National Library of Energy BETA

Sample records for lean burn powertrain

  1. Vehicle Technologies Office Merit Review 2015: Next-generation Ultra-Lean Burn Powertrain

    Broader source: Energy.gov [DOE]

    Presentation given by MAHLE Powertrain LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next-generation ultra...

  2. Vehicle Technologies Office Merit Review 2014: Next-Generation Ultra Lean Burn Powertrain

    Broader source: Energy.gov [DOE]

    Presentation given by MAHLE Powertrain, LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next-generation ultra...

  3. The hybrid rich-burn/lean burn engine. Part 2

    SciTech Connect (OSTI)

    Smith, J.A.; Podnar, D.; Meyers, D.P.

    1996-12-31

    Southwest Research Institute (SwRI) has developed a unique engine technology called Hybrid Rich-Burn/Lean-Burn (HRBLB) that capitalizes on the low production of oxides of nitrogen (NO{sub x}) during extremely rich and lean combustion. The HRBLB concept is predicated on simultaneous combustion of extremely rich and lean natural gas-air mixtures in separate cylinders. Rich exhaust products undergo a catalytic water-gas shift reaction to form an intermediate combustible fuel composed of carbon monoxide, water vapor, hydrogen, and carbon dioxide. All of the intermediate fuel is added to lean natural gas-air mixtures in other cylinders to enhance ignitability that would otherwise result in misfire. This paper presents results obtained during the development of a stationary, turbocharged, and intercooled, 18-liter HRBLB engine. Results show that NO{sub x} can be reduced by a factor of 2.5 to 3.5 relative to stock engine emissions at equivalent efficiency. The HRBLB engine has demonstrated corrected NO{sub x} (15% O{sub 2}) levels of 23 ppm at rated load with thermal efficiencies of 35%.

  4. Next-generation Ultra-Lean Burn Powertrain

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI Aftertreatment System Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI Aftertreatment System Lean-burn SIDI ...

  6. DoE Optimally Controlled Flexible Fuel Powertrain System | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ft_11_kilmurray.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Next-generation Ultra-Lean Burn Powertrain Next-generation Ultra-Lean Burn Powertrain E85 Optimized Engine through Boosting, Spray Optimized GDi, VCR and Variable Valvetrain

  7. Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology

    SciTech Connect (OSTI)

    McGill, R.N.

    1998-08-04

    Lean-burn engines offer the potential for significant fuel economy improvements in cars and trucks, perhaps the next great breakthrough in automotive technology that will enable greater savings in imported petroleum. The development of lean-burn engines, however, has been an elusive goal among automakers because of the emissions challenges associated with lead-burn engine technology. Presently, cars operate with sophisticated emissions control systems that require the engine's air-fuel ratio to be carefully controlled around the stoichiometric point (chemically correct mixture). Catalysts in these systems are called "three-way" catalysts because they can reduce hydrocarbon, carbon monoxide, and nitrogen oxide emissions simultaneously, but only because of the tight control of the air-fuel ratio. The purpose of this cooperative effort is to develop advanced catalyst systems, materials, and necessary engine control algorithms for reducing NOX emissions in oxygen-rich automotive exhaust (as with lean-burn engine technology) to meet current and near-future mandated Clean Air Act standards. These developments will represent a breakthrough in both emission control technology and automobile efficiency. The total project is a joint effort among five national laboratories, together with US CAR. The role of Lockheed-Martin Energy Systems in the total project is two fold: characterization of catalyst performance through laboratory evaluations from bench-scale flow reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

  8. Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI

    Broader source: Energy.gov (indexed) [DOE]

    Aftertreatment System | Department of Energy Lean-burn SIDI engine technology offers improved fuel economy. PDF icon deer10_viola.pdf More Documents & Publications Emissions Control for Lean Gasoline Engines NH3 generation over commercial Three-Way Catalysts and Lean-NOx Traps Emissions Control for Lean Gasoline Engines

  9. Advanced Lean-Burn DI Spark Ignition Fuels Research | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ft_06_sjoberg.pdf More Documents & Publications HCCI and Stratified-Charge CI Engine Combustion Research Advanced Lean-Burn DI Spark Ignition Fuels Research Advanced Lean-Burn DI Spark Ignition

  10. Exhaust gas purification system for lean burn engine

    DOE Patents [OSTI]

    Haines, Leland Milburn

    2002-02-19

    An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

  11. Vehicle Technologies Office Merit Review 2015: Advanced Lean-Burn DI Spark Ignition Fuels Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about advanced lean-burn...

  12. Apparatus and method for burning a lean, premixed fuel/air mixture with low NOx emission

    DOE Patents [OSTI]

    Kostiuk, Larry W.; Cheng, Robert K.

    1996-01-01

    An apparatus for enabling a burner to stably burn a lean fuel/air mixture. The burner directs the lean fuel/air mixture in a stream. The apparatus comprises an annular flame stabilizer; and a device for mounting the flame stabilizer in the fuel/air mixture stream. The burner may include a body having an internal bore, in which case, the annular flame stabilizer is shaped to conform to the cross-sectional shape of the bore, is spaced from the bore by a distance greater than about 0.5 mm, and the mounting device mounts the flame stabilizer in the bore. An apparatus for burning a gaseous fuel with low NOx emissions comprises a device for premixing air with the fuel to provide a lean fuel/air mixture; a nozzle having an internal bore through which the lean fuel/air mixture passes in a stream; and a flame stabilizer mounted in the stream of the lean fuel/air mixture. The flame stabilizer may be mounted in the internal bore, in which case, it is shaped and is spaced from the bore as just described. In a method of burning a lean fuel/air mixture, a lean fuel/air mixture is provided, and is directed in a stream; an annular eddy is created in the stream of the lean fuel/air mixture; and the lean fuel/air mixture is ignited at the eddy.

  13. Passive Ammonia SCR for Lean Burn SIDI Engines

    Broader source: Energy.gov [DOE]

    Passive NH3 SCR has been demonstrated as a high efficiency and low cost alternative lean NOx aftertreatment technology for stratified gasoline engines.

  14. Method and apparatus for controlling fuel/air mixture in a lean burn engine

    DOE Patents [OSTI]

    Kubesh, John Thomas; Dodge, Lee Gene; Podnar, Daniel James

    1998-04-07

    The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

  15. Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Characterized particulate emissions from U.S.-legal stoichiometric GDI and European certified lean-burn GDI vehicles operating on ethanol blends PDF icon deer11_storey.pdf More Documents & Publications Measurement and Characterization of Unregulated Emissions from Advanced Technologies Measurement and Characterization of Unregulated Emissions from Advanced Technologies Measurement and Characterization of Unregulated Emissions from Advanced Technologies

  16. Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel

    DOE Patents [OSTI]

    Steele, Robert C.; Edmonds, Ryan G.; Williams, Joseph T.; Baldwin, Stephen P.

    2009-10-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  17. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    DOE Patents [OSTI]

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  18. A Hypothetical Burning-Velocity Formula for Very Lean Hydrogen-Air Mixtures

    SciTech Connect (OSTI)

    Williams, Forman; Williams, Forman A; Grcar, Joseph F

    2008-06-30

    Very lean hydrogen-air mixtures experience strong diffusive-thermal types of cellular instabilities that tend to increase the laminar burning velocity above the value that applies to steady, planar laminar flames that are homogeneous in transverse directions. Flame balls constitute an extreme limit of evolution of cellular flames. To account qualitatively for the ultimate effect of diffusive-thermal instability, a model is proposed in which the flame is a steadily propagating, planar, hexagonal, close-packed array of flame balls, each burning as if it were an isolated, stationary, ideal flame ball in an infinite, quiescent atmosphere. An expression for the laminar burning velocity is derived from this model, which theoretically may provide an upper limit for the experimental burning velocity.

  19. Fast-regenerable sulfur dioxide absorbents for lean-burn diesel engine emission control

    SciTech Connect (OSTI)

    Li, Liyu; King, David L.

    2010-01-23

    It is known that sulfur oxides contribute significantly and deleteriously to the overall performance of lean-burn diesel engine aftertreatment systems, especially in the case of NOx traps. A Ag-based, fast regenerable SO2 absorbent has been developed and will be described. Over a temperature range of 300oC to 550oC, it absorbs almost all of the SO2 in the simulated exhaust gases during the lean cycles and can be fully regenerated by the short rich cycles at the same temperature. Its composition has been optimized as 1 wt% Pt-5wt%Ag-SiO2, and the preferred silica source for the supporting material has been identified as inert Cabosil fumed silica. The thermal instability of Ag2O under fuel-lean conditions at 230oC and above makes it possible to fast regenerate the sulfur-loaded absorbent during the following fuel-rich cycles. Pt catalyst helps reducing Ag2SO4 during rich cycles at low temperatures. And the chemically inert fumed SiO2 support gives the absorbent long term stability. This absorbent shows great potential to work under the same lean-rich cycling conditions as those imposed on the NOx traps, and thus, can protect the downstream particulate filter and the NOx trap from sulfur poisoning.

  20. SELECTIVE NOx RECIRCULATION FOR STATIONARY LEAN-BURN NATURAL GAS ENGINES

    SciTech Connect (OSTI)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Chamila Tissera; Matt Swartz; Emre Tatli; Ramprabhu Vellaisamy

    2005-01-01

    The research program conducted at the West Virginia University Engine and Emissions Research Laboratory (EERL) is working towards the verification and optimization of an approach to remove nitric oxides from the exhaust gas of lean burn natural gas engines. This project was sponsored by the US Department of Energy, National Energy Technology Laboratory (NETL) under contract number: DE-FC26-02NT41608. Selective NOx Recirculation (SNR) involves three main steps. First, NOx is adsorbed from the exhaust stream, followed by periodic desorption from the aftertreatment medium. Finally the desorbed NOx is passed back into the intake air stream and fed into the engine, where a percentage of the NOx is decomposed. This reporting period focuses on the NOx decomposition capability in the combustion process. Although researchers have demonstrated NOx reduction with SNR in other contexts, the proposed program is needed to further understand the process as it applies to lean burn natural gas engines. SNR is in support of the Department of Energy goal of enabling future use of environmentally acceptable reciprocating natural gas engines through NOx reduction under 0.1 g/bhp-hr. The study of decomposition of oxides of nitrogen (NOx) during combustion in the cylinder was conducted on a 1993 Cummins L10G 240 hp lean burn natural gas engine. The engine was operated at different air/fuel ratios, and at a speed of 800 rpm to mimic a larger bore engine. A full scale dilution tunnel and analyzers capable of measuring NOx, CO{sub 2}, CO, HC concentrations were used to characterize the exhaust gas. Commercially available nitric oxide (NO) was used to mimic the NOx stream from the desorption process through a mass flow controller and an injection nozzle. The same quantity of NOx was injected into the intake and exhaust line of the engine for 20 seconds at various steady state engine operating points. NOx decomposition rates were obtained by averaging the peak values at each set point minus the baseline and finding the ratio between the injected NO amounts. It was observed that the air/fuel ratio, injected NO quantity and engine operating points affected the NOx decomposition rates of the natural gas engine. A highest NOx decomposition rate of 27% was measured from this engine. A separate exploratory tests conducted with a gasoline engine with a low air/fuel ratio yielded results that suggested, that high NOx decomposition rates may be possible if a normally lean burn engine were operated at conditions closer to stoichiometric, with high exhaust gas recirculation (EGR) for a brief period of time during the NOx decomposition phase and with a wider range of air/fuel ratios. Chemical kinetic model predictions using CHEMKIN were performed to relate the experimental data with the established rate and equilibrium models. NOx decomposition rates from 35% to 42% were estimated using the CHEMKIN software. This provided insight on how to maximize NOx decomposition rates for a large bore engine. In the future, the modeling will be used to examine the effect of higher NO{sub 2}/NO ratios that are associated with lower speed and larger bore lean burn operation.

  1. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect (OSTI)

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions, with added EGR to prevent preignition. It was observed that the relative air/fuel ratio, injected NO quantity, added EGR fraction, and engine operating points affected the NO decomposition rates. While operating under these modified conditions, the highest NO decomposition rate of 92% was observed. In-cylinder pressure data gathered during the experiments showed minimum deviation from peak pressure as a result of NO injections into the engine. A NOx adsorption system, from Sorbent Technologies, Inc., was integrated with the Cummins engine, comprised a NOx adsorbent chamber, heat exchanger, demister, and a hot air blower. Data were gathered to show the possibility of NOx adsorption from the engine exhaust, and desorption of NOx from the sorbent material. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a benchtop adsorption system was constructed. The temperature of this apparatus was controlled while data were gathered on the characteristics of the sorbent material for development of a system model. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passed over fresh sorbent material. A mass heat transfer analysis was conducted to analyze the possibility of using hot exhaust gas for the desorption process. It was found in the adsorption studies, and through literature review, that NO adsorption was poor when the carrier gas was nitrogen, but that NO in the presence of oxygen was adsorbed at levels exceeding 1% by mass of the sorbent. From the three experimental campaigns, chemical kinetic modeling analysis, and the scaled benchtop NOx adsorption system, an overall SNR system model was developed. An economic analysis was completed, and showed that the system was impractical in cost for small engines, but that economies of scale favored the technology.

  2. Vehicle Technologies Office 2013 Merit Review: A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines

    Broader source: Energy.gov [DOE]

    A presentation given by the University of Michigan at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a university consortium to research efficient and clean high-pressure lean burn engines.

  3. Predictive powertrain control using powertrain history and GPS data

    DOE Patents [OSTI]

    Weslati, Feisel; Krupadanam, Ashish A

    2015-03-03

    A method and powertrain apparatus that predicts a route of travel for a vehicle and uses historical powertrain loads and speeds for the predicted route of travel to optimize at least one powertrain operation for the vehicle.

  4. Vehicle Technologies Office Merit Review 2014: Advanced Lean-Burn DI Spark Ignition Fuels Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced lean...

  5. Lean-burn hydrogen spark-ignited engines: the mechanical equivalent to the fuel cell

    SciTech Connect (OSTI)

    Aceves, S.M.; Smith, J.R.

    1996-10-01

    Fuel cells are considered as the ideal power source for future vehicles, due to their high efficiency and low emissions. However, extensive use of fuel cells in light-duty vehicles is likely to be years away, due to their high manufacturing cost. Hydrogen-fueled, spark-ignited, homogeneous-charge engines offer a near-term alternative to fuel cells. Hydrogen in a spark-ignited engine can be burned at very low equivalence ratios, so that NO[sub x] emissions can be reduced to less than 10 ppm without catalyst. HC and CO emissions may result from oxidation of engine oil, but by proper design are negligible (a few ppm). Lean operation also results in increased indicated efficiency due to the thermodynamic properties of the gaseous mixture contained in the cylinder. The high effective octane number of hydrogen allows the use of a high compression ratio, further increasing engine efficiency. In this paper, a simplified engine model is used for predicting hydrogen engine efficiency and emissions. The model uses basic thermodynamic equations for the compression and expansion processes, along with an empirical correlation for heat transfer, to predict engine indicated efficiency. A friction correlation and a supercharger/turbocharger model are then used to calculate brake thermal efficiency. The model is validated with many 1345 experimental points obtained in a recent evaluation of a hydrogen research engine. The experimental data are used to adjust the empirical constants in the heat release rate and heat transfer correlation. The adjusted engine model predicts pressure traces, indicated efficiency and NO,, emissions with good accuracy over the range of speed, equivalence ratio and manifold pressure experimentally covered.

  6. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect (OSTI)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

    2005-12-28

    Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine. Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer review meeting at Argonne National Laboratories, in-cylinder pressure was measured to calculate engine indicated mean effective pressure (IMEP) changes due to NOx injections and EGR variations, and to observe conditions in the cylinder. The third experimental campaign gathered NOx decomposition data at 800, 1200 and 1800 rpm. EGR was added via an external loop, with EGR ranging from zero to the point of misfire. The air/fuel ratio was set at both stoichiometric and slightly rich conditions, and NOx decomposition rates were calculated for each set of runs. Modifications were made to the engine exhaust manifold to record individual exhaust temperatures. The three experimental campaigns have provided the data needed for a comprehensive model of NOx decomposition during the combustion process, and data have confirmed that there was no significant impact of injected NO on in-cylinder pressure. The NOx adsorption system provided by Sorbent Technologies Corp. (Twinsburg, OH), comprised a NOx adsorber, heat exchanger and a demister. These components were connected to the engine, and data were gathered to show both the adsorption of NOx from the engine, and desorption of NOx from the carbon-based sorbent material back into the engine intake, using a heated air stream. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a bench top adsorption system was constructed and instrumented with thermocouples and the system output was fed into a NOx analyzer. The temperature of this apparatus was controlled while gathering data on the characteristics of the sorbent material. These data were required for development of a system model. Preliminary data were gathered in 2005, and will continue in early 2006. To assess the economic benefits of the proposed SNR technology the WVU research team has been joined in the last quarter by Dr Richard Turton (WVU-Chemical Engineering), who is modeling, sizing and costing the major components. The tasks will address modeling and preliminary design of the heat exchanger, demister and NOx sorbent chamber s

  7. Hybrid powertrain controller

    DOE Patents [OSTI]

    Jankovic, Miroslava; Powell, Barry Kay

    2000-12-26

    A hybrid powertrain for a vehicle comprising a diesel engine and an electric motor in a parallel arrangement with a multiple ratio transmission located on the torque output side of the diesel engine, final drive gearing connecting drivably the output shaft of transmission to traction wheels of the vehicle, and an electric motor drivably coupled to the final drive gearing. A powertrain controller schedules fuel delivered to the diesel engine and effects a split of the total power available, a portion of the power being delivered by the diesel and the balance of the power being delivered by the motor. A shifting schedule for the multiple ratio transmission makes it possible for establishing a proportional relationship between accelerator pedal movement and torque desired at the wheels. The control strategy for the powertrain maintains drivability of the vehicle that resembles drivability of a conventional spark ignition vehicle engine powertrain while achieving improved fuel efficiency and low exhaust gas emissions.

  8. Application of charge stratification, lean burn combustion systems and anti-knock control devices in small two-stroke cycle gasoline engines

    SciTech Connect (OSTI)

    Kuentscher, V.

    1986-01-01

    For essentially reducing the specific fuel consumption in two-stroke cycle engines and the concentration of hydrocarbons (HC) in the exhaust gas, the normal engine was equipped with a new ram tuned fuel injection system. By the application of charge stratification, lean burn combustion, different ignition systems and a special anti-knock device, considerable fuel consumption and HC emission reductions were obtained.

  9. Hybrid powertrain system

    DOE Patents [OSTI]

    Hughes, Douglas A.

    2006-08-01

    A powertrain system is provided that includes a first prime mover and change-gear transmission having a first input shaft and a second input shaft. A twin clutch is disposed between the first prime mover and the transmission. The twin clutch includes a first main clutch positioned between the first prime mover and the first input shaft and a second main clutch positioned between the first prime mover and the second input shaft. The powertrain system also includes a second prime mover operably connected to one of the first and second input shafts.

  10. Hybrid powertrain system

    DOE Patents [OSTI]

    Hughes, Douglas A. (Wixom, MI)

    2007-09-25

    A powertrain system is provided that includes a first prime mover and change-gear transmission having a first input shaft and a second input shaft. A twin clutch is disposed between the first prime mover and the transmission. The twin clutch includes a first main clutch positioned between the first prime mover and the first input shaft and a second main clutch positioned between the first prime mover and the second input shaft. The powertrain system also includes a second prime mover operably connected to one of the first and second input shafts.

  11. Lean-Burn Stationary Natural Gas Reciprocating Engine Operation with a Prototype Miniature Diode Side Pumped Passively Q-switched Laser Spark Plug

    SciTech Connect (OSTI)

    McIntyre, D.L.; Woodruff, S.D.; McMillian, M.H.; Richardson, S.W.; Gautam, Mridul

    2008-04-01

    To meet the ignition system needs of large bore lean burn stationary natural gas engines a laser diode side pumped passively Q-switched laser igniter was developed and used to ignite lean mixtures in a single cylinder research engine. The laser design was produced from previous work. The in-cylinder conditions and exhaust emissions produced by the miniaturized laser were compared to that produced by a laboratory scale commercial laser system used in prior engine testing. The miniaturized laser design as well as the combustion and emissions data for both laser systems was compared and discussed. It was determined that the two laser systems produced virtually identical combustion and emissions data.

  12. Comparison of emissions and efficiency of a turbocharged lean-burn natural gas and Hythane-fueled engine

    SciTech Connect (OSTI)

    Larsen, J.F.; Wallace, J.S.

    1997-01-01

    An experiment was conducted to evaluate the potential for reduced exhaust emissions and improved efficiency, by way of lean-burn engine fueling with hydrogen supplemented natural gas (Hythane). The emissions and efficiency of the Hythane fuel (15% hydrogen, 85% natural gas by volume), were compared to the emissions and efficiency of pure natural gas using a turbocharged, spark ignition, 3.1 L, V-6 engine. The feasibility of heavy duty engine fueling with Hythane was assessed through testing conducted at engine speed and load combinations typical of heavy-duty engine operation. Comparison of the efficiency and emissions at MBT spark timing revealed that Hythane fueling of the test engine resulted in consistently lower brake specific energy consumption and emissions of total hydrocarbons (THC), carbon monoxide (CO), and carbon dioxide (CO{sub 2}), at a given equivalence ratio. There was no clear trend with respect to MBT oxides of nitrogen (NO{sub x}) emissions. It was also discovered that an improved NO{sub x}-THC tradeoff resulted when Hythane was used to fuel the test engine. Consequently, Hythane engine operating parameters can be adjusted to achieve a concurrent reduction in NO{sub x} and THC emissions relative to natural gas fueling.

  13. System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines

    SciTech Connect (OSTI)

    Shahrokh Etemad; Lance Smith; Kevin Burns

    2004-12-01

    Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

  14. Powertrain Trends and Future Potential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Trends and Future Potential * Global Trends - Fighting Global Warming * Clean Diesel - Neglected in the U.S. for Too Long Agenda DSNE-NA | August 4, 2009 | Robert ...

  15. Hybrid powertrain system

    DOE Patents [OSTI]

    Grillo, Ricardo C.; O'Neil, Walter K.; Preston, David M.

    2005-09-20

    A hybrid powertrain system is provided that includes a first prime mover having a rotational output, a second prime mover having a rotational output, and a transmission having a main shaft supporting at least two main shaft gears thereon. The transmission includes a first independent countershaft drivingly connected to the first prime mover and including at least one ratio gear supported thereon that meshes with a respective main shaft gear. A second independent countershaft is drivingly connected to the second prime mover and includes at least one ratio gear supported thereon that meshes with a respective main shaft gear. The ratio gears on the first and second countershafts cooperate with the main shaft gears to provide at least one gear ratio between the first and second countershafts and the main shaft. A shift control mechanism selectively engages and disengages the first and second countershafts for rotation with the main shaft.

  16. SLH Timing Belt Powertrain

    SciTech Connect (OSTI)

    Schneider, Abe

    2014-04-09

    The main goal of this proposal was to develop and test a novel powertrain solution for the SLH hydroEngine—, a low-cost, efficient low-head hydropower technology. Nearly two-thirds of U.S. renewable electricity is produced by hydropower (EIA 2010). According to the U.S. Department of Energy; this amount could be increased by 50% with small hydropower plants, often using already-existing dams (Hall 2004). There are more than 80,000 existing dams, and of these, less than 4% generate power (Blankinship 2009). In addition, there are over 800 irrigation districts in the U.S., many with multiple, non-power, low-head drops. These existing, non-power dams and irrigation drops could be retrofitted to produce distributed, baseload, renewable energy with appropriate technology. The problem is that most existing dams are low-head, or less than 30 feet in height (Ragon 2009). Only about 2% of the available low-head hydropower resource in the U.S. has been developed, leaving more than 70 GW of annual mean potential low-head capacity untapped (Hall 2004). Natel Energy, Inc. is developing a low-head hydropower turbine that operates efficiently at heads less than 6 meters and is cost-effective for deployment across multiple low-head structures. Because of the unique racetrack-like path taken by the prime-movers in the SLH, a flexible powertrain is required. Historically, the only viable technological solution was roller chain. Despite the having the ability to easily attach blades, roller chain is characterized by significant drawbacks, including high cost, wear, and vibration from chordal action. Advanced carbon-#12;fiber-reinforced timing belts have been recently developed which, coupled with a novel belt attachment system developed by Natel Energy, result in a large reduction in moving parts, reduced mass and cost, and elimination of chordal action for increased fatigue life. The work done in this project affirmatively addressed each of the following 3 major uncertainties concerning a timing-belt based hydroEngine —powertrain: 1. Can a belt handle the high torques and power loads demanded by the SLH? (Yes.) 2. Can the SLH blades be mounted to belt with a connection that can withstand the loads encountered in operation? (Yes.) 3. Can the belt, with blade attachments, live through the required cyclic loading? (Yes.) The research adds to the general understanding of sustainable small hydropower systems by using innovative system testing to develop and demonstrate performance of a novel powertrain solution, enabling a new type of hydroelectric turbine to be commercially developed. The technical effectiveness of the methods investigated has been shown to be positive through an extensive design and testing process accommodating many constraints and goals, with a major emphasis on high cycle fatigue life. Economic feasibility of the innovations has been demonstrated through many iterations of design for manufacturability and cost reduction. The project is of benefit to the public because it has helped to develop a solution to a major problem -- despite the large available potential for new low-head hydropower, high capital costs and high levelized cost of electricity (LCOE) continue to be major barriers to project development. The hydroEngine— represents a significant innovation, leveraging novel fluid mechanics and mechanical configuration to allow lower-cost turbine manufacture and development of low head hydropower resources.

  17. Kettering University Center for Fuel Cell Systems Powertrain...

    Open Energy Info (EERE)

    Kettering University Center for Fuel Cell Systems Powertrain Integration Jump to: navigation, search Name: Kettering University - Center for Fuel Cell Systems & Powertrain...

  18. Shanghai Fuel Cell Vehicle Powertrain Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cell Vehicle Powertrain Co Ltd Jump to: navigation, search Name: Shanghai Fuel Cell Vehicle Powertrain Co Ltd Place: Shanghai Municipality, China Sector: Vehicles Product: A...

  19. Advanced Powertrain Research Facility Vehicle Test Cell Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

  20. AVL Powertrain Engineering | Open Energy Information

    Open Energy Info (EERE)

    successadvisor.html AVL Powertrain Engineering is a company located in Detroit, MI. References "AVL" Retrieved from "http:en.openei.orgw...

  1. Bosch Powertrain Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bosch Powertrain Technologies Provides major supplier view of future gasoline engine ... Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty ...

  2. Method for controlling powertrain pumps

    SciTech Connect (OSTI)

    Sime, Karl Andrew; Spohn, Brian L; Demirovic, Besim; Martini, Ryan D; Miller, Jean Marie

    2013-10-22

    A method of controlling a pump supplying a fluid to a transmission includes sensing a requested power and an excess power for a powertrain. The requested power substantially meets the needs of the powertrain, while the excess power is not part of the requested power. The method includes sensing a triggering condition in response to the ability to convert the excess power into heat in the transmission, and determining that an operating temperature of the transmission is below a maximum. The method also includes determining a calibrated baseline and a dissipation command for the pump. The calibrated baseline command is configured to supply the fluid based upon the requested power, and the dissipation command is configured to supply additional fluid and consume the excess power with the pump. The method operates the pump at a combined command, which is equal to the calibrated baseline command plus the dissipation command.

  3. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema (OSTI)

    None

    2014-06-25

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  4. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    SciTech Connect (OSTI)

    2014-04-15

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  5. An investigation into the reactivity, deactivation, and in situ regeneration of Pt-based catalysts for the selective reduction of NO{sub x} under lean burn conditions

    SciTech Connect (OSTI)

    Burch, R.; Fornasiero, P.; Southward, B.W.L.

    1999-02-15

    The activity and deactivation characteristics of Pt-based lean burn De-NO{sub x} catalysts have been investigated and the relationships between temperature, nature of reductant (n-octane) and NO{sub 2} concentrations, and the mechanism(s) of deactivation have been examined. The effects of Pt loading and particle size on the activity and deactivation have also been studied. The results show that deactivation of the catalyst is due to site blocking via an unidentified carbonaceous deposit and that the initial surface state of the Pt is crucial. In all cases clean Pt surfaces were found to display an initial period of surprisingly high activity prior to deactivation, the rate of which was inversely related to reaction temperature. Deactivation is proposed to arise from a combination of factors which inhibit adsorption and reaction of n-octane, due to encroachment onto the Pt surface of hydrocarbonaceous species accumulating initially on the support in the vicinity of the Pt/support interface. It is possible that these carbon-containing deposits comprise some form of organonitrogen species. The loss of activity due to this gradual encroachment results in a reduction in the temperature of the Pt particles, leading to a further decrease in reaction and/or desorption rates, and rapid deactivation then ensues. The use of higher Pt loadings leads to enhanced activity at lower temperatures and increased tolerance to the deactivating effects of surface deposition. Catalyst activity and tolerance to deactivation were further enhanced by controlled sintering, which, within certain limits, resulted in excellent, stable low-temperature De-NO{sub x} activity.

  6. Impact of operating parameters changing on energy, environment and economic efficiencies of a lean burn gas engine used in a cogeneration plant

    SciTech Connect (OSTI)

    Lemoult, B.; Tazerout, M.; Rousseau, S.

    1998-07-01

    The facts that national electrical company Electricite de France (EDF) has a monopoly on electrical power production in France and an extensive installed base of nuclear power plants, explain the difficulty encountered in developing cogeneration technology in France. Cogeneration only really first appeared in this country in the early 1990's, with the liberalization of energy markets and the government's encouragement. Since then, the number of cogeneration plants has continuously increased and electrical generating capacity is now approximately 1,200 MWe. Turbine and reciprocating engines (most of which are natural gas fired) account respectively for about 55% and 45% of the installed power. Unlike other countries, such as Germany--which has about two thousand 500 kWe and smaller units--the future of low-power cogeneration in France is far from assured, and there are currently less than 10 such plants. To help develop this efficient technology for producing electrical power and hot water, the Ecole des Mines de Nantes purchased a 210 kWe cogeneration generator set in 1996. This facility provides all or part of the school's electrical and heat requirements during five months between November and March. This cogeneration facility is also used during the rest of the year to perform research experiments in the field of lean-burn natural gas combustion. Lastly, it is also used to provide training for industry in cogeneration technology. Within this context, work was undertaken to study the set's energy and emissions performance, in relation to such parameters as spark advance and air factor, and at various loads.

  7. Advanced Powertrain Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Powertrain Research Facility Argonne's Advanced Powertrain Research Facility (APRF) enables researchers to conduct vehicle benchmarking and testing activities that provide data critical to the development and commercialization of next-generation vehicles. APRF engineers use the facility's two-wheel drive (2WD) and four-wheel drive (4WD) dynamometers and state-of-the-art instrumentation to reveal important information on performance, fuel economy, energy consumption and emissions output.

  8. Understanding the Distributed Intra-Catalyst Impact of Sulfation on Water Gas Shift in a Lean NOx Trap Catalyst

    Broader source: Energy.gov [DOE]

    The Lean NOx Trap catalyst is an aftertreatment technology for abatement of nitrogen-oxide emissions from lean-burn vehicle engines.

  9. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4 ...

  10. Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy AVL Powertrain Engineering, Inc. Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. Joined the Challenge: March 2013 Headquarters: Plymouth, MI Charging Locations: Plymouth, MI; Ann Arbor, MI; Lake Forest, CA Domestic Employees: 525 Founded in 1948, AVL provides advanced powertrain engineering services and a broad range of testing technology for the development of internal

  11. Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2) * Innovative engine architectures * Alternative combustion cycles * Fueling Optimization * Demonstrate in Simulation and Single Cylinder Scoping 50% BTE Powertrain...

  12. Method of converting an existing vehicle powertrain to a hybrid powertrain system

    DOE Patents [OSTI]

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    2001-12-25

    A method of converting an existing vehicle powertrain including a manual transmission to a hybrid powertrain system with an automated powertrain transmission. The first step in the method of attaching a gear train housing to a housing of said manual transmission, said gear train housing receiving as end of drive shaft of said transmission and rotatably supporting a gear train assembly. Secondly, mounting an electric motor/generator to said gear train housing and attaching a motor/generator drive shaft of said electric motor/generator to said gear train assembly. Lastly, connecting an electro-mechanical clutch actuator to a friction clutch mechanism of said manual transmission.

  13. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  14. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  15. Fact #883 July 27, 2015 Hybrid Powertrains are More Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 July 27, 2015 Hybrid Powertrains are More Efficient than Conventional Counterparts Fact ... Many cars have a fuel economy advantage over light trucks due to weight and aerodynamics, ...

  16. Heavy-Duty Powertrain and Vehicle Development - A Look Toward...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Powertrain and Vehicle Development - A Look Toward 2020 Globalization in emissions regulation will be driving freight efficiency improvements and will require heavy-duty ...

  17. Advanced Methods Approach to Hybrid Powertrain Systems Optimization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Methods Approach to Hybrid Powertrain Systems Optimization of a Transit Bus Application Design refinements of the GTB-40 mass-transit bus include new optimization ...

  18. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect (OSTI)

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30

    A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA) developed the Renewable Fuels Standard (RFS) under the Energy Policy Act of 2005. The RFS specifies targets for the amount of renewable fuel to be blended into petroleum based transportation fuels. The goal is to blend 36 billion gallons of renewable fuels into transportation fuels by 2022 (9 billion gallons were blended in 2008). The RFS also requires that the renewable fuels emit fewer greenhouse gasses than the petroleum fuels replaced. Thus the goal of the EPA is to have a more fuel efficient national fleet, less dependent on petroleum based fuels. The limit to the implementation of certain technologies employed was the requirement to run the developed powertrain on gasoline with minimal performance degradation. The addition of ethanol to gasoline fuels improves the fuels octane rating and increases the fuels evaporative cooling. Both of these fuel property enhancements make gasoline / ethanol blends more suitable than straight gasoline for use in downsized engines or engines with increased compression ratio. The use of engine downsizing and high compression ratios as well as direct injection (DI), dual independent cam phasing, external EGR, and downspeeding were fundamental to the fuel economy improvements targeted in this project. The developed powertrain specification utilized the MAHLE DI3 gasoline downsizing research engine. It was a turbocharged, intercooled, DI engine with dual independent cam phasing utilizing a compression ratio of 11.25 : 1 and a 15% reduction in final drive ratio. When compared to a gasoline fuelled 2.2L Ecotec engine in a Chevrolet HHR, vehicle drive cycle predictions indicate that the optimized powertrain operating on E85 would result in a reduced volume based drive cycle fuel economy penalty of 6% compared to an approximately 30% penalty for current technology engines.

  19. Lean Flame Stabilization Ring - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lean Flame Stabilization Ring Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryRobert Cheng at Berkeley National Laboratory has developed a means for retrofitting existing burners to burn lean, premixed natural gas/air mixtures to reduce NOx emissions without sacrificing efficiency and burner design simplicity.DescriptionNew burner designs can also incorporate the basic principle of this device. This technology answers the needs of meeting clean

  20. CX-007613: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Next Generation Ultra Lean Burn Powertrain CX(s) Applied: A9 Date: 01/10/2012 Location(s): California Offices(s): National Energy Technology Laboratory

  1. Adaptive powertrain control for plugin hybrid electric vehicles

    DOE Patents [OSTI]

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  2. Hybrid powertrain system including smooth shifting automated transmission

    DOE Patents [OSTI]

    Beaty, Kevin D.; Nellums, Richard A.

    2006-10-24

    A powertrain system is provided that includes a prime mover and a change-gear transmission having an input, at least two gear ratios, and an output. The powertrain system also includes a power shunt configured to route power applied to the transmission by one of the input and the output to the other one of the input and the output. A transmission system and a method for facilitating shifting of a transmission system are also provided.

  3. Control system for a hybrid powertrain system

    DOE Patents [OSTI]

    Naqvi, Ali K.; Demirovic, Besim; Gupta, Pinaki; Kaminsky, Lawrence A.

    2014-09-09

    A vehicle includes a powertrain with an engine, first and second torque machines, and a hybrid transmission. A method for operating the vehicle includes operating the engine in an unfueled state, releasing an off-going clutch which when engaged effects operation of the hybrid transmission in a first continuously variable mode, and applying a friction braking torque to a wheel of the vehicle to compensate for an increase in an output torque of the hybrid transmission resulting from releasing the off-going clutch. Subsequent to releasing the off-going clutch, an oncoming clutch which when engaged effects operation of the hybrid transmission in a second continuously variable mode is synchronized. Subsequent to synchronization of the oncoming clutch, the oncoming clutch is engaged.

  4. Method and apparatus for controlling hybrid powertrain system in response to engine temperature

    DOE Patents [OSTI]

    Martini, Ryan D; Spohn, Brian L; Lehmen, Allen J; Cerbolles, Teresa L

    2014-10-07

    A method for controlling a hybrid powertrain system including an internal combustion engine includes controlling operation of the hybrid powertrain system in response to a preferred minimum coolant temperature trajectory for the internal combustion engine.

  5. Future Potential of Hybrid and Diesel Powertrains in the U.S...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market 2004 Diesel Engine ...

  6. Catalysts For Lean Burn Engine Exhaust Abatement

    DOE Patents [OSTI]

    Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.

    2004-04-06

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  7. Catalysts for lean burn engine exhaust abatement

    DOE Patents [OSTI]

    Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.

    2003-01-01

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  8. Catalysts for lean burn engine exhaust abatement

    DOE Patents [OSTI]

    Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.

    2006-08-01

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  9. European Lean Gasoline Direct Injection Vehicle Benchmark

    SciTech Connect (OSTI)

    Chambon, Paul H; Huff, Shean P; Edwards, Kevin Dean; Norman, Kevin M; Prikhodko, Vitaly Y; Thomas, John F

    2011-01-01

    Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

  10. Lean blowoff detection sensor

    DOE Patents [OSTI]

    Thornton, Jimmy; Straub, Douglas L.; Chorpening, Benjamin T.; Huckaby, David

    2007-04-03

    Apparatus and method for detecting incipient lean blowoff conditions in a lean premixed combustion nozzle of a gas turbine. A sensor near the flame detects the concentration of hydrocarbon ions and/or electrons produced by combustion and the concentration monitored as a function of time are used to indicate incipient lean blowoff conditions.

  11. Powertrain with powersplit pump input and method of use thereof

    DOE Patents [OSTI]

    Johnson, Kris W.; Rose, Charles E.

    2009-04-28

    A powertrain includes an engine operatively connected to a primary power consuming device to transmit power thereto. The powertrain also includes a motor and a pump. The power output of the motor is independent of the power output of the engine. An epicyclic geartrain includes first, second and third members. The first member is operatively connected to the engine to receive power therefrom. The second member is operatively connected to the motor to receive power therefrom. The third member is operatively connected to the pump to transmit power thereto.

  12. Thermal Simulation of Advanced Powertrain Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Under this project, the Volvo complete vehicle model was modified to include engine and exhaust system thermal outputs and cooling system to enable WHR simulations from a system perspective. PDF icon p-09_desai.pdf More Documents & Publications Impact of Vehicle Efficiency Improvements on Powertrain Design Volvo Super Truck Overview and Approach 2013 Annual Merit Review Results Report - Merit Review Attendees

  13. Vehicle Technologies Office Merit Review 2014: Powertrain Controls Optimization for Heavy Duty Line Haul Trucks

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about powertrain...

  14. Heavy-Duty Powertrain and Vehicle Development- A Look Toward 2020

    Broader source: Energy.gov [DOE]

    Globalization in emissions regulation will be driving freight efficiency improvements and will require heavy-duty engine and powertrain advancements, vehicle improvements, and optimized system integration

  15. Vehicle Technologies Office Merit Review 2015: Powertrain Controls Optimization for Heavy Duty Line Haul Trucks

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about powertrain...

  16. Impact of Vehicle Efficiency Improvements on Powertrain Design | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Explores how various chassis and complete vehicle improvements offer opportunities for energy recuperation on long-haul truck duty cycle, and how they impact powertrain requirements PDF icon deer12_mclaughlin.pdf More Documents & Publications Volvo Super Truck Overview and Approach Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight Efficiency Improvement Project

  17. USPS Lean Green Teams

    SciTech Connect (OSTI)

    2012-08-01

    Institutional change case study details the U.S. Postal Service's Lean Green Teams, which collaborate across functions to identify and implement low- and no-cost ways to conserve natural resources, purchase fewer consumable products, and reduce waste.

  18. Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration

    SciTech Connect (OSTI)

    Choi, Jae-Soon; Prikhodko, Vitaly Y; Partridge Jr, William P; Parks, II, James E; Norman, Kevin M; Huff, Shean P; Chambon, Paul H; Thomas, John F

    2010-01-01

    Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

  19. Fact #881: July 13, 2015 Powertrain Efficiency Improvements, 2005 to 2013

    Broader source: Energy.gov [DOE]

    Powertrain efficiency in a recent study was defined as the ratio of tractive work (integrated power) needed for a vehicle to complete a drive cycle divided by the fuel energy consumed. In short,...

  20. Advanced Methods Approach to Hybrid Powertrain Systems Optimization of a Transit Bus Application

    Broader source: Energy.gov [DOE]

    Design refinements of the GTB-40 mass-transit bus include new optimization processes, subsystem, and powertrain system requirements along with traction motor, battery, and APU development and integration

  1. Vehicle Technologies Office Merit Review 2014: Volvo SuperTruck- Powertrain Technologies for Efficiency Improvement

    Broader source: Energy.gov [DOE]

    Presentation given by Volvo at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Volvo SuperTruck powertrain...

  2. Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck- Powertrain Technologies for Efficiency Improvement

    Broader source: Energy.gov [DOE]

    Presentation given by Volvo at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Volvo SuperTruck - powertrain...

  3. Vehicle Technologies Office Merit Review 2015: Ultra Efficient Light Duty Powertrain with Gasoline Low Temperature Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Delphi Powertrain at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ultra efficient light duty...

  4. Hybrid vehicle powertrain system with power take-off driven vehicle accessory

    DOE Patents [OSTI]

    Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

    2006-09-12

    A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

  5. Method and apparatus for operating a powertrain system upon detecting a stuck-closed clutch

    DOE Patents [OSTI]

    Hansen, R. Anthony

    2014-02-18

    A powertrain system includes a multi-mode transmission having a plurality of torque machines. A method for controlling the powertrain system includes identifying all presently applied clutches including commanded applied clutches and the stuck-closed clutch upon detecting one of the torque-transfer clutches is in a stuck-closed condition. A closed-loop control system is employed to control operation of the multi-mode transmission accounting for all the presently applied clutches.

