Powered by Deep Web Technologies
Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A Cost Benefit Analysis of California's Leaking Underground Fuel Tanks  

E-Print Network [OSTI]

s Leaking Underground Fuel Tanks (LUFTs)”. Submitted to theCalifornia’s Underground Storage Tank Program”. Submitted tos Leaking Underground Fuel Tanks” by Samantha Carrington

Carrington-Crouch, Robert

1996-01-01T23:59:59.000Z

2

Investigating leaking underground storage tanks  

E-Print Network [OSTI]

INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1989... Major Subject: Geology INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Approved as to sty)e and content by: P. A, Domenico (Chair of Committee) jj K. W. Brown (Member) C. C Mathewson (Member) J. H. S ng Head...

Upton, David Thompson

1989-01-01T23:59:59.000Z

3

Analysis of Underground Storage Tanks System Materials to Increased Leak Potential Associated with E15 Fuel  

SciTech Connect (OSTI)

The Energy Independence and Security Act (EISA) of 2007 was enacted by Congress to move the nation toward increased energy independence by increasing the production of renewable fuels to meet its transportation energy needs. The law establishes a new renewable fuel standard (RFS) that requires the nation to use 36 billion gallons annually (2.3 million barrels per day) of renewable fuel in its vehicles by 2022. Ethanol is the most widely used renewable fuel in the US, and its production has grown dramatically over the past decade. According to EISA and RFS, ethanol (produced from corn as well as cellulosic feedstocks) will make up the vast majority of the new renewable fuel requirements. However, ethanol use limited to E10 and E85 (in the case of flex fuel vehicles or FFVs) will not meet this target. Even if all of the E0 gasoline dispensers in the country were converted to E10, such sales would represent only about 15 billion gallons per year. If 15% ethanol, rather than 10% were used, the potential would be up to 22 billion gallons. The vast majority of ethanol used in the United States is blended with gasoline to create E10, that is, gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85, a gasoline blend with as much as 85% ethanol that can only be used in FFVs. Although DOE remains committed to expanding the E85 infrastructure, that market will not be able to absorb projected volumes of ethanol in the near term. Given this reality, DOE and others have begun assessing the viability of using intermediate ethanol blends as one way to transition to higher volumes of ethanol. In October of 2010, the EPA granted a partial waiver to the Clean Air Act allowing the use of fuel that contains up to 15% ethanol for the model year 2007 and newer light-duty motor vehicles. This waiver represents the first of a number of actions that are needed to move toward the commercialization of E15 gasoline blends. On January 2011, this waiver was expanded to include model year 2001 light-duty vehicles, but specifically prohibited use in motorcycles and off-road vehicles and equipment. UST stakeholders generally consider fueling infrastructure materials designed for use with E0 to be adequate for use with E10, and there are no known instances of major leaks or failures directly attributable to ethanol use. It is conceivable that many compatibility issues, including accelerated corrosion, do arise and are corrected onsite and, therefore do not lead to a release. However, there is some concern that higher ethanol concentrations, such as E15 or E20, may be incompatible with current materials used in standard gasoline fueling hardware. In the summer of 2008, DOE recognized the need to assess the impact of intermediate blends of ethanol on the fueling infrastructure, specifically located at the fueling station. This includes the dispenser and hanging hardware, the underground storage tank, and associated piping. The DOE program has been co-led and funded by the Office of the Biomass Program and Vehicle Technologies Program with technical expertise from the Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL). The infrastructure material compatibility work has been supported through strong collaborations and testing at Underwriters Laboratories (UL). ORNL performed a compatibility study investigating the compatibility of fuel infrastructure materials to gasoline containing intermediate levels of ethanol. These results can be found in the ORNL report entitled Intermediate Ethanol Blends Infrastructure Materials Compatibility Study: Elastomers, Metals and Sealants (hereafter referred to as the ORNL intermediate blends material compatibility study). These materials included elastomers, plastics, metals and sealants typically found in fuel dispenser infrastructure. The test fuels evaluated in the ORNL study were SAE standard test fuel formulations used to assess material-fuel compatibility within a relatively short timeframe. Initially, these material studies included test fuels of Fuel C,

Kass, Michael D [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL; Pawel, Steven J [ORNL

2012-07-01T23:59:59.000Z

4

Underground Storage Tanks: New Fuels and Compatibility  

Broader source: Energy.gov [DOE]

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

5

Thermal Imaging of Vegetation to Detect CO2 Gas Leaking From Underground  

Science Journals Connector (OSTI)

Thermal imaging of vegetation has been used to detect CO2 gas leaking from an underground gas reservoir. Plant stress caused by increased soil gas concentration results in warmer...

Shaw, Joseph A; Johnson, Jennifer E; Lawrence, Rick; Nugent, Paul W

6

Source Identification of Underground Fuel Spills by Solid-Phase Microextraction/High-Resolution Gas Chromatography/Genetic Algorithms  

Science Journals Connector (OSTI)

Source Identification of Underground Fuel Spills by Solid-Phase Microextraction/High-Resolution Gas Chromatography/Genetic Algorithms ... Groundwater is the last remaining source of potable water for many households and communities in the southeastern United States.1 Its possible contamination by fuels stored in leaking underground tanks and pipelines has become a serious environmental problem, prompting both federal and state regulatory agencies to fund the development of new methods for the identification of fuel materials recovered from subsurface environments. ...

B. K. Lavine; J. Ritter; A. J. Moores; M. Wilson; A. Faruque; H. T. Mayfield

1999-12-16T23:59:59.000Z

7

A sequential checklist for the assessment of natural attenuation of dissolved petroleum contaminant plumes from leaking underground storage tanks  

SciTech Connect (OSTI)

Estimates of the number of leaking underground storage tanks (UST) are measured in the hundreds of thousands in the United States alone. The discussion in this article largely pertains to the lighter motor fuels which contain aromatic petroleum hydrocarbons. These include benzene, toluene, ethylbenzene and xylenes (BTEX). The occurrence of dissolved BTEX groundwater contaminant plumes is most commonly associated with leaking gasoline USTs. However, their association with other petroleum products is not uncommon. this article and checklist provide guidance for completing UST assessments, which can support the decision-making process presented in the ASTM Emergency Standard Guide. Following the checklist will measure that the initial site assessment results in an accurate and functional characterization of the details and subtleties of the UST Source Impact Zone. This includes evaluating the UST area to identify release pathways for residual contamination in soil and groundwater. Based on the results obtained from the Source Impact Zone Evaluation, natural attenuation can be assessed for its applicability and performance.

De Rose, N. [Langan Engineering and Environmental Services, Inc., Doylestown, PA (United States)

1995-12-31T23:59:59.000Z

8

A Comparison of Popular Remedial Technologies for Petroleum Contaminated Soils from Leaking Underground Storage Tanks  

E-Print Network [OSTI]

Underground Storage Tanks. Chelsea: Lewis Publishers.and Underground Storage Tank Sites. Database on-line.Michigan Underground Storage Tank Rules. Database on-line.

Kujat, Jonathon D.

1999-01-01T23:59:59.000Z

9

Modular, High-Volume Fuel Cell Leak-Test Suite and Process  

SciTech Connect (OSTI)

Fuel cell stacks are typically hand-assembled and tested. As a result the manufacturing process is labor-intensive and time-consuming. The fluid leakage in fuel cell stacks may reduce fuel cell performance, damage fuel cell stack, or even cause fire and become a safety hazard. Leak check is a critical step in the fuel cell stack manufacturing. The fuel cell industry is in need of fuel cell leak-test processes and equipment that is automatic, robust, and high throughput. The equipment should reduce fuel cell manufacturing cost.

Ru Chen; Ian Kaye

2012-03-12T23:59:59.000Z

10

Underground Storage Tanks: New Fuels and Compatibility  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

high octane fuels being considered as possible path forward Storing high octane ethanol blended fuels will require careful consideration of material compatibility issues...

11

Model based detection of hydrogen leaks in a fuel cell stack Ari Ingimundarson and Anna G. Stefanopoulou and Denise McKay  

E-Print Network [OSTI]

Model based detection of hydrogen leaks in a fuel cell stack Ari Ingimundarson and Anna G. Stefanopoulou and Denise McKay Abstract-- Hydrogen leaks are potentially dangerous faults in fuel cell systems detection, leak detection, hydrogen leak- age. I. INTRODUCTION A common safety concern for fuel cell systems

Stefanopoulou, Anna

12

Assessing the Effectiveness of California's Underground Storage Tank Annual Inspection Rate Requirements  

E-Print Network [OSTI]

Leaks from Underground Storage Tanks by Media Affected Soilfrom Underground Storage Tank Facilities Cities CountiesCities Counties Leaks per Underground Storage Tank Facility

Cutter, W. Bowman

2008-01-01T23:59:59.000Z

13

Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer  

DOE Patents [OSTI]

An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier. 10 figs.

Dederer, J.T.; Hager, C.A.

1998-03-31T23:59:59.000Z

14

Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer  

DOE Patents [OSTI]

An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier.

Dederer, Jeffrey T. (Valencia, PA); Hager, Charles A. (Mars, PA)

1998-01-01T23:59:59.000Z

15

Surveillance Guide - ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks  

Broader source: Energy.gov (indexed) [DOE]

UNDERGROUND AND ABOVE GROUND DIESEL FUEL STORAGE TANKS UNDERGROUND AND ABOVE GROUND DIESEL FUEL STORAGE TANKS 1.0 Objective The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required. These surveillance activities provide a basis for evaluating the effectiveness of the contractor's program for implementation of appropriate controls and compliance with DOE requirements. 2.0 References 1. DOE O 440.1A, Worker Protection Management For DOE Federal And Contractor Employees [http://www.explorer.doe.gov:1776/cgi-bin/w3vdkhgw?qryBGD07_rSj;doe- 1261] 1. 29CFR1910.1200, Subpart Z, Hazard Communication [Access http://www.osha-slc.gov/OshStd_data/1910_1200.html ] 2. 29CFR1910.106, Subpart H, Flammable And Combustible Liquids [Access at

16

Regulation of Leaky Underground Fuel Tanks: An Anatomy of Regulatory Failure  

E-Print Network [OSTI]

any leaks. (b) Most storage tank owners have only vagueaddition, regulations for tanks installed prior to Januarypertaining to existing tanks are more appropriately termed

White, Christen Carlson

1995-01-01T23:59:59.000Z

17

Mineral formation during simulated leaks of Hanford waste tanks  

E-Print Network [OSTI]

Mineral formation during simulated leaks of Hanford waste tanks Youjun Deng a , James B. Harsh a handling by M. Gascoyne Abstract Highly-alkaline waste solutions have leaked from underground tanks mimicking tank leak conditions at the US DOE Hanford Site. In batch experiments, Si-rich solutions

Flury, Markus

18

Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository - Volume 3: Appendices  

SciTech Connect (OSTI)

The United States Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

Taylor, L.L.; Wilson, J.R. (INEEL); Sanchez, L.C.; Aguilar, R.; Trellue, H.R.; Cochrane, K. (SNL); Rath, J.S. (New Mexico Engineering Research Institute)

1998-10-01T23:59:59.000Z

19

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

20

ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01  

Broader source: Energy.gov [DOE]

The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required.  These surveillance activities...

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01  

Broader source: Energy.gov [DOE]

 The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required.  These surveillance activities...

22

Minimize Compressed Air Leaks  

Broader source: Energy.gov [DOE]

This tip sheet outlines a strategy for compressed air leak detection and provides a formula for cost savings calculations.

23

Underground Storage Tank Regulations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tank Regulations Underground Storage Tank Regulations Underground Storage Tank Regulations < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Underground Storage Tank Regulations is relevant to all energy projects

24

Natural Gas Withdrawals from Underground Storage (Annual Supply &  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

25

Low-cost multispectral vegetation imaging system for detecting leaking CO2 gas  

E-Print Network [OSTI]

Low-cost multispectral vegetation imaging system for detecting leaking CO2 gas Justin A. Hogan,1 sequestration sites for possible leaks of the CO2 gas from underground reservoirs, a low-cost multispectral are then flagged for closer inspection with in-situ CO2 sensors. The system is entirely self

Shaw, Joseph A.

