback mechanisms as accurately as possible. In particular, the reactivity feedback from radial core expansion has been found to provide the dominant negative feedback contribution in postulated anticipated transient without scram (ATWS) events. Review of the existing modeling in the SASSYS/SAS4A computer code system revealed that while the modeling may be adequate for the early phases of various unprotected transients, the accuracy would be less than desirable for the extended transients which typically occur for inherently safe designs. The existing model for calculating the reactivity feedback from radial core expansion uses a feedback from radial core expansion uses a feedback coefficient in conjunction with changes in the temperatures of the grid support plate and the above-core load pad. The accuracy of this approach is determined partly by the conditions used in deriving the feedback coefficient, and their relevance to the transient being investigated. Accuracy is also affected by the need to include effects other than those that could be directly related to changes in the grid plate and above-core load pad temperatures, such as subassembly bowing and the potential for clearances to occur between subassemblies in the above-core load pad region. As a result, a detailed model was developed in an attempt to account for these and other effects in a more mechanistic form.

  1. WBGT Calculator

    Energy Science and Technology Software Center (OSTI)

    2000-05-22

    This software calculates a Wet Bulb Globe Temperature (WBGT) using standard measurements from a meteorological station. WBGT is used by Industrial Hygenists (IH) to determine heat stress potential to outdoor workers. Through the mid 1990''s, SRS technicians were dispatched several times daily to measure WBGT with a custom hand held instrument and results were dessiminated via telephone. Due to workforce reductions, the WSRC IH Department asked for the development of an automated method to simulatemore » the WBGT measurement using existing real time data from the Atmospheric Technologies Group''s meteorological monitoring network.« less

  2. Dose Calculation Spreadsheet

    Energy Science and Technology Software Center (OSTI)

    1997-06-10

    VENTSAR XL is an EXCEL Spreadsheet that can be used to calculate downwind doses as a result of a hypothetical atmospheric release. Both building effects and plume rise may be considered. VENTSAR XL will run using any version of Microsoft EXCEL version 4.0 or later. Macros (the programming language of EXCEL) was used to automate the calculations. The user enters a minimal amount of input and the code calculates the resulting concentrations and doses atmore » various downwind distances as specified by the user.« less

  3. Atomistic Calculations of the Effect of Minor Actinides on Thermodynamic and Kinetic Properties of UO{sub 2{+-}x}

    SciTech Connect (OSTI)

    Deo, Chaitanya; Adnersson, Davis; Battaile, Corbett; uberuaga, Blas

    2012-10-30

    The team will examine how the incorporation of actinide species important for mixed oxide (MOX) and other advanced fuel designs impacts thermodynamic quantities of the host UO{sub 2} nuclear fuel and how Pu, Np, Cm and Am influence oxygen mobility. In many cases, the experimental data is either insufficient or missing. For example, in the case of pure NpO2, there is essentially no experimental data on the hyperstoichiometric form it is not even known if hyperstoichiometry NpO{sub 2{+-}x} is stable. The team will employ atomistic modeling tools to calculate these quantities

  4. Tri And Rot Effects In Ternary Fission: What Can Be Learned?

    SciTech Connect (OSTI)

    Goennenwein, F.; Gagarski, A.; Petrov, G.; Guseva, I.; Zavarukhina, T.; Mutterer, M.; Kalben, J. von; Kopatch, Yu.; Tiourine, G.; Trzaska, W.; Sillanpaea, M.; Soldner, T.; Nesvizhevsky, V.

    2010-04-30

    Inducing fission by polarized neutrons allows studying subtle effects of the dynamics of the process. In the present experiments ternary fission of {sup 235}U and {sup 239}Pu was investigated with cold neutrons in the (n,f) reaction at the Institut Laue-Langevin, Grenoble. Asymmetries in the emission of ternary particles were discovered by making use of the neutron spin flipping. It was found that two effects are interfering. There is first an asymmetry in the total yields of ternary particles having been called the TRI-effect. Second, it was observed that the angular distributions of ternary particles are shifted back and forth when flipping the neutron spin. This shift was named ROT effect. Guided by trajectory calculations of the three-body decay, the signs and sizes of the ROT effect are interpreted in terms of the K-numbers of the transition states at the saddle point of fission.

  5. Instrument uncertainty effect on calculation of absolute humidity using dewpoint, wet-bulb, and relative humidity sensors

    SciTech Connect (OSTI)

    Slayzak, S.J.; Ryan, J.P.

    1998-04-01

    As part of the US Department of Energy`s Advanced Desiccant Technology Program, the National Renewable Energy Laboratory (NREL) is characterizing the state-of-the-art in desiccant dehumidifiers, the key component of desiccant cooling systems. The experimental data will provide industry and end users with independent performance evaluation and help researchers assess the energy savings potential of the technology. Accurate determination of humidity ratio is critical to this work and an understanding of the capabilities of the available instrumentation is central to its proper application. This paper compares the minimum theoretical random error in humidity ratio calculation for three common measurement methods to give a sense of the relative maximum accuracy possible for each method assuming systematic errors can be made negligible. A series of experiments conducted also illustrate the capabilities of relative humidity sensors as compared to dewpoint sensors in measuring the grain depression of desiccant dehumidifiers. These tests support the results of the uncertainty analysis. At generally available instrument accuracies, uncertainty in calculated humidity ratio for dewpoint sensors is determined to be constant at approximately 2%. Wet-bulb sensors range between 2% and 6% above 10 g/kg (4%--15% below), and relative humidity sensors vary between 4% above 90% rh and 15% at 20% rh. Below 20% rh, uncertainty for rh sensors increases dramatically. Highest currently attainable accuracies bring dewpoint instruments down to 1% uncertainty, wet bulb to a range of 1%--3% above 10 g/kg (1.5%--8% below), and rh sensors between 1% and 5%.

  6. SU-E-T-599: The Variation of Hounsfield Unit and Relative Electron Density Determination as a Function of KVp and Its Effect On Dose Calculation Accuracy

    SciTech Connect (OSTI)

    Ohl, A; Boer, S De

    2014-06-01

    Purpose: To investigate the differences in relative electron density for different energy (kVp) settings and the effect that these differences have on dose calculations. Methods: A Nuclear Associates 76-430 Mini CT QC Phantom with materials of known relative electron densities was imaged by one multi-slice (16) and one single-slice computed tomography (CT) scanner. The Hounsfield unit (HU) was recorded for each material with energies ranging from 80 to 140 kVp and a representative relative electron density (RED) curve was created. A 5 cm thick inhomogeneity was created in the treatment planning system (TPS) image at a depth of 5 cm. The inhomogeneity was assigned HU for various materials for each kVp calibration curve. The dose was then calculated with the analytical anisotropic algorithm (AAA) at points within and below the inhomogeneity and compared using the 80 kVp beam as a baseline. Results: The differences in RED values as a function of kVp showed the largest variations of 580 and 547 HU for the Aluminum and Bone materials; the smallest differences of 0.6 and 3.0 HU were observed for the air and lung inhomogeneities. The corresponding dose calculations for the different RED values assigned to the 5 cm thick slab revealed the largest differences inside the aluminum and bone inhomogeneities of 2.2 to 6.4% and 4.3 to 7.0% respectively. The dose differences beyond these two inhomogeneities were between 0.4 to 1.6% for aluminum and 1.9 to 2.2 % for bone. For materials with lower HU the calculated dose differences were less than 1.0%. Conclusion: For high CT number materials the dose differences in the phantom calculation as high as 7.0% are significant. This result may indicate that implementing energy specific RED curves can increase dose calculation accuracy.

  7. Plutonium 239 Equivalency Calculations

    SciTech Connect (OSTI)

    Wen, J

    2011-05-31

    This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

  8. Effect of intranasal manganese administration on neurotransmission and spatial learning in rats

    SciTech Connect (OSTI)

    Blecharz-Klin, Kamilla; Piechal, Agnieszka; Joniec-Maciejak, Ilona; Pyrzanowska, Justyna; Widy-Tyszkiewicz, Ewa

    2012-11-15

    The effect of intranasal manganese chloride (MnCl{sub 2}4H{sub 2}O) exposure on spatial learning, memory and motor activity was estimated in Morris water maze task in adult rats. Three-month-old male Wistar rats received for 2 weeks MnCl{sub 2}4H{sub 2}O at two doses the following: 0.2 mg/kg b.w. (Mn0.2) or 0.8 mg/kg b.w. (Mn0.8) per day. Control (Con) and manganese-exposed groups were observed for behavioral performance and learning in water maze. ANOVA for repeated measurements did not show any significant differences in acquisition in the water maze between the groups. However, the results of the probe trial on day 5, exhibited spatial memory deficits following manganese treatment. After completion of the behavioral experiment, the regional brain concentrations of neurotransmitters and their metabolites were determined via HPLC in selected brain regions, i.e. prefrontal cortex, hippocampus and striatum. ANOVA demonstrated significant differences in the content of monoamines and metabolites between the treatment groups compared to the controls. Negative correlations between platform crossings on the previous platform position in Southeast (SE) quadrant during the probe trial and neurotransmitter turnover suggest that impairment of spatial memory and cognitive performance after manganese (Mn) treatment is associated with modulation of the serotonergic, noradrenergic and dopaminergic neurotransmission in the brain. These findings show that intranasally applied Mn can impair spatial memory with significant changes in the tissue level and metabolism of monoamines in several brain regions. -- Highlights: ? Intranasal exposure to manganese in rats impairs spatial memory in the water maze. ? Regional changes in levels of neurotransmitters in the brain have been identified. ? Cognitive disorder correlates with modulation of 5-HT, NA and DA neurotransmission.

  9. The Effect of the Recovery Act on the River Corridor Closure Project: Lessons Learned

    SciTech Connect (OSTI)

    Mackay, S. M.

    2012-07-31

    This summary report provides a high-level lessons learned by WCH of the impact to its project performance. The context is limited to the WCH project alone.

  10. Quantum Monte Carlo calculations of electromagnetic transitions in $^8$Be with meson-exchange currents derived from chiral effective field theory

    SciTech Connect (OSTI)

    Pastore, S.; Wiringa, Robert B.; Pieper, Steven C.; Schiavilla, Rocco

    2014-08-01

    We report quantum Monte Carlo calculations of electromagnetic transitions in $^8$Be. The realistic Argonne $v_{18}$ two-nucleon and Illinois-7 three-nucleon potentials are used to generate the ground state and nine excited states, with energies that are in excellent agreement with experiment. A dozen $M1$ and eight $E2$ transition matrix elements between these states are then evaluated. The $E2$ matrix elements are computed only in impulse approximation, with those transitions from broad resonant states requiring special treatment. The $M1$ matrix elements include two-body meson-exchange currents derived from chiral effective field theory, which typically contribute 20--30\\% of the total expectation value. Many of the transitions are between isospin-mixed states; the calculations are performed for isospin-pure states and then combined with the empirical mixing coefficients to compare to experiment. In general, we find that transitions between states that have the same dominant spatial symmetry are in decent agreement with experiment, but those transitions between different spatial symmetries are often significantly underpredicted.

  11. Effects of strain and quantum confinement in optically pumped nuclear magnetic resonance in GaAs: Interpretation guided by spin-dependent band structure calculations

    SciTech Connect (OSTI)

    Wood, R. M.; Saha, D.; McCarthy, L. A.; Tokarski, III, J. T.; Sanders, G. D.; Kuhns, P. L.; McGill, S. A.; Reyes, A. P.; Reno, J. L.; Stanton, C. J.; Bowers, C. R.

    2014-10-29

    A combined experimental-theoretical study of optically pumped NMR (OPNMR) has been performed in a GaAs/Al0.1Ga0.9As quantum well film with thermally induced biaxial strain. The photon energy dependence of the Ga-71 OPNMR signal was recorded at magnetic fields of 4.9 and 9.4 T at a temperature of 4.8-5.4 K. The data were compared to the nuclear spin polarization calculated from differential absorption to spin-up and spin-down states of the conduction band using a modified Pidgeon Brown model. Reasonable agreement between theory and experiment is obtained, facilitating assignment of features in the OPNMR energy dependence to specific interband transitions. Despite the approximations made in the quantum-mechanical model and the inexact correspondence between the experimental and calculated observables, the results provide insight into how effects of strain and quantum confinement are manifested in OPNMR signals

  12. Effects of strain and quantum confinement in optically pumped nuclear magnetic resonance in GaAs: Interpretation guided by spin-dependent band structure calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wood, R. M.; Saha, D.; McCarthy, L. A.; Tokarski, III, J. T.; Sanders, G. D.; Kuhns, P. L.; McGill, S. A.; Reyes, A. P.; Reno, J. L.; Stanton, C. J.; et al

    2014-10-29

    A combined experimental-theoretical study of optically pumped NMR (OPNMR) has been performed in a GaAs/Al0.1Ga0.9As quantum well film with thermally induced biaxial strain. The photon energy dependence of the Ga-71 OPNMR signal was recorded at magnetic fields of 4.9 and 9.4 T at a temperature of 4.8-5.4 K. The data were compared to the nuclear spin polarization calculated from differential absorption to spin-up and spin-down states of the conduction band using a modified Pidgeon Brown model. Reasonable agreement between theory and experiment is obtained, facilitating assignment of features in the OPNMR energy dependence to specific interband transitions. Despite the approximationsmore » made in the quantum-mechanical model and the inexact correspondence between the experimental and calculated observables, the results provide insight into how effects of strain and quantum confinement are manifested in OPNMR signals« less

  13. Calculation of Electron Trajectories

    Energy Science and Technology Software Center (OSTI)

    1982-06-01

    EGUN, the SLAC Electron Trajectory Program, computes trajectories of charged particles in electrostatic and magnetostatic focusing systems including the effects of space charge and self-magnetic fields. Starting options include Child''s Law conditions on cathodes of various shapes, user-specified initial conditions for each ray, and a combination of Child''s Law conditions and user specifications. Either rectangular or cylindrically symmetric geometry may be used. Magnetic fields may be specified using arbitrary configuration of coils, or the outputmore » of a magnet program, such as Poisson, or by an externally calculated array of the axial fields.« less

  14. The effects of surface bond relaxation on electronic structure of Sb{sub 2}Te{sub 3} nano-films by first-principles calculation

    SciTech Connect (OSTI)

    Li, C. Zhao, Y. F.; Fu, C. X.; Gong, Y. Y.; Chi, B. Q.; Sun, C. Q.

    2014-10-15

    The effects of vertical compressive stress on Sb{sub 2}Te{sub 3} nano-films have been investigated by the first principles calculation, including stability, electronic structure, crystal structure, and bond order. It is found that the band gap of nano-film is sensitive to the stress in Sb{sub 2}Te{sub 3} nano-film and the critical thickness increases under compressive stress. The band gap and band order of Sb{sub 2}Te{sub 3} film has been affected collectively by the surface and internal crystal structures, the contraction ratio between surface bond length of nano-film and the corresponding bond length of bulk decides the band order of Sb{sub 2}Te{sub 3} film.

  15. Study of the thermodynamic properties of CeO{sub 2} from ab initio calculations: The effect of phonon-phonon interaction

    SciTech Connect (OSTI)

    Niu, Zhen-Wei; Zeng, Zhao-Yi; Hu, Cui-E; Cai, Ling-Cang; Chen, Xiang-Rong

    2015-01-07

    The thermodynamic properties of CeO{sub 2} have been reevaluated by a simple but accurate scheme. All our calculations are based on the self-consistent ab initio lattice dynamical (SCAILD) method that goes beyond the quasiharmonic approximation. Through this method, the effects of phonon-phonon interactions are included. The obtained thermodynamic properties and phonon dispersion relations are in good agreement with experimental data when considering the correction of phonon-phonon interaction. We find that the correction of phonon-phonon interaction is equally important and should not be neglected. At last, by comparing with quasiharmonic approximation, the present scheme based on SCAILD method is probably more suitable for high temperature systems.

  16. Practical aspects and uncertainty analysis of biological effective dose (BED) regarding its three-dimensional calculation in multiphase radiotherapy treatment plans

    SciTech Connect (OSTI)

    Kauweloa, Kevin I. Gutierrez, Alonso N.; Bergamo, Angelo; Stathakis, Sotirios; Papanikolaou, Nikos; Mavroidis, Panayiotis

    2014-07-15

    Purpose: There is a growing interest in the radiation oncology community to use the biological effective dose (BED) rather than the physical dose (PD) in treatment plan evaluation and optimization due to its stronger correlation with radiobiological effects. Radiotherapy patients may receive treatments involving a single only phase or multiple phases (e.g., primary and boost). Since most treatment planning systems cannot calculate the analytical BED distribution in multiphase treatments, an approximate multiphase BED expression, which is based on the total physical dose distribution, has been used. The purpose of this paper is to reveal the mathematical properties of the approximate BED formulation, relative to the true BED. Methods: The mathematical properties of the approximate multiphase BED equation are analyzed and evaluated. In order to better understand the accuracy of the approximate multiphase BED equation, the true multiphase BED equation was derived and the mathematical differences between the true and approximate multiphase BED equations were determined. The magnitude of its inaccuracies under common clinical circumstances was also studied. All calculations were performed on a voxel-by-voxel basis using the three-dimensional dose matrices. Results: Results showed that the approximate multiphase BED equation is accurate only when the dose-per-fractions (DPFs) in both the first and second phases are equal, which occur when the dose distribution does not significantly change between the phases. In the case of heterogeneous dose distributions, which significantly vary between the phases, there are fewer occurrences of equal DPFs and hence the inaccuracy of the approximate multiphase BED is greater. These characteristics are usually seen in the dose distributions being delivered to organs at risk rather than to targets. Conclusions: The finding of this study indicates that the true multiphase BED equation should be implemented in the treatment planning systems due to the inconsistent accuracy of the approximate multiphase BED equation in most of the clinical situations.

  17. SU-E-T-510: Mathematical Analysis of Approximate Biological Effective Dose (BED) Calculation for Multi-Phase Radiotherapy Treatment Plans

    SciTech Connect (OSTI)

    Kauweloa, K; Gutierrez, A; Bergamo, A; Stathakis, S; Papanikolaou, N; Mavroidis, P

    2014-06-01

    Purpose: There is growing interest about biological effective dose (BED) and its application in treatment plan evaluation due to its stronger correlation with treatment outcome. An approximate biological effective dose (BEDA) equation was introduced to simplify BED calculations by treatment planning systems in multi-phase treatments. The purpose of this work is to reveal its mathematical properties relative to the true, multi-phase BED (BEDT) equation. Methods: The BEDT equation was derived and used to reveal the mathematical properties of BEDA. MATLAB (MathWorks, Natick, MA) was used to simulate and analyze common and extreme clinical multi-phase cases. In those cases, percent error (Perror) and Bland-Altman analysis were used to study the significance of the inaccuracies of BEDA for different combinations of total doses, numbers of fractions, doses per fractions and ? over ? values. All the calculations were performed on a voxel-basis in order to study how dose distributions would affect the accuracy of BEDA. Results: When the voxel dose-per-fractions (DPF) delivered by both phases are equal, BEDA and BEDT are equal. In heterogeneous dose distributions, which significantly vary between the phases, there are fewer occurrences of equal DPFs and hence the imprecision of BEDA is greater. It was shown that as the ? over ? ratio increased the accuracy of BEDA would improve. Examining twenty-four cases, it was shown that the range of DPF ratios for a 3 Perror varied from 0.32 to 7.50Gy, whereas for Perror of 1 the range varied from 0.50 to 2.96Gy. Conclusion: The DPF between the different phases should be equal in order to render BEDA accurate. OARs typically receive heterogeneous dose distributions hence the probability of equal DPFs is low. Consequently, the BEDA equation should only be used for targets or OARs that receive uniform or very similar dose distributions by the different treatment phases.

  18. Hydrogen Threshold Cost Calculation

    Broader source: Energy.gov [DOE]

    DOE Hydrogen Program Record number11007, Hydrogen Threshold Cost Calculation, documents the methodology and assumptions used to calculate that threshold cost.

  19. Original Impact Calculations

    Broader source: Energy.gov [DOE]

    Original Impact Calculations, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  20. Utility Potential Calculator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Potential Studies in the Northwest V1.0 Utility Potential Calculator V1.0 for Excel 2007 Utility Potential Calculator V1.0 for Excel 2003 Note: BPA developed the Utility...

  1. ARM - Wind Chill Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsWind Chill Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Wind Chill Calculations Wind Chill is the apparent temperature felt on the exposed human body owing to the combination of temperature and wind speed. From 1945 to 2001, Wind Chill was calculated by the Siple

  2. ARM - Relative Humidity Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsRelative Humidity Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Relative Humidity Calculations Heat Index is an index that combines air temperature and relative humidity to estimate how hot it actually feels. The human body cools off through perspiration, which

  3. Waste Package Lifting Calculation

    SciTech Connect (OSTI)

    H. Marr

    2000-05-11

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.

  4. Multiphase flow calculation software

    DOE Patents [OSTI]

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  5. Calculation note review

    SciTech Connect (OSTI)

    Ramble, A.L.

    1996-09-30

    This document contains a review of the calculation notes which were prepared for the Tank Waste Remediation System Basis for Interim Operation.

  6. Draft PEI Calculator

    Broader source: Energy.gov [DOE]

    This Excel spreadsheet is designed to perform the calculations necessary to determine PEI -- a pump's energy index -- as proposed in DOE's Notices of Proposed Rulemaking (Dockets EERE-2011-BT-STD-0031 and EERE-2013-BT-TP-0055). DOE is providing this calculator as a convenience at the request of interested parties.

  7. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and Renewable Energy Get Widget Code

  8. Appliance Energy Calculator

    Broader source: Energy.gov [DOE]

    Our appliance and electronic energy use calculator allows you to estimate your annual energy use and cost to operate specific products. The wattage values provided are samples only; actual wattage...

  9. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Annual Fuel Cost gal Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and ...

  10. ARM - Heat Index Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that ...

  11. Energy Cost Savings Calculator for Air-Cooled Electric Chillers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Air-Cooled Electric Chillers Energy Cost Savings Calculator for Air-Cooled Electric Chillers This cost calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels. Learn more about the calculator assumptions and definitions. Project Type Is this a new installation or a replacement? New Replacement How many chillers will you purchase? Performance Factors Existing What is the existing design condition? Full Load

  12. Jobs Calculator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jobs Calculator Jobs Calculator Office spreadsheet icon owip_jobs_calculator_v11-0.xls More Documents & Publications WPN 10-14: Calculation of Job Creation through DOE Recovery Act Funding Progress Report Template Job Counting Guidelines

  13. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  14. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  15. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  16. Tunnel closure calculations

    SciTech Connect (OSTI)

    Moran, B.; Attia, A.

    1995-07-01

    When a deeply penetrating munition explodes above the roof of a tunnel, the amount of rubble that falls inside the tunnel is primarily a function of three parameters: first the cube-root scaled distance from the center of the explosive to the roof of the tunnel. Second the material properties of the rock around the tunnel, and in particular the shear strength of that rock, its RQD (Rock Quality Designator), and the extent and orientation of joints. And third the ratio of the tunnel diameter to the standoff distance (distance between the center of explosive and the tunnel roof). The authors have used CALE, a well-established 2-D hydrodynamic computer code, to calculate the amount of rubble that falls inside a tunnel as a function of standoff distance for two different tunnel diameters. In particular they calculated three of the tunnel collapse experiments conducted in an iron ore mine near Kirkeness, Norway in the summer of 1994. The failure model that they used in their calculations combines an equivalent plastic strain criterion with a maximum tensile strength criterion and can be calibrated for different rocks using cratering data as well as laboratory experiments. These calculations are intended to test and improve the understanding of both the Norway Experiments and the ACE (Array of conventional Explosive) phenomenology.

  17. Carbon Footprint Calculator

    Broader source: Energy.gov [DOE]

    This calculator estimates the amount of carbon emissions you and members of your household are responsible for. It does not include emissions associated with your work or getting to work if you commute by public transportation. It was developed by IEEE Spectrum magazine.

  18. Nuclear Material Variance Calculation

    Energy Science and Technology Software Center (OSTI)

    1995-01-01

    MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet that significantly reduces the effort required to make the variance and covariance calculations needed to determine the detection sensitivity of a materials accounting system and loss of special nuclear material (SNM). The user is required to enter information into one of four data tables depending on the type of term in the materials balance (MB) equation. The four data tables correspond to input transfers, output transfers,more » and two types of inventory terms, one for nondestructive assay (NDA) measurements and one for measurements made by chemical analysis. Each data entry must contain an identification number and a short description, as well as values for the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements during an accounting period. The user must also specify the type of error model (additive or multiplicative) associated with each measurement, and possible correlations between transfer terms. Predefined spreadsheet macros are used to perform the variance and covariance calculations for each term based on the corresponding set of entries. MAVARIC has been used for sensitivity studies of chemical separation facilities, fuel processing and fabrication facilities, and gas centrifuge and laser isotope enrichment facilities.« less

  19. Zero Temperature Hope Calculations

    SciTech Connect (OSTI)

    Rozsnyai, B F

    2002-07-26

    The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the outer part of the self-consistent potential in such a way that in the final state after photoexcitation or photoionization the newly occupied orbital sees the hole left in the initial state. This is very important to account for the large number of Rydberg states in the case of low densities. In the next Section we show calculated photoabsorptions compared with experimental data in figures with some rudimentary explanations.

  20. Critical dose and toxicity index of organs at risk in radiotherapy: Analyzing the calculated effects of modified dose fractionation in nonsmall cell lung cancer

    SciTech Connect (OSTI)

    Pedicini, Piernicola; Strigari, Lidia; Benassi, Marcello; Caivano, Rocchina; Fiorentino, Alba; Nappi, Antonio; Salvatore, Marco; Storto, Giovanni

    2014-04-01

    To increase the efficacy of radiotherapy for nonsmall cell lung cancer (NSCLC), many schemes of dose fractionation were assessed by a new toxicity index (I), which allows one to choose the fractionation schedules that produce less toxic treatments. Thirty-two patients affected by non resectable NSCLC were treated by standard 3-dimensional conformal radiotherapy (3DCRT) with a strategy of limited treated volume. Computed tomography datasets were employed to re plan by simultaneous integrated boost intensity-modulated radiotherapy (IMRT). The dose distributions from plans were used to test various schemes of dose fractionation, in 3DCRT as well as in IMRT, by transforming the dose-volume histogram (DVH) into a biological equivalent DVH (BDVH) and by varying the overall treatment time. The BDVHs were obtained through the toxicity index, which was defined for each of the organs at risk (OAR) by a linear quadratic model keeping an equivalent radiobiological effect on the target volume. The less toxic fractionation consisted in a severe/moderate hyper fractionation for the volume including the primary tumor and lymph nodes, followed by a hypofractionation for the reduced volume of the primary tumor. The 3DCRT and IMRT resulted, respectively, in 4.7% and 4.3% of dose sparing for the spinal cord, without significant changes for the combined-lungs toxicity (p < 0.001). Schedules with reduced overall treatment time (accelerated fractionations) led to a 12.5% dose sparing for the spinal cord (7.5% in IMRT), 8.3% dose sparing for V{sub 20} in the combined lungs (5.5% in IMRT), and also significant dose sparing for all the other OARs (p < 0.001). The toxicity index allows to choose fractionation schedules with reduced toxicity for all the OARs and equivalent radiobiological effect for the tumor in 3DCRT, as well as in IMRT, treatments of NSCLC.

  1. Roof Savings Calculator Suite

    Energy Science and Technology Software Center (OSTI)

    2013-11-22

    The software options currently supported by the simulation engine can be seen/experienced at www.roofcalc.com. It defaults all values to national averages with options to test a base-case (residential or commercial) building versus a comparison building with inputs for building type, location, building vintage, conditioned area, number of floors, and window-to-wall ratio, cooling system efficiency, type of heating, heating system efficiency, duct location, roof/ceiling insulation level, above-sheathing ventilation, radiant barrier, roof thermal mass, roof solar reflectance,more » roof thermal emittance, utility costs, roof pitch. The Roof Savings Caculator Suite adds utilities and website/web service and the integration of AtticSim with DOE-2.1E, with the end-result being Roof Savings Calculator.« less

  2. Roof Savings Calculator Suite

    SciTech Connect (OSTI)

    New, Joshua R; Garrett, Aaron; Erdem, Ender; Huang, Yu

    2013-11-22

    The software options currently supported by the simulation engine can be seen/experienced at www.roofcalc.com. It defaults all values to national averages with options to test a base-case (residential or commercial) building versus a comparison building with inputs for building type, location, building vintage, conditioned area, number of floors, and window-to-wall ratio, cooling system efficiency, type of heating, heating system efficiency, duct location, roof/ceiling insulation level, above-sheathing ventilation, radiant barrier, roof thermal mass, roof solar reflectance, roof thermal emittance, utility costs, roof pitch. The Roof Savings Caculator Suite adds utilities and website/web service and the integration of AtticSim with DOE-2.1E, with the end-result being Roof Savings Calculator.

  3. Real-structure effects: Band gaps of Mg_xZn_{1-x}O, Cd_xZn_{1-x}O, and n-type ZnO from ab-initio calculations

    SciTech Connect (OSTI)

    Schleife, A; Bechstedt, F

    2012-02-15

    Many-body perturbation theory is applied to compute the quasiparticle electronic structures and the optical-absorption spectra (including excitonic effects) for several transparent conducting oxides. We discuss HSE+G{sub 0}W{sub 0} results for band structures, fundamental band gaps, and effective electron masses of MgO, ZnO, CdO, SnO{sub 2}, SnO, In{sub 2}O{sub 3}, and SiO{sub 2}. The Bethe-Salpeter equation is solved to account for excitonic effects in the calculation of the frequency-dependent absorption coefficients. We show that the HSE+G{sub 0}W{sub 0} approach and the solution of the Bethe-Salpeter equation are very well-suited to describe the electronic structure and the optical properties of various transparent conducting oxides in good agreement with experiment.

  4. Energy Cost Savings Calculator for Commercial Boilers: Closed Loop, Space

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Applications Only | Department of Energy Commercial Boilers: Closed Loop, Space Heating Applications Only Energy Cost Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only This cost calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels. Learn more about the base model and other assumptions. Project Type Is this a new installation or a replacement? New Replacement What is the deliverable

  5. How Are Momentum Savings Calculated?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simplifying the Math: How Are Momentum Savings Calculated? Many people have heard about Momentum savings but don't understand how these types of savings are calculated. The short...

  6. Learning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learning Learning Learning and Development Planning The Office of Learning and Workforce Development develops and manages crosscutting, competency-based, programs for professional, ...

  7. Webinar: Using the RTU Comparison Calculator to Justify High-Efficiency Units

    Broader source: Energy.gov [DOE]

    The Advanced Rooftop Unit (RTU) Campaign is working with the Pacific Northwest National Laboratory (PNNL) to update its RTU Comparison Calculator (RTUCC). Join this webinar to learn how contractors...

  8. Equilibrium calculations of firework mixtures

    SciTech Connect (OSTI)

    Hobbs, M.L.; Tanaka, Katsumi; Iida, Mitsuaki; Matsunaga, Takehiro

    1994-12-31

    Thermochemical equilibrium calculations have been used to calculate detonation conditions for typical firework components including three report charges, two display charges, and black powder which is used as a fuse or launch charge. Calculations were performed with a modified version of the TIGER code which allows calculations with 900 gaseous and 600 condensed product species at high pressure. The detonation calculations presented in this paper are thought to be the first report on the theoretical study of firework detonation. Measured velocities for two report charges are available and compare favorably to predicted detonation velocities. However, the measured velocities may not be true detonation velocities. Fast deflagration rather than an ideal detonation occurs when reactants contain significant amounts of slow reacting constituents such as aluminum or titanium. Despite such uncertainties in reacting pyrotechnics, the detonation calculations do show the complex nature of condensed phase formation at elevated pressures and give an upper bound for measured velocities.

  9. Temperature effects on prevalent structures of hydrated Fe{sup +} complexes: Infrared spectroscopy and DFT calculations of Fe{sup +}(H{sub 2}O){sub n} (n = 3–8)

    SciTech Connect (OSTI)

    Ohashi, Kazuhiko Sekiya, Hiroshi; Sasaki, Jun; Yamamoto, Gun; Judai, Ken; Nishi, Nobuyuki

    2014-12-07

    Hydrated Fe{sup +} ions are produced in a laser-vaporization cluster source of a triple quadrupole mass spectrometer. The Fe{sup +}(H{sub 2}O){sub n} (n = 3–8) complexes are mass-selected and probed with infrared (IR) photodissociation spectroscopy in the OH-stretch region. Density functional theory (DFT) calculations are also carried out for analyzing the experimental IR spectra and for evaluating thermodynamic quantities of low-lying isomers. Solvation through H-bonding instead of direct coordination to Fe{sup +} is observed already at n = 3, indicating the completion of the first hydration shell with two H{sub 2}O molecules. Size dependent variations in the spectra for n = 5–7 provide evidence for the second-shell completion at n = 6, where a linearly coordinated Fe{sup +}(H{sub 2}O){sub 2} subunit is solvated with four H{sub 2}O molecules. Overall spectral features for n = 3–8 agree well with those predicted for 2-coordinated structures. DFT calculations predict that such 2-coordinated structures are lowest in energy for smaller n. However, 4-coordinated isomers are predicted to be more stable for n = 7 and 8; the energy ordering is in conflict with the IR spectroscopic observation. Examination of free energy as a function of temperature suggests that the ordering of the isomers at warmer temperatures can be different from the ordering near 0 K. For n = 7 and 8, the 4-coordinated isomers should be observed at low temperatures because they are lowest in enthalpy. Meanwhile, outer-shell waters in the 2-coordinated structures are bound less rigidly; their contribution to entropy is rather large. The 2-coordinated structures become abundant at warmer temperatures, owing to the entropy effect.

  10. Calculation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are two separate equations with second derivatives of v ex and v ix instead of one equation including the second derivative of v. The resulting equations still contain E x ,...

  11. Lessons Learned

    Broader source: Energy.gov [DOE]

    The Department of Energy utilizes project management lessons learned (PMLL) in the execution of DOE capital asset projects to improve current and future projects. Integrated Project Teams (IPTs),...

  12. Energy Escalation Rate Calculator Download

    Broader source: Energy.gov [DOE]

    Energy Escalation Rate Calculator (EERC) computes an average annual escalation rate for a specified time period, which can be used as an escalation rate for contract payments in energy savings performance contracts and utility energy services contracts.

  13. Home Energy Score Calculation Methodology

    Broader source: Energy.gov [DOE]

    A Qualified Assessor calculates the Home Energy Score by first conducting a brief walk-through of the home and collecting approximately 40 data points. Next, the Qualified Assessor uses the Home...

  14. Multigroup Reactor Lattice Cell Calculation

    Energy Science and Technology Software Center (OSTI)

    1990-03-01

    The Winfrith Improved Multigroup Scheme (WIMS), is a general code for reactor lattice cell calculations on a wide range of reactor systems. In particular, the code will accept rod or plate fuel geometries in either regular arrays or in clusters, and the energy group structure has been chosen primarily for thermal calculations. The basic library has been compiled with 14 fast groups, 13 resonance groups and 42 thermal groups, but the user is offered themore » choice of accurate solutions in many groups or rapid calculations in few groups. Temperature dependent thermal scattering matrices for a variety of scattering laws are available in the library for the principal moderators which include hydrogen, deuterium, graphite, beryllium and oxygen. WIMSD5 is a succesor version of WIMS-D/4.« less

  15. Canister Transfer Facility Criticality Calculations

    SciTech Connect (OSTI)

    J.E. Monroe-Rammsy

    2000-10-13

    The objective of this calculation is to evaluate the criticality risk in the surface facility for design basis events (DBE) involving Department of Energy (DOE) Spent Nuclear Fuel (SNF) standardized canisters (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M&O] 2000a). Since some of the canisters will be stored in the surface facility before they are loaded in the waste package (WP), this calculation supports the demonstration of concept viability related to the Surface Facility environment. The scope of this calculation is limited to the consideration of three DOE SNF fuels, specifically Enrico Fermi SNF, Training Research Isotope General Atomic (TRIGA) SNF, and Mixed Oxide (MOX) Fast Flux Test Facility (FFTF) SNF.