  6. CX-007614: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Next Generation Ultra Lean Burn Powertrain CX(s) Applied: B3.6 Date: 01/10/2012 Location(s): Michigan Offices(s): National Energy Technology Laboratory

  7. Simulation of catalytic oxidation and selective catalytic NOx reduction in lean-exhaust hybrid vehicles

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Chakravarthy, Veerathu K

    2012-01-01

    We utilize physically-based models for diesel exhaust catalytic oxidation and urea-based selective catalytic NOx reduction to study their impact on drive cycle performance of hypothetical light-duty diesel powered hybrid vehicles. The models have been implemented as highly flexible SIMULINK block modules that can be used to study multiple engine-aftertreatment system configurations. The parameters of the NOx reduction model have been adjusted to reflect the characteristics of Cu-zeolite catalysts, which are of widespread current interest. We demonstrate application of these models using the Powertrain System Analysis Toolkit (PSAT) software for vehicle simulations, along with a previously published methodology that accounts for emissions and temperature transients in the engine exhaust. Our results illustrate the potential impact of DOC and SCR interactions for lean hybrid electric and plug-in hybrid electric vehicles.

  8. Piloted rich-catalytic lean-burn hybrid combustor

    DOE Patents [OSTI]

    Newburry, Donald Maurice

    2002-01-01

    A catalytic combustor assembly which includes, an air source, a fuel delivery means, a catalytic reactor assembly, a mixing chamber, and a means for igniting a fuel/air mixture. The catalytic reactor assembly is in fluid communication with the air source and fuel delivery means and has a fuel/air plenum which is coated with a catalytic material. The fuel/air plenum has cooling air conduits passing therethrough which have an upstream end. The upstream end of the cooling conduits is in fluid communication with the air source but not the fuel delivery means.

  9. Advanced Lean-Burn DI Spark Ignition Fuels Research

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Advanced Lean-Burn DI Spark Ignition Fuels Research

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  11. Lean and Green Michigan PACE

    Broader source: Energy.gov [DOE]

    Interested property owners should start by performing an energy audit on their facilities to find the most cost effective energy improvements. Lean & Green Michigan can help customers find a ...

  12. Drive Cycle Powertrain Efficiencies and Trends Derived From EPA Vehicle Dynamometer Results

    SciTech Connect (OSTI)

    Thomas, John F

    2014-01-01

    Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine as a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.

  13. Drive Cycle Powertrain Efficiencies and Trends Derived from EPA Vehicle Dynamometer Results

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thomas, John

    2014-10-13

    Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine asmore » a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.« less

  14. Drive Cycle Powertrain Efficiencies and Trends Derived from EPA Vehicle Dynamometer Results

    SciTech Connect (OSTI)

    Thomas, John

    2014-10-13

    Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine as a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.

  15. Gas Turbine Heavy Hybrid Powertrain Variants. Opportunities and Potential for Systems Optimization

    SciTech Connect (OSTI)

    Smith, David; Chambon, Paul H.

    2015-07-01

    Widespread use of alternative hybrid powertrains is currently inevitable, and many opportunities for substantial progress remain. Hybrid electric vehicles (HEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas emissions in the transportation sector. This capability is mainly attributed to (a) the potential for downsizing the engine, (b) the potential for recovering energy during braking and thus recharging the energy storage unit, and (c) the ability to minimize the operation of the engine outside of its most efficient brake specific fuel consumption (BSFC) regime. Hybridization of the Class 8, heavy-duty (HD) powertrain is inherently challenging due to the expected long-haul driving requirements and limited opportunities for regenerative braking. The objective of this project is to develop control strategies aiming at optimizing the operation of a Class 8 HEV that features a micro-turbine as the heat engine. The micro-turbine application shows promise in fuel efficiency, even when compared to current diesel engines, and can meet regulated exhaust emissions levels with no exhaust after-treatment system. Both parallel and series HEV variants will be examined to understand the merits of each approach of the micro-turbine to MD advanced powertrain applications. These powertrain configurations enable new paradigms in operational efficiency, particularly in the Class 8 truck fleet. The successful development of these HEV variants will require a thorough technical understanding of the complex interactions between various energy sources and energy consumption components, for various operating modes. PACCAR will be integrating the first generation of their series HEV powertrain with a Brayton Energy micro-turbine into a Class 8 HD truck tractor that has both regional haul and local pick-up and delivery (P&D) components to its drive cycle. The vehicle will be deployed into fleet operation for a demonstration period of six (6) months to assess real world operating benefits of the advanced powertrain. A parallel variant of the micro-turbine powertrain will be built and sent to the ORNL Vehicle Systems Integration Laboratory.

  16. Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications

    SciTech Connect (OSTI)

    Parks, II, James E; Storey, John Morse; Theiss, Timothy J; Ponnusamy, Senthil; Ferguson, Harley Douglas; Williams, Aaron M; Tassitano, James B

    2007-09-01

    Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance is straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation, reformer, and lean NOx trap catalysts. The initial work on NOx reduction efficiency demonstrated that NOx emissions <0.1 g/bhp-hr (the ARES goal) can be achieved with the lean NOx trap catalyst technology. Subsequent work focused on cost and size optimization and durability issues which addressed two specific ARES areas of interest to industry ('Cost of Power' and 'Availability, Reliability, and Maintainability', respectively). Thus, the research addressed the approach of the lean NOx trap catalyst technology toward the ARES goals as shown in Table 1-1.

  17. Thermal Deactivation Mechanisms of Fully-Formed Lean NOx Trap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deactivation Mechanisms of Fully-Formed Lean NOx Trap Catalysts Aged by LeanRich Cycling Thermal Deactivation Mechanisms of Fully-Formed Lean NOx Trap Catalysts Aged by LeanRich ...

  18. USPS: Lean Green Teams | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USPS: Lean Green Teams USPS: Lean Green Teams Fact sheet describes a case study on the Lean Green Teams. The teams employ on-line tools including a Lean Green Team Guide, a Green Project List, and a Green Initiative Tracking Tool that tracks both leading indicators (status of project implementation) and lagging indicators (financial and environmental impacts). PDF icon ic_usps.pdf More Documents & Publications Connecting Sustainability to the Agency's Mission Driving Operational Changes

  19. Method and apparatus for controlling a powertrain system including a multi-mode transmission

    SciTech Connect (OSTI)

    Hessell, Steven M.; Morris, Robert L.; McGrogan, Sean W.; Heap, Anthony H.; Mendoza, Gil J.

    2015-09-08

    A powertrain including an engine and torque machines is configured to transfer torque through a multi-mode transmission to an output member. A method for controlling the powertrain includes employing a closed-loop speed control system to control torque commands for the torque machines in response to a desired input speed. Upon approaching a power limit of a power storage device transferring power to the torque machines, power limited torque commands are determined for the torque machines in response to the power limit and the closed-loop speed control system is employed to determine an engine torque command in response to the desired input speed and the power limited torque commands for the torque machines.

  20. Powertrain Controls Optimization for HD Hybrid Line Haul Trucks - FY2014 Annual Report

    SciTech Connect (OSTI)

    Smith, David E.

    2014-12-01

    This is a vehicle system level project, encompassing analytical modeling and supervisory controls development as well as experimental verification/validation testing at the component, powertrain, and full vehicle system level. This project supports the goal of petroleum consumption reduction for medium and heavy trucks through the development of advanced hybrid technologies and control systems. VSST has invested previously in R&D to support hybrid energy storage systems (Li-ion plus ultra-caps) for light duty, passenger car applications. This research will be extended to the MD and HD sector where current battery technology is not mature enough to handle the substantial regenerative braking power levels these trucks are capable of producing. With this hybrid energy storage system, substantial gains in overall vehicle efficiency are possible. In addition, advanced combustion technologies, such as RCCI, will be implemented into an advanced hybrid powertrain for a Class 8 line haul application. This powertrain, leveraged from other VSST work (Meritor, a current ORNL/VSST partner), is ideal for taking advantage of the benefits of RCCI operation due to its series hybrid mode of operation. Emissions control is also a focus of this project, especially due to the fact that RCCI creates a low temperature exhaust stream that must addressed.

  1. ETX-I: First generation single-shaft electric propulsion system program: Volume 1, Powertrain: Final report

    SciTech Connect (OSTI)

    Not Available

    1987-02-01

    In 1981, discussions between Ford and General Electric (GE) evolved a concept for an advanced electric vehicle powertrain. The concept involved a combination of technology from Ford and GE that would result in a unique powertrain based on a motor and transmission concentric with the drive wheel axis, a concept originally proposed for use with Wankel engines, and based on the use of a ''hermetic,'' three-phase, alternating current (ac) motor, which is currently in high volume production in the necessary horsepower range. An additional benefit of this configuration is the ability to use a single fluid for cooling of the motor and lubrication of the transaxle. This volume describes the powertrain portion of the ETX-I program.

  2. Case Study: USPS - Lean Green Teams

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Feedback * Infrastructure * Social Empowerment * Continuous Change Outcomes Lean Green ... Social Empowerment Since the projects have been scoped to be doable with limited ...

  3. McLean County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Registered Energy Companies in McLean County, Illinois State Farm Insurance Places in McLean County, Illinois Anchor, Illinois Arrowsmith, Illinois Bellflower,...

  4. A University Consortium on High Pressure, Lean Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure, Lean Combustion for Efficient and Clean IC Engines (UM - lead, MIT, UCB) A University Consortium on High Pressure, Lean Combustion for Efficient and Clean IC Engines ...

  5. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

  6. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Vehicle Technologies ...

  7. Measurement and Characterization of Lean NOx Adsorber Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Adsorber Regeneration and Desulfation and Controlling NOx from Multi-mode Measurement and Characterization of Lean NOx Adsorber Regeneration and Desulfation and ...

  8. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Presents ...

  9. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Zhiming; Finney, Charles; Daw, Charles; LaClair, Tim J.; Smith, David

    2014-09-30

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energymore » (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.« less

  10. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming; Finney, Charles; Daw, Charles; LaClair, Tim J.; Smith, David

    2014-09-30

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

  11. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming; FINNEY, Charles E A; Daw, C Stuart; LaClair, Tim J; Smith, David E

    2014-01-01

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

  12. Ammonia Generation over TWC for Passive SCR NOX Control for Lean Gasoline Engines

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A; Toops, Todd J

    2014-01-01

    A commercial three-way catalyst (TWC) was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential low cost approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. NH3 generation was evaluated at different air-fuel equivalence ratios at multiple engine speed and load conditions. Near complete conversion of NOX to NH3 was achieved at =0.96 for nearly all conditions studied. At the =0.96 condition, HC emissions were relatively minimal, but CO emissions were significant. Operation at AFRs richer than =0.96 did not provide more NH3 yield and led to higher HC and CO emissions. Results of the reductant conversion and consumption processes were used to calculate a representative fuel consumption of the engine operating with an ideal passive SCR system. The results show a 1-7% fuel economy benefit at various steady-state engine speed and load points relative to a stoichiometric engine operation.

  13. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; Chen, Jyh-Yuan; Dibble, Robert W.; Nishiyama, Atsushi; Moon, Ahsa; Ikeda, Yuji

    2012-01-01

    Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ, microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less

  14. Method and apparatus for effecting light-off of a catalytic converter in a hybrid powertrain system

    DOE Patents [OSTI]

    Roos, Bryan Nathaniel; Spohn, Brian L

    2013-07-02

    A powertrain system includes a hybrid transmission and an internal combustion engine coupled to an exhaust aftertreatment device. A method for operating the powertrain system includes operating the hybrid transmission to generate tractive torque responsive to an operator torque request with the internal combustion engine in an engine-off state so long as the tractive torque is less than a threshold. The internal combustion engine is operated in an engine-on state at preferred operating conditions to effect light-off of the exhaust aftertreatment device and the hybrid transmission is coincidentally operated to generate tractive torque responsive to the operator torque request when the operator torque request exceeds the threshold. The internal combustion engine is then operated in the engine-on state to generate tractive torque responsive to the operator torque request.

  15. Lean-NOx Catalyst Development for Diesel Engine Applications | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 2 DEER Conference Presentation: Caterpillar Inc. PDF icon 2002_deer_park.pdf More Documents & Publications Lean NOx Catalysis Research and Development Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control

  16. COMPARISON OF PARALLEL AND SERIES HYBRID POWERTRAINS FOR TRANSIT BUS APPLICATION

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Smith, David E; Jones, Perry T; LaClair, Tim J; Parks, II, James E

    2016-01-01

    The fuel economy and emissions of both conventional and hybrid buses equipped with emissions aftertreatment were evaluated via computational simulation for six representative city bus drive cycles. Both series and parallel configurations for the hybrid case were studied. The simulation results indicate that series hybrid buses have the greatest overall advantage in fuel economy. The series and parallel hybrid buses were predicted to produce similar CO and HC tailpipe emissions but were also predicted to have reduced NOx tailpipe emissions compared to the conventional bus in higher speed cycles. For the New York bus cycle (NYBC), which has the lowest average speed among the cycles evaluated, the series bus tailpipe emissions were somewhat higher than they were for the conventional bus, while the parallel hybrid bus had significantly lower tailpipe emissions. All three bus powertrains were found to require periodic active DPF regeneration to maintain PM control. Plug-in operation of series hybrid buses appears to offer significant fuel economy benefits and is easily employed due to the relatively large battery capacity that is typical of the series hybrid configuration.

  17. Effect of reductive treatments on Pt behavior and NOx storage in lean NOx trap catalysts

    SciTech Connect (OSTI)

    Wang, Xianqin; Kim, Do Heui; Kwak, Ja Hun; Wang, Chong M.; Szanyi, Janos; Peden, Charles HF

    2011-10-01

    Lean NOx trap (LNT) catalysts represent a promising approach to meet increasingly stringent NOx emission regulations on diesel and other lean-burn engines. Pt material properties, including dispersion and particle size, are known to be important factors in determining NOx uptake performance, since Pt provides active sites for NO oxidation to NO2 necessary for storing NOx as nitrates, and for the reduction of nitrates to N2. In this work, the physicochemical properties of Pt in Pt-BaO/Al2O3 LNT catalysts, such as the Pt accessible surface area and particle size, were investigated by using various tools, such as irreversible volumetric H2 chemisorption, high resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD), following successive reductive treatments at elevated temperatures. NOx uptake activities were also measured to establish a relationship between the properties of Pt and NOx storage following identical high-temperature reductive treatments. We find that the reductive treatments of Pt-BaO/Al2O3 lean NOx trap catalysts at temperatures up to 500 C promote a significant increase in NOx uptake explained, in part, by an induced close interaction between Pt and BaO phases in the catalyst, thus enabling facilitation of the NOx storage process.

  18. Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A; Toops, Todd J

    2016-01-01

    Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three-way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in the oxygen-rich exhaust. Thus, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCR approach is of interest. In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. 15% excess NH3 production over a 1:1 NH3:NOX ratio was required (via longer rich cycle timing) to achieve 99.7% NOX conversion at an SCR average inlet temperature of 350 C. Increasing NH3 generation further resulted in even higher NOX conversion; however, tailpipe NH3 emissions resulted. At higher temperatures, NH3 oxidation becomes important and limits NH3 availability for NOX reduction. At the engine conditions studied here, greater than 99% NOX conversion was achieved with passive SCR while delivering fuel efficiency benefits ranging between 6-11% compared with stoichiometric operation.

  19. Effects of radiation and compression on propagating spherical flames of methane/air mixtures near the lean flammability limit

    SciTech Connect (OSTI)

    Chen, Zheng [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2010-12-15

    Large discrepancies between the laminar flame speeds and Markstein lengths measured in experiments and those predicted by simulations for ultra-lean methane/air mixtures bring a great concern for kinetic mechanism validation. In order to quantitatively explain these discrepancies, a computational study is performed for propagating spherical flames of lean methane/air mixtures in different spherical chambers using different radiation models. The emphasis is focused on the effects of radiation and compression. It is found that the spherical flame propagation speed is greatly reduced by the coupling between thermal effect (change of flame temperature or unburned gas temperature) and flow effect (inward flow of burned gas) induced by radiation and/or compression. As a result, for methane/air mixtures near the lean flammability limit, the radiation and compression cause large amounts of under-prediction of the laminar flame speeds and Markstein lengths extracted from propagating spherical flames. Since radiation and compression both exist in the experiments on ultra-lean methane/air mixtures reported in the literature, the measured laminar flame speeds and Markstein lengths are much lower than results from simulation and thus cannot be used for kinetic mechanism validation. (author)

  20. NOx Reduction with Natural Gas for Lean Large-Bore Engine Applications Using Lean NOx Trap Aftertreatment

    SciTech Connect (OSTI)

    Parks, JE

    2005-02-11

    Large-bore natural gas engines are used for distributed energy and gas compression since natural gas fuel offers a convenient and reliable fuel source via the natural gas pipeline and distribution infrastructure. Lean engines enable better fuel efficiency and lower operating costs; however, NOx emissions from lean engines are difficult to control. Technologies that reduce NOx in lean exhaust are desired to enable broader use of efficient lean engines. Lean NOx trap catalysts have demonstrated greater than 90% NOx reduction in lean exhaust from engines operating with gasoline, diesel, and natural gas fuels. In addition to the clean nature of the technology, lean NOx traps reduce NOx with the fuel source of the engine thereby eliminating the requirement for storage and handling of secondary fuels or reducing agents. A study of lean NOx trap catalysts for lean natural gas engines is presented here. Testing was performed on a Cummins C8.3G (CG-280) engine on a motor dynamometer. Lean NOx trap catalysts were tested for NOx reduction performance under various engine operating conditions, and the utilization of natural gas as the reductant fuel source was characterized. Engine test results show that temperature greatly affects the catalytic processes involved, specifically methane oxidation and NOx storage on the lean NOx trap. Additional studies on a bench flow reactor demonstrate the effect of precious metal loading (a primary cost factor) on lean NOx trap performance at different temperatures. Results and issues related to the potential of the lean NOx trap technology for large-bore engine applications will be discussed.

  1. Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon p-09_parks.pdf More Documents & Publications Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Emissions Control for Lean Gasoline Engines Emissions Control for Lean Gasoline Engines

  2. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace063smith2012o.pdf More Documents & Publications Lean Gasoline System Development for Fuel ...

  3. Reductant Chemistry during LNT Regeneration for a Lean Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in ...

  4. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace063smith2013o.pdf More Documents & Publications Lean Gasoline System Development for Fuel ...

  5. Lean Gasoline System Development for Fuel Efficient Small Car...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace063smith2011o.pdf More Documents & Publications Lean Gasoline System Development for Fuel ...

  6. Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities and Differences Between ... More Documents & Publications Spatiotemporal Distribution of NOx Storage: a Factor ...

  7. A Case Study of Lean Implementation at Sandia National Laboratories...

    Office of Scientific and Technical Information (OSTI)

    Title: A Case Study of Lean Implementation at Sandia National Laboratories. Abstract not provided. Authors: de Luna, Raul ; Lopez, Mike R. ; Wan, Hung-da ; Chen, Frank F. ...

  8. Powertrain Component Inspection from Mid-Level Blends Vehicle Aging Study

    SciTech Connect (OSTI)

    Shoffner, Brent; Johnson, Ryan; Heimrich, Martin J.; Lochte, Michael

    2010-11-01

    The Energy Independence and Security Act of 2007 calls on the nation to significantly increase its use of renewable fuels to meet its transportation energy needs. The law expands the renewable fuel standard to require use of 36 billion gallons of renewable fuel by 2022. Given that ethanol is the most widely used renewable fuel in the U.S. market, ethanol will likely make up a significant portion of the 36-billion-gallon requirement. The vast majority of ethanol used in the United States is blended with gasoline to create E10-gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85 - a gasoline blend with as much as 85% ethanol that can only be used in flexible-fuel vehicles (FFVs). Consumption of E85 is at present limited by both the size of the FFV fleet and the number of E85 fueling stations. Gasoline consumption in the United States is currently about 140 billion gallons per year; thus the maximum use of ethanol as E10 is only about 14 billion gallons. While the U.S. Department of Energy (DOE) remains committed to expanding the E85 infrastructure, that market represented less than 1% of the ethanol consumed in 2010 and will not be able to absorb projected volumes of ethanol in the near term. Because of these factors, DOE and others have been assessing the viability of using mid-level ethanol blends (E15 or E20) as a way to accommodate growing volumes of ethanol. The DOE Mid-Level Ethanol Blends Test Program has been under way since 2007, supported jointly by the Office of the Biomass Program and the Vehicle Technologies Program. One of the larger projects, the Catalyst Durability Study, or Vehicle Aging Study, will be completed early in calendar year 2011. The following report describes a subproject of the Vehicle Aging Study in which powertrain components from 18 of the vehicles were examined at Southwest Research Institute under contract to Oak Ridge National Laboratory (ORNL).

  9. Thermal Deactivation Mechanisms of Fully-Formed Lean NOx Trap Catalysts Aged by Lean/Rich Cycling

    Broader source: Energy.gov [DOE]

    Catalysts in fully formulated lean NOx traps are aged and evaluated in a bench-flow reactor using simulated diesel engine exhaust.

  10. Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends

    SciTech Connect (OSTI)

    Storey, John Morse; Barone, Teresa L; Thomas, John F; Huff, Shean P

    2012-01-01

    Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.

  11. A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  13. A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  14. Fundamental Studies in Catalysis Enabled the use of Efficient Lean-Burn Engines for Vehicle Transportation

    Broader source: Energy.gov [DOE]

    Building on a catalysis research program sponsored by EEREs Vehicles Technology Office (VTO) and DOEs Office of Science, researchers at Cummins, Inc. and Pacific Northwest National Laboratory ...

  15. Advanced Lean-Burn DI Spark Ignition Fuels Research | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy PDF icon laser-based-sensors.pdf More Documents & Publications CX-004010: Categorical Exclusion Determination Steel Industry Technology Roadmap ITP Steel: Energy Use in the U.S. Steel Industry: An Historical Perspective and Future Opportunities, September 2000

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ft006_sjoberg_2012

  16. Advanced Lean-Burn DI Spark Ignition Fuels Research | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ft006_sjoberg_2011

  17. Emissions Control for Lean Gasoline Engines | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace033_toops_2011_o.pdf More Documents & Publications Pre-Competitive Catalysis Research: Fundamental Sulfation/Desulfation Studies of Lean NOx Traps CLEERS Coordination & Development of Catalyst Process Kinetic Data Emissions Control for Lean Gasoline Engines

  18. Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control PDF icon ...

  19. Synergies of High-Efficiency Clean Combustion and Lean NOx Trap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts investigation of potential ...

  20. Category:Burns, OR | Open Energy Information

    Open Energy Info (EERE)

    72 KB SVSecondarySchool Burns OR PacifiCorp (Oregon).png SVSecondarySchool Burn... 70 KB SVSmallHotel Burns OR PacifiCorp (Oregon).png SVSmallHotel Burns OR ... 69 KB...

  1. High-bandwidth Modulation of H2/Syngas Fuel to Control Combustion Dynamics in Micro-Mixing Lean Premix Systems

    SciTech Connect (OSTI)

    Jeff Melzak; Tim Lieuwen; Adel Mansour

    2012-01-31

    The goal of this program was to develop and demonstrate fuel injection technologies that will facilitate the development of cost-effective turbine engines for Integrated Gasification Combined Cycle (IGCC) power plants, while improving efficiency and reducing emissions. The program involved developing a next-generation multi-point injector with enhanced stability performance for lean premix turbine systems that burn hydrogen (H2) or synthesis gas (syngas) fuels. A previously developed injector that demonstrated superior emissions performance was improved to enhance static flame stability through zone staging and pilot sheltering. In addition, piezo valve technology was implemented to investigate the potential for enhanced dynamic stability through high-bandwidth modulation of the fuel supply. Prototype injector and valve hardware were tested in an atmospheric combustion facility. The program was successful in meeting its objectives. Specifically, the following was accomplished: Demonstrated improvement of lean operability of the Parker multi-point injector through staging of fuel flow and primary zone sheltering; Developed a piezo valve capable of proportional and high-bandwidth modulation of gaseous fuel flow at frequencies as high as 500 Hz; The valve was shown to be capable of effecting changes to flame dynamics, heat release, and acoustic signature of an atmospheric combustor. The latter achievement indicates the viability of the Parker piezo valve technology for use in future adaptively controlled systems for the mitigation of combustion instabilities, particularly for attenuating combustion dynamics under ultra-lean conditions.

  2. Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts

    Broader source: Energy.gov [DOE]

    investigation of potential synergies of low emission advanced combustion techniques and advanced lean exhaust catalytic aftertreatment.

  3. SystemBurn

    Energy Science and Technology Software Center (OSTI)

    2012-08-30

    SystemBurn is a tool for creating a synthetic computational load for the purpose of measuring how much power a computer will draw under that type of load. The loads include fundamental library function calls like matrix multiply, memory copies, fourier transforms, bit manipulation, I/O, network packet transfers, and some code contrived to cause the processor to dray more or less power. The code produces some diagnostic and progress output, but the actual measurements would bemore » recorded from the power panels within the computer room.« less

  4. McLean Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    mcleanelectric.com Twitter: @McLeanElectric Facebook: https:www.facebook.commclean.electric.coop Outage Hotline: 1-800-263-4922 References: EIA Form EIA-861 Final Data File...

  5. Benchmark Reaction Mechanisms and Kinetics for Lean NOx Traps...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon acep01larson.pdf More Documents & Publications Development of Chemical Kinetic Models for Lean NOx ...

  6. Lean NOx Catalysis Research and Development | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    3 DEER Conference Presentation: Caterpillar, Inc. PDF icon 2003_deer_park.pdf More Documents & Publications Lean-NOx Catalyst Development for Diesel Engine Applications Fuel Effects on Emissions Control Technologies

  7. Be a Lean, Mean, Green Eating Machine | Department of Energy

    Energy Savers [EERE]

    Be a Lean, Mean, Green Eating Machine Be a Lean, Mean, Green Eating Machine January 31, 2012 - 2:53pm Addthis Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs Like most Americans, I watched the State of the Union to hear President Obama outline his goals for the year ahead, to understand his energy outlook and plans, and of course, to see what Michelle would be wearing (a stunning royal blue, of course). When listening to the President highlight his

  8. BLM Burns District Office | Open Energy Information

    Open Energy Info (EERE)

    Burns District Office Jump to: navigation, search Name: BLM Burns District Office Place: Hines, Oregon References: BLM Burns District Office1 This article is a stub. You can help...

  9. Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst on Lean Gasoline Engine

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Pihl, Josh A; Toops, Todd J; Thomas, John F; Parks, II, James E; West, Brian H

    2015-01-01

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.

  10. ARM - Biomass Burning Observation Project (BBOP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist Arthur Sedlacek Biomass Burning Observation Project (BBOP) Biomass Burning Plants, trees, grass, brush, and...

  11. A Case Study of Lean Implementation at Sandia National Laboratories.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect A Case Study of Lean Implementation at Sandia National Laboratories. Citation Details In-Document Search Title: A Case Study of Lean Implementation at Sandia National Laboratories. Abstract not provided. Authors: de Luna, Raul ; Lopez, Mike R. ; Wan, Hung-da ; Chen, Frank F. Publication Date: 2013-02-01 OSTI Identifier: 1116099 Report Number(s): SAND2013-0908C 480106 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference:

  12. Dr B Gail McLean | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Staff Dr. B Gail McLean Chemical Sciences, Geosciences, & Biosciences (CSGB) Division ... Gail McLean is team lead for the Photochemistry and Biochemistry Team in the Chemical ...

  13. 5 Hz Catalytic Emissions FT-IR Monitoring during Lean-Rich Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hz Catalytic Emissions FT-IR Monitoring during Lean-Rich Engine Cycles: Comparison to Reference Methods 5 Hz Catalytic Emissions FT-IR Monitoring during Lean-Rich Engine Cycles: ...

  14. Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Presentation given ...

  15. NH3 generation over commercial Three-Way Catalysts and Lean-NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    over commercial Three-Way Catalysts and Lean-NOx Traps NH3 generation over commercial Three-Way Catalysts and Lean-NOx Traps Research to identify most promising catalytic ...

  16. McLean County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Dakota Mercer, North Dakota North Central McLean, North Dakota Riverdale, North Dakota Ruso, North Dakota South McLean, North Dakota Turtle Lake, North Dakota Underwood, North...

  17. Lean Gasoline System Development for Fuel Efficient Small Cars

    SciTech Connect (OSTI)

    2013-08-30

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

  18. Development of Optimal Catalyst Designs and Operating Strategies for Lean

    Broader source: Energy.gov (indexed) [DOE]

    NOx Reduction in Coupled LNT-SCR Systems | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace029_harold_2012_o.pdf More Documents & Publications Lean NOx Reduction with Dual Layer LNT/SCR Catalysts

  19. Development of Optimal Catalyst Designs and Operating Strategies for Lean

    Broader source: Energy.gov (indexed) [DOE]

    NOx Reduction in Coupled LNT-SCR Systems | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace029_harold_2011_o.pdf More Documents & Publications Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

  20. Passive SCR for lean gasoline NOX control: Engine-based strategies to minimize fuel penalty associated with catalytic NH3 generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prikhodko, Vitaly Y.; Parks, James E.; Pihl, Josh A.; Toops, Todd J.

    2016-02-18

    Lean gasoline engines offer greater fuel economy than common stoichiometric gasoline engines. However, excess oxygen prevents the use of the current three-way catalyst (TWC) to control nitrogen oxide (NOX) emissions in lean exhaust. A passive SCR concept, introduced by General Motors Global R&D, makes use of a TWC that is already onboard to generate NH3 under slightly rich conditions, which is stored on the downstream SCR. The stored NH3 is then used to reduce NOX emissions when the engine switches to lean operation. In this work, the effect of engine parameters, such as air-fuel equivalence ratio and spark timing, onmore » NH3 generation over a commercial Pd-only TWC with no dedicated oxygen storage component was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine. NOX reduction, NH3 formation, and reductant utilization processes were evaluated, and fuel efficiency was assessed and compared to the stoichiometric engine operation case. We found air-fuel equivalence ratio to be one of the most important parameters in controlling the NH3 production; however, the rich operation necessary for NH3 production results in a fuel consumption penalty. The fuel penalty can be minimized by adjusting spark timing to increase rich-phase engine out NOX emissions and, thereby, NH3 levels. Additionally, higher engine out NOX during engine load increase to simulate acceleration resulted in additional fuel savings. Ultimately, a 10% fuel consumption benefit was achieved with the passive SCR approach by optimizing rich air-fuel equivalence ratio and spark timing while also utilizing acceleration load conditions.« less

  1. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames

    SciTech Connect (OSTI)

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall on the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.

  2. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall onmore » the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.« less

  3. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane air jet flames

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methaneair chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methaneair mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall onmorethe boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.less

  4. Development of Optimal Catalyst Designs and Operating Strategies for Lean

    Broader source: Energy.gov (indexed) [DOE]

    NOx Reduction in Coupled LNT-SCR Systems | Department of Energy Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon p-05_harold.pdf More Documents & Publications Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Development of Optimal Catalyst Designs and Operating Strategies for Coupled LNT/SCR

  5. Emissions Control for Lean Gasoline Engines | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace033_toops_2012_o.pdf More Documents & Publications NH3 generation over commercial Three-Way Catalysts and Lean-NOx Traps Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines, Self-Diagnosing SmartCatalyst Systems Spatiotemporal Distribution of NOx Storage: a

  6. Clean Burn Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Burn Fuels LLC Jump to: navigation, search Name: Clean Burn Fuels LLC Place: Raleigh, North Carolina Zip: 27603 Sector: Biofuels Product: Biofuels developer planning to build a 60m...

  7. Applying Lean Concepts to Waste Site Closure - 13137

    SciTech Connect (OSTI)

    Proctor, M.L. [Washington Closure Hanford, 2620 Fermi, Richland, Washington 99354 (United States)] [Washington Closure Hanford, 2620 Fermi, Richland, Washington 99354 (United States)

    2013-07-01

    Washington Closure Hanford (WCH) was selected by the U.S. Department of Energy, Richland Operations Office to manage the River Corridor Closure Project, a 10-year contract in which WCH will clean up 220 mi{sup 2} of contaminated land at the Hanford Site in Richland, Washington. In the summer of 2011, with Tri-Party (DOE-RL, Environmental Protection Agency and Washington State Department of Ecology) Agreement Milestones due at the end of the calendar year, standard work practices were challenged in regards to closure documentation development. The Lean process, a concept that maximizes customer value while minimizing waste, was introduced to WCH's Sample Design and Cleanup Verification organization with the intention of eliminating waste and maximizing efficiencies. The outcome of implementing Lean processes and concepts was impressive. It was determined that the number of non-value added steps far outnumbered the value added steps. Internal processing time, document size, and review times were all reduced significantly; relationships with the customer and the regulators were also improved; and collaborative working relationships with the Tri Parties have been strengthened by working together on Lean initiatives. (authors)

  8. Ultrasonic technique for characterizing skin burns

    DOE Patents [OSTI]

    Goans, Ronald E.; Cantrell, Jr., John H.; Meyers, F. Bradford; Stambaugh, Harry D.

    1978-01-01

    This invention, a method for ultrasonically determining the depth of a skin burn, is based on the finding that the acoustical impedance of burned tissue differs sufficiently from that of live tissue to permit ultrasonic detection of the interface between the burn and the underlying unburned tissue. The method is simple, rapid, and accurate. As compared with conventional practice, it provides the important advantage of permitting much earlier determination of whether a burn is of the first, second, or third degree. In the case of severe burns, the usual two - to three-week delay before surgery may be reduced to about 3 days or less.

  9. Lean NOx Trap Formulation Effect on Performance with In-Cylinder...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Trap Formulation Effect on Performance with In-Cylinder Regeneration Strategies Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference ...

  10. Filter-based control of particulate matter from a lean gasoline direct injection engine

    SciTech Connect (OSTI)

    Parks, II, James E; Lewis Sr, Samuel Arthur; DeBusk, Melanie Moses; Prikhodko, Vitaly Y; Storey, John Morse

    2016-01-01

    New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDI PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal. In addition, lean GDI engine exhaust temperatures are generally higher than diesel engines which results in more continuous regeneration of the GPF and less presence of the soot cake layer common to diesel particulate filters. Since the soot layer improves filtration efficiency, this distinction is important to consider. Research on the emission control of PM from a lean GDI engine with a GPF was conducted on an engine dynamometer. PM, after dilution, was characterized with membrane filters, organic vs. elemental carbon characterization, and size distribution techniques at various steady state engine speed and load points. The engine was operated in three primary combustion modes: stoichiometric, lean homogeneous, and lean stratified. In addition, rich combustion was utilized to simulate PM from engine operation during active regeneration of lean NOx control technologies. High (>95%) PM filtration efficiencies were observed over a wide range of conditions; however, some PM was observed to slip through the GPF at high speed and load conditions. The PM characterization at various engine speeds and loads will help enable optimized GPF design and control to achieve more fuel efficient lean GDI vehicles with low PM emissions.

  11. Actinide Burning in CANDU Reactors

    SciTech Connect (OSTI)

    Hyland, B.; Dyck, G.R.

    2007-07-01

    Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

  12. FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES

    SciTech Connect (OSTI)

    Don Ferguson; Geo. A. Richard; Doug Straub

    2008-06-13

    In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for todays engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.

  13. Investigation of Aging Mechanisms in Lean NOx Traps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_26_crocker.pdf More Documents & Publications Pt-free, Perovskite-based Lean NOx Trap Catalysts CLEERS Coordination & Development of Catalyst Process Kinetic Data Lean NOx Reduction with Dual Layer LNT/SCR Catalysts

  14. Lean NOx Traps - Microstructural Studies of Real World and Model Catalysts

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy 05 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_narula.pdf More Documents & Publications Low Temperature Emission Control Pre-Competitive Catalysis Research: Fundamental Sulfation/Desulfation Studies of Lean NOx Traps Investigation of Aging Mechanisms in Lean NOx Traps

  15. Development of Chemical Kinetic Models for Lean NOx Traps | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace035_larson_2011_o.pdf More Documents & Publications Development of Chemical Kinetic Models for Lean NOx Traps Benchmark Reaction Mechanisms and Kinetics for Lean NOx Traps CLEERS Coordination & Development of Catalyst Process Kinetic Data

  16. Uniform-burning matrix burner

    DOE Patents [OSTI]

    Bohn, Mark S.; Anselmo, Mark

    2001-01-01

    Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

  17. Flashback detection sensor for lean premix fuel nozzles

    DOE Patents [OSTI]

    Thornton, Jimmy Dean; Richards, George Alan; Straub, Douglas L.; Liese, Eric Arnold; Trader, Jr., John Lee; Fasching, George Edward

    2002-08-06

    A sensor for detecting the flame occurring during a flashback condition in the fuel nozzle of a lean premix combustion system is presented. The sensor comprises an electrically isolated flashback detection electrode and a guard electrode, both of which generate electrical fields extending to the walls of the combustion chamber and to the walls of the fuel nozzle. The sensor is positioned on the fuel nozzle center body at a location proximate the entrance to the combustion chamber of the gas turbine combustion system. The sensor provides 360.degree. detection of a flashback inside the fuel nozzle, by detecting the current conducted by the flame within a time frame that will prevent damage to the gas turbine combustion system caused by the flashback condition.

  18. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    SciTech Connect (OSTI)

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S-poisoning resistance. Further investigation is needed for unraveling the understanding, design and selection principles of this new class of nanostructure based monolithic catalysts.

  19. How the Lean Management System is Working on a Closure Project - 13242

    SciTech Connect (OSTI)

    Mowery, Carol

    2013-07-01

    Washington Closure Hanford, LLC (WCH) manages the River Corridor Closure Project (RCCP), a 10-year contract, in which WCH will clean up 220 mi{sup 2} of contaminated land at the Hanford Site in Richland, Washington. Strategic planning sessions in 2009 identified key performance areas that were essential to closure and in which focused change could result in dramatic performance improvement. Lean Management Systems (Lean) was selected as the methodology to achieve the desired results. The Lean Process is built upon the fundamentals of the power of respect for people and the practice of continuous process improvement. Lean uses week-long, focused sessions that teach a selected team the techniques to recognize waste within their own work processes, propose potential solutions, and then conduct experiments during the week to test their solutions. In 2011, the Lean process was implemented in the Waste Operations organization. From there it was expanded to closure documents, field remediation, and decommissioning and demolition. WCH identified the following Lean focus areas: 1) closure document processes that required extensive internal preparation, and lengthy external review and approval cycles; 2) allocation of limited transportation and waste disposal resources to meet aggressive remediation schedules; 3) effective start-of-the-day routines in field operations; 4) improved excavation and load-out processes; and 5) approaches to strengthen safety culture and support disciplined operations. Since the introduction of Lean, RCCP has realized many successes and also gained some unexpected benefits. (authors)

  20. Methanol as a fuel for a lean turbocharged spark ignition engine

    SciTech Connect (OSTI)

    Pannone, G.M.; Johnson, R.T.

    1989-01-01

    Lean turbocharged operation with methanol was characterized using a single-cylinder spark, ignition engine. Efficiency, exhaust emissions, and combustion properties were measured over a range of air/fuel ratios at two naturally-aspirated and three turbocharged conditions. When compared to stoichiometric, naturally-aspirated operation, the lean turbocharged conditions improved efficiency while reducing carbon monoxide and oxides of nitrogen emissions. However, unburned fuel and aldehyde emissions increased. If used in conjunction with an oxidizing catalyst and appropriate feedback controls, lean turbocharged operation has the potential of improving efficiency and exhaust emissions performance over a stoichiometric, three-way catalyst system.

  1. Voluntary Protection Program Onsite Review, Burns & McDonnell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Burns & McDonnell - Facility Engineering Services, LLC - September 2015 Voluntary Protection Program Onsite Review, Burns & McDonnell - Facility Engineering Services, LLC - ...

  2. Biomass Burning Observation Project Science Plan (Program Document...

    Office of Scientific and Technical Information (OSTI)

    Science Plan Citation Details In-Document Search Title: Biomass Burning Observation Project Science Plan Aerosols from biomass burning perturb Earth's climate through the direct ...

  3. Investigation of Aging Mechanisms in Lean NOx Traps

    SciTech Connect (OSTI)

    Mark Crocker

    2010-03-31

    Lean NO{sub x} traps (LNTs) represent a promising technology for the abatement of NO{sub x} under lean conditions. Although LNTs are starting to find commercial application, the issue of catalyst durability remains problematic. LNT susceptibility to sulfur poisoning is the single most important factor determining effective catalyst lifetime. The NO{sub x} storage element of the catalyst has a greater affinity for SO{sub 3} than it does for NO{sub 2}, and the resulting sulfate is more stable than the stored nitrate. Although this sulfate can be removed from the catalyst by means of high temperature treatment under rich conditions, the required conditions give rise to deactivation mechanisms such as precious metal sintering, total surface area loss, and solid state reactions between the various oxides present. The principle objective of this project was to improve understanding of the mechanisms of lean NO{sub x} trap aging, and to understand the effect of washcoat composition on catalyst aging characteristics. The approach utilized involved detailed characterization of model catalysts prior to and after aging, in tandem with measurement of catalyst performance in NO{sub x} storage and reduction. In this manner, NO{sub x} storage and reduction characteristics were correlated with the evolution of catalyst physico-chemical properties upon aging. Rather than using poorly characterized proprietary catalysts, or simple model catalysts of the Pt/BaO/Al{sub 2}O{sub 3} type (representing the first generation of LNTs), Pt/Rh/BaO/Al{sub 2}O{sub 3} catalysts were employed which also incorporated CeO{sub 2} or CeO{sub 2}-ZrO{sub 2}, representing a model system which more accurately reflects current LNT formulations. Catalysts were prepared in which the concentration of each of the main components was systematically varied: Pt (50, 75 or 100 g/ft{sup 3}), Rh (10 or 20 g/ft{sup 3}), BaO (15, 30 or 45 g/L), and either CeO{sub 2} (0, 50 or 100 g/L) or CeO{sub 2}-ZrO{sub 2} (0, 50 or 100 g/L). A high surface area La-stabilized alumina was used to support the BaO phase. Catalysts were obtained by washcoating onto standard cordierite substrates, the total washcoat loading being set at 260 g/L. La-stabilized alumina was used as the balance. Subsequent to de-greening, the NO{sub x} storage and reduction characteristics of the catalysts were evaluated on a bench reactor, after which the catalysts were aged on a bench reactor to the equivalent of ca. 75,000 miles of road aging using a published accelerated aging protocol. The aged catalysts were then subjected to the same evaluation proecdure used for the de-greened catalysts. In addition to the use of standard physico-chemical analytical techniques for studying the fresh and aged model catalysts, use was made of advanced analytical tools for characterizing their NO{sub x} storage/reduction and sulfation/desulfation characteristics, such as Spatially resolved capillary-inlet Mass Spectrometry (SpaciMS) and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS).