26

Distribution System Audits, Leak Detection, and Repair: Kirtland Air Force Base Leak Detection and Repair Program  

Broader source: Energy.gov (indexed) [DOE]

Best Management Practice Best Management Practice Case Study #3 Distribution System Audits, Leak Detection, and Repair Kirtland Air Force Base - Leak Detection and Repair Program Overview Kirtland Air Force Base (AFB) performed an award winning leak detection and repair program in 2006. The results of the project are saving Kirtland AFB 179 million gallons each year, which is over 16% of the total water use at the base. Kirtland AFB is located on 52,000 acres, southeast and adjacent to Albuquerque, New Mexico. The area is a high altitude desert, only receiving about 8 inches of rain each year. Kirtland AFB draws water from an under- ground aquifer via seven production wells through- out the base. The base also has access to water from the City of Albuquerque. The underground water

27

Distribution System Audits, Leak Detection, and Repair: Kirtland Air Force Base Leak Detection and Repair Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Best Management Practice Best Management Practice Case Study #3 Distribution System Audits, Leak Detection, and Repair Kirtland Air Force Base - Leak Detection and Repair Program Overview Kirtland Air Force Base (AFB) performed an award winning leak detection and repair program in 2006. The results of the project are saving Kirtland AFB 179 million gallons each year, which is over 16% of the total water use at the base. Kirtland AFB is located on 52,000 acres, southeast and adjacent to Albuquerque, New Mexico. The area is a high altitude desert, only receiving about 8 inches of rain each year. Kirtland AFB draws water from an under- ground aquifer via seven production wells through- out the base. The base also has access to water from the City of Albuquerque. The underground water

28

Underground Exploration  

E-Print Network [OSTI]

Underground Exploration and Testing A Report to Congress and the Secretary of Energy Nuclear Waste Technical Review Board October 1993 Yucca Mountain at #12;Nuclear Waste Technical Review Board Dr. John E and Testing #12;Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Introduction

29

Intelligent Coatings for Location And Detection of Leaks (IntelliCLAD...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

supplant widespread use of hydrocarbon-based fuels in what has been dubbed the "hydrogen economy," but odorization of hydrogen will not make a leak noticeable to humans...

30

Improved gaseous leak detector  

DOE Patents [OSTI]

In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the nonlinear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

Juravic, F.E. Jr.

1983-10-06T23:59:59.000Z

31

Underground Storage Tank Regulations for the Certification of Persons Who  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tank Regulations for the Certification of Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells

32

Reducing Your Leak Rate Without Repairing Leaks  

E-Print Network [OSTI]

out of a thirteen-minute cycle, which meant they sat idle 76.9 percent of the time. We decided to divide the pneumatic circuit on each machine into two circuits, install an automatic solenoid valve, and program the PLC to shut the air off.... In this case, we decided to install an automatic solenoid valve at each position, and program the PLC to shut the air off to the position when it wasn?t operating. This reduced the leak rate by approximately 1100 scfm from 1500 scfm to 400 scfm. ...

Beals, C.

2005-01-01T23:59:59.000Z

33

SEALING SIMULATED LEAKS  

SciTech Connect (OSTI)

This report details the testing equipment, procedures and results performed under Task 7.2 Sealing Simulated Leaks. In terms of our ability to seal leaks identified in the technical topical report, Analysis of Current Field Data, we were 100% successful. In regards to maintaining seal integrity after pigging operations we achieved varying degrees of success. Internal Corrosion defects proved to be the most resistant to the effects of pigging while External Corrosion proved to be the least resistant. Overall, with limitations, pressure activated sealant technology would be a viable option under the right circumstances.

Michael A. Romano

2004-09-01T23:59:59.000Z

34

Underground Coal Gasification in the USSR  

Science Journals Connector (OSTI)

By accomplishing in a single operation the extraction of coal and its conversion into a gaseous fuel, underground gasification makes it possible to avoid the heavy capital investments required for coal gasification

1983-01-01T23:59:59.000Z

35

Rapid communication Mapping urban pipeline leaks: Methane leaks across Boston  

E-Print Network [OSTI]

Rapid communication Mapping urban pipeline leaks: Methane leaks across Boston Nathan G. Phillips a of methane (CH4) in the United States. To assess pipeline emissions across a major city, we mapped CH4 leaks signatures w20& lighter (m ¼ �57.8&, �1.6& s.e., n ¼ 8). Repairing leaky natural gas distribution systems

Jackson, Robert B.

36

Air Leaks in Unexpected Places  

Broader source: Energy.gov [DOE]

Sealing air leaks will help to decrease heating and cooling costs and make your home more comfortable.

37

Reducing Leaking Electricity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 Reducing Leaking Electricity Figure 1. Full and standby power draws of some compact audio systems. A surprisingly large number of appliances-from computer peripherals to cable TV boxes to radios-consume electricity even after they have been switched off. Other appliances, such as cordless telephones, remote garage door openers, and battery chargers don't get switched off but draw power even when they are not performing their principal functions. The energy used while the appliance is switched off or not performing its primary purpose is called "standby consumption" or "leaking electricity." This consumption allows TVs, VCRs and garage-door openers to be ready for instant-on with a remote control, microwave ovens to display a digital

38

Natural gas leak mapper  

DOE Patents [OSTI]

A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

2008-05-20T23:59:59.000Z

39

Aspects of leak detection  

SciTech Connect (OSTI)

A requirement of a Leak before Break safety case is that the leakage from the through wall crack be detected prior to any growth leading to unacceptable failure. This paper sets out to review some recent developments in this field. It does not set out to be a comprehensive guide to all of the methods available. The discussion concentrates on acoustic emission and how the techniques can be qualified and deployed on operational plant.

Chivers, T.C. [Berkeley Technology Centre, Glos (United Kingdom)

1997-04-01T23:59:59.000Z

40

Leak Detection and H2 Sensor Development for Hydrogen Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Eric L. Brosha 1 (Primary Contact), Fernando H. Garzon 1 , Robert S. Glass 2 , Cortney Kreller 1 , Rangachary Mukundan 1 , Catherine G. Padro 1 , and Leta Woo 2 1 Los Alamos National Laboratory (LANL) MS D429, P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 665 4008 Email: Brosha@lanl.gov 2 Lawrence Livermore National Laboratory (LLNL) DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Project Start Date: Fiscal Year (FY) 2008 Project End Date: FY 2014 FY 2012 Objectives Develop a low-cost, low-power, durable, and reliable * hydrogen safety sensor for a wide range of vehicle and infrastructure applications. Continually advance test prototypes guided by materials * selection, sensor design, electrochemical research and

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Underground Facilities Information (Iowa) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facilities Information (Iowa) Facilities Information (Iowa) Underground Facilities Information (Iowa) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Residential Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board This section applies to any excavation which may impact underground facilities, including those used for the conveyance of electricity or the transportation of hazardous liquids or natural gas. Excavation is prohibited unless notification takes place, as described in this chapter

42

Georgia Underground Storage Tank Act (Georgia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tank Act (Georgia) Underground Storage Tank Act (Georgia) Georgia Underground Storage Tank Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks

43

Underground Layout Configuration  

SciTech Connect (OSTI)

The purpose of this analysis was to develop an underground layout to support the license application (LA) design effort. In addition, the analysis will be used as the technical basis for the underground layout general arrangement drawings.

A. Linden

2003-09-25T23:59:59.000Z

44

Tips: Sealing Air Leaks | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sealing Air Leaks Sealing Air Leaks Tips: Sealing Air Leaks May 16, 2013 - 5:03pm Addthis Sources of Air Leaks in Your Home. Areas that leak air into and out of your home cost you a lot of money. The areas listed in the illustration are the most common sources of air leaks. Sources of Air Leaks in Your Home. Areas that leak air into and out of your home cost you a lot of money. The areas listed in the illustration are the most common sources of air leaks. Air leaks can waste a lot of your energy dollars. One of the quickest energy-- and money-saving tasks you can do is caulk, seal, and weather strip all seams, cracks, and openings to the outside. Tips for Sealing Air Leaks Test your home for air tightness. On a windy day, carefully hold a lit incense stick or a smoke pen next to your windows, doors, electrical

45

Tips: Sealing Air Leaks | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tips: Sealing Air Leaks Tips: Sealing Air Leaks Tips: Sealing Air Leaks May 16, 2013 - 5:03pm Addthis Sources of Air Leaks in Your Home. Areas that leak air into and out of your home cost you a lot of money. The areas listed in the illustration are the most common sources of air leaks. Sources of Air Leaks in Your Home. Areas that leak air into and out of your home cost you a lot of money. The areas listed in the illustration are the most common sources of air leaks. Air leaks can waste a lot of your energy dollars. One of the quickest energy-- and money-saving tasks you can do is caulk, seal, and weather strip all seams, cracks, and openings to the outside. Tips for Sealing Air Leaks Test your home for air tightness. On a windy day, carefully hold a lit incense stick or a smoke pen next to your windows, doors, electrical

46

Net Withdrawals of Natural Gas from Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

47

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Safety, enforces rules concerning the placement of underground and aboveground storage tanks that contain alternative and renewable fuel. For the purpose of these regulations, an...

48

Leak test adapter for containers  

DOE Patents [OSTI]

An adapter is provided for facilitating the charging of containers and leak testing penetration areas. The adapter comprises an adapter body and stem which are secured to the container's penetration areas. The container is then pressurized with a tracer gas. Manipulating the adapter stem installs a penetration plug allowing the adapter to be removed and the penetration to be leak tested with a mass spectrometer. Additionally, a method is provided for using the adapter.

Hallett, Brian H. (Elizabeth, PA); Hartley, Michael S. (Canonsburg, PA)

1996-01-01T23:59:59.000Z

49

Wells, Borings, and Underground Uses (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wells, Borings, and Underground Uses (Minnesota) Wells, Borings, and Underground Uses (Minnesota) Wells, Borings, and Underground Uses (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section regulates wells, borings, and underground storage with regards to protecting groundwater resources. The Commissioner of the Department of Health has jurisdiction, and can grant permits for proposed activities,

50

Underground Storage Tanks (New Jersey) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State New Jersey Program Type Safety and Operational Guidelines This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and the environment

51

Science @WIPP: Underground Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WIPP WIPP Underground Laboratory Double Beta Decay Dark Matter Biology Repository Science Renewable Energy Underground Laboratory The deep geologic repository at WIPP provides an ideal environment for experiments in many scientific disciplines, including particle astrophysics, waste repository science, mining technology, low radiation dose physics, fissile materials accountability and transparency, and deep geophysics. The designation of the Carlsbad Department of Energy office as a "field" office has allowed WIPP to offer its mine operations infrastructure and space in the underground to researchers requiring a deep underground setting with dry conditions and very low levels of naturally occurring radioactive materials. Please contact Roger Nelson, chief scientist of the Department of

52

Underground Injection Control (Louisiana)  

Broader source: Energy.gov [DOE]

The Injection and Mining Division (IMD) has the responsibility of implementing two major federal environmental programs which were statutorily charged to the Office of Conservation: the Underground...

53

Underground Injection Control Permits and Registrations (Texas) |  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Underground Injection Control Permits and Registrations (Texas) Underground Injection Control Permits and Registrations (Texas) < Back Eligibility Utility Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Fuel Distributor Savings Category Buying & Making Electricity Program Info State Texas Program Type Environmental Regulations Safety and Operational Guidelines Provider Texas Commission on Environmental Quality Chapter 27 of the Texas Water Code (the Injection Well Act) defines an "injection well" as "an artificial excavation or opening in the ground made by digging, boring, drilling, jetting, driving, or some other

54

Underground Power Cables  

Science Journals Connector (OSTI)

...1973 research-article Underground Power Cables J. D. Endacott Up to the present, effectively...particular, in recent years, the oil-filled cable system using cellulose paper impregnated...design of supertension underground power cable systems are considered. The limitations...

1973-01-01T23:59:59.000Z

55

Oil shale retorted underground  

Science Journals Connector (OSTI)

Oil shale retorted underground ... Low-temperature underground retorting of oil shale produces a crude oil with many attractive properties, Dr. George R. Hill of the University of Utah told a meeting of the American Institute of Mining, Metallurgical, and Petroleum Engineers last week in Los Angeles. ... Typical above-ground retorting of oil shale uses temperatures of 900° to 1100° F. because of the economic need ... ...