  16. Petrophysical corner - calculating water cut

    SciTech Connect (OSTI)

    Elphick, R.Y. )

    1990-02-01

    The problem of determining the amount of water cut that can be expected from a well is discussed in conjunction with a program for making this calculation. The program was written for Amiga, Apple Macintosh, and MS DOS personal computers and source code for the program is provided.

  17. AGING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2004-09-10

    The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging Facility. As the ongoing design evolution remains fluid, the results from this design calculation should be evaluated for applicability to any new or modified design. Consequently, the results presented in this document are limited to the current design. The information contained in this document was developed by Environmental and Nuclear Engineering and is intended for the use of Design and Engineering in its work regarding the various criticality related activities performed in the Aging Facility. Yucca Mountain Project personnel from Environmental and Nuclear Engineering should be consulted before the use of the information for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering.

  18. St. Louis FUSRAP Lessons Learned

    SciTech Connect (OSTI)

    Eberlin, J.; Williams, D.; Mueller, D.

    2003-02-26

    The purpose of this paper is to present lessons learned from fours years' experience conducting Remedial Investigation and Remedial Action activities at the St. Louis Downtown Site (SLDS) under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Many FUSRAP sites are experiencing challenges conducting Remedial Actions within forecasted volume and budget estimates. The St. Louis FUSRAP lessons learned provide insight to options for cost effective remediation at FUSRAP sites. The lessons learned are focused on project planning (budget and schedule), investigation, design, and construction.

  19. Lattice calculation of nonleptonic charm decays

    SciTech Connect (OSTI)

    Simone, J.N.

    1991-11-01

    The decays of charmed mesons into two body nonleptonic final states are investigated. Weak interaction amplitudes of interest in these decays are extracted from lattice four-point correlation functions using a effective weak Hamiltonian including effects to order G{sub f} in the weak interactions yet containing effects to all orders in the strong interactions. The lattice calculation allows a quantitative examination of non-spectator processes in charm decays helping to elucidate the role of effects such as color coherence, final state interactions and the importance of the so called weak annihilation process. For D {yields} K{pi}, we find that the non-spectator weak annihilation diagram is not small, and we interpret this as evidence for large final state interactions. Moreover, there is indications of a resonance in the isospin {1/2} channel to which the weak annihilation process contributes exclusively. Findings from the lattice calculation are compared to results from the continuum vacuum saturation approximation and amplitudes are examined within the framework of the 1/N expansion. Factorization and the vacuum saturation approximation are tested for lattice amplitudes by comparing amplitudes extracted from lattice four-point functions with the same amplitude extracted from products of two-point and three-point lattice correlation functions arising out of factorization and vacuum saturation.

  20. Permeability Calculation in a Fracture Network - 12197

    SciTech Connect (OSTI)

    Lee, Cheo Kyung; Kim, Hyo Won [Handong Global University, 3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk, 791-708 (Korea, Republic of); Yim, Sung Paal [Korea Atomic Energy Research Institute, Yusong, Daejon, 305-600 (Korea, Republic of)

    2012-07-01

    Laminar flow of a viscous fluid in the pore space of a saturated fractured rock medium is considered to calculate the effective permeability of the medium. The effective permeability is determined from the flow field which is calculated numerically by using the finite element method. The computation of permeability components is carried out with a few different discretizations for a number of fracture arrangements. Various features such as flow field in the fracture channels, the convergence of permeability, and the variation of permeability among different fracture networks are discussed. The longitudinal permeability in general appears greater than the transverse ones. The former shows minor variations with fracture arrangement whereas the latter appears to be more sensitive to the arrangement. From the calculations of the permeability in a rock medium with a fracture network (two parallel fractures aligned in the direction of 45-deg counterclockwise from the horizontal and two connecting fractures(narrowing, parallel and widening) the following conclusions are drawn. 1. The permeability of fractured medium not only depends on the primary orientation of the main fractures but also is noticeably influenced by the connecting fractures in the medium. 2. The transverse permeability (the permeability in the direction normal to the direction of the externally imposed macro-scale pressure gradient) is only a fraction of the longitudinal one, but is sensitive to the arrangement of the connecting fractures. 3. It is important to figure out the pattern of the fractures that connect (or cross) the main fractures for reliable calculation of the transverse permeability. (authors)

  1. Analysis of Hydraulic Conductivity Calculations

    SciTech Connect (OSTI)

    Green, R.E.

    2003-01-06

    Equations by Marshall and by Millington and Quirk for calculating hydraulic conductivity from pore-size distribution data are dependent on an arbitrary choice of the exponent on the porosity term and a correct estimate of residual water. This study showed that a revised equation, based on the pore-interaction model of Marshall, accurately predicts hydraulic conductivity for glass beads and a loam soil from the pressure-water content relationships of these porous materials.

  2. Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Network: Lessons Learned: Peer Exchange Calls Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls, from the U.S. Department of Energy. PDF icon Lessons Learned: Peer Exchange Calls More Documents & Publications Stakeholder Mapping: Learn How to Identify Leaders, Target Audiences, and Gaps in Your Outreach Cost-Effective, Customer-Focused, and Contractor-Focused Data

  3. Learning Curve

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    It is a fundamental human characteristic that a person engaged in a repetitive task will improve his performance over time. If data are gathered on this phenomenon, a curve representing a decrease in effort per unit for repetitive operations can be developed. This phenomenon is real and has a specific application in cost analysis, cost estimating, or profitability studies related to the examination of future costs and confidence levels in an analysis. This chapter discusses the development and application of the learning curve.

  4. Radiative accelerations for evolutionary model calculations

    SciTech Connect (OSTI)

    Richer, J.; Michaud, G.; Rogers, F.; Iglesias, C.; Turcotte, S.; LeBlanc, F.

    1998-01-01

    Monochromatic opacities from the OPAL database have been used to calculate radiative accelerations for the 21 included chemical species. The 10{sup 4} frequencies used are sufficient to calculate the radiative accelerations of many elements for T{gt}10{sup 5}K, using frequency sampling. This temperature limit is higher for less abundant elements. As the abundances of Fe, He, or O are varied, the radiative acceleration of other elements changes, since abundant elements modify the frequency dependence of the radiative flux and the Rosseland opacity. Accurate radiative accelerations for a given element can only be obtained by allowing the abundances of the species that contribute most to the Rosseland opacity to vary during the evolution and recalculating the radiative accelerations and the Rosseland opacity during the evolution. There are physical phenomena that cannot be included in the calculations if one uses only the OPAL data. For instance, one should correct for the momentum given to the electron in a photoionization. Such effects are evaluated using atomic data from Opacity Project, and correction factors are given. {copyright} {ital 1998} {ital The American Astronomical Society}

  5. Hybrid reduced order modeling for assembly calculations

    SciTech Connect (OSTI)

    Bang, Y.; Abdel-Khalik, H. S.; Jessee, M. A.; Mertyurek, U.

    2013-07-01

    While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system. (authors)

  6. Alternative Fuels Data Center: Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on

  7. Relativistic mean field calculations in neutron-rich nuclei

    SciTech Connect (OSTI)

    Gangopadhyay, G.; Bhattacharya, Madhubrata [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roy, Subinit [Saha Institute of Nuclear Physics, Block AF, Sector 1, Kolkata- 700 064 (India)

    2014-08-14

    Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.

  8. Incorporating Weather Data into Energy Savings Calculations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incorporating Weather Data into Energy Savings Calculations Incorporating Weather Data into Energy Savings Calculations Better Buildings Residential Network Peer Exchange Call...

  9. USAID Carbon Calculator | Open Energy Information

    Open Energy Info (EERE)

    Application ComplexityEase of Use: Not Available Website: www.afolucarbon.org Cost: Free Language: English USAID Carbon Calculator Screenshot Logo: USAID Carbon Calculator This...

  10. Calculation of chemical equilibrium between aqueous solution...

    Office of Scientific and Technical Information (OSTI)

    Calculation of chemical equilibrium between aqueous solution and minerals: the EQ36 ... Citation Details In-Document Search Title: Calculation of chemical equilibrium between ...

  11. NERSC Calculations Provide Independent Confirmation of Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 September 9, ...

  12. China 2050 Pathways Calculator | Open Energy Information

    Open Energy Info (EERE)

    2050 Pathways Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: China 2050 Pathways Calculator AgencyCompany Organization: China's Energy Research Institute...

  13. California Biomass Collaborative Energy Cost Calculators | Open...

    Open Energy Info (EERE)

    Biomass Collaborative Energy Cost Calculators Jump to: navigation, search Tool Summary LAUNCH TOOL Name: California Biomass Collaborative Energy Cost Calculators AgencyCompany...

  14. Interruption Cost Estimate Calculator | Open Energy Information

    Open Energy Info (EERE)

    Cost Estimate (ICE) Calculator This calculator is a tool designed for electric reliability planners at utilities, government organizations or other entities that are...

  15. Campus Carbon Calculator | Open Energy Information

    Open Energy Info (EERE)

    Campus Carbon Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Campus Carbon Calculator AgencyCompany Organization: Clean Air-Cool Planet Phase: Create a...

  16. Incorporating Weather Data into Energy Savings Calculations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weather Data into Energy Savings Calculations Incorporating Weather Data into Energy Savings Calculations Better Buildings Residential Network Peer Exchange Call Series: ...

  17. Molecular resonance phenomena. [Calculation of resonance widths

    SciTech Connect (OSTI)

    Hazi, A.U.

    1980-01-01

    It is attempted to show that the Stieltjes-moment-theory provides a practical and a reasonably accurate method for calculating the widths of molecular resonances. The method seems to possess a number of advantages for molecular applications, since it avoids the explicit construction of continuum wavefunctions. It is very simple to implement the technique numerically, because it requires only existing bound-state electronic structure codes. Through the use of configuration interaction techniques, many-electron correlation and polarization effects can be included in the description of both the resonance and the non-resonant background continuum. To illustrate the utility and the accuracy of the Stieltjes-moment-theory technique, used in conjunction with configuration interaction (CI) wave functions, recent applications to the /sup 1/..sigma../sub u/(1sigma/sub u/ 2sigma/sub g/) autoionizing resonance state of H/sub 2/ and the well known /sup 2/PI/sub g/ state of N/sub 2//sup -/ are discussed. The choices of the one-electron basis sets and the types of many-electron configurations appropriate for these two cases are described. Also, guidelines for the selection of the projection operators defining the resonant and non-resonant subspaces in the case of both Feshbach and shape-resonances are given. The numerical results indicate that the Stieltjes-moment-theory technique, which employs L/sup 2/ basis functions exclusively, produces as accurate resonance parameters as can be extracted from direct electron-molecule scattering calculations, provided approximately the same approximations are used to describe important physical effects such as target polarization. Furthermore the method provides sufficiently accurate fixed-nuclei electronic resonance parameters to be used in ab initio calculation of resonant vibrational excitation cross sections. (WHK)

  18. Calculate and Plot Complex Potential

    Energy Science and Technology Software Center (OSTI)

    1998-05-05

    SOLUPLOT is a program designed to calculate and plot complex potential, pH diagrams and log oxygen activity, pH diagrams for aqueous chemical syatems, considering speciation of ligands, from free energy and thermodynamic activity data. These diagrams, commonly referred to as Eh-pH and ao2-pH diagrams, respectively, define areas of predominance in Eh-pH diagrams or ao2-pH space for chemical species of a chemical system at equilibrium. Over an area of predominance, one predominant species is at greatermore » activity than the other species of the system considered. The diagram axes, pH (a measure of hydrogen ion activity) and either Eh or log ao2 (measures of a tendency toward either oxidation or reduction) , are paremeters commonly applied in describing the chemistry of aqueous systems.« less

  19. Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1

    Energy Savers [EERE]

    Safety and Security Report to the Secretary on the Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1 February 2011 Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS Table of Contents 1.0 Introduction

  20. Learning from Semantic Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning from Semantic Interactions Most machine learning tools used in geospatial mapping can only learn from labels. Learning from Semantic Interactions LANL's new machine learning tools can learn from semantic user interactions to produce more accurate mappings Point of Contact: Reid Porter, ISR Division, 665-7508, rporter@lanl.gov Current Phase - LDRD: * Develop theory and algorithms for tools and demonstrate impact in image analysis applications in materials microscopy. Phase 2 - Geospatial

  1. Learning from Semantic Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning from Semantic Interactions Most machine learning tools used in geospatial mapping ... Phase 2 - Geospatial Applications: * Identify collaborators, data and problems in the ...

  2. RTU Comparison Calculator Enhancement Plan

    SciTech Connect (OSTI)

    Miller, James D.; Wang, Weimin; Katipamula, Srinivas

    2015-07-01

    Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.

  3. RTU Comparison Calculator Enhancement Plan

    SciTech Connect (OSTI)

    Miller, James D.; Wang, Weimin; Katipamula, Srinivas

    2014-03-31

    Over the past two years, Department of Energys Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.

  4. Sensitivity analysis of coupled criticality calculations

    SciTech Connect (OSTI)

    Perko, Z.; Kloosterman, J. L.; Lathouwers, D.

    2012-07-01

    Perturbation theory based sensitivity analysis is a vital part of todays' nuclear reactor design. This paper presents an extension of standard techniques to examine coupled criticality problems with mutual feedback between neutronics and an augmenting system (for example thermal-hydraulics). The proposed procedure uses a neutronic and an augmenting adjoint function to efficiently calculate the first order change in responses of interest due to variations of the parameters describing the coupled problem. The effect of the perturbations is considered in two different ways in our study: either a change is allowed in the power level while maintaining criticality (power perturbation) or a change is allowed in the eigenvalue while the power is constrained (eigenvalue perturbation). The calculated response can be the change in the power level, the reactivity worth of the perturbation, or the change in any functional of the flux, the augmenting dependent variables and the input parameters. To obtain power- and criticality-constrained sensitivities power- and k-reset procedures can be applied yielding identical results. Both the theoretical background and an application to a one dimensional slab problem are presented, along with an iterative procedure to compute the necessary adjoint functions using the neutronics and the augmenting codes separately, thus eliminating the need of developing new programs to solve the coupled adjoint problem. (authors)

  5. Numerical calculation of the ion polarization in MEIC

    SciTech Connect (OSTI)

    Derbenev, Yaroslav; Lin, Fanglei; Morozov, Vasiliy; Zhang, Yuhong; Kondratenko, Anatoliy; Kondratenko, M A; Filatov, Yury

    2015-09-01

    Ion polarization in the Medium-energy Electron-Ion Collider (MEIC) is controlled by means of universal 3D spin rotators designed on the basis of "weak" solenoids. We use numerical calculations to demonstrate that the 3D rotators have negligible effect on the orbital properties of the ring. We present calculations of the polarization dynamics along the collider's orbit for both longitudinal and transverse polarization directions at a beam interaction point. We calculate the degree of depolarization due to the longitudinal and transverse beam emittances in case when the zero-integer spin resonance is compensated.

  6. Point kinetics calculations with fully coupled thermal fluids reactivity feedback

    SciTech Connect (OSTI)

    Zhang, H.; Zou, L.; Andrs, D.; Zhao, H.; Martineau, R.

    2013-07-01

    The point kinetics model has been widely used in the analysis of the transient behavior of a nuclear reactor. In the traditional nuclear reactor system safety analysis codes such as RELAP5, the reactivity feedback effects are calculated in a loosely coupled fashion through operator splitting approach. This paper discusses the point kinetics calculations with the fully coupled thermal fluids and fuel temperature feedback implemented into the RELAP-7 code currently being developed with the MOOSE framework. (authors)

  7. DOE Lessons Learned

    Broader source: Energy.gov [DOE]

    DOE Lessons Learned Information Services Catches the Eye of Corporations and Educational Institutions

  8. Building Technologies Office: 179D DOE Calculator

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    179D DOE Calculator EERE Building Technologies Office 179D DOE Calculator Printable Version Bookmark and Share What is the 179D federal tax deduction? Section 179D of the...

  9. Relativistic Thomson Scatter from Factor Calculation

    Energy Science and Technology Software Center (OSTI)

    2009-11-01

    The purpose of this program is calculate the fully relativistic Thomson scatter from factor in unmagnetized plasmas. Such calculations are compared to experimental diagnoses of plasmas at such facilities as the Jupiter laser facility here a LLNL.

  10. Field observations and lessons learned

    SciTech Connect (OSTI)

    Nielsen, Joh B

    2010-01-01

    This presentation outlines observations and lessons learned from the Megaports program. It provides: (1) details of field and technical observations collected during LANL field activities at ports around the world and details of observations collected during radiation detections system testing at Los Alamos National Laboratory; (2) provides suggestions for improvement and efficiency; and (3) discusses possible program execution changes for more effective operations.

  11. Calculating nonlocal optical properties of structures with arbitrary shape.

    SciTech Connect (OSTI)

    McMahon, J. M.; Gray, S. K.; Schatz, G. C.; Northwestern Univ.

    2010-07-16

    In a recent Letter [J. M. McMahon, S. K. Gray, and G. C. Schatz, Phys. Rev. Lett. 103, 097403 (2009)], we outlined a computational method to calculate the optical properties of structures with a spatially nonlocal dielectric function. In this paper, we detail the full method and verify it against analytical results for cylindrical nanowires. Then, as examples of our method, we calculate the optical properties of Au nanostructures in one, two, and three dimensions. We first calculate the transmission, reflection, and absorption spectra of thin films. Because of their simplicity, these systems demonstrate clearly the longitudinal (or volume) plasmons characteristic of nonlocal effects, which result in anomalous absorption and plasmon blueshifting. We then study the optical properties of spherical nanoparticles, which also exhibit such nonlocal effects. Finally, we compare the maximum and average electric field enhancements around nanowires of various shapes to local theory predictions. We demonstrate that when nonlocal effects are included, significant decreases in such properties can occur.

  12. Lessons learned in organizing for performance

    SciTech Connect (OSTI)

    Long, R.L.

    1993-12-31

    Lessons learned from the Three Mile Island accident are described. The effectiveness of the General Public Utilities Corporation in the decontamination/support issues and restart of the three mile unit-1 reactor, is discussed.

  13. Learn More about Fusion & Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learn More about Fusion & Lasers How Lasers Work Learn how lasers were developed and how they work. Outreach NIF & Photon Science researchers take learning opportunities on the...

  14. Learning Center | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Learning Center The Argonne Learning Center contains four student research laboratories, three learning classrooms and a historic 1960's control room facility where...

  15. FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2005-06-30

    The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6). Therefore, this design calculation is subject to the requirements of the ''Quality Assurance Requirements and Description'' (DOE 2004), even though the FHF itself has not yet been classified in the Q-list. Performance of the work scope as described and development of the associated technical product conform to the procedure AP-3.124, ''Design Calculations and Analyses''.

  16. Peer Exchange Calls Inspire New Lessons Learned Greatest Hits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and challenges, and to collectively identify effective strategies and useful resources. ... Offer guided peer-to-peer learning opportunities for contractors, such as online ...

  17. Photovoltaics Economic Calculator (United States) | Open Energy...

    Open Energy Info (EERE)

    (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaics Economic Calculator (United States) Focus Area: Solar Topics: System & Application...

  18. Urban Transportation Emission Calculator | Open Energy Information

    Open Energy Info (EERE)

    Calculator (UTEC) is a user-friendly tool for estimating annual emissions from personal, commercial, and public transit vehicles. It estimates greenhouse gas (GHG) and...

  19. Calculating Atomic Number Densities for Uranium

    Energy Science and Technology Software Center (OSTI)

    1993-01-01

    Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.

  20. CUFR Tree Carbon Calculator | Open Energy Information

    Open Energy Info (EERE)

    Desktop Application Website: www.fs.fed.usccrctopicsurban-forestsctcc Cost: Free Language: English References: CUFR Tree Carbon Calculator1 Overview "The CUFR Tree Carbon...

  1. Distributed Energy Calculator | Open Energy Information

    Open Energy Info (EERE)

    ibutedenergycalculator.com OpenEI Keyword(s): Challenge Generated, Green Button Apps Language: English References: Apps for Energy1 The Distributed Energy Calculator allows you...

  2. Evaluation Of Chemical Geothermometers For Calculating Reservoir...

    Open Energy Info (EERE)

    Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  3. Incorporating Weather Data into Energy Savings Calculations

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Incorporating Weather Data into Energy Savings Calculations, Call Slides and Discussion Summary, February 26, 2015.

  4. Cool Roof Calculator | Open Energy Information

    Open Energy Info (EERE)

    TOOL Name: Cool Roof Calculator AgencyCompany Organization: Oak Ridge National Laboratory Sector: Energy Focus Area: Buildings, Energy Efficiency Resource Type: Online...

  5. Calculating and Communicating Program Results | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Data and Evaluation Peer Exchange Call: Calculating and Communicating Program Results, Call Slides and Summary, February 23, 2012. Call Slides and Summary More Documents &...

  6. Physics Informed Machine Learning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Informed Machine Learning Physics Informed Machine Learning WHEN: Jan 19, 2016 8:00 AM - Jan 22, 2016 4:00 PM WHERE: Inn at Loretto, Santa Fe CATEGORY: Science TYPE: ...

  7. Physics Informed Machine Learning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Informed Machine Learning Physics Informed Machine Learning WHEN: Jan 19, 2016 8:00 AM - Jan 22, 2016 4:00 PM WHERE: Inn at Loretto, Santa Fe CATEGORY: Science TYPE:...

  8. Air ingression calculations for selected plant transients using MELCOR

    SciTech Connect (OSTI)

    Kmetyk, L.N.

    1994-01-01

    Two sets of MELCOR calculations have been completed studying the effects of air ingression on the consequences of various severe accident scenarios. One set of calculations analyzed a station blackout with surge line failure prior to vessel breach, starting from nominal operating conditions; the other set of calculations analyzed a station blackout occurring during shutdown (refueling) conditions. Both sets of analyses were for the Surry plant, a three-loop Westinghouse PWR. For both accident scenarios, a basecase calculation was done, and then repeated with air ingression from containment into the core region following core degradation and vessel failure. In addition to the two sets of analyses done for this program, a similar air-ingression sensitivity study was done as part of a low-power/shutdown PRA, with results summarized here; that PRA study also analyzed a station blackout occurring during shutdown (refueling) conditions, but for the Grand Gulf plant, a BWR/6 with Mark III containment. These studies help quantify the amount of air that would have to enter the core region to have a significant impact on the severe accident scenario, and demonstrate that one effect, of air ingression is substantial enhancement of ruthenium release. These calculations also show that, while the core clad temperatures rise more quickly due to oxidation with air rather than steam, the core also degrades and relocates more quickly, so that no sustained, enhanced core heatup is predicted to occur with air ingression.

  9. CRAD, Lessons Learned Assessment Plan | Department of Energy

    Energy Savers [EERE]

    Lessons Learned Assessment Plan CRAD, Lessons Learned Assessment Plan Performance Objective: Management should have an established Lessons Learned Program with an effective system to continuously distribute information of improvement in safe operations to all affected personnel. Criteria: Timely and effective action is taken to track and correct identified deficiencies and to prevent their recurrence by addressing their basic causes and related generic problems. (DOE/EH-0135) Management installs

  10. Bill Calculator V1.0

    Energy Science and Technology Software Center (OSTI)

    2002-08-19

    Utitlity tariffs vary significantly from utility to utility. Each utility has its own rates and sets of rules by which bills are calculated. The Bill Calculator reconstructs the tariff based on these rules, stored in data tables, and access the appropriate charges for a given energy consumption and demand. The software reconstructs the tariff logic from the rules stored in data tables. Changes are tallied as the logic is reconstructed. This is essentially an accountingmore » program. The main limitation is on the time to search for each tariff element. It is currently on O(N) search. Also, since the Bill calculator first stores all tariffs in an array and then reads the array to reconstruct a specific tariff, the memory limitatins of a particular system would limit the number of tariffs that could be handled. This tool allows a user to calculate a bill from any sampled utility without prior knowledge of the tariff logic or structure. The peculiarities of the tariff logic are stored in data tables and manged by the Bill Calculator software. This version of the software is implemented as a VB module that operates within Microsoft Excel. Input data tables are stored in Excel worksheets. In this version the Bill Calculator functions can be assessed through Excel as user defined worksheet functions. Bill Calculator can calculate approximately 50,000 bills in less than 30 minutes.« less

  11. PVWatts (R) Calculator India (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    The PVWatts (R) Calculator for India was released by the National Renewable Energy Laboratory in 2013. The online tool estimates electricity production and the monetary value of that production of grid-connected roof- or ground-mounted crystalline silicon photovoltaics systems based on a few simple inputs. This factsheet provides a broad overview of the PVWatts (R) Calculator for India.

  12. Unimolecular decomposition of methyltrichlorosilane: RRKM calculations

    SciTech Connect (OSTI)

    Osterheld, T.H.; Allendorf, M.D.; Melius, C.F.

    1993-06-01

    Based on reaction thermochemistry and estimates of Arrhenius A-factors, it is expected that Si-C bond cleavage, C-H bond cleavage, and HCl elimination will be the primary channels for the unimolecular decomposition of methyltrichlorosilane. Using RRKM theory, we calculated rate constants for these three reactions. The calculations support the conclusion that these three reactions are the major decomposition pathways. Rate constants for each reaction were calculated in the high-pressure limit (800--1500 K) and in the falloff regime (1300--1500 K) for bath gases of both helium and hydrogen. These calculations thus provide branching fractions as well as decomposition rates. We also calculated bimolecular rate constants for the overall decomposition in the low-pressure limit. Interesting and surprising kinetic behavior of this system and the individual reactions is discussed. The reactivity of this chlorinated organosilane is compared to that of other organosilanes.

  13. SUBJECT: CALCULATION OF JOB CREATION THROUGH RECOVERY ACT FUNDING

    Energy Savers [EERE]

    WEATHERIZATION PROGRAM NOTICE 10-14A STATE ENERGY PROGRAM NOTICE 10-07A EECBG PROGRAM NOTICE 10-08A EFFECTIVE DATE: September 29, 2010 SUBJECT: CALCULATION OF JOB CREATION THROUGH DOE RECOVERY ACT FUNDING REFERENCE: OMB Memorandum M-10-08 Updated Guidance on the American Recovery and Reinvestment Act - Data Quality, Non-Reporting Recipients, and Reporting of Job Estimates, December 18, 2009. 1.0 PURPOSE: Provides additional guidance to grantees on the methodology for calculating jobs created and

  14. Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls, Number 5

    Energy Savers [EERE]

    | Department of Energy Network: Lessons Learned: Peer Exchange Calls Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls, from the U.S. Department of Energy. PDF icon Lessons Learned: Peer Exchange Calls More Documents & Publications Stakeholder Mapping: Learn How to Identify Leaders, Target Audiences, and Gaps in Your Outreach Cost-Effective, Customer-Focused, and Contractor-Focused Data

  15. Fast optimization and dose calculation in scanned ion beam therapy

    SciTech Connect (OSTI)

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-07-15

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.

  16. Historical river flow rates for dose calculations

    SciTech Connect (OSTI)

    Carlton, W.H.

    1991-06-10

    Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

  17. A Self-Consistent Approach for Calculating the Effective Hydraulic...

    Office of Scientific and Technical Information (OSTI)

    Pek's (1995) results for a 2D case. less Authors: Pozdniakov, Sergey ; Tsang, Chin-Fu Publication Date: 2004-01-02 OSTI Identifier: 835818 Report Number(s): LBNL--55620 R&D ...

  18. First principle thousand atom quantum dot calculations

    SciTech Connect (OSTI)

    Wang, Lin-Wang; Li, Jingbo

    2004-03-30

    A charge patching method and an idealized surface passivation are used to calculate the single electronic states of IV-IV, III-V, II-VI semiconductor quantum dots up to a thousand atoms. This approach scales linearly and has a 1000 fold speed-up compared to direct first principle methods with a cost of eigen energy error of about 20 meV. The calculated quantum dot band gaps are parametrized for future references.

  19. Dipping of terms in atomic calculations

    SciTech Connect (OSTI)

    Zelichenko, V.M.; Samsonov, B.F.; Nyavro, A.V.

    1983-11-01

    The paper discusses the orthogonality conditions for calculations in the single-configuration approximation of the autoionization states 1s2s/sup 2/ and 2s/sup 2/ in Li and He/sup -/ and He and He/sup -/, respectively. The necessity is demonstrated of considering the conditions of orthogonality of the complete wave functions of these configurations to the wave functions of the corresponding continuous spectrum in the calculation of energy by means of the variational method.

  20. Online Learning Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Online Learning Center Online Learning Center Online Learning Center Whether you're looking to discover new learning opportunities, better manage your career, request external ...

  1. Benchmarking kinetic calculations of resistive wall mode stability

    SciTech Connect (OSTI)

    Berkery, J. W.; Sabbagh, S. A.; Liu, Y. Q.; Betti, R.

    2014-05-15

    Validating the calculations of kinetic resistive wall mode (RWM) stability is important for confidently predicting RWM stable operating regions in ITER and other high performance tokamaks for disruption avoidance. Benchmarking the calculations of the Magnetohydrodynamic Resistive SpectrumKinetic (MARS-K) [Y. Liu et al., Phys. Plasmas 15, 112503 (2008)], Modification to Ideal Stability by Kinetic effects (MISK) [B. Hu et al., Phys. Plasmas 12, 057301 (2005)], and Perturbed Equilibrium Nonambipolar Transport (PENT) [N. Logan et al., Phys. Plasmas 20, 122507 (2013)] codes for two Solov'ev analytical equilibria and a projected ITER equilibrium has demonstrated good agreement between the codes. The important particle frequencies, the frequency resonance energy integral in which they are used, the marginally stable eigenfunctions, perturbed Lagrangians, and fluid growth rates are all generally consistent between the codes. The most important kinetic effect at low rotation is the resonance between the mode rotation and the trapped thermal particle's precession drift, and MARS-K, MISK, and PENT show good agreement in this term. The different ways the rational surface contribution was treated historically in the codes is identified as a source of disagreement in the bounce and transit resonance terms at higher plasma rotation. Calculations from all of the codes support the present understanding that RWM stability can be increased by kinetic effects at low rotation through precession drift resonance and at high rotation by bounce and transit resonances, while intermediate rotation can remain susceptible to instability. The applicability of benchmarked kinetic stability calculations to experimental results is demonstrated by the prediction of MISK calculations of near marginal growth rates for experimental marginal stability points from the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)].

  2. Image Change Detection via Ensemble Learning

    SciTech Connect (OSTI)

    Martin, Benjamin W; Vatsavai, Raju

    2013-01-01

    The concept of geographic change detection is relevant in many areas. Changes in geography can reveal much information about a particular location. For example, analysis of changes in geography can identify regions of population growth, change in land use, and potential environmental disturbance. A common way to perform change detection is to use a simple method such as differencing to detect regions of change. Though these techniques are simple, often the application of these techniques is very limited. Recently, use of machine learning methods such as neural networks for change detection has been explored with great success. In this work, we explore the use of ensemble learning methodologies for detecting changes in bitemporal synthetic aperture radar (SAR) images. Ensemble learning uses a collection of weak machine learning classifiers to create a stronger classifier which has higher accuracy than the individual classifiers in the ensemble. The strength of the ensemble lies in the fact that the individual classifiers in the ensemble create a mixture of experts in which the final classification made by the ensemble classifier is calculated from the outputs of the individual classifiers. Our methodology leverages this aspect of ensemble learning by training collections of weak decision tree based classifiers to identify regions of change in SAR images collected of a region in the Staten Island, New York area during Hurricane Sandy. Preliminary studies show that the ensemble method has approximately 11.5% higher change detection accuracy than an individual classifier.

  3. Learning from (Near) Disaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning National Security Science Latest Issue:April 2016 past issues All Issues » submit Learning from (Near) Disaster Weapons designers look to past nuclear accidents to develop safer modern-day explosives. March 22, 2016 Learning from (Near) Disaster In the Palomares incident, three nuclear bombs crashed into the ground and a fourth vanished into the sea. Sailors recovered the fourth weapon two months later in the most expensive U.S. Navy salvage operation in history. The casing is

  4. Native defects in Tl6SI4: Density functional calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shi, Hongliang; Du, Mao -Hua

    2015-05-05

    In this study, Tl6SI4 is a promising room-temperature semiconductor radiation detection material. Here, we report density functional calculations of native defects and dielectric properties of Tl6SI4. Formation energies and defect levels of native point defects and defect complexes are calculated. Donor-acceptor defect complexes are shown to be abundant in Tl6SI4. High resistivity can be obtained by Fermi level pinning by native donor and acceptor defects. Deep donors that are detrimental to electron transport are identified and methods to mitigate such problem are discussed. Furthermore, we show that mixed ionic-covalent character of Tl6SI4 gives rise to enhanced Born effective charges andmore » large static dielectric constant, which provides effective screening of charged defects and impurities.« less

  5. Lessons Learned Database

    Broader source: Energy.gov [DOE]

    The DOE Corporate Lessons Learned Database provides a central clearinghouse that allows ready access to and communication about collected information on a timely, unimpeded basis by all DOE...

  6. Calculations of pair production by Monte Carlo methods

    SciTech Connect (OSTI)

    Bottcher, C.; Strayer, M.R.

    1991-01-01

    We describe some of the technical design issues associated with the production of particle-antiparticle pairs in very large accelerators. To answer these questions requires extensive calculation of Feynman diagrams, in effect multi-dimensional integrals, which we evaluate by Monte Carlo methods on a variety of supercomputers. We present some portable algorithms for generating random numbers on vector and parallel architecture machines. 12 refs., 14 figs.

  7. Customer Participation in the Smart Grid: Lessons Learned (September 2014)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Customer Participation in the Smart Grid: Lessons Learned (September 2014) Customer Participation in the Smart Grid: Lessons Learned (September 2014) Effective customer education and outreach are key ingredients for Smart Grid success. Smart meter and customer system programs involve complicated equipment and often require customers to "climb learning curves" that necessitate extensive communication and education. Utilities must be prepared to dedicate

  8. Peer Exchange Calls Inspire New Lessons Learned Greatest Hits | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Peer Exchange Calls Inspire New Lessons Learned Greatest Hits Peer Exchange Calls Inspire New Lessons Learned Greatest Hits Photo of a group of people sitting at a table having a meeting. A new "Lessons Learned: Peer Exchange Calls" resource summarizes top takeaways shared by Better Buildings Residential Network members, from tips to collaborating with utilities to cost-effective rebate models. The Residential Network hosts a series of Peer Exchange Calls for members to

  9. Radiological Dose Calculations for Fusion Facilities

    SciTech Connect (OSTI)

    Michael L. Abbott; Lee C. Cadwallader; David A. Petti

    2003-04-01

    This report summarizes the results and rationale for radiological dose calculations for the maximally exposed individual during fusion accident conditions. Early doses per unit activity (Sieverts per TeraBecquerel) are given for 535 magnetic fusion isotopes of interest for several release scenarios. These data can be used for accident assessment calculations to determine if the accident consequences exceed Nuclear Regulatory Commission and Department of Energy evaluation guides. A generalized yearly dose estimate for routine releases, based on 1 Terabecquerel unit releases per radionuclide, has also been performed using averaged site parameters and assumed populations. These routine release data are useful for assessing designs against US Environmental Protection Agency yearly release limits.

  10. Learning Lab | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADDITIONAL RESOURCES Field Trip Check List Learning Lab Rules Directions Argonne Career Connections Contact education@anl.gov Learning Laboratory "Education is not preparation for...

  11. Learning from Roman Seawater Concrete

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning from Roman Seawater Concrete Learning from Roman Seawater Concrete Print Wednesday, 25 September 2013 00:00 The material secrets of a concrete Roman breakwater that has...

  12. MEAM interatomic force calculation subroutine for LAMMPS

    Energy Science and Technology Software Center (OSTI)

    2010-10-25

    Interatomic force and energy calculation subroutine tobe used with the molecular dynamics simulation code LAMMPS (Ref a.). The code evaluates the total energy and atomic forces (energy gradient) according to cubic spine-based variant (Ref b.) of the Modified Embedded Atom Method (MEAM).