  4. Vehicle Technologies Office Merit Review 2015: Lean Miller Cycle System Development for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about lean miller cycle system...

  5. The Laboratory at 70: A proud history, leaning forward to shape...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Laboratory at 70: A proud history, leaning forward to shape the future Seventy years ... Seventy years ago on the Pajarito Plateau, the U.S. Army and the University of California ...

  6. Longfellow Students Win as Virginia Science Champs (McLean Patch) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Longfellow Students Win as Virginia Science Champs (McLean Patch) External Link: http://mclean.patch.com/articles/longfellow-students-win-as-virginia-science-cha... By jlab_admin on Thu, 2012-03-15

  7. Lean NOx Reduction with Dual Layer LNT/SCR Catalysts | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Results show that a series of dual layer catalysts with a bottom layer of LNT catalyst and a top layer of SCR catalyst can carry out coupled ammonia generation and NOx reduction, achieving high NOx conversion with minimal ammonia slip PDF icon deer12_harold.pdf More Documents & Publications Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction

  8. Pt-free, Perovskite-based Lean NOx Trap Catalysts | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Perovskite-based lean NOx catalysts shown to achieve comparable NOx reduction performance as commercial platinum based counterpart PDF icon deer10_qi.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano-Array Catalysts for Low Temperature Diesel Oxidation Lean NOx Reduction with Dual Layer LNT/SCR Catalysts Spatiotemporal Distribution of NOx Storage: a Factor Controlling NH3 and N2O Selectivities over a Commercial LNT Catalyst

  9. Combining Low-Temperature Combustion with Lean-NOx Trap Yields Progress

    Broader source: Energy.gov (indexed) [DOE]

    Toward Targets of Efficient NOx Control for Diesels | Department of Energy 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_huff.pdf More Documents & Publications Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Reductant Utilization in a LNT + SCR System Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts

  10. ARM - Field Campaign - Biomass Burning Observation Project -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsBiomass Burning Observation Project - BBOP Campaign Links BBOP Website ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or...

  11. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOE Patents [OSTI]

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  12. Method of preparing doped oxide catalysts for lean NOx exhaust

    DOE Patents [OSTI]

    Park, Paul W.

    2004-03-09

    The lean NOx catalyst includes a substrate, an oxide support material, preferably .gamma.-alumina deposited on the substrate and a metal or metal oxide promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium cerium, and vanadium, and oxides thereof, and any combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between 80 and 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to about 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  13. Instrumented tube burns: theoretical and experimental observations

    SciTech Connect (OSTI)

    Yarrington, Cole Davis; Obrey, Stephen J; Foley, Timothy J; Son, Steven F

    2009-01-01

    The advent of widely available nanoscale energetic composites has resulted in a flurry of novel applications. One of these applications is the use of nanomaterials in energetic compositions. In compositions that exhibit high sensitivity to stimulus, these materials are often termed metastable intermolecular composites (MIC). More generally, these compositions are simply called nanoenergetics. Researchers have used many different experimental techniques to analyze the various properties of nanoenergetic systems. Among these various techniques, the confined tube burn is a simple experiment that is capable of obtaining much data related to the combustion of these materials. The purpose of this report is to review the current state of the confined tube burn experiment, including the drawbacks of the technique and possible remedies. As this report is intended to focus on the specific experimental technique, data from many different energetic materials, and experimental configurations will be presented. The qualitative and quantitative data that can be gathered using confined tube burn experiments include burning rates, total impulse, pressure rise rate, and burning rate differences between different detector types. All of these measurements lend insight into the combustion properties and mechanisms of specific nanoenergetics. Finally, certain data indicates a more complicated flow scenario which may need to be considered when developing burn tube models.

  14. Sulfate Storage and Stability on Common Lean NOx Trap Components

    SciTech Connect (OSTI)

    Ottinger, Nathan A; Toops, Todd J; Pihl, Josh A; Roop, Justin T; Choi, Jae-Soon; Partridge Jr, William P

    2012-01-01

    Components found in a commercial lean NO{sub x} trap have been studied in order to determine their impact on sulfate storage and release. A micro-reactor and a diffuse reflectance infrared Fourier transform spectrometer (DRIFTS) were used to compare components MgAl{sub 2}O{sub 4}, Pt/MgAl{sub 2}O{sub 4}, Pt/Al{sub 2}O{sub 3}, Pt/Ba/Al{sub 2}O{sub 3}, Pt/CeO{sub 2}-ZrO{sub 2}, and Pt/Ba/CeO{sub 2}-ZrO{sub 2}, as well as physical mixtures of Pt/Al{sub 2}O{sub 3} + MgAl{sub 2}O{sub 4} and Pt/Ba/CeO{sub 2}-ZrO{sub 2} + MgAl{sub 2}O{sub 4}. Desulfation temperature profiles as well as DRIFTS NO{sub x} and SO{sub x} storage spectra are presented for all components. This systematic approach highlighted the ability of the underlying support to impact sulfate stability, in particular when Ba was supported on ceria-zirconia rather than alumina the desulfation temperature decreased by 60-120 C. A conceptual model of sulfation progression on the ceria-zirconia support is proposed that explains the high uptake of sulfur and low temperature release when it is employed. It was also determined that the close proximity of platinum is not necessary for much of the sulfation and desulfation chemistry that occurs, as physical mixtures with platinum dispersed on only one phase displayed similar behavior to samples with platinum dispersed on both phases.

  15. Biomass Burning Observation Project Science Plan

    SciTech Connect (OSTI)

    Kleinman, KI; Sedlacek, AJ

    2013-09-01

    Aerosols from biomass burning perturb Earth’s climate through the direct radiative effect (both scattering and absorption) and through influences on cloud formation and precipitation and the semi-direct effect. Despite much effort, quantities important to determining radiative forcing such as the mass absorption coefficients (MAC) of light-absorbing carbon, secondary organic aerosol (SOA) formation rates, and cloud condensation nuclei (CCN) activity remain in doubt. Field campaigns in northern temperate latitudes have been overwhelmingly devoted to other aerosol sources in spite of biomass burning producing about one-third of the fine particles (PM2.5) in the U.S.

  16. DOE - Fossil Energy: A Bed for Burning Coal?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-Bed for Burning Coal An Energy Lesson Cleaning Up Coal A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with ...

  17. New Computer Codes Unlock the Secrets of Cleaner Burning Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Computer Codes Unlock the Secrets of Cleaner Burning Coal New Computer Codes Unlock the Secrets of Cleaner Burning Coal March 29, 2012 Linda Vu, lvu@lbl.gov, +1 510 495 2402 ...

  18. Investigation of NO2 Oxidation Kinetics and Burning Mode for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NO2 Oxidation Kinetics and Burning Mode for Medium Duty Diesel Particulate: Contrasting O2 and NO2 Oxidation Investigation of NO2 Oxidation Kinetics and Burning Mode for Medium ...

  19. Raymond Burns > Product Research Technologist - Exxon Mobile > Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumni > The Energy Materials Center at Cornell Raymond Burns Product Research Technologist - Exxon Mobile raymond.burns@gmail.com Formerly a member of the DiSalvo Group, Ray earned his PhD in August 2013

  20. Burn to Learn | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burn to Learn Burn to Learn The mp4 video format is not supported by this browser. Download video Captions: On Time: 3:06 min. CNS fire protection engineers recently visited Oak Ridge Fire Department to "Burn to Learn." During this event, they were able to burn materials that would be found at Y-12 (e.g,. personal protective equipment, a shredder) and analyze the results. Watch a video about the event here

  1. Aerosol Properties Downwind of Biomass Burns Field Campaign Report (Program

    Office of Scientific and Technical Information (OSTI)

    Document) | SciTech Connect SciTech Connect Search Results Program Document: Aerosol Properties Downwind of Biomass Burns Field Campaign Report Citation Details In-Document Search Title: Aerosol Properties Downwind of Biomass Burns Field Campaign Report We determined the morphological, chemical, and thermal properties of aerosol particles generated by biomass burning during the Biomass Burning Observation Project (BBOP) campaign during the wildland fire season in the Pacific Northwest from

  2. Biomass Burning Observation Project (BBOP) Final Campaign Report (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Biomass Burning Observation Project (BBOP) Final Campaign Report Citation Details In-Document Search Title: Biomass Burning Observation Project (BBOP) Final Campaign Report The Biomass Burning Observation Project (BBOP) was conducted to obtain a better understanding of how aerosols generated from biomass fires affect the atmosphere and climate. It is estimated that 40% of carbonaceous aerosol produced originates from biomass burning-enough to affect regional and

  3. Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy PDF icon 2002_deer_aardahl.pdf More Documents & Publications Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Selective reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies

  4. Development of a low NO/sub x/ lean premixed annular combustor

    SciTech Connect (OSTI)

    Roberts, P.B.; Kubasco, A.J.; Sekas, N.J.

    1982-01-01

    An atmospheric test program was conducted to define a low NOx annular combustor concept suitable for a supersonic, high-altitude aircraft application. The lean premixed combustor, known as the Vortex Air Blast (VAB) concept, was tested as a 22.0 cm diameter model in the early development phases to arrive at basic design and performance criteria. 9 refs.

  5. Open air refuse burning video: Proton Dan the science man explores open air refuse burning

    SciTech Connect (OSTI)

    Eastburn, M.D.; Sipple, J.L.; Deramo, A.R.

    1999-07-01

    The goal of this video is to educate school children to the potential hazards of open air trash burning; to demonstrate alternative ways to dispose of trash; and to motivate students to take action to change the behavior of their parents with regard to trash burning. The burning of household trash, although illegal, is still a common practice in rural areas of Delaware. Enforcement has been difficult because the practice is often performed at night and is done across a wide rural area that is difficult to patrol on a continuing basis. The prohibition on trash burning (revised Regulation 13 of The Delaware Code of Regulations Governing The Control of Air Pollution) has been in effect since 1968, but the public has been slow to comply because trash burning has been practiced for many generations and because much of the public is unaware of the environmental impacts and/or the human health risks. This video may be valuable for other States to use as a public outreach tool regarding their problems with open air refuse burning. The focus of the video is a 7th grade science class is given various assignments relating to Earth Day and preservation of natural resources. Two children in particular are given the assignment to research and report on the hazards of open air trash burning and are asked to investigate alternative ways to dispose of refuse. Upon brainstorming how to find information on the topic, the kids decide to contact the host of a popular children's science show on broadcast television named Proton Dan the Science Man (a fictitious character and show based on Bill Nye the Science Guy). The host then invites the kids to the studio where he films his show and takes them through the topic. The TV host character takes the children to several external locations like a landfill, recycling centers, etc..

  6. Apparatus for burning bales of trash

    SciTech Connect (OSTI)

    Pazar, C. A.

    1985-08-13

    Bales of combustible trash made to specific specifications are burned in a furnace having two parallel upright sidewalls between which the bales pass during burning. A horizontal grate extends between the sidewalls. The bales, if remotely made from the furnace, are bound by an easily meltable strap. The length of the bale is measurably smaller than the distance between said sidewalls to accurately accommodate springback. A ram, after compacting the waste in segmental fashion, pushes each bale to a position between said sidewalls; with the length of the bale being perpendicular to the sidewalls, so that a bale enters the furnace. Springback following the melting of straps allows the bale to expand to fill the gap between the sidewalls. This facilitates ignition and/or burning of the bales and provides a seal against furnace sidewalls. When the ram feeds a fresh bale, previously charged bales (consumed proportional to time in the furnace) are advanced toward the ash discharge port. Before the bales are formed, the trash may be optionally dried by using heated air in the classification into ''light'' sort and ''heavy'' sort. The ''light'' sort is baled and burned as described above. The ''heavy'' sort or a part of the light sort may be premixed with noxious liquid or solid wastes before charging to the furnace. Temperatures consistent with economical use of refractory (1500/sup 0/ F. to 1700/sup 0/ F.) are maintained, for a limited area adjacent the inner wall of the furnace, by addition of liquid water, while interior temperatures of the furnace of about 3000/sup 0/ F. prevail in the central portion of the furnace necessary for the incineration of noxious wastes.

  7. Wankel engine for hybrid powertrain

    SciTech Connect (OSTI)

    Butti, A.; Site, V.D.

    1995-12-31

    The Wankel engine is suited to be used to drive hybrid propulsion systems. The main disadvantage of hybrid propulsion systems is the complexity that causes a high weight and large dimensions. For these reason hybrid systems are more suitable for large size vehicle (buses, vans) rather than for small passenger cars. A considerable reduction of hybrid systems weight and dimensions can be obtained using a Wankel rotary engine instead of a conventional engine. The Wankel engine is light, compact, simple, and produces low noise and low vibrations. Therefore a Wankel engine powered hybrid system is suited to be used on small cars. In this paper a 1,000 kg parallel hybrid car with continuously variable transmission and a 6,000 kg series hybrid minibus both equipped with Wankel engines are considered. The Wankel engine works at steady state to minimize fuel consumption and exhaust emissions. The simulation of the behavior of these two vehicles during a ECE + EUDC test cycle is presented in order to evaluate the performances of the systems.

  8. Diffusion-flame burning of fuel-vapor pockets in air

    SciTech Connect (OSTI)

    Fendell, F.E.; Bush, W.B.; Mitchell, J.A.; Fink, S.F. IV . Center for Propulsion Technology and Fluid Mechanics)

    1994-08-01

    The authors examine analytically, with numerical assistance, the unsteady, diffusively limited burnup of initially unmixed fuel vapor and gaseous oxidizer. They study three simple spherical geometries: (1) an initially uniform sphere of fuel vapor immersed in an unbounded expanse of oxidizer; (2) a variant on case 1 in which only a finite concentric annulus of enveloping oxidizer is available for the burning of the initially uniform sphere of fuel vapor; and (3) an impervious sphere, consisting initially of one uniform hemisphere of fuel vapor and one uniform hemisphere of oxidizer. Of particular interest is the time interval for the exhaustion of the lean reactant, as a function of the fuel-to-oxidizer stoichiometry and the sphere radius. The motivation for these studies is to ascertain the fate of inhomogeneous blobs that arise as a consequence of imperfect fuel/air mixing, e.g., in the context of a supersonic combustor. In such a context, an inhomogeneous blob of gaseous mixture, idealized to have the geometry of a sphere, is examined as a Lagrangian element, as it is convected downstream, without slip, by the surrounding gaseous flow. The longest time for diffusional burnup, for the spherically enclosed geometries, arises for the case in which the fuel vapor and oxidizer are present in stoichiometric proportion.

  9. U.S. BURNING PLASMA ORGANIZATION ACTIVITIES

    SciTech Connect (OSTI)

    Raymond J. Fonck

    2009-08-11

    The national U.S. Burning Plasma Organization (USBPO) was formed to provide an umbrella structure in the U.S. fusion science research community. Its main purpose is the coordination of research activities in the U.S. program relevant to burning plasma science and preparations for participation in the international ITER experiment. This grant provided support for the continuing development and operations of the USBPO in its first years of existence. A central feature of the USBPO is the requirement for broad community participation in and governance of this effort. We concentrated on five central areas of activity of the USBPO during this grant period. These included: 1) activities of the Director and support staff in continuing management and development of the USBPO activity; 2) activation of the advisory Council; 3) formation and initial research activities of the research community Topical Groups; 4) formation of Task Groups to perform specific burning plasma related research and development activities; 5) integration of the USBPO community with the ITER Project Office as needed to support ITER development in the U.S.

  10. Interim Status Closure Plan Open Burning Treatment Unit Technical Area 16-399 Burn Tray

    SciTech Connect (OSTI)

    Vigil-Holterman, Luciana R.

    2012-05-07

    This closure plan describes the activities necessary to close one of the interim status hazardous waste open burning treatment units at Technical Area (TA) 16 at the Los Alamos National Laboratory (LANL or the Facility), hereinafter referred to as the 'TA-16-399 Burn Tray' or 'the unit'. The information provided in this closure plan addresses the closure requirements specified in the Code of Federal Regulations (CFR), Title 40, Part 265, Subparts G and P for the thermal treatment units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act. Closure of the open burning treatment unit will be completed in accordance with Section 4.1 of this closure plan.

  11. Mobilizable RDF/d-RDF burning program

    SciTech Connect (OSTI)

    Niemann, K.; Campbell, J.

    1982-03-01

    The Mobilizable RDF/d-RDF Burning Program was conceived to promote the utilization of refuse-derived fuels (RDF) as a supplement to existing fossil fuel sources in industrial-sized boilers. The program explores the design, development, and eventual construction of densified-RDF (d-RDF) for use in boiler combustion testing as a supplement to stoker coal or wood wastes. The equipment would be mounted on trailers and assembled and operated at preselected sites throughout the country where approximately 750 tons of RDF would be produced and test burned in a local boiler. The equipment, to include a transportable RDF boiler metering and feed system, would then be moved and operated at two to three test sites annually. The program is intended to encourage the construction of permanent resource recovery facilities by involving local waste handling groups in operating the equipment and producing fuel, and potential local fuel users in testing the fuel in their boilers. The Mobilizable Program was developed from two separate tasks. The first task developed the concept behind the program and defined its operational and organizational structure. The second task, a follow-up to the first, was intended principally to finalize test locations, develop equipment designs and specifications, and formalize a management program. This report summarizes the principal findings of both tasks. It identifies the criteria used to identify test locations, outlines the program's management structure, presents design and performance specifications for both the fuel production equipment and boiler fuel feed systems, and provides a detailed evaluation of the parameters involved in burning RDF in industrial-sized boilers. Final conclusions and recommendations identify problem areas encountered in the program, and discuss possible future directions for such a program.

  12. Spectral hole burning studies of photosystem II

    SciTech Connect (OSTI)

    Chang, H.C.

    1995-11-01

    Low temperature absorption and hole burning spectroscopies were applied to the D1-D2-cyt b{sub 559} and the CP47 and CP43 antenna protein complexes of Photosystem H from higher plants. Low temperature transient and persistent hole-burning data and theoretical calculations on the kinetics and temperature dependence of the P680 hole profile are presented and provide convincing support for the linker model. Implicit in the linker model is that the 684-nm-absorbing Chl a serve to shuttle energy from the proximal antenna complex to reaction center. The stoichiometry of isolated Photosystem H Reaction Center (PSII RC) in several different preparations is also discussed. The additional Chl a are due to 684-nm-absorbing Chl a, some contamination by the CP47 complex, and non-native Chl a absorbing near 670 nm. In the CP47 protein complex, attention is focused on the lower energy chlorophyll a Q{sub y}-states. High pressure hole-burning studies of PSII RC revealed for the first time a strong pressure effect on the primary electron transfer dynamics. The 4.2 K lifetime of P680*, the primary donor state, increases from 2.0 ps to 7.0 ps as pressure increases from 0.1 to 267 MPa. Importantly, this effect is irreversible (plastic) while the pressure induced effect on the low temperature absorption and non-line narrowed P680 hole spectra are reversible (elastic). Nonadiabatic rate expressions, which take into account the distribution of energy gap values, are used to estimate the linear pressure shift of the acceptor state energy for both the superexchange and two-step mechanisms for primary charge separation. It was found that the pressure dependence could be explained with a linear pressure shift of {approximately} 1 cm{sup -1}/MPa in magnitude for the acceptor state. The results point to the marriage of hole burning and high pressures as having considerable potential for the study of primary transport dynamics in reaction centers and antenna complexes.

  13. Efficient Emissions Control for Multi-Mode Lean DI Engines | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace031_parks_2011_o.pdf More Documents & Publications Hydrocarbon fouling of SCR during Premixed Charge Compression Ignition (PCCI) combustion High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Efficient Emissions Control for Multi-Mode Lean DI Engines

  14. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets

    Office of Scientific and Technical Information (OSTI)

    2-3486 Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization Reactor Concepts Ehud Greenspan University of California, Berkeley Thomas Sowinski, Federal POC Michael Todosow, Technical POC Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics an Resource Utilization Summary Report NEUP Project 12-3486 University of California, Berkeley November 4, 2015 Advanced Burner Reactor with Breed-and-Burn Thorium Blankets

  15. Modeling Deep Burn TRISO Particle Nuclear Fuel

    SciTech Connect (OSTI)

    Besmann, Theodore M [ORNL; Stoller, Roger E [ORNL; Samolyuk, German D [ORNL; Schuck, Paul C [ORNL; Rudin, Sven [Los Alamos National Laboratory (LANL); Wills, John [Los Alamos National Laboratory (LANL); Wirth, Brian D. [University of California, Berkeley; Kim, Sungtae [University of Wisconsin, Madison; Morgan, Dane [University of Wisconsin, Madison; Szlufarska, Izabela [University of Wisconsin, Madison

    2012-01-01

    Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. First principles calculations are being used to investigate the critical issue of fission product palladium attack on the SiC coating layer. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel. Kinetic Monte Carlo techniques are shedding light on transport of fission products, most notably silver, through the carbon and SiC coating layers. The diffusion of fission products through an alternative coating layer, ZrC, is being assessed via DFT methods. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.

  16. Optical probe for determining the fat/lean interface in cuts of meat

    DOE Patents [OSTI]

    Weber, Thomas M.; Callow, Diane S.; Jones, James F.; Kuehl, Michael A.; Spletzer, Barry L.

    2005-02-22

    An apparatus and method for locating the boundary surface between a layer of fatty tissue and lean tissue in a cut of meat, such as beef, such as slabs of meat undergoing trimming and cutting in commercial meet processing facilitates. The invention exploits the fact that fatty tissue and lean tissue have significantly different responses to incident light energy. By gauging the degree to which a generated beam of light is scattered and reflected by the tissues under evaluation, the invention permits the character of the tissue to be ascertained. An incident beam of light, such as green light, is generated and transmitted to a probe tip, which tip is inserted into the cut of meat under investigation. The light beam is emitted into the meat tissues from the probe tip, and then is scattered and reflected by the tissues, whereupon some fraction of the emitted light returns to the probe tip. The returning light energy is transmitted to a detector; relative changes in the returning light transmitted to the detector permit the operator to determine when the probe tip is approaching or penetrating the fat/lean tissue interface.

  17. Effects of Ignition and Injection Perturbation under Lean and Dilute GDI Engine Operation

    SciTech Connect (OSTI)

    Wallner, Thomas; Kaul, Brian C; Sevik, James; Scarcelli, Riccardo; Wagner, Robert M

    2015-01-01

    Turbocharged gasoline direct injection (GDI) engines are quickly becoming more prominent in light-duty automotive applications because of their potential improvements in efficiency and fuel economy. While EGR dilute and lean operation serve as potential pathways to further improve efficiencies and emissions in GDI engines, they also pose challenges for stable engine operation. Tests were performed on a single-cylinder research engine that is representative of current automotive-style GDI engines. Baseline cases were performed under steady-state operating conditions where combustion phasing and dilution levels were varied to determine the effects on indicated efficiency and combustion stability. Sensitivity studies were then carried out by introducing binary low-high perturbation of spark timing and injection duration on a cycle-by-cycle basis under EGR dilute and lean operation to determine dominant feedback mechanisms. Ignition perturbation was phased early/late of MBT timing, and injection perturbation was set fuel rich/lean of the given air-to-fuel ratio. COVIMEP was used to define acceptable operation limits when comparing different perturbation cases. Overall sensitivity data shows COVIMEP is more sensitive to injection perturbation over ignition perturbation. This is because of the greater effect injection perturbation has on combustion phasing, ignition delay, and combustion duration.

  18. Wood-Burning Heating System Deduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Alabama Program Type Rebate Amount 100% Summary This statute allows individual taxpayers a deduction for the purchase and installation of a wood-burning heating system. The...

  19. Savannah River Site "Live Burn" Training Sharpens Skills | National...

    National Nuclear Security Administration (NNSA)

    (RP) and fire department personnel recently conducted their annual "Live Burn" training exercises that simulate fires in facilities with chemical and radiological contamination. ...

  20. Arctic Haze: Effect of Anthropogenic and Biomass Burning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Haze: Effect of Anthropogenic and Biomass Burning Aerosols Transported from Europe to the Arctic For original submission and image(s), see ARM Research Highlights http:...

  1. Biomass Burning Observation Project (BBOP) Final Campaign Report...

    Office of Scientific and Technical Information (OSTI)

    fires affect the atmosphere and climate. It is estimated that 40% of carbonaceous aerosol produced originates from biomass burning-enough to affect regional and global climate. ...

  2. "Plasma stability and burn control" Inventor...--.. Richard J...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma stability and burn control" Inventor...--.. Richard J. Hawryluk, Wayne Solomon Power released in a fusion power plant is approximately proportional to the square of the ...

  3. Double, Double Toil and Trouble: Tungsten Burns and Helium Bubbles...

    Office of Science (SC) Website

    Double, Double Toil and Trouble: Tungsten Burns and Helium Bubbles Basic Energy Sciences (BES) ... LS, DP, and BPU acknowledge support by the DOE, Office of Science, Office of ...

  4. Clean burning solid fuel stove and method

    SciTech Connect (OSTI)

    Smith, R.D.; Grouw, S.J.V.

    1985-10-08

    A stove for burning solid fuels having an insulated primary combustion chamber, uniform distribution of preheated primary air through upward facing holes in a grate, downward flow of combustion gas through the grate, retention of hot coals in the grate structure, preheated secondary air, individually controlled primary and secondary air flows, insulated vortex combustion chambers for secondary combustion, longitudinally finned tubes as a first stage heat exchanger, plate-fin assembly as a second stage heat exchanger, an induced draft fan to draw the air and combustion gases through the combustion chambers as well as the heat exchangers, and a forced air fan to blow cool room air through the two stage heat exchanger.

  5. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    SciTech Connect (OSTI)

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn rate in mm/s and P is the pressure in units of MPa. Details of the experimental method, results and data analysis are discussed herein and briefly compared to other AP based materials that have been measured in this apparatus.

  6. Turbulent burning rates of methane and methane-hydrogen mixtures

    SciTech Connect (OSTI)

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  7. Method and apparatus to measure the depth of skin burns

    DOE Patents [OSTI]

    Dickey, Fred M.; Holswade, Scott C.

    2002-01-01

    A new device for measuring the depth of surface tissue burns based on the rate at which the skin temperature responds to a sudden differential temperature stimulus. This technique can be performed without physical contact with the burned tissue. In one implementation, time-dependent surface temperature data is taken from subsequent frames of a video signal from an infrared-sensitive video camera. When a thermal transient is created, e.g., by turning off a heat lamp directed at the skin surface, the following time-dependent surface temperature data can be used to determine the skin burn depth. Imaging and non-imaging versions of this device can be implemented, thereby enabling laboratory-quality skin burn depth imagers for hospitals as well as hand-held skin burn depth sensors the size of a small pocket flashlight for field use and triage.

  8. Local Burn-Up Effects in the NBSR Fuel Element

    SciTech Connect (OSTI)

    Brown N. R.; Hanson A.; Diamond, D.

    2013-01-31

    This study addresses the over-prediction of local power when the burn-up distribution in each half-element of the NBSR is assumed to be uniform. A single-element model was utilized to quantify the impact of axial and plate-wise burn-up on the power distribution within the NBSR fuel elements for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. To validate this approach, key parameters in the single-element model were compared to parameters from an equilibrium core model, including neutron energy spectrum, power distribution, and integral U-235 vector. The power distribution changes significantly when incorporating local burn-up effects and has lower power peaking relative to the uniform burn-up case. In the uniform burn-up case, the axial relative power peaking is over-predicted by as much as 59% in the HEU single-element and 46% in the LEU single-element with uniform burn-up. In the uniform burn-up case, the plate-wise power peaking is over-predicted by as much as 23% in the HEU single-element and 18% in the LEU single-element. The degree of over-prediction increases as a function of burn-up cycle, with the greatest over-prediction at the end of Cycle 8. The thermal flux peak is always in the mid-plane gap; this causes the local cumulative burn-up near the mid-plane gap to be significantly higher than the fuel element average. Uniform burn-up distribution throughout a half-element also causes a bias in fuel element reactivity worth, due primarily to the neutronic importance of the fissile inventory in the mid-plane gap region.

  9. New operation strategy for driving the selectivity of NOx reduction to N2, NH3 or N2O during lean/rich cycling of a lean NOx trap catalyst

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mráček, David; Koci, Petr; Choi, Jae -Soon; Partridge, Jr., William P.

    2015-09-08

    Periodical regeneration of NOx storage catalyst (also known as lean NOx trap) by short rich pulses of CO, H2 and hydrocarbons is necessary for the reduction of nitrogen oxides adsorbed on the catalyst surface. Ideally, the stored NOx is converted into N2, but N2O and NH3 by-products can be formed as well, particularly at low-intermediate temperatures. The N2 and N2O products are formed concurrently in two peaks. The primary peaks appear immediately after the rich-phase inception, and tail off with the breakthrough of the reductant front accompanied by NH3 product. In addition, the secondary N2 and N2O peaks then appearmore » at the rich-to-lean transition as a result of reactions between surface-deposited reductants/intermediates (CO, HC, NH3, — NCO) and residual stored NOx under increasingly lean conditions.« less

  10. Oil/gas separator for installation at burning wells

    DOE Patents [OSTI]

    Alonso, Carol T.; Bender, Donald A.; Bowman, Barry R.; Burnham, Alan K.; Chesnut, Dwayne A.; Comfort, III, William J.; Guymon, Lloyd G.; Henning, Carl D.; Pedersen, Knud B.; Sefcik, Joseph A.; Smith, Joseph A.; Strauch, Mark S.

    1993-01-01

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  11. Oil/gas separator for installation at burning wells

    DOE Patents [OSTI]

    Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.

    1993-03-09

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  12. A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion

    SciTech Connect (OSTI)

    Grcar, Joseph F; Grcar, Joseph F

    2008-06-30

    Ultra-lean, hydrogen-air mixtures are found to support another kind of laminar flame that is steady and stable beside flat flames and flame balls. Direct numerical simulations are performed of flames that develop into steadily and stably propagating cells. These cells were the original meaning of the word"flamelet'' when they were observed in lean flammability studies conducted early in the development of combustion science. Several aspects of these two-dimensional flame cells are identified and are contrasted with the properties of one-dimensional flame balls and flat flames. Although lean hydrogen-air flames are subject to thermo-diffusive effects, in this case the result is to stabilize the flame rather than to render it unstable. The flame cells may be useful as basic components of engineering models for premixed combustion when the other types of idealized flames are inapplicable.

  13. Nonlinear heat-release/acoustic model for thermoacoustic instability in lean premixed combustors

    SciTech Connect (OSTI)

    Peracchio, A.A.; Proscia, W.M.

    1999-07-01

    Lean premixed combustors, such as those used in industrial gas turbines to achieve low emissions, are often susceptible to thermoacoustic combustion instabilities, which manifest themselves as pressure and heat release oscillations in the combustor. These oscillations can result in increased noise and decreased durability due to vibration and flame motion. A physically based nonlinear parametric model has been developed that captures this instability. It describes the coupling of combustor acoustics with the rate of heat release. The model represents this coupling by accounting for the effect of acoustic pressure fluctuations on the varying fuel/air ratio being delivered to the flame, causing a fluctuating heat release due to both fuel air ratio variations and flame front oscillations. If the phasing of the fluctuating heat release and pressure are proper, an instability results that grows into a limit cycle. The nonlinear nature of the model predicts the onset of the instability and additionally captures the resulting limit cycle. Tests of a lean premixed nozzle at engine scale and engine operating conditions in the UTRC single nozzle rig, conducted under DARPA contract, exhibited instabilities. Parameters from the model were adjusted so that analytical results were consistent with relevant experimental data from this test. The parametric model captures the limit cycle behavior over a range of mean fuel air ratios, showing the instability amplitude (pressure and heat release) to increase and limit cycle frequency to decrease as mean fuel air ratio is reduced.

  14. Microsoft Word - Deep-Burn awards news release _2_.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RELEASE Tim Jackson, DOE-Idaho Operations Office Wednesday, July 23, 2008 (208) 526-8484 U.S. Department of Energy Awards 7.3 million for "Deep-Burn" Gas-Reactor Technology...

  15. Options for Burning LWR SNF in LIFE Engine

    SciTech Connect (OSTI)

    Farmer, J

    2008-09-09

    We have pursued two processes in parallel for the burning of LWR SNF in the LIFE engine: (1) solid fuel option and (2) liquid fuel option. Approaches with both are discussed. The assigned Topical Report on liquid fuels is attached.

  16. Portsmouth Site Achieves Regulatory Milestone after Successful Controlled Burn

    Broader source: Energy.gov [DOE]

    PIKETON, Ohio – Portsmouth Gaseous Diffusion Plant firefighters recently completed a prescribed fire, or controlled burn, of an 18-acre prairie at the site, two weeks ahead of a regulatory deadline.

  17. Radiochemical Mix Diagnostic in the Presence of Burn

    SciTech Connect (OSTI)

    Hayes, Anna C.

    2014-01-28

    There is a general interest in radiochemical probes of hydrodamicalmix in burning regions of NIF capsule. Here we provide estimates for the production of 13N from mixing of 10B ablator burning hotspot of a capsule. By comparing the 13N signal with x-ray measurements of the ablator mix into the hotspot it should be possible to estimate the chunkiness of this mix.

  18. Catalytic igniters and their use to ignite lean hydrogen-air mixtures

    DOE Patents [OSTI]

    McLean, William J.; Thorne, Lawrence R.; Volponi, Joanne V.

    1988-01-01

    A catalytic igniter which can ignite a hydrogen-air mixture as lean as 5.5% hydrogen with induction times ranging from 20 s to 400 s, under conditions which may be present during a loss-of-liquid-coolant accident at a light water nuclear reactor comprises (a) a perforate catalytically active substrate, such as a platinum coated ceramic honeycomb or wire mesh screen, through which heated gases produced by oxidation of the mixture can freely flow and (b) a plurality of thin platinum wires mounted in a thermally conductive manner on the substrate and positioned thereon so as to be able to receive heat from the substrate and the heated gases while also in contact with unoxidized gases.

  19. Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)

    SciTech Connect (OSTI)

    Chad Smutzer

    2006-01-01

    Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

  20. MSFR TRU-burning potential and comparison with an SFR

    SciTech Connect (OSTI)

    Fiorina, C.; Cammi, A.; Franceschini, F.; Krepel, J.

    2013-07-01

    The objective of this work is to evaluate the Molten Salt Fast Reactor (MSFR) potential benefits in terms of transuranics (TRU) burning through a comparative analysis with a sodium-cooled FR. The comparison is based on TRU- and MA-burning rates, as well as on the in-core evolution of radiotoxicity and decay heat. Solubility issues limit the TRU-burning rate to 1/3 that achievable in traditional low-CR FRs (low-Conversion-Ratio Fast Reactors). The softer spectrum also determines notable radiotoxicity and decay heat of the equilibrium actinide inventory. On the other hand, the liquid fuel suggests the possibility of using a Pu-free feed composed only of Th and MA (Minor Actinides), thus maximizing the MA burning rate. This is generally not possible in traditional low-CR FRs due to safety deterioration and decay heat of reprocessed fuel. In addition, the high specific power and the lack of out-of-core cooling times foster a quick transition toward equilibrium, which improves the MSFR capability to burn an initial fissile loading, and makes the MSFR a promising system for a quick (i.e., in a reactor lifetime) transition from the current U-based fuel cycle to a novel closed Th cycle. (authors)

  1. Iron/potassium perchlorate pellet burn rate measurements

    SciTech Connect (OSTI)

    Reed, J.W.; Walters, R.R.

    1995-01-25

    A burn rate test having several advantages for low gas-producing pyrotechnic compacts has been developed. The technique involves use of a high speed video motion analysis system that allows immediate turnaround and produces all required data for rate computation on magnetic tape and becomes immediately available on the display screen. The test technique provides a quick method for material qualification along with data for improved reliability and function. Burn rate data has been obtained for both UPI and Eagle Pitcher Iron/Potassium Perchlorate blends. The data obtained for the UPI blends cover a range of composition, pellet density, and ambient (before ignition) pellet temperature. Burn rate data for the E-P blends were extended to include surface conditions or particle size as a variable parameter.

  2. Communication Support for the U. S. Burning Plasma Organization

    SciTech Connect (OSTI)

    Hegna, Chris

    2014-02-05

    The role of this DOE grant was to provide administrative and software support for the U. S. Burning Plasma Organization (USBPO). The USBPO is a grassroots organization of fusion plasma scientists that concentrates broadly on issues of interest in burning plasma physics in general with a particular emphasis on the needs of the ITER program. The particular role of this grant was to provide support of the communication needs of the USBPO primarily through the administration and maintenance of the USBPO server, the public USBPO website, e-mail lists and numerous members-only discussion forums and mail lists.

  3. Completion of the INEEL's WERF Incinerator Trial Burn

    SciTech Connect (OSTI)

    C. K. Branter; D. A. Conley; D. R. Moser; S. J. Corrigan

    1999-05-01

    This paper describes the successes and challenges associated with Resource Conservation and Recovery Act (RCRA) permitting of the Idaho National Engineering and Environmental Laboratory's (INEEL) Waste Experimental Reduction Facility (WERF) hazardous and mixed waste incinerator. Topics to be discussed include facility modifications and problems, trial burn results and lessons learned in each of these areas. In addition, a number of challenges remain including completion and final issue of the RCRA Permit and implementation of all the permit requirements. Results from the trial burn demonstrated that the operating conditions and procedures will result in emissions that are satisfactorily protective of human health, the environment, and are in compliance with Federal and State regulations.

  4. Completion of the INEEL's WERF Incinerator Trial Burn

    SciTech Connect (OSTI)

    Branter, Curtis Keith; Conley, Dennis Allen; Corrigan, Shannon James; Moser, David Roy

    1999-05-01

    This paper describes the successes and challenges associated with Resource Conservation and Recovery Act (RCRA) permitting of the Idaho National Engineering and Environmental Laboratory's (INEEL) Waste Experimental Reduction Facility (WERF) hazardous and mixed waste incinerator. Topics to be discussed include facility modifications and problems, trial burn results and lessons learned in each of these areas. In addition, a number of challenges remain including completion and final issue of RCRA Permit and implementation of all the permit requirements. Results from the trial burn demonstrated that the operating conditions and procedures will result in emissions that are satisfactorily protective of human health, the environment, and are in compliance with Federal and State regulations.

  5. Examination of the Entry to Burn and Burn Control for the ITER 15 MA Baseline and Other Scenarios

    SciTech Connect (OSTI)

    Kesse, Charles E.; Kim, S-H.; Koechl, F.

    2014-09-01

    The entry to burn and flattop burn control in ITER will be a critical need from the first DT experiments. Simulations are used to address time-dependent behavior under a range of possible conditions that include injected power level, impurity content (W, Ar, Be), density evolution, H-mode regimes, controlled parameter (Wth, Pnet, Pfusion), and actuator (Paux, fueling, fAr), with a range of transport models. A number of physics issues at the L-H transition require better understanding to project to ITER, however, simulations indicate viable control with sufficient auxiliary power (up to 73 MW), while lower powers become marginal (as low as 43 MW).

  6. Effect of inactive impurities on the burning of ICF targets

    SciTech Connect (OSTI)

    Gus'kov, S. Yu.; Il'in, D. V.; Sherman, V. E.

    2011-12-15

    The efficiency of thermonuclear burning of the spherical deuterium-tritium (DT) plasma of inertial confinement fusion (ICF) targets in the presence of low-Z impurities (such as lithium, carbon, or beryllium) with arbitrary concentrations is investigated. The effect of impurities produced due to the mixing of the thermonuclear fuel with the material of the structural elements of the target during its compression on the process of target burning is studied, and the possibility of using solid noncryogenic thermonuclear fuels in ICF targets is analyzed. Analytical dependences of the ignition energy and target thermonuclear gain on the impurity concentration are obtained. The models are constructed for homogeneous and inhomogeneous plasmas for the case in which the burning is initiated in the central heated region of the target and then propagates into the surrounding relatively cold fuel. Two possible configurations of an inhomogeneous plasma, namely, an isobaric configuration formed in the case of spark ignition of the target and an isochoric configuration formed in the case of fast ignition, are considered. The results of numerical simulations of the burning of the DT plasma of ICF targets in a wide range of impurity concentrations are presented. The simulations were performed using the TEPA one-dimensional code, in which the thermonuclear burning kinetics is calculated by the Monte Carlo method. It is shown that the strongest negative effect related to the presence of impurities is an increase in the energy of target ignition. It is substantiated that the most promising solid noncryogenic fuel is DT hydride of beryllium (BeDT). The requirements to the plasma parameters at which BeDT can be used as a fuel in noncryogenic ICF targets are determined. Variants of using noncryogenic targets with a solid thermonuclear fuel are proposed.

  7. Synergies of PCCI-Type Combustion and Lean NOx Trap Catalysis for Diesel Engines

    SciTech Connect (OSTI)

    Parks, II, James E; Prikhodko, Vitaly Y; Kass, Michael D; Huff, Shean P

    2008-01-01

    It is widely recognized that future NOx and PM emission targets for diesel engines cannot be met solely via advanced combustion over the full engine drive cycle. Therefore some combination of advanced combustion methodology with an aftertreatment technology will be required. In this study, NOx reduction, fuel efficiency, and regeneration performance of lean NOx trap (LNT) were evaluated for four operating conditions. The combustion approaches included baseline engine operation with and without EGR, two exhaust enrichment methods (post injection and delayed injection), and one advanced combustion mode to enable high efficiency clean combustion (HECC). A 1.7 liter 4-cylinder diesel engine was operated under five conditions, which represent key interest points for light-duty diesel operation. At the low load setting the exhaust temperature was too low to enable LNT regeneration and oxidation; however, HECC (low NOx) was achievable. HECC was also reached under more moderate loads and the exhaust temperatures were high enough to enable even further NOx reductions by the LNT. At high loads HECC becomes difficult but the LNT performance improves and acceptable regeneration can be met with enrichment methodologies.