1967-02-27T23:59:59.000Z

56

Underground Coal Thermal Treatment  

SciTech Connect (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

57

Underground Storage Tank Act (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Act (West Virginia) Act (West Virginia) Underground Storage Tank Act (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored therein, which may occur as

58

Distributed Optical Sensor for CO2 Leak Detection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical Sensor for CO Optical Sensor for CO 2 Leak Detection Opportunity Research is active on the technology "Distributed Optical Sensor for CO 2 Leak Detection," for which a Patent Application has been filed. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Overview The availability of fossil fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, there are concerns over the impacts of greenhouse gases (GHGs) in the atmosphere-particularly carbon dioxide (CO 2 ). Carbon capture and storage in geologic formations is a promising technology to reduce the impact of CO

59

Leaching of Irradiated Candu UO2 Fuel  

Science Journals Connector (OSTI)

An assessment of the concept to dispose of spent, irradiated nuclear fuel in an underground repository requires information on the rates of radionuclide leaching from the fuel matrix and of fuel matrix dissolu...

T. T. Vandergraaf; L. H. Johnson…

1980-01-01T23:59:59.000Z

60

High sensitivity leak detection method and apparatus  

DOE Patents [OSTI]

An improved leak detection method is provided that utilizes the cyclic adsorption and desorption of accumulated helium on a non-porous metallic surface. The method provides reliable leak detection at superfluid helium temperatures. The zero drift that is associated with residual gas analyzers in common leak detectors is virtually eliminated by utilizing a time integration technique. The sensitivity of the apparatus of this disclosure is capable of detecting leaks as small as 1.times.10.sup.-18 atm cc sec.sup.-1.

Myneni, Ganapatic R. (Grafton, VA)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

High sensitivity leak detection method and apparatus  

DOE Patents [OSTI]

An improved leak detection method is provided that utilizes the cyclic adsorption and desorption of accumulated helium on a non-porous metallic surface. The method provides reliable leak detection at superfluid helium temperatures. The zero drift that is associated with residual gas analyzers in common leak detectors is virtually eliminated by utilizing a time integration technique. The sensitivity of the apparatus of this disclosure is capable of detecting leaks as small as 1 [times] 10[sup [minus]18] atm cc sec[sup [minus]1]. 2 figs.

Myneni, G.R.

1994-09-06T23:59:59.000Z

62

Leak detection on an ethylene pipeline  

SciTech Connect (OSTI)

A model-based leak detection system has been in operation on the Solvay et Cie ethylene pipeline from Antwerp to Jemeppe on Sambre since 1989. The leak detection system, which is the commercial product PLDS of Modisette Associations, Inc., was originally installed by the supplier. Since 1991, all system maintenance and configuration changes have been done by Solvay et Cie personnel. Many leak tests have been performed, and adjustments have been made in the configuration and the automatic tuning parameters. The leak detection system is currently able to detect leaks of 2 tonnes/hour in 11 minutes with accurate location. Larger leaks are detected in about 2 minutes. Leaks between 0.5 and 1 tonne per hour are detected after several hours. (The nominal mass flow in the pipeline is 15 tonnes/hour, with large fluctuations.) Leaks smaller than 0.5 tonnes per hour are not detected, with the alarm thresholds set at levels to avoid false alarms. The major inaccuracies of the leak detection system appear to be associated with the ethylene temperatures.

Hamande, A.; Condacse, V.; Modisette, J.

1995-12-31T23:59:59.000Z

63

Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

64

In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents  

DOE Patents [OSTI]

An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants are described. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating. 21 figs.

Taylor, R.T.; Jackson, K.J.; Duba, A.G.; Chen, C.I.

1998-05-19T23:59:59.000Z

65

In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents  

DOE Patents [OSTI]

An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating.

Taylor, Robert T. (Livermore, CA); Jackson, Kenneth J. (San Leandro, CA); Duba, Alfred G. (Livermore, CA); Chen, Ching-I (Danville, CA)

1998-01-01T23:59:59.000Z

66

Animals that Hide Underground  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Animals that Hide Underground Animals that Hide Underground Nature Bulletin No. 733 November 23, 1963 Forest Preserve District of Cook County Seymour Simon, President David H. Thompson, Senior Naturalist ANIMALS THAT HIDE UNDERGROUND A hole in the ground has an air of mystery about it that rouses our curiosity. No matter whether it is so small that only a worm could squeeze into it, or large enough for a fox den, our questions are much the same. What animal dug the hole? Is it down there now? What is it doing? When will it come out? An underground burrow has several advantages for an animal. In it, many kinds find safety from enemies for themselves and their young. For others, it is an air-conditioned escape from the burning sun of summer and a snug retreat away from the winds and cold of winter. The moist atmosphere of a subterranean home allows the prolonged survival of a wide variety of lower animals which, above the surface, would soon perish from drying.

67

Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) |  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage of Natural Gas and Liquefied Petroleum Gas Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Nebraska Oil and Gas Conservation Commission This statute declares underground storage of natural gas and liquefied petroleum gas to be in the public interest if it promotes the conservation

68

Rules and Regulations for Underground Storage Facilities Used for Petroleum  

Broader source: Energy.gov (indexed) [DOE]

Rules and Regulations for Underground Storage Facilities Used for Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island) Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations apply to underground storage facilities for petroleum and

69

Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013  

SciTech Connect (OSTI)

This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

Kerry L. Nisson

2012-10-01T23:59:59.000Z

70

Underground waste barrier structure  

DOE Patents [OSTI]

Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

1988-01-01T23:59:59.000Z

71

Underground storage tank 511-D1U1 closure plan  

SciTech Connect (OSTI)

This document contains the closure plan for diesel fuel underground storage tank 511-D1U1 and appendices containing supplemental information such as staff training certification and task summaries. Precision tank test data, a site health and safety plan, and material safety data sheets are also included.

Mancieri, S.; Giuntoli, N.

1993-09-01T23:59:59.000Z

72

Adversaries and Information Leaks Geoffrey Smith  

E-Print Network [OSTI]

Adversaries and Information Leaks (Tutorial) Geoffrey Smith School of Computing and Information-Verlag Berlin Heidelberg 2008 #12;384 G. Smith ­ The program c has direct access to the sensitive information

Smith, Geoffrey

73

Underground Injection Control Rule (Vermont)  

Broader source: Energy.gov [DOE]

This rule regulates injection wells, including wells used by generators of hazardous or radioactive wastes, disposal wells within an underground source of drinking water, recovery of geothermal...

74

Underground Storage Tank Program (Vermont)  

Broader source: Energy.gov [DOE]

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

75

Underground Injection Control Regulations (Kansas)  

Broader source: Energy.gov [DOE]

This article prohibits injection of hazardous or radioactive wastes into or above an underground source of drinking water, establishes permit conditions and states regulations for design,...

76

New findings on leak resistance of API 8-Round connectors  

SciTech Connect (OSTI)

In response to high interest concerning leak resistance in API 8-Round connectors, the API funded projects that have identified and assessed parameters affecting leak. Among these parameters are make-up, diameter, grade, and combined loads. Additional turns during make-up was found to increase leak resistance. Investigations concerning diameter and grade identified larger diameter and higher grade connectors as most susceptible to low leak pressures when compared to pipe body ratings. Finally, combined loads were found to be crucial to leak. Tension lowers the leak resistance of 8-Round connectors in a manner that renders hydrotesting insufficient for defining leak in some service conditions.

Schwind, B.E.; Wooley, G.R.

1986-01-01T23:59:59.000Z

77

Regulated underground storage tanks  

SciTech Connect (OSTI)

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. (40 CFR 280). The guidance uses tables, flowcharts, and checklists to provide a roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

78

Regulated underground storage tanks  

SciTech Connect (OSTI)

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ``roadmap`` for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

79

Saving an Underground Reservoir  

E-Print Network [OSTI]

significant part of the region?s agricultural economy. Though the area has few rivers and lakes, underneath it lies a supply of water that has provided groundwater for developing this economy. This underground water, the Ogallala Aquifer, is a finite.... ?We have already seen isolat- ed areas that have no irrigation water remaining and the economy has been crushed.? The region produces about 4 percent of the nation?s corn, 25 percent of the hard red winter wheat, 23 per- cent of the grain sorghum...

Wythe, Kathy

2006-01-01T23:59:59.000Z

80

Leak Testing and Implications of Operations to Locate Leak Horizons at West Hackberry Well 108  

SciTech Connect (OSTI)

The Strategic Petroleum Reserve site at West Hackberry, Louisiana has historically experienced casing leaks. Numerous West Hackberry oil storage caverns have wells exhibiting communication between the interior 10 3/4 x 20-inch (oil) annulus and the ''outer cemented'' 20 x 26-inch annulus. Well 108 in Cavern 108 exhibits this behavior. It is thought that one, if not the primary, cause of this communication is casing thread leaks at the 20-inch casing joints combined with microannuli along the cement casing interfaces and other cracks/flaws in the cemented 20 x 26-inch annulus. An operation consisting of a series of nitrogen leak tests, similar to cavern integrity tests, was performed on Cavern 108 in an effort to determine the leak horizons and to see if these leak horizons coincided with those of casing joints. Certain leaky, threaded casing joints were identified between 400 and 1500 feet. A new leak detection procedure was developed as a result of this test, and this methodology for identifying and interpreting such casing joint leaks is presented in this report. Analysis of the test data showed that individual joint leaks could be successfully identified, but not without some degree of ambiguity. This ambiguity is attributed to changes in the fluid content of the leak path (nitrogen forcing out oil) and possibly to very plausible changes in characteristics of the flow path during the test. These changes dominated the test response and made the identification of individual leak horizons difficult. One consequence of concern from the testing was a progressive increase in the leak rate measured during testing due to nitrogen cleaning small amounts of oil out of the leak paths and very likely due to the changes of the leak path during the flow test. Therefore, careful consideration must be given before attempting similar tests. Although such leaks have caused no known environmental or economic problems to date, the leaks may be significant because of the potential for future problems. To mitigate future problems, some repair scenarios are discussed including injection of sealants.

SATTLER, ALLAN R.; EHGARTNER, BRIAN L.; PIECHOCKI, ALAN

2002-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127  

SciTech Connect (OSTI)

Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-9IF Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal I-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and drywells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design - working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching.

VENETZ TJ; WASHENFELDER D; JOHNSON J; GIRARDOT C

2012-01-25T23:59:59.000Z

82

Underground Storage Tanks (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tanks (West Virginia) Tanks (West Virginia) Underground Storage Tanks (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install, repair, retrofit,

83

Underground Gas Storage Reservoirs (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas Storage Reservoirs (West Virginia) Gas Storage Reservoirs (West Virginia) Underground Gas Storage Reservoirs (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Safety and Operational Guidelines Provider West Virginia Department of Commerce Lays out guidelines for the conditions under which coal mining operations must notify state authorities of intentions to mine where underground gas

84

Underground Gasification of Coal Reported  

Science Journals Connector (OSTI)

Underground Gasification of Coal Reported ... RESULTS of a first step taken toward determining the feasibility of the underground gasification of coal were reported recently to the Interstate Oil Compact Commission by Milton H. Fies, manager of coal operations for the Alabama Power Co. ...

1947-05-12T23:59:59.000Z

85

Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version)  

Broader source: Energy.gov [DOE]

Hydrogen fueled vehicles have multiple safety systems that detect and prevent the accidental release of hydrogen. There are sensors that detect leaks, a computer that monitors fuel flow, and an...

86

California Working Natural Gas Underground Storage Capacity ...  

Gasoline and Diesel Fuel Update (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

87

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

88

Strontium and cesium radionuclide leak detection alternatives in a capsule storage pool  

SciTech Connect (OSTI)

A study was performed to assess radionuclide leak-detection systems for use in locating a capsule leaking strontium-90 or cesium-137 into a water-filled pool. Each storage pool contains about 35,000 L of water and up to 715 capsules, each of which contains up to 150 kCi strontium-90 or 80 kCi cesium-137. Potential systems assessed included instrumental chemical analyses, radionuclide detection, visual examination, and other nondestructive nuclear-fuel examination techniques. Factors considered in the assessment include: cost, simplicity of maintenance and operation, technology availability, reliability, remote operation, sensitivity, and ability to locate an individual leaking capsule in its storage location. The study concluded that an adaption of the spent nuclear-fuel examination technique of wet sipping be considered for adaption. In the suggested approoch, samples would be taken continuously from pool water adjacent to the capsule(s) being examined for remote radiation detection. In-place capsule isolation and subsequent water sampling would confirm that a capsule was leaking radionuclides. Additional studies are needed before implementing this option. Two other techniques that show promise are ultrasonic testing and eddy-current testing.