  13. Calculated fission properties of the heaviest elements

    SciTech Connect (OSTI)

    Moeller, P.; Nix, J.R.; Swiatecki, W.J.

    1986-09-01

    A quantitative calculation is presented that shows where high-kinetic-energy symmetric fission occurs and why it is associated with a sudden and large decrease in fission half-lives. The study is based on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. For the macroscopic part a Yukawa-plus-exponential model is used and for the microscopic part a folded-Yukawa single-particle potential is used. The three-quadratic-surface parameterization generates shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. The results of the calculations in terms of potential-energy surfaces and fission half-lives are presented for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. 53 refs., 15 figs., 1 tab.

  14. Calculation of Kinetics Parameters for the NBSR

    SciTech Connect (OSTI)

    Hanson A. L.; Diamond D.

    2012-03-06

    The delayed neutron fraction and prompt neutron lifetime have been calculated at different times in the fuel cycle for the NBSR when fueled with both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. The best-estimate values for both the delayed neutron fraction and the prompt neutron lifetime are the result of calculations using MCNP5-1.60 with the most recent ENDFB-VII evaluations. The best-estimate values for the total delayed neutron fraction from fission products are 0.00665 and 0.00661 for the HEU fueled core at startup and end-of-cycle, respectively. For the LEU fuel the best estimate values are 0.00650 and 0.00648 at startup and end-of-cycle, respectively. The present recommendations for the delayed neutron fractions from fission products are smaller than the value reported previously of 0.00726 for the HEU fuel. The best-estimate values for the contribution from photoneutrons will remain as 0.000316, independent of the fuel or time in the cycle.The values of the prompt neutron lifetime as calculated with MCNP5-1.60 are compared to values calculated with two other independent methods and the results are in reasonable agreement with each other. The recommended, conservative values of the neutron lifetime for the HEU fuel are 650 {micro}s and 750 {micro}s for the startup and end-of-cycle conditions, respectively. For LEU fuel the recommended, conservative values are 600 {micro}s and 700 {micro}s for the startup and end-of-cycle conditions, respectively. In all three calculations, the prompt neutron lifetime was determined to be longer for the end-of-cycle equilibrium condition when compared to the startup condition. The results of the three analyses were in agreement that the LEU fuel will exhibit a shorter prompt neutron lifetime when compared to the HEU fuel.

  15. Investigating Temperature Effects on PV Arrays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schmidt Unit Title: Circuits and Electricity Subject: Physics Lesson Title: Investigating Temperature Effects on PV Arrays Grade Level(s): 11/12 Date(s): July 18, 2014 Lesson Length: 1 Class Period (65 minutes) * Learning Goal(s) [What should students know, understand, or be able to do as a result of this lab or activity.] Students will be able to measure current and voltage using a Multimeter. Students will be able to calculate the power of a PV array using voltage and current. Students will

  16. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2005-04-07

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the CHF is included in the Q-List (BSC 2005 [DIRS 171190], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

  17. LESSONS LEARNED LEARNED LESSONS N E P A

    Energy Savers [EERE]

    first Quarter fy 2015 march 2, 2015; Issue no. 82 NEPA Lessons Learned March 2015 1 CEQ Issues Revised Draft NEPA Guidance on GHG Emissions and Climate Change CEQ issued revised draft guidance in December to "provide Federal agencies direction on when and how to consider the effects of greenhouse gas (GHG) emissions and climate change" in NEPA reviews (79 FR 77802; December 24, 2014). The revised draft guidance supersedes CEQ's February 2010 draft guidance (LLQR, March 2010, page 3).

  18. WIPP Compliance Certification Application calculations parameters. Part 2: Parameter documentation

    SciTech Connect (OSTI)

    Howarth, S.M.

    1997-11-14

    The Waste Isolation Pilot Plant (WIPP) in southeast New Mexico has been studied as a transuranic waste repository for the past 23 years. During this time, an extensive site characterization, design, construction, and experimental program was completed, which provided in depth understanding of the dominant processes that are most likely to influence the containment of radionuclides for 10,000 years. Nearly 1,500 parameters were developed using information gathered from this program and were input to numerical models for WIPP Compliance Certification Application (CCA) Performance Assessment (PA) calculations. The CCA probability models require input parameters that are defined by a statistical distribution. Developing parameters begins with the assignment of an appropriate distribution type, which is dependent on the type, magnitude, and volume of data or information available. Parameter development may require interpretation or statistical analysis of raw data, combining raw data with literature values, scaling laboratory or field data to fit code grid mesh sizes, or other transformations. Documentation of parameter development is designed to answer two questions: What source information was used to develop this parameter? and Why was this particular data set/information used? Therefore, complete documentation requires integrating information from code sponsors, parameter task leaders, performance assessment analysts, and experimental principal investigators. This paper, Part 2 of 2 parts, contains a discussion of the WIPP CCA PA Parameter Tracking System, document traceability and retrievability, and lessons learned from related audits and reviews.

  19. Interactive savings calculations for RCS measures, six case studies

    SciTech Connect (OSTI)

    Stovall, T.K.

    1983-11-01

    Many Residential Conservation Service (RCS) audits are based, in whole or in part, on the RCS Model Audit. This audit calculates the savings for each measure independently, that is, as if no other conservation actions were taken. This method overestimates the total savings due to a group of measures, and an explanatory warning is given to the customer. Presenting interactive results to consumers would increase the perceived credibility of the audit results by eliminating the need for the warning about uncalculated interactive effects. An increased level of credibility would hopefully lead to an increased level of conservation actions based on the audit results. Because many of the existing RCS audits are based on the RCS Model Audit, six case studies were produced to show that the Model Audit algorithms can be used to produce interactive savings estimates. These six Model Audit case studies, as well as two Computerized Instrumented Residential Audit cases, are presented along with a discussion of the calculation methods used.

  20. Calculates Neutron Production in Canisters of High-level Waste

    Energy Science and Technology Software Center (OSTI)

    1993-01-15

    ALPHN calculates the (alpha,n) neutron production rate of a canister of vitrified high-level waste. The user supplies the chemical composition of the glass or glass-ceramic and the curies of the alpha-emitting actinides present. The output of the program gives the (alpha,n) neutron production of each actinide in neutrons per second and the total for the canister. The (alpha,n) neutron production rates are source terms only; that is, they are production rates within the glass andmore » do not take into account the shielding effect of the glass. For a given glass composition, the user can calculate up to eight cases simultaneously; these cases are based on the same glass composition but contain different quantities of actinides per canister.« less

  1. Mesoscale polycrystal calculations of damage in spallation in metals

    SciTech Connect (OSTI)

    Tonks, Davis L [Los Alamos National Laboratory; Bingert, John F [Los Alamos National Laboratory; Livescu, Veronica [Los Alamos National Laboratory; Luo, Shengnian [Los Alamos National Laboratory; Bronkhorst, C A [Los Alamos National Laboratory

    2010-01-01

    The goal of this project is to produce a damage model for spallation in metals informed by the polycrystalline grain structure at the mesoscale. Earlier damage models addressed the continuwn macroscale in which these effects were averaged out. In this work we focus on cross sections from recovered samples examined with EBSD (electron backscattered diffraction), which reveal crystal grain orientations and voids. We seek to understand the loading histories of specific sample regions by meshing up the crystal grain structure of these regions and simulating the stress, strain, and damage histories in our hydro code, FLAG. The stresses and strain histories are the fundamental drivers of damage and must be calculated. The calculated final damage structures are compared with those from the recovered samples to validate the simulations.

  2. Numeric spectral radiation hydrodynamic calculations of supernova shock breakouts

    SciTech Connect (OSTI)

    Sapir, Nir; Halbertal, Dorri

    2014-12-01

    We present here an efficient numerical scheme for solving the non-relativistic one-dimensional radiation-hydrodynamics equations including inelastic Compton scattering, which is not included in most codes and is crucial for solving problems such as shock breakout. The devised code is applied to the problems of a steady-state planar radiation mediated shock (RMS) and RMS breakout from a stellar envelope. The results are in agreement with those of a previous work on shock breakout, in which Compton equilibrium between matter and radiation was assumed and the 'effective photon' approximation was used to describe the radiation spectrum. In particular, we show that the luminosity and its temporal dependence, the peak temperature at breakout, and the universal shape of the spectral fluence derived in this earlier work are all accurate. Although there is a discrepancy between the spectral calculations and the effective photon approximation due to the inaccuracy of the effective photon approximation estimate of the effective photon production rate, which grows with lower densities and higher velocities, the difference in peak temperature reaches only 30% for the most discrepant cases of fast shocks in blue supergiants. The presented model is exemplified by calculations for supernova 1987A, showing the detailed evolution of the burst spectrum. The incompatibility of the stellar envelope shock breakout model results with observed properties of X-ray flashes (XRFs) and the discrepancy between the predicted and observed rates of XRFs remain unexplained.

  3. A Methodology for Calculating Radiation Signatures

    SciTech Connect (OSTI)

    Klasky, Marc Louis; Wilcox, Trevor; Bathke, Charles G.; James, Michael R.

    2015-05-01

    A rigorous formalism is presented for calculating radiation signatures from both Special Nuclear Material (SNM) as well as radiological sources. The use of MCNP6 in conjunction with CINDER/ORIGEN is described to allow for the determination of both neutron and photon leakages from objects of interest. In addition, a description of the use of MCNP6 to properly model the background neutron and photon sources is also presented. Examinations of the physics issues encountered in the modeling are investigated so as to allow for guidance in the user discerning the relevant physics to incorporate into general radiation signature calculations. Furthermore, examples are provided to assist in delineating the pertinent physics that must be accounted for. Finally, examples of detector modeling utilizing MCNP are provided along with a discussion on the generation of Receiver Operating Curves, which are the suggested means by which to determine detectability radiation signatures emanating from objects.

  4. Minimum Day Time Load Calculation and Screening

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minimum Day Time Load Calculation and Screening" Dora Nakafuji and Anthony Hong, Hawaiian Electric Co. Babak Enayati, DG Techincal Standards Review Group April 30, 2014 2 Speakers Babak Enayati Chair of Massachusetts DG Technical Standards Review Group Dora Nakafuji Director of Renewable Energy Planning Hawaiian Electric Company (HECO) Kristen Ardani Solar Analyst, (today's moderator) NREL Anthony Hong Director of Distribution Planning Hawaiian Electric Company (HECO) Standardization of

  5. Historical development of building energy calculations

    SciTech Connect (OSTI)

    Ayres, J.M.; Stamper, E.

    1995-08-01

    One of the most significant events in the history of ASHRAE has been its ability to respond to the societal need to reduce energy use in buildings. The development of computer technology and the scare of an Arab oil embargo in the early 1970s stimulated rapid improvements in calculation procedures to predict the thermal performance and energy requirements of buildings. Renewed interest in solar energy applications during that period attracted new scientific talent into ASHRAE, but it was primarily the use of computers for peak-load and energy calculations that attracted the brightest and most talented young engineers into the Society. It is important to note that almost all of the fundamental developments in energy calculation procedures resulted from governmental support. On a national level, it was funding from the U.S. Post Office Department (POD), the US Department of Energy (DOE)--formerly the Energy Research and Development Administration (ERDA), and the US Department of Defense (DOD) that resulted in the two major public domain programs--DOE-2 (LBL 1979) and BLAST (Hittle 1977). This support has been continuous since 1973 and, as discussed later, it evolved from two competing load calculation methodologies. All of the DOD funds were focused at the US Army Construction Engineering Research Laboratory (CERL), while DOE funds were distributed among various governmental laboratories that competed each year for funding from Washington, DC. This led to a curious history in the development of DOE-2, in which several national laboratories made important technical contributions in the early years. These laboratories were Argon National Laboratory (ANL), Los Alamos Scientific Laboratory (LASL), and Lawrence Berkeley Laboratory (LBL). The DOE funding diminished quickly over time at ANL and somewhat later at LASL. LBL rapidly became the lead laboratory for the addition of new developments and maintenance of DOE-2.

  6. Code for Calculating Regional Seismic Travel Time

    Energy Science and Technology Software Center (OSTI)

    2009-07-10

    The RSTT software computes predictions of the travel time of seismic energy traveling from a source to a receiver through 2.5D models of the seismic velocity distribution within the Earth. The two primary applications for the RSTT library are tomographic inversion studies and seismic event location calculations. In tomographic inversions studies, a seismologist begins with number of source-receiver travel time observations and an initial starting model of the velocity distribution within the Earth. A forwardmore » travel time calculator, such as the RSTT library, is used to compute predictions of each observed travel time and all of the residuals (observed minus predicted travel time) are calculated. The Earth model is then modified in some systematic way with the goal of minimizing the residuals. The Earth model obtained in this way is assumed to be a better model than the starting model if it has lower residuals. The other major application for the RSTT library is seismic event location. Given an Earth model, an initial estimate of the location of a seismic event, and some number of observations of seismic travel time thought to have originated from that event, location codes systematically modify the estimate of the location of the event with the goal of minimizing the difference between the observed and predicted travel times. The second application, seismic event location, is routinely implemented by the military as part of its effort to monitor the Earth for nuclear tests conducted by foreign countries.« less

  7. Agriculture-related radiation dose calculations

    SciTech Connect (OSTI)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

  8. Time series association learning

    DOE Patents [OSTI]

    Papcun, George J.

    1995-01-01

    An acoustic input is recognized from inferred articulatory movements output by a learned relationship between training acoustic waveforms and articulatory movements. The inferred movements are compared with template patterns prepared from training movements when the relationship was learned to regenerate an acoustic recognition. In a preferred embodiment, the acoustic articulatory relationships are learned by a neural network. Subsequent input acoustic patterns then generate the inferred articulatory movements for use with the templates. Articulatory movement data may be supplemented with characteristic acoustic information, e.g. relative power and high frequency data, to improve template recognition.

  9. Computers for Learning

    Broader source: Energy.gov [DOE]

    Through Executive Order 12999, the Computers for Learning Program was established to provide Federal agencies a quick and easy system for donating excess and surplus computer equipment to schools...

  10. Program Evaluation: Lessons Learned

    Broader source: Energy.gov [DOE]

    A number of lessons have been learned from implementing peer reviews and critiques of past (pre-2006) outcome/impact evaluation studies that will help improve evaluation practice in EERE. Awareness...

  11. Linear Transformation Method for Multinuclide Decay Calculation

    SciTech Connect (OSTI)

    Ding Yuan

    2010-12-29

    A linear transformation method for generic multinuclide decay calculations is presented together with its properties and implications. The method takes advantage of the linear form of the decay solution N(t) = F(t)N{sub 0}, where N(t) is a column vector that represents the numbers of atoms of the radioactive nuclides in the decay chain, N{sub 0} is the initial value vector of N(t), and F(t) is a lower triangular matrix whose time-dependent elements are independent of the initial values of the system.

  12. Rooftop Unit Comparison Calculator User Manual

    SciTech Connect (OSTI)

    Miller, James D.

    2015-04-30

    This document serves as a user manual for the Packaged rooftop air conditioners and heat pump units comparison calculator (RTUCC) and is an aggregation of the calculator’s website documentation. Content ranges from new-user guide material like the “Quick Start” to the more technical/algorithmic descriptions of the “Methods Pages.” There is also a section listing all the context-help topics that support the features on the “Controls” page. The appendix has a discussion of the EnergyPlus runs that supported the development of the building-response models.

  13. NATIONAL TRU PROGRAM LESSONS LEARNED PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16-3560 Revision 0 NATIONAL TRU PROGRAM LESSONS LEARNED PLAN Revision 0 March 2016 U.S. DEPARTMENT OF ENERGY CARLSBAD FIELD OFFICE DOE/CBFO 16-3560 Revision 0 2 NATIONAL TRU PROGRAM LESSONS LEARNED PLAN Revision 0 Effective March 9, 2016 Prepared by: //Signature on File// Date: March 7,2016 J.R. Stroble, Director TRU Sites and Transportation Division Concurred by: //Signature on File// Date: March 7,2016 Casey Gadbury, Assistant Manager Office of the Program Management National TRU Program

  14. A Cognitive Approach to Student-Centered e-Learning

    SciTech Connect (OSTI)

    Greitzer, Frank L.

    2002-09-30

    Like traditional classroom instruction, distance/electronic learning (e-Learning) derives from largely behaviorist computer-based instruction paradigms that tend to reflect passive training philosophies. Over the past thirty years, more flexible, student-centered classroom teaching methods have been advocated based on the concepts of ''discovery'' learning and ''active'' learning; student-centered approaches are likewise encouraged in the development of e-Learning applications. Nevertheless, many e-Learning applications that employ state-of-the art multimedia technology in which students interact with simulations, animations, video, and sounds still fail to meet their expected training potential. Implementation of multimedia-based training features may give the impression of engaging the student in more active forms of learning, but sophisticated use of multimedia features does not necessarily produce the desired effect. This paper briefly reviews some general guidelines for applying cognitive science principles to development of student-centered e-Learning applications and describes a cognitive approach to e-Learning development that is being undertaken for the US Army.

  15. Equation of State from Lattice QCD Calculations (Conference)...

    Office of Scientific and Technical Information (OSTI)

    Conference: Equation of State from Lattice QCD Calculations Citation Details In-Document Search Title: Equation of State from Lattice QCD Calculations You are accessing a...

  16. Calculating impacts of energy standards on energy demand in U...

    Office of Scientific and Technical Information (OSTI)

    Calculating impacts of energy standards on energy demand in U.S. buildings with uncertainty in an integrated assessment model Citation Details In-Document Search Title: Calculating ...

  17. Ab Initio Calculations Of Nuclear Reactions And Exotic Nuclei...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Ab Initio Calculations Of Nuclear Reactions And Exotic Nuclei Citation Details In-Document Search Title: Ab Initio Calculations Of Nuclear Reactions And Exotic ...

  18. Non-equilibrium chemical partitioning calculation for phase transforma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and time dependent phase selection. The calculation programs were developed in C++ and fortran. In this program, we will integrate the existing calculation programs. Research area:...

  19. Energy and Cost Savings Calculators for Energy-Efficient Products...

    Open Energy Info (EERE)

    Energy and Cost Savings Calculators for Energy-Efficient Products Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy and Cost Savings Calculators for...

  20. Building America Webinar: HVAC Right-Sizing Part 1-Calculating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the key criteria required to create accurate heating and cooling load calculations. ... HVAC Right-Sizing Part 1: Calculating Loads ZERH Webinar: Low Load HVAC in Zero Energy ...

  1. Toward Catalyst Design from Theoretical Calculations (464th Brookhaven...

    Office of Scientific and Technical Information (OSTI)

    Toward Catalyst Design from Theoretical Calculations (464th Brookhaven Lecture) Citation Details In-Document Search Title: Toward Catalyst Design from Theoretical Calculations...

  2. Calculation of nuclear reaction cross sections on excited nuclei...

    Office of Scientific and Technical Information (OSTI)

    Calculation of nuclear reaction cross sections on excited nuclei with the coupled-channels method Citation Details In-Document Search Title: Calculation of nuclear reaction cross ...

  3. Energy Star Building Upgrade Value Calculator | Open Energy Informatio...

    Open Energy Info (EERE)

    Upgrade Value Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Star Building Upgrade Value Calculator (for Office Properties) AgencyCompany...

  4. EPA Rainfall Erosivity Factor Calculator Website | Open Energy...

    Open Energy Info (EERE)

    Calculator Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Rainfall Erosivity Factor Calculator Website Abstract This website allows...

  5. Divya Energy Solar Panel Savings Calculator | Open Energy Information

    Open Energy Info (EERE)

    Divya Energy Solar Panel Savings Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Divya Energy Solar Panel Savings Calculator AgencyCompany Organization:...

  6. Fragment Yields Calculated in a Time-Dependent Microscopic Theory...

    Office of Scientific and Technical Information (OSTI)

    Fragment Yields Calculated in a Time-Dependent Microscopic Theory of Fission Citation Details In-Document Search Title: Fragment Yields Calculated in a Time-Dependent Microscopic ...

  7. Natural Gas Vehicle Cost Calculator | Open Energy Information

    Open Energy Info (EERE)

    Vehicle Cost Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Natural Gas Vehicle Cost Calculator AgencyCompany Organization: United States Department of...

  8. Water-saving Measures: Energy and Cost Savings Calculator | Open...

    Open Energy Info (EERE)

    and Cost Savings Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Water-saving Measures: Energy and Cost Savings Calculator AgencyCompany Organization:...

  9. New Arsenic Cross Section Calculations (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    New Arsenic Cross Section Calculations Citation Details In-Document Search Title: New Arsenic Cross Section Calculations You are accessing a document from the Department of ...

  10. Learning Demonstration Teams | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learning Demonstration Teams Learning Demonstration Teams DOE's Controlled Hydrogen Fleet and Infrastructure Learning Demonstration Team and Partners PDF icon techvalteams.pdf ...

  11. Lessons Learned Quarterly Report, December 2014 | Department...

    Energy Savers [EERE]

    Lessons Learned Quarterly Report, December 2014 Lessons Learned Quarterly Report, December 2014 Welcome to the 81st quarterly report on lessons learned in the NEPA process. This...

  12. Waste Solidification Building Project Lessons Learned Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Solidification Building Project Lessons Learned Report Waste Solidification Building Project Lessons Learned Report This report addresses lessons learned from the Waste ...

  13. Nervana Neon - Scalable Deep Learning library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neon Nervana Neon - Scalable Deep Learning library Description and Overview neon is an easy to use, python-based scalable Deep Learning library. Deep Learning has recently achieved...

  14. Hybrid Car Calculator | Open Energy Information

    Open Energy Info (EERE)

    Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. User Interface: Website Website: www.newdream.orghybridindex.php References:...

  15. Recent Developments in No-Core Shell-Model Calculations

    SciTech Connect (OSTI)

    Navratil, P; Quaglioni, S; Stetcu, I; Barrett, B R

    2009-03-20

    We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.

  16. A primer for criticality calculations with DANTSYS

    SciTech Connect (OSTI)

    Busch, R.D.

    1997-08-01

    With the closure of many experimental facilities, the nuclear safety analyst has to rely on computer calculations to identify safe limits for the handling and storage of fissile materials. Although deterministic methods often do not provide exact models of a system, a substantial amount of reliable information on nuclear systems can be obtained using these methods if the user understands their limitations. To guide criticality specialists in this area, the Nuclear Criticality Safety Group at the University of New Mexico (UNM) in cooperation with the Radiation Transport Group at Los Alamos National Laboratory (LANL) has designed a primer to help the analyst understand and use the DANTSYS deterministic transport code for nuclear criticality safety analyses. DANTSYS is the new name of the group of codes formerly known as: ONEDANT, TWODANT, TWOHEX, TWOGQ, and THREEDANT. The primer is designed to teach bu example, with each example illustrating two or three DANTSYS features useful in criticality analyses. Starting with a Quickstart chapter, the primer gives an overview of the basic requirements for DANTSYS input and allows the user to quickly run a simple criticality problem with DANTSYS. Each chapter has a list of basic objectives at the beginning identifying the goal of the chapter and the individual DANTSYS features covered in detail in the chapter example problems. On completion of the primer, it is expected that the user will be comfortable doing criticality calculations with DANTSYS and can handle 60--80% of the situations that normally arise in a facility. The primary provides a set of input files that can be selective modified by the user to fit each particular problem.

  17. Webtrends Archives by Fiscal Year - Calculators | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calculators Webtrends Archives by Fiscal Year - Calculators From the EERE Web Statistics Archive: Corporate sites, Webtrends archive for the Calculators site for fiscal year 2011. Microsoft Office document icon Calculators FY11 More Documents & Publications Webtrends Archives by Fiscal Year - Office of EERE Webtrends Archives by Fiscal Year - Information Center Webtrends Archives by Fiscal Year - Kids Site

  18. Accurate potential energy curve of the LiH{sup +} molecule calculated with explicitly correlated Gaussian functions

    SciTech Connect (OSTI)

    Tung, Wei-Cheng; Adamowicz, Ludwik

    2014-03-28

    Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH{sup +} ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations.

  19. Low-Risk and Cost-Effective Prior Savings Estimates for Large-Scale Energy Conservation Projects in Housing: Learning from the Fort Polk GHP Project

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick; Thornton, Jeff W.

    1997-08-01

    Many opportunities exist for large-scale energy conservation projects in housing: military housing, federally-subsidized low-income housing, and planned communities (condominiums, townhomes, senior centers) to name a few. Energy savings performance contracting (ESPC) is now receiving greater attention, as a means to implement such projects. This paper proposes an improved method for prior (to construction) savings estimates for these projects. More accurate prior estimates reduce project risk, decrease financing costs, and help avoid post-construction legal disputes over performance contract baseline adjustments. The proposed approach to prior estimates is verified against data from Fort Polk, LA. In the course of evaluating the ESPC at Fort Polk, Louisiana, we have collected energy use data - both at the electrical feeder level and at the level of individual residences - which allowed us to develop calibrated engineering models which accurately predict pre-retrofit energy consumption. We believe that such calibrated models could be used to provide much more accurate estimates of energy savings in retrofit projects, particularly in cases where the energy consumption of large populations of housing can be captured on one or a few meters. The improved savings estimating approach described here is based on an engineering model calibrated to field-collected data from the pre-retrofit period. A dynamic model of pre-retrofit energy use was developed for all housing and non-housing loads on a complete electrical feeder at Fort Polk. The feeder serves 46 buildings containing a total of 200 individual apartments. Of the 46 buildings, there are three unique types, and among these types the only difference is compass orientation. The model included the heat transfer characteristics of the buildings, the pre-retrofit air source heat pump, a hot water consumption model and a profile for electrical use by lights and other appliances. Energy consumption for all 200 apartments was totaled, and by adjusting thermostat setpoints and outdoor air infiltration parameters, the models were matched to field-collected energy consumption data for the entire feeder. The energy conservation measures were then implemented in the calibrated model: the air source heat pumps were replaced by geothermal heat pumps (GHPs) with desuperheaters; hot water loads were reduced to account for the low-flow shower heads; and lighting loads were reduced to account for fixture delamping and replacement with compact fluorescent lights (CFLs). Our analysis of pre- and post-retrofit data (Shonder and Hughes, 1997) indicates that the retrofits have saved 30.3% of pre-retrofit electrical energy consumption on the feeder modeled in this paper. Using the method outlined, we have been able to predict this savings within 0.1% of its measured value, using only pre-construction energy consumption data, and data from one pilot test site. It is well-known that predictions of savings from energy conservation programs are often optimistic, especially in the case of residential retrofits. Fels and keating (1993) cite several examples of programs which achieved as little as 20% of the predicted energy savings. Factors which influence the sometimes large discrepancies between actual and predicted savings include changes in occupancy, take-back effects (in which more efficient system operation leads occupants to choose higher levels of comfort), and changes in base energy use (e.g. through purchase of additional appliances such as washing machines and clothes dryers). An even larger factor, perhaps, is the inaccuracy inherent in the engineering models (BLAST, DOE-2, etc.) commonly used to estimate building energy consumption, if these models are not first calibrated to site-monitored data. For example, prior estimates of base-wide savings from the Fort Polk ESPC were on the order of 40% of pre-retrofit electrical use; our analysis has shown the true savings for the entire project (which includes 16 separate electrical feeders) to be about 32%. It should be noted that the retrofits ca

  20. Effects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of particles with large gyroradii on resistive magnetohydrodynamic stability V. A. Svidzinski and S. C. Prager University of Wisconsin-Madison, Madison, Wisconsin 53706 ͑Received 19 September 2003; accepted 25 November 2003͒ Fast ions in tokamaks are known to have a significant influence on global plasma instabilities. In normal mode analyses for tokamaks, the perturbed electric and magnetic fields have been evaluated at the position of the particle's guiding center. The effect of

  1. Subject: Calculation of Job Creating Through Recovery Act Funding |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Subject: Calculation of Job Creating Through Recovery Act Funding Subject: Calculation of Job Creating Through Recovery Act Funding PDF icon Subject: Calculation of Job Creating Through Recovery Act Funding More Documents & Publications WPN 10-14a: Calculation of Job Creation through DOE Recovery Act Funding - Updated Calculation of Job Creation Through DOE Recovery Act Funding WPN 10-14: Calculat

  2. Fun with Big Sky Learning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fun with Big Sky Learning Fun with Big Sky Learning WHEN: Mar 21, 2015 11:00 AM - 2:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, New Mexico, USA CONTACT:...

  3. Energy Efficiency Learning Activity | Open Energy Information

    Open Energy Info (EERE)

    Website Website: learn.kidwind.orgsitesdefaultfilesenergyefficiency.pdf Cost: Free Language: English Logo: Energy Efficiency Learning Activity This lesson covers topics...

  4. Enterprise Assessments, Lessons Learned from Targeted Reviews...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned from Targeted Reviews, Radiological Controls Activity-Level Implementation - January 2015 Enterprise Assessments, Lessons Learned from Targeted Reviews,...

  5. Shielding calculations and verifications for the new Radiation Instrument Calibration Facility at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    George, G. L.; Olsher, R. H.; Seagraves, D. T.

    2002-01-01

    MCNP-4C1 was used to perform the shielding design for the new Central Health Physics Calibration Facility (CHPCF) at Los Alamos National Laboratory (LANL). The problem of shielding the facility was subdivided into three separate components: (1) Transmission; (2) Skyshine; and (3) Maze Streaming/ Transmission. When possible, actual measurements were taken to verify calculation results. The comparison of calculation versus measurement results shows excellent agreement for neutron calculations. For photon comparisons, calculations resulted in conservative estimates of the Effective Dose Equivalent (EDE) compared to measured results. This disagreement in the photon measurements versus calculations is most likely due to several conservative assumptions regarding shield density and composition. For example, reinforcing steel bars (Rebar) in the concrete shield walls were not included in the shield model.

  6. Calculated fission-fragment yield systematics in the region 74

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Möller, Peter; Randrup, Jørgen

    2015-04-01

    Background: In the seminal experiment by Schmidt et al. [Nucl. Phys. A 665, 221 (2000)] in which fission-fragment charge distributions were obtained for 70 nuclides, asymmetric distributions were seen above nucleon number A ≈ 226 and symmetric ones below. Because asymmetric fission had often loosely been explained as a preference for the nucleus to always exploit the extra binding of fragments near ¹³²Sn it was assumed that all systems below A ≈ 226 would fission symmetrically because available isotopes do not have a proton-to-neutron Z/N ratio that allows division into fragments near ¹³²Sn. But the finding by Andreyev et al.more »[Phys. Rev. Lett. 105, 252502 (2010)] did not conform to this expectation because the compound system ¹⁸⁰Hg was shown to fission asymmetrically. It was suggested that this was a new type of asymmetric fission, because no strong shell effects occur for any possible fragment division. Purpose: We calculate a reference database for fission-fragment mass yields for a large region of the nuclear chart comprising 987 nuclides. A particular aim is to establish whether ¹⁸⁰Hg is part of a contiguous region of asymmetric fission, and if so, its extent, or if not, in contrast to the actinides, there are scattered smaller groups of nuclei that fission asymmetrically in this area of the nuclear chart. Methods: We use the by now well benchmarked Brownian shape-motion method and perform random walks on the previously calculated five-dimensional potential-energy surfaces. The calculated shell corrections are damped out with energy according to a prescription developed earlier. Results: We have obtained a theoretical reference database of fission-fragment mass yields for 987 nuclides. These results show an extended region of asymmetric fission with approximate extension 74 ≤ Z ≤ 85 and 100 ≤ N ≤ 120. The calculated yields are highly variable. We show 20 representative plots of these variable features and summarize the main aspects of our results in terms of “nuclear-chart” plots showing calculated degrees of asymmetry versus N and Z. Conclusions: Experimental data in this region are rare: only ten or so yield distributions have been measured, some with very limited statistics. We agree with several measurements with higher statistics. Regions where there might be differences between our calculated results and measurements lie near the calculated transition line between symmetric and asymmetric fission. To draw more definite conclusions about the accuracy of the present implementation of the Brownian shape-motion approach in this region experimental data, with reliable statistics, for a fair number of suitably located additional nuclides are clearly needed. Because the nuclear potential-energy structure is so different in this region compared to the actinide region, additional experimental data together with fission theory studies that incorporate additional, dynamical aspects should provide much new insight.« less

  7. National Hydrogen Learning Demonstration Status

    Broader source: Energy.gov [DOE]

    Presentation slides from the Fuel Cell Technologies Program webinar "National Hydrogen Learning Demonstration Status" held February 6, 2012.

  8. Structural Simulation Toolkit. Lunch & Learn

    SciTech Connect (OSTI)

    Moore, Branden J.; Voskuilen, Gwendolyn Renae; Rodrigues, Arun F.; Hammond, Simon David; Hemmert, Karl Scott

    2015-09-01

    This is a presentation outlining a lunch and learn lecture for the Structural Simulation Toolkit, supported by Sandia National Laboratories.

  9. Learning maps -- Application

    SciTech Connect (OSTI)

    Paullin, W.L.

    1999-07-01

    The paper consists of a series of slides used in the presentation. They summarize the Root Learning Map process which is a tool that allows a company to modify its culture to improve productivity by allowing employees to have a vested interest in the outcome of the company. Educating the employees about different aspects of the organization is a major part of the process.

  10. ORBIT : BEAM DYNAMICS CALCULATIONS FOR HIGH - INTENSITY RINGS.

    SciTech Connect (OSTI)

    HOLMES,J.A.; DANILOV,V.; GALAMBOS,J.; SHISHLO,A.; COUSINEAU,S.; CHOU,W.; MICHELOTTI,L.; OSTIGUY,F.; WEI,J.

    2002-06-03

    We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK the introduction of a treatment magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings.

  11. Monte Carlo prompt dose calculations for the National Ingition Facility

    SciTech Connect (OSTI)

    Latkowski, J.F.; Phillips, T.W.

    1997-01-01

    During peak operation, the National Ignition Facility (NIF) will conduct as many as 600 experiments per year and attain deuterium- tritium fusion yields as high as 1200 MJ/yr. The radiation effective dose equivalent (EDE) to workers is limited to an average of 03 mSv/yr (30 mrem/yr) in occupied areas of the facility. Laboratory personnel determined located outside the facility will receive EDEs <= 0.5 mSv/yr (<= 50 mrem/yr). The total annual occupational EDE for the facility will be maintained at <= 0.1 person-Sv/yr (<= 10 person- rem/yr). To ensure that prompt EDEs meet these limits, three- dimensional Monte Carlo calculations have been completed.

  12. Lessons learned bulletin. Number 2

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    During the past four years, the Department of Energy -- Savannah River Operations Office and the Westinghouse Savannah River Company (WSRC) Environmental Restoration (ER) Program completed various activities ranging from waste site investigations to closure and post closure projects. Critiques for lessons learned regarding project activities are performed at the completion of each project milestone, and this critique interval allows for frequent recognition of lessons learned. In addition to project related lessons learned, ER also performs lessons learned critiques. T`he Savannah River Site (SRS) also obtains lessons learned information from general industry, commercial nuclear industry, naval nuclear programs, and other DOE sites within the complex. Procedures are approved to administer the lessons learned program, and a database is available to catalog applicable lessons learned regarding environmental remediation, restoration, and administrative activities. ER will continue to use this database as a source of information available to SRS personnel.