  8. Lean methane premixed laminar flames doped by components of diesel fuel II: n-propylcyclohexane

    SciTech Connect (OSTI)

    Pousse, E.; Porter, R.; Warth, V.; Glaude, P.A.; Fournet, R.; Battin-Leclerc, F. [Departement de Chimie-Physique des Reactions, Nancy Universite, CNRS, ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy Cedex (France)

    2010-01-15

    For a better understanding of the chemistry involved during the combustion of components of diesel fuel, the structure of a laminar lean premixed methane flame doped with n-propylcyclohexane has been investigated. The inlet gases contained 7.1% (molar) methane, 36.8% oxygen, and 0.81% n-propylcyclohexane (C{sub 9}H{sub 18}), corresponding to an equivalence ratio of 0.68 and a C{sub 9}H{sub 18}/CH{sub 4} ratio of 11.4%. The flame has been stabilized on a burner at a pressure of 6.7 kPa (50 Torr) using argon as diluent, with a gas velocity at the burner of 49.2 cm/s at 333 K. Quantified species included the usual methane C{sub 0}-C{sub 2} combustion products, but also 17 C{sub 3}-C{sub 5} hydrocarbons, seven C{sub 1}-C{sub 3} oxygenated compounds, and only four cyclic C{sub 6+} compounds, namely benzene, 1,3-cyclohexadiene, cyclohexene, and methylenecyclohexane. A new mechanism for the oxidation of n-propylcyclohexane has been proposed. It allows the proper simulation of profiles of most of the products measured in flames, as well as the satisfactory reproduction of experimental results obtained in a jet-stirred reactor. The main reaction pathways of consumption of n-propylcyclohexane have been derived from rate-of-production analysis. (author)

  9. A lean methane premixed laminar flame doped with components of diesel fuel. I. n-Butylbenzene

    SciTech Connect (OSTI)

    Pousse, E.; Glaude, P.A.; Fournet, R.; Battin-Leclerc, F. [Departement de Chimie-Physique des Reactions, Nancy Universite, CNRS, ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy Cedex (France)

    2009-05-15

    To better understand the chemistry involved in the combustion of components of diesel fuel, the structure of a laminar lean premixed methane flame doped with n-butylbenzene has been investigated. The inlet gases contained 7.1% (molar) methane, 36.8% oxygen, and 0.96% n-butylbenzene corresponding to an equivalence ratio of 0.74 and a ratio C{sub 10}H{sub 14}/CH{sub 4} of 13.5%. The flame has been stabilized on a burner at a pressure of 6.7 kPa using argon as diluent, with a gas velocity at the burner of 49.2 cm/s at 333 K. Quantified species included the usual methane C{sub 0}-C{sub 2} combustion products, but also 16 C{sub 3}-C{sub 5} hydrocarbons, and 7 C{sub 1}-C{sub 3} oxygenated compounds, as well as 20 aromatic products. A new mechanism for the oxidation of n-butylbenzene is proposed whose predictions are in satisfactory agreement with measured species profiles in flames and flow reactor experiments. The main reaction pathways of consumption of n-butylbenzene have been derived from flow rate analyses. (author)

  10. Simulation of lean NOx trap performance with microkinetic chemistry and without mass transfer.

    SciTech Connect (OSTI)

    Larson, Rich; Daw, C. Stuart; Pihl, Josh A.; Chakravarthy, V. Kalyana

    2011-08-01

    A microkinetic chemical reaction mechanism capable of describing both the storage and regeneration processes in a fully formulated lean NO{sub x} trap (LNT) is presented. The mechanism includes steps occurring on the precious metal, barium oxide (NO{sub x} storage), and cerium oxide (oxygen storage) sites of the catalyst. The complete reaction set is used in conjunction with a transient plug flow reactor code to simulate not only conventional storage/regeneration cycles with a CO/H{sub 2} reductant, but also steady flow temperature sweep experiments that were previously analyzed with just a precious metal mechanism and a steady state code. The results show that NO{sub x} storage is not negligible during some of the temperature ramps, necessitating a re-evaluation of the precious metal kinetic parameters. The parameters for the entire mechanism are inferred by finding the best overall fit to the complete set of experiments. Rigorous thermodynamic consistency is enforced for parallel reaction pathways and with respect to known data for all of the gas phase species involved. It is found that, with a few minor exceptions, all of the basic experimental observations can be reproduced with these purely kinetic simulations, i.e., without including mass-transfer limitations. In addition to accounting for normal cycling behavior, the final mechanism should provide a starting point for the description of further LNT phenomena such as desulfation and the role of alternative reductants.

  11. Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors

    SciTech Connect (OSTI)

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A.

    2010-09-15

    The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH{sup *} chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF. (author)

  12. Burn propagation in a PBX 9501 thermal explosion

    SciTech Connect (OSTI)

    Henson, B. F.; Smilowitz, L.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.

    2007-12-12

    We have applied proton radiography to study the conversion of solid density to gaseous combustion products subsequent to ignition of a thermal explosion in PBX 9501. We apply a thermal boundary condition to the cylindrical walls of the case, ending with an induction period at 205 C. We then introduce a laser pulse that accelerates the thermal ignition and synchronizes the explosion with the proton accelerator. We then obtain fast, synchronized images of the evolution of density loss with few microsecond resolution during the approximately 100 microsecond duration of the explosion. We present images of the solid explosive during the explosion and discuss measured rates and assumed mechanisms of burning the role of pressure in this internal burning.

  13. Influence of Ceria on the NOx Storage/Reduction Behavior of Lean NOx Trap Catalysts

    SciTech Connect (OSTI)

    Ji, Yaying; Choi, Jae-Soon; Toops, Todd J; Crocker, Dr. Mark; Naseri, Mojghan

    2008-01-01

    The effect of La2O3-stabilized ceria incorporation on the functioning of fully formulated lean NOx trap catalysts was investigated. Monolithic catalysts were prepared, corresponding to loadings of 0, 50 and 100 g CeO2/L, together with a catalyst containing 100 g/L of ceria-zirconia (Ce0.7Zr0.3O2). Loadings of the other main components (Pt, Rh and BaO) were held constant. Catalyst evaluation was performed on a bench flow reactor under simulated diesel exhaust conditions, employing NOx storage/reduction cycles. NOx storage efficiency in the temperature range 150-350 C was observed to increase with ceria loading, resulting in higher NOx conversion levels. At 150 C, high rich phase NOx slip was observed for all of the catalysts, resulting from an imbalance in the rates of nitrate decomposition and NOx reduction. Optimal NOx conversion was obtained in the range 250-350 C for all the catalysts, while at 450 C high rich phase NOx slip from the most highly loaded ceria-containing catalyst resulted in lower NOx conversion than for the ceria-free formulation. N2O was the major NOx reduction product at 150 C over all of the catalysts, although low NOx conversion levels limited the N2O yield. At higher temperatures N2 was the main product of NOx reduction, although NH3 formation was also observed. Selectivity to NH3 decreased with increasing ceria loading, indicating that NH3 is consumed by reaction with stored oxygen in the rear of the catalyst.

  14. AmeriFlux US-ARb ARM Southern Great Plains burn site- Lamont (Dataset) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect ARb ARM Southern Great Plains burn site- Lamont Citation Details In-Document Search Title: AmeriFlux US-ARb ARM Southern Great Plains burn site- Lamont This is the AmeriFlux version of the carbon flux data for the site US-ARb ARM Southern Great Plains burn site- Lamont. Site Description - The ARM SGP Burn site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots, the US-ARb plot was burned

  15. Deep Burn: Development of Transuranic Fuel for High-Temperature

    Office of Scientific and Technical Information (OSTI)

    Helium-Cooled Reactors- Monthly Highlights October 2010 (Technical Report) | SciTech Connect October 2010 Citation Details In-Document Search Title: Deep Burn: Development of Transuranic Fuel for High-Temperature Helium-Cooled Reactors- Monthly Highlights October 2010 The DB Program monthly highlights report for September 2010, ORNL/TM-2010/252, was distributed to program participants by email on October 26. This report discusses: (1) Core and Fuel Analysis; (2) Spent Fuel Management; (3)

  16. Deep Burn: Development of Transuranic Fuel for High-Temperature

    Office of Scientific and Technical Information (OSTI)

    Helium-Cooled Reactors- Monthly Highlights September 2010 (Technical Report) | SciTech Connect September 2010 Citation Details In-Document Search Title: Deep Burn: Development of Transuranic Fuel for High-Temperature Helium-Cooled Reactors- Monthly Highlights September 2010 The DB Program monthly highlights report for August 2010, ORNL/TM-2010/184, was distributed to program participants by email on September 17. This report discusses: (1) Core and Fuel Analysis - (a) Core Design

  17. Aerosol Properties Downwind of Biomass Burns Field Campaign Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Aerosol Properties Downwind of Biomass Burns Field Campaign Report April 2016 PR Buseck DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  18. Microsoft Word - Deep-Burn awardee team members _2_.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sheet: DEEP-BURN AWARDEES RECIPIENTS RECIPIENT TEAM MEMBERS Advanced Modeling and Simulation Capability R&D for $1 million University of Chicago Argonne Argonne National Laboratory Oak Ridge National Laboratory Lawrence Livermore National Lab University of Michigan Transuranic Management Capabilities R&D for $6.3 million Battelle Energy Alliance, LLC Idaho National Laboratory Oak Ridge National Laboratory Argonne National Laboratory Los Alamos National Laboratory University of

  19. Uniform DT 3T burn: computations and sensitivities

    SciTech Connect (OSTI)

    Vold, Erik; Hryniw, Natalia; Hansen, Jon A; Kesler, Leigh A; Li, Frank

    2011-01-27

    A numerical model was developed in C to integrate the nonlinear deutrium-tritium (DT) burn equations in a three temperature (3T) approximation for spatially uniform test problems relevant to Inertial Confinement Fusion (ICF). Base model results are in excellent agreement with standard 3T results. Data from NDI, SESAME, and TOPS databases is extracted to create fits for the reaction rate parameter, the Planck opacity, and the coupling frequencies of the plasma temperatures. The impact of different fits (e.g., TOPS versus SESAME opacity data, higher order polynomial fits ofNDI data for the reaction rate parameter) were explored, and sensitivity to several model inputs are presented including: opacity data base, Coulomb logarithm, and Bremsstrahlung. Sensitivity to numerical integration time step size, and the relative insensitivity to the discretized numerics and numerical integration method was demonstrated. Variations in the IC for densities and temperatures were explored, showing similar DT burn profiles in most cases once ignition occurs. A coefficient multiplying the Compton coupling term (default, A = 1) can be adjusted to approximate results from more sophisticated models. The coefficient was reset (A = 0.4) to match the maximum temperatures resulting from standard multi-group simulations of the base case test problem. Setting the coefficient to a larger value, (A = 0.6) matches maximum ion temperatures in a kinetic simulation of a high density ICF-like regime. Matching peak temperatures does not match entire temperature-time profiles, indicating the Compton coefficient is density and time dependent as the photon distribution evolves. In the early time burn during the ignition of the DT, the present model with modified Compton coupling provides a very simple method to obtain a much improved match to the more accurate solution from the multi-group radiation model for these DT burn regimes.

  20. Burning tires for fuel and tire pyrolysis: air implications

    SciTech Connect (OSTI)

    Clark, C.; Meardon, K.; Russell, D.

    1991-12-01

    The document was developed in response to increasing inquiries into the environmental impacts of burning waste tires in process equipment. The document provides information on the use of whole, scrap tires and tire-derived-fuel (TDF) as combustion fuel and on the pyrolysis of scrap tires. The use of whole tires and TDF as a primary fuel is discussed for dedicated tire-to-energy facilities. The use of whole tires and TDF as a supplemental fuel is discussed for cement manufacturing plants, electric utilities, pulp and paper mills, and other industrial processes. The focus of the document is on the impact of burning whole tires and TDF on air emissions. Test data are presented and, in most instances, compared with emissions under baseline conditions (no tires or TDF in the fuel). The control devices used in these industries are discussed and, where possible, their effectiveness in controlling emissions from the burning of whole tires or TDF is described. In addition, the report provides information on the processes themselves that use whole tires or TDF, the modifications to the processes that allowed the use of whole tires or TDF, and the operational experiences of several facilities using whole tires or TDF. The economic feasibility of using whole tires and TDF for the surveyed industries is discussed. Finally, contacts for State waste tire programs are presented.

  1. Tradeoff Between Powertrain Complexity and Fuel Efficiency

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  2. Magnesium Powertrain Cast Components | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    16_quinn.pdf More Documents & Publications Magnesium Front End Development (AMD 603/604/904) Magnesium Front End Development (AMD 603/604/904) Magnesium Front End Research and Development AMD 604

  3. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect (OSTI)

    Hakan Yilmaz; Mark Christie; Anna Stefanopoulou

    2010-12-31

    The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.

  4. Method for controlling a motor vehicle powertrain

    DOE Patents [OSTI]

    Burba, Joseph C.; Landman, Ronald G.; Patil, Prabhakar B.; Reitz, Graydon A.

    1990-01-01

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission.

  5. Method for controlling a motor vehicle powertrain

    DOE Patents [OSTI]

    Burba, J.C.; Landman, R.G.; Patil, P.B.; Reitz, G.A.

    1990-05-22

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission. 7 figs.

  6. The Meritor Dual Mode Hybrid Powertrain CRADA

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Micro-Mixing Lean-Premix System for Ultra-Low Emission Hydrogen/Syngas Combustion

    SciTech Connect (OSTI)

    Erlendur Steinthorsson; Brian Hollon; Adel Mansour

    2010-06-30

    The focus of this project was to develop the next generation of fuel injection technologies for environmentally friendly, hydrogen syngas combustion in gas turbine engines that satisfy DOE's objectives of reducing NOx emissions to 3 ppm. Building on Parker Hannifin's proven Macrolamination technology for liquid fuels, Parker developed a scalable high-performing multi-point injector that utilizes multiple, small mixing cups in place of a single conventional large-scale premixer. Due to the small size, fuel and air mix rapidly within the cups, providing a well-premixed fuel-air mixture at the cup exit in a short time. Detailed studies and experimentation with single-cup micro-mixing injectors were conducted to elucidate the effects of various injector design attributes and operating conditions on combustion efficiency, lean stability and emissions and strategies were developed to mitigate the impact of flashback. In the final phase of the program, a full-scale 1.3-MWth multi-cup injector was built and tested at pressures from 6.9bar (100psi) to 12.4bar (180psi) and flame temperatures up to 2000K (3150 F) using mixtures of hydrogen and natural gas as fuel with nitrogen and carbon dioxide as diluents. The injector operated without flash back on fuel mixtures ranging from 100% natural gas to 100% hydrogen and emissions were shown to be insensitive to combustor pressure. NOx emissions of 3-ppm were achieved at a flame temperature of 1750K (2690 F) when operating on a fuel mixture containing 50% hydrogen and 50% natural gas by volume with 40% nitrogen dilution and 1.5-ppm NOx was achieved at a flame temperature of 1680K (2564 F) using only 10% nitrogen dilution. NOx emissions of 3.5-ppm were demonstrated at a flame temperature of 1730K (2650 F) with only 10% carbon dioxide dilution. Finally, 3.6-ppm NOx emissions were demonstrated at a flame temperature over 1600K (2420 F) when operating on 100% hydrogen fuel with 30% carbon dioxide dilution. Superior operability was demonstrated for the hydrogen-natural gas fuel. The micro-mixing fuel injectors show great promise for use in future gas turbine engines operating on hydrogen, syngas or other fuel mixtures of various compositions, supporting the Department of Energy goals related to increased energy diversity while reducing greenhouse gases.

  8. Boiler efficiency calculation for multiple fuel burning boilers

    SciTech Connect (OSTI)

    Khodabakhsh, F.; Munukutla, S.; Clary, A.T.

    1996-12-31

    A rigorous method based on the output/loss approach is developed for calculating the coal flow rate for multiple fuel burning boilers. It is assumed that the ultimate analyses of all the fuels are known. In addition, it is assumed that the flow rates of all the fuels with the exception of coal are known. The calculations are performed iteratively, with the first iteration taking into consideration coal as the only fuel. The results converge to the correct answer after a few number of iterations, typically four or five.

  9. Long-Haul Truck Idling Burns Up Profits

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Long-Haul Truck Idling Burns Up Profits Long-haul truck drivers perform a vitally important service. In the course of their work, they must take rest periods as required by federal law. Most drivers remain in their trucks, which they keep running to provide power for heating, cooling, and other necessities. Such idling, however, comes at a cost; it is an expensive and polluting way to keep drivers safe and comfortable. Increasingly affordable alternatives to idling not only save money and reduce

  10. A Midsize Tokamak As Fast Track To Burning Plasmas

    SciTech Connect (OSTI)

    E. Mazzucato

    2010-07-14

    This paper presents a midsize tokamak as a fast track to the investigation of burning plasmas. It is shown that it could reach large values of energy gain (?10) with only a modest improvement in confinement over the scaling that was used for designing the International Thermonuclear Experimental Reactor (ITER). This could be achieved by operating in a low plasma recycling regime that experiments indicate can lead to improved plasma confinement. The possibility of reaching the necessary conditions of low recycling using a more efficient magnetic divertor than those of present tokamaks is discussed.

  11. Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems

    DOE Patents [OSTI]

    Park, Paul W.

    2004-03-16

    A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably .gamma.-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  12. Development of a trial burn plan for a mixed waste fluidized bed incinerator

    SciTech Connect (OSTI)

    Kabot, F.J.; Ziegler, D.L.

    1988-01-01

    One of the more important elements of the incinerator permitting process under RCRA is the development of the Trial Burn Plan. This document describes the incinerator and defines the incinerator's process envelope within which the trial burns will be conducted. The data obtained during the trial burns will be the basis for the incinerator's operating permit. This paper describes the development of the Trial Burn Plan for a unique fluidized bed incinerator to be used for the incineration of hazardous and mixed wastes at the Department of Energy's Rocky Flats Plant. It describes a review process of the Trial Burn Plan involving a public comment period that actually preceded the trial burns. 2 refs., 1 fig.

  13. Voluntary Protection Program Onsite Review, Burns & McDonnell - Facility

    Energy Savers [EERE]

    Engineering Services, LLC - September 2015 | Department of Energy Burns & McDonnell - Facility Engineering Services, LLC - September 2015 Voluntary Protection Program Onsite Review, Burns & McDonnell - Facility Engineering Services, LLC - September 2015 September 2015 Recertification of FES as a Star Participant in the Department of Energy Voluntary Protection Program. This report summarizes the results from the evaluation of Burns & McDonnell - Facility Engineering Services, LLC

  14. AmeriFlux US-ARb ARM Southern Great Plains burn site- Lamont (Dataset) |

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Data Explorer Search Results AmeriFlux US-ARb ARM Southern Great Plains burn site- Lamont Title: AmeriFlux US-ARb ARM Southern Great Plains burn site- Lamont This is the AmeriFlux version of the carbon flux data for the site US-ARb ARM Southern Great Plains burn site- Lamont. Site Description - The ARM SGP Burn site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots, the US-ARb plot was

  15. Kinetic calculations of explosives with slow-burning constituents

    SciTech Connect (OSTI)

    Howard, W.M.; Souers, P.C.; Pried, L.E.

    1997-07-01

    The equilibrium thermochemical code CHEETAH V 1.40 has been modified to detonate part of the explosive and binder. An Einstein thermal description of the unreacted constituents is used, and the Einstein temperature may be increased to reduce heat absorption. We study the effect of the reactivity and thermal transport on the detonation velocity. Hydroxy-terminated-polybutadiene binders have low energy and density and would degrade the detonation velocity if they burned. Runs with unburned binder are closer to the measured values. Aluminum and ammonium Perchlorate are also largely unburned within the sonic reaction zone that determines the detonation velocity. All three materials appear not to fully absorb heat as well. The normal assumption of total reaction in a thermochemical code is clearly not true for these special cases, where the detonation velocities have widely different values for different combinations of processes.

  16. Trash burns, turns into $120,000 in annual savings

    SciTech Connect (OSTI)

    Smith, W.A.

    1981-09-01

    A plan was developed to generate a major portion of the energy required for heating and air conditioning by burning factory trash instead of using natural gas and electricity. Trash from the Rockwell Int'l. plant, including broken wood pallets, cardboard packing materials and office waste paper, amounted to 1,000 tons per year. Previously, a contractor was being paid to come to the plant several times a week, pick up the trash and haul it to a landfill. To supplement the 1,000 tons of usable waste generated by the plant annually, the additional 500 tons of similar trash needed to operate the system are received from other industries in the vicinity. Besides accepting waste from other plants, the Marysville facility stockpiles and uses refuse corn stalks harvested from 50 acres of Rockwell-owned land adjacent to the plant. The incinerator featuring a pyrolytic heat recovery system is presented and its operation is illustrated.

  17. TIME-VARYING FLAME IONIZATION SENSING APPLIED TO NATURAL GAS AND PROPANE BLENDS IN A PRESSURIZED LEAN PREMIXED (LPM) COMBUSTOR

    SciTech Connect (OSTI)

    D. L. Straub; B. T. Chorpening; E. D. Huckaby; J. D. Thornton; W. L. Fincham

    2008-06-13

    In-situ monitoring of combustion phenomena is a critical need for optimal operation and control of advanced gas turbine combustion systems. The concept described in this paper is based on naturally occurring flame ionization processes that accompany the combustion of hydrocarbon fuels. Previous work has shown that flame ionization techniques may be applied to detect flashback, lean blowout, and some aspects of thermo-acoustic combustion instabilities. Previous work has focused on application of DC electric fields. By application of time-varying electric fields, significant improvements to sensor capabilities have been observed. These data have been collected in a lean premixed combustion test rig operating at 0.51-0.76 MPa (5-7.5 atm) with air preheated to 588 K (600F). Five percent of the total fuel flow is injected through the centerbody tip as a diffusion pilot. The fuel composition is varied independently by blending approximately 5% (volume) propane with the pipeline natural gas. The reference velocity through the premixing annulus is kept constant for all conditions at a nominal value of 70 m/s. The fuel-air equivalence ratio is varied independently from 0.46 0.58. Relative to the DC field version, the time-varying combustion control and diagnostic sensor (TV-CCADS) shows a significant improvement in the correlation between the measured flame ionization current and local fuel-air equivalence ratio. In testing with different fuel compositions, the triangle wave data show the most distinct change in flame ionization current in response to an increase in propane content. Continued development of this sensor technology will improve the capability to control advanced gas turbine combustion systems, and help address issues associated with variations in fuel supplies.

  18. Microstructural Characterization of High Burn-up Mixed Oxide Fast Reactor Fuel

    SciTech Connect (OSTI)

    Melissa C. Teague; Brian P. Gorman; Steven L. Hayes; Douglas L. Porter; Jeffrey King

    2013-10-01

    High burn-up mixed oxide fuel with local burn-ups of 3.423.7% FIMA (fissions per initial metal atom) were destructively examined as part of a research project to understand the performance of oxide fuel at extreme burn-ups. Optical metallography of fuel cross-sections measured the fuel-to-cladding gap, clad thickness, and central void evolution in the samples. The fuel-to-cladding gap closed significantly in samples with burn-ups below 79% FIMA. Samples with burn-ups in excess of 79% FIMA had a reopening of the fuel-to-cladding gap and evidence of joint oxide-gain (JOG) formation. Signs of axial fuel migration to the top of the fuel column were observed in the fuel pin with a peak burn-up of 23.7% FIMA. Additionally, high burn-up structure (HBS) was observed in the two highest burn-up samples (23.7% and 21.3% FIMA). The HBS layers were found to be 35 times thicker than the layers found in typical LWR fuel. The results of the study indicate that formation of JOG and or HBS prevents any significant fuel-cladding mechanical interaction from occurring, thereby extending the potential life of the fuel elements.

  19. AmeriFlux US-An2 Anaktuvuk River Moderate Burn

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hobbie, John [Marine Biological Laboratory; Rocha, Adrian [Marine Biological Laboratory; Shaver, Gaius [Marine Biological Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-An2 Anaktuvuk River Moderate Burn. Site Description - The Anaktuvuk River fire on the North Slope of Alaska started on July 16, 2007 by lightning. It continued until the end of September when nearby lakes had already frozen over and burned >256,000 acres, creating a mosaic of patches that differed in burn severity. The Anaktuvuk River Severe Burn, Moderate Burn, and Unburned sites are 40 km to the west of the nearest road and were selected in late May 2008 to determine the effects of the fire on carbon, water, and energy exchanges during the growing season. Because the fire had burned through September of the previous year, initial deployment of flux towers occurred prior to any significant vegetative regrowth, and our sampling campaign captured the full growing season in 2008. The Moderate Burn site consisted of a large area with small patches of completely and partially burned tundra intermixed across the landscape.

  20. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  1. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  2. AmeriFlux US-An1 Anaktuvuk River Severe Burn

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hobbie, John [Marine Biological Laboratory; Rocha, Adrian [Marine Biological Laboratory; Shaver, Gaius [Marine Biological Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-An1 Anaktuvuk River Severe Burn. Site Description - The Anaktuvuk River fire on the North Slope of Alaska started on July 16, 2007 by lightning. It continued until the end of September when nearby lakes had already frozen over and burned >256,000 acres, creating a mosaic of patches that differed in burn severity. The Anaktuvuk River Severe Burn, Moderate Burn, and Unburned sites are 40 km to the west of the nearest road and were selected in late May 2008 to determine the effects of the fire on carbon, water, and energy exchanges during the growing season. Because the fire had burned through September of the previous year, initial deployment of flux towers occurred prior to any significant vegetative regrowth, and our sampling campaign captured the full growing season in 2008. The Severe Burn site consisted of a large area in which all of the green vegetation were consumed in the fire and some of the organic matter had burnt to the mineral soil in many places. A bear damaged the tower during the last week of August 2008, and it was repaired shortly after.

  3. Measurement of adiabatic burning velocity in natural gas-like mixtures

    SciTech Connect (OSTI)

    Ratna Kishore, V.; Duhan, Nipun; Ravi, M.R.; Ray, Anjan

    2008-10-15

    Experimental measurements of the adiabatic burning velocities were carried out for natural gas-like mixtures burning in air over a range of equivalence ratios at atmospheric pressure. Effect of CO{sub 2} dilution up to 60%, N{sub 2} dilution up to 40% and 25% enrichment of ethane on burning velocity of methane-air flames were studied. Heat flux method with setup similar to that of [K.J. Bosschaart, L.P.H. de Goey, Detailed analysis of the heat flux method for measuring burning velocity, Combustion and Flame 132 (2003) 170-180] was used for measurement of burning velocities. Initially experiments were done for methane-air and ethane-air mixtures at various equivalence ratios and the results were in good agreement with published data in the literature. Computations were performed using PREMIX code with GRI 3.0 reaction mechanism for all the mixtures. Predicted flame structures were used to the explain the effect of N{sub 2} and CO{sub 2} dilution on burning velocity of methane-air flames. Peak burning velocity for CH{sub 4}/CO{sub 2}-air mixtures occur near to {phi} = 1.0. (author)

  4. Polycyclic aromatic hydrocarbons at selected burning grounds at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Harris, B.W.; Minor, L.K.M.; Flucas, B.J.

    1998-02-01

    A commercial immunoassay field test (IFT) was used to rapidly assess the total concentrations of polycyclic aromatic hydrocarbons (PAHs) in the soil at selected burning grounds within the explosives corridor at Los Alamos National Laboratory (LANL). Results were compared with analyses obtained from LANL Analytical Laboratory and from a commercial laboratory. Both used the Environmental Protection Agency`s (EPA`s) Methods 8270 and 8310. EPA`s Method 8270 employs gas chromatography and mass spectral analyses, whereas EPA`s Method 8310 uses an ultraviolet detector in a high-performance liquid chromatography procedure. One crude oil sample and one diesel fuel sample, analyzed by EPA Method 8270, were included for references. On an average the IFT results were lower for standard samples and lower than the analytical laboratory results for the unknown samples. Sites were selected to determine whether the PAHs came from the material burned or the fuel used to ignite the burn, or whether they are produced by a high-temperature chemical reaction during the burn. Even though the crude oil and diesel fuel samples did contain measurable quantities of PAHs, there were no significant concentrations of PAHs detected in the ashes and soil at the burning grounds. Tests were made on fresh soil and ashes collected after a large burn and on aged soil and ashes known to have been at the site more than three years. Also analyzed were twelve-year-old samples from an inactive open burn cage.

  5. Sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1980-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  6. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C.

    1982-01-01

    A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  7. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C.

    1984-01-01

    A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  8. Optimization of perigee burns for manned interplanetary missions

    SciTech Connect (OSTI)

    Madsen, W.W.; Olson, T.S.; Siahpush, A.S.

    1991-01-01

    In choosing an engine concept for the rocket vehicle to be used for the initial manned exploration of Mars, the two main factors in the decision should be what can be feasibly built and flight qualified within approximately the next 20 years, and what level of engine performance is required to safely perform these missions. In order to reduce the overall cost in developing this next generation space transportation system, it would be desirable to have a single engine design that could be used for a broad class of missions (for example, cargo and piloted lunar and Mars missions, orbit transfers around the Earth, and robotic missions to the planets). The engine thrust that is needed for manned Mars missions is addressed in this paper. We find that these missions are best served by a thrust level around 75,000 lbf to 100,000 lbf, and a thrust-to-engine weight ratio of about three. This thrust level might best be obtained by clustering five 15,000 lbf or 20,000 lbf engines. It may be better to throttle the engines back from full power between perigee burns, rather than shutting down. 5 refs., 4 figs.

  9. Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    K. B. Campbell

    2002-04-01

    Corrective Action Unit (CAU) 490, Station 44 Burn Area is located on the Tonopah Test Range (TTR). CAU 490 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and includes for Corrective Action Sites (CASs): (1) Fire Training Area (CAS 03-56-001-03BA); (2) Station 44 Burn Area (CAS RG-56-001-RGBA); (3) Sandia Service Yard (CAS 03-58-001-03FN); and (4) Gun Propellant Burn Area (CAS 09-54-001-09L2).

  10. A Pebble-Bed Breed-and-Burn Reactor (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Technical Report: A Pebble-Bed Breed-and-Burn Reactor Citation Details In-Document Search Title: A Pebble-Bed Breed-and-Burn Reactor The primary objective of this project is to use three-dimensional fuel shuffling in order to reduce the minimum peak radiation damage of ~550 dpa present Breed-and-Burn (B&B) fast nuclear reactor cores designs (they feature 2-D fuel shuffling) call for to as close as possible to the presently accepted value of 200 dpa thereby enabling earlier commercialization

  11. Type B Accident Investigation of the Savannah River Site Arc Flash Burn

    Energy Savers [EERE]

    Injury on September 23, 2009, in the D Area Powerhouse | Department of Energy of the Savannah River Site Arc Flash Burn Injury on September 23, 2009, in the D Area Powerhouse Type B Accident Investigation of the Savannah River Site Arc Flash Burn Injury on September 23, 2009, in the D Area Powerhouse October 1, 2009 This report documents the results of the Type B Accident Investigation Board investigation of the September 23, 2009, employee burn injury at the Department of Energy (DOE)

  12. Emission and transport of cesium-137 from boreal biomass burning in the summer of 2010

    SciTech Connect (OSTI)

    Strode, S.; Ott, Lesley E.; Pawson, Steven; Bowyer, Ted W.

    2012-05-09

    While atmospheric concentrations of cesium-137 have decreased since the nuclear testing era, resuspension of Cs-137 during biomass burning provides an ongoing emission source. The summer of 2010 was an intense biomass burning season in western Russia, with high levels of particulate matter impacting air quality and visibility. A radionuclide monitoring station in western Russia shows enhanced airborne Cs-137 concentrations during the wildfire period. Since Cs-137 binds to aerosols, satellite observations of aerosols and fire occurrences can provide a global-scale context for Cs-137 emissions and transport during biomass burning events.

  13. AmeriFlux US-ARb ARM Southern Great Plains burn site- Lamont...

    Office of Scientific and Technical Information (OSTI)

    Site Description - The ARM SGP Burn site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots, ...

  14. LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON

    U.S. Energy Information Administration (EIA) Indexed Site

    81 81 LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON CALEDONIA HURON C REEK LEIC EST ER COL DEN ASH FORD INDIAN FALLS LAWTONS SAR DINIA RPD-037 -2 ...

  15. Correlation between cathode properties, burning voltage, and plasma parameters of vacuum arcs

    SciTech Connect (OSTI)

    Anders, Andre; Yotsombat, Banchob; Binder, Robert

    2001-06-15

    Burning voltages of vacuum arcs were measured for 54 cathode materials and compared with literature data. As anticipated, a correlation between the arc burning voltage and the plasma temperature was found. However, more importantly, a correlation between the cohesive energy of the cathode material and the arc burning voltage could be demonstrated. This link between a cathode material property, the cohesive energy, and a discharge property, the arc burning voltage, is essential for the operation of the vacuum arc discharge because is determines the plasma temperature. Energy balance considerations show that this {open_quotes}cohesive energy rule{close_quotes} is responsible for several other secondary relationships, such as the correlation between the mean ion charge state and the boiling temperature of the cathode. {copyright} 2001 American Institute of Physics.

  16. AmeriFlux US-ARb ARM Southern Great Plains burn site- Lamont...

    Office of Scientific and Technical Information (OSTI)

    plot was burned on 20050308. The second plot, US-ARc, was left unburned as the ... Country of Publication: United States Language: English Word Cloud More Like This Dataset File ...

  17. Laminar burning velocities and flame instabilities of butanol isomers-air mixtures

    SciTech Connect (OSTI)

    Gu, Xiaolei; Huang, Zuohua; Wu, Si; Li, Qianqian [State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049 (China)

    2010-12-15

    Laminar burning velocities and flame instabilities of the butanol-air premixed flames and its isomers are investigated using the spherically expanding flame with central ignition at initial temperature of 428 K and initial pressures of 0.10 MPa, 0.25 MPa, 0.50 MPa and 0.75 MPa. Laminar burning velocities and sensitivity factor of n-butanol-air mixtures are computed using a newly developed kinetic mechanism. Unstretched laminar burning velocity, adiabatic temperature, Lewis number, Markstein length, critical flame radius and Peclet number are obtained over a wide range of equivalence ratios. Effect of molecular structure on laminar burning velocity of the isomers of butanol is analyzed from the aspect of C-H bond dissociation energy. Study indicates that although adiabatic flame temperatures of the isomers of butanol are the same, laminar burning velocities give an obvious difference among the isomers of butanol. This indicates that molecular structure has a large influence on laminar burning velocities of the isomers of butanol. Branching (-CH3) will decrease laminar burning velocity. Hydroxyl functional group (-OH) attaching to the terminal carbon atoms gives higher laminar burning velocity compared to that attaching to the inner carbon atoms. Calculated dissociation bond energies show that terminal C-H bonds have larger bond energies than that of inner C-H bonds. n-Butanol, no branching and with hydroxyl functional group (-OH) attaching to the terminal carbon atom, gives the largest laminar burning velocity. tert-Butanol, with highly branching and hydroxyl functional group (-OH) attaching to the inner carbon atom, gives the lowest laminar burning velocity. Laminar burning velocities of iso-butanol and sec-butanol are between those of n-butanol and tert-butanol. The instant of transition to cellularity is experimentally determined for the isomers of butanol and subsequently interpreted on the basis of hydrodynamic and diffusion-thermal instabilities. Little effect on flame instability is observed for the isomers of butanol. Critical flame radii are the same for the isomers of butanol. Peclet number decreases with the increase in equivalence ratio. (author)

  18. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved

    Office of Scientific and Technical Information (OSTI)

    Economics and Resource Utilization (Technical Report) | SciTech Connect Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization Citation Details In-Document Search Title: Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power

  19. Type B Accident Investigation Report of the October 28, 2004, Burn Injuries

    Energy Savers [EERE]

    Sustained During an Office of Secure Transportation Joint Training Exercise at Fort Hunter-Liggett, CA | Department of Energy of the October 28, 2004, Burn Injuries Sustained During an Office of Secure Transportation Joint Training Exercise at Fort Hunter-Liggett, CA Type B Accident Investigation Report of the October 28, 2004, Burn Injuries Sustained During an Office of Secure Transportation Joint Training Exercise at Fort Hunter-Liggett, CA February 1, 2005 TYPE B Accident Investigation

  20. Deep Burn Develpment of Transuranic Fuel for High-Temperature Helium-Cooled

    Office of Scientific and Technical Information (OSTI)

    Reactors - July 2010 (Technical Report) | SciTech Connect Burn Develpment of Transuranic Fuel for High-Temperature Helium-Cooled Reactors - July 2010 Citation Details In-Document Search Title: Deep Burn Develpment of Transuranic Fuel for High-Temperature Helium-Cooled Reactors - July 2010 The DB Program Quarterly Progress Report for April - June 2010, ORNL/TM/2010/140, was distributed to program participants on August 4. This report discusses the following: (1) TRU (transuranic elements) HTR

  1. Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor -

    Office of Scientific and Technical Information (OSTI)

    12423 (Conference) | SciTech Connect Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423 Citation Details In-Document Search Title: Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423 Westinghouse Electric Company (referred to as 'Westinghouse' in the rest of this paper) is proposing a 'back-to-front' approach to overcome the stalemate on nuclear waste management in the US. In this approach, requirements to further the societal acceptance

  2. Systematic approach to verification and validation: High explosive burn models

    SciTech Connect (OSTI)

    Menikoff, Ralph; Scovel, Christina A.

    2012-04-16

    Most material models used in numerical simulations are based on heuristics and empirically calibrated to experimental data. For a specific model, key questions are determining its domain of applicability and assessing its relative merits compared to other models. Answering these questions should be a part of model verification and validation (V and V). Here, we focus on V and V of high explosive models. Typically, model developers implemented their model in their own hydro code and use different sets of experiments to calibrate model parameters. Rarely can one find in the literature simulation results for different models of the same experiment. Consequently, it is difficult to assess objectively the relative merits of different models. This situation results in part from the fact that experimental data is scattered through the literature (articles in journals and conference proceedings) and that the printed literature does not allow the reader to obtain data from a figure in electronic form needed to make detailed comparisons among experiments and simulations. In addition, it is very time consuming to set up and run simulations to compare different models over sufficiently many experiments to cover the range of phenomena of interest. The first difficulty could be overcome if the research community were to support an online web based database. The second difficulty can be greatly reduced by automating procedures to set up and run simulations of similar types of experiments. Moreover, automated testing would be greatly facilitated if the data files obtained from a database were in a standard format that contained key experimental parameters as meta-data in a header to the data file. To illustrate our approach to V and V, we have developed a high explosive database (HED) at LANL. It now contains a large number of shock initiation experiments. Utilizing the header information in a data file from HED, we have written scripts to generate an input file for a hydro code, run a simulation, and generate a comparison plot showing simulated and experimental velocity gauge data. These scripts are then applied to several series of experiments and to several HE burn models. The same systematic approach is applicable to other types of material models; for example, equations of state models and material strength models.

  3. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect (OSTI)

    Epstein, M. )

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ignition-type'' steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that triggers'' the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  4. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect (OSTI)

    Epstein, M.

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ``ignition-type`` steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that ``triggers`` the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  5. CORE ANALYSIS, DESIGN AND OPTIMIZATION OF A DEEP-BURN PEBBLE BED REACTOR

    SciTech Connect (OSTI)

    B. Boer; A. M. Ougouag

    2010-05-01

    Achieving a high burnup in the Deep-Burn pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. To investigate the aforementioned effects a code system using existing codes has been developed for neutronic, thermal-hydraulic and fuel depletion analysis of Deep-Burn pebble bed reactors. A core analysis of a Deep-Burn Pebble Bed Modular Reactor (400 MWth) design has been performed for two Deep-Burn fuel types and possible improvements of the design with regard to power peaking and temperature reactivity feedback are identified.

  6. Measurement and Characterization of Unregulated Emissions from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Measurement and Characterization of Unregulated Emissions from Advanced Technologies...

  7. Emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans from the open burning of household waste in barrels

    SciTech Connect (OSTI)

    Lemieux, P.M.; Lutes, C.C.; Abbott, J.A.; Aldous, K.M.

    2000-02-01

    Backyard burning of household waste in barrels is a common waste disposal practice for which pollutant emissions have not been well characterized. This study measured the emissions of several pollutants, including polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs), from burning mixtures designed to simulate waste generated by a recycling and a nonrecycling family in a 208-L (55-gal) burn barrel at the EPA's Open Burning Test Facility. This paper focuses on the PCDD/PCDF emissions and discusses the factors influencing PCDD/PCDF formation for different test burns. Four test burns were made in which the amount of waste placed in the barrel varied from 6.4 to 13.6 kg and the amount actually burned varied from 46.6% to 68.1%. Emissions of total PCDDs/PCDFs ranged between 0.0046 and 0.48 mg/kg of waste burned. Emissions are also presented in terms of 2,3,7,8-TCDD toxic equivalents. Emissions of PCDDs/PCDFs appear to correlate with both copper and hydrochloric acid emissions. The results of this study indicate that backyard burning emits more PCDDs/PCDFs on a mass of refuse burned basis than various types of municipal waste combustors (MWCs). Comparison of burn barrel emissions to emissions from a hypothetical modern MWC equipped with high-efficiency flue gas cleaning technology indicates that about 2--40 households burning their trash daily in barrels can produce average PCDD/PCDF emissions comparable to a 182,000 kg/day (200 ton/day) MWC facility. This study provides important data on a potentially significant source of emissions of PCDDs/PCDFs.