Larson, D.E.; Crawford, T.W.; Joyce, S.M.

1981-08-01T23:59:59.000Z

89

Detecting Air Leaks | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Detecting Air Leaks Detecting Air Leaks Detecting Air Leaks September 27, 2012 - 6:39pm Addthis For a thorough and accurate measurement of air leakage in your home, hire a qualified technician to conduct an energy assessment, particularly a blower door test. For a thorough and accurate measurement of air leakage in your home, hire a qualified technician to conduct an energy assessment, particularly a blower door test. You may already know where some air leakage occurs in your home, such as an under-the-door draft, but you'll need to find the less obvious gaps to properly air seal your home. For a thorough and accurate measurement of air leakage in your home, hire a qualified technician to conduct an energy assessment, particularly a blower door test. A blower door test, which depressurizes a home, can

90

Underground Injection Control (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Injection Control (West Virginia) Injection Control (West Virginia) Underground Injection Control (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule set forth criteria and standards for the requirements which apply to the State Underground Injection Control Program (U.I.C.). The UIC permit program regulates underground injections by 5 classes of wells. All owners

91

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Broader source: Energy.gov (indexed) [DOE]

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

92

Rankine cycle leak detection via continuous monitoring  

SciTech Connect (OSTI)

Rankine cycle power plants operate on a closed cycle in which heat is transferred from a high temperature reservoir to a low temperature sink while performing useful work. leaks in this cycle cause the loss of working fluid and/or corrosion of the power plant. Both of these constitute a loss of capital assets. A severe leak can reduce the efficiency of the cycle to the extent of creating an operating loss. PNL is undertaking the development of continuous monitoring techniques to protect rankine cycle plants from such losses. The location of these continuous monitors on an organic rankine cycle is described and shown schematically.

Kindle, Cecil H.

1982-10-08T23:59:59.000Z

93

Alternative Fuels Data Center - Fuel Properties Comparison  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Data Center - Fuel Properties Comparison Fuels Data Center - Fuel Properties Comparison www.afdc.energy.gov 1 2/27/2013 Gasoline Diesel (No. 2) Biodiesel Propane (LPG) Compressed Natural Gas (CNG) Liquefied Natural Gas (LNG) Ethanol Methanol Hydrogen Electricity Chemical Structure C 4 to C 12 C 8 to C 25 Methyl esters of C 12 to C 22 fatty acids C 3 H 8 (majority) and C 4 H 10 (minority) CH 4 (83-99%), C 2 H 6 (1-13%) CH 4 CH 3 CH 2 OH CH 3 OH H 2 N/A Fuel Material (feedstocks) Crude Oil Crude Oil Fats and oils from sources such as soy beans, waste cooking oil, animal fats, and rapeseed A by-product of petroleum refining or natural gas processing Underground reserves Underground reserves Corn, grains, or

94

GASFLOW analysis of a tritium leak accident  

SciTech Connect (OSTI)

The consequences of an earthquake-induced fire involving a tritium leak were analyzed using the GASFLOW computer code. Modeling features required by the analysis include ventilation boundary conditions, flow of a gas mixture in an enclosure containing obstacles, thermally induced buoyancy, and combustion phenomena.

Farman, R.F.; Fujita, R.K. [Los Alamos National Lab., NM (United States); Travis, J.R. [Engineering and Scientific software, Inc. (Untied States)

1994-09-01T23:59:59.000Z

95

Managing an Effective Leak Sealing Program  

E-Print Network [OSTI]

~L....-ST_EAM__ __L_EAK S_U_R_VE_Y_IF_U_R_M_A_N_IT_E_I.__J COMPANY NAME LOCATION DATE * SAMPLE * IFURMANITE REPRESENTATIVE: # , Z 3 4 A/~ I LOCATION TYPE DRAIN VALVE 2,'; R'CVR r:~OI ~ACK/"'~ BLOCK VALVE IZ"Ht>RN?NlClM/fE Fi...

Rinz, W. H.

1980-01-01T23:59:59.000Z

96

New system pinpoints leaks in ethylene pipeline  

SciTech Connect (OSTI)

A model-based leak detection, PLDS, developed by Modisette Associates, Inc., Houston has been operating on the Solvay et Cie ethylene pipeline since 1989. The 6-in. pipeline extends from Antwerp to Jemeppe sur Sambre, a distance of 73.5 miles and is buried at a depth of 3 ft. with no insulation. Except for outlets to flares, located every 6 miles for test purposes, there are no injections or deliveries along the pipeline. Also, there are block valves, which are normally open, at each flare location. This paper reviews the design and testing procedures used to determine the system performance. These tests showed that the leak system was fully operational and no false alarms were caused by abrupt changes in inlet/outlet flows of the pipeline. It was confirmed that leaks larger than 2 tonnes/hr. (40 bbl/hr) are quickly detected and accurately located. Also, maximum leak detection sensitivity is 1 tonne/hr. (20 bbl/hr) with a detection time of one hour. Significant operational, configuration, and programming issues also were found during the testing program. Data showed that temperature simulations needed re-examining for improvement since accurate temperature measurements are important. This is especially true for ethylene since its density depends largely on temperature. Another finding showed the averaging period of 4 hrs. was too long and a 1 to 2 hr. interval was better.

Hamande, A. [Solvay et Cie, Jemeppe sur Sambre (Belgium); Condacse, V.; Modisette, J. [Modisette Associates, Inc., Houston, TX (United States)

1995-04-01T23:59:59.000Z

97

Evaluating an experimental setup for pipe leak detection  

E-Print Network [OSTI]

An experimental setup with 4 inch inner diameter PVC pipe modules is designed to mimic a real life piping system in which to test possible leak detection mechanisms. A model leak detection mechanism is developed which ...

Garay, Luis I. (Luis Ignacio)

2010-01-01T23:59:59.000Z

98

Underground pumped hydroelectric storage  

SciTech Connect (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

99

Underground Facilities, Technological Challenges  

E-Print Network [OSTI]

This report gives a summary overview of the status of international under- ground facilities, in particular as relevant to long-baseline neutrino physics and neutrino astrophysics. The emphasis is on the technical feasibility aspects of creating the large underground infrastructures that will be needed in the fu- ture to house the necessary detectors of 100 kton to 1000 kton scale. There is great potential in Europe to build such a facility, both from the technical point of view and because Europe has a large concentration of the necessary engi- neering and geophysics expertise. The new LAGUNA collaboration has made rapid progress in determining the feasibility for a European site for such a large detector. It is becoming clear in fact that several locations are technically fea- sible in Europe. Combining this with the possibility of a new neutrino beam from CERN suggests a great opportunity for Europe to become the leading centre of neutrino studies, combining both neutrino astrophysics and neutrino beam stu...

Spooner, N

2010-01-01T23:59:59.000Z

100

Double Shell Tank AY-102 Radioactive Waste Leak Investigation  

SciTech Connect (OSTI)

PowerPoint. The objectives of this presentation are to: Describe Effort to Determine Whether Tank AY-102 Leaked; Review Probable Causes of the Tank AY-102 Leak; and, Discuss Influence of Leak on Hanford’s Double-Shell Tank Integrity Program.

Washenfelder, Dennis J.

2014-04-10T23:59:59.000Z

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Underground Storage Technology Consortium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U U U N N D D E E R R G G R R O O U U N N D D G G A A S S S S T T O O R R A A G G E E T T E E C C H H N N O O L L O O G G Y Y C C O O N N S S O O R R T T I I U U M M R R & & D D P P R R I I O O R R I I T T Y Y R R E E S S E E A A R R C C H H N N E E E E D D S S WORKSHOP PROCEEDINGS February 3, 2004 Atlanta, Georgia U U n n d d e e r r g g r r o o u u n n d d G G a a s s S S t t o o r r a a g g e e T T e e c c h h n n o o l l o o g g y y C C o o n n s s o o r r t t i i u u m m R R & & D D P P r r i i o o r r i i t t y y R R e e s s e e a a r r c c h h N N e e e e d d s s OVERVIEW As a follow up to the development of the new U.S. Department of Energy-sponsored Underground Gas Storage Technology Consortium through Penn State University (PSU), DOE's National Energy Technology Center (NETL) and PSU held a workshop on February 3, 2004 in Atlanta, GA to identify priority research needs to assist the consortium in developing Requests for Proposal (RFPs). Thirty-seven

102

Hydrogen and Gaseous Fuel Safety and Toxicity  

SciTech Connect (OSTI)

Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

Lee C. Cadwallader; J. Sephen Herring

2007-06-01T23:59:59.000Z

103

Best Management Practice: Distribution System Audits, Leak Detection, and  

Broader source: Energy.gov (indexed) [DOE]

Best Management Practice: Distribution System Audits, Leak Best Management Practice: Distribution System Audits, Leak Detection, and Repair Best Management Practice: Distribution System Audits, Leak Detection, and Repair October 7, 2013 - 3:06pm Addthis A distribution system audit, leak detection, and repair programs help Federal facilities reduce water losses and make better use of limited water resources. Overview Federal facilities with large campus settings and expansive distribution systems can lose a significant amount of total water production and purchases to system leaks. Leaks in distribution systems are caused by a number of factors, including pipe corrosion, high system pressure, construction disturbances, frost damage, damaged joints, and ground shifting and settling. Regular distribution system leak detection surveys

104

Natural Gas Pipeline Leaks Across Washington, DC  

Science Journals Connector (OSTI)

Pipeline safety in the United States has increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. ... Along with reducing greenhouse gas emissions, repairing production and pipeline leaks would improve consumer health and safety and save money. ... (37) Several barriers to pipeline repair and replacement exist, however, as cost recovery for pipeline repairs by distribution companies is often capped by Public Utility Commissions (PUCs). ...

Robert B. Jackson; Adrian Down; Nathan G. Phillips; Robert C. Ackley; Charles W. Cook; Desiree L. Plata; Kaiguang Zhao

2014-01-16T23:59:59.000Z

105

Logistics background study: underground mining  

SciTech Connect (OSTI)

Logistical functions that are normally associated with US underground coal mining are investigated and analyzed. These functions imply all activities and services that support the producing sections of the mine. The report provides a better understanding of how these functions impact coal production in terms of time, cost, and safety. Major underground logistics activities are analyzed and include: transportation and personnel, supplies and equipment; transportation of coal and rock; electrical distribution and communications systems; water handling; hydraulics; and ventilation systems. Recommended areas for future research are identified and prioritized.

Hanslovan, J. J.; Visovsky, R. G.

1982-02-01T23:59:59.000Z

106

High Temperature Superconducting Underground Cable  

SciTech Connect (OSTI)

The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

Farrell, Roger, A.

2010-02-28T23:59:59.000Z

107

Commercial-Scale Tests Demonstrate Secure CO2 Storage in Underground Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CommerCial-SCale TeSTS DemonSTraTe CommerCial-SCale TeSTS DemonSTraTe SeCure Co 2 STorage in unDergrounD FormaTionS Two industry-led commercial-scale projects, the Sleipner Project off the coast of Norway and the Weyburn Project in Ontario, Canada, have enhanced the option of sequestering carbon dioxide (CO 2 ) in underground geologic formations. The United States Department of Energy (DOE) collaborated in both projects, primarily by providing rigorous monitoring of the injected CO 2 and studying CO 2 behavior to a greater extent than the project operators would have pursued on their own - creating a mutually beneficial public/private partnership. The most significant outcome from both field projects is that CO 2 leakage has not been observed, nor is there any indication that CO 2 will leak in the future.

108

Management of vacuum leak-detection processes, standards, and calibration  

SciTech Connect (OSTI)

Vacuum leak detection requires integrated management action to ensure the successful production of apparatus having required leak tightness. Implementation of properly planned, scheduled, and engineering procedures and test arrangements are an absolute necessity to prevent unexpected, impractical, technically inadequate, or unnecessarily costly incidents in leak-testing operations. The use of standard procedures, leak standards appropriate to the task, and accurate calibration systems or devices is necessary to validate the integrity of any leak-test procedure. In this paper, the need for implementing these practices is discussed using case histories of typical examples of large complex vacuum systems. Aggressive management practices are of primary importance throughout a project's life cycle to ensure the lowest cost; this includes successful leak testing of components. It should be noted that the opinions and conclusions expressed in this paper are those of the author and are not those of the Los Alamos National Laboratory or the Department of Energy.

Wilson, N.G.