  13. Handbook of Industrial Engineering Equations, Formulas, and Calculations

    SciTech Connect (OSTI)

    Badiru, Adedeji B; Omitaomu, Olufemi A

    2011-01-01

    The first handbook to focus exclusively on industrial engineering calculations with a correlation to applications, Handbook of Industrial Engineering Equations, Formulas, and Calculations contains a general collection of the mathematical equations often used in the practice of industrial engineering. Many books cover individual areas of engineering and some cover all areas, but none covers industrial engineering specifically, nor do they highlight topics such as project management, materials, and systems engineering from an integrated viewpoint. Written by acclaimed researchers and authors, this concise reference marries theory and practice, making it a versatile and flexible resource. Succinctly formatted for functionality, the book presents: Basic Math Calculations; Engineering Math Calculations; Production Engineering Calculations; Engineering Economics Calculations; Ergonomics Calculations; Facility Layout Calculations; Production Sequencing and Scheduling Calculations; Systems Engineering Calculations; Data Engineering Calculations; Project Engineering Calculations; and Simulation and Statistical Equations. It has been said that engineers make things while industrial engineers make things better. To make something better requires an understanding of its basic characteristics and the underlying equations and calculations that facilitate that understanding. To do this, however, you do not have to be computational experts; you just have to know where to get the computational resources that are needed. This book elucidates the underlying equations that facilitate the understanding required to improve design processes, continuously improving the answer to the age-old question: What is the best way to do a job?

  14. XOP : a graphical user interface for spectral calculations and...

    Office of Scientific and Technical Information (OSTI)

    spectral calculations and x-ray optics utilities. Citation Details In-Document Search Title: XOP : a graphical user interface for spectral calculations and x-ray optics utilities. ...

  15. First-principles calculations of phonons and Raman spectra in...

    Office of Scientific and Technical Information (OSTI)

    First-principles calculations of phonons and Raman spectra in monoclinic CsSnCl 3 Title: First-principles calculations of phonons and Raman spectra in monoclinic CsSnCl 3 Authors: ...

  16. Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study

    SciTech Connect (OSTI)

    Pajunen, A. J.; Tedeschi, A. R.

    2012-09-18

    This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.

  17. Ice - an explicit wavelet calculation code for ICE experiments...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 97 MATHEMATICS AND COMPUTING; 99 GENERAL AND MISCELLANEOUSMATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; COMPUTER CALCULATIONS; SHOCK WAVES; ...

  18. Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Methodology Assumptions and Methodology to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Delicious Rank Alternative

  19. Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Methodology Widget Assumptions and Methodology to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions and Methodology on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions and Methodology on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions and Methodology on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions and

  20. Measurement and Verification Plan and Savings Calculations Methods Outline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (IDIQ Attachment J-8) | Department of Energy Measurement and Verification Plan and Savings Calculations Methods Outline (IDIQ Attachment J-8) Measurement and Verification Plan and Savings Calculations Methods Outline (IDIQ Attachment J-8) Document outlines measurement and verification planning and savings calculation methods for an energy savings performance contract. Microsoft Office document icon Download the M&V Plan and Savings Calculations Methods Outline. More Documents &

  1. Calculating and Communicating Program Results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calculating and Communicating Program Results Calculating and Communicating Program Results Better Buildings Neighborhood Program Data and Evaluation Peer Exchange Call: Calculating and Communicating Program Results, Call Slides and Summary, February 23, 2012. PDF icon Call Slides and Summary More Documents & Publications Evaluation Tools Utilized by the EnergySmart Program The Better Buildings Neighborhood View - October 2012 Business of Energy Efficiency Workshop presentation

  2. Application of DYNA3D in large scale crashworthiness calculations

    SciTech Connect (OSTI)

    Benson, D.J.; Hallquist, J.O.; Igarashi, M.; Shimomaki, K.; Mizuno, M.

    1986-01-01

    This paper presents an example of an automobile crashworthiness calculation. Based on our experiences with the example calculation, we make recommendations to those interested in performing crashworthiness calculations. The example presented in this paper was supplied by Suzuki Motor Co., Ltd., and provided a significant shakedown for the new large deformation shell capability of the DYNA3D code. 15 refs., 3 figs.

  3. First Principles Calculations and NMR Spectroscopy of Electrode Materials |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 7_grey.pdf More Documents & Publications First Principles Calculations and NMR Spectroscopy of Electrode Materials: NMR Vehicle Technologies Office Merit Review 2014: First Principles Calculations and NMR Spectroscopy of Electrode Materials First Principles Calculations and NMR Spectroscopy of Electrode Materials

  4. Early Lessons Learned

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lessons Learned Deploying a 100Gbps Network Steve Cotter Dept Head, Energy Sciences Network May 4, 2011 Enterprise Innovation Symposium Atlanta, GA Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science Energy Sciences Network Overview Since 1986, directly supporting the DOE Office of Science's 27,000+ collaborators worldwide with advanced network services and collaboration tools One of two largest research and education (R&E) networks in the US * Transports

  5. Lessons Learned: Peer Exchange Calls -- No. 4 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Lessons Learned: Peer Exchange Calls -- No. 4 Better Buildings Residential Network Lessons Learned, Lessons Learned: Peer Exchange Calls, No. 4. PDF icon Lessons Learned: Peer...

  6. CRC handbook of nuclear reactors calculations. Vol. III

    SciTech Connect (OSTI)

    Ronen, Y.

    1986-01-01

    This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described. Volume III: Control Rods and Burnable Absorber Calculations. Perturbation Theory for Nuclear Reactor Analysis. Thermal Reactors Calculations. Fast Reactor Calculations. Seed-Blanket Reactors. Index.

  7. Simple extrapolation method to predict the electronic structure of conjugated polymers from calculations on oligomers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Larsen, Ross E.

    2016-04-12

    In this study, we introduce two simple tight-binding models, which we call fragment frontier orbital extrapolations (FFOE), to extrapolate important electronic properties to the polymer limit using electronic structure calculations on only a few small oligomers. In particular, we demonstrate by comparison to explicit density functional theory calculations that for long oligomers the energies of the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and of the first electronic excited state are accurately described as a function of number of repeat units by a simple effective Hamiltonian parameterized from electronic structure calculations on monomers, dimers and, optionally,more » tetramers. For the alternating copolymer materials that currently comprise some of the most efficient polymer organic photovoltaic devices one can use these simple but rigorous models to extrapolate computed properties to the polymer limit based on calculations on a small number of low-molecular-weight oligomers.« less

  8. Learning and Workforce Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Learning and Workforce Development Learning and Workforce Development Learning Learn about our learning and development planning, mandatory training compliance reporting, and professional skills and technical training. Workforce Development Find links to services that we provide to support our DOE employees through our corporate assessment, evaluation, organizational development and leadership development. Browse by Role Search for tools, information, and programs specific to your

  9. Lessons Learned | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Project Management » Lessons Learned Lessons Learned The Department of Energy utilizes project management lessons learned (PMLL) in the execution of DOE capital asset projects to improve current and future projects. Integrated Project Team's (IPTs), both from the Contractor and Federal staff, submit the PMLLs during the execution of capital asset projects. These first-hand accounts address the challenges they encountered and the solutions they devised to achieve improvement. Per DOE

  10. Lessons Learned | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services » Project Management » Lessons Learned Lessons Learned The Department of Energy utilizes project management lessons learned (PMLL) in the execution of DOE capital asset projects to improve current and future projects. Integrated Project Team's (IPTs), both from the Contractor and Federal staff, submit the PMLLs during the execution of capital asset projects. These first-hand accounts address the challenges they encountered and the solutions they devised to achieve improvement. Per DOE

  11. Relative Hazard and Risk Measure Calculation Methodology

    SciTech Connect (OSTI)

    Stenner, Robert D.; Strenge, Dennis L.; Elder, Matthew S.

    2004-03-20

    The relative hazard (RH) and risk measure (RM) methodology and computer code is a health risk-based tool designed to allow managers and environmental decision makers the opportunity to readily consider human health risks (i.e., public and worker risks) in their screening-level analysis of alternative cleanup strategies. Environmental management decisions involve consideration of costs, schedules, regulatory requirements, health hazards, and risks. The RH-RM tool is a risk-based environmental management decision tool that allows managers the ability to predict and track health hazards and risks over time as they change in relation to mitigation and cleanup actions. Analysis of the hazards and risks associated with planned mitigation and cleanup actions provides a baseline against which alternative strategies can be compared. This new tool allows managers to explore “what if scenarios,” to better understand the impact of alternative mitigation and cleanup actions (i.e., alternatives to the planned actions) on health hazards and risks. This new tool allows managers to screen alternatives on the basis of human health risk and compare the results with cost and other factors pertinent to the decision. Once an alternative or a narrow set of alternatives are selected, it will then be more cost-effective to perform the detailed risk analysis necessary for programmatic and regulatory acceptance of the selected alternative. The RH-RM code has been integrated into the PNNL developed Framework for Risk Analysis In Multimedia Environmental Systems (FRAMES) to allow the input and output data of the RH-RM code to be readily shared with the more comprehensive risk analysis models, such as the PNNL developed Multimedia Environmental Pollutant Assessment System (MEPAS) model.

  12. Learning Experiences | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Education provides a variety of learning opportunities to enhance middle and high school math, science and comptuer science curriculum. We offer programs that strengthen ...

  13. Fun with Big Sky Learning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fun with Big Sky Learning Fun with Big Sky Learning WHEN: Mar 21, 2015 11:00 AM - 2:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, New Mexico, USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Big Sky Learning Event Description Bring your kids and teens to the museum for an afternoon of "maker-space" activities with Big Sky Learning. Participants will be able to: Build their own Shake Bot-a small simple robot that shakes-and take

  14. Learning from Roman Seawater Concrete

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning from Roman Seawater Concrete Print The material secrets of a concrete Roman breakwater that has spent the last 2000 years submerged in the Mediterranean Sea have been...

  15. ORISE: Partnership with NLM to Develop E-learning Courses | How ORISE is

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making a Difference Partnership with NLM to Develop E-learning Courses How ORISE is Making a Difference The transition to e-learning takes more than just logging on to computer. Development of an effective online learning program requires many steps. The Specialized Information Services (SIS) Division of the National Library of Medicine sought support from ORAU (through its management of the ORISE contract) to make the seamless transition from traditional, in-person instruction to Web-based,

  16. Learning About Saving Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GO-10095-070 FS 218 January 1995 ENERGY EFFICIENCY Learning About AND RENEWABLE Saving Energy CLEARINGHOUSE ENERGY What is energy? Energy is the ability to do work. It can come in the forms of heat and light. There are two types of energy: working energy and stored energy. Stored energy becomes working energy when we use it. You eat food for energy. Then your body stores the energy until you need it. When you work and play, your stored energy becomes working energy. We use energy every day. We

  17. File: 070629 Lessons Learned

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lessons Learned" 7/3/2007 * This list is provided as a guide to ASP scientists getting ready to go in the field. It is simply a list of things that were done right before and during CHAPS, things we might have done better and a wish list of things to address in future campaigns. It was prepared on the last day of the campaign during an informal and free wheeling discussion in the television room of Greenwood Aviation in Ponca City, Oklahoma. It is not a polished document and readers will

  18. Lessons Learned Quarterly Report, June 2004

    Broader source: Energy.gov [DOE]

    Welcome to the 39th quarterly report on lessons learned in the NEPA process. In this issue we are continuing a multi-part examination of lessons learned from Lessons Learned.

  19. Lessons Learned Quarterly Report, March 2004

    Broader source: Energy.gov [DOE]

    Welcome to the 38th quarterly report on lessons learned in the NEPA process. In this issue we are continuing a multi-part examination of lessons learned from Lessons Learned.

  20. NERSC Calculations Provide Independent Confirmation of Global Land Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Since 1901 Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 September 9, 2013 Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 campo.jpg These maps show the changes in air temperatures over land as measured using thermometers (left side) and as calculated by the 20th Century Reanalysis project (left side). While more than 80 percent of the observed variation is captured by

  1. Energy and Cost Savings Calculators for Energy-Efficient Products |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Efficient Products » Energy and Cost Savings Calculators for Energy-Efficient Products Energy and Cost Savings Calculators for Energy-Efficient Products Estimate energy and cost savings for energy- and water-efficient product categories using these interactive calculators provided by the Federal Energy Management Program or ENERGY STAR. Commercial Heating and Cooling Air-Cooled Chillers Boilers Commercial Heat Pumps Commercial Rooftop Air Conditioners Residential

  2. Spin resonance strength calculation through single particle tracking for RHIC

    SciTech Connect (OSTI)

    Luo, Y.; Dutheil, Y.; Huang, H.; Meot, F.; Ranjbar, V.

    2015-05-03

    The strengths of spin resonances for the polarized-proton operation in the Relativistic Heavy Ion Collider are currently calculated with the code DEPOL, which numerically integrates through the ring based on an analytical approximate formula. In this article, we test a new way to calculate the spin resonance strengths by performing Fourier transformation to the actual transverse magnetic fields seen by a single particle traveling through the ring. Comparison of calculated spin resonance strengths is made between this method and DEPOL.

  3. CALCULATION OF STOPPING POWER VALUES AND RANGES OF FAST IONS.

    Energy Science and Technology Software Center (OSTI)

    2003-03-18

    STOPOW calculates a set of stopping power values and ranges of fast ions in matter for any materials. Furthermore STOPOW can calculate a set of values for one special auxiliary function (e.g. kinematic factors, track structure parameters, time of flight or correction factors in the stopping function) . The user chooses the physical units for stopping powers and ranges and the energy range for calculations.

  4. Energy Cost Calculator for Urinals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Urinals Energy Cost Calculator for Urinals Vary water cost, frequency of operation, and /or efficiency level. INPUT SECTION This calculator assumes that early replacement of a urinal or toilet will take place with 10 years of life remaining for existing fixture. Input the following data (if any parameter is missing, calculator will set to default value). Defaults Water Saving Product Urinal Urinal Gallons per Flush gpf 1.0 gpf Quantity to be Purchased 1 Water Cost (including waste water charges)

  5. Measurements and model calculations of radiative fluxes for the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements and model calculations of radiative fluxes for the Cabauw Experimental Site for Atmospheric Research, the Netherlands Knap, Wouter Royal Netherlands Meteorological...

  6. Ab Initio Calculations of Light-Ion Fusion Reactions (Conference...

    Office of Scientific and Technical Information (OSTI)

    Ab Initio Calculations of Light-Ion Fusion Reactions Citation Details In-Document Search ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  7. Leading-order calculation of electric conductivity in hot quantum...

    Office of Scientific and Technical Information (OSTI)

    Subject: 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; ACTION INTEGRAL; CALCULATION METHODS; ELECTRIC CONDUCTIVITY; FEYNMAN DIAGRAM; GAUGE INVARIANCE; INTEGRAL EQUATIONS; QUANTUM ...

  8. Calculations Of Damage To Rotating Targets Under Intense Beams...

    Office of Scientific and Technical Information (OSTI)

    Beams For Super-Heavy Element Production Citation Details In-Document Search Title: Calculations Of Damage To Rotating Targets Under Intense Beams For Super-Heavy Element ...

  9. A general higher-order remap algorithm for ALE calculations ...

    Office of Scientific and Technical Information (OSTI)

    The locations of the shock and contact discontinuity in the Riemann shock tube problem are well captured. Cercion demonstrates a high degree of symmetry when calculating the Sedov ...

  10. A Perturbation Approach to Calculating the Behavior of Hulti...

    Office of Scientific and Technical Information (OSTI)

    A Perturbation Approach to Calculating the Behavior of Hulti-cell Radiofrequeocy Accelerating Strectures Citation Details In-Document Search Title: A Perturbation Approach to...

  11. Magnetic Field Line Tracing Calculations for Conceptual PFC Design...

    Office of Scientific and Technical Information (OSTI)

    PFC Design in the National Compact Stellarator Experiment Citation Details In-Document Search Title: Magnetic Field Line Tracing Calculations for Conceptual PFC Design in the ...

  12. Microscopic Calculation of Fission Fragment Energies for the...

    Office of Scientific and Technical Information (OSTI)

    these calculations also highlight the importance of local constraints on the fragments ... DOE Contract Number: W-7405-ENG-48 Resource Type: Technical Report Research Org: Lawrence ...

  13. EPA Climate Leaders Simplified GHG Emissions Calculator (SGEC...

    Open Energy Info (EERE)

    Simplified GHG Emissions Calculator (SGEC) AgencyCompany Organization: United States Environmental Protection Agency Sector: Energy, Climate Focus Area: Industry, Greenhouse...

  14. Combined local-density and dynamical mean field theory calculations...

    Office of Scientific and Technical Information (OSTI)

    field theory calculations for the compressed lanthanides Ce, Pr, and Nd Citation Details In-Document Search Title: Combined local-density and dynamical mean field theory ...

  15. Energy savings estimates and cost benefit calculations for high...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Energy savings estimates and cost benefit calculations for high performance relocatable classrooms Citation Details In-Document Search Title: Energy savings ...

  16. Magnetic Field Line Tracing Calculations for Conceptual PFC Design...

    Office of Scientific and Technical Information (OSTI)

    enabling the investigation of high beta physics in a compact stellarator geometry. ... In this paper, we report on the magnetic field line tracing calculations used to evaluate ...

  17. Wind Energy Finance (WEF): An Online Calculator for Economic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interested in owning or benefiting from wind energy projects * Applicants pursuing 2002 ... The program can also calculate minimum energy contract price when the user enters minimum ...

  18. Calculations in Support of JAEA Experiments. Update Oct 2015

    SciTech Connect (OSTI)

    Goda, Joetta Marie; James, Michael R.

    2015-10-16

    An update on calculations provided in support of the Japanese Atomic Energy Agency (JAEA) experiments is summarized in PowerPoint form.

  19. FEMP Solar Hot Water Calculator | Open Energy Information

    Open Energy Info (EERE)

    Water Calculator AgencyCompany Organization: Federal Energy Management Program Sector: Energy Focus Area: Buildings Phase: Determine Baseline Topics: Baseline projection...

  20. Tool for calculation of CO2 emissions from organisations | Open...

    Open Energy Info (EERE)

    lt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Language: English Tool for calculation of CO2 emissions from organisations Screenshot...

  1. Measurement and Verification Plan and Savings Calculations Methods...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Document outlines measurement and verification planning and savings calculation methods for an energy savings performance contract. Microsoft Office document icon Download the M&V ...

  2. Multigroup Radiation Transport in Supernova Light Curve Calculations...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Multigroup Radiation Transport in Supernova Light Curve Calculations Citation Details In-Document Search Title: Multigroup Radiation Transport in Supernova Light ...

  3. Multigroup Radiation Transport in Supernova Light Curve Calculations...

    Office of Scientific and Technical Information (OSTI)

    Multigroup Radiation Transport in Supernova Light Curve Calculations Even, Wesley P. Los Alamos National Laboratory; Frey, Lucille H. Los Alamos National Laboratory; Fryer,...

  4. Microscopic Calculation of Fission Fragment Energies for the...

    Office of Scientific and Technical Information (OSTI)

    We calculate the total kinetic and excitation energies of fragments produced in the ... 239Pu (nsub th, f) reaction and extracted their total kinetic and excitation energies. ...

  5. EPA - Rainfall Erosivity Factor Calculator webpage | Open Energy...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for EPA - Rainfall Erosivity Factor Calculator webpage Citation Environmental...

  6. First Principles Calculations (and NMR Spectroscopy of Electrode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (and NMR Spectroscopy of Electrode Materials) First Principles Calculations (and NMR Spectroscopy of Electrode Materials) 2009 DOE Hydrogen Program and Vehicle Technologies Program ...

  7. First Principles Calculations and NMR Spectroscopy of Electrode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and NMR Spectroscopy of Electrode Materials First Principles Calculations and NMR Spectroscopy of Electrode Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle ...

  8. First Principles Calculations and NMR Spectroscopy of Electrode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and NMR Spectroscopy of Electrode Materials First Principles Calculations and NMR Spectroscopy of Electrode Materials 2009 DOE Hydrogen Program and Vehicle Technologies Program ...

  9. Qualified Software for Calculating Commercial Building Tax Deductions

    Broader source: Energy.gov [DOE]

    On this page you'll find a list of qualified computer software for calculating commercial building energy and power cost savings that meet federal tax incentive requirements.

  10. First Principles Calculations and NMR Spectroscopy of Electrode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials: NMR First Principles Calculations and NMR Spectroscopy of Electrode Materials: NMR 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer...

  11. IGES GHG Calculator For Solid Waste | Open Energy Information

    Open Energy Info (EERE)

    Assessment to Protect the Environment (GRAPE) Electricity Markets Analysis (EMA) Model Gold Standard Program Model ... further results The GHG Calculator for Solid Waste is a...

  12. Linear beam-beam tune shift calculations for the Tevatron Collider

    SciTech Connect (OSTI)

    Johnson, D.

    1989-01-12

    A realistic estimate of the linear beam-beam tune shift is necessary for the selection of an optimum working point in the tune diagram. Estimates of the beam-beam tune shift using the ''Round Beam Approximation'' (RBA) have over estimated the tune shift for the Tevatron. For a hadron machine with unequal lattice functions and beam sizes, an explicit calculation using the beam size at the crossings is required. Calculations for various Tevatron lattices used in Collider operation are presented. Comparisons between the RBA and the explicit calculation, for elliptical beams, are presented. This paper discusses the calculation of the linear tune shift using the program SYNCH. Selection of a working point is discussed. The magnitude of the tune shift is influenced by the choice of crossing points in the lattice as determined by the pbar ''cogging effects''. Also discussed is current cogging procedures and presents results of calculations for tune shifts at various crossing points in the lattice. Finally, a comparison of early pbar tune measurements with the present linear tune shift calculations is presented. 17 refs., 13 figs., 3 tabs.

  13. Industrial Assessment Centers Help Students, Communities Learn...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Assessment Centers Help Students, Communities Learn About Energy Efficiency Industrial Assessment Centers Help Students, Communities Learn About Energy Efficiency March ...

  14. Structure Learning and Statistical Estimation in Distribution...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Structure Learning and Statistical Estimation ... Part I of this paper discusses the problem of learning the operational structure of the ...

  15. System Design - Lessons Learned, Generic Concepts, Characteristics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design - Lessons Learned, Generic Concepts, Characteristics & Impacts System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Presented at the DOE-DOD ...

  16. Structure Learning in Power Distribution Networks (Technical...

    Office of Scientific and Technical Information (OSTI)

    Structure Learning in Power Distribution Networks Citation Details In-Document Search Title: Structure Learning in Power Distribution Networks You are accessing a document from ...

  17. DOE Lessons Learned | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Future enhancements to the LLIS and other Lessons Learned activities include converting the Lessons Learned listserver to a Lotus Notes application, enhancing the Corporate Lessons ...

  18. Lessons Learned: Pangue Hydroelectric | Open Energy Information

    Open Energy Info (EERE)

    Learned: Pangue Hydroelectric Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Lessons Learned: Pangue Hydroelectric AgencyCompany Organization: International Finance...

  19. A new endwall model for axial compressor throughflow calculations

    SciTech Connect (OSTI)

    Dunham, J.

    1995-10-01

    It is well recognized that the endwall regions of a compressor--in which the annulus wall flow interacts with the mainstream flow--have a major influence on its efficiency and surge margin. Despite many attempts over the years to predict the very complex flow patterns in the endwall regions, current compressor design methods still rely largely on empirical estimates of the aerodynamic losses and flow angle deviations in these regions. This paper describes a new phenomenological model of the key endwall flow phenomena treated in a circumferentially averaged way. It starts from Hirsch and de Ruyck`s annulus wall boundary layer approach, but makes some important changes. The secondary vorticities arising from passage secondary flows and from tip clearance flows are calculated. Then the radial interchanges of momentum, energy, and entropy arising from both diffusion and convection are estimated. The model is incorporated into a streamline curvature program. The empirical blade force defect terms in the boundary layers are selected from cascade data. The effectiveness of the method is illustrated by comparing the predictions with experimental results on both low-speed and high-speed multistage compressors. It is found that the radial variation of flow parameters is quite well predicted, and so is the overall performance, except when significant endwall stall occurs.

  20. BENCHMARKING UPGRADED HOTSPOT DOSE CALCULATIONS AGAINST MACCS2 RESULTS

    SciTech Connect (OSTI)

    Brotherton, Kevin

    2009-04-30

    The radiological consequence of interest for a documented safety analysis (DSA) is the centerline Total Effective Dose Equivalent (TEDE) incurred by the Maximally Exposed Offsite Individual (MOI) evaluated at the 95th percentile consequence level. An upgraded version of HotSpot (Version 2.07) has been developed with the capabilities to read site meteorological data and perform the necessary statistical calculations to determine the 95th percentile consequence result. These capabilities should allow HotSpot to join MACCS2 (Version 1.13.1) and GENII (Version 1.485) as radiological consequence toolbox codes in the Department of Energy (DOE) Safety Software Central Registry. Using the same meteorological data file, scenarios involving a one curie release of {sup 239}Pu were modeled in both HotSpot and MACCS2. Several sets of release conditions were modeled, and the results compared. In each case, input parameter specifications for each code were chosen to match one another as much as the codes would allow. The results from the two codes are in excellent agreement. Slight differences observed in results are explained by algorithm differences.

  1. Dose Calculation Evolution for Internal Organ Irradiation in Humans

    SciTech Connect (OSTI)

    Jimenez V, Reina A.

    2007-10-26

    The International Commission of Radiation Units (ICRU) has established through the years, a discrimination system regarding the security levels on the prescription and administration of doses in radiation treatments (Radiotherapy, Brach therapy, Nuclear Medicine). The first level is concerned with the prescription and posterior assurance of dose administration to a point of interest (POI), commonly located at the geometrical center of the region to be treated. In this, the effects of radiation around that POI, is not a priority. The second level refers to the dose specifications in a particular plane inside the patient, mostly the middle plane of the lesion. The dose is calculated to all the structures in that plane regardless if they are tumor or healthy tissue. In this case, the dose is not represented by a point value, but by level curves called 'isodoses' as in a topographic map, so you can assure the level of doses to this particular plane, but it also leave with no information about how this values go thru adjacent planes. This is why the third level is referred to the volumetrical description of doses so these isodoses construct now a volume (named 'cloud') that give us better assurance about tissue irradiation around the volume of the lesion and its margin (sub clinical spread or microscopic illness). This work shows how this evolution has resulted, not only in healthy tissue protection improvement but in a rise of tumor control, quality of life, better treatment tolerance and minimum permanent secuelae.

  2. Application of wavelet scaling function expansion continuous-energy resonance calculation method to MOX fuel problem

    SciTech Connect (OSTI)

    Yang, W.; Wu, H.; Cao, L.

    2012-07-01

    More and more MOX fuels are used in all over the world in the past several decades. Compared with UO{sub 2} fuel, it contains some new features. For example, the neutron spectrum is harder and more resonance interference effects within the resonance energy range are introduced because of more resonant nuclides contained in the MOX fuel. In this paper, the wavelets scaling function expansion method is applied to study the resonance behavior of plutonium isotopes within MOX fuel. Wavelets scaling function expansion continuous-energy self-shielding method is developed recently. It has been validated and verified by comparison to Monte Carlo calculations. In this method, the continuous-energy cross-sections are utilized within resonance energy, which means that it's capable to solve problems with serious resonance interference effects without iteration calculations. Therefore, this method adapts to treat the MOX fuel resonance calculation problem natively. Furthermore, plutonium isotopes have fierce oscillations of total cross-section within thermal energy range, especially for {sup 240}Pu and {sup 242}Pu. To take thermal resonance effect of plutonium isotopes into consideration the wavelet scaling function expansion continuous-energy resonance calculation code WAVERESON is enhanced by applying the free gas scattering kernel to obtain the continuous-energy scattering source within thermal energy range (2.1 eV to 4.0 eV) contrasting against the resonance energy range in which the elastic scattering kernel is utilized. Finally, all of the calculation results of WAVERESON are compared with MCNP calculation. (authors)

  3. Application of RAD-BCG calculator to Hanford's 300 area shoreline characterization dataset

    SciTech Connect (OSTI)

    Antonio, Ernest J.; Poston, Ted M.; Tiller, Brett L.; Patton, Gene W.

    2003-07-01

    Abstract. In 2001, a multi-agency study was conducted to characterize potential environmental effects from radiological and chemical contaminants on the near-shore environment of the Columbia River at the 300 Area of the U.S. Department of Energy’s Hanford Site. Historically, the 300 Area was the location of nuclear fuel fabrication and was the main location for research and development activities from the 1940s until the late 1980s. During past waste handling practices uranium, copper, and other heavy metals were routed to liquid waste streams and ponds near the Columbia River shoreline. The Washington State Department of Health and the Pacific Northwest National Laboratory’s Surface Environmental Surveillance Project sampled various environmental components including river water, riverbank spring water, sediment, fishes, crustaceans, bivalve mollusks, aquatic insects, riparian vegetation, small mammals, and terrestrial invertebrates for analyses of radiological and chemical constituents. The radiological analysis results for water and sediment were used as initial input into the RAD-BCG Calculator. The RAD-BCG Calculator, a computer program that uses an Excel® spreadsheet and Visual Basic® software, showed that maximum radionuclide concentrations measured in water and sediment were lower than the initial screening criteria for concentrations to produce dose rates at existing or proposed limits. Radionuclide concentrations measured in biota samples were used to calculate site-specific bioaccumulation coefficients (Biv) to test the utility of the RAD-BCG-Calculator’s site-specific screening phase. To further evaluate site-specific effects, the default Relative Biological Effect (RBE) for internal alpha particle emissions was reduced by half and the program’s kinetic/allometric calculation approach was initiated. The subsequent calculations showed the initial RAD-BCG Calculator results to be conservative, which is appropriate for screening purposes.

  4. LESSONS LEARNED LEARNED LESSONS N E P A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of the "Third U.S. National Climate Assessment: Climate Change Impacts in the United ... who will be involved. * A webcast of a "peer learning session" provides an orientation to ...

  5. Explicitly correlated Gaussian calculations of the {sup 2}D Rydberg states of the boron atom

    SciTech Connect (OSTI)

    Sharkey, Keeper L.; Bubin, Sergiy; Adamowicz, Ludwik

    2012-08-14

    Accurate non-relativistic variational calculations are performed for the seven lowest members of the {sup 2}D Rydberg series (1s{sup 2}2s2p{sup 2}, and 1s{sup 2}2s{sup 2}nd, n= 3, Horizontal-Ellipsis , 8) of the boron atom. The wave functions of the states are expanded in terms of all-electron explicitly correlated Gaussian basis functions and the effect of the finite nuclear mass is directly included in the calculations allowing for determining the isotopic shifts of the energy levels. The Gaussian basis is optimized independently for each state with the aid of the analytic energy gradient with respect to the Gaussian parameters. The calculations represent the highest accuracy level currently achievable for the considered states. The computed energies are compared with the available experimental data.

  6. On calculating the equilibrium structure of molecular crystals.

    SciTech Connect (OSTI)

    Mattsson, Ann Elisabet; Wixom, Ryan R.; Mattsson, Thomas Kjell Rene

    2010-03-01

    The difficulty of calculating the ambient properties of molecular crystals, such as the explosive PETN, has long hampered much needed computational investigations of these materials. One reason for the shortcomings is that the exchange-correlation functionals available for Density Functional Theory (DFT) based calculations do not correctly describe the weak intermolecular van der Waals' forces present in molecular crystals. However, this weak interaction also poses other challenges for the computational schemes used. We will discuss these issues in the context of calculations of lattice constants and structure of PETN with a number of different functionals, and also discuss if these limitations can be circumvented for studies at non-ambient conditions.

  7. CRC handbook of nuclear reactors calculations. Vol. II

    SciTech Connect (OSTI)

    Ronen, Y.

    1986-01-01

    This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described. Volume II: Monte Carlo Calculations for Nuclear Reactors. In-Core Management of Four Reactor Types. In-Core Management in CANDU-PHW Reactors. Reactor Dynamics. The Theory of Neutron Leakage in Reactor Lattices. Index.

  8. Emergency Doses (ED) - Revision 3: A calculator code for environmental dose computations

    SciTech Connect (OSTI)

    Rittmann, P.D.

    1990-12-01

    The calculator program ED (Emergency Doses) was developed from several HP-41CV calculator programs documented in the report Seven Health Physics Calculator Programs for the HP-41CV, RHO-HS-ST-5P (Rittman 1984). The program was developed to enable estimates of offsite impacts more rapidly and reliably than was possible with the software available for emergency response at that time. The ED - Revision 3, documented in this report, revises the inhalation dose model to match that of ICRP 30, and adds the simple estimates for air concentration downwind from a chemical release. In addition, the method for calculating the Pasquill dispersion parameters was revised to match the GENII code within the limitations of a hand-held calculator (e.g., plume rise and building wake effects are not included). The summary report generator for printed output, which had been present in the code from the original version, was eliminated in Revision 3 to make room for the dispersion model, the chemical release portion, and the methods of looping back to an input menu until there is no further no change. This program runs on the Hewlett-Packard programmable calculators known as the HP-41CV and the HP-41CX. The documentation for ED - Revision 3 includes a guide for users, sample problems, detailed verification tests and results, model descriptions, code description (with program listing), and independent peer review. This software is intended to be used by individuals with some training in the use of air transport models. There are some user inputs that require intelligent application of the model to the actual conditions of the accident. The results calculated using ED - Revision 3 are only correct to the extent allowed by the mathematical models. 9 refs., 36 tabs.

  9. Effective Community-Wide Policy Technical Assistance: The DOE/NREL Approach (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This document compiles lessons learned and provides a step-by-step process for implementing effective policy assistance.

  10. A Framework for Lattice QCD Calculations on GPUs

    SciTech Connect (OSTI)

    Winter, Frank; Clark, M.A.; Edwards, Robert G.; Joo, Balint

    2014-08-01

    Computing platforms equipped with accelerators like GPUs have proven to provide great computational power. However, exploiting such platforms for existing scientific applications is not a trivial task. Current GPU programming frameworks such as CUDA C/C++ require low-level programming from the developer in order to achieve high performance code. As a result porting of applications to GPUs is typically limited to time-dominant algorithms and routines, leaving the remainder not accelerated which can open a serious Amdahl's law issue. The lattice QCD application Chroma allows to explore a different porting strategy. The layered structure of the software architecture logically separates the data-parallel from the application layer. The QCD Data-Parallel software layer provides data types and expressions with stencil-like operations suitable for lattice field theory and Chroma implements algorithms in terms of this high-level interface. Thus by porting the low-level layer one can effectively move the whole application in one swing to a different platform. The QDP-JIT/PTX library, the reimplementation of the low-level layer, provides a framework for lattice QCD calculations for the CUDA architecture. The complete software interface is supported and thus applications can be run unaltered on GPU-based parallel computers. This reimplementation was possible due to the availability of a JIT compiler (part of the NVIDIA Linux kernel driver) which translates an assembly-like language (PTX) to GPU code. The expression template technique is used to build PTX code generators and a software cache manages the GPU memory. This reimplementation allows us to deploy an efficient implementation of the full gauge-generation program with dynamical fermions on large-scale GPU-based machines such as Titan and Blue Waters which accelerates the algorithm by more than an order of magnitude.

  11. Lessons Learned | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Within 90 days of Critical Decision (CD-4) approval-- Lessons learned from project execution and facility start-up All PMLLs submitted to OAPM are filed in PARS II under their ...

  12. Property:Building/MeanAnnualTempCalculationPeriod | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingMeanAnnualTempCalculationPeriod Jump to: navigation, search This is a property of type Number. Mean annual temperature during the...

  13. Ab-initio Reaction Calculations for Carbon-12 (ESP Technical...

    Office of Scientific and Technical Information (OSTI)

    Ab-initio Reaction Calculations for Carbon-12 (ESP Technical Report): ALCF-2 Early Science Program Technical Report Citation Details In-Document Search Title: Ab-initio Reaction ...

  14. Ab-initio Reaction Calculations for Carbon-12 (ESP Technical...

    Office of Scientific and Technical Information (OSTI)

    for Carbon-12 (ESP Technical Report): ALCF-2 Early Science Program Technical Report Citation Details In-Document Search Title: Ab-initio Reaction Calculations for Carbon-12 (ESP ...

  15. Monte Carlo Hauser-Feshbach Calculations of Prompt Fission Neutrons...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Monte Carlo Hauser-Feshbach Calculations of Prompt Fission Neutrons and Gamma Rays: Application to Thermal Neutron-Induced Fission Reactions on U-235 and Pu-239 ...