  8. Deep-Burn Modular Helium Reactor Fuel Development Plan

    SciTech Connect (OSTI)

    McEachern, D

    2002-12-02

    This document contains the workscope, schedule and cost for the technology development tasks needed to satisfy the fuel and fission product transport Design Data Needs (DDNs) for the Gas Turbine-Modular Helium Reactor (GT-MHR), operating in its role of transmuting transuranic (TRU) nuclides in spent fuel discharged from commercial light-water reactors (LWRs). In its application for transmutation, the GT-MHR is referred to as the Deep-Burn MHR (DB-MHR). This Fuel Development Plan (FDP) describes part of the overall program being undertaken by the U.S. Department of Energy (DOE), utilities, and industry to evaluate the use of the GT-MHR to transmute transuranic nuclides from spent nuclear fuel. The Fuel Development Plan (FDP) includes the work on fuel necessary to support the design and licensing of the DB-MHR. The FDP is organized into ten sections. Section 1 provides a summary of the most important features of the plan, including cost and schedule information. Section 2 describes the DB-MHR concept, the features of its fuel and the plan to develop coated particle fuel for transmutation. Section 3 describes the knowledge base for fabrication of coated particles, the experience with irradiation performance of coated particle fuels, the database for fission product transport in HTGR cores, and describes test data and calculations for the performance of coated particle fuel while in a repository. Section 4 presents the fuel performance requirements in terms of as-manufactured quality and performance of the fuel coatings under irradiation and accident conditions. These requirements are provisional because the design of the DB-MHR is in an early stage. However, the requirements are presented in this preliminary form to guide the initial work on the fuel development. Section 4 also presents limits on the irradiation conditions to which the coated particle fuel can be subjected for the core design. These limits are based on past irradiation experience. Section 5 describes the Design Data Needs to: (1) fabricate the coated particle fuel, (2) predict its performance in the reactor core, (3) predict the radionuclide release rates from the reactor core, and (4) predict the performance of spent fuel in a geological repository. The heart of this fuel development plan is Section 6, which describes the development activities proposed to satisfy the DDNs presented in Section 5. The development scope is divided into Fuel Process Development, Fuel Materials Development, Fission Product Transport, and Spent Fuel Disposal. Section 7 describes the facilities to be used. Generally, this program will utilize existing facilities. While some facilities will need to be modified, there is no requirement for major new facilities. Section 8 states the Quality Assurance requirements that will be applied to the development activities. Section 9 presents detailed costs organized by WBS and spread over time. Section 10 presents a list of the types of deliverables that will be prepared in each of the WBS elements. Four Appendices contain supplementary information on: (a) design data needs, (b) the interface with the separations plant, (c) the detailed development schedule, and (d) the detailed cost estimate.

  9. AmeriFlux US-Bn3 Bonanza Creek, 1999 Burn site near Delta Junction

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Randerson, James [University of California, Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bn3 Bonanza Creek, 1999 Burn site near Delta Junction. Site Description - The Delta Junction 1999 Burn site is located near Delta Junction, just to the north of the Alaska Range in interior Alaska. All three Delta Junction sites are within a 15-km radius of one another. Composed of a combination of alluvial outwashes, floodplains, and low terraces dissected by glacial streams originating in the nearby Alaska Range. The Donnelly Flats fire burned ~7,600 ha of black spruce (Picea mariana) during June 1999. The boles of the black spruce remained standing 3 years after the fire. 70% of the surface was not covered by vascular plants.

  10. AmeriFlux US-Bn2 Bonanza Creek, 1987 Burn site near Delta Junction

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Randerson, James [University of California, Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bn2 Bonanza Creek, 1987 Burn site near Delta Junction. Site Description - The Delta Junction 1987 Burn site is located near Delta Junction, just to the north of the Alaska Range in interior Alaska. All three Delta Junction sites are within a 15-km radius of one another. Composed of a combination of alluvial outwashes, floodplains, and low terraces dissected by glacial streams originating in the nearby Alaska Range. The Granite Creek fire burned ~20,000 ha of black spruce (Picea mariana) during 1987. Approximately half of the dead boles remained upright in 2004, while the other half had fallen over or had become entangled with other boles.

  11. Fabrication of contacts for silicon solar cells including printing burn through layers

    DOE Patents [OSTI]

    Ginley, David S; Kaydanova, Tatiana; Miedaner, Alexander; Curtis, Calvin J; Van Hest, Marinus Franciscus Antonius Maria

    2014-06-24

    A method for fabricating a contact (240) for a solar cell (200). The method includes providing a solar cell substrate (210) with a surface that is covered or includes an antireflective coating (220). For example, the substrate (210) may be positioned adjacent or proximate to an outlet of an inkjet printer (712) or other deposition device. The method continues with forming a burn through layer (230) on the coating (220) by depositing a metal oxide precursor (e.g., using an inkjet or other non-contact printing method to print or apply a volume of liquid or solution containing the precursor). The method includes forming a contact layer (240) comprising silver over or on the burn through layer (230), and then annealing is performed to electrically connect the contact layer (240) to the surface of the solar cell substrate (210) through a portion of the burn through layer (230) and the coating (220).

  12. Greenhouse gas emissions from forest, land use and biomass burning in Tanzania

    SciTech Connect (OSTI)

    Matitu, M.R.

    1994-12-31

    Carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) gases are the main contributors to the greenhouse effect that consequently results in global warming. This paper examines the sources and sinks of these gases from/to forest, land use and biomass burning and their likely contribution to climate change using IPCC/OECD methodology. Emissions have been calculated in mass units of carbon and nitrogen Emissions and uptake have been summed for each gas and the emissions converted to full molecular weights. Mismanagement of forests and land misuse have contributed much to greenhouse gas emissions in Tanzania. For example, cultivation methods, forest clearing, burning of savannah grass and indiscriminate logging (non-sustainable logging) have contributed significantly to greenhouse gas emissions. These categories contribute more than 90% of total CO{sub 2} emissions. However, the study shows that shifting cultivation, savannah burning and forest clearing for conversion to permanent crop land and pasture are the main contributors.

  13. Technical Development on Burn-up Credit for Spent LWR Fuel

    SciTech Connect (OSTI)

    Gauld, I.C.

    2001-12-26

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report.

  14. Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with Internal

    Office of Scientific and Technical Information (OSTI)

    Blankets (Technical Report) | SciTech Connect Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with Internal Blankets Citation Details In-Document Search Title: Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with Internal Blankets The objective of this proposal was to perform a detailed transient safety analysis of the Resource-Renewable BWR (RBWR) core designs using the U.S. NRC TRACE/PARCS code system. This project involved the same joint team that has performed the

  15. Comparison of direct numerical simulation of lean premixed methane-air flames with strained laminar flame calculations.

    SciTech Connect (OSTI)

    Chen, Jacqueline H.; Hawkes, Evatt R.

    2004-08-01

    Direct numerical simulation (DNS) with complex chemistry was used to study statistics of displacement and consumption speeds in turbulent lean premixed methane-air flames. The main focus of the study is an evaluation of the extent to which a turbulent flame in the thin reaction zones regime can be described by an ensemble of strained laminar flames. Conditional averages with respect to strain for displacement and consumption speeds are presented over a wide range of strain typically encountered in a turbulent flame, compared with previous studies that either made local pointwise comparisons or conditioned the data on small strain and curvature. The conditional averages for positive strains are compared with calculated data from two different canonical strained laminar configurations to determine which is the optimal representation of a laminar flame structure embedded in a turbulent flame: the reactant-to-product (R-to-P) configuration or the symmetric twin flame configuration. Displacement speed statistics are compared for the progress-variable isosurface of maximum reaction rate and an isosurface toward the fresh gases, which are relevant for both modeling and interpretation of experiment results. Displacement speeds in the inner reaction layer are found to agree very well with the laminar R-to-P calculations over a wide range of strain for higher Damkhler number conditions, well beyond the regime in which agreement was expected. For lower Damkhler numbers, a reduced response to strain is observed, consistent with previous studies and theoretical expectations. Compared with the inner layer, broader and shifted probability density functions (PDFs) of displacement speed were observed in the fresh gases, and the agreement with the R-to-P calculations deteriorated. Consumption speeds show a poorer agreement with strained laminar calculations, which is attributed to multidimensional effects and a more attenuated unsteady response to strain fluctuations; however, they also show less departure from the unstrained laminar value, suggesting that detailed modeling of this quantity may not be critical for the conditions considered. For all quantities investigated, including CO production, the R-to-P laminar configuration provides an improved description relative to the twin flame configuration, which predicts qualitatively incorrect trends and overestimates extinction.

  16. Laminar burn rates of gun propellants measured in the high-pressure strand burner

    SciTech Connect (OSTI)

    Reaugh, J. E., LLNL

    1997-10-01

    The pressure dependence of the laminar burn rate of gun propellants plays a role in the design and behavior of high-performance guns. We have begun a program to investigate the effects of processing variables on the laminar burn rates, using our high-pressure strand burner to measure these rates at pressures exceeding 700 MPa. We have burned JA2 and M43 propellant samples, provided by Dr. Arpad Juhasz, ARL, from propellant lots previously used in round-robin tests. Our results at room temperature are in accord with other measurements. In addition, we present results measured for propellant that has been preheated to 50 C before burning. We used our thermochemical equilibrium code, CHEETAH, to help interpret the simultaneous pressure and temperature measurements taken during the testing, and show examples of its use. It has been modified to provide performance measures and equations of state for the products that are familiar to the gun-propellant community users of BLAKE.

  17. Baseline Risk Assessment for the F-Area Burning/Rubble Pits and Rubble Pit

    SciTech Connect (OSTI)

    Palmer, E.

    1996-03-01

    This document provides an overview of the Savannah River Site (SRS) and a description of the F-Area Burning/Rubble Pits (BRPs) and Rubble Pit (RP) unit. It also describes the objectives and scope of the baseline risk assessment (BRA).

  18. Revisiting impacts of nuclear burning for reviving weak shocks in neutrino-driven supernovae

    SciTech Connect (OSTI)

    Nakamura, Ko; Kotake, Kei; Takiwaki, Tomoya; Nishimura, Nobuya

    2014-02-20

    We revisit potential impacts of nuclear burning on the onset of the neutrino-driven explosions of core-collapse supernovae. By changing the neutrino luminosity and its decay time to obtain parametric explosions in one- and two-dimensional (1D and 2D, respectively) models with or without a 13 isotope ? network, we study how the inclusion of nuclear burning could affect the postbounce dynamics for 4 progenitor models; 3 for 15.0 M {sub ?} stars and 1 for an 11.2 M {sub ?} star. We find that the energy supply due to the nuclear burning of infalling material behind the shock can energize the shock expansion, especially for models that produce only marginal explosions in the absence of nuclear burning. These models are energized by nuclear energy deposition when the shock front passes through the silicon-rich layer and/or later as it touches the oxygen-rich layer. Depending on the neutrino luminosity and its decay time, the diagnostic energy of the explosion increases up to a few times 10{sup 50} erg for models with nuclear burning compared to the corresponding models without. We point out that these features are most remarkable for the Limongi-Chieffi progenitor in both 1D and 2D because the progenitor model possesses a massive oxygen layer, with an inner-edge radius that is smallest among the employed progenitors, which means that the shock can touch the rich fuel on a shorter timescale after bounce. The energy difference is generally smaller (?0.1-0.2 10{sup 51} erg) in 2D than in 1D (at most ?0.6 10{sup 51} erg). This is because neutrino-driven convection and the shock instability in 2D models enhance the neutrino heating efficiency, which makes the contribution of nuclear burning relatively smaller compared to 1D models. Considering uncertainties in progenitor models, our results indicate that nuclear burning should remain one of the important ingredients to foster the onset of neutrino-driven explosions.

  19. Data summary of municipal solid waste management alternatives. Volume 3, Appendix A: Mass burn technologies

    SciTech Connect (OSTI)

    1992-10-01

    This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analyses that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.

  20. Application of spectral hole burning to the study of in vitro cellular systems

    SciTech Connect (OSTI)

    Milanovich, Nebojsa

    1999-11-08

    Chapter 1 of this thesis describes the various stages of tumor development and a multitude of diagnostic techniques used to detect cancer. Chapter 2 gives an overview of the aspects of hole burning spectroscopy important for its application to the study of cellular systems. Chapter 3 gives general descriptions of cellular organelles, structures, and physical properties that can serve as possible markers for the differentiation of normal and cancerous cells. Also described in Chapter 3 are the principles of cryobiology important for low temperature spectroscopy of cells, characterization of MCF-10F (normal) and MCF-7 (cancer) cells lines which will serve as model systems, and cellular characteristics of aluminum phthalocyanine tetrasulfonate (APT), which was used as the test probe. Chapters 4 and 5 are previously published papers by the author pertaining to the results obtained from the application of hole burning to the study of cellular systems. Chapter 4 presents the first results obtained by spectral hole burning of cellular systems and Chapter 5 gives results for the differentiation of MCF-10F and MCF-7 cells stained with APT by an external applied electric (Stark) field. A general conclusion is presented in Chapter 6. Appendices A and B provide additional characterization of the cell/probe model systems. Appendix A describes the uptake and subcellular distribution of APT in MCF-10F and MCF-7 cells and Appendix B compares the hole burning characteristics of APT in cells when the cells are in suspension and when they are examined while adhering to a glass coverslip. Appendix C presents preliminary results for a novel probe molecule, referred to as a molecular thumbtack, designed by the authors for use in future hole burning applications to cellular systems.

  1. Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

    SciTech Connect (OSTI)

    Harold, Michael; Crocker, Mark; Balakotaiah, Vemuri; Luss, Dan; Choi, Jae-Soon; Dearth, Mark; McCabe, Bob; Theis, Joe

    2013-09-30

    Oxides of nitrogen in the form of nitric oxide (NO) and nitrogen dioxide (NO{sub 2}) commonly referred to as NO{sub x}, is one of the two chemical precursors that lead to ground-level ozone, a ubiquitous air pollutant in urban areas. A major source of NO{sub x} is generated by equipment and vehicles powered by diesel engines, which have a combustion exhaust that contains NO{sub x} in the presence of excess O{sub 2}. Catalytic abatement measures that are effective for gasoline-fueled engines such as the precious metal containing three-way catalytic converter (TWC) cannot be used to treat O2-laden exhaust containing NO{sub x}. Two catalytic technologies that have emerged as effective for NO{sub x} abatement are NO{sub x} storage and reduction (NSR) and selective catalytic reduction (SCR). NSR is similar to TWC but requires much larger quantities of expensive precious metals and sophisticated periodic switching operation, while SCR requires an on-board source of ammonia which serves as the chemical reductant of the NO{sub x}. The fact that NSR produces ammonia as a byproduct while SCR requires ammonia to work has led to interest in combining the two together to avoid the need for the cumbersome ammonia generation system. In this project a comprehensive study was carried out of the fundamental aspects and application feasibility of combined NSR/SCR. The project team, which included university, industry, and national lab researchers, investigated the kinetics and mechanistic features of the underlying chemistry in the lean NOx trap (LNT) wherein NSR was carried out, with particular focus on identifying the operating conditions such as temperature and catalytic properties which lead to the production of ammonia in the LNT. The performance features of SCR on both model and commercial catalysts focused on the synergy between the LNT and SCR converters in terms of utilizing the upstream-generated ammonia and alternative reductants such as propylene, representing the hydrocarbon component of diesel exhaust. First-principle models of the LNT and SCR converters, which utilized the mechanistic-based kinetics and realistic treatments of the flow and transport processes, in combination with bench-scale reactor experiments helped to identify the best designs for combining the NSR and SCR catalysts over a range of operating conditions encountered in practice. This included catalysts having multiple zones and layers and additives with the focus on determining the minimal precious metal component needed to meet emission abatement targets over a wide range of operating conditions. The findings from this study provide diesel vehicle and catalyst companies valuable information to develop more cost effective diesel emissions catalysts which helps to expand the use of more fuel efficient diesel power. The fundamental modeling and experimental tools and findings from this project can be applied to catalyst technologies used in the energy and chemical industries. Finally, the project also led to training of several doctoral students who were placed in research jobs in industry and academia.

  2. A Simulation of the Effects of Varying Repetition Rate and Pulse Width of Nanosecond Discharges on Premixed Lean Methane-Air Combustion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bak, Moon Soo; Cappelli, Mark A.

    2012-01-01

    Two-dimensional kinetic simulation has been carried out to investigate the effects of repetition rate and pulse width of nanosecond repetitively pulsed discharges on stabilizing premixed lean methane-air combustion. The repetition rate and pulse width are varied from 10 kHz to 50 kHz and from 9 ns to 2 ns while the total power is kept constant. The lower repetition rates provide larger amounts of radicals such as O, H, and OH. However, the effect on stabilization is found to be the same for all of the tested repetition rates. The shorter pulse width is found to favor the production of species in higher electronicmore » states, but the varying effects on stabilization are also found to be small. Our results indicate that the total deposited power is the critical element that determines the extent of stabilization over this range of discharge properties studied.« less

  3. A lean methane premixed laminar flame doped with components of diesel fuel part III: Indane and comparison between n-butylbenzene, n-propylcyclohexane and indane

    SciTech Connect (OSTI)

    Pousse, E.; Tian, Z.Y.; Glaude, P.A.; Fournet, R.; Battin-Leclerc, F. [Laboratoire des Reactions et de Genie des Procedes, CNRS, Nancy Universite, 1 rue Grandville, BP 20451, 54001 NANCY Cedex (France)

    2010-07-15

    To better understand the chemistry of the combustion of components of diesel fuel, the structure of a laminar lean premixed methane flame doped with indane has been investigated. The inlet gases contained 7.1% (molar) of methane, 36.8% of oxygen and 0.9% of indane corresponding to an equivalence ratio of 0.67 and a ratio C{sub 10}H{sub 14}/CH{sub 4} of 12.8%. The flame has been stabilized on a burner at a pressure of 6.7 kPa (50 Torr) using argon as diluent, with a gas velocity at the burner of 49.1 cm s{sup -1} at 333 K. Quantified species included the usual methane C{sub 0}-C{sub 2} combustion products, but also 16 C{sub 3}-C{sub 5} non-aromatic hydrocarbons, 6 C{sub 1}-C{sub 3} non-aromatic oxygenated compounds, as well as 22 aromatic products, namely benzene, toluene, xylenes, phenylacetylene, ethylbenzene, styrene, propenylbenzene, allylbenzene, n-propylbenzene, methylstyrenes, ethyltoluenes, trimethylbenzenes, n-butylbenzene, dimethylethylbenzene, indene, methylindenes, methylindane, benzocyclobutene, naphthalene, phenol, benzaldehyde, and benzofuran. A new mechanism for the oxidation of indane was proposed whose predictions were in satisfactory agreement with measured species profiles in both flames and jet-stirred reactor experiments. The main reaction pathways of consumption of indane have been derived from flow rate analyses in the two types of reactors. A comparison of the effect of the addition of three components of diesel fuel, namely indane, n-butylbenzene and n-propylcyclohexane (parts I and II of this series of paper), on the structure of a laminar lean premixed methane flame is also presented. (author)

  4. Preliminary design of ultra-long cycle fast reactor employing breed-and-burn strategy

    SciTech Connect (OSTI)

    Tak, T. W.; Yu, H.; Kim, J. H.; Lee, D.; Kim, T. K.

    2012-07-01

    A new design of ultra-long cycle fast reactor with power rate of 1000 MWe (UCFR) has been developed based on the strategy of breed-and burn. The bottom region of the core with low enriched uranium (LEU) plays a role of igniter of the core burning and the upper natural uranium (NU) region acts as blanket for breeding. Fissile materials are bred in the blanket and the active core moves upward at a speed of 5.4 cm/year. Through the core depletion calculation using Monte Carlo code, McCARD, it is confirmed that a full power operation of 60 years without refueling is feasible. Core performance characteristics have been evaluated in terms of axial/radial power shapes, reactivity feedback coefficients, etc. This design will serve as a base model for further design study of UCFRs using LWR spent fuels in the blanket region. (authors)

  5. K Basins floor sludge retrieval system knockout pot basket fuel burn accident

    SciTech Connect (OSTI)

    HUNT, J.W.

    1998-11-11

    The K Basins Sludge Retrieval System Preliminary Hazard Analysis Report (HNF-2676) identified and categorized a series of potential accidents associated with K Basins Sludge Retrieval System design and operation. The fuel burn accident was of concern with respect to the potential release of contamination resulting from a runaway chemical reaction of the uranium fuel in a knockout pot basket suspended in the air. The unmitigated radiological dose to an offsite receptor from this fuel burn accident is calculated to be much less than the offsite risk evaluation guidelines for anticipated events. However, because of potential radiation exposure to the facility worker, this accident is precluded with a safety significant lifting device that will prevent the monorail hoist from lifting the knockout pot basket out of the K Basin water pool.

  6. Rice straw burning in Southeast Asia as a source of CO and COS to the atmosphere

    SciTech Connect (OSTI)

    Nguyen, B.C.; Mihalopoulos, N.; Putaud, J.P. [Centre des Faibles Radioactivites, Gif-sur-Yvette (France)

    1994-08-20

    This paper discusses the results of aerosol monitoring field tests conducted in four locations in Viet Nam during 1992 and 1993. Atmospheric samples were collected during the dry and wet seasons during the time when rice straw burning was taking place in the agricultural rangelands. The samples were analyzed for carbon monoxide, carbon dioxide, and carbonyl sulfide. Experimental methods and implications of the analytical results are described. 21 refs., 2 figs., 3 tabs.

  7. 2012 ARPA-E Energy Innovation Summit Keynote Presentation (Ursula Burns, Xerox Corporation)

    SciTech Connect (OSTI)

    Burns, Ursula

    2012-02-29

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. Ursula Burns, Chairman and CEO of the Xerox Corporation, gave the second keynote address of the third day's sessions on February 29.

  8. The role of actinide burning and the Integral Fast Reactor in the future of nuclear power

    SciTech Connect (OSTI)

    Hollaway, W.R.; Lidsky, L.M.; Miller, M.M.

    1990-12-01

    A preliminary assessment is made of the potential role of actinide burning and the Integral Fast Reactor (IFR) in the future of nuclear power. The development of a usable actinide burning strategy could be an important factor in the acceptance and implementation of a next generation of nuclear power. First, the need for nuclear generating capacity is established through the analysis of energy and electricity demand forecasting models which cover the spectrum of bias from anti-nuclear to pro-nuclear. The analyses take into account the issues of global warming and the potential for technological advances in energy efficiency. We conclude, as do many others, that there will almost certainly be a need for substantial nuclear power capacity in the 2000--2030 time frame. We point out also that any reprocessing scheme will open up proliferation-related questions which can only be assessed in very specific contexts. The focus of this report is on the fuel cycle impacts of actinide burning. Scenarios are developed for the deployment of future nuclear generating capacity which exploit the advantages of actinide partitioning and actinide burning. Three alternative reactor designs are utilized in these future scenarios: The Light Water Reactor (LWR); the Modular Gas-Cooled Reactor (MGR); and the Integral Fast Reactor (FR). Each of these alternative reactor designs is described in some detail, with specific emphasis on their spent fuel streams and the back-end of the nuclear fuel cycle. Four separation and partitioning processes are utilized in building the future nuclear power scenarios: Thermal reactor spent fuel preprocessing to reduce the ceramic oxide spent fuel to metallic form, the conventional PUREX process, the TRUEX process, and pyrometallurgical reprocessing.

  9. Evaluation and Parameter Analysis of Burn up Calculations for the Assessment of Radioactive Waste - 13187

    SciTech Connect (OSTI)

    Fast, Ivan; Aksyutina, Yuliya; Tietze-Jaensch, Holger

    2013-07-01

    Burn up calculations facilitate a determination of the composition and nuclear inventory of spent nuclear fuel, if operational history is known. In case this information is not available, the total nuclear inventory can be determined by means of destructive or, even on industrial scale, nondestructive measurement methods. For non-destructive measurements however only a few easy-to-measure, so-called key nuclides, are determined due to their characteristic gamma lines or neutron emission. From these measured activities the fuel burn up and cooling time are derived to facilitate the numerical inventory determination of spent fuel elements. Most regulatory bodies require an independent assessment of nuclear waste properties and their documentation. Prominent part of this assessment is a consistency check of inventory declaration. The waste packages often contain wastes from different types of spent fuels of different history and information about the secondary reactor parameters may not be available. In this case the so-called characteristic fuel burn up and cooling time are determined. These values are obtained from a correlations involving key-nuclides with a certain bandwidth, thus with upper and lower limits. The bandwidth is strongly dependent on secondary reactor parameter such as initial enrichment, temperature and density of the fuel and moderator, hence the reactor type, fuel element geometry and plant operation history. The purpose of our investigation is to look into the scaling and correlation limitations, to define and verify the range of validity and to scrutinize the dependencies and propagation of uncertainties that affect the waste inventory declarations and their independent verification. This is accomplished by numerical assessment and simulation of waste production using well accepted codes SCALE 6.0 and 6.1 to simulate the cooling time and burn up of a spent fuel element. The simulations are benchmarked against spent fuel from the real reactor Obrigheim in Germany for which sufficiently precise experimental reference data are available. (authors)

  10. ADVANCED BURNING STAGES AND FATE OF 8-10 M{sub Sun} STARS

    SciTech Connect (OSTI)

    Jones, S.; Hirschi, R.; Nomoto, K.; Fischer, T.; Martinez-Pinedo, G.; Timmes, F. X.; Herwig, F.; Paxton, B.; Toki, H.; Suzuki, T.; Lam, Y. H.; Bertolli, M. G.

    2013-08-01

    The stellar mass range 8 {approx}< M/M{sub Sun} {approx}< 12 corresponds to the most massive asymptotic giant branch (AGB) stars and the most numerous massive stars. It is host to a variety of supernova (SN) progenitors and is therefore very important for galactic chemical evolution and stellar population studies. In this paper, we study the transition from super-AGB (SAGB) star to massive star and find that a propagating neon-oxygen-burning shell is common to both the most massive electron capture supernova (EC-SN) progenitors and the lowest mass iron-core-collapse supernova (FeCCSN) progenitors. Of the models that ignite neon-burning off-center, the 9.5 M{sub Sun} star would evolve to an FeCCSN after the neon-burning shell propagates to the center, as in previous studies. The neon-burning shell in the 8.8 M{sub Sun} model, however, fails to reach the center as the URCA process and an extended (0.6 M{sub Sun }) region of low Y{sub e} (0.48) in the outer part of the core begin to dominate the late evolution; the model evolves to an EC-SN. This is the first study to follow the most massive EC-SN progenitors to collapse, representing an evolutionary path to EC-SN in addition to that from SAGB stars undergoing thermal pulses (TPs). We also present models of an 8.75 M{sub Sun} SAGB star through its entire TP phase until electron captures on {sup 20}Ne begin at its center and of a 12 M{sub Sun} star up to the iron core collapse. We discuss key uncertainties and how the different pathways to collapse affect the pre-SN structure. Finally, we compare our results to the observed neutron star mass distribution.

  11. 2012 ARPA-E Energy Innovation Summit Keynote Presentation (Ursula Burns, Xerox Corporation)

    ScienceCinema (OSTI)

    Burns, Ursula (Xerox Corporation, Chairman and CEO)

    2014-04-11

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. Ursula Burns, Chairman and CEO of the Xerox Corporation, gave the second keynote address of the third day's sessions on February 29.

  12. Process for clean-burning fuel from low-rank coal

    DOE Patents [OSTI]

    Merriam, Norman W. (Laramie, WY); Sethi, Vijay (Laramie, WY); Brecher, Lee E. (Laramie, WY)

    1994-01-01

    A process for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage.

  13. DOE/SC-ARM-13-014 Biomass Burning Observation Project Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Biomass Burning Observation Project Science Plan LI Kleinman AJ Sedlacek September 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  14. Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation

    SciTech Connect (OSTI)

    Jerzembeck, S.; Peters, N. [RWTH, Aachen (Germany); Pepiot-Desjardins, P.; Pitsch, H. [Department of Mechanical Engineering, Stanford University, CA (United States)

    2009-02-15

    Spherical flames of n-heptane, iso-octane, PRF 87 and gasoline/air mixtures are experimentally investigated to determine laminar burning velocities and Markstein lengths under engine-relevant conditions by using the constant volume bomb method. Data are obtained for an initial temperature of 373 K, equivalence ratios varying from {phi}=0.7 to {phi}=1.2, and initial pressures from 10 to 25 bar. To track the flame front in the vessel a dark field He-Ne laser Schlieren measurement technique and digital image processing were used. The propagating speed with respect to the burned gases and the stretch rate are determined from the rate of change of the flame radius. The laminar burning velocities are obtained through a linear extrapolation to zero stretch. The experimentally determined Markstein numbers are compared to theoretical predictions. A reduced chemical kinetic mechanism for n-heptane and iso-octane was derived from the Lawrence Livermore comprehensive mechanisms. This mechanism was validated for ignition delay times and flame propagation at low and high pressures. In summary an overall good agreement with the various experimental data sets used in the validation was obtained. (author)

  15. Quantitative IR Spectrum and Vibrational Assignments for Glycolaldehyde Vapor: Glycolaldehyde Measurements in Biomass Burning Plumes

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Sams, Robert L.; Profeta, Luisa T.; Akagi, Sheryl; Burling, Ian R.; Yokelson, Robert J.; Williams, Stephen D.

    2013-04-15

    Glycolaldehyde (GA, 2-hydroxyethanal, C2H4O2) is a semi-volatile molecule of atmospheric importance, recently proposed as a precursor in the formation of aqueous-phase secondary organic aerosol (SOA). There are few methods to measure glycolaldehyde vapor, but infrared spectroscopy has been used successfully. Using vetted protocols we have completed the first assignment of all fundamental vibrational modes and derived quantitative IR absorption band strengths using both neat and pressure-broadened GA vapor. Even though GA is problematic due to its propensity to both dimerize and condense, our intensities agree well with the few previously published values. Using the reference ?10 band Q-branch at 860.51 cm-1, we have also determined GA mixing ratios in biomass burning plumes generated by field and laboratory burns of fuels from the southeastern and southwestern United States, including the first field measurements of glycolaldehyde in smoke. The GA emission factors were anti-correlated with modified combustion efficiency confirming release of GA from smoldering combustion. The GA emission factors (g of GA emitted per kg dry biomass burned on a dry mass basis) had a low dependence on fuel type consistent with the production mechanism being pyrolysis of cellulose. GA was emitted at 0.23 0.13% of CO from field fires and we calculate that it accounts for ~18% of the aqueous-phase SOA precursors that we were able to measure.

  16. The smoke-fireplume model : tool for eventual application to prescribed burns and wildland fires.

    SciTech Connect (OSTI)

    Brown, D. F.; Dunn, W. E.; Lazaro, M. A.; Policastro, A. J.

    1999-08-17

    Land managers are increasingly implementing strategies that employ the use of fire in prescribed burns to sustain ecosystems and plan to sustain the rate of increase in its use over the next five years. In planning and executing expanded use of fire in wildland treatment it is important to estimate the human health and safety consequences, property damage, and the extent of visibility degradation from the resulting conflagration-pyrolysis gases, soot and smoke generated during flaming, smoldering and/or glowing fires. Traditional approaches have often employed the analysis of weather observations and forecasts to determine whether a prescribed burn will affect populations, property, or protected Class I areas. However, the complexity of the problem lends itself to advanced PC-based models that are simple to use for both calculating the emissions from the burning of wildland fuels and the downwind dispersion of smoke and other products of pyrolysis, distillation, and/or fuels combustion. These models will need to address the effects of residual smoldering combustion, including plume dynamics and optical effects. In this paper, we discuss a suite of tools that can be applied for analyzing dispersion. These tools include the dispersion models FIREPLUME and SMOKE, together with the meteorological preprocessor SEBMET.

  17. Evaluation of Powertrain Options and Component Sizing for MD...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drive Cycles 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ... Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report

  18. Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace060amar2013o.pdf More Documents & Publications...

  19. Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace060amar2012o.pdf More Documents & Publications...

  20. Heavy Duty Powertrain System Optimization and Emissions Test Procedure Development

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Look-ahead driver feedback and powertrain management

    SciTech Connect (OSTI)

    Verma, Rajeev

    2014-12-31

    Commercial medium and heavy vehicles, though only a small portion of total vehicle population, play a significant role in energy consumption. In 2012, these vehicles accounted for about 5775.5 trillion btu of energy consumption and 408.8 million tons of CO2 emissions annually, which is a quarter of the total energy burden of highway transportation in the United States [1]. This number is expected to surpass passenger car fuel use within the next few decades. In the meantime, most commercial vehicle fleets are running at a very low profit margin. It is a well known fact that fuel economy can vary significantly between drivers, even when they operate the same vehicle on the same route. According to the US Environmental Protection Agency (EPA) and Natural Resource Canada (NRCan), there is up to 35% fuel economy difference between drivers within the same commercial fleet [2] [3], [4]. Similar results were obtained from a Field Operation Test conducted by Eaton Corporation [5]. During this test as much as 30% fuel economy difference was observed among pick-up-and-delivery drivers and 11% difference was observed among line-haul drivers. The driver variability can be attributed to the fact that different drivers react differently to driving conditions such as road grade, traffic, speed limits, etc. For instance, analysis of over 600k miles of naturalistic heavy duty truck driving data [5] indicates that an experienced driver anticipates a downhill and eases up on the throttle to save fuel while an inexperienced driver lacks this judgment.

  2. Integrated Vehicle and Powertrain Technology for EPA 2010 and...

    Broader source: Energy.gov (indexed) [DOE]

    over Transient Operation Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions State-of-the-Art and Emergin Truck Engine ...

  3. Integrated Powertrain and Vehicle Technologies for Fuel Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Heavy-Duty Engine Technology for High Thermal Efficiency at EPA 2010 Emissions Regulations Navistar-Driving efficiency with integrated technology High Fuel Economy Heavy-Duty Truck ...

  4. Volvo SuperTruck- Powertrain Technologies for Efficiency Improvement

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Integrated Vehicle and Powertrain Technology for EPA 2010 and Beyond

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  6. Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  7. Look-Ahead Driver Feedback and Powertrain Management

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. The ArvinMeritor Dual Mode Hybrid Powertrain (DMHP): Opportunities...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss062smith2011p.pdf More Documents & Publications Vehicle Systems Integration (VSI) Research ...

  9. Volvo SuperTruck- Powertrain Technologies for Efficiency Improvement

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Powertrain Trends and Future Potential | Department of Energy

    Office of Environmental Management (EM)

    ISO New England Comments on the National Electric Transmission Congestion Study Department of Energy Workshop Philadelphia, PA December 6, 2011 Michael I. Henderson Director Regional Planning and Coordination, System Planning DOE Workshop - December 6, 2011 © 2011 ISO New England Inc. Key Facts About New England's Electric Power System and Wholesale Electricity Markets 2 6.5 million households and businesses; population 14 million Over 300 generators totaling 32,000 MW of capacity Over 8,000

  11. Central Shops Burning/Rubble Pit 631-6G Additonal Sampling and Monitor Well Installation Report

    SciTech Connect (OSTI)

    Palmer, E.

    1995-02-01

    The Central Shops Burning/Rubble Pit 631-6G was constructed in 1951 as an unlined earthen pit in surficial sediments for disposal and incineration of potentially hazardous substances, such as metals and organic solvents.

  12. Linkages from DOE's Vehicle Technologies R&D in Advanced Combustion to More Efficient, Cleaner-Burning Engines

    Broader source: Energy.gov [DOE]

    Linkages from DOE’s Vehicle Technologies R&D in Advanced Combustion to More Efficient, Cleaner-Burning Engines, a report from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

  13. Thorium Fuel Options for Sustained Transuranic Burning in Pressurized Water Reactors - 12381

    SciTech Connect (OSTI)

    Rahman, Fariz Abdul; Lee, John C. [University of Michigan, Ann Arbor, MI (United States); Franceschini, Fausto; Wenner, Michael [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2012-07-01

    As described in companion papers, Westinghouse is proposing the adoption of a thorium-based fuel cycle to burn the transuranics (TRU) contained in the current Used Nuclear Fuel (UNF) and transition towards a less radio-toxic high level waste. A combination of both light water reactors (LWR) and fast reactors (FR) is envisaged for the task, with the emphasis initially posed on their TRU burning capability and eventually to their self-sufficiency. Given the many technical challenges and development times related to the deployment of TRU burners fast reactors, an interim solution making best use of the current resources to initiate burning the legacy TRU inventory while developing and testing some technologies of later use is desirable. In this perspective, a portion of the LWR fleet can be used to start burning the legacy TRUs using Th-based fuels compatible with the current plants and operational features. This analysis focuses on a typical 4-loop PWR, with 17x17 fuel assembly design and TRUs (or Pu) admixed with Th (similar to U-MOX fuel, but with Th instead of U). Global calculations of the core were represented with unit assembly simulations using the Linear Reactivity Model (LRM). Several assembly configurations have been developed to offer two options that can be attractive during the TRU transmutation campaign: maximization of the TRU transmutation rate and capability for TRU multi-recycling, to extend the option of TRU recycling in LWR until the FR is available. Homogeneous as well as heterogeneous assembly configurations have been developed with various recycling schemes (Pu recycle, TRU recycle, TRU and in-bred U recycle etc.). Oxide as well as nitride fuels have been examined. This enabled an assessment of the potential for burning and multi-recycling TRU in a Th-based fuel PWR to compare against other more typical alternatives (U-MOX and variations thereof). Results will be shown indicating that Th-based PWR fuel is a promising option to multi-recycle and burn TRU in a thermal spectrum, while satisfying top-level operational and safety constraints. Various assembly designs have been proposed to assess the TRU burning potential of Th-based fuel in PWRs. In addition to typical homogeneous loading patterns, heterogeneous configurations exploiting the breeding potential of thorium to enable multiple cycles of TRU irradiation and burning have been devised. The homogeneous assembly design, with all pins featuring TRU in Th, has the benefit of a simple loading pattern and the highest rate of TRU transmutation, but it can be used only for a few cycles due to the rapid rise in the TRU content of the recycled fuel, which challenges reactivity control, safety coefficients and fuel handling. Due to its simple loading pattern, such assembly design can be used as the first step of Th implementation, achieving up to 3 times larger TRU transmutation rate than conventional U-MOX, assuming same fraction of MOX assemblies in the core. As the next step in thorium implementation, heterogeneous assemblies featuring a mixed array of Th-U and Th-U-TRU pins, where the U is in-bred from Th, have been proposed. These designs have the potential to enable burning an external supply of TRU through multiple cycles of irradiation, recovery (via reprocessing) and recycling of the residual actinides at the end of each irradiation cycle. This is achieved thanks to a larger breeding of U from Th in the heterogeneous assemblies, which reduces the TRU supply and thus mitigates the increase in the TRU core inventory for the multi-recycled fuel. While on an individual cycle basis the amount of TRU burned in the heterogeneous assembly is reduced with respect to the homogeneous design, TRU burning rates higher than single-pass U-MOX fuel can still be achieved, with the additional benefits of a multi-cycle transmutation campaign recycling all TRU isotopes. Nitride fuel, due its higher density and U breeding potential, together with its better thermal properties, ideally suits the objectives and constraints of the heterogeneous assemblies. However, signi

  14. Method for correcting for isotope burn-in effects in fission neutron dosimeters

    DOE Patents [OSTI]

    Gold, Raymond; McElroy, William N.

    1988-01-01

    A method is described for correcting for effect of isotope burn-in in fission neutron dosimeters. Two quantities are measured in order to quantify the "burn-in" contribution, namely P.sub.Z',A', the amount of (Z', A') isotope that is burned-in, and F.sub.Z', A', the fissions per unit volume produced in the (Z', A') isotope. To measure P.sub.Z', A', two solid state track recorder fission deposits are prepared from the very same material that comprises the fission neutron dosimeter, and the mass and mass density are measured. One of these deposits is exposed along with the fission neutron dosimeter, whereas the second deposit is subsequently used for observation of background. P.sub.Z', A' is then determined by conducting a second irradiation, wherein both the irradiated and unirradiated fission deposits are used in solid state track recorder dosimeters for observation of the absolute number of fissions per unit volume. The difference between the latter determines P.sub.Z', A' since the thermal neutron cross section is known. F.sub.Z', A' is obtained by using a fission neutron dosimeter for this specific isotope, which is exposed along with the original threshold fission neutron dosimeter to experience the same neutron flux-time history at the same location. In order to determine the fissions per unit volume produced in the isotope (Z', A') as it ingrows during the irradiation, B.sub.Z', A', from these observations, the neutron field must generally be either time independent or a separable function of time t and neutron energy E.

  15. AmeriFlux US-Bn1 Bonanza Creek, 1920 Burn site near Delta Junction

    SciTech Connect (OSTI)

    Randerson, James

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bn1 Bonanza Creek, 1920 Burn site near Delta Junction. Site Description - The Delta Junction 1920 Control site is located near Delta Junction, just to the north of the Alaska Range in interior Alaska. All three Delta Junction sites are within a 15-km radius of one another. Composed of a combination of alluvial outwashes, floodplains, and low terraces dissected by glacial streams originating in the nearby Alaska Range. In 2001, total aboveground biomass consisted almost entirely of black spruce (Picea mariana).