1984-01-01T23:59:59.000Z

109

Long-life leak standard assembly. [Patent application  

DOE Patents [OSTI]

The present invention is directed to a portable leak standard assembly which is capable of providing a stream of high-purity reference gas at a virtually constant flow rate over an extensive period of time. The leak assembly comprises a high pressure reservoir coupled to a metal leak valve through a valve-controlled conduit. A reproducible leak valve useful in this assembly is provided by a metal tube crimped with a selected pressure loading for forming an orifice in the tube with this orifice being of a sufficient size to provide the selected flow rate. The leak valve assembly is formed of metal so that it can be baked-out in a vacuum furnace to rid the reservoir and attendent components of volatile impurities which reduce the efficiency of the leak standard.

Basford, J.A.; Mathis, J.E.; Wright, H.C.

1980-11-12T23:59:59.000Z

110

One-Piece Leak-Proof Battery  

DOE Patents [OSTI]

The casing of a leak-proof one-piece battery is made of a material comprising a mixture of at least a matrix based on polypropylene and an alloy of a polyamide and a polypropylene. The ratio of the matrix to the alloy is in the range 0.5 to 6 by weight. The alloy forms elongate arborescent inclusions in the matrix such that, on average, the largest dimension of a segment of the arborescence is at least twenty times the smallest dimension of the segment.

Verhoog, Roelof (Bordeaux, FR)

1999-03-23T23:59:59.000Z

111

Margins in high temperature leak-before-break assessments  

SciTech Connect (OSTI)

Developments in the defect assessment procedure R6 to include high-temperature mechanisms in Leak-before-Break arguments are described. In particular, the effect of creep on the time available to detect a leak and on the crack opening area, and hence leak rate, is discussed. The competing influence of these two effects is emphasized by an example. The application to Leak-before-Break of the time-dependent failure assessment diagram approach for high temperature defect assessment is then outlined. The approach is shown to be of use in assessing the erosion of margins by creep.

Budden, P.J.; Hooton, D.G.

1997-04-01T23:59:59.000Z

112

ANNUAL MAINTENANCE AND LEAK TESTING FOR THE 9975 SHIPPING PACKAGE  

SciTech Connect (OSTI)

The purpose of this document is to provide step-by-step instructions for the annual helium leak test certification and maintenance of the 9975 Shipping Package.

Trapp, D.

2014-08-25T23:59:59.000Z

113

Results from the investigations on leaking electricity in the USA  

E-Print Network [OSTI]

on leaking electricity in the USA Alan Meier, Wolfgang Huber120 million VCRs in the USA. Data were collected for 69

Meier, Alan; Huber, Wolfgang

1997-01-01T23:59:59.000Z

114

Underground coal gasification: a brief review of current status  

SciTech Connect (OSTI)

Coal gasification is a promising option for the future use of coal. Similarly to gasification in industrial reactors, underground coal gasification (UCG) produces syngas, which can be used for power generation or for the production of liquid hydrocarbon fuels and other valuable chemical products. As compared with conventional mining and surface gasification, UCG promises lower capital/operating costs and also has other advantages, such as no human labor underground. In addition, UCG has the potential to be linked with carbon capture and sequestration. The increasing demand for energy, depletion of oil and gas resources, and threat of global climate change lead to growing interest in UCG throughout the world. In this article, we review the current status of this technology, focusing on recent developments in various countries.

Shafirovich, E.; Varma, A. [Purdue University, West Lafayette, IN (United States). School of Chemical Engineering

2009-09-15T23:59:59.000Z

115

Underground Injection Control Fee Schedule (West Virginia) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Injection Control Fee Schedule (West Virginia) Injection Control Fee Schedule (West Virginia) Underground Injection Control Fee Schedule (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Fees Provider Department of Environmental Protection This rule establishes schedules of permit fees for state under-ground injection control permits issued by the Chief of the Office of Water Resources. This rule applies to any person who is required to apply for and

116

Leak Detection and H2 Sensor Development for Hydrogen Applications  

SciTech Connect (OSTI)

The objectives of this report are: (1) Develop a low cost, low power, durable, and reliable hydrogen safety sensor for a wide range of vehicle and infrastructure applications; (2) Continually advance test prototypes guided by materials selection, sensor design, electrochemical R&D investigation, fabrication, and rigorous life testing; (3) Disseminate packaged sensor prototypes and control systems to DOE Laboratories and commercial parties interested in testing and fielding advanced prototypes for cross-validation; (4) Evaluate manufacturing approaches for commercialization; and (5) Engage an industrial partner and execute technology transfer. Recent developments in the search for sustainable and renewable energy coupled with the advancements in fuel cell powered vehicles (FCVs) have augmented the demand for hydrogen safety sensors. There are several sensor technologies that have been developed to detect hydrogen, including deployed systems to detect leaks in manned space systems and hydrogen safety sensors for laboratory and industrial usage. Among the several sensing methods electrochemical devices that utilize high temperature-based ceramic electrolytes are largely unaffected by changes in humidity and are more resilient to electrode or electrolyte poisoning. The desired sensing technique should meet a detection threshold of 1% (10,000 ppm) H{sub 2} and response time of {approx_equal}1 min, which is a target for infrastructure and vehicular uses. Further, a review of electrochemical hydrogen sensors by Korotcenkov et.al and the report by Glass et.al suggest the need for inexpensive, low power, and compact sensors with long-term stability, minimal cross-sensitivity, and fast response. This view has been largely validated and supported by the fuel cell and hydrogen infrastructure industries by the NREL/DOE Hydrogen Sensor Workshop held on June 8, 2011. Many of the issues preventing widespread adoption of best-available hydrogen sensing technologies available today outside of cost, derive from excessive false positives and false negatives arising from signal drift and unstable sensor baseline; both of these problems necessitate the need for unacceptable frequent calibration.

Brosha, Eric L. [Los Alamos National Laboratory

2012-07-10T23:59:59.000Z

117

A second order autoregressive based technique for pipeline leak detection  

Science Journals Connector (OSTI)

Efficient leak detection techniques need to be characterized both by rapidity and robustness. This paper studies a simple detection method based on the second order autoregressive (AR) parameters of the pipeline signals- a trade-off between the two required ... Keywords: AR models, ROC curves, leak detection, pipeline monitoring

Marllene Daneti

2008-07-01T23:59:59.000Z

118

241-AY-102 Leak Detection Pit Drain Line Inspection Report  

SciTech Connect (OSTI)

This document provides a description of the design components, operational approach, and results from the Tank AY-102 leak detection pit drain piping visual inspection. To perform this inspection a custom robotic crawler with a deployment device was designed, built, and operated by IHI Southwest Technologies, Inc. for WRPS to inspect the 6-inch leak detection pit drain line.

Boomer, Kayle D. [Washington River Protection Solutions, LLC (United States); Engeman, Jason K. [Washington River Protection Solutions, LLC (United States); Gunter, Jason R. [Washington River Protection Solutions, LLC (United States); Joslyn, Cameron C. [Washington River Protection Solutions, LLC (United States); Vazquez, Brandon J. [Washington River Protection Solutions, LLC (United States); Venetz, Theodore J. [Washington River Protection Solutions, LLC (United States); Garfield, John S. [AEM Consulting (United States)

2014-01-20T23:59:59.000Z

119

Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,,  

E-Print Network [OSTI]

Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,, * Adrian Down, Nathan G increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. Natural gas leaks are also the largest anthropogenic

Jackson, Robert B.

120

A new blowdown compensation scheme for boiler leak detection  

E-Print Network [OSTI]

considers the blowdown effect in industrial boiler operation. This adds to the efficiency of recent advances tubes. In utility boilers, early de- tection of leaks is primarily a financial issue. High velocityA new blowdown compensation scheme for boiler leak detection A. M. Pertew ,1 X. Sun ,1 R. Kent

Marquez, Horacio J.

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

INFORMAL REPORT DETECTION OF INTERSTATE LIQUIDS PIPELINE LEAKS  

E-Print Network [OSTI]

BNL-65970 INFORMAL REPORT DETECTION OF INTERSTATE LIQUIDS PIPELINE LEAKS: FEASIBILITY EVALUATION R PIPELINE LEAKS: FEASIBILITY EVALUATION A Concept Paper Russell N. Dietz, Head Gunnar I. Senum Tracer with Battelle Memorial Institute and the Colonial Pipeline Company #12;ABSTRACT The approximately 200,000-mile

122

Characterization of Solid Oxide Fuel Cell Sealant Material G18 by Microindentation Alexandra Woldman, Cornell University, 2009 SURF Fellow  

E-Print Network [OSTI]

Milhans Introduction Solid oxide fuel cells (SOFC) require a hermetic seal between the fuel and air side of the electrodes in order to function properly. The cracking or leaking of an SOFC seal is the end of the useful

Li, Mo

123

CFD simulation of leak in residential HVAC ducts  

Science Journals Connector (OSTI)

A three-dimensional computational fluid dynamics model was used to simulate fluid flow in a duct and its simulated leaks with six different air leak geometries placed respectively on its periphery. The k–? turbulence model for high Reynolds numbers flows was used for that purpose and the Reynolds numbers were varied to simulate a variety of flow conditions between 27,000 and 82,000. The computer code was used to produce pressure drop data and leak flow rates across the holes necessary to compute the pressure loss coefficients, as well as to produce flow field and static pressure plots that offer insight into the physics of the flow field. The flow coefficient and pressure exponent (C and n) were found for different leak geometries by curve fitting the pressure and leak flow data derived from CFD simulations and were compared to available data in the literature.

Samir Moujaes; Radhika Gundavelli

2012-01-01T23:59:59.000Z

124

Pressure Change Measurement Leak Testing Errors  

SciTech Connect (OSTI)

A pressure change test is a common leak testing method used in construction and Non-Destructive Examination (NDE). The test is known as being a fast, simple, and easy to apply evaluation method. While this method may be fairly quick to conduct and require simple instrumentation, the engineering behind this type of test is more complex than is apparent on the surface. This paper intends to discuss some of the more common errors made during the application of a pressure change test and give the test engineer insight into how to correctly compensate for these factors. The principals discussed here apply to ideal gases such as air or other monoatomic or diatomic gasses; however these same principals can be applied to polyatomic gasses or liquid flow rate with altered formula specific to those types of tests using the same methodology.

Pryor, Jeff M [ORNL] [ORNL; Walker, William C [ORNL] [ORNL

2014-01-01T23:59:59.000Z

125

Midwest Underground Technology | Open Energy Information  

Open Energy Info (EERE)

Underground Technology Underground Technology Jump to: navigation, search Name Midwest Underground Technology Facility Midwest Underground Technology Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Midwest Underground Technology Energy Purchaser Midwest Underground Technology Location Champaign IL Coordinates 40.15020987°, -88.29149723° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.15020987,"lon":-88.29149723,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Might underground waste repositories blow up?  

SciTech Connect (OSTI)

Some writers have presented possible scenarios in which a subcritical underground deposit of plutonium or other fissile material might be changed into a critical configuration. The underground criticalities that occurred in Gabon some 1.7 billion years ago in deposits of natural uranium is cited. Other scientists assert that it is virtually impossible that such a configuration could develop in an underground repository. The author presents the pros and cons of these views. 5 refs.

Hippel, F. von [Princeton Univ., NJ (United States)

1996-03-01T23:59:59.000Z

127

E-Print Network 3.0 - affects leak rate Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Utilization ; Renewable Energy 15 INFORMAL REPORT DETECTION OF INTERSTATE LIQUIDS PIPELINE LEAKS Summary: commercial technologies only provide on-line leak detection at...

128

Solid oxide fuel cell generator  

DOE Patents [OSTI]

A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

Draper, Robert (Churchill Boro, PA); George, Raymond A. (Pittsburgh, PA); Shockling, Larry A. (Plum Borough, PA)

1993-01-01T23:59:59.000Z

129

Unsteady heat losses of underground pipelines  

Science Journals Connector (OSTI)

Analytic expressions are presented for the unsteady temperature distribution of the ground and heat losses of an underground pipeline for an arbitrary...

B. L. Krivoshein; V. M. Agapkin

1977-08-01T23:59:59.000Z

130

,"Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - All Operators",8,"Monthly","102014","1151973" ,"Release...

131

Pipelines and Underground Gas Storage (Iowa)  

Broader source: Energy.gov [DOE]

These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

132

,"California Underground Natural Gas Storage - All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage - All Operators",3,"Annual",2013,"6301967"...