  16. Calculate Gas Phase Transport Properties of Pure Species and Mixtures

    Energy Science and Technology Software Center (OSTI)

    1997-10-20

    DRFM is a set of routines and data bases used to calculate gas phase transport properties of pure species and mixtures. The program(s) may stand alone or may be used as part of a larger simulation.

  17. Dose Rate Calculations for Rotary Mode Core Sampling Exhauster

    SciTech Connect (OSTI)

    FOUST, D.J.

    2000-10-26

    This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering.

  18. Comparative study of defect transition energy calculation methods...

    Office of Scientific and Technical Information (OSTI)

    Comparative study of defect transition energy calculation methods: The case of oxygen vacancy in In2O3 and ZnO Prev Next Title: Comparative study of defect transition energy ...

  19. Learning from Roman Seawater Concrete

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning from Roman Seawater Concrete Learning from Roman Seawater Concrete Print Wednesday, 25 September 2013 00:00 The material secrets of a concrete Roman breakwater that has spent the last 2000 years submerged in the Mediterranean Sea have been uncovered by an international team of researchers using a variety of techniques, including x-ray microdiffraction, x-ray spectroscopy, and synchrotron-based high-pressure x-ray diffraction. Analyses of the ancient samples pinpointed why the best Roman

  20. Basis functions for electronic structure calculations on spheres

    SciTech Connect (OSTI)

    Gill, Peter M. W. Loos, Pierre-François Agboola, Davids

    2014-12-28

    We introduce a new basis function (the spherical Gaussian) for electronic structure calculations on spheres of any dimension D. We find general expressions for the one- and two-electron integrals and propose an efficient computational algorithm incorporating the Cauchy-Schwarz bound. Using numerical calculations for the D = 2 case, we show that spherical Gaussians are more efficient than spherical harmonics when the electrons are strongly localized.

  1. Multigroup Radiation Transport in Supernova Light Curve Calculations

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Multigroup Radiation Transport in Supernova Light Curve Calculations Citation Details In-Document Search Title: Multigroup Radiation Transport in Supernova Light Curve Calculations Authors: Even, Wesley P. [1] ; Frey, Lucille H. [1] ; Fryer, Christopher L. [1] ; Young, Patrick [2] + Show Author Affiliations Los Alamos National Laboratory Arizona State University Publication Date: 2013-04-29 OSTI Identifier: 1077017 Report Number(s):

  2. Ab Initio Calculations of Even Oxygen Isotopes with Chiral

    Office of Scientific and Technical Information (OSTI)

    Two-Plus-Three-Nucleon Interactions (Journal Article) | SciTech Connect Initio Calculations of Even Oxygen Isotopes with Chiral Two-Plus-Three-Nucleon Interactions Citation Details In-Document Search Title: Ab Initio Calculations of Even Oxygen Isotopes with Chiral Two-Plus-Three-Nucleon Interactions Authors: Hergert, H. ; Binder, S. ; Calci, A. ; Langhammer, J. ; Roth, R. Publication Date: 2013-06-10 OSTI Identifier: 1102833 Type: Publisher's Accepted Manuscript Journal Name: Physical

  3. Strategy Guideline. Accurate Heating and Cooling Load Calculations

    SciTech Connect (OSTI)

    Burdick, Arlan

    2011-06-01

    This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.

  4. Strategy Guideline: Accurate Heating and Cooling Load Calculations

    SciTech Connect (OSTI)

    Burdick, A.

    2011-06-01

    This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.

  5. Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials Citation Details In-Document Search Title: Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials Authors: Lynn, J. E. ; Carlson, J. ; Epelbaum, E. ; Gandolfi, S. ; Gezerlis, A. ; Schwenk, A. Publication Date: 2014-11-04 OSTI Identifier: 1181024 Grant/Contract Number: AC02-05CH11231 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters

  6. Calculations Of Damage To Rotating Targets Under Intense Beams For

    Office of Scientific and Technical Information (OSTI)

    Super-Heavy Element Production (Journal Article) | SciTech Connect Calculations Of Damage To Rotating Targets Under Intense Beams For Super-Heavy Element Production Citation Details In-Document Search Title: Calculations Of Damage To Rotating Targets Under Intense Beams For Super-Heavy Element Production In the production of the heaviest elements, the cross-sections for evaporation residues are very small, which, in turn, requires the usage of intense beams. Hence, the targets used tend to

  7. Direct Aerosol Forcing: Calculation from Observables and Sensitivities to

    Office of Scientific and Technical Information (OSTI)

    Inputs (Journal Article) | SciTech Connect Direct Aerosol Forcing: Calculation from Observables and Sensitivities to Inputs Citation Details In-Document Search Title: Direct Aerosol Forcing: Calculation from Observables and Sensitivities to Inputs Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty

  8. Comparison of Methods for Calculating Radiative Heat Transfer

    SciTech Connect (OSTI)

    Schock, Alfred; Abbate, M J

    2012-01-19

    Various approximations for calculating radioactive heat transfer between parallel surfaces are evaluated. This is done by applying the approximations based on total emissivities to a special case of known spectral emissivities, for which exact heat transfer calculations are possible. Comparison of results indicates that the best approximation is obtained by basing the emissivity of the receiving surface primarily on the temperature of the emitter. A specific model is shown to give excellent agreement over a very wide range of values.

  9. Probing Actinide Electronic Structure through Pu Cluster Calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryzhkov, Mickhail V.; Mirmelstein, Alexei; Yu, Sung-Woo; Chung, Brandon W.; Tobin, James G.

    2013-02-26

    The calculations for the electronic structure of clusters of plutonium have been performed, within the framework of the relativistic discrete-variational method. Moreover, these theoretical results and those calculated earlier for related systems have been compared to spectroscopic data produced in the experimental investigations of bulk systems, including photoelectron spectroscopy. Observation of the changes in the Pu electronic structure as a function of size provides powerful insight for aspects of bulk Pu electronic structure.

  10. Energy Cost Calculator for Commercial Ice Machines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ice Machines Energy Cost Calculator for Commercial Ice Machines Vary capacity size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Type of Ice Cube Machine Ice Making Head Self-Contained Remote Condensing Unit Ice Making Head Type of Condenser Air Cooled Water Cooled Air Cooled Ice Harvest Rate (lbs. ice per 24 hrs.) lbs. per 24 hrs. 500 lbs. per 24 hrs. Energy

  11. Energy Cost Calculator for Compact Fluorescent Lamps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compact Fluorescent Lamps Energy Cost Calculator for Compact Fluorescent Lamps This tool calculates the payback period for your calc retrofit project. Modify the default values to suit your project requirements. Existing incandescent lamp wattage Watts Incandescent lamp cost dollars Incandescent lamp life 1000 hours calc wattage Watts calc cost dollars calc life (6000 hours for moderate use, 10000 hours for high use) 8000 hours Number of lamps in retrofit project Hours operating per week hours

  12. Theoretical calculating the thermodynamic properties of solid sorbents for

    Office of Scientific and Technical Information (OSTI)

    CO{sub 2} capture applications (Technical Report) | SciTech Connect Technical Report: Theoretical calculating the thermodynamic properties of solid sorbents for CO{sub 2} capture applications Citation Details In-Document Search Title: Theoretical calculating the thermodynamic properties of solid sorbents for CO{sub 2} capture applications Since current technologies for capturing CO{sub 2} to fight global climate change are still too energy intensive, there is a critical need for development

  13. Toward Catalyst Design from Theoretical Calculations (464th Brookhaven

    Office of Scientific and Technical Information (OSTI)

    Lecture) (Conference) | SciTech Connect Conference: Toward Catalyst Design from Theoretical Calculations (464th Brookhaven Lecture) Citation Details In-Document Search Title: Toward Catalyst Design from Theoretical Calculations (464th Brookhaven Lecture) Catalysts have been used to speed up chemical reactions as long as yeast has been used to make bread rise. Today, catalysts are used everywhere from home kitchens to industrial chemical factories. In the near future, new catalysts being

  14. CRC handbook of nuclear reactors calculations. Vol. I

    SciTech Connect (OSTI)

    Ronen, Y.

    1986-01-01

    This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described.

  15. Graphical User Interface for Simplified Neutron Transport Calculations

    SciTech Connect (OSTI)

    Schwarz, Randolph; Carter, Leland L

    2011-07-18

    A number of codes perform simple photon physics calculations. The nuclear industry is lacking in similar tools to perform simplified neutron physics shielding calculations. With the increased importance of performing neutron calculations for homeland security applications and defense nuclear nonproliferation tasks, having an efficient method for performing simple neutron transport calculations becomes increasingly important. Codes such as Monte Carlo N-particle (MCNP) can perform the transport calculations; however, the technical details in setting up, running, and interpreting the required simulations are quite complex and typically go beyond the abilities of most users who need a simple answer to a neutron transport calculation. The work documented in this report resulted in the development of the NucWiz program, which can create an MCNP input file for a set of simple geometries, source, and detector configurations. The user selects source, shield, and tally configurations from a set of pre-defined lists, and the software creates a complete MCNP input file that can be optionally run and the results viewed inside NucWiz.

  16. The Fernald Closure Project: Lessons Learned

    SciTech Connect (OSTI)

    Murphy, Cornelius M.; Carr, Dennis

    2008-01-15

    For nearly 37 years, the U.S. Department of Energy site at Fernald - near Cincinnati, Ohio - produced 230,000 metric tons (250,000 short tons) of high-purity, low-enriched uranium for the U.S. Defense Program, generating more than 5.4 million metric tons (6 million short tons) of liquid and solid waste as it carried out its Cold War mission. The facility was shut down in 1989 and clean up began in 1992, when Fluor won the contract to clean up the site. Cleaning up Fernald and returning it to the people of Ohio was a $4.4 billion mega environmental-remediation project that was completed in October 2006. Project evolved through four phases: - Conducting remedial-investigation studies to determine the extent of damage to the environment and groundwater at, and adjacent to, the production facilities; - Selecting cleanup criteria - final end states that had to be met that protect human health and the environment; - Selecting and implementing the remedial actions to meet the cleanup goals; - Executing the work in a safe, compliant and cost-effective manner. In the early stages of the project, there were strained relationships - in fact total distrust - between the local community and the DOE as a result of aquifer contamination and potential health effects to the workers and local residents. To engage citizens and interested stakeholders groups in the decision-making process, the DOE and Fluor developed a public-participation strategy to open the channels of communication with the various parties: site leadership, technical staff and regulators. This approach proved invaluable to the success of the project, which has become a model for future environmental remediation projects. This paper will summarize the history and shares lessons learned: the completion of the uranium-production mission to the implementation of the Records of Decision defining the cleanup standards and the remedies achieved. Lessons learned fall into ten categories: - Regulatory approach with end-state determinations; - Interaction with stakeholders; - The balanced approach - on-site and off-site waste-disposal alternatives; - The contracting model; - Site safety performance; - Effectiveness of cleanup remedies; - Worker training and transition; - Client interface; - Cost and schedule performance; - Legacy management. Lessons learned can be applied: While each site and project has its own issues, the various lessons learned from the Fernald Closure Project, when taken from a global perspective, can be applied to similar efforts so that pitfalls are avoided and efficiencies realized.

  17. NEPA Lessons Learned Questionnaire

    Energy Savers [EERE]

    after completing each environmental impact statement (EIS) and environmental assessment (EA). ... Were there any especially effective (or ineffective) procedures used to keep the ...

  18. Calculation of complete fusion cross sections of heavy ion reactions using the Monte Carlo method

    SciTech Connect (OSTI)

    Ghodsi, O. N.; Mahmoodi, M.; Ariai, J.

    2007-03-15

    The nucleus-nucleus potential for the fusion reactions {sup 40}Ca+{sup 48}Ca, {sup 16}O+{sup 208}Pb, and {sup 48}Ca+{sup 48}Ca has been calculated using the Monte Carlo method. The results obtained indicate that the technique employed for the calculation of the nucleus-nucleus potential is an efficient one. The effects of the spin and the isospin terms have also been studied using the same technique. The analysis of the results obtained for the {sup 48}Ca+{sup 48}Ca reaction reveal that the isospin-dependent term in the nucleon-nucleon potential causes the nuclear potential to drop by an amount of 0.5 MeV. The analytical calculations of the fusion cross section, particularly those at energies less than the fusion barrier, are in good agreement with the experimental data. In these calculations the effective nucleon-nucleon potential chosen is of the M3Y-Paris potential form and no adjustable parameter has been used.

  19. SCWR Once-Through Calculations for Transmutation and Cross Sections

    SciTech Connect (OSTI)

    ganda, francesco

    2012-07-01

    It is the purpose of this report to document the calculation of (1) the isotopic evolution and of (2) the 1-group cross sections as a function of burnup of the reference Super Critical Water Reactor (SCWR), in a format suitable for the Fuel Cycle Option Campaign Transmutation Data Library. The reference SCWR design was chosen to be that described in [McDonald, 2005]. Super Critical Water Reactors (SCWR) are intended to operate with super-critical water (i.e. H2O at a pressure above 22 MPa and a temperature above 373oC) as a cooling – and possibly also moderating – fluid. The main mission of the SCWR is to generate lower cost electricity, as compared to current standard Light Water Reactors (LWR). Because of the high operating pressure and temperature, SCWR feature a substantially higher thermal conversion efficiency than standard LWR – i.e. about 45% versus 33%, mostly due to an increase in the exit water temperature from ~300oC to ~500oC – potentially resulting in a lower cost of generated electricity. The coolant remains single phase throughout the reactor and the energy conversion system, thus eliminating the need for pressurizers, steam generators, steam separators and dryers, further potentially reducing the reactor construction capital cost. The SCWR concept presented here is based on existing LWR technology and on a large number of existing fossil-fired supercritical boilers. However, it was concluded in [McDonald, 2005], that: “Based on the results of this study, it appears that the reference SCWR design is not feasible.” This conclusion appears based on the strong sensitivity of the design to small deviations in nominal conditions leading to small effects having a potentially large impact on the peak cladding temperature of some fuel rods. “This was considered a major feasibility issue for the SCWR” [McDonald, 2005]. After a description of the reference SCWR design, the Keno V 3-D single assembly model used for this analysis, as well as the calculated results, are presented. Additionally, the follwing information, presented in the appendixes, is intended to provide enough guidance that a researcher repeating the same task in the future should be able to obtain a vector of nuclei and cross sections ready for insertion into the transmutation library without any need for further instructions: (1) Complete TRITON/KENO-V input used for the analysis; (2) Inputs and detailed description of the usage of the OPUS utility, used to postproces and to extract the nuclei concentrations for the transmutation library; (3) Inputs and detailed description of the usage of the XSECLIST utility, used to postproces and to extract the 1-group cross sections for the transmutation library; (4) Details of an ad-hoc utility program developed to sort the nuclei and cross sections for the transmutation library.

  20. National Wind Distance Learning Collaborative

    SciTech Connect (OSTI)

    Dr. James B. Beddow

    2013-03-29

    Executive Summary The energy development assumptions identified in the Department of Energy's position paper, 20% Wind Energy by 2030, projected an exploding demand for wind energy-related workforce development. These primary assumptions drove a secondary set of assumptions that early stage wind industry workforce development and training paradigms would need to undergo significant change if the workforce needs were to be met. The current training practice and culture within the wind industry is driven by a relatively small number of experts with deep field experience and knowledge. The current training methodology is dominated by face-to-face, classroom based, instructor present training. Given these assumptions and learning paradigms, the purpose of the National Wind Distance Learning Collaborative was to determine the feasibility of developing online learning strategies and products focused on training wind technicians. The initial project scope centered on (1) identifying resources that would be needed for development of subject matter and course design/delivery strategies for industry-based (non-academic) training, and (2) development of an appropriate Learning Management System (LMS). As the project unfolded, the initial scope was expanded to include development of learning products and the addition of an academic-based training partner. The core partners included two training entities, industry-based Airstreams Renewables and academic-based Lake Area Technical Institute. A third partner, Vision Video Interactive, Inc. provided technology-based learning platforms (hardware and software). The revised scope yielded an expanded set of results beyond the initial expectation. Eight learning modules were developed for the industry-based Electrical Safety course. These modules were subsequently redesigned and repurposed for test application in an academic setting. Software and hardware developments during the project's timeframe enabled redesign providing for student access through the use of tablet devices such as iPads. Early prototype Learning Management Systems (LMS) featuring more student-centric access and interfaces with emerging social media were developed and utilized during the testing applications. The project also produced soft results involving cross learning between and among the partners regarding subject matter expertise, online learning pedagogy, and eLearning technology-based platforms. The partners believe that the most significant, overarching accomplishment of the project was the development and implementation of goals, activities, and outcomes that significantly exceeded those proposed in the initial grant application submitted in 2009. Key specific accomplishments include: (1) development of a set of 8 online learning modules addressing electrical safety as it relates to the work of wind technicians; (3) development of a flexible, open-ended Learning Management System (LMS): (3) creation of a robust body of learning (knowledge, experience, skills, and relationships). Project leaders have concluded that there is substantial resource equity that could be leverage and recommend that it be carried forward to pursue a Next Stage Opportunity relating to development of an online core curriculum for institute and community college energy workforce development programs.

  1. Lessons Learned: Peer Exchange Calls Fall 2014 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fall 2014 Lessons Learned: Peer Exchange Calls Fall 2014 Better Buildings Residential Network, Lessons Learned: Peer Exchange Calls Fall 2014. PDF icon Lessons Learned: Peer...

  2. Lessons Learned: Peer Exchange Calls -- No. 5 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Lessons Learned: Peer Exchange Calls -- No. 5 Better Buildings Residential Network Lessons Learned: Peer Exchange Calls, No. 5. PDF icon Lessons Learned: Peer Exchange Calls -- ...

  3. Office of Learning and Workforce Development (HC-20) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learning and Workforce Development (HC-20) Office of Learning and Workforce Development (HC-20) The mission of the Office of Learning and Workforce Development is to strengthen ...

  4. NREL-Learning About Renewable Energy Site | Open Energy Information

    Open Energy Info (EERE)

    NREL-Learning About Renewable Energy Site (Redirected from Learning about Renewables at NREL) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Learning about Renewables...

  5. Better Buildings Residential Network: Lessons Learned: Peer Exchange...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network: Lessons Learned: Peer Exchange Calls Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls Better Buildings Residential Network: Lessons Learned: Peer...

  6. Continuous Learning Points: Earn CLPs! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuous Learning Points: Earn CLPs Continuous Learning Points: Earn CLPs File 2014 CLP Form - Attendees at the PM Workshop can earn Continuing Learning Points (CLPs) for both...

  7. Better Buildings Neighborhood Program Lessons Learned (So Far...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned (So Far) Better Buildings Neighborhood Program Lessons Learned (So Far) Presents lessons learned and key insights from program participants on planning and...

  8. Lessons Learned Quarterly Report Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 3, 1997 Lessons Learned Quarterly Report, March 1997 Welcome again to the Quarterly Report on Lessons Learned in the NEPA process. December 2, 1996 Lessons Learned Quarterly...

  9. EXTERNAL CRITICALITY CALCULATION FOR DOE SNF CODISPOSAL WASTE PACKAGES

    SciTech Connect (OSTI)

    H. Radulescu

    2002-10-18

    The purpose of this document is to evaluate the potential for criticality for the fissile material that could accumulate in the near-field (invert) and in the far-field (host rock) beneath the U.S. Department of Energy (DOE) spent nuclear fuel (SNF) codisposal waste packages (WPs) as they degrade in the proposed monitored geologic repository at Yucca Mountain. The scope of this calculation is limited to the following DOE SNF types: Shippingport Pressurized Water Reactor (PWR), Enrico Fermi, Fast Flux Test Facility (FFTF), Fort St. Vrain, Melt and Dilute, Shippingport Light Water Breeder Reactor (LWBR), N-Reactor, and Training, Research, Isotope, General Atomics reactor (TRIGA). The results of this calculation are intended to be used for estimating the probability of criticality in the near-field and in the far-field. There are no limitations on use of the results of this calculation. The calculation is associated with the waste package design and was developed in accordance with the technical work plan, ''Technical Work Plan for: Department of Energy Spent Nuclear Fuel and Plutonium Disposition Work Packages'' (Bechtel SAIC Company, LLC [BSC], 2002a). This calculation is subject to the Quality Assurance Requirements and Description (QARD) per the activity evaluation under work package number P6212310Ml in the technical work plan TWP-MGR-MD-0000 10 REV 01 (BSC 2002a).

  10. Lowest order constrained variational calculation of polarized neutron matter at finite temperature

    SciTech Connect (OSTI)

    Bordbar, G. H.; Bigdeli, M.

    2008-11-15

    Some properties of polarized neutron matter at finite temperature have been studied using the lowest order constrained variational (LOCV) method with the Argonne V18 (AV18) potential. Our results indicate that a spontaneous transition to the ferromagnetic phase does not occur. Effective mass, free energy, magnetic susceptibility, entropy, and the equation of state of polarized neutron matter at finite temperature are also calculated. A comparison is also made between our results and those of other many-body techniques.

  11. MELCOR calculations for a low-pressure short-term station blackout in a BWR-6

    SciTech Connect (OSTI)

    Carbajo, J.J. [Martin Marietta Energy Systems, Oak Ridge, TN (United States)

    1995-12-31

    A postulated, low-pressure, short term station blackout severe accident has been analyzed using the MELCOR code for the Grand Gulf nuclear power plant. Different versions have been used with three different models of the plant. This paper presents results of the effects of different plant models and versions of MELCOR on the calculated results and to present the best-estimating timing of events for this transient.

  12. Real-time POD-CFD Wind-Load Calculator for PV Systems

    SciTech Connect (OSTI)

    Huayamave, Victor; Divo, Eduardo; Ceballos, Andres; Barriento, Carolina; Stephen, Barkaszi; Hubert, Seigneur

    2014-03-21

    The primary objective of this project is to create an accurate web-based real-time wind-load calculator. This is of paramount importance for (1) the rapid and accurate assessments of the uplift and downforce loads on a PV mounting system, (2) identifying viable solutions from available mounting systems, and therefore helping reduce the cost of mounting hardware and installation. Wind loading calculations for structures are currently performed according to the American Society of Civil Engineers/ Structural Engineering Institute Standard ASCE/SEI 7; the values in this standard were calculated from simplified models that do not necessarily take into account relevant characteristics such as those from full 3D effects, end effects, turbulence generation and dissipation, as well as minor effects derived from shear forces on installation brackets and other accessories. This standard does not include provisions that address the special requirements of rooftop PV systems, and attempts to apply this standard may lead to significant design errors as wind loads are incorrectly estimated. Therefore, an accurate calculator would be of paramount importance for the preliminary assessments of the uplift and downforce loads on a PV mounting system, identifying viable solutions from available mounting systems, and therefore helping reduce the cost of the mounting system and installation. The challenge is that although a full-fledged three-dimensional computational fluid dynamics (CFD) analysis would properly and accurately capture the complete physical effects of air flow over PV systems, it would be impractical for this tool, which is intended to be a real-time web-based calculator. CFD routinely requires enormous computation times to arrive at solutions that can be deemed accurate and grid-independent even in powerful and massively parallel computer platforms. This work is expected not only to accelerate solar deployment nationwide, but also help reach the SunShot Initiative goals of reducing the total installed cost of solar energy systems by 75%. The largest percentage of the total installed cost of solar energy system is associated with balance of system cost, with up to 40% going to “soft” costs; which include customer acquisition, financing, contracting, permitting, interconnection, inspection, installation, performance, operations, and maintenance. The calculator that is being developed will provide wind loads in real-time for any solar system designs and suggest the proper installation configuration and hardware; and therefore, it is anticipated to reduce system design, installation and permitting costs.

  13. Lessons Learned from Safety Events

    SciTech Connect (OSTI)

    Weiner, Steven C.; Fassbender, Linda L.

    2012-11-01

    The Hydrogen Incident Reporting and Lessons Learned website (www.h2incidents.org) was launched in 2006 as a database-driven resource for sharing lessons learned from hydrogen-related safety events to raise safety awareness and encourage knowledge-sharing. The development of this database, its first uses and subsequent enhancements have been described at the Second and Third International Conferences on Hydrogen Safety. [1,2] Since 2009, continuing work has not only highlighted the value of safety lessons learned, but enhanced how the database provides access to another safety knowledge tool, Hydrogen Safety Best Practices (http://h2bestpractices.org). Collaborations with the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) Task 19 Hydrogen Safety and others have enabled the database to capture safety event learnings from around the world. This paper updates recent progress, highlights the new Lessons Learned Corner as one means for knowledge-sharing and examines the broader potential for collecting, analyzing and using safety event information.

  14. Materials Databases Infrastructure Constructed by First Principles Calculations: A Review

    SciTech Connect (OSTI)

    Lin, Lianshan

    2015-10-13

    The First Principles calculations, especially the calculation based on High-Throughput Density Functional Theory, have been widely accepted as the major tools in atom scale materials design. The emerging super computers, along with the powerful First Principles calculations, have accumulated hundreds of thousands of crystal and compound records. The exponential growing of computational materials information urges the development of the materials databases, which not only provide unlimited storage for the daily increasing data, but still keep the efficiency in data storage, management, query, presentation and manipulation. This review covers the most cutting edge materials databases in materials design, and their hot applications such as in fuel cells. By comparing the advantages and drawbacks of these high-throughput First Principles materials databases, the optimized computational framework can be identified to fit the needs of fuel cell applications. The further development of high-throughput DFT materials database, which in essence accelerates the materials innovation, is discussed in the summary as well.

  15. Theory and calculations of synchrotron instabilities and feedback-mechanism

    SciTech Connect (OSTI)

    Meijssen, T.E.M.

    1981-08-12

    The properties of the phenomenon synchrotron radiation are given with general theory on the basic processes and betatron and synchrotron oscillations. A more extended theoretical view at transverse instabilities and the influence of a damping feedback system are discussed. The longitudinal case is covered. For the calculations on the longitudinal case with M equally spaced pointbunches, with N electrons each, in the storage ring, the parasitic modes of the radio-frequency cavity were measured. A description of this is given. The values of damping rates of the longitudinal feedback system found, are as expected, but too low to damp the longitudinal instabilities calculated. This might be caused by the input data. The calculated growth rates are very sensitive to changes in frequency and width of the parasitic modes, which were measured under conditions differing slightly from the operating conditions.

  16. Chemical-equilibrium calculations for aqueous geothermal brines

    SciTech Connect (OSTI)

    Kerrisk, J.F.

    1981-05-01

    Results from four chemical-equilibrium computer programs, REDEQL.EPAK, GEOCHEM, WATEQF, and SENECA2, have been compared with experimental solubility data for some simple systems of interest with geothermal brines. Seven test cases involving solubilities of CaCO/sub 3/, amorphous SiO/sub 2/, CaSO/sub 4/, and BaSO/sub 4/ at various temperatures from 25 to 300/sup 0/C and in NaCl or HCl solutions of 0 to 4 molal have been examined. Significant differences between calculated results and experimental data occurred in some cases. These differences were traced to inaccuracies in free-energy or equilibrium-constant data and in activity coefficients used by the programs. Although currently available chemical-equilibrium programs can give reasonable results for these calculations, considerable care must be taken in the selection of free-energy data and methods of calculating activity coefficients.

  17. Calculation of anharmonic couplings and THz linewidths in crystalline PETN

    SciTech Connect (OSTI)

    Pereverzev, Andrey Sewell, Thomas D. Thompson, Donald L.

    2014-03-14

    We have developed a method for calculating the cubic anharmonic couplings in molecular crystals for normal modes with the zero wave vector in the framework of classical mechanics, and have applied it, combined with perturbation theory, to obtain the linewidths of all infrared absorption lines of crystalline pentaerythritol tetranitrate in the terahertz region (<100 cm{sup ?1}). Contributions of the up- and down-conversion processes to the total linewidth were calculated. The computed linewidths are in qualitative agreement with experimental data and the results of molecular dynamics simulations. Quantum corrections to the linewidths in the terahertz region are shown to be negligible.

  18. Fast, narrow-band computer model for radiation calculations

    SciTech Connect (OSTI)

    Yan, Z.; Holmstedt, G.

    1997-01-01

    A fast, narrow-band computer model, FASTNB, which predicts the radiation intensity in a general nonisothermal and nonhomogeneous combustion environment, has been developed. The spectral absorption coefficients of the combustion products, including carbon dioxide, water vapor, and soot, are calculated based on the narrow-band model. FASTNB provides an accurate calculation at reasonably high speed. Compared with Grosshandler`s narrow-band model, RADCAL, which has been verified quite extensively against experimental measurements, FASTNB is more than 20 times faster and gives almost exactly the same results.

  19. Boiler efficiency calculation for multiple fuel burning boilers

    SciTech Connect (OSTI)

    Khodabakhsh, F.; Munukutla, S.; Clary, A.T.

    1996-12-31

    A rigorous method based on the output/loss approach is developed for calculating the coal flow rate for multiple fuel burning boilers. It is assumed that the ultimate analyses of all the fuels are known. In addition, it is assumed that the flow rates of all the fuels with the exception of coal are known. The calculations are performed iteratively, with the first iteration taking into consideration coal as the only fuel. The results converge to the correct answer after a few number of iterations, typically four or five.

  20. RADIATION DOSE CALCULATION FOR FUEL HANDLING FACILITY CLOSURE CELL EQUIPMENT

    SciTech Connect (OSTI)

    D. Musat

    2005-03-07

    This calculation evaluates the energy deposition rates in silicon, gamma and neutron flux spectra at various locations of interest throughout FHF closure cell. The physical configuration features a complex geometry, with particle flux attenuation of many orders of magnitude that cannot be modeled by computer codes that use deterministic methods. Therefore, in this calculation the Monte Carlo method was used to solve the photon and neutron transport. In contrast with the deterministic methods, Monte Carlo does not solve an explicit transport equation, but rather obtain answers by simulating individual particles, recording the aspects of interest of their average behavior, and estimates the statistical precision of the results.

  1. Energy Cost Calculator for Faucets and Showerheads | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Faucets and Showerheads Energy Cost Calculator for Faucets and Showerheads Vary utility cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to the default value). Defaults Water Saving Product Faucet Showerhead Faucet Showerhead Flow Rate gpm 2.2 gpm 2.5 gpm Water Cost (including waste water charges) $/1000 gal $4/1000 gal $4/1000 gal Gas Cost $/therm 0.60 $/therm 0.60 $/therm Electricity Cost $/kWh 0.06

  2. Influence of polarization and a source model for dose calculation in MRT

    SciTech Connect (OSTI)

    Bartzsch, Stefan Oelfke, Uwe; Lerch, Michael; Petasecca, Marco; Bruer-Krisch, Elke

    2014-04-15

    Purpose: Microbeam Radiation Therapy (MRT), an alternative preclinical treatment strategy using spatially modulated synchrotron radiation on a micrometer scale, has the great potential to cure malignant tumors (e.g., brain tumors) while having low side effects on normal tissue. Dose measurement and calculation in MRT is challenging because of the spatial accuracy required and the arising high dose differences. Dose calculation with Monte Carlo simulations is time consuming and their accuracy is still a matter of debate. In particular, the influence of photon polarization has been discussed in the literature. Moreover, it is controversial whether a complete knowledge of phase space trajectories, i.e., the simulation of the machine from the wiggler to the collimator, is necessary in order to accurately calculate the dose. Methods: With Monte Carlo simulations in the Geant4 toolkit, the authors investigate the influence of polarization on the dose distribution and the therapeutically important peak to valley dose ratios (PVDRs). Furthermore, the authors analyze in detail phase space information provided byMartnez-Rovira et al. [Development and commissioning of a Monte Carlo photon model for the forthcoming clinical trials in microbeam radiation therapy, Med. Phys. 39(1), 119131 (2012)] and examine its influence on peak and valley doses. A simple source model is developed using parallel beams and its applicability is shown in a semiadjoint Monte Carlo simulation. Results are compared to measurements and previously published data. Results: Polarization has a significant influence on the scattered dose outside the microbeam field. In the radiation field, however, dose and PVDRs deduced from calculations without polarization and with polarization differ by less than 3%. The authors show that the key consequences from the phase space information for dose calculations are inhomogeneous primary photon flux, partial absorption due to inclined beam incidence outside the field center, increased beam width and center to center distance due to the beam propagation from the collimator to the phantom surface and imperfect absorption in the absorber material of the Multislit Collimator. These corrections have an effect of approximately 10% on the valley dose and suffice to describe doses in MRT within the measurement uncertainties of currently available dosimetry techniques. Conclusions: The source for the first clinical pet trials in MRT is characterized with respect to its phase space and the photon polarization. The results suggest the use of a presented simplified phase space model in dose calculations and hence pave the way for alternative and fast dose calculation algorithms. They also show that the polarization is of minor importance for the clinical important peak and valley doses inside the microbeam field.

  3. Simplified method for calculating heating and cooling energy in residential buildings

    SciTech Connect (OSTI)

    Sonderegger, R.C.; Garnier, J.Y.

    1981-10-01

    A microcomputer-based program, Computerized, Instrumented, Residential Audit (CIRA), for determining economically optimal mixes of energy-saving measures in existing residential buildings was developed which requires extensive calculation of heating and cooling energy consumptions. In this paper, a simplified method of calculation that satisfies the requirements of speed and memory imposed by the type of microcomputer on which CIRA runs is presented. The method is based on monthly calculations of degree days and degree nights for both heating and cooling seasons. The base temperatures used in calculating the degree days and degree nights are derived from thermostat settings, solar and internal gains, sky radiation losses, and the thermal characteristics of the building envelope. Thermostat setbacks are handled by using the concept of effective thermal mass of the house. Performance variations of HVAC equipment with changes of part load and ambient conditions are taken into account using correlation curves based on experimental data. Degree days and nights for different base temperatures are evaluated by using a climate-specific empirical correlation with monthly average daily and nightly temperatures. Predictions obtained by this method and by DOE-2.1 are compared for the so-called Hastings ranch house for seven different climates in the United States. Heating and cooling energy consumptions predicted by CIRA lie generally within +- 10% of DOE-2.1 predictions.

  4. Calculated and measured drift closure during the spent-fuel test in Climax granite

    SciTech Connect (OSTI)

    Yow, J.L. Jr.; Butkovich, T.R.

    1982-04-01

    Horizontal and vertical measurements of drift closures have been made with a manually operated tape extensometer since about 6 weeks after the emplacement of the spent fuel at various locations along the length of the drifts. The averaged closures are less than 0.6 mm from the onset of measurements through about two years after the spent fuel emplacement. These results have been compared with thermo-elastic finite element calculations using measured medium properties. The comparisons show that most of the closure of the drifts occurred between the time the spent fuel was emplaced and the time of first measurement. The comparisons show that the results track each other, in that where closure followed by dilation is measured, the calculations also show this effect. The agreement is excellent, although where closures of less than 0.2 mm are measured the comparison with calculations is limited by measurement reproducability. Once measurements commenced the averaged measured closures remain to within 30% of the calculated total closure in each drift. 9 figures, 1 table.

  5. Calculations conducted in developing an audit capability for ECCS analysis. [PWR

    SciTech Connect (OSTI)

    Bartel, T.J.; Berman, M.; Byers, R.K.; Cole, R.K. Jr.

    1981-12-01

    This study has demonstrated the capability of combining the results of thermal-hydraulic and fuel rod response computer codes to produce audit-type calculations for a pressurized water reactor equipped with a relatively new form of emergency core cooling systems. Models intended specifically for use with such systems were incorporated into the codes, sample calculations were performed, and very cursory comparisons with vendor-supplied results were made. In calculations of the blowdown phase of a large break loss-of-coolant accident, models for fuel rod surface quenching and for separated two-phase flow were observed to have significant effects on peak cladding temperatures and on system conditions at the beginning of core reflood. Models used for the reflood phase, particularly the model for carryover-rate fraction, were also seen to have important consequences. While the demonstration of audit capability was successful, there remain questions connected with details of coupling between the codes, and with uniformity of models as used in all phases of the calculations.