  16. LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON

    U.S. Energy Information Administration (EIA) Indexed Site

    81 § ¨ ¦ 81 LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON CALEDONIA HURON C REEK LEIC EST ER COL DEN ASH FORD INDIAN FALLS LAWTONS SAR DINIA RPD-037 -2 GLENWOOD PU LASKI PAVILION CON CORD COL LINS N ELM A ORC HARD PARK-H AMBU RG DANLEY CORNERS ST ILLWAT ER CHAFF EE-ARCAD E FAYETT E-WATERLOO LAKEVIEW JAVA SEN EC A W ELLER Y AU RORA E ZOAR BU FFALO TIOGA SILVER LAKE AKR ON ROM E RAT HBON E ALM A BET HANY WYOMING ULYSSES BR ANCH W SAN DY CREEK COL LINS BLOOMFIELD E LEBANON

  17. Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423

    SciTech Connect (OSTI)

    Wenner, Michael; Franceschini, Fausto; Ferroni, Paolo; Sartori, Alberto; Ricotti, Marco

    2012-07-01

    Westinghouse Electric Company (referred to as 'Westinghouse' in the rest of this paper) is proposing a 'back-to-front' approach to overcome the stalemate on nuclear waste management in the US. In this approach, requirements to further the societal acceptance of nuclear waste are such that the ultimate health hazard resulting from the waste package is 'as low as reasonably achievable'. Societal acceptability of nuclear waste can be enhanced by reducing the long-term radiotoxicity of the waste, which is currently driven primarily by the protracted radiotoxicity of the transuranic (TRU) isotopes. Therefore, a transition to a more benign radioactive waste can be accomplished by a fuel cycle capable of consuming the stockpile of TRU 'legacy' waste contained in the LWR Used Nuclear Fuel (UNF) while generating waste which is significantly less radio-toxic than that produced by the current open U-based fuel cycle (once through and variations thereof). Investigation of a fast reactor (FR) operating on a thorium-based fuel cycle, as opposed to the traditional uranium-based is performed. Due to a combination between its neutronic properties and its low position in the actinide chain, thorium not only burns the legacy TRU waste, but it does so with a minimal production of 'new' TRUs. The effectiveness of a thorium-based fast reactor to burn legacy TRU and its flexibility to incorporate various fuels and recycle schemes according to the evolving needs of the transmutation scenario have been investigated. Specifically, the potential for a high TRU burning rate, high U-233 generation rate if so desired and low concurrent production of TRU have been used as metrics for the examined cycles. Core physics simulations of a fast reactor core running on thorium-based fuels and burning an external TRU feed supply have been carried out over multiple cycles of irradiation, separation and reprocessing. The TRU burning capability as well as the core isotopic content have been characterized. Results will be presented showing the potential for thorium to reach a high TRU transmutation rate over a wide variety of fuel types (oxide, metal, nitride and carbide) and transmutation schemes (recycle or partition of in-bred U-233). In addition, a sustainable scheme has been devised to burn the TRU accumulated in the core inventory once the legacy TRU supply has been exhausted, thereby achieving long-term virtually TRU-free. A comprehensive 'back-to-front' approach to the fuel cycle has recently been proposed by Westinghouse which emphasizes achieving 'acceptable', low-radiotoxicity, high-level waste, with the intent not only to satisfy all technical constraints but also to improve public acceptance of nuclear energy. Following this approach, the thorium fuel cycle, due to its low radiotoxicity and high potential for TRU transmutation has been selected as a promising solution. Additional studies not shown here have shown significant reduction of decay heat. The TRU burning potential of the Th-based fuel cycle has been illustrated with a variety of fuel types, using the Toshiba ARR to perform the analysis, including scenarios with continued LWR operation of either uranium fueled or thorium fueled LWRs. These scenarios will afford overall reduction in actinide radiotoxicity, however when the TRU supply is exhausted, a continued U- 235 LWR operation must be assumed to provide TRU makeup feed. This scenario will never reach the characteristically low TRU content of a closed thorium fuel cycle with its associated potential benefits on waste radiotoxicity, as exemplified by the transition scenario studied. At present, the cases studied indicate ThC as a potential fuel for maximizing TRU burning, while ThN with nitrogen enriched to 95% N-15 shows the highest breeding potential. As a result, a transition scenario with ThN was developed to show that a sustainable, closed Th-cycle can be achieved starting from burning the legacy TRU stock and completing the transmutation of the residual TRU remaining in the core inventory after the legacy TRU external supply has been exhausted. The radiotoxicity of the actinide waste during the various phases has been characterized, showing the beneficial effect of the decreasing content of TRU in the recycled fuel as the transition to a closed Th-based fuel cycle is undertaken. Due to the back-to-front nature of the proposed methodology, detailed designs are not the first step taken when assessing a fuel cycle scenario potential. As a result, design refinement is still required and should be expected in future studies. Moreover, significant safety assessment, including determination of associated reactivity coefficients, fuel and reprocessing feasibility studies and economic assessments will still be needed for a more comprehensive and meaningful comparison against other potential solutions. With the above considerations in mind, the potential advantages of thorium fuelled reactors on HLW management optimization lead us to believe that thorium fuelled reactor systems can play a significant role in the future and deserve further consideration. (authors)

  18. Method of burning sulfur-containing fuels in a fluidized bed boiler

    DOE Patents [OSTI]

    Jones, Brian C.

    1982-01-01

    A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

  19. Process for clean-burning fuel from low-rank coal

    DOE Patents [OSTI]

    Merriam, N.W.; Sethi, V.; Brecher, L.E.

    1994-06-21

    A process is described for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage. 1 fig.

  20. Defining the Low Cloud Response to Biomass Burning Aerosols over the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southeast Atlantic | Argonne National Laboratory Defining the Low Cloud Response to Biomass Burning Aerosols over the Southeast Atlantic May 26, 2016 11:00AM to 12:00PM Presenter Paquita Zuidema, University of Miami Location Building 240, Room 4301 Type Seminar Series EVS Seminar Abstract: The southeast Atlantic is home to one of the largest stratocumulus decks on the planet. It is also unique in that it is overlain by shortwave-absorbing aerosols during the months when the cloud deck is

  1. Personal PM2.5 exposure among wildland firefighters working at prescribed forest burns in southeastern United States.

    SciTech Connect (OSTI)

    Adetona, Olorunfemi; Dunn, Kevin; Hall, Daniel, B.; Achtemeier, Gary; Stock, Allison; Naeher, Luke, P.

    2011-07-15

    This study investigated occupational exposure to wood and vegetative smoke in a group of 28 forest firefighters at prescribed forest burns in a southeastern U.S. forest during the winters of 2003-2005. During burn activities, 203 individual person-day PM{sub 2.5} and 149 individual person-day CO samples were collected; during non-burn activities, 37 person-day PM{sub 2.5} samples were collected as controls. Time-activity diaries and post-work shift questionnaires were administered to identify factors influencing smoke exposure and to determine how accurately the firefighters qualitative assessment estimated their personal level of smoke exposure with discrete responses: 'none' or 'very little,' 'low,' 'moderate,' 'high,' and 'very high.' An average of 6.7 firefighters were monitored per burn, with samples collected on 30 burn days and 7 non-burn days. Size of burn plots ranged from 1-2745 acres (avg = 687.8). Duration of work shift ranged from 6.8-19.4 hr (avg = 10.3 hr) on burn days. Concentration of PM{sub 2.5} ranged from 5.9-2673 {mu}g/m{sup 3} on burn days. Geometric mean PM{sub 2.5} exposure was 280 {mu}g/m{sup 3} (95% CL = 140, 557 {mu}g/m{sup 3}, n = 177) for burn day samples, and 16 {mu}g/m{sup 3} (95% CL = 10, 26 {mu}g/m{sup 3}, n = 35) on non-burn days. Average measured PM{sub 2.5} differed across levels of the firefighters categorical self-assessments of exposure (p < 0.0001): none to very little = 120 {mu}g/m{sup 3} (95% CL = 71, 203 {mu}g/m{sup 3}) and high to very high = 664 {mu}g/m{sup 3} (95% CL = 373, 1185 {mu}g/m{sup 3}); p < 0.0001 on burn days. Time-weighted average PM{sub 2.5} and personal CO averaged over the run times of PM{sub 2.5} pumps were correlated (correlation coefficient estimate, r = 0.79; CLs: 0.72, 0.85). Overall occupational exposures to particulate matter were low, but results indicate that exposure could exceed the ACGIH{reg_sign}-recommended threshold limit value of 3 mg/m{sup 3} for respirable particulate matter in a few extreme situations. Self-assessed exposure levels agreed with measured concentrations of PM{sub 2.5}. Correlation analysis shows that either PM{sub 2.5} or CO could be used as a surrogate measure of exposure to woodsmoke at prescribed burns.

  2. A reduced mechanism for methane and one-step rate expressions for fuel-lean catalytic combustion of small alkanes on noble metals

    SciTech Connect (OSTI)

    Deshmukh, S.R.; Vlachos, D.G.

    2007-06-15

    A reduced mechanism and a one-step rate expression for fuel-lean methane/air catalytic combustion on an Rh catalyst are proposed. These are developed from a detailed microkinetic model using a computer-aided model reduction strategy that employs reaction path analysis, sensitivity analysis, partial equilibrium analysis, and simple algebra to deduce the most abundant reaction intermediate and the rate-determining step. The mechanism and the one-step rate expression are then tested on Pt catalyst. It is found that the reaction proceeds effectively via the same mechanistic pathway on both noble metals, but the effective reaction orders differ due to the difference in the adsorption strength of oxygen. Based on the homologous series idea, the rate expression is extended to small alkanes (ethane and propane; butane is also briefly discussed) and is found to reasonably describe experimental data. Estimation of the relevant parameters in the rate expression for various fuels and catalysts using the semiempirical bond-order conservation theory, quantum mechanical density functional theory, and/or simple experiments is discussed. Finally, it is proposed that detailed microkinetic models with coverage-dependent parameters can assist in rationalizing the apparent discrepancies between experimental data from various research groups. (author)

  3. Performance Comparison of Metallic, Actinide Burning Fuel in Lead-Bismuth and Sodium Cooled Fast Reactors

    SciTech Connect (OSTI)

    Weaver, Kevan Dean; Herring, James Stephen; Mac Donald, Philip Elsworth

    2001-04-01

    Various methods have been proposed to incinerate or transmutate the current inventory of trans-uranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non-fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years.

  4. Measurement of laminar burning speeds and Markstein lengths using a novel methodology

    SciTech Connect (OSTI)

    Tahtouh, Toni; Halter, Fabien; Mounaim-Rousselle, Christine [Institut PRISME, Universite d'Orleans, 8 rue Leonard de Vinci-45072, Orleans Cedex 2 (France)

    2009-09-15

    Three different methodologies used for the extraction of laminar information are compared and discussed. Starting from an asymptotic analysis assuming a linear relation between the propagation speed and the stretch acting on the flame front, temporal radius evolutions of spherically expanding laminar flames are postprocessed to obtain laminar burning velocities and Markstein lengths. The first methodology fits the temporal radius evolution with a polynomial function, while the new methodology proposed uses the exact solution of the linear relation linking the flame speed and the stretch as a fit. The last methodology consists in an analytical resolution of the problem. To test the different methodologies, experiments were carried out in a stainless steel combustion chamber with methane/air mixtures at atmospheric pressure and ambient temperature. The equivalence ratio was varied from 0.55 to 1.3. The classical shadowgraph technique was used to detect the reaction zone. The new methodology has proven to be the most robust and provides the most accurate results, while the polynomial methodology induces some errors due to the differentiation process. As original radii are used in the analytical methodology, it is more affected by the experimental radius determination. Finally, laminar burning velocity and Markstein length values determined with the new methodology are compared with results reported in the literature. (author)

  5. Long-term tradeoffs between nuclear- and fossil-fuel burning

    SciTech Connect (OSTI)

    Krakowski, R.A.

    1996-12-31

    A global energy/economics/environmental (E{sup 3}) model has been adapted with a nuclear energy/materials model to understand better {open_quotes}top-level{close_quotes}, long-term trade offs between civilian nuclear power, nuclear-weapons proliferation, fossil-fuel burning, and global economic welfare. Using a {open_quotes}business-as-usual{close_quotes} (BAU) point-of-departure case, economic, resource, proliferation-risk implications of plutonium recycle in LAIRs, greenhouse-gas-mitigating carbon taxes, and a range of nuclear energy costs (capital and fuel) considerations have been examined. After describing the essential elements of the analysis approach being developed to support the Los Alamos Nuclear Vision Project, preliminary examples of parametric variations about the BAU base-case scenario are presented. The results described herein represent a sampling from more extensive results collected in a separate report. The primary motivation here is: (a) to compare the BAU basecase with results from other studies; (b) to model on a regionally resolved global basis long-term (to year {approximately}2100) evolution of plutonium accumulation in a variety of forms under a limited range of fuel-cycle scenarios; and (c) to illustrate a preliminary connectivity between risks associated with nuclear proliferation and fossil-fuel burning (e.g., greenhouse-gas accumulations).

  6. Results of emissions testing while burning densified refuse derived fuel, Dordt College, Sioux Center, Iowa

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    Pacific Environmental Services, Inc. provided engineering and source testing services to the Council of Great Lake Governors to support their efforts in promoting the development and utilization of densified refuse derived fuels (d-RDF) and pelletized wastepaper fuels in small steam generating facilities. The emissions monitoring program was designed to provide a complete air emissions profile while burning various refuse derived fuels. The specific goal of this test program was to conduct air emissions tests at Dordt College located in Sioux Center, Iowa and to identify a relationship between fuel types and emission characteristics. The sampling protocol was carried out June 12 through June 20, 1989 on boiler {number sign}4. This unit had been previously modified to burn d-RDF. The boiler was not equipped with any type of air pollution control device so the emissions samples were collected from the boiler exhaust stack on the roof of the boilerhouse. The emissions that were sampled included: particulates; PM{sub 10} particulates; hydrochloric acid; dioxins; furans; polychlorinated biphenyls (PCB); metals and continuous monitors for CO, CO{sub 2}O{sub 2}SO{sub x}NO{sub x} and total hydrocarbons. Grab samples of the fuels were collected, composited and analyzed for heating value, moisture content, proximate and ultimate analysis, ash fusion temperature, bulk density and elemental ash analysis. Grab samples of the boiler ash were also collected and analyzed for total hydrocarbons total dioxins, total furans, total PCBs and heavy metals. 77 figs., 20 tabs.

  7. Stress Analysis of Coated Particle Fuel in the Deep-Burn Pebble Bed Reactor Design

    SciTech Connect (OSTI)

    B. Boer; A. M. Ougouag

    2010-05-01

    High fuel temperatures and resulting fuel particle coating stresses can be expected in a Pu and minor actinide fueled Pebble Bed Modular Reactor (400 MWth) design as compared to the standard UO2 fueled core. The high discharge burnup aimed for in this Deep-Burn design results in increased power and temperature peaking in the pebble bed near the inner and outer reflector. Furthermore, the pebble power in a multi-pass in-core pebble recycling scheme is relatively high for pebbles that make their first core pass. This might result in an increase of the mechanical failure of the coatings, which serve as the containment of radioactive fission products in the PBMR design. To investigate the integrity of the particle fuel coatings as a function of the irradiation time (i.e. burnup), core position and during a Loss Of Forced Cooling (LOFC) incident the PArticle STress Analysis code (PASTA) has been coupled to the PEBBED code for neutronics, thermal-hydraulics and depletion analysis of the core. Two deep burn fuel types (Pu with or without initial MA fuel content) have been investigated with the new code system for normal and transient conditions including the effect of the statistical variation of thickness of the coating layers.

  8. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    SciTech Connect (OSTI)

    Satoshi Matsuzaki

    2002-08-01

    This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Qy-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophyll a (BChl a) molecules are provided. General conclusions are given in Chapter 5.

  9. ON THE EFFECT OF EXPLOSIVE THERMONUCLEAR BURNING ON THE ACCRETED ENVELOPES OF WHITE DWARFS IN CATACLYSMIC VARIABLES

    SciTech Connect (OSTI)

    Sion, Edward M.; Sparks, Warren E-mail: warrensparks@comcast.net

    2014-11-20

    The detection of heavy elements at suprasolar abundances in the atmospheres of some accreting white dwarfs in cataclysmic variables (CVs), coupled with the high temperatures needed to produce these elements, requires explosive thermonuclear burning. The central temperatures of any formerly more massive secondary stars in CVs undergoing hydrostatic CNO burning are far too low to produce these elements. Evidence is presented that at least some CVs contain donor secondaries that have been contaminated by white dwarf remnant burning during the common envelope phase and are transferring this material back to the white dwarf. This scenario does not exclude the channel in which formerly more massive donor stars underwent CNO processing in systems with thermal timescale mass transfer. Implications for the progenitors of CVs are discussed and a new scenario for the white dwarf's accretion-nova-outburst is given.

  10. Epoxy-borax-coal tar composition for a radiation protective, burn resistant drum liner and centrifugal casting method

    DOE Patents [OSTI]

    Taylor, Robert S.; Boyer, Norman W.

    1980-01-01

    A boron containing burn resistant, low level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source. The material is basically composed of Borax in the range of 25-50%, coal tar in the range of 25-37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% Borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  11. Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.; et al

    2016-01-21

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200–300% over the next 50–100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~40–60% smallermore » than in background clouds. Based on the relationship between cloud droplet number (Nliq) and various biomass burning tracers (BBt) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol–cloud interactions (ACIs, where ACI = (1/3) × dln(Nliq)/dln(BBt)) to be ~0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~0.02gm–3) and very high aerosol concentrations (2000–3000 cm–3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 Wm–2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. Furthermore, we lastly explore evidence suggesting that numerous northern-latitude background Aitken particles can interact with combustion particles, perhaps impacting their properties as cloud condensation and ice nuclei.« less

  12. Deep Burn Fuel Cycle Integration: Evaluation of Two-Tier Scenarios

    SciTech Connect (OSTI)

    S. Bays; H. Zhang; M. Pope

    2009-05-01

    The use of a deep burn strategy using VHTRs (or DB-MHR), as a means of burning transuranics produced by LWRs, was compared to performing this task with LWR MOX. The spent DB-MHR fuel was recycled for ultimate final recycle in fast reactors (ARRs). This report summarizes the preliminary findings of the support ratio (in terms of MWth installed) between LWRs, DB-MHRs and ARRs in an equilibrium two-tier fuel cycle scenario. Values from literature were used to represent the LWR and DB-MHR isotopic compositions. A reactor physics simulation of the ARR was analyzed to determine the effect that the DB-MHR spent fuel cooling time on the ARR transuranic consumption rate. These results suggest that the cooling time has some but not a significant impact on the ARRs conversion ratio and transuranic consumption rate. This is attributed to fissile worth being derived from non-fissile or threshold-fissioning isotopes in the ARRs fast spectrum. The fraction of installed thermal capacity of each reactor in the DB-MHR 2-tier fuel cycle was compared with that of an equivalent MOX 2-tier fuel cycle, assuming fuel supply and demand are in equilibrium. The use of DB-MHRs in the 1st-tier allows for a 10% increase in the fraction of fleet installed capacity of UO2-fueled LWRs compared to using a MOX 1st-tier. Also, it was found that because the DB-MHR derives more power per unit mass of transuranics charged to the fresh fuel, the front-end reprocessing demand is less than MOX. Therefore, more fleet installed capacity of DB-MHR would be required to support a given fleet of UO2 LWRs than would be required of MOX plants. However, the transuranic deep burn achieved by DB-MHRs reduces the number of fast reactors in the 2nd-tier to support the DB-MHRs back-end transuranic output than if MOX plants were used. Further analysis of the relative costs of these various types of reactors is required before a comparative study of these options could be considered complete.

  13. Automatic coke oven heating control system at Burns Harbor for normal and repair operation

    SciTech Connect (OSTI)

    Battle, E.T.; Chen, K.L.

    1997-12-31

    An automatic heating control system for coke oven batteries was developed in 1985 for the Burns Harbor No. 1 battery and reported in the 1989 Ironmaking Conference Proceedings. The original system was designed to maintain a target coke temperature at a given production level under normal operating conditions. Since 1989, enhancements have been made to this control system so that it can also control the battery heating when the battery is under repair. The new control system has improved heating control capability because it adjusts the heat input to the battery in response to anticipated changes in the production schedule. During a recent repair of this 82 oven battery, the pushing schedule changed from 102 ovens/day to 88 ovens/day, then back to 102 ovens/day, then to 107 ovens/day. During this repair, the control system was able to maintain the coke temperature average standard deviation at 44 F, with a maximum 75 F.

  14. Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia

    SciTech Connect (OSTI)

    Zhang, Y.; Fu, Rong; Yu, Hongbin; Qian, Yun; Dickinson, Robert; Silva Dias, Maria Assuncao F.; da Silva Dias, Pedro L.; Fernandes, Katia

    2009-05-30

    Ensemble simulations of a regional climate model (RegCM3) forced by aerosol radiative forcing suggest that biomass burning aerosols can work against the seasonal monsoon circulation transition, thus re-enforce the dry season rainfall pattern for Southern Amazonia. Strongly absorbing smoke aerosols warm and stabilize the lower troposphere within the smoke center in southern Amazonia (where aerosol optical depth > 0.3). These changes increase the surface pressure in the smoke center, weaken the southward surface pressure gradient between northern and southern Amazonia, and consequently induce an anomalous moisture divergence in the smoke center and an anomalous convergence occurs in northwestern Amazonia (5S-5N, 60W-40 70W). The increased atmospheric thermodynamic stability, surface pressure, and divergent flow in Southern Amazonia may inhibit synoptic cyclonic activities propagated from extratropical South America, and re-enforce winter-like synoptic cyclonic activities and rainfall in southeastern Brazil, Paraguay and northeastern Argentina.

  15. SystemBurn: Principles of Design and Operation, Release 2.0

    SciTech Connect (OSTI)

    Kuehn, Jeffery A; Poole, Stephen W; Hodson, Stephen W; Lothian, Josh; Dobson, Jonathan D; Reister, David B; Lewkow, Nicholas R; Glandon, Steven R; Peek, Jacob T

    2012-01-01

    As high performance computing technology progresses toward the progressively more extreme scales required to address critical computational problems of both national and global interest, power and cooling for these extreme scale systems is becoming a growing concern. A standardized methodology for testing system requirements under maximal system load and validating system environmental capability to meet those requirements is critical to maintaining system stability and minimizing power and cooling risks for high end data centers. Moreover, accurate testing permits the high end data center to avoid issues of under- or over-provisioning power and cooling capacity saving resources and mitigating hazards. Previous approaches to such testing have employed an ad hoc collection of tools, which have been anecdotally perceived to produce a heavy system load. In this report, we present SystemBurn, a software tool engineered to allow a system user to methodically create a maximal system load on large scale systems for the purposes of testing and validation.

  16. SystemBurn: Principles of Design and Operation Release 3.0

    SciTech Connect (OSTI)

    Dobson, Jonathan D; Kuehn, Jeffery A; Poole, Stephen W; Hodson, Stephen W; Glandon, Steven R; Reister, David B; Lewkow, Nicholas R; Peek, Jacob T

    2012-09-01

    As high performance computing technology progresses toward the progressively more extreme scales required to address critical computational problems of both national and global interest, power and cooling for these extreme scale systems is becoming a growing concern. A standardized methodology for testing system requirements under maximal system load and validating system environmental capability to meet those requirements is critical to maintaining system stability and minimizing power and cooling risks for high end data centers. Moreover, accurate testing permits the high end data center to avoid issues of under- or over-provisioning power and cooling capacity saving resources and mitigating hazards. Previous approaches to such testing have employed an ad hoc collection of tools, which have been anecdotally perceived to produce a heavy system load. In this report, we present SystemBurn, a software tool engineered to allow a system user to methodically create a maximal system load on large scale systems for the purposes of testing and validation.

  17. Oil-fired cycling station converted to base-loaded, coal-burning operation

    SciTech Connect (OSTI)

    Hunt, J.; Steinbach, P.

    1982-04-01

    The Baltimore Gas and Electric Company has been able to modify its oil-fired Brandon Shores plant while under construction to a base-loaded plant able to burn either oil or coal. Utility planners had the foresight prior to the 1973 embargo to see advantages in a dual-fuel capability. Brandon Shores has experienced the same financing and fluctuating load problems as other projects, but it has evolved into a facility suited for the 1980s and 90s. The original plan included space to handle coal and wastes as well as specifying dual-fuel equipment throughout to minimize future modifications. During one construction delay, the utility initiated a preventative-maintenance program comparable to that of a nuclear plant that has been continued. Extensive environmental planning and interaction with the public have avoided other costly delays. (DCK)

  18. Hole Burning Imaging Studies of Cancerous and Analogous Normal Ovarian Tissues Utilizing Organelle Specific Dyes

    SciTech Connect (OSTI)

    Satoshi Matsuzaki

    2004-12-19

    Presented in this dissertation is the successful demonstration that nonphotochemical hole burning (NPWB) imaging can be used to study in vitro tissue cellular systems for discerning differences in cellular ultrastructures due to cancer development. This has been accomplished with the surgically removed cancerous ovarian and analogous normal peritoneal tissues from the same patient and the application of a fluorescent mitochondrion specific dye, Molecular Probe MitoFluor Far Red 680 (MF680), commonly known as rhodamine 800, that has been proven to exhibit efficient NPHB. From the results presented in Chapters 4 and 5 , and Appendix B, the following conclusions were made: (1) fluorescence excitation spectra of MF680 and confocal microscopy images of thin sliced tissues incubated with MF680 confirm the site-specificity of the probe molecules in the cellular systems. (2) Tunneling parameters, {lambda}{sub 0} and {sigma}{sub {lambda}}, as well as the standard hole burning parameters (namely, {gamma} and S), have been determined for the tissue samples by hole growth kinetics (HGK) analyses. Unlike the preliminary cultured cell studies, these parameters have not shown the ability to distinguish tissue cellular matrices surrounding the chromophores. (3) Effects of an external electric (Stark) field on the nonphotochemical holes have been used to determine the changes in permanent dipole moment (f{Delta}{mu}) for MF680 in tissue samples when burn laser polarization is parallel to the Stark field. Differences are detected between f{Delta}{mu}s in the two tissue samples, with the cancerous tissue exhibiting a more pronounced change (1.35-fold increase) in permanent dipole moment change relative to the normal analogs. It is speculated that the difference may be related to differences in mitochondrial membrane potentials in these tissue samples. (4) In the HGK mode, hole burning imaging (HBI) of cells adhered to coverslips and cooled to liquid helium temperatures in the complete absence of cryopreservatives, shows the ability to distinguish between carcinoma and analogous normal cells on the single-cell level. In future applications, this system has the potential to be used with smears of tissue samples for single-layer HBI analysis. These conclusions demonstrate that HBI has the potential of providing detailed information about localized intracellular environments and for detecting changes in the physical characteristics (e.g., electrical properties) of cells which constitute the in vitro tissue samples. For the latter, the long-term goal will be to develop NPHB into a diagnostic technique for the early detection of cancer by exploiting the physical differences between normal and cancerous cells and tissues. Moreover, because of the aforementioned HBI's capability to detect cellular anomalies, it has the potential of being used in conjunction with studies involving photodynamic therapy, assuming the chromophore is carefully selected.

  19. Transmutation Analysis of Enriched Uranium and Deep Burn High Temperature Reactors

    SciTech Connect (OSTI)

    Michael A. Pope

    2012-07-01

    High temperature reactors (HTRs) have been under consideration for production of electricity, process heat, and for destruction of transuranics for decades. As part of the transmutation analysis efforts within the Fuel Cycle Research and Development (FCR&D) campaign, a need was identified for detailed discharge isotopics from HTRs for use in the VISION code. A conventional HTR using enriched uranium in UCO fuel was modeled having discharge burnup of 120 GWd/MTiHM. Also, a deep burn HTR (DB-HTR) was modeled burning transuranic (TRU)-only TRU-O2 fuel to a discharge burnup of 648 GWd/MTiHM. For each of these cases, unit cell depletion calculations were performed with SCALE/TRITON. Unit cells were used to perform this analysis using SCALE 6.1. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were first set by using Serpent calculations to match a spectral index between unit cell and whole core domains. In the case of the DB-HTR, the unit cell which was arrived at in this way conserved the ratio of fuel to moderator found in a single block of fuel. In the conventional HTR case, a larger moderator-to-fuel ratio than that of a single block was needed to simulate the whole core spectrum. Discharge isotopics (for 500 nuclides) and one-group cross-sections (for 1022 nuclides) were delivered to the transmutation analysis team. This report provides documentation for these calculations. In addition to the discharge isotopics, one-group cross-sections were provided for the full list of 1022 nuclides tracked in the transmutation library.

  20. Performance of the Lead-Alloy Cooled Concept Balanced for Actinide Burning and Electricity Production

    SciTech Connect (OSTI)

    Pavel Hejzlar; Cliff Davis

    2004-09-01

    A lead-bismuth-cooled fast reactor concept targeted for a balanced mission of actinide burning and low-cost electricity production is proposed and its performance analyzed. The design explores the potential benefits of thorium-based fuel in actinide-burning cores, in particular in terms of the reduction of the large reactivity swing and enhancement of the small Doppler coefficient typical of fertile-free actinide burners. Reduced electricity production cost is pursued through a longer cycle length than that used for fertile-free burners and thus a higher capacity factor. It is shown that the concept can achieve a high transuranics destruction rate, which is only 20% lower than that of an accelerator-driven system with fertile-free fuel. The small negative fuel temperature reactivity coefficient, small positive coolant temperature reactivity coefficient, and negative core radial expansion coefficient provide self-regulating characteristics so that the reactor is capable of inherent shutdown during major transients without scram, as in the Integral Fast Reactor. This is confirmed by thermal-hydraulic analysis of several transients without scram, including primary coolant pump trip, station blackout, and reactivity step insertion, which showed that the reactor was able to meet all identified thermal limits. However, the benefits of high actinide consumption and small reactivity swing can be attained only if the uranium from the discharged fuel is separated and not recycled. This additional uranium separation step and thorium reprocessing significantly increase the fuel cycle costs. Because the higher fuel cycle cost has a larger impact on the overall cost of electricity than the savings from the higher capacity factor afforded through use of thorium, this concept appears less promising than the fertile-free actinide burners.

  1. Performance of the Lead-Alloy-Cooled Reactor Concept Balanced for Actinide Burning and Electricity Production

    SciTech Connect (OSTI)

    Hejzlar, Pavel [Massachusetts Institute of Technology (United States); Davis, Cliff B. [Idaho National Engineering and Environmental Laboratory (United States)

    2004-09-15

    A lead-bismuth-cooled fast reactor concept targeted for a balanced mission of actinide burning and low-cost electricity production is proposed and its performance analyzed. The design explores the potential benefits of thorium-based fuel in actinide-burning cores, in particular in terms of the reduction of the large reactivity swing and enhancement of the small Doppler coefficient typical of fertile-free actinide burners. Reduced electricity production cost is pursued through a longer cycle length than that used for fertile-free burners and thus a higher capacity factor. It is shown that the concept can achieve a high transuranics destruction rate, which is only 20% lower than that of an accelerator-driven system with fertile-free fuel. The small negative fuel temperature reactivity coefficient, small positive coolant temperature reactivity coefficient, and negative core radial expansion coefficient provide self-regulating characteristics so that the reactor is capable of inherent shutdown during major transients without scram, as in the Integral Fast Reactor. This is confirmed by thermal-hydraulic analysis of several transients without scram, including primary coolant pump trip, station blackout, and reactivity step insertion, which showed that the reactor was able to meet all identified thermal limits. However, the benefits of high actinide consumption and small reactivity swing can be attained only if the uranium from the discharged fuel is separated and not recycled. This additional uranium separation step and thorium reprocessing significantly increase the fuel cycle costs. Because the higher fuel cycle cost has a larger impact on the overall cost of electricity than the savings from the higher capacity factor afforded through use of thorium, this concept appears less promising than the fertile-free actinide burners.

  2. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    SciTech Connect (OSTI)

    Satoshi Matsuzaki

    2002-06-27

    This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Q{sub y}-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophyll{sub a} (BChl{sub a}) molecules are provided. General conclusions are given in Chapter 5. A version of the hole spectrum simulation program written by the candidate for the FMO complex study (Chapter 3) is included as an appendix. The references for each chapter are given at the end of each chapter.

  3. TriBITS lifecycle model. Version 1.0, a lean/agile software lifecycle model for research-based computational science and engineering and applied mathematical software.

    SciTech Connect (OSTI)

    Willenbring, James M.; Bartlett, Roscoe Ainsworth; Heroux, Michael Allen

    2012-01-01

    Software lifecycles are becoming an increasingly important issue for computational science and engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process - respecting the competing needs of research vs. production - cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for many CSE software projects that are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Here, we advocate three to four phases or maturity levels that address the appropriate handling of many issues associated with the transition from research to production software. The goals of this lifecycle model are to better communicate maturity levels with customers and to help to identify and promote Software Engineering (SE) practices that will help to improve productivity and produce better software. An important collection of software in this domain is Trilinos, which is used as the motivation and the initial target for this lifecycle model. However, many other related and similar CSE (and non-CSE) software projects can also make good use of this lifecycle model, especially those that use the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.

  4. Titanium subhydride potassium perchlorate (TiH1.65/KClO4) burn rates from hybrid closed bomb-strand burner experiments.

    SciTech Connect (OSTI)

    Cooper, Marcia A.; Oliver, Michael S.

    2012-08-01

    A hybrid closed bomb-strand burner is used to measure the burning behavior of the titanium subhydride potassium perchlorate pyrotechnic with an equivalent hydrogen concentration of 1.65. This experimental facility allows for simultaneous measurement of the closed bomb pressure rise and pyrotechnic burn rate as detected by electrical break wires over a range of pressures. Strands were formed by pressing the pyrotechnic powders to bulk densities between 60% and 90% theoretical maximum density. The burn rate dependance on initial density and vessel pressure are measured. At all initial strand densities, the burn is observed to transition from conductive to convective burning within the strand. The measured vessel pressure history is further analyzed following the closed bomb analysis methods developed for solid propellants.

  5. Analysis of mass loss of a coal particle during the course of burning in a flow of inert material

    SciTech Connect (OSTI)

    Pelka, Piotr

    2009-08-15

    This paper is an attempt to explain the role of erosion during the process of coal combustion in a circulating fluidized bed. Different kinds of carbon deposits found in Poland, both bituminous as well as lignite with the particle of 10 mm in diameter were the subject of the research. According to many publications it is well known that erosion plays a significant role in coal combustion, by changing its mechanism as well as generating an additional mass loss of the mother particle. The purpose of this research was to determine the influence of an inert material on an erosive mass loss of a single coal particle burning in a two-phase flow. The determination of the influence of a coal type, the rate of flow of inert material and the temperature inside the furnace on the erosive mass loss of burning coal particle was also taken into consideration. The results obtained indicate that the velocity of the erosive mass loss depends on the chemical composition and petrographic structure of burning coal. The mechanical interaction of inert and burning coal particles leads to the shortening of the period of overall mass loss of the coal particle by even two times. The increase in the rate of flow of the inert material intensifies the generation of mass loss by up to 100%. The drop in temperature which slows down the combustion process, decreases the mass loss of the coal particle as the result of mechanical interaction of the inert material. As was observed, the process of percolation plays a significant role by weakening the surface of the burning coal. (author)

  6. Advanced Engine Trends, Challenges and Opportunities

    Broader source: Energy.gov [DOE]

    Presents mega trends for future powertrains facing energy diversity and powertrain efficiency issues

  7. EERE Success Story-Fundamental Studies in Catalysis Enabled the use of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient "Lean-Burn" Engines for Vehicle Transportation | Department of Energy Fundamental Studies in Catalysis Enabled the use of Efficient "Lean-Burn" Engines for Vehicle Transportation EERE Success Story-Fundamental Studies in Catalysis Enabled the use of Efficient "Lean-Burn" Engines for Vehicle Transportation May 7, 2015 - 1:29pm Addthis Building on a catalysis research program sponsored by EERE's Vehicles Technology Office (VTO) and DOE's Office of

  8. Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marelle, L.; Raut, Jean-Christophe; Thomas, J. L.; Law, K. S.; Quennehen, Boris; Ancellet, G.; Pelon, J.; Schwarzenboeck, A.; Fast, Jerome D.

    2015-04-10

    During the POLARCAT-France airborne campaign in April 2008, pollution originating from anthropogenic and biomass burning emissions was measured in the European Arctic. We compare these aircraft measurements with simulations using the WRF-Chem model to investigate model representation of aerosols transported from Europe to the Arctic. Modeled PM2.5 is evaluated using European Monitoring and Evaluation Programme (EMEP) measurements in source regions and POLARCAT aircraft measurements in the Scandinavian Arctic. Total PM2.5 agrees well with the measurements, although the model overestimates nitrate and underestimates organic carbon in source regions. Using WRF-Chem in combination with the Lagrangian model FLEXPART-WRF, we find that duringmore » the campaign the research aircraft sampled two different types of European plumes: mixed anthropogenic and fire plumes from eastern Europe and Russia transported below 2 km, and anthropogenic plumes from central Europe uplifted by warm conveyor belt circulations to 5–6 km. Both modeled plume types had undergone significant wet scavenging (> 50% PM10) during transport. Modeled aerosol vertical distributions and optical properties below the aircraft are evaluated in the Arctic using airborne lidar measurements. Model results show that the pollution event transported aerosols into the Arctic (> 66.6° N) for a 4-day period. During this 4-day period, biomass burning emissions have the strongest influence on concentrations between 2.5 and 3 km altitudes, while European anthropogenic emissions influence aerosols at both lower (~ 1.5 km) and higher altitudes (~ 4.5 km). As a proportion of PM2.5, modeled black carbon and SO4= concentrations are more enhanced near the surface in anthropogenic plumes. The European plumes sampled during the POLARCAT-France campaign were transported over the region of springtime snow cover in northern Scandinavia, where they had a significant local atmospheric warming effect. We find that, during this transport event, the average modeled top-of-atmosphere (TOA) shortwave direct and semi-direct radiative effect (DSRE) north of 60° N over snow and ice-covered surfaces reaches +0.58 W m−2, peaking at +3.3 W m−2 at noon over Scandinavia and Finland.« less

  9. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect (OSTI)

    Constance Senior

    2004-12-31

    The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

  10. Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008

    SciTech Connect (OSTI)

    Marelle, L.; Raut, Jean-Christophe; Thomas, J. L.; Law, K. S.; Quennehen, Boris; Ancellet, G.; Pelon, J.; Schwarzenboeck, A.; Fast, Jerome D.

    2015-04-10

    During the POLARCAT-France airborne campaign in April 2008, pollution originating from anthropogenic and biomass burning emissions was measured in the European Arctic. We compare these aircraft measurements with simulations using the WRF-Chem model to investigate model representation of aerosols transported from Europe to the Arctic. Modeled PM2.5 is evaluated using European Monitoring and Evaluation Programme (EMEP) measurements in source regions and POLARCAT aircraft measurements in the Scandinavian Arctic. Total PM2.5 agrees well with the measurements, although the model overestimates nitrate and underestimates organic carbon in source regions. Using WRF-Chem in combination with the Lagrangian model FLEXPART-WRF, we find that during the campaign the research aircraft sampled two different types of European plumes: mixed anthropogenic and fire plumes from eastern Europe and Russia transported below 2 km, and anthropogenic plumes from central Europe uplifted by warm conveyor belt circulations to 5–6 km. Both modeled plume types had undergone significant wet scavenging (> 50% PM10) during transport. Modeled aerosol vertical distributions and optical properties below the aircraft are evaluated in the Arctic using airborne lidar measurements. Model results show that the pollution event transported aerosols into the Arctic (> 66.6° N) for a 4-day period. During this 4-day period, biomass burning emissions have the strongest influence on concentrations between 2.5 and 3 km altitudes, while European anthropogenic emissions influence aerosols at both lower (~ 1.5 km) and higher altitudes (~ 4.5 km). As a proportion of PM2.5, modeled black carbon and SO4= concentrations are more enhanced near the surface in anthropogenic plumes. The European plumes sampled during the POLARCAT-France campaign were transported over the region of springtime snow cover in northern Scandinavia, where they had a significant local atmospheric warming effect. We find that, during this transport event, the average modeled top-of-atmosphere (TOA) shortwave direct and semi-direct radiative effect (DSRE) north of 60° N over snow and ice-covered surfaces reaches +0.58 W m−2, peaking at +3.3 W m−2 at noon over Scandinavia and Finland.

  11. Advantages of MgAlOx over gamma-Al2O3 as a support material for potassium-based high temperature lean NOx traps

    SciTech Connect (OSTI)

    Luo, Jinyong; Gao, Feng; Karim, Ayman M.; Xu, Pinghong; Browning, Nigel D.; Peden, Charles HF

    2015-08-07

    MgAlOx mixed oxides were employed as supports for potassium-based lean NOx traps (LNTs) targeted for high temperature applications. Effects of support compositions, K/Pt loadings, thermal aging and catalyst regeneration on NOx storage capacity were systematically investigated. The catalysts were characterized by XRD, NOx-TPD, TEM, STEM-HAADF and in-situ XAFS. The results indicate that MgAlOx mixed oxides have significant advantages over conventional gamma-Al2O3-supports for LNT catalysts, in terms of high temperature NOx trapping capacity and thermal stability. First, as a basic support, MgAlOx stabilizes stored nitrates (in the form of KNO3) to much higher temperatures than mildly acidic gamma-Al2O3. Second, MgAlOx minimizes Pt sintering during thermal aging, which is not possible for gamma-Al2O3 supports. Notably, combined XRD, in-situ XAFS and STEM-HAADF results indicate that Pt species in the thermally aged Pt/MgAlOx samples are finely dispersed in the oxide matrix as isolated atoms. This strong metal-support interaction stabilizes Pt and minimizes the extent of sintering. However, such strong interactions result in Pt oxidation via coordination with the support so that NO oxidation activity can be adversely affected after aging which, in turn, decreases NOx trapping ability for these catalysts. Interestingly, a high-temperature reduction treatment regenerates essentially full NOx trapping performance. In fact, regenerated Pt/K/MgAlOx catalyst exhibits much better NOx trapping performance than fresh Pt/K/Al2O3 LNTs over the entire temperature range investigated here. In addition to thermal aging, Pt/K loading effects were systemically studied over the fresh samples. The results indicate that NOx trapping is kinetically limited at low temperatures, while thermodynamically limited at high temperatures. A simple conceptual model was developed to explain the Pt and K loading effects on NOx storage. An optimized K loading, which allows balancing between the stability of nitrates and exposed Pt surface, gives the best NOx trapping capability.

  12. Radial lean direct injection burner

    DOE Patents [OSTI]

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  13. TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy

    SciTech Connect (OSTI)

    Jian Gan; Brandon Miller; Dennis Keiser; Adam Robinson; James Madden; Pavel Medvedev; Daniel Wachs

    2014-04-01

    As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists of fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.

  14. Performance assessment for the geological disposal of Deep Burn spent fuel using TTBX

    SciTech Connect (OSTI)

    Van den Akker, B.P.; Ahn, J. [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

    2013-07-01

    The behavior of Deep Burn Modular High Temperature Reactor Spent Fuel (DBSF) is investigated in the Yucca Mountain geological repository (YMR) with respect to the annual dose (Sv/yr) delivered to the Reasonably Maximally Exposed Individual (RMEI) from the transport of radionuclides released from the graphite waste matrix. Transport calculations are performed with a novel computer code, TTBX which is capable of modeling transport pathways that pass through heterogeneous geological formations. TTBX is a multi-region extension of the existing single region TTB transport code. Overall the peak annual dose received by the RMEI is seen to be four orders of magnitude lower than the regulatory threshold for exposure, even under pessimistic scenarios. A number of factors contribute to the favorable performance of DBSF. A reduction of one order of magnitude in the peak annual dose received by the RMEI is observed for every order of magnitude increase in the waste matrix lifetime, highlighting the importance of the waste matrix durability and suggesting graphite's utility as a potential waste matrix for the disposal of high-level waste. Furthermore, we see that by incorporating a higher fidelity far-field model the peak annual dose calculated to be received by the RMEI is reduced by two orders of magnitude. By accounting for the heterogeneities of the far field we have simultaneously removed unnecessary conservatisms and improved the fidelity of the transport model. (authors)

  15. Meteorological measurements in the vicinity of a coal burning power plant

    SciTech Connect (OSTI)

    Crescenti, G.H.; Gaynor, J.E.