133

,"California Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage Capacity",12,"Annual",2013,"6301988" ,"Release...

134

Cryogenic slurry for extinguishing underground fires  

DOE Patents [OSTI]

A cryogenic slurry comprising a mixture of solid carbon dioxide particles suspended in liquid nitrogen is provided which is useful in extinguishing underground fires.

Chaiken, Robert F. (Pittsburgh, PA); Kim, Ann G. (Pittsburgh, PA); Kociban, Andrew M. (Wheeling, WV); Slivon, Jr., Joseph P. (Tarentum, PA)

1994-01-01T23:59:59.000Z

135

,"New York Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas Storage Capacity",11,"Annual",2013,"6301988" ,"Release...

136

Hawaii Underground Injection Control Permitting Webpage | Open...  

Open Energy Info (EERE)

Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Underground Injection Control Permitting Webpage Author State of Hawaii Department of...

137

,"Colorado Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

"Sourcekey","N5030CO2","N5010CO2","N5020CO2","N5070CO2","N5050CO2","N5060CO2" "Date","Colorado Natural Gas Underground Storage Volume (MMcf)","Colorado Natural Gas in Underground...

138

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

139

Carbon Allocation in Underground Storage Organs  

E-Print Network [OSTI]

Carbon Allocation in Underground Storage Organs Studies on Accumulation of Starch, Sugars and Oil Cover: Starch granules in cells of fresh potato tuber visualised by iodine staining. #12;Carbon By increasing knowledge of carbon allocation in underground storage organs and using the knowledge to improve

140

Robot design for leak detection in water-pipe systems  

E-Print Network [OSTI]

Leaks are major problem that occur in the water pipelines all around the world. Several reports indicate loss of around 20 to 30 percent of water in the distribution of water through water pipe systems. Such loss of water ...

Choi, Changrak

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Utah Underground Storage Tank Installation Permit | Open Energy...  

Open Energy Info (EERE)

Underground Storage Tank Installation Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Underground Storage Tank Installation Permit Form Type...

142

Colorado Working Natural Gas Underground Storage Capacity (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

143

Progress Continues Toward Closure of Two Underground Waste Tanks...  

Office of Environmental Management (EM)

Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site...

144

The Simulation Analysis of Fire Feature on Underground Substation  

Science Journals Connector (OSTI)

Underground transformer substations constructed with non-dwelling buildings have a ... out simulation analysis of fire feature on underground substation. The corresponding fire protection strategy is also...

Xin Han; Xie He; Beihua Cong

2012-01-01T23:59:59.000Z

145

California Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) California Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

146

DOE - Office of Legacy Management -- Hoe Creek Underground Coal...  

Office of Legacy Management (LM)

Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

147

Implementation plan for Title 40 Code of Federal Regulations Parts 280 and 281; Final rules for underground storage tanks  

SciTech Connect (OSTI)

This report presents the schedules and methods required to comply with the newly promulgated Underground Storage Tank (UST) Regulations Title 40 Code of Federal Regulations (CFR) 280 and 281. These rules were promulgated by the US Environmental Protection Agency (EPA) on September 23, 1988, and became effective December 22, 1988. These regulations are required by Subtitle I of the Resource Conservation and Recovery Act of 1976. Their purpose is to protect the groundwater supplies of the United States in the following ways: Closing old tanks; detecting and remediating tank leaks and spills; establishing stringent standards for new tanks; and upgrade of existing tanks to new-tank standards. 3 refs., 5 tabs.

Stupka, R.C.

1989-04-01T23:59:59.000Z

148

EXPERIMENTS, CONCEPTUAL DESIGN, PRELIMINARY COST ESTIMATES AND SCHEDULES FOR AN UNDERGROUND RESEARCH FACILITY  

E-Print Network [OSTI]

surface and underground facilities as we11 as operation andconstruction of the underground facility. However, because

Korbin, G.

2010-01-01T23:59:59.000Z

149

Seismic verification of underground explosions  

SciTech Connect (OSTI)

The first nuclear test agreement, the test moratorium, was made in 1958 and lasted until the Soviet Union unilaterally resumed testing in the atmosphere in 1961. It was followed by the Limited Test Ban Treaty of 1963, which prohibited nuclear tests in the atmosphere, in outer space, and underwater. In 1974 the Threshold Test Ban Treaty (TTBT) was signed, limiting underground tests after March 1976 to a maximum yield of 250 kt. The TTBT was followed by a treaty limiting peaceful nuclear explosions and both the United States and the Soviet Union claim to be abiding by the 150-kt yield limit. A comprehensive test ban treaty (CTBT), prohibiting all testing of nuclear weapons, has also been discussed. However, a verifiable CTBT is a contradiction in terms. No monitoring technology can offer absolute assurance that very-low-yield illicit explosions have not occurred. The verification process, evasion opportunities, and cavity decoupling are discussed in this paper.

Glenn, L.A.

1985-06-01T23:59:59.000Z

150

Depleted Argon from Underground Sources  

SciTech Connect (OSTI)

Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P. [Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544 (United States); Alexander, T.; Alton, A.; Rogers, H. [Augustana College, Physics Department, 2001 South Summit Ave., Sioux Fall, SD 57197 (United States); Kendziora, C.; Pordes, S. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

2011-04-27T23:59:59.000Z

151

GOING UNDERGROUND IN FINLAND: DESIGN OF ONKALO IN PROGRESS  

SciTech Connect (OSTI)

The long-term program aimed at selection of a site for a deep repository was initiated in Finland in 1983. This program has come to end in 2001 and a new phase aimed at implementation of the geological disposal of spent fuel has been started. In this new phase the first milestone is the application for a construction license for the disposal facility around 2010. To fulfill the needs for detailed design of the disposal system, an underground rock characterization facility (URCF) will be constructed at the representative depth at Olkiluoto. The excavation of this facility will start the work for underground characterization, testing and demonstration, which is planned to be a continuous activity throughout the whole life cycle of the deep repository. The overall objectives for the underground site characterization are (1) verification of the present conclusions on site suitability, (2) definition and identification of suitable rock volumes for repository space and (3) characterization of planned host rock for detailed design, safety assessment and construction planning. The objective for verification aims at assessing that the Olkiluoto site meets the basic criteria for long-term safety and as well the basic requirements for construction and thus justifies the site selection. The two other main objectives are closely related to design of the repository and assessing the long-term safety of the site-specific disposal system. The most important objective of ONKALO should allow an in-depth investigation of the geological environment and to provide the opportunity to allow validation of models at more appropriate scales and conditions than can be achieved from the surface. In some areas, such as in demonstrating operational safety, in acquiring geological information at a repository scale and in constructional and operational feasibility, the ONKALO will provide the only reliable source of in situ data. The depth range envisaged for URCF called ONKALO is between 400 and 600 m. The location and underground geometry of access ramp is of significance. Development of ONKALO will begin in 2003 and it consists of surface facilities, access ramp and vertical shaft to the depth of 500 meters and characterization and demonstration facilities. Total volume of the ONKALO underground facilities is approximately 250 000 m3. The development will be completed around 2010. The reconciliation of construction and investigations plays an important role through the project. Other major issues will be the management of groundwater conditions, workplace safety and documentation of the work.

Dikds, T.; Ikonen, A.; Niiranen, S.; Hansen, J.

2003-02-27T23:59:59.000Z

152

Results of Tank-Leak Detection Demonstration Using Geophysical Techniques at the Hanford Mock Tank Site-Fiscal Year 2001  

SciTech Connect (OSTI)

During July and August of 2001, Pacific Northwest National Laboratory (PNNL), hosted researchers from Lawrence Livermore and Lawrence Berkeley National laboratories, and a private contractor, HydroGEOPHYSICS, Inc., for deployment of the following five geophysical leak-detection technologies at the Hanford Site Mock Tank in a Tank Leak Detection Demonstration (TLDD): (1) Electrical Resistivity Tomography (ERT); (2) Cross-Borehole Electromagnetic Induction (CEMI); (3) High-Resolution Resistivity (HRR); (4) Cross-Borehole Radar (XBR); and (5) Cross-Borehole Seismic Tomography (XBS). Under a ''Tri-party Agreement'' with Federal and state regulators, the U.S. Department of Energy will remove wastes from single-shell tanks (SSTs) and other miscellaneous underground tanks for storage in the double-shell tank system. Waste retrieval methods are being considered that use very little, if any, liquid to dislodge, mobilize, and remove the wastes. As additional assurance of protection of the vadose zone beneath the SSTs, tank wastes and tank conditions may be aggressively monitored during retrieval operations by methods that are deployed outside the SSTs in the vadose zone.

Barnett, D BRENT.; Gee, Glendon W.; Sweeney, Mark D.

2002-03-01T23:59:59.000Z

153

Best practices for underground diesel emissions  

SciTech Connect (OSTI)

The US NIOSH and the Coal Diesel Partnership recommend practices for successfully using ceramic filters to control particulate emitted from diesel-powered equipment used in underground coal mines. 3 tabs.

Patts, L.; Brnich, M. Jr. [NIOSH Pittsburgh Research Laboratory, Pittsburgh, PA (United States)

2007-08-15T23:59:59.000Z

154

Underground Storage of Natural Gas (Kansas)  

Broader source: Energy.gov [DOE]

Any natural gas public utility may appropriate for its use for the underground storage of natural gas any subsurface stratum or formation in any land which the commission shall have found to be...

155

UEME : the underground electronic music experience  

E-Print Network [OSTI]

The global electronic music scene has remained underground for its entire lifespan, momentarily materializing during an event, a place defined by the music performed and the people who desire the experience. As festivals ...

Ciraulo, Christopher Samuel

2005-01-01T23:59:59.000Z

156

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

157

Depleted argon from underground sources  

SciTech Connect (OSTI)

Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

2011-09-01T23:59:59.000Z

158

Underground ventilation remote monitoring and control system  

SciTech Connect (OSTI)

This paper presents the design and installation of an underground ventilation remote monitoring and control system at the Waste Isolation Pilot Plant. This facility is designed to demonstrate safe underground disposal of U.S. defense generated transuranic nuclear waste. To improve the operability of the ventilation system, an underground remote monitoring and control system was designed and installed. The system consists of 15 air velocity sensors and 8 differential pressure sensors strategically located throughout the underground facility providing real-time data regarding the status of the ventilation system. In addition, a control system was installed on the main underground air regulators. The regulator control system gives indication of the regulator position and can be controlled either locally or remotely. The sensor output is displayed locally and at a central surface location through the site-wide Central Monitoring System (CMS). The CMS operator can review all sensor data and can remotely operate the main underground regulators. Furthermore, the Virtual Address Extension (VAX) network allows the ventilation engineer to retrieve real-time ventilation data on his personal computer located in his workstation. This paper describes the types of sensors selected, the installation of the instrumentation, and the initial operation of the remote monitoring system.

Strever, M.T.; Wallace, K.G. Jr.; McDaniel, K.H.

1995-12-31T23:59:59.000Z

159

Nuclear Fuel Cycle | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cycle Cycle Nuclear Fuel Cycle This is an illustration of a nuclear fuel cycle that shows the required steps to process natural uranium from ore for preparation for fuel to be loaded in nuclear reactors. This is an illustration of a nuclear fuel cycle that shows the required steps to process natural uranium from ore for preparation for fuel to be loaded in nuclear reactors. The mission of NE-54 is primarily focused on activities related to the front end of the nuclear fuel cycle which includes mining, milling, conversion, and enrichment. Uranium Mining Both "conventional" open pit, underground mining, and in situ techniques are used to recover uranium ore. In general, open pit mining is used where deposits are close to the surface and underground mining is used

160

Oil/gas collector/separator for underwater oil leaks  

DOE Patents [OSTI]

An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

Henning, Carl D. (Livermore, CA)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient as the reported "tank  

E-Print Network [OSTI]

Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient as the reported "tank to wheel" efficiencies would suggest. Hydrogen must be produced, stored, and transported to heat and leaking of hydrogen in the atmosphere. Additionally it takes power to produce hydrogen

Bowen, James D.

162

Parameters for landfill-liner leak-rate model  

E-Print Network [OSTI]

PARAMETERS FOR LANDFILL-LINER LEAK-RATE MODEL A Thesis by STEVEN CARLTON BAHRT Submitted to the Graduate College of Texas ASM University i n partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1985 Major... Subject: Civil Engineering PARAMETERS FOR LANDFILL-LINER LEAK-RATE MODEL A Thesis by STEVEN CARLTON BAHRT Approved as to style and content by: Rob nt Lytto (Co-Cha' man of C mmittee) ayne Dunl p (Member) Kink W. Brown (Co-Chairman of Committee...