  6. Effective Community-Wide Policy Technical Assistance: The DOE/NREL Approach (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: Energy.gov [DOE]

    This document compiles lessons learned and provides a step-by-step process for implementing effective policy assistance.

  7. Fuzzy-probabilistic calculations of water-balance uncertainty

    SciTech Connect (OSTI)

    Faybishenko, B.

    2009-10-01

    Hydrogeological systems are often characterized by imprecise, vague, inconsistent, incomplete, or subjective information, which may limit the application of conventional stochastic methods in predicting hydrogeologic conditions and associated uncertainty. Instead, redictions and uncertainty analysis can be made using uncertain input parameters expressed as probability boxes, intervals, and fuzzy numbers. The objective of this paper is to present the theory for, and a case study as an application of, the fuzzyprobabilistic approach, ombining probability and possibility theory for simulating soil water balance and assessing associated uncertainty in the components of a simple waterbalance equation. The application of this approach is demonstrated using calculations with the RAMAS Risk Calc code, to ssess the propagation of uncertainty in calculating potential evapotranspiration, actual evapotranspiration, and infiltration-in a case study at the Hanford site, Washington, USA. Propagation of uncertainty into the results of water-balance calculations was evaluated by hanging he types of models of uncertainty incorporated into various input parameters. The results of these fuzzy-probabilistic calculations are compared to the conventional Monte Carlo simulation approach and estimates from field observations at the Hanford site.

  8. How to Calculate the True Cost of Steam

    Broader source: Energy.gov [DOE]

    This brief details how to calculate the true cost of steam, which is important for monitoring and managing energy use in a plant, evaluating proposed design changes to the generation or distribution infrastructure and the process itself, and for continuing to identify competitive advantages through steam system and plant efficiency improvements.

  9. RZ calculations for self shielded multigroup cross sections

    SciTech Connect (OSTI)

    Li, M.; Sanchez, R.; Zmijarevic, I.; Stankovski, Z.

    2006-07-01

    A collision probability method has been implemented for RZ geometries. The method accounts for white albedo, specular and translation boundary condition on the top and bottom surfaces of the geometry and for a white albedo condition on the outer radial surface. We have applied the RZ CP method to the calculation of multigroup self shielded cross sections for Gadolinia absorbers in BWRs. (authors)

  10. Calculation of Job Creation Through DOE Recovery Act Funding

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization Assistance Program, State Energy Program, and Energy Efficiency and Conservation Block Grant program notices calculating job creation under projects selected by states, local governments, Indian tribes, and overseas U.S. territories with funding under the 2009 American Reinvestment and Recovery Act.

  11. Atomic Structure Calculations from the Los Alamos Atomic Physics Codes

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cowan, R. D.

    The well known Hartree-Fock method of R.D. Cowan, developed at Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated. Original manuals for the atomic structure code, the collisional excitation code, and the ionization code, are available from this website. Using the specialized interface, you will be able to define the ionization stage of an element and pick the initial and final configurations. You will be led through a series of web pages ending with a display of results in the form of cross sections, collision strengths or rates coefficients. Results are available in tabular and graphic form.

  12. Gas-storage calculations yield accurate cavern, inventory data

    SciTech Connect (OSTI)

    Mason, R.G. )

    1990-07-02

    This paper discusses how determining gas-storage cavern size and inventory variance is now possible with calculations based on shut-in cavern surveys. The method is the least expensive of three major methods and is quite accurate when recorded over a period of time.

  13. EQ6 Calculations for Chemical Degradation of Navy Waste Packages

    SciTech Connect (OSTI)

    S. LeStrange

    1999-11-15

    The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Navy (Refs. 1 and 2). The Navy SNF has been considered for disposal at the potential Yucca Mountain site. For some waste packages, the containment may breach (Ref. 3), allowing the influx of water. Water in the waste package may moderate neutrons, increasing the likelihood of a criticality event within the waste package. The water may gradually leach the fissile components and neutron absorbers out of the waste package. In addition, the accumulation of silica (SiO{sub 2}) in the waste package over time may further affect the neutronics of the system. This study presents calculations of the long-term geochemical behavior of waste packages containing the Enhanced Design Alternative (EDA) II inner shell, Navy canister, and basket components. The calculations do not include the Navy SNF in the waste package. The specific study objectives were to determine the chemical composition of the water and the quantity of silicon (Si) and other solid corrosion products in the waste package during the first million years after the waste package is breached. The results of this calculation will be used to ensure that the type and amount of criticality control material used in the waste package design will prevent criticality.

  14. Calculated analysis of experiments in fast neutron reactors

    SciTech Connect (OSTI)

    Davydov, V. K. Kalugina, K. M.; Gomin, E. A.

    2012-12-15

    In this paper, the results of computational simulation of experiments with the MK-I core of the JOYO fast neutron sodium-cooled reactor are presented. The MCU-KS code based on the Monte Carlo method was used for calculations. The research was aimed at additional verification of the MCU-KS code for systems with a fast neutron spectrum.

  15. Lessons Learned Quarterly Report, December 2002 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    this issue of LLQR is longer than usual, I encourage you to read all the news, views, and lessons learned. We thank you for your continuing support of the Lessons Learned program....

  16. Seismic Lessons-Learned Panel Meetings | Department of Energy

    Energy Savers [EERE]

    Lessons-Learned Panel Meetings Seismic Lessons-Learned Panel Meetings The Chief of Nuclear Security (CNS) maintains a panel of experts known as the Seismic Lessons-Learned Panel, which meets periodically to discuss seismic issues impacting DOE facilities. September 2008 Seismic Lessons-Learned panel Meeting March 2009 Seismic Lessons-Learned panel Meeting October 2009 Seismic Lessons-Learned panel Meeting May 2010 Seismic Lessons-Learned panel Meeting November 2012 Seismic Lessons-Learned panel

  17. Technical Workshop: Annual Merit Review Lessons Learned on Alternative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Merit Review Lessons Learned on Alternative Transportation Refueling Infrastructure Technical Workshop: Annual Merit Review Lessons Learned on Alternative Transportation ...

  18. EM Recovery Act Lessons Learned (Johnson)

    Broader source: Energy.gov [DOE]

    Presentation slides from EM ARRA Best Practices and Lessons Learned WorkshopWaste Management SymposiumPhoenix, AZMarch 1, 2012.

  19. Cybersecurity Online Learning (COL) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Training » Cybersecurity Training Warehouse » DOE Training & Education » Cybersecurity Online Learning (COL) Cybersecurity Online Learning (COL) chalkboard-218593__180.jpg Cybersecurity Online Learning (COL) is a free online learning program offering both live and recorded cybersecurity training sessions or workshops. The live sessions are limited to 100 attendees; recorded sessions are available 2 weeks after the live session. You must possess Adobe Connect software and a

  20. Lessons Learned Quarterly Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned Quarterly Report Lessons Learned Quarterly Report DOE's NEPA Lessons Learned Program was initiated in 1994 to foster continuous improvement in NEPA compliance by measuring DOE NEPA performance and gathering information learned through NEPA experience. The Program collects and publishes time and cost metrics to help DOE objectively focus on controlling these aspects of its NEPA compliance, and disseminates information broadly relevant to NEPA implementation, such guidance on

  1. Lessons Learned in Islands | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Transition Initiative » Lessons Learned in Islands Lessons Learned in Islands Hawai'i, the U.S. Virgin Islands, and other island communities have successfully implemented renewable energy and energy efficiency technologies to decrease their reliance on fossil fuels and achieve sustainability, economic development, and other goals. Read how in these lessons learned, which are also featured in the Islands Energy Playbook. Assessing Pathways in Aruba Learn how Aruba developed an actionable

  2. NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure

    Broader source: Energy.gov [DOE]

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  3. Quality Procedure - Lessons Learned | Department of Energy

    Energy Savers [EERE]

    Lessons Learned Quality Procedure - Lessons Learned The purpose of this Quality Procedure is to assist the Office of Standards and Quality Assurance personnel during the execution and operation of its activities, specifically in oversight activities, to compile and disseminate information related to lessons learned. The purpose of lessons learned is to share and use knowledge derived from experience to promote the recurrence of desirable outcomes, or preclude the recurrence of undesirable

  4. EM Recovery Act Lessons Learned (Sites)

    Broader source: Energy.gov [DOE]

    Presentation slides from EM ARRA Best Practices and Lessons Learned WorkshopWaste Management SymposiumPhoenix, AZMarch 1, 2012.

  5. EM Recovery Act Lessons Learned (Olinger)

    Broader source: Energy.gov [DOE]

    Presentation slides from EM ARRA Best Practices and Lessons Learned WorkshopWaste Management SymposiumPhoenix, AZMarch 1, 2012.

  6. Lessons Learned: Peer Exchange Calls -- No. 4 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Lessons Learned: Peer Exchange Calls -- No. 4 Better Buildings Residential Network Lessons Learned: Peer Exchange Calls, No. 4. PDF icon Lessons Learned: Peer Exchange Calls -- No. 4 More Documents & Publications Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls Lessons Learned: Peer Exchange Calls -- No. 5 Lessons Learned: Peer Exchange Calls -- No. 3

  7. CRITICALITY CALCULATION FOR THE MOST REACTIVE DEGRADED CONFIGURATIONS OF THE FFTF SNF CODISPOSAL WP CONTAINING AN INTACT IDENT-69 CONTAINER

    SciTech Connect (OSTI)

    D.R. Moscalu

    2002-08-28

    The objective of this calculation is to perform additional degraded mode criticality evaluations of the Department of Energy's (DOE) Fast Flux Test Facility (FFTF) Spent Nuclear Fuel (SNF) codisposed in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP). The scope of this calculation is limited to the most reactive degraded configurations of the codisposal WP with an almost intact Ident-69 container (breached and flooded but otherwise non-degraded) containing intact FFTF SNF pins. The configurations have been identified in a previous analysis (CRWMS M&O 1999a) and the present evaluations include additional relevant information that was left out of the original calculations. The additional information describes the exact distribution of fissile material in each container (DOE 2002a). The effects of the changes that have been included in the baseline design of the codisposal WP (CRWMS M&O 2000) are also investigated. The calculation determines the effective neutron multiplication factor (k{sub eff}) for selected degraded mode internal configurations of the codisposal waste package. These calculations will support the demonstration of the technical viability of the design solution adopted for disposing of MOX (FFTF) spent nuclear fuel in the potential repository. This calculation is subject to the Quality Assurance Requirements and Description (QARD) (DOE 2002b) per the activity evaluation under work package number P6212310M2 in the technical work plan TWP-MGR-MD-000010 REV 01 (BSC 2002).

  8. Environmental Restoration Disposal Facility Lessons Learned

    SciTech Connect (OSTI)

    Caulfield, R.

    2012-07-12

    The purpose of lessons learned is to identify insight gained during a project – successes or failures – that can be applied on future projects. Lessons learned can contribute to the overall success of a project by building on approaches that have worked well and avoiding previous mistakes. Below are examples of lessons learned during ERDF’s ARRA-funded expansion project.

  9. Multiconfiguration Dirac-Fock calculations on multi-valence-electron systems: Benchmarks on Ga-like ions

    SciTech Connect (OSTI)

    Hu Feng; Yang Jiamin; Wang Chuanke; Jing Longfei; Chen Shubo; Jiang Gang; Liu Hao; Hao Lianghuan

    2011-10-15

    High-accuracy calculations of term energies and wavelengths of resonance lines in Ga-like ions have been performed as benchmarks in the request for accurate treatments of relativity, electron correction, and QED effects in multi-valence-electron systems. The calculated energy levels are in excellent agreement with the experimental results and the experimentally compiled energy values of the National Institute for Standards and Technology wherever available. The calculated values including core-valence correction are found to be in good agreement with other theoretical and experimental values for low- to medium-Z ions. On the basis of our calculations, some theoretical wavelengths for Ga-like Rb vii to Mo xii are also given. For higher-Z ions, computed wavelengths are compared well with the experimental results [E. Traebert, J. Clementson, P. Beiersdorfer, J. A. Santana, and Y. Ishikawa, Phys. Rev. A 82, 062519 (2010), I. N Draganicet al., J. Phys. B 44, 025001 (2011)].

  10. Calculation of positron binding energies using the generalized any particle propagator theory

    SciTech Connect (OSTI)

    Romero, Jonathan; Charry, Jorge A.; Flores-Moreno, Roberto; Varella, Mrcio T. do N.; Reyes, Andrs

    2014-09-21

    We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Daz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ?0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach.

  11. Brachytherapy structural shielding calculations using Monte Carlo generated, monoenergetic data

    SciTech Connect (OSTI)

    Zourari, K.; Peppa, V.; Papagiannis, P.; Ballester, Facundo; Siebert, Frank-Andr

    2014-04-15

    Purpose: To provide a method for calculating the transmission of any broad photon beam with a known energy spectrum in the range of 201090 keV, through concrete and lead, based on the superposition of corresponding monoenergetic data obtained from Monte Carlo simulation. Methods: MCNP5 was used to calculate broad photon beam transmission data through varying thickness of lead and concrete, for monoenergetic point sources of energy in the range pertinent to brachytherapy (201090 keV, in 10 keV intervals). The three parameter empirical model introduced byArcher et al. [Diagnostic x-ray shielding design based on an empirical model of photon attenuation, Health Phys. 44, 507517 (1983)] was used to describe the transmission curve for each of the 216 energy-material combinations. These three parameters, and hence the transmission curve, for any polyenergetic spectrum can then be obtained by superposition along the lines of Kharrati et al. [Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities, Med. Phys. 34, 13981404 (2007)]. A simple program, incorporating a graphical user interface, was developed to facilitate the superposition of monoenergetic data, the graphical and tabular display of broad photon beam transmission curves, and the calculation of material thickness required for a given transmission from these curves. Results: Polyenergetic broad photon beam transmission curves of this work, calculated from the superposition of monoenergetic data, are compared to corresponding results in the literature. A good agreement is observed with results in the literature obtained from Monte Carlo simulations for the photon spectra emitted from bare point sources of various radionuclides. Differences are observed with corresponding results in the literature for x-ray spectra at various tube potentials, mainly due to the different broad beam conditions or x-ray spectra assumed. Conclusions: The data of this work allow for the accurate calculation of structural shielding thickness, taking into account the spectral variation with shield thickness, and broad beam conditions, in a realistic geometry. The simplicity of calculations also obviates the need for the use of crude transmission data estimates such as the half and tenth value layer indices. Although this study was primarily designed for brachytherapy, results might also be useful for radiology and nuclear medicine facility design, provided broad beam conditions apply.

  12. Identifying and bounding uncertainties in nuclear reactor thermal power calculations

    SciTech Connect (OSTI)

    Phillips, J.; Hauser, E.; Estrada, H.

    2012-07-01

    Determination of the thermal power generated in the reactor core of a nuclear power plant is a critical element in the safe and economic operation of the plant. Direct measurement of the reactor core thermal power is made using neutron flux instrumentation; however, this instrumentation requires frequent calibration due to changes in the measured flux caused by fuel burn-up, flux pattern changes, and instrumentation drift. To calibrate the nuclear instruments, steam plant calorimetry, a process of performing a heat balance around the nuclear steam supply system, is used. There are four basic elements involved in the calculation of thermal power based on steam plant calorimetry: The mass flow of the feedwater from the power conversion system, the specific enthalpy of that feedwater, the specific enthalpy of the steam delivered to the power conversion system, and other cycle gains and losses. Of these elements, the accuracy of the feedwater mass flow and the feedwater enthalpy, as determined from its temperature and pressure, are typically the largest contributors to the calorimetric calculation uncertainty. Historically, plants have been required to include a margin of 2% in the calculation of the reactor thermal power for the licensed maximum plant output to account for instrumentation uncertainty. The margin is intended to ensure a cushion between operating power and the power for which safety analyses are performed. Use of approved chordal ultrasonic transit-time technology to make the feedwater flow and temperature measurements (in place of traditional differential-pressure- based instruments and resistance temperature detectors [RTDs]) allows for nuclear plant thermal power calculations accurate to 0.3%-0.4% of plant rated power. This improvement in measurement accuracy has allowed many plant operators in the U.S. and around the world to increase plant power output through Measurement Uncertainty Recapture (MUR) up-rates of up to 1.7% of rated power, while also decreasing the probability of significant over-power events. This paper will examine the basic elements involved in calculation of thermal power using ultrasonic transit-time technology and will discuss the criteria for bounding uncertainties associated with each element in order to achieve reactor thermal power calculations to within 0.3% to 0.4%. (authors)

  13. Density functional calculation of the structural and electronic properties of germanium quantum dots

    SciTech Connect (OSTI)

    Anas, M. M.; Gopir, G.

    2015-04-24

    We apply first principles density functional computational methods to study the structures, densities of states (DOS), and higher occupied molecular orbital (HOMO) lowest unoccupied molecular orbital (LUMO) gaps of selected free-standing Ge semiconductor quantum dots up to 1.8nm. Our calculations are performed using numerical atomic orbital approach where linear combination of atomic orbital was applied. The surfaces of the quantum dots was passivized by hydrogen atoms. We find that surface passivation does affect the electronic properties associated with the changes of surface state, electron localization, and the energy gaps of germanium nanocrystals as well as the confinement of electrons inside the quantum dots (QDs). Our study shows that the energy gaps of germanium quantum dots decreases with the increasing dot diameter. The size-dependent variations of the computed HOMO-LUMO gaps in our quantum dots model were found to be consistent with the effects of quantum confinement reported in others theoretical and experimental calculation.

  14. Calculational criticality analyses of 10- and 20-MW UF[sub 6] freezer/sublimer vessels

    SciTech Connect (OSTI)

    Jordan, W.C.

    1993-02-01

    Calculational criticality analyses have been performed for 10- and 20-MW UF[sub 6] freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF[sub 6] in each vessel have been considered for uranium enriched between 2 and 5 wt % [sup 235]U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

  15. Calculational criticality analyses of 10- and 20-MW UF{sub 6} freezer/sublimer vessels

    SciTech Connect (OSTI)

    Jordan, W.C.

    1993-02-01

    Calculational criticality analyses have been performed for 10- and 20-MW UF{sub 6} freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF{sub 6} in each vessel have been considered for uranium enriched between 2 and 5 wt % {sup 235}U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

  16. A theoretical study of blue phosphorene nanoribbons based on first-principles calculations

    SciTech Connect (OSTI)

    Xie, Jiafeng; Si, M. S. Yang, D. Z.; Zhang, Z. Y.; Xue, D. S.

    2014-08-21

    Based on first-principles calculations, we present a quantum confinement mechanism for the band gaps of blue phosphorene nanoribbons (BPNRs) as a function of their widths. The BPNRs considered have either armchair or zigzag shaped edges on both sides with hydrogen saturation. Both the two types of nanoribbons are shown to be indirect semiconductors. An enhanced energy gap of around 1?eV can be realized when the ribbon's width decreases to ?10?. The underlying physics is ascribed to the quantum confinement effect. More importantly, the parameters to describe quantum confinement are obtained by fitting the calculated band gaps with respect to their widths. The results show that the quantum confinement in armchair nanoribbons is stronger than that in zigzag ones. This study provides an efficient approach to tune the band gap in BPNRs.

  17. Calculated transport properties of CdO: thermal conductivity and thermoelectric power factor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lindsay, Lucas R.; Parker, David S.

    2015-10-01

    We present first principles calculations of the thermal and electronic transport properties of the oxide semiconductor CdO. In particular, we find from theory that the accepted thermal conductivity κ value of 0.7 Wm-1K-1 is approximately one order of magnitude too small; our calculations of κ of CdO are in good agreement with recent measurements. We also find that alloying of MgO with CdO is an effective means to reduce the lattice contribution to κ, despite MgO having a much larger thermal conductivity. We further consider the electronic structure of CdO in relation to thermoelectric performance, finding that large thermoelectric powermore » factors may occur if the material can be heavily doped p-type. This work develops insight into the nature of thermal and electronic transport in an important oxide semiconductor.« less

  18. Calculated transport properties of CdO: thermal conductivity and thermoelectric power factor

    SciTech Connect (OSTI)

    Lindsay, Lucas R.; Parker, David S.

    2015-10-01

    We present first principles calculations of the thermal and electronic transport properties of the oxide semiconductor CdO. In particular, we find from theory that the accepted thermal conductivity κ value of 0.7 Wm-1K-1 is approximately one order of magnitude too small; our calculations of κ of CdO are in good agreement with recent measurements. We also find that alloying of MgO with CdO is an effective means to reduce the lattice contribution to κ, despite MgO having a much larger thermal conductivity. We further consider the electronic structure of CdO in relation to thermoelectric performance, finding that large thermoelectric power factors may occur if the material can be heavily doped p-type. This work develops insight into the nature of thermal and electronic transport in an important oxide semiconductor.

  19. Ab initio calculations of singlet and triplet excited states of chlorine nitrate and nitric acid

    SciTech Connect (OSTI)

    Grana, A.M.; Head-Gordon, M. |; Lee, T.J.

    1995-03-16

    Ab initio calculations of vertical excitations to single and triplet excited states of chlorine nitrate and nitric acid are reported, using the CIS, CIS(D), and CCSD methods. The effects of basis set composition and calculational methods are investigated. The nature of the electronic transitions are examined by decomposing the difference density into the sum of detachment and attachment densities. Counterparts for the three lowest singlet excited states of nitric acid survive relatively unperturbed in chlorine nitrate, while other low lying singlet states of chlorine nitrate appear to be directly dissociative in the CIO chromophore. These results suggest an assignment of the two main peaks in the experimental chlorine nitrate absorption spectrum. In addition, triplet vertical excitations and the lowest optimized triplet geometries of both molecules are studied. 70 refs., 2 figs., 6 tabs.

  20. Density functional theory calculations of magnetocrystalline anisotropy energies for (Fe1-xCox)2B

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Daene, Markus; Kim, Soo Kyung; Surh, Michael P.; Aberg, Daniel; Benedict, Lorin X.

    2015-06-15

    We present and discuss density functional theory calculations of magnetic properties of the family of ferromagnetic compounds, (Fe1-xCox)2B, focusing specifically on the magnetocrystalline anisotropy energy (MAE). Using periodic supercells of various sizes (up to 96 atoms), it is shown that the general qualitative features of the composition dependence of the MAE is in agreement with experimental findings, while our predicted magnitudes are larger than those of experiment. We find that the use of small supercells (6 and 12-atom) favors larger MAE values relative to a statistical sample of configurations constructed with 96-atom supercells. As a result, the effect of latticemore » relaxations is shown to be small. Calculations of the Curie temperature for this alloy are also presented.« less

  1. HLW Canister and Can-In-Canister Drop Calculation

    SciTech Connect (OSTI)

    H. Marr

    1999-09-15

    The purpose of this calculation is to evaluate the structural response of the standard high-level waste (HLW) canister and the HLW canister containing the cans of immobilized plutonium (''can-in-canister'' throughout this document) to the drop event during the handling operation. The objective of the calculation is to provide the structure parameter information to support the canister design and the waste handling facility design. Finite element solution is performed using the commercially available ANSYS Version (V) 5.4 finite element code. Two-dimensional (2-D) axisymmetric and three-dimensional (3-D) finite element representations for the standard HLW canister and the can-in-canister are developed and analyzed using the dynamic solver.

  2. Variational calculations of the HT{sup +} rovibrational energies

    SciTech Connect (OSTI)

    Bekbaev, A. K.; Korobov, V. I.; Dineykhan, M.

    2011-04-15

    In this Brief Report, we use the exponential explicitly correlated variational basis set of the type exp(-{alpha}{sub n}R-{beta}{sub n}r{sub 1}-{gamma}{sub n}r{sub 2}) to calculate systematically the nonrelativistic bound-state energies for the hydrogen molecular ion HT{sup +}. We perform calculations for the states of the total orbital angular momentum L=0 and 1 with the complete set of vibrational quantum numbers v= 0-23, as well as for the states of L= 2-5 and v= 0-5. The E1 dipole transition moments, which are of importance for the planning of spectroscopic laser experiments, have been obtained as well.

  3. Optimized Algorithm for Collision Probability Calculations in Cubic Geometry

    SciTech Connect (OSTI)

    Garcia, R.D.M.

    2004-06-15

    An optimized algorithm for implementing a recently developed method of computing collision probabilities (CPs) in three dimensions is reported in this work for the case of a homogeneous cube. Use is made of the geometrical regularity of the domain to rewrite, in a very compact way, the approximate formulas for calculating CPs in general three-dimensional geometry that were derived in a previous work by the author. The ensuing gain in computation time is found to be substantial: While the computation time associated with the general formulas increases as K{sup 2}, where K is the number of elements used in the calculation, that of the specific formulas increases only linearly with K. Accurate numerical results are given for several test cases, and an extension of the algorithm for computing the self-collision probability for a hexahedron is reported at the end of the work.

  4. Transmutation calculations for the accelerator transmutation of waste (ATW) program

    SciTech Connect (OSTI)

    Wilson, W.B.; Arthur, E.D.; Bowman, C.D.; Engel, L.N.; England, T.R.; Hughes, H.G.; Lisowski, P.W.; Perry, R.T.

    1991-01-01

    The disposal of radioactive waste by the transmutation of long-lived radionuclides is being considered; now using neutrons produced with an intense beam of 1.6-GeV protons on a Pb-Bi target. Study teams have been active in the areas of accelerator design, beam transport, radiation transport, transmutation, fluid flow and heat transfer, process chemistry and system analyses. Work is of a preliminary and developmental nature. Here we describe these preliminary efforts in transmutation calculations; the tools developed, status of basic nuclear data, and some early results. These calculations require the description of the intensity and spectrum of neutrons produced by the beam, the distribution of nuclides produced in the medium-energy reactions, the transport of particles produced by the beam, the transmutation of the target materials and transmutation products, and the decay properties of the inventory of radionuclides produced.

  5. Accelerated learning approaches for maintenance training

    SciTech Connect (OSTI)

    Erickson, E.J.

    1991-01-01

    As a training tool, Accelerated Learning techniques have been in use since 1956. Trainers from a variety of applications and disciplines have found success in using Accelerated Learning approaches, such as training aids, positive affirmations, memory aids, room arrangement, color patterns, and music. Some have thought that maintenance training and Accelerated Learning have nothing in common. Recent training applications by industry and education of Accelerated Learning are proving very successful by several standards. This paper cites available resource examples and challenges maintenance trainers to adopt new ideas and concepts to accelerate learning in all training setting. 7 refs.

  6. Strategy Guideline: Accurate Heating and Cooling Load Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategy Guideline: Accurate Heating and Cooling Load Calculations Arlan Burdick IBACOS, Inc. June 2011 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

  7. Hot zero power reactor calculations using the Insilico code

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hamilton, Steven P.; Evans, Thomas M.; Davidson, Gregory G.; Johnson, Seth R.; Pandya, Tara M.; Godfrey, Andrew T.

    2016-03-18

    In this paper we describe the reactor physics simulation capabilities of the insilico code. A description of the various capabilities of the code is provided, including detailed discussion of the geometry, meshing, cross section processing, and neutron transport options. Numerical results demonstrate that the insilico SPN solver with pin-homogenized cross section generation is capable of delivering highly accurate full-core simulation of various PWR problems. Comparison to both Monte Carlo calculations and measured plant data is provided.

  8. Detailed photonuclear cross-section calculations and astrophysical applications

    SciTech Connect (OSTI)

    Gardner, D.G.; Gardner, M.A.; Hoff, R.W.

    1989-06-15

    We have investigated the role of an isomeric state and its coupling to the ground state (g.s.) via photons and neutron inelastic scattering in a stellar environment by making detailed photonuclear and neutron cross-section calculations for /sup 176/Lu and /sup 210/Bi. In the case of /sup 176/Lu, the g.s. would function as an excellent galactic slow- (s-) process chronometer were it not for the 3.7-h isomer at 123 keV. Our calculations predicted much larger photon cross sections for production of the isomer, as well as a lower threshold, than had been assumed based on earlier measurements. These two factors combine to indicate that an enormous correction, a factor of 10/sup 7/, must be applied to shorten the current estimate of the half-life against photoexcitation of /sup 176/Lu as a function of temperature. This severely limits the use of /sup 176/Lu as a stellar chronometer and indicates a significantly lower temperature at which the two states reach thermal equilibrium. For /sup 210/Bi, our preliminary calculations of the production and destruction of the 3 /times/ 10/sup 6/ y isomeric state by neutrons and photons suggest that the /sup 210/Bi isomer may not be destroyed by photons as rapidly as assumed in certain stellar environments. This leads to an alternate production path of /sup 207/Pb and significantly affects presently interpreted lead isotopic abundances. We have been able to make such detailed nuclear cross-section calculations using: modern statistical-model codes of the Hauser-Feshbach type, with complete conservation of angular momentum and parity; reliable systematics of the input parameters required by these codes, including knowledge of the absolute gamma-ray strength-functions for E1, M1, and E2 transitions; and codes developed to compute large, discrete, nuclear level sets, their associated gamma-ray branchings, and the presence and location of isomeric states. 7 refs., 2 figs.

  9. First Principles Calculations and NMR Spectroscopy of Electrode Materials |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es054_2011_ceder_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: First Principles Calculations and NMR Spectroscopy of Electrode Materials FY 2011 Annual Progress Report for Energy Storage R&D FY 2012 Annual Progress Report for Energy Storage R&D

  10. Application of nuclear models to neutron nuclear cross section calculations

    SciTech Connect (OSTI)

    Young, P.G.

    1982-01-01

    Nuclear theory is used increasingly to supplement and extend the nuclear data base that is available for applied studies. Areas where theoretical calculations are most important include the determination of neutron cross sections for unstable fission products and transactinide nuclei in fission reactor or nuclear waste calculations and for meeting the extensive dosimetry, activation, and neutronic data needs associated with fusion reactor development, especially for neutron energies above 14 MeV. Considerable progress has been made in the use of nuclear models for data evaluation and, particularly, in the methods used to derive physically meaningful parameters for model calculations. Theoretical studies frequently involve use of spherical and deformed optical models, Hauser-Feshbach statistical theory, preequilibrium theory, direct-reaction theory, and often make use of gamma-ray strength function models and phenomenological (or microscopic) level density prescriptions. The development, application, and limitations of nuclear models for data evaluation are discussed, with emphasis on the 0.1 to 50 MeV energy range. (91 references).

  11. Carcass Functions in Variational Calculations for Few-Body Systems

    SciTech Connect (OSTI)

    Donchev, A.G.; Kalachev, S.A.; Kolesnikov, N.N.; Tarasov, V.I.

    2004-12-01

    For variational calculations of molecular and nuclear systems involving a few particles, it is proposed to use carcass basis functions that generalize exponential and Gaussian trial functions. It is shown that the matrix elements of the Hamiltonian are expressed in a closed form for a Coulomb potential, as well as for other popular particle-interaction potentials. The use of such carcass functions in two-center Coulomb problems reduces, in relation to other methods, the number of terms in a variational expansion by a few orders of magnitude at a commensurate or even higher accuracy. The efficiency of the method is illustrated by calculations of the three-particle Coulomb systems {mu}{mu}e, ppe, dde, and tte and the four-particle molecular systems H{sub 2} and HeH{sup +} of various isotopic composition. By considering the example of the {sub {lambda}}{sup 9}Be hypernucleus, it is shown that the proposed method can be used in calculating nuclear systems as well.

  12. Criticality calculations with MCNP{sup TM}: A primer

    SciTech Connect (OSTI)

    Mendius, P.W.; Harmon, C.D. II; Busch, R.D.; Briesmeister, J.F.; Forster, R.A.

    1994-08-01

    The purpose of this Primer is to assist the nuclear criticality safety analyst to perform computer calculations using the Monte Carlo code MCNP. Because of the closure of many experimental facilities, reliance on computer simulation is increasing. Often the analyst has little experience with specific codes available at his/her facility. This Primer helps the analyst understand and use the MCNP Monte Carlo code for nuclear criticality analyses. It assumes no knowledge of or particular experience with Monte Carlo codes in general or with MCNP in particular. The document begins with a Quickstart chapter that introduces the basic concepts of using MCNP. The following chapters expand on those ideas, presenting a range of problems from simple cylinders to 3-dimensional lattices for calculating keff confidence intervals. Input files and results for all problems are included. The Primer can be used alone, but its best use is in conjunction with the MCNP4A manual. After completing the Primer, a criticality analyst should be capable of performing and understanding a majority of the calculations that will arise in the field of nuclear criticality safety.

  13. Materials Databases Infrastructure Constructed by First Principles Calculations: A Review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Lianshan

    2015-10-13

    The First Principles calculations, especially the calculation based on High-Throughput Density Functional Theory, have been widely accepted as the major tools in atom scale materials design. The emerging super computers, along with the powerful First Principles calculations, have accumulated hundreds of thousands of crystal and compound records. The exponential growing of computational materials information urges the development of the materials databases, which not only provide unlimited storage for the daily increasing data, but still keep the efficiency in data storage, management, query, presentation and manipulation. This review covers the most cutting edge materials databases in materials design, and their hotmore » applications such as in fuel cells. By comparing the advantages and drawbacks of these high-throughput First Principles materials databases, the optimized computational framework can be identified to fit the needs of fuel cell applications. The further development of high-throughput DFT materials database, which in essence accelerates the materials innovation, is discussed in the summary as well.« less

  14. SNS Sample Activation Calculator Flux Recommendations and Validation

    SciTech Connect (OSTI)

    McClanahan, Tucker C.; Gallmeier, Franz X.; Iverson, Erik B.; Lu, Wei

    2015-02-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) uses the Sample Activation Calculator (SAC) to calculate the activation of a sample after the sample has been exposed to the neutron beam in one of the SNS beamlines. The SAC webpage takes user inputs (choice of beamline, the mass, composition and area of the sample, irradiation time, decay time, etc.) and calculates the activation for the sample. In recent years, the SAC has been incorporated into the user proposal and sample handling process, and instrument teams and users have noticed discrepancies in the predicted activation of their samples. The Neutronics Analysis Team validated SAC by performing measurements on select beamlines and confirmed the discrepancies seen by the instrument teams and users. The conclusions were that the discrepancies were a result of a combination of faulty neutron flux spectra for the instruments, improper inputs supplied by SAC (1.12), and a mishandling of cross section data in the Sample Activation Program for Easy Use (SAPEU) (1.1.2). This report focuses on the conclusion that the SAPEU (1.1.2) beamline neutron flux spectra have errors and are a significant contributor to the activation discrepancies. The results of the analysis of the SAPEU (1.1.2) flux spectra for all beamlines will be discussed in detail. The recommendations for the implementation of improved neutron flux spectra in SAPEU (1.1.3) are also discussed.

  15. Dose calculation for permanent prostate implants incorporating spatially anisotropic linearly time-resolving edema

    SciTech Connect (OSTI)

    Monajemi, T. T.; Clements, Charles M.; Sloboda, Ron S.