    1995-05-01

    High concentrations of sulfur dioxide (SO2) are commonly observed during the cool season in the vicinity of a 2.5 GW coal burning power plant located in the Mae Moh Valley of northern Thailand. The power plant is the source for nearly all of the observed SO2 since there are no other major industrial activities in this region. These high pollution fumigation events occur almost on a daily basis, usually lasting for several hours between late morning and early afternoon. One-hour average SO2 concentrations commonly exceed 1,000 micrograms/cu m. As a result, an increase in the number of respiratory type health complaints have been observed by local clinics during this time of the year. Meteorological data were acquired from a variety of observing platforms during an intensive field study from December 1993 to February 1994. The measurements included horizontal and vertical wind velocity, air temperature, relative humidity, and solar radiation. In addition, turbulent flux measurements were acquired by a sonic anemometer. SO2 measurements were made at seven monitoring sites scattered throughout the valley. These data were used to examine the atmospheric processes which are responsible for these high pollution fumigation events.

  16. JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal

    SciTech Connect (OSTI)

    Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

    2009-03-29

    The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

  17. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    SciTech Connect (OSTI)

    Gorelenkov, Nikolai N

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  18. A compact breed and burn fast reactor using spent nuclear fuel blanket

    SciTech Connect (OSTI)

    Hartanto, D.; Kim, Y.

    2012-07-01

    A long-life breed-and-burn (B and B) type fast reactor has been investigated from the neutronics points of view. The B and B reactor has the capability to breed the fissile fuels and use the bred fuel in situ in the same reactor. In this work, feasibility of a compact sodium-cooled B and B fast reactor using spent nuclear fuel as blanket material has been studied. In order to derive a compact B and B fast reactor, a tight fuel lattice and relatively large fuel pin are used to achieve high fuel volume fraction. The core is initially loaded with an LEU (Low Enriched Uranium) fuel and a metallic fuel is used in the core. The Monte Carlo depletion has been performed for the core to see the long-term behavior of the B and B reactor. Several important parameters such as reactivity coefficients, delayed neutron fraction, prompt neutron generation lifetime, fission power, and fast neutron fluence, are analyzed through Monte Carlo reactor analysis. Evolution of the core fuel composition is also analyzed as a function of burnup. Although the long-life small B and B fast reactor is found to be feasible from the neutronics point of view, it is characterized to have several challenging technical issues including a very high fast neutron fluence of the structural materials. (authors)

  19. Looking From A Hilltop: Automotive Propulsion System Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Engine Trends, Challenges and Opportunities Diesel Emission Control Review Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI ...

  20. Measurement and Characterization of Unregulated Emissions from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Measurement and Characterization of Unregulated Emissions from Advanced Technologies Measurement and Characterization ...

  1. Particulate Matter Characteristics for Highly Dilute Stoichiometric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon p-24storey.pdf More Documents & Publications Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Effects of Advanced Combustion Technologies on Particulate ...

  2. ITP Industrial Distributed Energy: CHP and Bioenergy Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... generate relatively high NOx emissions z Lean-burn technologies are used with larger ... power z SC Johnson's Waxdale Manufacturing Facility in Racine, WI - 3.5 MW ...

  3. Increasing the Market Acceptance of Smaller CHP Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Packaged Combined Heat and Power System ADVANCED MANUFACTURING OFFICE Increasing the ... A lean-burn com- bustion confguration will provide enhanced reliability and emissions that ...

  4. Investigation of Head Burns in Adult Salmonids : Phase 1 : Examination of Fish at Lower Granite Dam, July 2, 1996. Final Report.

    SciTech Connect (OSTI)

    Elston, Ralph

    1996-08-01

    Head burn is a descriptive clinical term used by fishery biologists to describe exfoliation of skin and underlying connective tissue of the jaw and cranial region of salmonids, observed at fish passage facilities on the Columbia and Snake Rivers. The observations are usually made on upstream migrant adult salmon or steelhead. An expert panel, convened in 1996, to evaluate the risk and severity of gas bubble disease (GBD) in the Snake and Columbia River system believed that, while head burns appeared to be distinct from GBD, the relationship between dissolved gas saturation in the rivers and head burns was uncertain.

  5. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields

    SciTech Connect (OSTI)

    Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.; Werner, C. J.

    2013-07-15

    We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20100 T (potentially attainable using present experimental methods) that compress to greater than 4 10{sup 4} T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ?50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities.

  6. Method for detecting and correcting for isotope burn-in during long-term neutron dosimetry exposure

    DOE Patents [OSTI]

    Ruddy, Francis H.

    1988-01-01

    A method is described for detecting and correcting for isotope burn-in during-long term neutron dosimetry exposure. In one embodiment, duplicate pairs of solid state track recorder fissionable deposits are used, including a first, fissionable deposit of lower mass to quantify the number of fissions occuring during the exposure, and a second deposit of higher mass to quantify the number of atoms of for instance .sup.239 Pu by alpha counting. In a second embodiment, only one solid state track recorder fissionable deposit is used and the resulting higher track densities are counted with a scanning electron microscope. This method is also applicable to other burn-in interferences, e.g., .sup.233 U in .sup.232 Th or .sup.238 Pu in .sup.237 Np.

  7. GAS TEMPERATURE AND CONCENTRATION MEASUREMENTS IN THE VICINITY OF A BURNING/DECOMPOSING CARBON-EPOXY AIRCRAFT COMPOSITE MATERIAL

    Office of Scientific and Technical Information (OSTI)

    43C GAS TEMPERATURE AND CONCENTRATION MEASUREMENTS IN THE VICINITY OF A BURNING/DECOMPOSING CARBON-EPOXY AIRCRAFT COMPOSITE MATERIAL Sean P. Kearney*^, Amanda B. Dodd^, Alexis Bohlin , and Christopher J. Kliewer ^Engineering Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185 USA ^Weapon Systems Engineering Center, Sandia National Laboratories, Livermore, CA 94551 USA Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 USA We report measurements of

  8. Gas temperature and concentration measurements in the vicinity of a burning/decomposing carbon-epoxy aircraft composite material

    Office of Scientific and Technical Information (OSTI)

    GAS TEMPERATURE AND CONCENT _"0616C MEASUREMENTS IN THE VICINITY OF A BURNING/DECOMPOSING CARBON-EPOXY AIRCRAFT COMPOSITE MATERIAL Flickering phase Steady state phase Sean P. Kearney Sandia National Laboratories Albuquerque, NM Amanda B. Dodd, Alexis Bohlin, and Christopher J. Kliewer Sandia National Laboratories Sandia National Laboratories Livermore, CA Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of

  9. Emissions of dioxins and furans from garbage-burning incinerators can be minimized by good combustion practices

    SciTech Connect (OSTI)

    Not Available

    1987-10-01

    The American Society of Mechanical Engineers (ASME) have stated that emissions of dioxin and furan from garbage-burning incinerators can be minimized by good combustion practices. They have found that maintaining the heat of combustion above 815 degrees centigrade and reducing the carbon monoxide level to below 100 ppm will reduce the emissions of furan and dioxin. The combustion research that lead to these conclusions was sponsored by ASME and the New York energy authority

  10. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; et al

    2015-06-02

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurementsmore » of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.« less

  11. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    SciTech Connect (OSTI)

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; Frenje, J. A.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.; Delettrez, J. A.; Sangster, T. C.; Betti, R.; Wilks, S. C.; Pino, J.; Kagan, G.; Molvig, K.; Nikroo, A.

    2015-06-02

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  12. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    SciTech Connect (OSTI)

    Rosenberg, M. J. Séguin, F. H.; Rinderknecht, H. G.; Zylstra, A. B.; Li, C. K.; Sio, H.; Johnson, M. Gatu; Frenje, J. A.; Petrasso, R. D.; Amendt, P. A.; Wilks, S. C.; Pino, J.; Atzeni, S.; Hoffman, N. M.; Kagan, G.; Molvig, K.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.; and others

    2015-06-15

    The significance and nature of ion kinetic effects in D{sup 3}He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N{sub K}) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N{sub K} ∼ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  13. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (IFC) implosions using fusion burn imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J.; Sguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; et al

    2015-06-02

    The significance and nature of ion kinetic effects in DHe-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurementsmoreof the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.less

  14. Reproductive and developmental health risk from dioxin-like compounds: Insignificant risk from cement kilns burning waste-derived fuels

    SciTech Connect (OSTI)

    Holcomb, L.C.; Pedelty, J.F.

    1994-12-31

    Cement kilns burning waste-derived fuels emit low levels of dibenzodioxins and dibenzofurans and little or no PCB`s. Concern about possible effects on reproduction and development has prompted an evaluation of the research literature especially with regard to the reproductive and developmental effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In sufficient doses, dioxins, furans, and PCB can cause adverse health effects in some animals or humans. Calculated doses of TCDD-EQ (dioxin equivalents) are dependent on many assumptions, but where human effects have been demonstrated, doses were 100--1,000 times higher than the usual background environmental doses. This would include those environmental doses that would be received by the most-exposed individual living near cement kilns burning WDF. There is evidence to suggest that PCB`s have had an adverse impact on some wildlife although there is no evidence that these PCB`s are associated with cement kiln emissions. There is no evidence to suggest that dioxins, at environmental levels or associated with emissions from WDF-burning cement kilns, have caused adverse effects in either wildlife or humans. 63 refs., 3 tabs.

  15. SHORT-PERIOD g-MODE PULSATIONS IN LOW-MASS WHITE DWARFS TRIGGERED BY H-SHELL BURNING

    SciTech Connect (OSTI)

    Crsico, A. H.; Althaus, L. G.

    2014-09-20

    The detection of pulsations in white dwarfs with low mass offers the possibility of probing their internal structures through asteroseismology and placing constraints on the binary evolutionary processes involved in their formation. In this Letter, we assess the impact of stable H burning on the pulsational stability properties of low-mass He-core white dwarf models resulting from binary star evolutionary calculations. We found that besides a dense spectrum of unstable radial modes and nonradial g and p modes driven by the ? mechanism due to the partial ionization of H in the stellar envelope, some unstable g modes with short pulsation periods are also powered by H burning via the ? mechanism of mode driving. This is the first time that ? destabilized modes are found in models representative of cool white dwarf stars. The short periods recently detected in the pulsating low-mass white dwarf SDSS J111215.82+111745.0 could constitute the first evidence of the existence of stable H burning in these stars, in particular in the so-called extremely low-mass white dwarfs.

  16. Addendum 2 to CSER 94-007 and CSER 94-008 Title: Burning one whole Pu button in muffle furnace in the HC-21C hood

    SciTech Connect (OSTI)

    Chiao, T., Westinghouse Hanford

    1996-09-24

    This addendum reviews the current CPS` and their supporting CSERs for HC-21A and HC-21C Hoods and provides the criticality safety analysis for burning a whole Pu button in HC-21C.

  17. Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition

    SciTech Connect (OSTI)

    Prathap, C.; Ray, Anjan; Ravi, M.R. [Department of Mechanical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016 (India)

    2008-10-15

    The objective of this investigation was to study the effect of dilution with nitrogen on the laminar burning velocity and flame stability of syngas fuel (50% H{sub 2}-50% CO by volume)-air (21% O{sub 2}-79% N{sub 2} by volume) mixtures. The syngas fuel composition considered in this work comprised x% N{sub 2} by volume and (100-x)% an equimolar mixture of CO and H{sub 2}. The proportion x (i.e., %N{sub 2}) was varied from 0 to 60% while the H{sub 2}/CO ratio was always kept as unity. Spherically expanding flames were generated by centrally igniting homogeneous fuel-air gas mixtures in a 40-L cylindrical combustion chamber fitted with optical windows. Shadowgraphy technique with a high-speed imaging camera was used to record the propagating spherical flames. Unstretched burning velocity was calculated following the Karlovitz theory for weakly stretched flames. Also, Markstein length was calculated to investigate the flame stability conditions for the fuel-air mixtures under consideration. Experiments were conducted for syngas fuel with different nitrogen proportions (0-60%) at 0.1 MPa (absolute), 302{+-}3K, and equivalence ratios ranging from 0.6 to 3.5. All the measurements were compared with the numerical predictions obtained using RUN-1DL and PREMIX with a contemporary chemical kinetic scheme. Dilution with nitrogen in different proportions in syngas resulted in (a) decrease in laminar burning velocity due to reduction in heat release and increase in heat capacity of unburned gas mixture and hence the flame temperature, (b) shift in occurrence of peak laminar burning velocity from {phi}=2.0 for 0% N{sub 2} dilution to {phi}=1.4 for 60% N{sub 2} dilution, (c) augmentation of the coupled effect of flame stretch and preferential diffusion on laminar burning velocity, and (d) shift in the equivalence ratio for transition from stable to unstable flames from {phi}=0.6 for 0% N{sub 2} dilution to {phi}=1.0 for 60% N{sub 2} dilution. The present work also indicated that if the fuel mole fraction in the wide range of fuel-air mixtures investigated is less than 22%, then those fuel mixtures are in the unstable regime with regard to preferential diffusion. (author)

  18. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    SciTech Connect (OSTI)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including unenriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to divert in large quantities. This report discusses the application of the LIFE concept to nonproliferation issues, initially looking at the LIFE (Laser Inertial Fusion-Fission Energy) engine as a means of completely burning WG Pu and HEU. By combining a neutron-rich inertial fusion point source with energy-rich fission, the once-through closed fuel-cycle LIFE concept has the following characteristics: it is capable of efficiently burning excess weapons or separated civilian plutonium and highly enriched uranium; the fission blanket is sub-critical at all times (keff < 0.95); because LIFE can operate well beyond the point at which light water reactors (LWRs) need to be refueled due to burn-up of fissile material and the resulting drop in system reactivity, fuel burn-up of 99% or more appears feasible. The objective of this work is to develop LIFE technology for burning of WG-Pu and HEU.

  19. Monitoring Soil Erosion on a Burned Site in the Mojave-Great Basin Transition Zone: Final Report for the Jacob Fire Site

    SciTech Connect (OSTI)

    Miller, Julianne DRI; Etyemezian, Vic DRI; Cablk, Mary E. DRI; Shillito, Rose DRI; Shafer, David DOE Grand Junction, Colorado

    2013-06-01

    A historic return interval of 100 years for large fires in the U.S. southwestern deserts is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. The shortened return interval, which translates to an increase in fires, has implications for management of Soil Corrective Action Units (CAUs) and Corrective Action Sites (CASs) for which the Department of Energy, National Nuclear Security Administration Nevada Field Office has responsibility. A series of studies was initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn. The first of these studies was undertaken at the Jacob Fire site approximately 12 kilometers (7.5 miles) north of Hiko, Nevada. A lightning-caused fire burned approximately 200 hectares during August 6-8, 2008. The site is representative of a transition between Mojave and Great Basin desert ecoregions on the Nevada National Security Site (NNSS), where the largest number of Soil CAUs/CASs are located. The area that burned at the Jacob Fire site was primarily a Coleogyne ramosissima (blackbrush) and Ephedra nevadensis (Mormon tea) community, also an abundant shrub assemblage in the similar transition zone on the NNSS. This report summarizes three years of measurements after the fire. Seven measurement campaigns at the Jacob Fire site were completed. Measurements were made on burned ridge (upland) and drainage sites, and on burned and unburned sites beneath and between vegetation. A Portable In-Situ Wind Erosion Lab (PI-SWERL) was used to estimate emissions of suspended particles at different wind speeds. Context for these measurements was provided through a meteorological tower that was installed at the Jacob Fire site to obtain local, relevant environmental parameters. Filter samples, collected from the exhaust of the PI-SWERL during measurements, were analyzed for chemical composition. Runoff and water erosion were quantified through a series of rainfall/runoff simulation tests in which controlled amounts of water were delivered to the soil surface in a specified amount of time. Runoff data were collected from understory and interspace soils on burned ridge and drainage areas. Runoff volume and suspended sediment in the runoff were sampled; the particle size distribution of the sediment was determined by laboratory analysis. Several land surface and soil characteristics associated with runoff were integrated by the calculation of site-specific curve numbers. Several vegetation surveys were conducted to assess post-burn recovery. Data from plots in both burned and unburned areas included species identification, counts, and location. Characterization of fire-affected area included measures at both the landscape scale and at specific sites. Although wind erosion measurements indicate that there are seasonal influences on almost all parameters measured, several trends were observed. PI-SWERL measurements indicated the potential for PM10 windblown dust emissions was higher on areas that were burned compared to areas that were not. Among the burned areas, understory soils in drainage areas were the most emissive, and interspace soils along burned ridges were least emissive. By 34 months after the burn (MAB), at the end of the study, emissions from all burned soil sites were virtually indistinguishable from unburned levels. Like the amount of emissions, the chemical signature of the fire (indicated by the EC-Soil ratio) was elevated immediately after the fire and approached pre-burn levels by 24 MAB. Thus, the potential for wind erosion at the Jacob Fire site, as measured by the amount and type of emissions, increased significantly after the fire and returned to unburned levels by 24 MAB. The effect of fire on the potential for water erosion at the Jacob Fire site was more ambiguous. Runoff and sediment from ridge interspace soils and unburned interspace soils were similar throughout the study period. Seldom, if ever, did runoff and sediment occur in burned drainage area soils. Fo

  20. High-nitrogen-metal complexes as burning-rate modifiers for the aluminum-water propellant system

    SciTech Connect (OSTI)

    Tappan, Bryce C; Mason, Benjamin A

    2009-01-01

    The reactions of electropositive metals, such as aluminum, with water have long been utilized in explosive and propellant formulations, but until recently this has mostly been limited to the water formed as a product gas from the decomposition of another energetic system . Recently, however, with the increased availability of nano-particulate materials, the direct reaction of nano-aluminum (nAl) with water as an oxidizer has been investigated as a propellant system due to high reaction temperatures and the production of hydrogen as the primary gaseous species. This system could be useful for intra-planetary travel where non-terrestrial water is harvested for the oxidizer. Here we present the study of nAl, mixed at a stoichiometric ratio with water ({Phi} = 1) with the highly water soluble metal complexes of bis(tetrazolato)amine (BTA) added at 5, 15,30 and 50 wt% in the case of FeBTA and 5 and 15 wt% in the case of NiBTA and CoBTA. The basic structure of the BTA complexes is shown below where M = Fe, Ni or Co, and x = 3 for Fe and Co and x = 2 for Ni. The particle size of nAl studied was primarily 38 nm with various studies with the particle size of 80 nm. The FeBT A at a loading of 15 wt% gave the highest burning rate enhancement (4.6x at {approx}6.8 MPa), while retaining a low pressure exponent (0.21 compared to 0.24 for nA/H{sub 2}O). At 15 wt% the Ni and Co increased the burning rate, but also increased the pressure exponents. The burning rate of the FeBTA modified material with 80 nm Al decreased as the weight percent of FeBTA was increased, which also tracked decrease in the calculated specific impulse of the mixtures.

  1. COMPARISON OF THE POPULATIONS OF COMMON WOOD-NYMPH BUTTERFLIES IN BURNED PRAIRIE, UNBURNED PRAIRIE AND OLD FIELD GRASSES

    SciTech Connect (OSTI)

    Hahn, M.; Walton, R.

    2007-01-01

    Common wood-nymph butterfl ies are found throughout the United States and Canada. However, not much is known about how they overwinter or their preferences for particular grasses and habitats. In this study, the impact of prairie management plans on the abundance of the wood-nymph population was assessed, as well as the preference of these butterfl ies for areas with native or non-native grasses. The abundance of common wood-nymph butterfl ies was determined using Pollard walks; more common wood-nymph butterfl ies were found in the European grasses than were found in the burned and unburned prairie sites. The majority of the vegetation at each of the three sites was identifi ed and documented. Using a 1 X 3 ANOVA analysis, it was determined there were signifi cantly more butterfl ies in the European grasses than in the burned and unburned prairie sites (p < 0.0005). There was no signifi cant difference between the burned and unburned treatments of the prairie on the common wood-nymph population. A multiple variable linear regression model described the effect of temperature and wind speed on the number of observed common wood-nymph butterfl ies per hour (p = 0.026). These preliminary results need to be supplemented with future studies. Quadrat analysis of the vegetation from all three sites should be done to search for a correlation between common wood-nymph butterfl y abundance per hour and the specifi c types or quantity of vegetation at each site. The effect of vegetation height and density on the observers visual fi eld should also be assessed.

  2. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    SciTech Connect (OSTI)

    Sean M. McDeavitt

    2011-04-29

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºC to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich outlining the beginning of the materials processing setup. Also included within this section is a thesis proposal by Jeff Hausaman. Appendix C contains the public papers and presentations introduced at the 2010 American Nuclear Society Winter Meeting. Appendix A—MSNE theses of David Garnetti and Grant Helmreich and proposal by Jeff Hausaman A.1 December 2009 Thesis by David Garnetti entitled “Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.2 September 2009 Presentation by David Garnetti (same title as document in Appendix B.1) A.3 December 2010 Thesis by Grant Helmreich entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.4 October 2010 Presentation by Grant Helmreich (same title as document in Appendix B.3) A.5 Thesis Proposal by Jeffrey Hausaman entitled “Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast Reactors” Appendix B—External presentations introduced at the 2010 ANS Winter Meeting B.1 J.S. Hausaman, D.J. Garnetti, and S.M. McDeavitt, “Powder Metallurgy of Alpha Phase Uranium Alloys for TRU Burning Fast Reactors,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.2 PowerPoint Presentation Slides from C.1 B.3 G.W. Helmreich, W.J. Sames, D.J. Garnetti, and S.M. McDeavitt, “Uranium Powder Production Using a Hydride-Dehydride Process,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.4. PowerPoint Presentation Slides from C.3 B.5 Poster Presentation from C.3 Appendix C—Fuel cycle research and development undergraduate materials and poster presentation C.1 Poster entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys” presented at the Fuel Cycle Technologies Program Annual Meeting C.2 April 2011 Honors Undergraduate Thesis by William Sames, Research Fellow, entitled “Uranium Metal Powder Production, Particle Distribution Analysis, and Reaction Rate Studies of a Hydride-Dehydride Process”  

  3. High-value use of weapons-plutonium by burning in molten salt accelerator-driven subcritical systems or reactors

    SciTech Connect (OSTI)

    Bowman, C.D.; Venneri, F.

    1993-11-01

    The application of thermal-spectrum molten-salt reactors and accelerator-driven subcritical systems to the destruction of weapons-return plutonium is considered from the perspective of deriving the maximum societal benefit. The enhancement of electric power production from burning the fertile fuel {sup 232}Th with the plutonium is evaluated. Also the enhancement of destruction of the accumulated waste from commercial nuclear reactors is considered using the neutron-rich weapons plutonium. Most cases examined include the concurrent transmutation of the long-lived actinide and fission product waste ({sup 99}Tc, {sup 129}I, {sup 135}Cs, {sup 126}Sn and {sup 79}Se).

  4. Containment pressurization and burning of combustible gases in a large, dry PWR containment during a station blackout sequence

    SciTech Connect (OSTI)

    Lee, M.; Fan, C.T. (National Tsing-Hua Univ., Dept. of Nuclear Engineering, Hsinchu (TW))

    1992-07-01

    In this paper, responses of a large, dry pressurized water reactor (PWR) containment in a station blackout sequence are analyzed with the CONTAIN, MARCH3, and MAAP codes. Results show that the predicted containment responses in a station blackout sequence of these three codes are substantially different. Among these predictions, the MAAP code predicts the highest containment pressure because of the large amount of water made available to quench the debris upon vessel failure. The gradual water boiloff by debris pressurizes the containment. The combustible gas burning models in these codes are briefly described and compared.

  5. Monitoring Soil Erosion of a Burn Site in the Central Basin and Range Ecoregion: Final Report on Measurements at the Gleason Fire Site, Nevada

    SciTech Connect (OSTI)

    Miller, Julianne; Etyemezian, Vicken; Shillito, Rose; Cablk, Mary; Fenstermaker, Lynn; Shafer, David

    2013-10-01

    The increase in wildfires in arid and semi-arid parts of Nevada and elsewhere in the southwestern United States has implications for post-closure management and long-term stewardship for Soil Corrective Action Units (CAUs) on the Nevada National Security Site (NNSS) for which the Nevada Field Office of the United States Department of Energy, National Nuclear Security Administration has responsibility. For many CAUs and Corrective Action Sites, where closure-in-place alternatives are now being implemented or considered, there is a chance that these sites could burn over at some time while they still pose a risk to the environment or human health, given the long half lives of some of the radionuclide contaminants. This study was initiated to examine the effects and duration of wildfire on wind and water erodibility on sites analogous to those that exist on the NNSS. The data analyzed herein were gathered at the prescribed Gleason Fire site near Ely, Nevada, a site comparable to the northern portion of the NNSS. Quantification of wind erosion was conducted with a Portable In-Situ Wind ERosion Lab (PI-SWERL) on unburned soils, and on interspace and plant understory soils within the burned area. The PI-SWERL was used to estimate emissions of suspendible particles (particulate matter with aerodynamic diameters less than or equal to 10 micrometers) at different wind speeds. Filter samples, collected from the exhaust of the PI-SWERL during measurements, were analyzed for chemical composition. Based on nearly three years of data, the Gleason Fire site does not appear to have returned to pre burn wind erosion levels. Chemical composition data of suspendible particles are variable and show a trend toward pre-burn levels, but provide little insight into how the composition has been changing over time since the fire. Soil, runoff, and sediment data were collected from the Gleason Fire site to monitor the water erosion potential over the nearly three-year period. Soil hydrophobicity (water repellency) was noted on burned understory soils up to 12 months after the fire, as was the presence of ash on the soil surface. Soil deteriorated from a strong, definable pre-fire structure to a weakly cohesive mass (unstructured soil) immediately after the fire. Surface soil structure was evident 34 months after the fire at both burned and unburned sites, but was rare and weaker at burned sites. The amount of runoff and sediment was highly variable, but runoff occurred more frequently at burned interspace sites compared to burned understory and unburned interspace sites up to 34 months after the burn. No discernible pattern was evident on the amount of sediment transported, but the size of sediment from burned understory sites was almost double that of burned and unburned interspace soils after the fire, and decreased over the monitoring period. Curve numbers, a measure of the runoff potential, did not indicate any obvious runoff response to the fire. However, slight seasonal changes in curve numbers and runoff potential and, therefore, post-fire runoff response may be a function of fire impacts as well as the time of year that precipitation occurs. Site (interspace or understory) differences in soil properties and runoff persisted even after the fire. Vegetation data showed the presence of invasive grasses after the fire. Results from analysis of wind and water coupled with the spatial analysis of vegetation suggest that wind erosion may continue to occur due to the additional exposed soil surface (burned understory sites) until vegetation becomes re-established, and runoff may occur more frequently in interspace sites. The potential for fire-related wind erosion and water erosion may persist beyond three years in this system.

  6. A clean-burning biofuel as a response to adverse impacts of woodsmoke and coalsmoke on Navajo health

    SciTech Connect (OSTI)

    Shultz, E.B. Jr.; Bragg, W.G.; Whittier, J.

    1994-12-31

    Because over 60% of Navajo households are heated with woodfuel and coal, and indoor air pollution from woodsmoke and coalsmoke is problematic, most Navajos are probably at risk of respiratory and other smoke-induced illnesses. A previous study has shown that Navajo children living in homes heated by a wood/coal stove are nearly five times more likely to contract acute lower respiratory tract infections than children from homes that do not use those fuels. Stove and flue improvements to reduce leakage of smoke into the home would help. So would clean-burning solid fuels in replacement of woodfuel and coal. The authors describe a clean-burning fast-growing carbohydrate biofuel, prepared by sun-drying the roots of a wild southwestern gourd plant, Cucurbita foetidissima. They call it {open_quotes}rootfuel.{close_quotes} A test plot is growing during the 1994 season at the NMSU Agricultural Science Center on the Navajo Nation, near Farmington, New Mexico. Irrigation requirements are being measured. In the Fall, a preliminary needs assessment will be conducted to learn more about how fuel usage impacts Navajo health. The acceptability of rootfuel in selected homes will be tested during the upcoming heating season.

  7. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    SciTech Connect (OSTI)

    Akagi, Sheryl; Yokelson, Robert J.; Burling, Ian R.; Meinardi, S.; Simpson, I.; Blake, D. R.; McMeeking, Gavin; Sullivan, Amy; Lee, Taehyoung; Kredenweis, Sonia; Urbanski, Shawn; Reardon, James; Griffith, David WT; Johnson, Timothy J.; Weise, David

    2013-02-01

    In October-November 2011 we measured the trace gas emission factors from 7 prescribed fires in South Carolina, U.S. using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analyses. The fires were intended to emulate high-intensity burns as they were lit during the dry season and in most cases represented stands that had not been treated with prescribed burns in 10+ years, if at all. A total of 97 trace gas species are reported here from both airborne and ground-based platforms making this one of the most detailed field studies of fire emissions to date. The measurements included the first data for a suite of monoterpene compounds emitted via distillation of plant tissues during real fires. The known chemistry of the monoterpenes and their measured abundance of ~0.40% of CO (molar basis), ~3.9% of NMOC (molar basis), and ~21% of organic aerosol (mass basis), suggests that they impacted post-emission formation of ozone, aerosol, and small organic trace gases such as methanol and formaldehyde in the sampled plumes. The variability in the terpene emissions in South Carolina (SC) fire plumes was high and, in general, the speciation of the emitted gas-phase non-methane organic compounds was surprisingly different from that observed in a similar study in nominally similar pine forests in North Carolina ~20 months earlier. It is likely that the slightly different ecosystems, time of year and the precursor variability all contributed to the variability in plume chemistry observed in this study and in the literature. The ?HCN/?CO emission ratio, however, is fairly consistent at 0.9 0.06 % for airborne fire measurements in coniferous-dominated ecosystems further confirming the value of HCN as a good biomass burning indicator/tracer. The SC results also support an earlier finding that C3-C4 alkynes may be of use as biomass burning indicators on the time-scale of hours to a day. It was possible to measure the chemical evolution of the plume on four of the fires and significant ozone (O3) formation (?O3/?CO from 10-90%) occurred in all of these plumes. Slower O3 production was observed on a cloudy day with low co-emissions of NOx and the fastest O3 production was observed on a sunny day when the plume almost certainly incorporated significant additional NOx by passing over the Columbia, SC metropolitian area. Due to rapid plume dilution, it was only possible to acquire high quality downwind data for two other species (formaldehyde and methanol) on two of the fires. In all four cases significant increases were observed. This is likely the first direct observation of post-emission methanol production in biomass burning plumes and the precursors likely included terpenes.

  8. Final Report for SERDP Project RC-1649: Advanced Chemical Measurements of Smoke from DoD-prescribed Burns

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Weise, David; Lincoln, E. N.; Sams, Robert L.; Cameron, Melanie; Veres, Patrick; Yokelson, Robert J.; Urbanski, Shawn; Profeta, Luisa T.; Williams, S.; Gilman, Jessica; Kuster, W. C.; Akagi, Sheryl; Stockwell, Chelsea E.; Mendoza, Albert; Wold, Cyle E.; Warneke, Carsten; de Gouw, Joost A.; Burling, Ian R.; Reardon, James; Schneider, Matthew D.; Griffith, David WT; Roberts, James M.

    2013-12-17

    Objectives: Project RC-1649, “Advanced Chemical Measurement of Smoke from DoD-prescribed Burns” was undertaken to use advanced instrumental techniques to study in detail the particulate and vapor-phase chemical composition of the smoke that results from prescribed fires used as a land management tool on DoD bases, particularly bases in the southeastern U.S. The statement of need (SON) called for “(1) improving characterization of fuel consumption” and “(2) improving characterization of air emissions under both flaming and smoldering conditions with respect to volatile organic compounds, heavy metals, and reactive gases.” The measurements and fuels were from several bases throughout the southeast (Camp Lejeune, Ft. Benning, and Ft. Jackson) and were carried out in collaboration and conjunction with projects 1647 (models) and 1648 (particulates, SW bases). Technical Approach: We used an approach that featured developing techniques for measuring biomass burning emission species in both the laboratory and field and developing infrared (IR) spectroscopy in particular. Using IR spectroscopy and other methods, we developed emission factors (EF, g of effluent per kg of fuel burned) for dozens of chemical species for several common southeastern fuel types. The major measurement campaigns were laboratory studies at the Missoula Fire Sciences Laboratory (FSL) as well as field campaigns at Camp Lejeune, NC, Ft. Jackson, SC, and in conjunction with 1648 at Vandenberg AFB, and Ft. Huachuca. Comparisons and fusions of laboratory and field data were also carried out, using laboratory fuels from the same bases. Results: The project enabled new technologies and furthered basic science, mostly in the area of infrared spectroscopy, a broadband method well suited to biomass burn studies. Advances in hardware, software and supporting reference data realized a nearly 20x improvement in sensitivity and now provide quantitative IR spectra for potential detection of ~60 new species and actual field quantification of several new species such as nitrous acid, glycolaldehyde, α-/β-pinene and D-limonene. The new reference data also permit calculation of the global warming potential (GWP) of the greenhouse gases by enabling 1) detection of their ambient concentrations, and 2) quantifying their ability to absorb IR radiation.

  9. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    SciTech Connect (OSTI)

    Su'ud, Zaki; Sekimoto, H.

    2014-09-30

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature can be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.

  10. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    SciTech Connect (OSTI)

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.

  11. Control of Plasma-Stored Energy for Burn Control using DIII-D In-Vessel Coils

    SciTech Connect (OSTI)

    Hawryluk, R. J.; Eidietis, N. W.; Grierson, B. A.; Hyatt, A. W.; Koleman, E.; Logan, N. C.; Nazikian, R.; Paz-Soldan, C.; Wolf, S.

    2014-09-01

    A new approach has been experimentally demonstrated to control the stored energy by applying a non-axisymmetric magnetic field using the DIII-D in-vessel coils to modify the energy confinement time. In future burning plasma experiments as well as magnetic fusion energy power plants, various concepts have been proposed to control the fusion power. The fusion power in a power plant operating at high gain can be related to the plasma-stored energy and hence, is a strong function of the energy confinement time. Thus, an actuator, that modifies the confinement time, can be used to adjust the fusion power. In relatively low collisionality DIII-D discharges, the application of non-axisymmetric magnetic fields results in a decrease in confinement time and density pumpout. Gas puffing was used to compensate the density pumpout in the pedestal while control of the stored energy was demonstrated by the application of non-axisymmetric fields.

  12. CO{sub 2}-mitigation measures through reduction of fossil fuel burning in power utilities. Which road to go?

    SciTech Connect (OSTI)

    Kaupp, A.

    1996-12-31

    Five conditions, at minimum, should be examined in the comparative analysis of CO{sub 2}-mitigation options for the power sector. Under the continuing constraint of scarce financial resources for any private or public investment in the power sector, the following combination of requirements characterise a successful CO{sub 2}-mitigation project: (1) Financial attractiveness for private or public investors. (2) Low, or even negative, long range marginal costs per ton of `CO{sub 2} saved`. (3) High impact on CO{sub 2}-mitigation, which indicates a large market potential for the measure. (4) The number of individual investments required to achieve the impact is relatively small. In other words, logistical difficulties in project implementation are minimised. (5) The projects are `socially fair` and have minimal negative impact on any segment of the society. This paper deals with options to reduce carbonaceous fuel burning in the power sector. Part I explains how projects should be selected and classified. Part II describes the technical options. Since reduction of carbonaceous fuel burning may be achieved through Demand Side Management (DSM) and Supply Side Management (SSM) both are treated. Within the context of this paper SSM does not mean to expand power supply as demand grows. It means to economically generate and distribute power as efficiently as possible. In too many instances DSM has degenerated into efficient lighting programs and utility managed incentives and rebate programs. To what extent this is a desirable situation for utilities in Developing Countries that face totally different problems as their counterparts in highly industrialised countries remains to be seen. Which road to go is the topic of this paper.

  13. Isothermal desulfation of pre-sulfated Pt-BaO/?-Al2O3 lean NOx trap catalysts with H2: the effect of H2 concentration and the roles of CO2 and H2O

    SciTech Connect (OSTI)

    Kim, Do Heui; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles HF

    2012-01-12

    The desulfation mechanisms of pre-sulfated Pt-BaO/{gamma}-Al{sub 2}O{sub 3} lean NOx trap catalysts were investigated under isothermal conditions (600 C) using H{sub 2} as the reductant. Sulfates were found to be reduced first with H{sub 2} to produce SO{sub 2}, followed by a reaction between SO{sub 2} and H{sub 2} to produce H{sub 2}S. Gas analysis during the rich pulse reveals that the sulfur removal efficiency is initially proportional to the H{sub 2} concentration. At constant H{sub 2} concentration the overall desulfation efficiency decreases in the order of H{sub 2}/CO{sub 2}/H{sub 2}O > H{sub 2}/CO{sub 2} > H{sub 2}/H{sub 2}O > H{sub 2}, as confirmed by XPS analysis of residual sulfur in the desulfated samples. H{sub 2}O limits the evolution of SO{sub 2} at an early stage of the rich pulse and enhances the production of H{sub 2}S in later stages of reduction. CO{sub 2} is involved in both the formation of COS and the production of H{sub 2}O (via the reverse water-gas shift reaction), therefore, resulting in an increased overall efficiency.

  14. Code dependencies of pre-supernova evolution and nucleosynthesis in massive stars: evolution to the end of core helium burning

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jones, S.; Hirschi, R.; Pignatari, M.; Heger, A.; Georgy, C.; Nishimura, N.; Fryer, C.; Herwig, F.

    2015-01-15

    We present a comparison of 15M⊙ , 20M⊙ and 25M⊙ stellar models from three different codes|GENEC, KEPLER and MESA|and their nucleosynthetic yields. The models are calculated from the main sequence up to the pre-supernova (pre-SN) stage and do not include rotation. The GENEC and KEPLER models hold physics assumptions that are characteristic of the two codes. The MESA code is generally more flexible; overshooting of the convective core during the hydrogen and helium burning phases in MESA is chosen such that the CO core masses are consistent with those in the GENEC models. Full nucleosynthesis calculations are performed for allmore » models using the NuGrid post-processing tool MPPNP and the key energy-generating nuclear reaction rates are the same for all codes. We are thus able to highlight the key diferences between the models that are caused by the contrasting physics assumptions and numerical implementations of the three codes. A reasonable agreement is found between the surface abundances predicted by the models computed using the different codes, with GENEC exhibiting the strongest enrichment of H-burning products and KEPLER exhibiting the weakest. There are large variations in both the structure and composition of the models—the 15M⊙ and 20M⊙ in particular—at the pre-SN stage from code to code caused primarily by convective shell merging during the advanced stages. For example the C-shell abundances of O, Ne and Mg predicted by the three codes span one order of magnitude in the 15M⊙ models. For the alpha elements between Si and Fe the differences are even larger. The s-process abundances in the C shell are modified by the merging of convective shells; the modification is strongest in the 15M⊙ model in which the C-shell material is exposed to O-burning temperatures and the γ -process is activated. The variation in the s-process abundances across the codes is smallest in the 25M⊙ models, where it is comparable to the impact of nuclear reaction rate uncertainties. In general the differences in the results from the three codes are due to their contrasting physics assumptions (e.g. prescriptions for mass loss and convection). The broadly similar evolution of the 25M⊙ models gives us reassurance that different stellar evolution codes do produce similar results. For the 15M⊙ and 20M⊙ models, however, the different input physics and the interplay between the various convective zones lead to important differences in both the pre-supernova structure and nucleosynthesis predicted by the three codes. For the KEPLER models the core masses are different and therefore an exact match could not be expected.« less

  15. Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor

    SciTech Connect (OSTI)

    B. Boer; A. M. Ougouag

    2010-09-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge burnup level, while retaining its inherent safety characteristics. Using generic pebble bed reactor cores, this task will perform physics calculations to evaluate the capabilities of the pebble bed reactor to perform utilization and destruction of LWR used-fuel transuranics. The task will use established benchmarked models, and will introduce modeling advancements appropriate to the nature of the fuel considered (high TRU content and high burn-up).

  16. Corrective Action Investigation Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (with Record of Technical Change No.1)

    SciTech Connect (OSTI)

    U.S. Department of Energy, Nevada Operations Office

    2000-06-09

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 490 under the Federal Facility Agreement and Consent Order. Corrective Active Unit 490 consists of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (FTA); RG-56-001-RGBA, Station 44 Burn Area; 03-58-001-03FN, Sandia Service Yard; and 09-54-001-09L2, Gun Propellant Burn Area. These CASs are located at the Tonopah Test Range near Areas 3 and 9. Historically, the FTA was used for training exercises where tires and wood were ignited with diesel fuel. Records indicate that water and carbon dioxide were the only extinguishing agents used during these training exercises. The Station 44 Burn Area was used for fire training exercises and consisted of two wooden structures. The two burn areas (ignition of tires, wood, and wooden structures with diesel fuel and water) were limited to the building footprints (10 ft by 10 ft each). The Sandia Service Yard was used for storage (i.e., wood, tires, metal, electronic and office equipment, construction debris, and drums of oil/grease) from approximately 1979 to 1993. The Gun Propellant Burn Area was used from the 1960s to 1980s to burn excess artillery gun propellant, solid-fuel rocket motors, black powder, and deteriorated explosives; additionally, the area was used for the disposal of experimental explosive items. Based on site history, the focus of the field investigation activities will be to: (1) determine the presence of contaminants of potential concern (COPCs) at each CAS, (2) determine if any COPCs exceed field-screening levels and/or preliminary action levels, and (3) determine the nature and extent of contamination with enough certainty to support selection of corrective action alternatives for each CAS. The scope of this CAIP is to resolve the question of whether or not potentially hazardous wastes were generated at three of the four CASs within CAU 490, and whether or not potentially hazardous and radioactive wastes were generated at the fourth CAS in CAU 490 (CAS 09-54-001-09L2). Suspected CAS-specific COPCs include volatile organic compounds, semivolatile organic compounds, total petroleum hydrocarbons, polychlorinated biphenyls, pesticides, explosives, and uranium and plutonium isotopes. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  17. Composition of carbonaceous smoke particles from prescribed burning of a Canadian boreal forest: 1. Organic aerosol characterization by gas chromatography

    SciTech Connect (OSTI)

    Mazurek, M.A.; Laterza, C.; Newman, L.; Daum, P.; Cofer, W.R. III; Levine, J.S.; Winstead, E.L.