Bahrt, Steven Carlton

2012-06-07T23:59:59.000Z

163

Underground facility area requirements for a radioactive waste repository at Yucca Mountain  

SciTech Connect (OSTI)

The Nevada Nuclear Waste Storage Investigations Project, managed by the US Department of Energy`s Nevada Operations Office, is examining the feasibility of siting a repository for high-level radioactive waste at Yucca Mountain on and adjacent to the Nevada Test Site. Preliminary waste descriptions and preliminary areal power density calculations have been completed, and the Topopah Spring Member has been recommended as the emplacement unit. Using these data, an effort has begun to determine the area needed for the underground facility. This report describes work performed to determine the area needed to emplace waste equivalent to 70,000 metric tons of uranium (MTU) initially loaded in commercial power reactors. The area needed for support functions is also described. The total area of the underground facility depends on the types of waste received, the amount of each type of waste received, the areal power density assumed, and the emplacement configuration chosen (horizontal or vertical emplacement). The areas range from about 1240 acres to about 1520 acres. For vertical emplacement of the reference inventory of spent fuel, 1520 acres are required. A significant finding of this report is the importance of low-heat-producing wastes (defense high-level waste, West Valley high-level waste, cladding hulls, transuranic waste, and spent fuel hardware) when calculating the area required for the underground facility. If other wastes are included and the spent fuel capacity is reduced consistent with a total capacity of 70,000 MTU, the area required will be smaller.

Mansure, A.J.

1985-11-01T23:59:59.000Z

164

E-Print Network 3.0 - amchitka underground nuclear Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

underground nuclear Search Powered by Explorit Topic List Advanced Search Sample search results for: amchitka underground nuclear Page: << < 1 2 3 4 5 > >> 1 Underground Nuclear...

165

SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSTALLINE ROCK  

E-Print Network [OSTI]

Helms Underground Powerhouse - Pumped storage project Figurelayout of underground powerhouse complex—Helms Pumped57. Helms Underground Powerhouse Pumped Storage Project

Wallenberg, H.A.

2010-01-01T23:59:59.000Z

166

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

Analysis > The Basics of Underground Natural Gas Storage Analysis > The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Printer-Friendly Version Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and maintenance costs, deliverability rates, and cycling capability), which govern its suitability to particular applications. Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be withdrawn-its deliverability rate (see Storage Measures, below, for key definitions).

167

Leak-rate of seals: comparison of theory with experiment  

E-Print Network [OSTI]

Seals are extremely useful devices to prevent fluid leakage. We present experimental results for the leak-rate of rubber seals, and compare the results to a novel theory, which is based on percolation theory and a recently developed contact mechanics theory. We find good agreement between theory and experiment.

B. Lorenz; B. N. J. Persson

2009-04-20T23:59:59.000Z

168

Leak Testing the DMT Cloud Condensation Nuclei Counter for  

E-Print Network [OSTI]

Saudi Arabia field project was funded by the Kingdom of Saudi Arabia through a contract with Weather housing. Don't try to tighten the metal fitting on the pump housing. #12;Hard Places to Find Leaks Saudi Operator Manual Rev D page 45. March 22, 2009 Saudi Arabia Down to 450 mb, climb to 500 mb took 311 seconds

Delene, David J.

169

Helium Leak Detector 140 00 141 00 142 00  

E-Print Network [OSTI]

140 11 141 11 for software version V 2.6 Technical Handbook TH 10.211/ 8.02 Leak Detection Vacuum in this handbook. The illustrations are not binding. Notes on how to use this handbook Important remarks concerning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Technical data . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Physical data

Haviland, David

170

AIR SEALING Seal air leaks and save energy!  

E-Print Network [OSTI]

AIR SEALING Seal air leaks and save energy! W H A T I S A I R L E A K A G E ? Ventilation is fresh at stopping air leakage. It is critical to seal all holes and seams between these sheet goods with durable air that enters a house in a controlled manner to exhaust excess moisture and reduce odors

Oak Ridge National Laboratory

171

T Plant secondary containment and leak detection upgrades  

SciTech Connect (OSTI)

The W-259 project will provide upgrades to the 2706-T/TA Facility to comply with Federal and State of Washington environmental regulations for secondary containment and leak detection. The project provides decontamination activities supporting the environmental restoration mission and waste management operations on the Hanford Site.

Carlson, T.A.

1995-10-19T23:59:59.000Z

172

How Do You Find Thermal Leaks in Your Home? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

How Do You Find Thermal Leaks in Your Home? How Do You Find Thermal Leaks in Your Home? How Do You Find Thermal Leaks in Your Home? March 31, 2011 - 7:30am Addthis On Monday, John told you about the thermal leak detector he purchased to help him find and seal leaks in his home. A thermal leak detector can be a great tool to help you find leaks in your own home, but it's not your only option. In addition to tools like this, you can also use some of our tips on do-it-yourself energy assessments, or you could get a professional energy assessment. How do you find thermal leaks in your home? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please e-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov.

173

Design and fabrication of a maneuverable robot for in-pipe leak detection  

E-Print Network [OSTI]

Leaks in pipelines have been causing a significant amount of financial losses and serious damages to the community and the environment. The recent development of in-pipe leak detection technologies at Massachusetts Institute ...

Wu, You, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

174

Analysis and design of an in-pipe system for water leak detection  

E-Print Network [OSTI]

Leaks are a major factor for unaccounted water losses in almost every water distribution network. Pipeline leak may result, for example, from bad workmanship or from any destructive cause, due to sudden changes of pressure, ...

Chatzigeorgiou, Dimitris M

2010-01-01T23:59:59.000Z

175

CSNI specialist meeting on leak-before-break in nuclear reactor piping: proceedings  

SciTech Connect (OSTI)

On September 1 and 2, 1983, the CSNI subcommittee on primary system integrity held a special meeting in Monterey, California, on the subject of leak-before-break in nuclear reactor piping systems. The purpose of the meeting was to provide an international forum for the exchange of ideas, positions, and research results; to identify areas requiring additional research and development; and to determine the general attitude toward acceptance of the leak-before-break concept. The importance of the leak-before-break issue was evidenced by excellent attendance at the meeting and through active participation by the meeting attendees. Approximately 125 people representing fifteen different nations attended the meeting. The meeting was divided into four technical sessions addressing the following areas: Application of Piping Fracture Mechanics to Leak-Before Break, Leak Rate and Leak Detection, Leak-Before-Break Studies, Methods and Results, Current and Proposed Positions on Leak-Before-Break.

Not Available

1984-08-01T23:59:59.000Z

176

NRC Job Code V6060: Extended in-situ and real time monitoring. Task 4: Detection and monitoring of leaks at nuclear power plants external to structures  

SciTech Connect (OSTI)

In support of Task 4 of the NRC study on compliance with 10 CFR part 20.1406, minimization of contamination, Argonne National Laboratory (ANL) conducted a one-year scoping study, in concert with a parallel study performed by NRC/NRR staff, on monitoring for leaks at nuclear power plants (NPPs) external to structures. The objective of this task-4 study is to identify and assess those sensors and monitoring techniques for early detection of abnormal radioactive releases from the engineered facility structures, systems and components (SSCs) to the surrounding underground environment in existing NPPs and planned new reactors. As such, methods of interest include: (1) detection of anomalous water content of soils surrounding SSCs, (2) radionuclides contained in the leaking water, and (3) secondary signals such as temperature. ANL work scope includes mainly to (1) identify, in concert with the nuclear industry, the sensors and techniques that have most promise to detect radionuclides and/or associated chemical releases from SSCs of existing NPPs and (2) review and provide comments on the results of the NRC/NRR staff scoping study to identify candidate technologies. This report constitutes the ANL deliverable of the task-4 study. It covers a survey of sensor technologies and leak detection methods currently applied to leak monitoring at NPPs. The survey also provides a technology evaluation that identifies their strength and deficiency based on their detection speed, sensitivity, range and reliability. Emerging advanced technologies that are potentially capable of locating releases, identifying the radionuclides, and estimating their concentrations and distributions are also included in the report along with suggestions of required further research and development.

Sheen, S. H. (Nuclear Engineering Division)

2012-08-01T23:59:59.000Z

177

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and

178

Method for making generally cylindrical underground openings  

DOE Patents [OSTI]

A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.

Routh, J.W.

1983-05-26T23:59:59.000Z

179

WHAT YOU LOSE IS WHAT YOU LEAK INFORMATION LEAKAGE IN DECLASSIFICATION POLICIES  

E-Print Network [OSTI]

WHAT YOU LOSE IS WHAT YOU LEAK INFORMATION LEAKAGE IN DECLASSIFICATION POLICIES A. Banerjee, R MFPS 2007 What you lose is what you leak ­ p.1/19 #12;Overview By exploiting the strong relation declassification policy; Refine a given declassification policy; What you lose is what you leak ­ p.2/19 #12

Mastroeni, Isabella

180

Mobile Sensor Networks for Leak and Backflow Detection in Water Distribution Systems  

Science Journals Connector (OSTI)

Leak and backflow detection are essential aspects of Water Distribution System (WDS) monitoring. Most existing solutions for leak/backflow detection in WDSs focus on the placement of expensive static sensors located strategically. In contrast to these, ... Keywords: water distribution systems, mobile sensors, leak and backflow detection, optimization, algorithms, simulations

M. Agumbe Suresh, L. Smith, A. Rasekh, R. Stoleru, M. K. Banks, B. Shihada

2014-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Notification for Underground Storage Tanks (EPA Form 7530-1)...  

Open Energy Info (EERE)

Notification for Underground Storage Tanks (EPA Form 7530-1) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Notification for Underground Storage Tanks...

182

Visit to the Deep Underground Science and Engineering Laboratory  

ScienceCinema (OSTI)

U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

None

2010-01-08T23:59:59.000Z

183

Ground Motions from and House Response to Underground Aggregate Mining  

E-Print Network [OSTI]

interest because many urban quarries have gone underground or are considering doing so. Three cracks were to determine future blasting controls for a underground aggregate quarry near Franklin, KY (Revey, 2005

184

Rectifiers used on the London Underground Railways  

Science Journals Connector (OSTI)

... Lunn to the Institution of Electrical Engftieers on November 7, a description of the rectifier substations is given and also much useful information of the working of these rectifiers for traction ... there is little vibration; but in these respects the rectifier is much superior. The substation buildings for operating the traction system of the London Underground are in very densely populated ...

1935-11-30T23:59:59.000Z

185

Underground natural gas storage reservoir management  

SciTech Connect (OSTI)

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

186

The Public Perceptions of Underground Coal Gasification (UCG)  

E-Print Network [OSTI]

The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Simon Shackley #12;The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Dr Simon Shackley of Underground Coal Gasification (UCG) in the United Kingdom. The objectives were to identify the main dangers

Watson, Andrew

187

Detection of Underground Marlpit Quarries Using High Resolution Seismic  

E-Print Network [OSTI]

Detection of Underground Marlpit Quarries Using High Resolution Seismic B. Piwakowski* (Ecole of high resolution reflection seismic for the detection and location of underground marlpit quarries of the geological structure, the results show that the detection of marlpit underground quarries, often considered

Boyer, Edmond

188

The commercial feasibility of underground coal gasification in southern Thailand  

SciTech Connect (OSTI)

Underground Coal Gasification (UCG) is a clean coal technology with the commercial potential to provide low- or medium-Btu gas for the generation of electric power. While the abundance of economic coal and natural gas reserves in the United States of America (USA) has delayed the commercial development of this technology in the USA, potential for commercial development of UCG-fueled electric power generation currently exists in many other nations. Thailand has been experiencing sustained economic growth throughout the past decade. The use of UCG to provide electric power to meet the growing power demand appears to have commercial potential. A project to determine the commercial feasibility of UCG-fueled electric power generation at a site in southern Thailand is in progress. The objective of the project is to determine the commercial feasibility of using UCG for power generation in the Krabi coal mining area located approximately 1,000 kilometers south of Bangkok, Thailand. The project team has developed a detailed methodology to determine the technical feasibility, environmental acceptability, and commercial economic potential of UCG at a selected site. In the methodology, hydrogeologic conditions of the coal seam and surrounding strata are determined first. These results and information describing the local economic conditions are then used to assess the commercial potential of the UCG application. The methodology for evaluating the Krabi UCG site and current project status are discussed in this paper.