    2011-04-15

    Purpose: The objectives of this study were (i) to develop a dose calculation method for permanent prostate implants that incorporates a clinically motivated model for edema and (ii) to illustrate the use of the method by calculating the preimplant dosimetry error for a reference configuration of {sup 125}I, {sup 103}Pd, and {sup 137}Cs seeds subject to edema-induced motions corresponding to a variety of model parameters. Methods: A model for spatially anisotropic edema that resolves linearly with time was developed based on serial magnetic resonance imaging measurements made previously at our center to characterize the edema for a group of n=40 prostate implant patients [R. S. Sloboda et al., ''Time course of prostatic edema post permanent seed implant determined by magnetic resonance imaging,'' Brachytherapy 9, 354-361 (2010)]. Model parameters consisted of edema magnitude, {Delta}, and period, T. The TG-43 dose calculation formalism for a point source was extended to incorporate the edema model, thus enabling calculation via numerical integration of the cumulative dose around an individual seed in the presence of edema. Using an even power piecewise-continuous polynomial representation for the radial dose function, the cumulative dose was also expressed in closed analytical form. Application of the method was illustrated by calculating the preimplant dosimetry error, RE{sub preplan}, in a 5x5x5 cm{sup 3} volume for {sup 125}I (Oncura 6711), {sup 103}Pd (Theragenics 200), and {sup 131}Cs (IsoRay CS-1) seeds arranged in the Radiological Physics Center test case 2 configuration for a range of edema relative magnitudes ({Delta}=[0.1,0.2,0.4,0.6,1.0]) and periods (T=[28,56,84] d). Results were compared to preimplant dosimetry errors calculated using a variation of the isotropic edema model developed by Chen et al. [''Dosimetric effects of edema in permanent prostate seed implants: A rigorous solution,'' Int. J. Radiat. Oncol., Biol., Phys. 47, 1405-1419 (2000)]. Results: As expected, RE{sub preplan} for our edema model indicated underdosage in the calculation volume with a clear dependence on seed and calculation point positions, and increased with increasing values of {Delta} and T. Values of RE{sub preplan} were generally larger near the ends of the virtual prostate in the RPC phantom compared with more central locations. For edema characteristics similar to the population average values previously measured at our center, i.e., {Delta}=0.2 and T=28 d, mean values of RE{sub preplan} in an axial plane located 1.5 cm from the center of the seed distribution were 8.3% for {sup 131}Cs seeds, 7.5% for {sup 103}Pd seeds, and 2.2% for {sup 125}I seeds. Maximum values of RE{sub preplan} in the same plane were about 1.5 times greater. Note that detailed results strictly apply only for loose seed implants where the seeds are fixed in tissue and move in synchrony with that tissue. Conclusions: A dose calculation method for permanent prostate implants incorporating spatially anisotropic linearly time-resolving edema was developed for which cumulative dose can be written in closed form. The method yields values for RE{sub preplan} that differ from those for spatially isotropic edema. The method is suitable for calculating pre- and postimplant dosimetry correction factors for clinical seed configurations when edema characteristics can be measured or estimated.

  16. LESSONS LEARNED LEARNED LESSONS N E P A

    Energy Savers [EERE]

    third Quarter fy 2013 September 6, 2013; Issue no. 76 NEPA Lessons Learned September 2013 1 The Office of NEPA Policy and Compliance has been tracking completion times and other metrics since 1994. (See related article, page 3, and Notes on NEPA Metrics, page 4.) The NEPA Office's most recent analysis - for calendar years 2003 through 2012 - shows that completion time and cost vary considerably from document to document and often within a single year. However, overall performance, as measured

  17. LESSONS LEARNED LEARNED LESSONS N E P A

    Energy Savers [EERE]

    fourth Quarter fy 2015 December 1, 2015; Issue no. 85 NEPA Lessons Learned December 2015 1 (continued on page 4) The National Tribal Energy Summit - A NEPA Perspective By: Rob Seifert, Director, Office of Environmental Compliance, Office of Environmental Management More than 450 representatives from Tribal, state, and federal government agencies, Tribal corporations, and private sector organizations, including almost 100 representatives from Tribes and Alaska Native Villages, participated in the

  18. Demand Response: Lessons Learned with an Eye to the Future | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Demand Response: Lessons Learned with an Eye to the Future Demand Response: Lessons Learned with an Eye to the Future July 11, 2013 - 11:56am Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability In today's world of limited resources and rising costs, everyone is looking for ways to use what they have more effectively while, at the same time, controlling - and ideally - reducing expenses. The electricity industry

  19. Lessons Learned Quarterly Report, December 2011 | Department of Energy

    Energy Savers [EERE]

    1 Lessons Learned Quarterly Report, December 2011 This issue celebrates the revision of DOE's NEPA regulations, which became effective on November 14, 2011. The culmination of a 2-year rulemaking process, the regulations establish 20 new categorical exclusions and revise other provisions to promote efficiency and transparency. Articles in this issue include: DOE Updates NEPA Regulations to Improve Efficiency and Transparency EPA Web Resource on EJ and NEPA DOE NEPA Website Tools Informal Public

  20. Lessons Learned Quarterly Report, September 2012 | Department of Energy

    Energy Savers [EERE]

    2 Lessons Learned Quarterly Report, September 2012 This issue features suggestions from experienced NEPA practitioners on ways to meet Secretary Chu's challenge to make better use of existing tools and integrate project management with NEPA compliance. Articles in this issue include: Secretary's Memorandum Key Principles OLC Training Suggestions from NETL Effective EIS Management Teams EPA Requires Electronic EIS Filing 2012 DOE NEPA Stakeholders Directory DOE-wide NEPA Contracts Update GIS

  1. Unsupervised Feature Learning for High-Resolution Satellite Image Classification

    SciTech Connect (OSTI)

    Cheriyadat, Anil M

    2013-01-01

    The rich data provided by high-resolution satellite imagery allow us to directly model geospatial neighborhoods by understanding their spatial and structural patterns. In this paper we explore an unsupervised feature learning approach to model geospatial neighborhoods for classification purposes. While pixel and object based classification approaches are widely used for satellite image analysis, often these approaches exploit the high-fidelity image data in a limited way. In this paper we extract low-level features to characterize the local neighborhood patterns. We exploit the unlabeled feature measurements in a novel way to learn a set of basis functions to derive new features. The derived sparse feature representation obtained by encoding the measured features in terms of the learned basis function set yields superior classification performance. We applied our technique on two challenging image datasets: ORNL dataset representing one-meter spatial resolution satellite imagery representing five land-use categories and, UCMERCED dataset consisting of 21 different categories representing sub-meter resolution overhead imagery. Our results are highly promising and, in the case of UCMERCED dataset we outperform the best results obtained for this dataset. We show that our feature extraction and learning methods are highly effective in developing a detection system that can be used to automatically scan large-scale high-resolution satellite imagery for detecting large-facility.

  2. Calculation of the Beam Field in the LCLS Bunch Length Monitor

    SciTech Connect (OSTI)

    Stupakov, G.; Ding, Y.; Huang, Z.; /SLAC

    2006-06-07

    Maintaining a stable bunch length and peak current is a critical step for the reliable operation of a SASE based x-ray source. In the LCLS, relative bunch length monitors (BLM) right after both bunch compressors are proposed based on the coherent radiation generated by the short electron bunch. Due to its diagnostic setup, the standard far field synchrotron radiation formula and well-developed numerical codes do not apply for the analysis of the BLM performance. In this paper, we develop a calculation procedure to take into account the near field effect, the effect of a short bending magnet, and the diffraction effect of the radiation transport optics. We find the frequency response of the BLM after the first LCLS bunch compressor and discuss its expected performance.

  3. Dark matter effective field theory scattering in direct detection experiments

    SciTech Connect (OSTI)

    Schneck, K.; Cabrera, B.; Cerdeno, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, Priscilla B.; Daal, M.; Di Stefano, P. C.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, W.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-01

    We examine the consequences of the effective eld theory (EFT) of dark matter-nucleon scattering or current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral di*erences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  4. Dark matter effective field theory scattering in direct detection experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; et al

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. Here. we demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. In conclusion, we discussmore » the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.« less

  5. Lessons learned from RTG programs

    SciTech Connect (OSTI)

    Reinstrom, R.M.; Cockfield, R.D.

    1998-01-01

    During the Cassini Radioisotope Thermoelectric Generator (RTG) program, the heritage RTG design was reviewed and modified to incorporate lessons learned. Design changes were made both to resolve problems as they occurred and to correct difficulties noted in earlier missions. Topics addressed in this paper included problems experienced previously at the launch facility in attaching the pressure relief device to the generators, and the open circuit conditions that occurred at times in the resistance temperature device wiring harness. Also discussed is a problem caused by mistakes in software configuration management. How lessons learned refined the RTG design and integration with the spacecraft are discussed and the adopted solutions are described. {copyright} {ital 1998 Lockheed Martin Missles and Space, reproduced with permission.}

  6. Learning from Roman Seawater Concrete

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning from Roman Seawater Concrete Print The material secrets of a concrete Roman breakwater that has spent the last 2000 years submerged in the Mediterranean Sea have been uncovered by an international team of researchers using a variety of techniques, including x-ray microdiffraction, x-ray spectroscopy, and synchrotron-based high-pressure x-ray diffraction. Analyses of the ancient samples pinpointed why the best Roman concrete was superior to most modern concrete in durability, why its

  7. Calculation of excitation energies from the CC2 linear response theory using Cholesky decomposition

    SciTech Connect (OSTI)

    Baudin, Pablo; qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C ; Marn, Jos Snchez; Cuesta, Inmaculada Garca; Snchez de Mers, Alfredo M. J.

    2014-03-14

    A new implementation of the approximate coupled cluster singles and doubles CC2 linear response model is reported. It employs a Cholesky decomposition of the two-electron integrals that significantly reduces the computational cost and the storage requirements of the method compared to standard implementations. Our algorithm also exploits a partitioning form of the CC2 equations which reduces the dimension of the problem and avoids the storage of doubles amplitudes. We present calculation of excitation energies of benzene using a hierarchy of basis sets and compare the results with conventional CC2 calculations. The reduction of the scaling is evaluated as well as the effect of the Cholesky decomposition parameter on the quality of the results. The new algorithm is used to perform an extrapolation to complete basis set investigation on the spectroscopically interesting benzylallene conformers. A set of calculations on medium-sized molecules is carried out to check the dependence of the accuracy of the results on the decomposition thresholds. Moreover, CC2 singlet excitation energies of the free base porphin are also presented.

  8. Accelerating molecular property calculations with nonorthonormal Krylov space methods

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.; Kwon, Jake

    2016-05-03

    Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less

  9. Novel Approach for Calculation and Analysis of Eigenvalues and Eigenvectors in Microgrids: Preprint

    SciTech Connect (OSTI)

    Li, Y.; Gao, W.; Muljadi, E.; Jiang, J.

    2014-02-01

    This paper proposes a novel approach based on matrix perturbation theory to calculate and analyze eigenvalues and eigenvectors in a microgrid system. Rigorous theoretical analysis to solve eigenvalues and the corresponding eigenvectors for a system under various perturbations caused by fluctuations of irradiance, wind speed, or loads is presented. A computational flowchart is proposed for the unified solution of eigenvalues and eigenvectors in microgrids, and the effectiveness of the matrix perturbation-based approach in microgrids is verified by numerical examples on a typical low-voltage microgrid network.

  10. High-accuracy coupled cluster calculations of atomic properties

    SciTech Connect (OSTI)

    Borschevsky, A.; Yakobi, H.; Eliav, E.; Kaldor, U.

    2015-01-22

    The four-component Fock-space coupled cluster and intermediate Hamiltonian methods are implemented to evaluate atomic properties. The latter include the spectra of nobelium and lawrencium (elements 102 and 103) in the range 20000-30000 cm{sup −1}, the polarizabilities of elements 112-114 and 118, required for estimating their adsorption enthalpies on surfaces used to separate them in accelerators, and the nuclear quadrupole moments of some heavy atoms. The calculations on superheavy elements are supported by the very good agreement with experiment obtained for the lighter homologues.

  11. Uncertainty quantification in lattice QCD calculations for nuclear physics

    SciTech Connect (OSTI)

    Beane, Silas R.; Detmold, William; Orginos, Kostas; Savage, Martin J.

    2015-02-05

    The numerical technique of Lattice QCD holds the promise of connecting the nuclear forces, nuclei, the spectrum and structure of hadrons, and the properties of matter under extreme conditions with the underlying theory of the strong interactions, quantum chromodynamics. A distinguishing, and thus far unique, feature of this formulation is that all of the associated uncertainties, both statistical and systematic can, in principle, be systematically reduced to any desired precision with sufficient computational and human resources. As a result, we review the sources of uncertainty inherent in Lattice QCD calculations for nuclear physics, and discuss how each is quantified in current efforts.

  12. Multiconfiguration Dirac-Hartree-Fock calculations of the electric dipole moment of radium induced by the nuclear Schiff moment

    SciTech Connect (OSTI)

    Bieron, Jacek; Gaigalas, Gediminas; Gaidamauskas, Erikas; Fritzsche, Stephan; Indelicato, Paul; Joensson, Per

    2009-07-15

    The multiconfiguration Dirac-Hartree-Fock theory has been employed to calculate the electric dipole moment of the 7s6d {sup 3}D{sub 2} state of radium induced by the nuclear Schiff moment. The results are dominated by valence and core-valence electron correlation effects. We show that the correlation effects can be evaluated in a converged series of multiconfiguration expansions.

  13. Safeguards Culture: Lessons Learned

    SciTech Connect (OSTI)

    Mladineo, Stephen V.

    2009-05-27

    Abstract: At the 2005 INMM/ESARDA Workshop in Santa Fe, New Mexico, I presented a paper entitled Changing the Safeguards Culture: Broader Perspectives and Challenges. That paper described a set of theoretical models that can be used as a basis for evaluating changes to safeguards culture. This paper builds on that theoretical discussion to address practical methods for influencing culture. It takes lessons from methods used to influence change in safety culture and security culture, and examines the applicability of these lessons to changing safeguards culture. Paper: At the 2005 INMM/ESARDA Workshop on Changing the Safeguards Culture: Broader Perspectives and Challenges, in Santa Fe, New Mexico, I presented a paper entitled Changing the Safeguards Culture: Broader Perspectives and Challenges. That paper, coauthored by Karyn R. Durbin and Andrew Van Duzer, described a set of theoretical models that can be used as a basis for evaluating changes to safeguards culture. This paper updates that theoretical discussion, and seeks to address practical methods for influencing culture. It takes lessons from methods used to influence change in safety culture and security culture, and examines the applicability of these lessons to changing safeguards culture. Implicit in this discussion is an understanding that improving a culture is not an end in itself, but is one method of improving the underlying discipline, that is safety, security, or safeguards. Culture can be defined as a way of life, or general customs and beliefs of a particular group of people at a particular time. There are internationally accepted definitions of safety culture and nuclear security culture. As yet, there is no official agreed upon definition of safeguards culture. At the end of the paper I will propose my definition. At the Santa Fe Workshop the summary by the Co-Chairs of Working Group 1, The Further Evolution of Safeguards, noted: It is clear that safeguards culture needs to be addressed if the efficiency and effectiveness are to continue to be improved. This will require commitment and change at all levels, from States to facility operators. Cultural change has to come from good leadership, doing the right thing and beliefs are not sufficient behavior is what counts. We are optimistic that with sufficient effort and the right incentives, change can be accomplished quickly.

  14. Adaptations in Electronic Structure Calculations in Heterogeneous Environments

    SciTech Connect (OSTI)

    Talamudupula, Sai

    2011-11-29

    Modern quantum chemistry deals with electronic structure calculations of unprecedented complexity and accuracy. They demand full power of high-performance computing and must be in tune with the given architecture for superior e#14;ciency. To make such applications resourceaware, it is desirable to enable their static and dynamic adaptations using some external software (middleware), which may monitor both system availability and application needs, rather than mix science with system-related calls inside the application. The present work investigates scienti#12;c application interlinking with middleware based on the example of the computational chemistry package GAMESS and middleware NICAN. The existing synchronous model is limited by the possible delays due to the middleware processing time under the sustainable runtime system conditions. Proposed asynchronous and hybrid models aim at overcoming this limitation. When linked with NICAN, the fragment molecular orbital (FMO) method is capable of adapting statically and dynamically its fragment scheduling policy based on the computing platform conditions. Signi#12;cant execution time and throughput gains have been obtained due to such static adaptations when the compute nodes have very di#11;erent core counts. Dynamic adaptations are based on the main memory availability at run time. NICAN prompts FMO to postpone scheduling certain fragments, if there is not enough memory for their immediate execution. Hence, FMO may be able to complete the calculations whereas without such adaptations it aborts.

  15. Efficient Execution of Electronic Structure Calculations on SMP Clusters

    SciTech Connect (OSTI)

    Nurzhan Ustemirov

    2006-05-01

    Applications augmented with adaptive capabilities are becoming common in parallel computing environments. For large-scale scientific applications, dynamic adjustments to a computationally-intensive part may lead to a large pay-off in facilitating efficient execution of the entire application while aiming at avoiding resource contention. Application-specific knowledge, often best revealed during the run-time, is required to initiate and time these adjustments. In particular, General Atomic and Molecular Electronic Structure System (GAMESS) is a program for ab initio quantum chemistry that places significant demands on the high-performance computing platforms. Certain electronic structure calculations are characterized by high consumption of a particular resource, such as CPU, main memory, or disk I/O. This may lead to resource contention among concurrent GAMESS jobs and other programs in the dynamically changing environment. Thus, it is desirable to improve GAMESS calculations by means of dynamic adaptations. In this thesis, we show how an application- or algorithm-specific knowledge may play a significant role in achieving this goal. The choice of implementation is facilitated by a module-driven middleware easily integrated with GAMESS that assesses resource consumption and invokes GAMESS adaptations to the system environment. We show that the throughput of GAMESS jobs may be improved greatly as a result of such adaptations.

  16. SCALE Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Perfetti, Christopher M.; Rearden, Bradley T.; Martin, William R.

    2016-02-25

    Sensitivity coefficients describe the fractional change in a system response that is induced by changes to system parameters and nuclear data. The Tools for Sensitivity and UNcertainty Analysis Methodology Implementation (TSUNAMI) code within the SCALE code system makes use of eigenvalue sensitivity coefficients for an extensive number of criticality safety applications, including quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different critical systems, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved fidelity and the desire to extend TSUNAMI analysis to advanced applications has motivated the developmentmore » of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The Contributon-Linked eigenvalue sensitivity/Uncertainty estimation via Tracklength importance CHaracterization (CLUTCH) and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in the CE-KENO framework of the SCALE code system to enable TSUNAMI-3D to perform eigenvalue sensitivity calculations using continuous-energy Monte Carlo methods. This work provides a detailed description of the theory behind the CLUTCH method and describes in detail its implementation. This work explores the improvements in eigenvalue sensitivity coefficient accuracy that can be gained through the use of continuous-energy sensitivity methods and also compares several sensitivity methods in terms of computational efficiency and memory requirements.« less

  17. SIMPLE TRANSIENT CALCULATIONS OF CELL FLAMMABLE GAS CONCENTRATIONS

    SciTech Connect (OSTI)

    , J; David Allison , D; John Mccord, J

    2009-05-06

    The Saltstone Facility at Savannah River Site (SRS) mixes low-level radiological liquid waste with grout for permanent disposal as cement in vault cells. The grout mixture is poured into each cell in approximately 17 batches (8 to 10 hours duration). The grout mixture contains ten flammable gases of concern that are released from the mixture into the cell. Prior to operations, simple parametric transient calculations were performed to develop batch parameters (including schedule of batch pours) to support operational efficiency while ensuring that a flammable gas mixture does not develop in the cell vapor space. The analysis demonstrated that a nonflammable vapor space environment can be achieved, with workable operational constraints, without crediting the ventilation flow as a safety system control. Isopar L was identified as the primary flammable gas of concern. The transient calculations balanced inflows of the flammable gases into the vapor space with credited outflows of diurnal breathing through vent holes and displacement from new grout pours and gases generated. Other important features of the analyses included identifying conditions that inhibited a well-mixed vapor space, the expected frequency and duration of such conditions, and the estimated level of stratification that could develop.

  18. WHAM: Simplified tool for calculating water heater energy use

    SciTech Connect (OSTI)

    Lutz, J.D.; Whitehead, C.D.; Lekov, A.B.; Rosenquist, G.J.; Winiarski, D.W.

    1999-07-01

    Water heating comprises a significant portion of residential energy consumption--17% in the US, according to the residential energy consumption survey (RECS) (EIA 1995). For such a significant energy end use, energy analysts need a method to quickly and reliably assess current and future energy requirements for a variety of conservation policies and programs. To fill this need, the water heater analysis model (WHAM) was developed as a simple energy equation that accounts for different operating conditions and water heater characteristics when calculating energy consumption. The results of WHAM are compared to the results of detailed water heater simulation programs and show a high level of accuracy in estimating energy consumption. WHAM energy calculations are based on assumptions that account for a variety of field conditions and water heater types. By including seven parameters--recovery efficiency (RE), standby heat loss coefficient (UA), rated input power (Pon), average daily hot water draw volume, inlet water temperature, thermostat setting, and air temperature around the water heater--WHAM provides an accurate estimate of energy consumption in the majority of cases.

  19. Calculation of a BWR partial ATWS using RAMONA-3B

    SciTech Connect (OSTI)

    Garber, D.I.; Diamond, D.J.; Cheng, H.S.

    1982-01-01

    The RAMONA-3B code has been used to simulate a boiling water reactor (BWR) transient initiated by the closure of the main steam line isolation valves in which all the control rods in one-half the core fail to scram after reactor trip. The modeling of the nuclear steam supply system included three-dimensional neutron kinetics and parallel hydraulic channels (including a bypass channel). The transient is characterized by an initial pressure spike and then by oscillations in the pressure due to the opening and closing of relief valves. These oscillations in turn affect all thermohydraulic properties in the vessel. The simulation was continued for 7 minutes of reactor time at which point boron began to accumulate in the core. The calculation demonstrates the importance of using three-dimensional neutron kinetics in conjunction with the modeling of the nuclear steam supply system for this type of transient. RAMONA-3B is unique in its ability to do this type of calculation.

  20. Improved initial guess for minimum energy path calculations

    SciTech Connect (OSTI)

    Smidstrup, Sren; Pedersen, Andreas; Stokbro, Kurt

    2014-06-07

    A method is presented for generating a good initial guess of a transition path between given initial and final states of a system without evaluation of the energy. An objective function surface is constructed using an interpolation of pairwise distances at each discretization point along the path and the nudged elastic band method then used to find an optimal path on this image dependent pair potential (IDPP) surface. This provides an initial path for the more computationally intensive calculations of a minimum energy path on an energy surface obtained, for example, by ab initio or density functional theory. The optimal path on the IDPP surface is significantly closer to a minimum energy path than a linear interpolation of the Cartesian coordinates and, therefore, reduces the number of iterations needed to reach convergence and averts divergence in the electronic structure calculations when atoms are brought too close to each other in the initial path. The method is illustrated with three examples: (1) rotation of a methyl group in an ethane molecule, (2) an exchange of atoms in an island on a crystal surface, and (3) an exchange of two Si-atoms in amorphous silicon. In all three cases, the computational effort in finding the minimum energy path with DFT was reduced by a factor ranging from 50% to an order of magnitude by using an IDPP path as the initial path. The time required for parallel computations was reduced even more because of load imbalance when linear interpolation of Cartesian coordinates was used.

  1. A GPU-based Calculation Method for Near Field Effects of Cherenkov...

    Office of Scientific and Technical Information (OSTI)

    Technical Information Service, Springfield, VA at www.ntis.gov. Authors: Hu, Chia-Yu ; Chen, Chih-Ching ; Taiwan, Natl. Taiwan U. ; Chen, Pisin ; Taiwan, Natl. Taiwan U....

  2. A GPU-based Calculation Method for Near Field Effects of Cherenkov...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  3. Monte Carlo calculations for reference dosimetry of electron beams with the PTW Roos and NE2571 ion chambers

    SciTech Connect (OSTI)

    Muir, B. R. Rogers, D. W. O.

    2013-12-15

    Purpose: To investigate recommendations for reference dosimetry of electron beams and gradient effects for the NE2571 chamber and to provide beam quality conversion factors using Monte Carlo simulations of the PTW Roos and NE2571 ion chambers. Methods: The EGSnrc code system is used to calculate the absorbed dose-to-water and the dose to the gas in fully modeled ion chambers as a function of depth in water. Electron beams are modeled using realistic accelerator simulations as well as beams modeled as collimated point sources from realistic electron beam spectra or monoenergetic electrons. Beam quality conversion factors are calculated with ratios of the doses to water and to the air in the ion chamber in electron beams and a cobalt-60 reference field. The overall ion chamber correction factor is studied using calculations of water-to-air stopping power ratios. Results: The use of an effective point of measurement shift of 1.55 mm from the front face of the PTW Roos chamber, which places the point of measurement inside the chamber cavity, minimizes the difference betweenR{sub 50}, the beam quality specifier, calculated from chamber simulations compared to that obtained using depth-dose calculations in water. A similar shift minimizes the variation of the overall ion chamber correction factor with depth to the practical range and reduces the root-mean-square deviation of a fit to calculated beam quality conversion factors at the reference depth as a function of R{sub 50}. Similarly, an upstream shift of 0.34 r{sub cav} allows a more accurate determination of R{sub 50} from NE2571 chamber calculations and reduces the variation of the overall ion chamber correction factor with depth. The determination of the gradient correction using a shift of 0.22 r{sub cav} optimizes the root-mean-square deviation of a fit to calculated beam quality conversion factors if all beams investigated are considered. However, if only clinical beams are considered, a good fit to results for beam quality conversion factors is obtained without explicitly correcting for gradient effects. The inadequacy of R{sub 50} to uniquely specify beam quality for the accurate selection of k{sub Q} factors is discussed. Systematic uncertainties in beam quality conversion factors are analyzed for the NE2571 chamber and amount to between 0.4% and 1.2% depending on assumptions used. Conclusions: The calculated beam quality conversion factors for the PTW Roos chamber obtained here are in good agreement with literature data. These results characterize the use of an NE2571 ion chamber for reference dosimetry of electron beams even in low-energy beams.

  4. Microscopic Calculation of 240Pu Scission with a Finite-Range...

    Office of Scientific and Technical Information (OSTI)

    The hot-scission line is identified in the quadrupole-octupole-moment coordinate space. Fission-fragment shapes are extracted from the calculations. A benchmark calculation for ...

  5. Rossi alpha Measurements and Calculations for HEU/Pb Core (Technical...

    Office of Scientific and Technical Information (OSTI)

    Rossi alpha Measurements and Calculations for HEUPb Core Citation Details In-Document Search Title: Rossi alpha Measurements and Calculations for HEUPb Core Rossi alpha ...

  6. Rossi alpha Measurements and Calculations for HEU/Pb Core (Technical...

    Office of Scientific and Technical Information (OSTI)

    Rossi alpha Measurements and Calculations for HEUPb Core Citation Details In-Document Search Title: Rossi alpha Measurements and Calculations for HEUPb Core You are accessing ...

  7. Reliability and Design Strength Limit Calculations on Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    Confererence Presentation: Corning PDF icon 2004deerwebb.pdf More Documents & Publications Predicting Thermal Stress in Diesel Particulate Filters Environmental Effects on Power ...

  8. GTZ-Greenhouse Gas Calculator for Waste Management | Open Energy...

    Open Energy Info (EERE)

    a great part of the national greenhouse gas production, because landfills produce methane which has a particularly strong effect on climate change. Therefore, it is essential...

  9. Lessons Learned: Peer Exchange Calls Fall 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fall 2014 Lessons Learned: Peer Exchange Calls Fall 2014 Better Buildings Residential Network, Lessons Learned: Peer Exchange Calls Fall 2014. PDF icon Lessons Learned: Peer Exchange Calls More Documents & Publications Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls Lessons Learned: Peer Exchange Calls -- No. 3 Better Buildings Network View | October 2014

  10. LESSONS LEARNED LEARNED LESSONS N E P A

    Energy Savers [EERE]

    Second Quarter fy 2015 June 2, 2015; Issue no. 83 NEPA Lessons Learned June 2015 1 (continued on page 7) What Didn't Work - And Making It Work Next Time: Data Collection and Sharing By: Ralph Barr, Office of NEPA Policy and Compliance This series highlights reasons why things "didn't work" in the NEPA process, and what can be done to avoid such problems in the future. In this issue, we discuss data collection and sharing - how they can affect NEPA document schedules and how potential

  11. Learn More About Interconnections | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learn More About Interconnections Learn More About Interconnections Learn More About Interconnections EASTERN INTERCONNECTION North America is comprised of two major and three minor alternating current (AC) power grids or "interconnections." The Eastern Interconnection reaches from Central Canada Eastward to the Atlantic coast (excluding Québec), South to Florida and West to the foot of the Rockies (excluding most of Texas). All of the electric utilities in the Eastern Interconnection

  12. Lessons Learned from Independent Verification Activities

    Office of Environmental Management (EM)

    Management Systems | Department of Energy Lessons Learned from Cyber Security Assessments of SCADA and Energy Management Systems Lessons Learned from Cyber Security Assessments of SCADA and Energy Management Systems Results from ten cyber security vulnerability assessments of process control, SCADA, and energy management systems were reviewed to identify common problem areas. In each vulnerability category, relative measures were assigned to the severity. PDF icon Lessons Learned from Cyber

  13. Continuous Learning Points Credit Assignment Table | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Microsoft Word - CLPCreditAssignmentTable More Documents & Publications PMCDP Curriculum Learning Map Microsoft Word - AL2006-07.doc PMCDP Certification and Equivalency ...

  14. Lessons Learned Quarterly Report, June 2003

    Broader source: Energy.gov [DOE]

    Welcome to the 35th quarterly report on lessons learned in the NEPA process. We are pleased to include in this issue three new mini-guidance articles.

  15. NREL: Learning About Renewable Energy Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning About Renewable Energy For more information about renewable energy basics, visit the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. Visit ...

  16. DEP Learning Experiences | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning Experiences "Science is a way of thinking much more than it is a body of knowledge." - Carl Sagan, Astrophysicist Argonne Education provides a variety of...

  17. Lessons Learned Quarterly Report, September 1999

    Broader source: Energy.gov [DOE]

    Welcome to the 20th Quarterly Report on lessons learned in the NEPA process. This issue includes a cumulative index for the past five years.

  18. JOBAID-SELF-RECORDING LEARNING EVENT

    Broader source: Energy.gov [DOE]

    The purpose of this job aid is to guide users through the step-by-step process of self-recording items and external learning events.

  19. Enterprise Assessments Lessons Learned from Targeted Reviews...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Targeted Reviews of Fire Protection Programs at Department of Energy Facilities - August 2015 Enterprise Assessments Lessons Learned from Targeted Reviews of Fire ...

  20. Lessons Learned Database | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DOE Corporate Lessons Learned Database provides a central clearinghouse that allows ready access to and communication about collected information on a timely, unimpeded basis by...

  1. Enterprise Assessments Lessons Learned from Targeted Reviews...

    Broader source: Energy.gov (indexed) [DOE]

    Lessons Learned from Targeted Reviews of Fire Protection Programs at Department of Energy Nuclear Facilities August 2015 Office of Nuclear Safety and Environmental Assessments...

  2. Enterprise Assessments Lessons Learned From Targeted Reviews...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Work Planning and Control - March 2016 Enterprise Assessments Lessons Learned From Targeted Reviews of Activity-Level Work Planning and Control - March 2016 March 2016 ...

  3. CLEAR (Calculates Logical Evacuation And Response): A Generic Transportation Network Model for the Calculation of Evacuation Time Estimates

    SciTech Connect (OSTI)

    Moeller, M. P.; Urbanik, II, T.; Desrosiers, A. E.

    1982-03-01

    This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuatlon tlmes for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies.

  4. Reliability and Design Strength Limit Calculations on Diesel Particulate

    Broader source: Energy.gov (indexed) [DOE]

    Filters | Department of Energy Confererence Presentation: Corning PDF icon 2004_deer_webb.pdf More Documents & Publications Predicting Thermal Stress in Diesel Particulate Filters Environmental Effects on Power Electronic Devices Effect of Machining Procedures on the Strength of Ceramics for Advanced Diesel Engine Applications

  5. Microscopic Sub-Barrier Fusion Calculations for the Neutron Star Crust

    SciTech Connect (OSTI)

    Umar, A. S.; Oberacker, V. E,; Horowitz, C. J.

    2012-01-01

    Fusion of very neutron-rich nuclei may be important to determine the composition and heating of the crust of accreting neutron stars. Fusion cross sections are calculated using time-dependent Hartree-Fock theory coupled with density-constrained Hartree-Fock calculations to deduce an effective potential. Systems studied include 16O+16O, 16O+24O, 24O+24O, 12C+16O, and 12C+24O. We find remarkable agreement with experimental cross sections for the fusion of stable nuclei. Our simulations use the SLy4 Skyrme force that has been previously fit to the properties of stable nuclei, and no parameters have been fit to fusion data. We compare our results to the simple S o Paulo static barrier penetration model. For the asymmetric systems 12C+24O or 16O+24O we predict an order of magnitude larger cross section than those predicted by the S o Paulo model. This is likely due to the transfer of neutrons from the very neutron rich nucleus to the stable nucleus and dynamical rearrangements of the nuclear densities during the collision process. These effects are not included in potential models. This enhancement of fusion cross sections, for very neutron rich nuclei, can be tested in the laboratory with radioactive beams.

  6. Variational perturbation theory and nonperturbative calculations in QCD

    SciTech Connect (OSTI)

    Solovtsova, O. P.

    2013-10-15

    A nonperturbative approach based on the variational perturbation theory in quantum chromodynamics is developed. The variational series is different from the conventional perturbative expansion and can be used to go beyond the weak-coupling regime. The approach suggested takes into account the summation of threshold singularities and the involvement of nonperturbative light quark masses. Phenomenological applications of this approach to describe physical quantities connected with the hadronic {tau}-decay data: the R{sub {tau}} ratio, the light-quark Adler function, and the smeared R{sub {Delta}} function are presented. The description of examined quantities includes an infrared region and, therefore, they cannot be directly calculated within the standard perturbation theory. It is shown that in spite of this fact the approach suggested gives a rather good result for these quantities down to the lowest energy scale.

  7. Calculation of TMD Evolution for Transverse Single Spin Asymmetry Measurements

    SciTech Connect (OSTI)

    Mert Aybat, Ted Rogers, Alexey Prokudin

    2012-06-01

    In this letter, we show that it is necessary to include the full treatment of QCD evolution of Transverse Momentum Dependent parton densities to explain discrepancies between HERMES data and recent COMPASS data on a proton target for the Sivers transverse single spin asymmetry in Semi-Inclusive Deep Inelastic Scattering (SIDIS). Calculations based on existing fits to TMDs in SIDIS, and including evolution within the Collins-Soper-Sterman with properly defined TMD PDFs are shown to provide a good explanation for the discrepancy. The non-perturbative input needed for the implementation of evolution is taken from earlier analyses of unpolarized Drell-Yan (DY) scattering at high energy. Its success in describing the Sivers function in SIDIS data at much lower energies is strong evidence in support of the unifying aspect of the QCD TMD-factorization formalism.

  8. Criticality calculations with MCNP{trademark}: A primer

    SciTech Connect (OSTI)

    Harmon, C.D. II; Busch, R.D.; Briesmeister, J.F.; Forster, R.A.

    1994-06-06

    With the closure of many experimental facilities, the nuclear criticality safety analyst increasingly is required to rely on computer calculations to identify safe limits for the handling and storage of fissile materials. However, in many cases, the analyst has little experience with the specific codes available at his/her facility. This primer will help you, the analyst, understand and use the MCNP Monte Carlo code for nuclear criticality safety analyses. It assumes that you have a college education in a technical field. There is no assumption of familiarity with Monte Carlo codes in general or with MCNP in particular. Appendix A gives an introduction to Monte Carlo techniques. The primer is designed to teach by example, with each example illustrating two or three features of MCNP that are useful in criticality analyses. Beginning with a Quickstart chapter, the primer gives an overview of the basic requirements for MCNP input and allows you to run a simple criticality problem with MCNP. This chapter is not designed to explain either the input or the MCNP options in detail; but rather it introduces basic concepts that are further explained in following chapters. Each chapter begins with a list of basic objectives that identify the goal of the chapter, and a list of the individual MCNP features that are covered in detail in the unique chapter example problems. It is expected that on completion of the primer you will be comfortable using MCNP in criticality calculations and will be capable of handling 80 to 90 percent of the situations that normally arise in a facility. The primer provides a set of basic input files that you can selectively modify to fit the particular problem at hand.