    1995-06-01

    In this study we examine the molecular organic constituents (C8 to C40 lipid compounds) collected as smoke particles from a Canadian boreal forest prescribed burn. Of special interest are (1) the molecular identity of polar organic aerosols, and (2) the amount of polar organic matter relative to the total mass of aerosol particulate carbon. Organic extracts of smoke aerosol particles show complex distributions of the lipid compounds when analyzed by capillary gas chromatography/mass spectrometry. The molecular constituents present as smoke aerosol are grouped into non-polar (hydrocarbons) and polar {minus}2 oxygen atoms) subtractions. The dominant chemical species found in the boreal forest smoke aerosol are unaltered resin compounds (C20 terpenes) which are abundant in unburned conifer wood, plus thermally altered wood lignins and other polar aromatic hydrocarbons. Our results show that smoke aerosols contain molecular tracers which are related to the biofuel consumed. These smoke tracers can be related structurally back to the consumed softwood and hardwood vegetation. In addition, combustion of boreal forest materials produces smoke aerosol particles that are both oxygen-rich and chemically complex, yielding a carbonaceous aerosol matrix that is enriched in polar substances. As a consequence, emissions of carbonaceous smoke particles from large-scale combustion of boreal forest land may have a disproportionate effect on regional atmospheric chemistry and on cloud microphysical processes.

  18. Ion kinetic effects on the ignition and burn of inertial confinement fusion targets: A multi-scale approach

    SciTech Connect (OSTI)

    Peigney, B. E.; Larroche, O.

    2014-12-15

    In this article, we study the hydrodynamics and burn of the thermonuclear fuel in inertial confinement fusion pellets at the ion kinetic level. The analysis is based on a two-velocity-scale Vlasov-Fokker-Planck kinetic model that is specially tailored to treat fusion products (suprathermal α-particles) in a self-consistent manner with the thermal bulk. The model assumes spherical symmetry in configuration space and axial symmetry in velocity space around the mean flow velocity. A typical hot-spot ignition design is considered. Compared with fluid simulations where a multi-group diffusion scheme is applied to model α transport, the full ion-kinetic approach reveals significant non-local effects on the transport of energetic α-particles. This has a direct impact on hydrodynamic spatial profiles during combustion: the hot spot reactivity is reduced, while the inner dense fuel layers are pre-heated by the escaping α-suprathermal particles, which are transported farther out of the hot spot. We show how the kinetic transport enhancement of fusion products leads to a significant reduction of the fusion yield.

  19. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 261 with Illinois No. 6 Burning Star Mine coal

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R & D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  20. SRC burn test in 700-hp oil-designed boiler. Volume 1. Integrated report. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1983-09-01

    This burn test program was conducted during the period of August 1982 to February 1983 to demonstrate that Solvent Refined Coal (SRC) products can displace petroleum as a boiler fuel in oil- and gas-designed boilers. The test program was performed at the U.S. Department of Energy's Pittsburgh Energy Technology Center (PETC). Three forms of SRC (pulverized SRC, a solution of SRC dissolved in process-derived distillates, and a slurry of SRC and water) and No. 6 Fuel Oil were evaluated in the 700-hp (30 x 10/sup 6/ Btu/hour) watertube, oil-designed boiler facility at PETC. The test program was managed by the International Coal Refining Company (ICRC) and sponsored by the Department of Energy. Other organizations were involved as necessary to provide the expertise required to execute the test program. This final report represents an integrated overview of the test program conducted at PETC. More detailed information with preliminary data can be obtained from separate reports prepared by PETC, Southern Research Institute, Wheelabrator-Frye, Babcock and Wilcox, and Combustion Engineering. These are presented as Annex Volumes A-F. 25 references, 41 figures, 15 tables.

  1. Focused feasibility study for surface soil at the main pits and pushout area, J-field toxic burning pits area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Patton, T.; Benioff, P.; Biang, C.; Butler, J.

    1996-06-01

    The Environmental Management Division of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). J-Field is located within the Edgewood Area of APG in Harford County, Maryland. Since World War II, activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning/open detonation. Portions of J-Field continue to be used for the detonation and disposal of unexploded ordnance (UXO) by open burning/open detonation under authority of the Resource Conservation and Recovery Act.

  2. RCRA Facility Investigation/Remedial Investigation Report with Baseline Risk Assessment for the Central Shops Burning/Rubble Pit (631-6G), Volume 1 Final

    SciTech Connect (OSTI)

    1996-04-01

    The Burning/Rubble Pits at the Savannah River Site were usually shallow excavations approximately 3 to 4 meters in depth. Operations at the pits consisted of collecting waste on a continuous basis and burning on a monthly basis. The Central Shops Burning/Rubble Pit 631- 6G (BRP6G) was constructed in 1951 as an unlined earthen pit in surficial sediments for disposal of paper, lumber, cans and empty galvanized steel drums. The unit may have received other materials such as plastics, rubber, rags, cardboard, oil, degreasers, or drummed solvents. The BRP6G was operated from 1951 until 1955. After disposal activities ceased, the area was covered with soil. Hazardous substances, if present, may have migrated into the surrounding soil and/or groundwater. Because of this possibility, the United States Environmental Protection Agency (EPA) has designated the BRP6G as a Solid Waste Management Unit (SWMU) subject to the Resource Conservation Recovery Act/Comprehensive Environmental Response, Compensation and Liability Act (RCRA/CERCLA) process.

  3. Supertruck- Improving Transportation Efficiency through Integrated Vehicle, Engine and Powertrain Research

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Heavy-Duty Powertrain DevelopmentCurrent Status and Future Opportunities

    Broader source: Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  5. Heavy-Duty Powertrain DevelopmentCurrent Status and Future Opportuniti...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Office Merit Review 2015: SuperTruck Program: Engine Project Review Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight Efficiency Improvement Project

  6. System and method of DPF passive enhancement through powertrain torque-speed management

    DOE Patents [OSTI]

    Sujan, Vivek A.; Frazier, Timothy R.

    2015-11-24

    This disclosure provides a method and system for determining recommendations for vehicle operation that reduce soot production in view of a diesel particulate filter (DPF) of an exhaust aftertreatment system. Recommendations generated can reduce excessive particulate matter (PM) production during transient engine events and provide for operating conditions favorable for passive regeneration. In this way, less frequent active regeneration of the DPF is needed and/or more opportunities are provided for passive regeneration. The system and method can utilize location and terrain information to anticipate and project a window of operation in view of reducing soot production and soot loading of the DPF, or provide the operator with instruction when such opportunities are present or will soon be encountered.

  7. Two-Stage Variable Compression Ratio (VCR) System to Increase Efficiency in Gasoline Powertrains

    Broader source: Energy.gov [DOE]

    Presents two-stage variable compression ratio mechanism realized by varying the connecting rod length, description of the system layout, working principle and expected fuel savings benefits when used in current and future gasoline engine concepts

  8. Efficiency Improvement through Reduction in Friction and Wear in Powertrain Systems

    SciTech Connect (OSTI)

    Michael Killian

    2009-09-30

    The objective of this project is to improve the efficiency of truck drivelines through reduction of friction and parasitic losses in transmission and drive axles. Known efficiencies for these products exceeded 97 percent, so the task was not trivial. The project relied on a working relationship between modeling and hardware testing. Modeling was to shorten the development cycle by guiding the selection of materials, processes and strategies. Bench top and fixture tests were to validate the models. Modeling was performed at a world class, high academic level, but in the end, modeling did not impact the hardware development as much as intended. Insights leading to the most significant accomplishments came from bench top and fixture tests and full scale dynamometer tests. A key development in the project was the formulation of the implementation strategy. Five technical elements with potential to minimize friction and parasitic losses were identified. These elements included churning, lubrication, surface roughness, coatings and textures. An interesting fact is that both Caterpillar and Eaton independently converged on the same set of technical elements in formulating their implementation strategies. Exploiting technical elements of the implementation strategy had a positive impact on transmission and drive axle efficiencies. During one dynamometer test of an Eaton Best Tech 1 transmission, all three gear ranges tested: Under drive, direct drive and over drive, showed efficiencies greater than 99 percent. Technology boosts to efficiency for transmissions reached 1 percent, while efficiency improvements to drive axle pushed 2 percent. These advancements seem small, but the accomplishment is large considering that these products normally run at greater than 97 percent efficiency. Barriers and risks to implementing these technology elements are clear. Schemes using a low fill sump and spray tubes endanger the gears and bearings by lubricant starvation. Gear coatings have exhibited durability issues, stripping away under conditions less demanding than 750,000 miles in service on the road. Failed coatings compound the problem by contaminating the lubricant with hard particles. Under the most severe conditions, super finished surfaces may polish further, reaching a surface roughness unable to support the critical oil film thickness. Low viscosity and low friction lubricants may not protect the gears and bearings adequately leading to excessive pitting, wear and noise. Additives in low friction oils may not stay in solution or suspended thus settling to the bottom and unavailable when they are needed most. Technical barriers and risks can be overcome through engineering, but two barriers remain formidable: (1) cost of the technology and (2) convincing fleet owners that the technology provides a tangible benefit. Dry sumps lower lubricant operating temperatures so the removal of heat exchangers and hoses and reduced demand on engine cooling systems justify their use. The benefits of surface texturing are varied and remain unproven. Lubricant costs seem manageable, but the cost of super finishing and gear coating are high. These are issues of scale and processing technology. Going across the board with gear super finishing and coating will reduce costs. Pushing the envelope to applications with higher torque and higher power density should drive the adoption of these technologies. Fleet owners are an educated and seasoned lot. Only technology measureable in dollars returned is used on truck fleets. To convince fleet owners of the benefit of these technologies, new precision in measuring fuel efficiency must be introduced. Legislation for a minimum standard in truck miles per gallon would also enable the use of these technologies. Improving the efficiency of truck transmissions and axle will make a noticeable impact on the fuel consumption by heavy vehicles in the United States. However, the greatest benefit will come when all the individual efficiency technologies like hybrid power, aerodynamic fairings, auxiliary power units, super

  9. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models

    SciTech Connect (OSTI)

    Saxena, Samveg; Le Floch, Caroline; MacDonald, Jason; Moura, Scott

    2015-05-15

    Electric vehicles enable clean and efficient transportation; however, concerns about range anxiety and battery degradation hinder EV adoption. The common definition for battery end-of-life is when 70-80% of original energy capacity remain;, however, little analysis is available to support this retirement threshold. By applying detailed physics-based models of EVs with data on how drivers use their cars, we show that EV batteries continue to meet daily travel needs of drivers well beyond capacity fade of 80% remaining energy storage capacity. Further, we show that EV batteries with substantial energy capacity fade continue to provide sufficient buffer charge for unexpected trips with long distances. We show that enabling charging in more locations, even if only with 120 V wall outlets, prolongs useful life of EV batteries. Battery power fade is also examined and we show EVs meet performance requirements even down to 30% remaining power capacity. Our findings show that defining battery retirement at 70-80% remaining capacity is inaccurate. Battery retirement should instead be governed by when batteries no longer satisfy daily travel needs of a driver. Using this alternative retirement metric, we present results on the fraction of EV batteries that may be retired with different levels of energy capacity fade.

  10. Impact of Driving Behavior on PHEV Fuel Consumption for Different Powertrain, Component Sizes and Control

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  11. The ArvinMeritor Dual Mode Hybrid Powertrain (DMHP): Opportunities and Potential for Systems Optimization

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  12. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Saxena, Samveg; Le Floch, Caroline; MacDonald, Jason; Moura, Scott

    2015-05-15

    Electric vehicles enable clean and efficient transportation; however, concerns about range anxiety and battery degradation hinder EV adoption. The common definition for battery end-of-life is when 70-80% of original energy capacity remain;, however, little analysis is available to support this retirement threshold. By applying detailed physics-based models of EVs with data on how drivers use their cars, we show that EV batteries continue to meet daily travel needs of drivers well beyond capacity fade of 80% remaining energy storage capacity. Further, we show that EV batteries with substantial energy capacity fade continue to provide sufficient buffer charge for unexpected tripsmore » with long distances. We show that enabling charging in more locations, even if only with 120 V wall outlets, prolongs useful life of EV batteries. Battery power fade is also examined and we show EVs meet performance requirements even down to 30% remaining power capacity. Our findings show that defining battery retirement at 70-80% remaining capacity is inaccurate. Battery retirement should instead be governed by when batteries no longer satisfy daily travel needs of a driver. Using this alternative retirement metric, we present results on the fraction of EV batteries that may be retired with different levels of energy capacity fade.« less

  13. Look-ahead Driver Feedback and Powertrain Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Ways to Save Energy | Department of Energy This case study describes how West Linn Paper Company's coated paper mill in West Linn, Oregon, saved nearly 58,200 MMBtu and $379,000 annually after receiving a DOE energy assessment and implementing steam system improvement recommendations. PDF icon Longest-Serving Active Paper Mill in the Western United States Uncovers New Ways to Save Energy (March 2008) More Documents & Publications Boise Inc. St. Helens Paper Mill Achieves Significant Fuel

  14. Vehicle Technologies Office Merit Review 2014: Look-Ahead Driver Feedback and Powertrain Management

    Broader source: Energy.gov [DOE]

    Presentation given by Eaton at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about look-ahead driver feedback and...

  15. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    SciTech Connect (OSTI)

    Splitter, Derek A; Szybist, James P

    2014-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  16. Integrated Powertrain and Vehicle Technologies for Fuel Efficiency Improvement and CO2 Reduction

    Broader source: Energy.gov [DOE]

    Meeting the most stringent emission standards in the world (EPA2002, EPA2007, EPA2010) required the strength of global organizations EPA2002 emission regulation was associated with a significant drop in engine thermal efficiency; DOE support of R&D program helped avoid further efficiency drop in 2007; EPA2010 will lead to simultaneous improvements in emissions and fuel efficiency for most manufacturers

  17. Evaluation of Powertrain Options and Component Sizing for MD and HD

    Broader source: Energy.gov (indexed) [DOE]

    Applications on Real World Drive Cycles | Department of Energy 11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss048_rousseau_2011_o.pdf More Documents & Publications Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles SunLine Transit Agency, Hydrogen-Powered Transit Buses: Preliminary Evaluation Results

  18. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a

    Broader source: Energy.gov (indexed) [DOE]

    Class 4 Parcel Delivery Vehicle | Department of Energy The goal of this project is to provide data to help bridge the gap between R&D and the commercial availability of advanced vehicle technologies that reduce petroleum use in the U.S. and improve air quality. PDF icon p-13_thornton.pdf More Documents & Publications Emissions Effects of Using B20 in the Current Transit Bus Fleet Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles Vehicle Technologies Office - AVTA:

  19. Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Market | Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Oak Ridge National Laboratory PDF icon 2004_deer_greene.pdf More Documents & Publications Integrated Market Modeling of Hydrogen Transition Scenarios with HyTrans Fact #869: April 20, 2015 Gasoline Direct Injection Captures 38% Market Share in Just Seven Years from First Significant Use - Dataset DOE Hydrogen Transition Analysis Workshop

  20. Corrective Action Decision Document for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (Rev. No.: 0, February 2001)

    SciTech Connect (OSTI)

    DOE /NV

    2001-02-23

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended Corrective Action Alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 490, Station 44 Burn Area, Tonopah Test Range (TTR), Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 490 is located on the Nellis Air Force Range and the Tonopah Test Range and is approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (located southwest of Area 3); RG-56-001-RGBA, Station 44 Burn Area (located west of Main Lake); 03-58-001-03FN, Sandia Service Yard (located north of the northwest corner of Area 3); and 09-54-001-09L2, Gun Propellant Burn Area (located south of the Area 9 Compound on the TTR). A Corrective Action Investigation was performed in July and August 2000, and analytes detected during the corrective action investigation were evaluated against preliminary action levels to determine contaminants of concern (COCs). There were no COCs identified in soil at the Gun Propellant Burn Area or the Station 44 Burn Area; therefore, there is no need for corrective actions at these two sites. Five soil samples at the Fire Training Area and seven at the Sandia Service Yard exceeded PALs for total petroleum hydrocarbons-diesel. Upon the identification of COCs specific to CAU 490, Corrective Action Objectives were developed based on a review of existing data, future use, and current operations at the TTR, with the following three CAAs under consideration: Alternative 1 - No Further Action, Alternative 2 - Closure In Place - No Further Action With Administrative Controls, and Alternative 3 - Clean Closure by Excavation and Disposal. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Based on the results of this evaluation, the preferred choice for CAU 490 was Alternative 3. This alternative was judged to meet all requirements for the technical components evaluated, all applicable state and federal regulations for closure of the site, and will eliminate potential future exposure pathways to the contaminated soils at this site.

  1. Methyl Formate Oxidation: Speciation Data, Laminar Burning Velocities, Ignition Delay Times and a Validated Chemical Kinetic Model

    SciTech Connect (OSTI)

    Dooley, S.; Burke, M. P.; Chaos, M.; Stein, Y.; Dryer, F. L.; Zhukov, V. P.; Finch, O.; Simmie, J. M.; Curran, H. J.

    2010-07-16

    The oxidation of methyl formate (CH{sub 3}OCHO) has been studied in three experimental environments over a range of applied combustion relevant conditions: 1. A variable-pressure flow reactor has been used to quantify reactant, major intermediate and product species as a function of residence time at 3 atm and 0.5% fuel concentration for oxygen/fuel stoichiometries of 0.5, 1.0, and 1.5 at 900 K, and for pyrolysis at 975 K. 2. Shock tube ignition delays have been determined for CH{sub 3}OCHO/O{sub 2}/Ar mixtures at pressures of ? 2.7, 5.4, and 9.2 atm and temperatures of 12751935 K for mixture compositions of 0.5% fuel (at equivalence ratios of 1.0, 2.0, and 0.5) and 2.5% fuel (at an equivalence ratio of 1.0). 3. Laminar burning velocities of outwardly propagating spherical CH{sub 3}OCHO/air flames have been determined for stoichiometries ranging from 0.81.6, at atmospheric pressure using a pressure-release-type high-pressure chamber. A detailed chemical kinetic model has been constructed, validated against, and used to interpret these experimental data. The kinetic model shows that methyl formate oxidation proceeds through concerted elimination reactions, principally forming methanol and carbon monoxide as well as through bimolecular hydrogen abstraction reactions. The relative importance of elimination versus abstraction was found to depend on the particular environment. In general, methyl formate is consumed exclusively through molecular decomposition in shock tube environments, while at flow reactor and freely propagating premixed flame conditions, there is significant competition between hydrogen abstraction and concerted elimination channels. It is suspected that in diffusion flame configurations the elimination channels contribute more significantly than in premixed environments.

  2. Transmutation, Burn-Up and Fuel Fabrication Trade-Offs in Reduced-Moderation Water Reactor Thorium Fuel Cycles - 13502

    SciTech Connect (OSTI)

    Lindley, Benjamin A.; Parks, Geoffrey T.; Franceschini, Fausto

    2013-07-01

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)

  3. PPPL Answers Burning Question

    ScienceCinema (OSTI)

    Zwicker, Andrew; Merali, Aliya

    2013-08-23

    The Science Education Department at the Princeton Plasma Physics Laboratory answers Alan Alda's challenge to explain what is a flame to an audience of 11-year old children.

  4. Emissions Control for Lean Gasoline Engines

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Lean Premixed Combustion/Active Control

    SciTech Connect (OSTI)

    D. J. Seery

    2000-02-01

    An experimental comparison between two contrasting fuel-air swirlers for industrial gas turbine applications was undertaken at the United Technologies Research Center. The first, termed an Aerodynamic nozzle, relied on the prevailing aerodynamic forces to stabilize the downstream combustion zone. The second configuration relied on a conventional bluff plate for combustion stability and was hence named a Bluff-Body nozzle. Performance mapping over the power curve revealed the acoustic superiority of the Bluff-Body nozzle. Two dimensional Rayleigh indices calculated from CCD images identified larger acoustic driving zones associated with the Aerodynamic nozzle relative to its bluff counterpart. The Bluff-Body's success is due to increased flame stabilization (superior anchoring ability) which reduced flame motion and thermal/acoustic coupling.

  6. Leaning Juniper 2B | Open Energy Information

    Open Energy Info (EERE)

    energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Bonneville Power Admin Location...

  7. Leaning Juniper 2A | Open Energy Information

    Open Energy Info (EERE)

    energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Bonneville Power Admin Location...

  8. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    SciTech Connect (OSTI)

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  9. Emissions Control for Lean Gasoline Engines

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  10. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: implications for cloud condensation nucleus activity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-03-06

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low soluble single-component OA by OH and O3 can increase their water-solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH andmore » O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH/O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~0.1, indicating that chemically-aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally-mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical aging has no significant impact on OA hygroscopicity. The organic compounds exhibiting low solubility behave as if they are infinitely soluble when mixed with a sufficient amount of water-soluble compounds. At and beyond this point, the particles' CCN activity is governed entirely by the water-soluble fraction and not influenced by the oxidized organic fraction. Our results have important implications for heterogeneous oxidation and its impact on cloud formation given that atmospheric aerosol is a complex mixture of organic and inorganic compounds exhibiting a wide-range of solubilities.« less

  11. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-09-14

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low-soluble single-component OA by OH and O3 can increase their water solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate particles exposed tomore » OH and O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH and O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~ 0.1, indicating that chemically aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH-exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical aging has no significant impact on OA hygroscopicity. The organic compounds exhibiting low solubility behave as if they are infinitely soluble when mixed with a sufficient number of water-soluble compounds. At and beyond this point, the particles' CCN activity is governed entirely by the water-soluble fraction and is not influenced by the oxidized organic fraction. Our results have important implications for heterogeneous oxidation and its impact on cloud formation given that atmospheric aerosol is a complex mixture of organic and inorganic compounds exhibiting a wide range of solubilities.« less

  12. Chemopreventive activity of compounds extracted from Casearia sylvestris (Salicaceae) Sw against DNA damage induced by particulate matter emitted by sugarcane burning near Araraquara, Brazil

    SciTech Connect (OSTI)

    Prieto, A.M.; Santos, A.G.; Csipak, A.R.; Caliri, C.M.; Silva, I.C.; Arbex, M.A.; Silva, F.S.; Marchi, M.R.R.

    2012-12-15

    Ethanolic extract of Casearia sylvestris is thought to be antimutagenic. In this study, we attempted to determine whether this extract and casearin X (a clerodane diterpene from C. sylvestris) are protective against the harmful effects of airborne pollutants from sugarcane burning. To that end, we used the Tradescantia micronucleus test in meiotic pollen cells of Tradescantia pallida, the micronucleus test in mouse bone marrow cells, and the comet assay in mouse blood cells. The mutagenic compound was total suspended particulate (TSP) from air. For the Tradescantia micronucleus test, T. pallida cuttings were treated with the extract at 0.13, 0.25, or 0.50 mg/ml. Subsequently, TSP was added at 0.3 mg/ml, and tetrads from the inflorescences were examined for micronuclei. For the micronucleus test in mouse bone marrow cells and the comet assay in mouse blood cells, Balb/c mice were treated for 15 days with the extract3.9, 7.5, or 15.0 mg/kg body weight (BW)or with casearin X0.3, 0.25, or 1.2 mg/kg BWafter which they received TSP (3.75 mg/kg BW). In T. pallida and mouse bone marrow cells, the extract was antimutagenic at all concentrations tested. In mouse blood cells, the extract was antigenotoxic at all concentrations, whereas casearin X was not antimutagenic but was antigenotoxic at all concentrations. We conclude that C. sylvestris ethanolic extract and casearin X protect DNA from damage induced by airborne pollutants from sugarcane burning. -- Highlights: ? We assessed DNA protection of C. sylvestris ethanolic extract. ? We assessed DNA protection of casearin X. ? We used Tradescantia pallida micronucleus test as screening. ? We used comet assay and micronucleus test in mice. ? The compounds protected DNA against sugar cane burning pollutants.

  13. Remaining Sites Verification Package for the 128-B-2, 100-B Burn Pit #2 Waste Site, Waste Site Reclassification Form 2005-038

    SciTech Connect (OSTI)

    R. A. Carlson

    2005-12-21

    The 128-B-2 waste site was a burn pit historically used for the disposal of combustible and noncombustible wastes, including paint and solvents, office waste, concrete debris, and metallic debris. This site has been remediated by removing approximately 5,627 bank cubic meters of debris, ash, and contaminated soil to the Environmental Restoration Disposal Facility. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  14. PLANETS AROUND LOW-MASS STARS. III. A YOUNG DUSTY L DWARF COMPANION AT THE DEUTERIUM-BURNING LIMIT ,

    SciTech Connect (OSTI)

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Dupuy, Trent J.

    2013-09-01

    We report the discovery of an L-type companion to the young M3.5V star 2MASS J01225093-2439505 at a projected separation of 1.''45 ( Almost-Equal-To 52 AU) as part of our adaptive optics imaging search for extrasolar giant planets around young low-mass stars. 2MASS 0122-2439 B has very red near-infrared colors similar to the HR 8799 planets and the reddest known young/dusty L dwarfs in the field. Moderate-resolution (R Almost-Equal-To 3800) 1.5-2.4 {mu}m spectroscopy reveals a near-infrared spectral type of L4-L6 and an angular H-band shape, confirming its cool temperature and young age. The kinematics of 2MASS 0122-2439 AB are marginally consistent with members of the {approx}120 Myr AB Dor young moving group based on the photometric distance to the primary (36 {+-} 4 pc) and our radial velocity measurement of 2MASS 0122-2439 A from Keck/HIRES. We adopt the AB Dor group age for the system, but the high energy emission, lack of Li I {lambda}6707 absorption, and spectral shape of 2MASS 0122-2439 B suggest a range of {approx}10-120 Myr is possible. The age and luminosity of 2MASS 0122-2439 B fall in a strip where ''hot-start'' evolutionary model mass tracks overlap as a result of deuterium burning. Several known substellar companions also fall in this region (2MASS J0103-5515 ABb, AB Pic b, {kappa} And b, G196-3 B, SDSS 2249+0044 B, LP 261-75 B, HD 203030 B, and HN Peg B), but their dual-valued mass predictions have largely been unrecognized. The implied mass of 2MASS 0122-2439 B is Almost-Equal-To 12-13 M{sub Jup} or Almost-Equal-To 22-27 M{sub Jup} if it is an AB Dor member, or possibly as low as 11 M{sub Jup} if the wider age range is adopted. Evolutionary models predict an effective temperature for 2MASS 0122-2439 B that corresponds to spectral types near the L/T transition ( Almost-Equal-To 1300-1500 K) for field objects. However, we find a mid-L near-infrared spectral type, indicating that 2MASS 0122-2439 B represents another case of photospheric dust being retained to cooler temperatures at low surface gravities, as seen in the spectra of young (8-30 Myr) planetary companions. Altogether, the low mass, low temperature, and red colors of 2MASS 0122-2439 B make it a bridge between warm planets like {beta} Pic b and cool, very dusty ones like HR 8799 bcde.

  15. Erosion Potential of a Burn Site in the Mojave-Great Basin Transition Zone: Interim Summary of One Year of Measurements

    SciTech Connect (OSTI)

    Etyemezian, V.; Shafer, D.; Miller, J.; Kavouras, I.; Campbell, S.; DuBois, D.; King, J.; Nikolich, G.; Zitzer, S.

    2010-05-18

    A historic return interval of 100 years for large fires in deserts in the Southwest U.S. is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. This increase in fires has implications for management of Soil Sub-Project Corrective Action Units (CAUs) for which the Department of Energy, National Nuclear Security Administration Nevada Site office (NNSA/NSO) has responsibility. A series of studies has been initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn over to understand technical and perceived risk they might pose to site workers and public receptors in communities around the NTS, TTR, and NTTR; and to develop recommendations for stabilization and restoration after a fire. The first of these studies was undertaken at the Jacob fire, a lightning-caused fire approximately 12 kilometers north of Hiko, Nevada, that burned approximately 200 ha between August 6-8, 2008, and is representative of a transition zone on the NTS between the Mojave and Great Basin Deserts, where the largest number of Soil Sub-Project CAUs/CASs are located.

  16. Nonequilibrium phenomena and determination of plasma parameters in the hot core of the cathode region in free-burning arc discharges

    SciTech Connect (OSTI)

    Kuehn, Gerrit; Kock, Manfred

    2007-01-15

    We present spectroscopic measurements of plasma parameters (electron density n{sub e}, electron temperature T{sub e}, gas temperature T{sub g}, underpopulation factor b) in the hot-core region in front of the cathode of a low-current, free-burning arc discharge in argon under atmospheric pressure. The discharge is operated in the hot-core mode, creating a hot cathode region with plasma parameters similar to high-current arcs in spite of the fact that we use comparatively low currents (less than 20 A). We use continuum emission and (optically thin) line emission to determine n{sub e} and T{sub e}. We apply relaxation measurements based on a power-interruption technique to investigate deviations from local thermodynamic equilibrium (LTE). These measurements let us determine the gas temperature T{sub g}. All measurements are performed side-on with charge-coupled-device cameras as detectors, so that all measured plasma parameters are spatially resolved after an Abel inversion. This yields the first ever spatially resolved observation of the non-LTE phenomena of the hot core in the near-cathode region of free-burning arcs. The results only partly coincide with previously published predictions and measurements in the literature.

  17. Path to High Efficiency Gasoline Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Partially Premixed Combustion High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control Advanced Lean-Burn DI ...

  18. Heavy-Duty Waste Hauler with Chemically Correct Natural Gas Engine Diluted with EGR and Using a Three-Way Catalyst: Final Report, 24 February 2004 -- 23 February 2006

    SciTech Connect (OSTI)

    Reppert, T.; Chiu, J.

    2005-09-01

    This report discusses the development of a E7G 12-liter, lean-burn natural gas engine--using stoichiometric combustion, cooled exhaust gas recirculation, and three-way catalyst technologies--for refuse haulers.

  19. CX-010172: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ignition and Combustion Characteristics of Transportation Fuels under Lean-Burn Conditions CX(s) Applied: A9, B3.6 Date: 04/26/2013 Location(s): Michigan, Illinois Offices(s): National Energy Technology Laboratory

  20. America's Next Top Energy Innovator Challenge | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    One negative side effect of a lean burn engine, whether powered by gasoline or diesel fuel, is an increase in the amount of harmful gases released to the environment. The...

  1. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 484: Surface Debris, Waste Sites, and Burn Area, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    Bechel Nevada

    2004-05-01

    This Streamlined Approach for Environmental Restoration plan details the activities necessary to close Corrective Action Unit (CAU) 484: Surface Debris, Waste Sites, and Burn Area (Tonopah Test Range). CAU 484 consists of sites located at the Tonopah Test Range, Nevada, and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. CAU 484 consists of the following six Corrective Action Sites: (1) CAS RG-52-007-TAML, Davis Gun Penetrator Test; (2) CAS TA-52-001-TANL, NEDS Detonation Area; (3) CAS TA-52-004-TAAL, Metal Particle Dispersion Test; (4) CAS TA-52-005-TAAL, Joint Test Assembly DU Sites; (5) CAS TA-52-006-TAPL, Depleted Uranium Site; and (6) CAS TA-54-001-TANL, Containment Tank and Steel Structure

  2. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor With Results from FY-2011 Activities

    SciTech Connect (OSTI)

    Michael A. Pope

    2011-10-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.

  3. Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992

    SciTech Connect (OSTI)

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-12-01

    This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

  4. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low Cost Electricity FY-01 Annual Report, October 2001

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Herring, James Stephen; Loewen, Eric Paul; Smolik, Galen Richard; Weaver, Kevan Dean; Todreas, N.

    2001-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A.

  5. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo

    2002-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.

  6. Evaluation of hoop creep behaviors in long-term dry storage condition of pre-hydrided and high burn-up nuclear fuel cladding

    SciTech Connect (OSTI)

    Kim, Sun-Ki; Bang, J.G.; Kim, D.H.; Yang, Y.S.

    2007-07-01

    Related to the degradation of the mechanical properties of Zr-based nuclear fuel cladding tubes under long term dry storage condition, the mechanical tests which can simulate the degradation of the mechanical properties properly are needed. Especially, the degradation of the mechanical properties by creep mechanism seems to be dominant under long term dry storage condition. Accordingly, in this paper, ring creep tests were performed in order to evaluate the creep behaviors of high burn-up fuel cladding under a hoop loading condition in a hot cell. The tests are performed with Zircaloy-4 fuel cladding whose burn-up is approximately {approx}60,000 MWd/tU in the temperature range from 350 deg. to 550 deg.. The tests are also performed with pre-hydrided Zircaloy-4 and ZIRLO up to 1,000 ppm. First of all, the hoop loading grip for the ring creep test was designed in order that a constant curvature of the specimen was maintained during the creep deformation, and the graphite lubricant was used to minimize the friction between the outer surface of the die insert and the inner surface of the ring specimen. The specimen for the ring creep test was designed to limit the deformation within the gauge section and to maximize the uniformity of the strain distribution. It was confirmed that the mechanical properties under a hoop loading condition can be correctly evaluated by using this test technique. In this paper, secondary creep rate with increasing hydrogen content are drawn, and then kinetic data such as pre-exponential factor and activation energy for creep process are also drawn. In addition, creep life are predicted by obtaining LMP (Larson-Miller parameter) correlation in the function of hydrogen content and applied stress to yield stress ratio. (authors)

  7. Current issues in natural gas lubrication

    SciTech Connect (OSTI)

    Reber, J.

    1997-10-01

    Because of the ability of natural gas to burn completely relatively easily, supplying excess oxygen to promote complete reactions is a viable alternative to catalysts. Hence, lean burn technology has a natural fit for this industry. Lube oil is not adversely affected by lean burn operation. There is a slight tendency to cause more oil nitration than oxidation, but the real difference is not significant. Operators may notice somewhat more varnish (caramel color) and less sludge (black) as a result. Because the fuel is burned more completely, there is less problem with fuel-derived oil contamination. Also because of the excess air in the combustion chamber, overall cylinder temperature is lower, causing less stress on the oil. Oil life is generally lengthened. One common misconception that lean burn engines require different lubricants may stem from a change at Waukesha Engine Division--Dresser Industries. Waukesha has changed its lube oil requirements for VHP 3521, 5115, 7042, 9390 GL turbocharged and lean burn model engines. The lube oil specification for these engines is 1% to 1.7% ash with the same 0.10% zinc maximum. This change is not because of the lean burn nature of these engines, rather it is because of drastically decreased lube oil consumption. With less oil consumption, less ash is carried to the critical exhaust valve seat area to prevent valve recession.

  8. Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods

    SciTech Connect (OSTI)

    Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

    2011-06-03

    Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} < 2.5 {mu}m: average 59.8 {mu}g m{sup -3}) were higher than coarse aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and 0.6 m in diameter. The concentrations of OC and BC{sub e} varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.

  9. Direct Measurement of Initial Enrichment and Burn-up of Spent Fuel Assembly with a Differential Die-Away Technique Based Instrument

    SciTech Connect (OSTI)

    Henzl, Vladimir; Swinhoe, Martyn T.; Tobin, Stephen J.

    2012-07-16

    A key objective of the Next Generation Safeguards Initiative (NGSI) is to utilize non-destructive assay (NDA) techniques to determine the elemental plutonium (Pu) content in a commercial-grade nuclear spent fuel assembly (SFA). In the third year of the NGSI Spent Fuel NDA project, the research focus is on the integration of a few NDA techniques. One of the reoccurring challenges to the accurate determination of Pu content has been the explicit dependence of the measured signal on the presence of neutron absorbers which build up in the assembly in accordance with its operating and irradiation history. The history of any SFA is often summarized by the parameters of burn-up (BU), initial enrichment (IE) and cooling time (CT). While such parameters can typically be provided by the operator, the ability to directly measure and verify them would significantly enhance the autonomy of the IAEA inspectorate. Within this paper, we demonstrate that an instrument based on a Differential Die-Away technique is in principle capable of direct measurement of IE and, should the CT be known, also the BU.

  10. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth

    2002-09-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

  11. Overburden characterization and post-burn study of the Hanna IV, underground coal gasification site, Wyoming, and comparison to other Wyoming UCG sites

    SciTech Connect (OSTI)

    Marcouiller, B.A.; Burns, L.K.; Ethridge, F.G.

    1984-11-01

    Analysis of 21 post-burn cores taken from the Hanna IV UCG site allows 96 m (315 ft) of overburden to be subdivided into four local stratigraphic units. The 7.6 m (25 ft) thick Hanna No. 1 coal seam is overlain by a laterally discontinuous, 3.3 m (11 ft) thick shaley mudstone (Unit A') in part of the Hanna IV site. A more widespread, 30 m (90 ft) thick well-indurated sandstone (Unit A) overlies the A' unit. Unit A is the roof rock for both of the Hanna IV cavities. Overlying Unit A is a 33 m (108 ft) thick sequence of mudstone and claystone (Unit B), and the uppermost unit at the Hanna IV site (Unit C) is a coarse-grained sandstone that ranges in thickness from 40 to 67 m (131 to 220 ft). Two elliptical cavities were formed during the two phases of the Hanna IV experiment. The larger cavity, Hanna IVa, is 45 x 15 m in plan and has a maximum height of 18 m (59 ft) from the base of the coal seam to the top of the cavity; the Hanna IVb cavity is 40 x 15 m in plan and has a maximum height of 11 m (36 ft) from the base of the coal seam to the top of the cavity. Geotechnical tests indicated that the Hanna IV overburden rocks were moderately strong to strong, based on the empirical classification of Broch and Franklin (1972), and a positive, linear correlation exists between rock strength and volume percent calcite cement. There is an inverse linear correlation between rock strength and porosity for the Hanna IV overburden rocks. 28 refs., 34 figs., 13 tabs..

  12. Simulated Real-World Energy Impacts of a Thermally Sensitive Powertrain Considering Viscous Losses and Enrichment: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Gonder, J.; Lopp, S.; Jehlik, F.

    2015-02-01

    It is widely understood that cold ambient temperatures increase vehicle fuel consumption due to heat transfer losses, increased friction (increased viscosity lubricants), and enrichment strategies (accelerated catalyst heating). However, relatively little effort has been dedicated to thoroughly quantifying these impacts across a large set of real world drive cycle data and ambient conditions. This work leverages experimental dynamometer vehicle data collected under various drive cycles and ambient conditions to develop a simplified modeling framework for quantifying thermal effects on vehicle energy consumption. These models are applied over a wide array of real-world usage profiles and typical meteorological data to develop estimates of in-use fuel economy. The paper concludes with a discussion of how this integrated testing/modeling approach may be applied to quantify real-world, off-cycle fuel economy benefits of various technologies.

  13. Methodology for Calculating Cost-per-Mile for Current and Future Vehicle Powertrain Technologies, with Projections to 2024: Preprint

    SciTech Connect (OSTI)

    Ruth, M.; Timbario, T. A.; Timbario, T. J.; Laffen, M.

    2011-01-01

    Currently, several cost-per-mile calculators exist that can provide estimates of acquisition and operating costs for consumers and fleets. However, these calculators are limited in their ability to determine the difference in cost per mile for consumer versus fleet ownership, to calculate the costs beyond one ownership period, to show the sensitivity of the cost per mile to the annual vehicle miles traveled (VMT), and to estimate future increases in operating and ownership costs. Oftentimes, these tools apply a constant percentage increase over the time period of vehicle operation, or in some cases, no increase in direct costs at all over time. A more accurate cost-per-mile calculator has been developed that allows the user to analyze these costs for both consumers and fleets. The calculator was developed to allow simultaneous comparisons of conventional light-duty internal combustion engine (ICE) vehicles, mild and full hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). This paper is a summary of the development by the authors of a more accurate cost-per-mile calculator that allows the user to analyze vehicle acquisition and operating costs for both consumer and fleets. Cost-per-mile results are reported for consumer-operated vehicles travelling 15,000 miles per year and for fleets travelling 25,000 miles per year.

  14. EERE Success Story- Chrysler and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain

    Broader source: Energy.gov [DOE]

    Internal combustion engines have the potential to become substantially more efficient, with laboratory tests indicating that new technologies could increase passenger vehicle fuel economy by more...

  15. Simulated Real-World Energy Impacts of a Thermally Sensitive Powertrain Considering Viscous Losses and Enrichment (Presentation)

    SciTech Connect (OSTI)

    Wood, E.; Gonder, J.; Lopp, S.; Jehlik, F.

    2014-09-01

    It is widely understood that cold-temperature engine operation negatively impacts vehicle fuel use due to a combination of increased friction (high-viscosity engine oil) and temporary enrichment (accelerated catalyst heating). However, relatively little effort has been dedicated to thoroughly quantifying these impacts across a large number of driving cycles and ambient conditions. This work leverages high-quality dynamometer data collected at various ambient conditions to develop a modeling framework for quantifying engine cold-start fuel penalties over a wide array of real-world usage profiles. Additionally, mitigation strategies including energy retention and exhaust heat recovery are explored with benefits quantified for each approach.

  16. Fact #897: November 2, 2015 Fuel Wasted in Traffic Congestion...

    Energy Savers [EERE]

    Powertrain Efficiency Improvements, 2005 to 2013 - Dataset Fact 883: July 27, 2015 Hybrid Powertrains are More Efficient than Conventional Counterparts - Dataset Fact 869:...

  17. Vehicle Technologies Office Issues Notice of Intent for Medium...

    Broader source: Energy.gov (indexed) [DOE]

    Announcement (FOA) entitled "Medium and Heavy Duty Vehicle Powertrain Electrification and ... electric-drive powertrain technologies for medium and heavy duty vehicles. ...

  18. Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SuperTruck - Powertrain Technologies for Efficiency Improvement Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement...

  19. Biomass Burning Observation Project Specifically,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School April 26, 2011 - 5:29pm Addthis Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Joel Danforth Project Officer, Golden Field Office

  20. Sandia National Laboratories: Burning Rubber

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The tip of the machine is so fine it can sample spots that are one-third the diameter of a ... Signals from distinguishing chemical structures can fade or disappear during aging. This ...