  9. Lessons Learned During the Manufacture of the NCSX Modular Coils

    SciTech Connect (OSTI)

    James H. Chrzanowski,Thomas G. Meighan, Steven Raftopoulos and Lawrence Dudek and Paul J. Fogarty

    2009-09-15

    The National Compact Stellarator Experiment's (NCSX) modular coils presented a number of engineering and manufacturing challenges due to their complex shapes, requirements for high dimensional accuracy and high current density requirements due to space constraints. Being the first of their kind, these coils required the implementation of many new manufacturing and measuring techniques and procedures. This was the first time that these manufacturing techniques and methods were applied in the production of coils at the laboratory. This resulted in a steep learning curve for the first several coils. Through the effective use of procedures, tooling modifications, involvement and ownership by the manufacturing workforce, and an emphasis on safety, the assembly team was able to reduce the manufacturing times and improve upon the manufacturing methods. This paper will discuss the learning curve and steps that were taken to improve the manufacturing efficiency and reduce the manufacturing times for the modular coils without forfeiting quality.

  10. Magnetic Materials at finite Temperatures: thermodynamics and combined spin and molecular dynamics derived from first principles calculations

    SciTech Connect (OSTI)

    Eisenbach, Markus; Perera, Meewanage Dilina N; Landau, David P; Nicholson, Don M; Yin, Junqi; Brown, Greg

    2015-01-01

    We present a unified approach to describe the combined behavior of the atomic and magnetic degrees of freedom in magnetic materials. Using Monte Carlo simulations directly combined with first principles the Curie temperature can be obtained ab initio in good agreement with experimental values. The large scale constrained first principles calculations have been used to construct effective potentials for both the atomic and magnetic degrees of freedom that allow the unified study of influence of phonon-magnon coupling on the thermodynamics and dynamics of magnetic systems. The MC calculations predict the specific heat of iron in near perfect agreement with experimental results from 300K to above Tc and allow the identification of the importance of the magnon-phonon interaction at the phase-transition. Further Molecular Dynamics and Spin Dynamics calculations elucidate the dynamics of this coupling and open the potential for quantitative and predictive descriptions of dynamic structure factors in magnetic materials using first principles derived simulations.

  11. Prediction of {sup 1}P Rydberg energy levels of beryllium based on calculations with explicitly correlated Gaussians

    SciTech Connect (OSTI)

    Bubin, Sergiy; Adamowicz, Ludwik

    2014-01-14

    Benchmark variational calculations are performed for the seven lowest 1s{sup 2}2s?np?({sup 1}P), n = 28, states of the beryllium atom. The calculations explicitly include the effect of finite mass of {sup 9}Be nucleus and account perturbatively for the mass-velocity, Darwin, and spin-spin relativistic corrections. The wave functions of the states are expanded in terms of all-electron explicitly correlated Gaussian functions. Basis sets of up to 12500 optimized Gaussians are used. The maximum discrepancy between the calculated nonrelativistic and experimental energies of 1s{sup 2}2s?np?({sup 1}P) ?1s{sup 2}2s{sup 2}?({sup 1}S) transition is about 12 cm{sup ?1}. The inclusion of the relativistic corrections reduces the discrepancy to bellow 0.8 cm{sup ?1}.

  12. Precise Calculation of Traveling-Wave Periodic Structure

    SciTech Connect (OSTI)

    Wang, L.; Li, Z.; Seryi, A.; /SLAC

    2007-07-06

    The effects of the round edge beam hole on the frequency and wake field are studied using variational method, which allows for rounded iris disk hole without any approximation in shape treatment. The frequency and wake field of accelerating mode and dipole mode are studied for different edge radius cases, including the flat edge shape that is often used to approximately represent the actual structure geometry. The edge hole shape has weak effect on the frequency, but much effect on the wake field. Our study shows that the amounts of wake fields are not precise enough with the assumption of the flat edge beam hole instead of round edge.

  13. A Cognitive Approach to e-Learning

    SciTech Connect (OSTI)

    Greitzer, Frank L.; Rice, Douglas M.; Eaton, Sharon L.; Perkins, Michael C.; Scott, Ryan T.; Burnette, John R.; Robertson, Sarah R.

    2003-12-01

    Like traditional classroom instruction, distributed learning derives from passive training paradigms. Just as student-centered classroom teaching methods have been applied over several decades of classroom instruction, interactive approaches have been encouraged for distributed learning. While implementation of multimedia-based training features may appear to produce active learning, sophisticated use of multimedia features alone does not necessarily enhance learning. This paper describes the results of applying cognitive science principles to enhance learning in a student-centered, distributed learning environment, and lessons learned in developing and delivering this training. Our interactive, scenario-based approach exploits multimedia technology within a systematic, cognitive framework for learning. The basis of the application of cognitive principles is the innovative use of multimedia technology to implement interaction elements. These simple multimedia interactions, which are used to support new concepts, are later combined with other interaction elements to create more complex, integrated practical exercises. This technology-based approach may be applied in a variety of training and education contexts, but is especially well suited for training of equipment operators and maintainers. For example, it has been used in a sustainment training application for the United States Army's Combat Support System Automated Information System Interface (CAISI). The CAISI provides a wireless communications capability that allows various logistics systems to communicate across the battlefield. Based on classroom training material developed by the CAISI Project Office, the Pacific Northwest National Laboratory designed and developed an interactive, student-centered distributed-learning application for CAISI operators and maintainers. This web-based CAISI training system is also distributed on CD media for use on individual computers, and material developed for the computer-based course can be used in the classroom. In addition to its primary role in sustainment training, this distributed learning course can complement or replace portions of the classroom instruction, thus supporting a blended learning solution.

  14. 76th Lessons Learned Quarterly Report Issued | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6th Lessons Learned Quarterly Report Issued 76th Lessons Learned Quarterly Report Issued September 6, 2013 - 2:50pm Addthis The 76th quarterly report on lessons learned in the NEPA...

  15. Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for sulfur-like iron, Fe XI

    SciTech Connect (OSTI)

    Abou El-Maaref, A.; Ahmad, Mahmoud; Allam, S.H.

    2014-05-15

    Energy levels, oscillator strengths, and transition probabilities for transitions among the 14 LS states belonging to configurations of sulfur-like iron, Fe XI, have been calculated. These states are represented by configuration interaction wavefunctions and have configurations 3s{sup 2}3p{sup 4}, 3s3p{sup 5}, 3s{sup 2}3p{sup 3}3d, 3s{sup 2}3p{sup 3}4s, 3s{sup 2}3p{sup 3}4p, and 3s{sup 2}3p{sup 3}4d, which give rise to 123 fine-structure energy levels. Extensive configuration interaction calculations using the CIV3 code have been performed. To assess the importance of relativistic effects, the intermediate coupling scheme by means of the BreitPauli Hamiltonian terms, such as the one-body mass correction and Darwin term, and spinorbit, spinother-orbit, and spinspin corrections, are incorporated within the code. These incorporations adjusted the energy levels, therefore the calculated values are close to the available experimental data. Comparisons between the present calculated energy levels as well as oscillator strengths and both experimental and theoretical data have been performed. Our results show good agreement with earlier works, and they might be useful in thermonuclear fusion research and astrophysical applications. -- Highlights: Accurate atomic data of iron ions are needed for identification of solar corona. Extensive configuration interaction wavefunctions including 123 fine-structure levels have been calculated. The relativistic effects by means of the BreitPauli Hamiltonian terms are incorporated. This incorporation adjusts the energy levels, therefore the calculated values are close to experimental values.

  16. Development of a New Multiplying Assembly for Research, Validation, Evaluation, and Learning

    SciTech Connect (OSTI)

    David L. Chichester

    2012-10-01

    A new multiplying test assembly is under development at Idaho National Laboratory (INL) to support research, validation, evaluation, and learning. The item is comprised of two stacked highly-enriched uranium (HEU) cylinders each 11.4 cm in diameter and having a combined height of 8.4 cm. The combined mass is 14.4 kg of HEU. Calculations for the bare configuration of the assembly indicate a multiplication level of >2.5 (keff = 0.62). Reflected configurations of the assembly, using either polyethylene or tungsten, are possible and have the capability of raising its multiplication level to approximately 8. This paper will describe the MCNP calculations performed to assess the assembly's multiplication level under different conditions and describe the resource available at INL to support visiting researchers in their use of the material. We will also describe some preliminary calculations and test activities using the assembly to study neutron multiplicity.

  17. Comparison of chlorine-poisoned experiments to calculations

    SciTech Connect (OSTI)

    Hicks, J.; Wilson, R.E.

    2000-07-01

    The Rocky Flats Environmental Technology Site (RFETS) has fissile materials in salt, which could be processed for disposal more efficiently if the nuclear poison effect of the chlorine were validated. The authors conclude that chlorine can be credited as poison when present in thermal systems. The 27-, 44-, and 238-group libraries in SCALE and the ENDFB-B libraries with MCNP underpredict the poisonous effect of chlorine in thermal systems.

  18. Intact and Degraded Criticality Calculations for the Codisposal of Shippingport LWBR Spent Nuclear Fuel in a Waste Package

    SciTech Connect (OSTI)

    L.M. Montierth

    2000-09-15

    The objective of this calculation is to characterize the nuclear criticality safety concerns associated with the codisposal of the U.S. Department of Energy's (DOE) Shippingport Light Water Breeder Reactor (SP LWBR) Spent Nuclear Fuel (SNF) in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP), which is to be placed in a Monitored Geologic Repository (MGR). The scope of this calculation is limited to the determination of the effective neutron multiplication factor (K{sub eff}) for intact- and degraded-mode internal configurations of the codisposal WP containing Shippingport LWBR seed-type assemblies. The results of this calculation will be used to evaluate criticality issues and support the analysis that is planed to be performed to demonstrate the viability of the codisposal concept for the MGR. This calculation is associated with the waste package design and was performed in accordance with the DOE SNF Analysis Plan for FY 2000 (See Ref. 22). The document has been prepared in accordance with the Administrative Procedure AP-3.12Q, Calculations (Ref. 23).

  19. Lessons Learned Quarterly Report Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned » Lessons Learned Quarterly Report Archive Lessons Learned Quarterly Report Archive March 1, 2016 Lessons Learned Quarterly Report, March 2016 Welcome to the 86th quarterly report on lessons learned in the NEPA process. This issue highlights practices to improve NEPA implementation for environmental justice and public access to references; these practices remind us of NEPA's emphasis on meaningful public involvement. December 1, 2015 Lessons Learned Quarterly Report, December

  20. Density Functional Theory Calculations of Mass Transport in UO2

    SciTech Connect (OSTI)

    Andersson, Anders D.; Dorado, Boris; Uberuaga, Blas P.; Stanek, Christopher R.

    2012-06-26

    In this talk we present results of density functional theory (DFT) calculations of U, O and fission gas diffusion in UO{sub 2}. These processes all impact nuclear fuel performance. For example, the formation and retention of fission gas bubbles induce fuel swelling, which leads to mechanical interaction with the clad thereby increasing the probability for clad breach. Alternatively, fission gas can be released from the fuel to the plenum, which increases the pressure on the clad walls and decreases the gap thermal conductivity. The evolution of fuel microstructure features is strongly coupled to diffusion of U vacancies. Since both U and fission gas transport rates vary strongly with the O stoichiometry, it is also important to understand O diffusion. In order to better understand bulk Xe behavior in UO{sub 2{+-}x} we first calculate the relevant activation energies using DFT techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next we investigate species transport on the (111) UO{sub 2} surface, which is motivated by the formation of small voids partially filled with fission gas atoms (bubbles) in UO{sub 2} under irradiation. Surface diffusion could be the rate-limiting step for diffusion of such bubbles, which is an alternative mechanism for mass transport in these materials. As expected, the activation energy for surface diffusion is significantly lower than for bulk transport. These results are further discussed in terms of engineering-scale fission gas release models. Finally, oxidation of UO{sub 2} and the importance of cluster formation for understanding thermodynamic and kinetic properties of UO{sub 2+x} are investigated.

  1. Lessons Learned Quarterly Report, March 2009

    Broader source: Energy.gov [DOE]

    Welcome to the 58th quarterly report on lessons learned in the NEPA process. We have been very busy addressing our NEPA responsibilities arising from the recovery act as well as the new policies of the obama administration. In this issue of the Lessons Learned Quarterly Report (LLQR), we share ideas and experiences that will foster an improved and expedited NEPA compliance process.

  2. Lessons Learned Quarterly Report, June 2005

    Broader source: Energy.gov [DOE]

    Welcome to the 43rd quarterly report on lessons learned in the NEPA process. In this issue we take a look at our hard-working NEPA Compliance Officers, who share bits of wisdom (and a little humor) gained from their lessons learned implementing NEPA. Countless thanks to all NCOs for their dedication, flexibility, and perseverance.

  3. Lessons Learned Quarterly Report, September 2015

    Broader source: Energy.gov [DOE]

    Welcome to the 84th quarterly report on lessons learned in the NEPA process. This issue features lessons learned regarding a major programmatic EIS, communication in the NEPA process, administrative record guidance, and our summer interns. In addition, we bid farewell to two outstanding NEPA professionals.

  4. Peridigm summary report : lessons learned in development with...

    Office of Scientific and Technical Information (OSTI)

    summary report : lessons learned in development with agile components. Citation Details In-Document Search Title: Peridigm summary report : lessons learned in development with...

  5. Development of the Mathematics of Learning Curve Models for Evaluating...

    Office of Scientific and Technical Information (OSTI)

    of the Mathematics of Learning Curve Models for Evaluating Small Modular Reactor Economics Citation Details In-Document Search Title: Development of the Mathematics of Learning ...

  6. National FCEV Learning Demonstration: All Composite Data Products...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FCEV Learning Demonstration: All Composite Data Products National FCEV Learning Demonstration: All Composite Data Products This presentation from the U.S. Department of Energy's ...

  7. National Fuel Cell Electric Vehicle Learning Demonstration Final...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Electric Vehicle Learning Demonstration Final Report National Fuel Cell Electric Vehicle Learning Demonstration Final Report This report discusses key analysis results ...

  8. Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Presented at ...

  9. Lessons Learned from Cyber Security Assessments of SCADA and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned from Cyber Security Assessments of SCADA and Energy Management Systems Lessons Learned from Cyber Security Assessments of SCADA and Energy Management Systems ...

  10. Compact Fluorescent Lighting in America: Lessons Learned on the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market This report reviews ...

  11. Lessons Learned from Cyber Security Assessments of SCADA and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned from Cyber Security Assessments of SCADA and Energy Management Systems Lessons Learned from Cyber Security Assessments of SCADA and Energy Management Systems...

  12. CBEI: Lessons Learned from Integrated Retrofits in Small and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned from Integrated Retrofits in Small and Medium Sized Commercial Buildings - 2015 Peer Review CBEI: Lessons Learned from Integrated Retrofits in Small and Medium ...

  13. Lessons Learned from Net Zero Energy Assessments and Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations Lessons Learned from Net Zero Energy Assessments and Renewable Energy...

  14. Lunch and Learn sessions offered | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lunch and Learn sessions offered University Human Resources is pleased to offer the following free lunch and learn sessions to all faculty and staff. Moving Beyond Paycheck to...

  15. Response to IG Recommendation to Create a Formal Lessons Learned...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Response to IG Recommendation to Create a Formal Lessons Learned Process Response to IG Recommendation to Create a Formal Lessons Learned Process Attachment 1: Recommendations ...

  16. Building Energy-Efficient Schools in New Orleans: Lessons Learned...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy-Efficient Schools in New Orleans: Lessons Learned Building ... These brochures present the lessons learned from incorporating energy efficiency in the ...

  17. EV Everywhere Framing Workshop Report Out & Lessons Learned ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Out & Lessons Learned EV Everywhere Framing Workshop Report Out & Lessons Learned Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 ...

  18. Request Access to the PARSIIe Project Management Lessons Learned...

    Energy Savers [EERE]

    Request Access to the PARSIIe Project Management Lessons Learned (PMLL) Repository Request Access to the PARSIIe Project Management Lessons Learned (PMLL) Repository PURPOSE...

  19. Driving Demand: Working With and Learning from Contractors

    Broader source: Energy.gov [DOE]

    This webinar covered how to work with and learn from contractors as well as NYSERDA's lessons learned in their contractor experiences.

  20. Low Carbon London - A Learning Journey (Smart Grid Project) ...

    Open Energy Info (EERE)

    - A Learning Journey (Smart Grid Project) Jump to: navigation, search Project Name Low Carbon London - A Learning Journey Country United Kingdom Headquarters Location London,...

  1. DOE EM Project Experience & Lessons Learned for In Situ Decommissionin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM Project Experience & Lessons Learned for In Situ Decommissioning (Feb. 2013) DOE EM Project Experience & Lessons Learned for In Situ Decommissioning (Feb. 2013) The purpose of ...

  2. Lessons Learned: Creating the Chicago Climate Action Plan | Open...

    Open Energy Info (EERE)

    Lessons Learned: Creating the Chicago Climate Action Plan Jump to: navigation, search Name Lessons Learned: Creating the Chicago Climate Action Plan AgencyCompany Organization...

  3. Lessons Learned and Best Practices in Savannah River Site Saltstone...

    Office of Environmental Management (EM)

    Lessons Learned and Best Practices in Savannah River Site Saltstone and Tank Farm Performance Assessments Lessons Learned and Best Practices in Savannah River Site Saltstone and...

  4. Enterprise Assessments, Lessons Learned from the 2014 Emergency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessments, Lessons Learned from the 2014 Emergency Management Reviews - April 2015 Enterprise Assessments, Lessons Learned from the 2014 Emergency Management Reviews - April 2015...

  5. Major Process Revision of WP&C - Lessons Learned | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Hazard AnalysisControl Subject Matter Expert Involvement Expectations for Workers Lessons Learned Major Process Revision of WP&C - Lessons Learned More Documents &...

  6. Vehicle Technologies Office Merit Review 2015: Lessons Learned...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned about Workplace Charging in The EV Project Vehicle Technologies Office Merit Review 2015: Lessons Learned about Workplace Charging in The EV Project Presentation...

  7. Moldova National Inventory Report - Lessons Learned | Open Energy...

    Open Energy Info (EERE)

    Moldova National Inventory Report - Lessons Learned Jump to: navigation, search Name Moldova Second National Inventory Report - Lessons Learned AgencyCompany Organization United...

  8. NREL-Lessons Learned from Energy Efficiency Lighting Programs...

    Open Energy Info (EERE)

    Lessons Learned from Energy Efficiency Lighting Programs Webinar Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Lessons Learned from Energy Efficiency Lighting Programs...

  9. Lessons Learned: Devolping Thermochemical Cycles for Solar Heat...

    Office of Environmental Management (EM)

    Lessons Learned: Devolping Thermochemical Cycles for Solar Heat Storage Applications Lessons Learned: Devolping Thermochemical Cycles for Solar Heat Storage Applications This ...

  10. EM Shares Waste Isolation Pilot Plant Lessons Learned with Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shares Waste Isolation Pilot Plant Lessons Learned with Nuclear Energy Agency EM Shares Waste Isolation Pilot Plant Lessons Learned with Nuclear Energy Agency April 14, 2016 - ...

  11. Calculated fission-fragment yield systematics in the region 74 <=Z <= 94 and 90 <=N <= 150

    SciTech Connect (OSTI)

    Möller, Peter; Randrup, Jørgen

    2015-04-01

    Background: In the seminal experiment by Schmidt et al. [Nucl. Phys. A 665, 221 (2000)] in which fission-fragment charge distributions were obtained for 70 nuclides, asymmetric distributions were seen above nucleon number A ≈ 226 and symmetric ones below. Because asymmetric fission had often loosely been explained as a preference for the nucleus to always exploit the extra binding of fragments near ¹³²Sn it was assumed that all systems below A ≈ 226 would fission symmetrically because available isotopes do not have a proton-to-neutron Z/N ratio that allows division into fragments near ¹³²Sn. But the finding by Andreyev et al. [Phys. Rev. Lett. 105, 252502 (2010)] did not conform to this expectation because the compound system ¹⁸⁰Hg was shown to fission asymmetrically. It was suggested that this was a new type of asymmetric fission, because no strong shell effects occur for any possible fragment division. Purpose: We calculate a reference database for fission-fragment mass yields for a large region of the nuclear chart comprising 987 nuclides. A particular aim is to establish whether ¹⁸⁰Hg is part of a contiguous region of asymmetric fission, and if so, its extent, or if not, in contrast to the actinides, there are scattered smaller groups of nuclei that fission asymmetrically in this area of the nuclear chart. Methods: We use the by now well benchmarked Brownian shape-motion method and perform random walks on the previously calculated five-dimensional potential-energy surfaces. The calculated shell corrections are damped out with energy according to a prescription developed earlier. Results: We have obtained a theoretical reference database of fission-fragment mass yields for 987 nuclides. These results show an extended region of asymmetric fission with approximate extension 74 ≤ Z ≤ 85 and 100 ≤ N ≤ 120. The calculated yields are highly variable. We show 20 representative plots of these variable features and summarize the main aspects of our results in terms of “nuclear-chart” plots showing calculated degrees of asymmetry versus N and Z. Conclusions: Experimental data in this region are rare: only ten or so yield distributions have been measured, some with very limited statistics. We agree with several measurements with higher statistics. Regions where there might be differences between our calculated results and measurements lie near the calculated transition line between symmetric and asymmetric fission. To draw more definite conclusions about the accuracy of the present implementation of the Brownian shape-motion approach in this region experimental data, with reliable statistics, for a fair number of suitably located additional nuclides are clearly needed. Because the nuclear potential-energy structure is so different in this region compared to the actinide region, additional experimental data together with fission theory studies that incorporate additional, dynamical aspects should provide much new insight.

  12. Calculated fission-fragment yield systematics in the region 74 <=Z <= 94 and 90 <=N <= 150

    SciTech Connect (OSTI)

    Mller, Peter; Randrup, Jrgen

    2015-04-01

    Background: In the seminal experiment by Schmidt et al. [Nucl. Phys. A 665, 221 (2000)] in which fission-fragment charge distributions were obtained for 70 nuclides, asymmetric distributions were seen above nucleon number A ? 226 and symmetric ones below. Because asymmetric fission had often loosely been explained as a preference for the nucleus to always exploit the extra binding of fragments near Sn it was assumed that all systems below A ? 226 would fission symmetrically because available isotopes do not have a proton-to-neutron Z/N ratio that allows division into fragments near Sn. But the finding by Andreyev et al. [Phys. Rev. Lett. 105, 252502 (2010)] did not conform to this expectation because the compound system ??Hg was shown to fission asymmetrically. It was suggested that this was a new type of asymmetric fission, because no strong shell effects occur for any possible fragment division. Purpose: We calculate a reference database for fission-fragment mass yields for a large region of the nuclear chart comprising 987 nuclides. A particular aim is to establish whether ??Hg is part of a contiguous region of asymmetric fission, and if so, its extent, or if not, in contrast to the actinides, there are scattered smaller groups of nuclei that fission asymmetrically in this area of the nuclear chart. Methods: We use the by now well benchmarked Brownian shape-motion method and perform random walks on the previously calculated five-dimensional potential-energy surfaces. The calculated shell corrections are damped out with energy according to a prescription developed earlier. Results: We have obtained a theoretical reference database of fission-fragment mass yields for 987 nuclides. These results show an extended region of asymmetric fission with approximate extension 74 ? Z ? 85 and 100 ? N ? 120. The calculated yields are highly variable. We show 20 representative plots of these variable features and summarize the main aspects of our results in terms of nuclear-chart plots showing calculated degrees of asymmetry versus N and Z. Conclusions: Experimental data in this region are rare: only ten or so yield distributions have been measured, some with very limited statistics. We agree with several measurements with higher statistics. Regions where there might be differences between our calculated results and measurements lie near the calculated transition line between symmetric and asymmetric fission. To draw more definite conclusions about the accuracy of the present implementation of the Brownian shape-motion approach in this region experimental data, with reliable statistics, for a fair number of suitably located additional nuclides are clearly needed. Because the nuclear potential-energy structure is so different in this region compared to the actinide region, additional experimental data together with fission theory studies that incorporate additional, dynamical aspects should provide much new insight.

  13. Calculated fission-fragment yield systematics in the region 74 <=Z <= 94 and 90 <=N <= 150

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Möller, Peter; Randrup, Jørgen

    2015-04-01

    Background: In the seminal experiment by Schmidt et al. [Nucl. Phys. A 665, 221 (2000)] in which fission-fragment charge distributions were obtained for 70 nuclides, asymmetric distributions were seen above nucleon number A ≈ 226 and symmetric ones below. Because asymmetric fission had often loosely been explained as a preference for the nucleus to always exploit the extra binding of fragments near ¹³²Sn it was assumed that all systems below A ≈ 226 would fission symmetrically because available isotopes do not have a proton-to-neutron Z/N ratio that allows division into fragments near ¹³²Sn. But the finding by Andreyev et al.more » [Phys. Rev. Lett. 105, 252502 (2010)] did not conform to this expectation because the compound system ¹⁸⁰Hg was shown to fission asymmetrically. It was suggested that this was a new type of asymmetric fission, because no strong shell effects occur for any possible fragment division. Purpose: We calculate a reference database for fission-fragment mass yields for a large region of the nuclear chart comprising 987 nuclides. A particular aim is to establish whether ¹⁸⁰Hg is part of a contiguous region of asymmetric fission, and if so, its extent, or if not, in contrast to the actinides, there are scattered smaller groups of nuclei that fission asymmetrically in this area of the nuclear chart. Methods: We use the by now well benchmarked Brownian shape-motion method and perform random walks on the previously calculated five-dimensional potential-energy surfaces. The calculated shell corrections are damped out with energy according to a prescription developed earlier. Results: We have obtained a theoretical reference database of fission-fragment mass yields for 987 nuclides. These results show an extended region of asymmetric fission with approximate extension 74 ≤ Z ≤ 85 and 100 ≤ N ≤ 120. The calculated yields are highly variable. We show 20 representative plots of these variable features and summarize the main aspects of our results in terms of “nuclear-chart” plots showing calculated degrees of asymmetry versus N and Z. Conclusions: Experimental data in this region are rare: only ten or so yield distributions have been measured, some with very limited statistics. We agree with several measurements with higher statistics. Regions where there might be differences between our calculated results and measurements lie near the calculated transition line between symmetric and asymmetric fission. To draw more definite conclusions about the accuracy of the present implementation of the Brownian shape-motion approach in this region experimental data, with reliable statistics, for a fair number of suitably located additional nuclides are clearly needed. Because the nuclear potential-energy structure is so different in this region compared to the actinide region, additional experimental data together with fission theory studies that incorporate additional, dynamical aspects should provide much new insight.« less

  14. Verification study of thorium cross section in MVP calculation of thorium based fuel core using experimental data

    SciTech Connect (OSTI)

    Mai, V. T.; Fujii, T.; Wada, K.; Kitada, T.; Takaki, N.; Yamaguchi, A.; Watanabe, H.; Unesaki, H.

    2012-07-01

    Considering the importance of thorium data and concerning about the accuracy of Th-232 cross section library, a series of experiments of thorium critical core carried out at KUCA facility of Kyoto Univ. Research Reactor Inst. have been analyzed. The core was composed of pure thorium plates and 93% enriched uranium plates, solid polyethylene moderator with hydro to U-235 ratio of 140 and Th-232 to U-235 ratio of 15.2. Calculations of the effective multiplication factor, control rod worth, reactivity worth of Th plates have been conducted by MVP code using JENDL-4.0 library [1]. At the experiment site, after achieving the critical state with 51 fuel rods inserted inside the reactor, the measurements of the reactivity worth of control rod and thorium sample are carried out. By comparing with the experimental data, the calculation overestimates the effective multiplication factor about 0.90%. Reactivity worth of the control rods evaluation using MVP is acceptable with the maximum discrepancy about the statistical error of the measured data. The calculated results agree to the measurement ones within the difference range of 3.1% for the reactivity worth of one Th plate. From this investigation, further experiments and research on Th-232 cross section library need to be conducted to provide more reliable data for thorium based fuel core design and safety calculation. (authors)

  15. Calculation of Reactive-evaporation Rates of Chromia

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2008-04-01

    A methodology is developed to calculate Cr-evaporation rates from Cr2O3 with a flat planar geometry. Variables include temperature, total pressure, gas velocity, and gas composition. The methodology was applied to solid-oxide, fuel cell conditions for metallic interconnects and to advanced-steam turbines conditions. The high velocities and pressures of the advanced steam turbine led to evaporation predictions as high as 5.18 9 10-8 kg/m2/s of CrO2(OH)2(g) at 760 °C and 34.5 MPa. This is equivalent to 0.080 mm per year of solid Cr loss. Chromium evaporation is expected to be an important oxidation mechanism with the types of nickel-base alloys proposed for use above 650 °C in advanced-steam boilers and turbines. It is shown that laboratory experiments, with much lower steam velocities and usually much lower total pressure than found in advanced steam turbines, would best reproduce chromium-evaporation behavior with atmospheres that approach either O2 + H2O or air + H2O with 57% H2O.

  16. Calculating the probability of injected carbon dioxide plumes encountering faults

    SciTech Connect (OSTI)

    Jordan, P.D.

    2011-04-01

    One of the main concerns of storage in saline aquifers is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available for these aquifers. This necessitates a method using available fault data to estimate the probability of injected carbon dioxide encountering and migrating up a fault. The probability of encounter can be calculated from areal fault density statistics from available data, and carbon dioxide plume dimensions from numerical simulation. Given a number of assumptions, the dimension of the plume perpendicular to a fault times the areal density of faults with offsets greater than some threshold of interest provides probability of the plume encountering such a fault. Application of this result to a previously planned large-scale pilot injection in the southern portion of the San Joaquin Basin yielded a 3% and 7% chance of the plume encountering a fully and half seal offsetting fault, respectively. Subsequently available data indicated a half seal-offsetting fault at a distance from the injection well that implied a 20% probability of encounter for a plume sufficiently large to reach it.

  17. Dose Rate Calculation of TRU Metal Ingot in Pyroprocessing - 12202

    SciTech Connect (OSTI)

    Lee, Yoon Hee; Lee, Kunjai

    2012-07-01

    Spent fuel management has been a main problem to be solved for continuous utilization of nuclear energy. Spent fuel management policy of Korea is 'Wait and See'. It is focused on Pyro-process and SFR (Sodium-cooled Fast Reactor) for closed-fuel cycle research and development in Korea. For peaceful use of nuclear facilities, the proliferation resistance has to be proved. Proliferation resistance is one of key constraints in the deployment of advanced nuclear energy systems. Non-proliferation and safeguard issues have been strengthening internationally. Barriers to proliferation are that reduces desirability or attractiveness as an explosive and makes it difficult to gain access to the materials, or makes it difficult to misuse facilities and/or technologies for weapons applications. Barriers to proliferation are classified into intrinsic and extrinsic barriers. Intrinsic barrier is inherent quality of reactor materials or the fuel cycle that is built into the reactor design and operation such as material and technical barriers. As one of the intrinsic measures, the radiation from the material is considered significantly. Therefore the radiation of TRU metal ingot from the pyro-process was calculated using ORIGEN and MCNP code. (authors)

  18. Nuclear safety analyses and core design calculations to convert the Texas A & M University Nuclear Science Center reactor to low enrichment uranium fuel. Final report

    SciTech Connect (OSTI)

    Parish, T.A.

    1995-03-02

    This project involved performing the nuclear design and safety analyses needed to modify the license issued by the Nuclear Regulatory Commission to allow operation of the Texas A& M University Nuclear Science Center Reactor (NSCR) with a core containing low enrichment uranium (LEU) fuel. The specific type of LEU fuel to be considered was the TRIGA 20-20 fuel produced by General Atomic. Computer codes for the neutronic analyses were provided by Argonne National Laboratory (ANL) and the assistance of William Woodruff of ANL in helping the NSCR staff to learn the proper use of the codes is gratefully acknowledged. The codes applied in the LEU analyses were WIMSd4/m, DIF3D, NCTRIGA and PARET. These codes allowed full three dimensional, temperature and burnup dependent calculations modelling the NSCR core to be performed for the first time. In addition, temperature coefficients of reactivity and pulsing calculations were carried out in-house, whereas in the past this modelling had been performed at General Atomic. In order to benchmark the newly acquired codes, modelling of the current NSCR core with highly enriched uranium fuel was also carried out. Calculated results were compared to both earlier licensing calculations and experimental data and the new methods were found to achieve excellent agreement with both. Therefore, even if an LEU core is never loaded at the NSCR, this project has resulted in a significant improvement in the nuclear safety analysis capabilities established and maintained at the NSCR.

  19. Preshot Calculations for a Small-Scale HE Experiment. Overview and Results for Symmetric Configurations

    SciTech Connect (OSTI)

    Holmes, Richard L.

    2015-05-27

    Explosively-driven magnetic flux compression generators create substantial currents (10s of mega-amps) by compressing magnetic fields initially created by injected seed currents. In a Ranchero generator it is the field between two cylinders of aluminum that is compressed when the inner cylinder (armature) is driven across the magnetized gap toward the second cylinder (stator) [1]. All Rancheros to date have used the explosive PBXN-110, but future devices are expected to use PBX-9501 because of several advantages of the latter over the former. For Ranchero applications, though, a potentially important disadvantage stems from the requirement that the large PBX-9501 charges (15 to 50 kg) must built up from smaller machined pieces rather than cast into the appropriate shape as with PBXN-110. Calculations [2] and related experiments [3] raise the possibility that jetting may occur at gaps between machined pieces of PBX-9501 and lead to localized failure of the soft aluminum armature causing premature contact of the armature with the stator or, in the most extreme case, a severing of the armature into separate pieces and a subsequent loss of current. A set of small-scale experiments has been designed to provide Ranchero designers and users insight into the effects of gaps and also to provide useful data for the validation of Ranchero calculations. These experiments should be executed in early May 2015. The code Rage [4] was used to model the small-scale experiment and this paper presents the results. The emphasis here is on the calculations and the experimental details are limited, so the interested reader is referred to reference 5 for a fuller description of the experimental configuration and diagnostics. Less-interested readers may be interested in only a summary of results and are directed to the Summary of key results section later in this paper.

  20. CCSD(T) calculations of stabilities and properties of confined systems

    SciTech Connect (OSTI)

    Holka, F.; Urban, M.; Melicherčík, M.; Neogrády, P.; Paldus, J.

    2015-01-22

    We analyze energies, electron affinities and polarizabilities of small anions exposed to an external confinement. The second electron in free O{sup 2−} and S{sup 2−} anions is unbound. We investigate the stabilizing effect of the spherical harmonic-oscillator confining potential ω. on these anions employing the Hartree-Fock stability analysis as introduced by Čížek and Paldus. With increasing strength of the external harmonic-oscillator confinement potential ω the broken symmetry (BS) solutions are systematically eliminated. For ω larger than 0.1 all BS solutions for O{sup 2−} disappear. For ω larger than 0.13 the CCSD(T) energy of O{sup 2−} becomes more negative than the energy of the singly charged O{sup −} anion. We relate the harmonic-oscillator confining potential to a crystalline environment in which the O{sup 2−} and S{sup 2−} anions are stable. We also present a model allowing calculations of the in-crystal polarizabilities of anions. The model is based on CCSD(T) calculations of static polarizabilities of selected anions exposed to the spherical harmonic-oscillator confining potential ω This artificial confinement potential ω is then related to the ionic radii of the cation in representative crystal lattices. We investigate the polarizability of O{sup 2−} and S{sup 2−} anions in MgO, MgS, CaO, CaS, SrO, SrS, BaO and BaS crystals. We compare our results with alternative models for in-crystal polarizabilities. External confinement also stabilizes the uracil anion U{sup −}, as is shown by calculations with a stepwise micro-hydration of U{sup −}. Upon hydration is the CCSD(T) adiabatic electron affinity (AEA) of uracil enhanced by about 250 up to 570 meV in comparison with AEA of the isolated molecule, depending on the geometry of the hydrated uracil anion complex. We tried to find an analogy of the stabilization effect of the external confinement on the otherwise unstable anions. In uracil and its anion is the external confinement represented by the polarized continuum solvation model with dielectric constant as a variational parameter. The physical behavior of ions exposed to an artificial external, spherical harmonic-oscillator confining potential ω, the environment represented by a crystal structure and the confinement represented by the solvent, all have considerable stabilizing effect on the otherwise unstable free anion.