Solc, J.; Young, B.C.; Harju, J.A.; Schmit, C.R. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Boysen, J.E. [B.C. Technologies, Ltd., Laramie, WY (United States); Kuhnel, R.A. [IIASES, Delft (Netherlands)

1996-12-31T23:59:59.000Z

189

Leake County, Mississippi: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Leake County, Mississippi: Energy Resources Leake County, Mississippi: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.8073509°, -89.4742177° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.8073509,"lon":-89.4742177,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

190

Calculation of SY tank annulus continuous air monitor readings after postulated leak scenarios  

SciTech Connect (OSTI)

The objective of this work was to determine whether or not a continuous air monitor (CAM) monitoring the annulus of one of the SY Tanks would be expected to alarm after three postulated leak scenarios. Using data and references provided by Lockheed Martin`s Tank Farm personnel, estimated CAM readings were calculated at specific times after the postulated scenarios might have occurred. Potential CAM readings above background at different times were calculated for the following leak scenarios: Leak rate of 0.01 gal/min; Leak rate of 0.03 gal/min (best estimate of the maximum probable leak rate from a single-shell tank); and Leak of 73 gal (equivalent to a {1/4}-in. leak on the floor of the annulus). The equation used to make the calculations along with descriptions and/or explanations of the terms are included, as is a list of the assumptions and/or values used for the calculations.

Kenoyer, J.L.

1998-08-01T23:59:59.000Z

191

MWTF jumper connector integral seal block development and leak testing  

SciTech Connect (OSTI)

In fiscal year 1993, tests of an o-ring/tetraseal retainer designed to replace a gasket-type seal used in PUREX-type process jumper connectors encouraged the design of an improved seal block. This new seal block combines several parts into one unitized component called an integral seal block. This report summarizes development and leak testing of the new integral seal block. The integral seal block uses a standard o-ring nested in a groove to accomplish leak tightness. This seal block eliminates the need to machine acme threads into the lower skirt casting and seal retainers, eliminates tolerance stack-up, reduces parts inventory, and eliminates an unnecessary leak path in the jumper connector assembly. This report also includes test data on various types of o-ring materials subjected to heat and pressure. Materials tested included Viton, Kalrez, and fluorosilicone, with some incidental data on teflon coated silicone o-rings. Test experience clearly demonstrates the need to test each seal material for temperature and pressure in its intended application. Some materials advertised as being {open_quotes}better{close_quotes} at higher temperatures did not perform up to expectations. Inspection of the fluorosilicone and Kalrez seals after thermal testing indicates that they are much more susceptible to heat softening than Viton.

Ruff, E.S.; Jordan, S.R.

1995-01-01T23:59:59.000Z

192

Electrical detection of liquid lithium leaks from pipe joints  

SciTech Connect (OSTI)

A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 k? trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.

Schwartz, J. A., E-mail: jschwart@pppl.gov; Jaworski, M. A.; Mehl, J.; Kaita, R.; Mozulay, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

2014-11-15T23:59:59.000Z

193

DOE - Office of Legacy Management -- Hoe Creek Underground Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hoe Creek Underground Coal Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Hoe Creek Underground Gasification site occupies 80 acres of land located in Campbell County, Wyoming. The site was used to investigate the process and environmental parameters of underground coal gasification technologies in the 1970s. The Department of Energy¿s (DOE) current mission is limited to completing environmental remediation activities at the site. This property is owned by the Bureau of Land Management (BLM),

194

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

195

The Sanford underground research facility at Homestake  

SciTech Connect (OSTI)

The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

Heise, J. [Sanford Underground Research Facility, 630 East Summit Street, Lead, SD 57754 (United States)

2014-06-24T23:59:59.000Z

196

Bottom-Fill Method for Stopping Leaking Oil Wells  

E-Print Network [OSTI]

Hardware failure at the top of a deep underwater oil well can result in a catastrophic oil leak. The enormous pressure lifting the column of oil in that well makes it nearly impossible to stop from the top with seals or pressurization. We propose to fill the bottom of the well with dense and possibly streamlined objects that can descend through the rising oil. As they accumulate, those objects couple to the oil via viscous and drag forces and increase the oil's effective density. When its effective density exceeds that of the earth's crust, the oil will have essentially stopped flowing.

Bloomfield, Louis A

2010-01-01T23:59:59.000Z

197

Hanford Single-Shell Tank Leak Causes and Locations - 241-T Farm  

SciTech Connect (OSTI)

This document identifies 241-T Tank Farm (T Farm) leak causes and locations for the 100 series leaking tanks (241-T-106 and 241-T-111) identified in RPP-RPT-55084, Rev. 0, Hanford 241-T Farm Leak Inventory Assessment Report. This document satisfies the T Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

Girardot, Crystal L.; Harlow, Donald G.

2014-05-15T23:59:59.000Z

198

Hanford Single-Shell Tank Leak Causes and Locations - 241-C Farm  

SciTech Connect (OSTI)

This document identifies 241-C Tank Farm (C Farm) leak causes and locations for the 100 series leaking tanks (241-C-101 and 241-C-105) identified in RPP-RPT-33418, Rev. 2, Hanford C-Farm Leak Inventory Assessments Report. This document satisfies the C Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

Girardot, Crystal L.; Harlow, Donald G.

2013-07-30T23:59:59.000Z

199

Long-wave infrared imaging of vegetation for detecting leaking CO2 gas  

E-Print Network [OSTI]

Long-wave infrared imaging of vegetation for detecting leaking CO2 gas Jennifer E. Johnson Joseph A for detecting leaking CO2 gas Jennifer E. Johnson,a Joseph A. Shaw,a Rick Lawrence,b Paul W. Nugent,a Laura M of these calibrated imagers is imaging of vegetation for CO2 gas leak detection. During a four-week period

Shaw, Joseph A.

200

Hanford Single Shell Tank Leak Causes and Locations - 241-TX Farm  

SciTech Connect (OSTI)

This document identifies 241-TX Tank Farm (TX Farm) leak causes and locations for the 100 series leaking tanks (241-TX-107 and 241-TX-114) identified in RPP-RPT-50870, Rev. 0, Hanford 241-TX Farm Leak Inventory Assessment Report. This document satisfies the TX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

Girardot, C. L.; Harlow, D> G.

2014-07-22T23:59:59.000Z

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS  

SciTech Connect (OSTI)

Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

Wiersma, B.; Hansen, A.

2013-11-13T23:59:59.000Z

202

Best Management Practice #3: Distribution System Audits, Leak Detection, and Repair  

Broader source: Energy.gov [DOE]

A distribution system audit, leak detection, and repair programs help Federal facilities reduce water losses and make better use of limited water resources.

203

E-Print Network 3.0 - acoustic leak detection Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Processes Summary: - April 2-5, 2006 OBSERVER DESIGN USING BOUNDARY INJECTIONS FOR PIPELINE MONITORING AND LEAK DETECTION Ole... University of Science and Technology N-7491...

204

T-726:Linux-2.6 privilege escalation/denial of service/information leak  

Broader source: Energy.gov [DOE]

Vulnerabilities have been discovered in the Linux kernel that may lead to a privilege escalation, denial of service or information leak.

205

Ultra high vacuum pumping system and high sensitivity helium leak detector  

DOE Patents [OSTI]

An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

Myneni, Ganapati Rao (Yorktown, VA)

1997-01-01T23:59:59.000Z

206

Ultra high vacuum pumping system and high sensitivity helium leak detector  

DOE Patents [OSTI]

An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10{sup {minus}13} atm cc/s. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces back streaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium. 2 figs.

Myneni, G.R.

1997-12-30T23:59:59.000Z

207

Arkansas Underground Injection Control Code (Arkansas) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Arkansas Underground Injection Control Code (Arkansas) Arkansas Underground Injection Control Code (Arkansas) Arkansas Underground Injection Control Code (Arkansas) < Back Eligibility Commercial Construction Industrial Utility Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Arkansas Underground Injection Control Code (UIC code) is adopted pursuant to the provisions of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-5-11). It is the purpose of this UIC Code to adopt underground injection control (UIC) regulations necessary to qualify the State of Arkansas to retain authorization for its Underground Injection Control Program pursuant to the Safe Drinking Water Act of 1974, as amended; 42 USC 300f et seq. In order

208

Estimation of Gas Leak Rates Through Very Small Orifices  

Office of Scientific and Technical Information (OSTI)

Estimation of Gas Leak Rates Estimation of Gas Leak Rates Through Very Small Orifices and Channels by Herbert J. Bomelburg February 1977 Prepared for the Nuclear Regulatory Commission -..- Pacific Northwest Laboratories Th% report was preparrd is an accceullt r.84 work spoi.wr~d by the Un~ted States Governmect. Kettker t > ~ United States nor the L'nited states 'rl:clczr 1tcgl;l;:cry Cornmiszion. :or ally c! their e m p i o y e ~ , nor any of chcrr contractors, subcontraao~r, a . tlveir rrn~invct?t-, r.~aies any H r r l a tty, cxpreji o r implied, or ?.;+~nics any !egA liability or rcrpocsibility for iirc accuracy. zcm:lc.~cn~ss 01 ~rscf.~!ccss -,f an). i?fzrxat-on, 3Poar.i:b4. prodiict cr I.m)cess disclosed, or repreen:.; :hi.: i;s i43? wott:rl n.;\ irlfringe pr ivzrc:i*l u w x o :ig.~ts.

209

Corrosion Evaluation of Tank 40 Leak Detection Box  

SciTech Connect (OSTI)

'Leak detection from the transfer lines in the tank farm has been a concern for many years because of the need to minimize exposure of personnel and contamination of the environment. The leak detection box (LDB) is one line of defense, which must be maintained to meet this objective. The evaluation of a failed LDB was one item from an action plan aimed at minimizing the degradation of LDBs. The Tank 40 LDB, which failed in service, was dug up and shipped to SRTC for evaluation. During a video inspection while in service, this LDB was found to have black tubercles on the interior, which suggested possible microbial involvement. The failure point, however, was believed to have occurred in the drain line from the transfer line jacket. Visual, metallurgical, and biological analyses were performed on the LDB. The analysis results showed that there was not any adverse microbiological growth or significant localized corrosion. The corrosion of the LDB was caused by exposure to aqueous environments and was typical of carbon steel pipes in soil environments.'

Mickalonis, J.I.

1999-07-29T23:59:59.000Z

210

Utah Division of Environmental Response and Remediation Underground...  

Open Energy Info (EERE)

Division of Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah...

211

Idaho Underground Injection Control Program Webpage | Open Energy...  

Open Energy Info (EERE)

Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho Underground Injection Control Program Webpage Author Idaho Department of...

212

,"Underground Natural Gas Storage - Storage Fields Other than...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Storage Fields Other than Salt Caverns",8,"Monthly","102014","115...

213

All of Hanford's underground waste tanks generate hydrogen gas...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Hanford's underground waste tanks generate hydrogen gas to some degree since the radioactivity in the waste releases hydrogen from basic nuclear reactions. The routine release...

214

Title 18 Alaska Administrative Code Chapter 78 Underground Storage...  

Open Energy Info (EERE)

Underground Storage Tanks Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 18 Alaska Administrative Code Chapter 78...

215

Hawaii Department of Health Underground Storage Tank Webpage...  

Open Energy Info (EERE)

Abstract This webpage provides information on the regulation of underground storage tanks. Author State of Hawaii Department of Health Published State of Hawaii, Date Not...

216

Hawaii Underground Injection Control Program Webpage | Open Energy...  

Open Energy Info (EERE)

Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Underground Injection Control Program Webpage Author State of Hawaii...

217

NNSA Commemorates the 20th Anniversary of the Last Underground...  

National Nuclear Security Administration (NNSA)

Commemorates the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation...

218

,"New York Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas Storage - All Operators",3,"Annual",2013,"6301967" ,"Release...

219

Underground coal gasification : overview of an economic and environmental evaluation.  

E-Print Network [OSTI]

??This paper examines an overview of the economic and environmental aspects of Underground Coal Gasification (UCG) as a viable option to the above ground Surface… (more)

Kitaka, Richard Herbertson

2012-01-01T23:59:59.000Z

220

EPA - Ground Water Discharges (EPA's Underground Injection Control...  

Open Energy Info (EERE)

EPA - Ground Water Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water...

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Key tests set for underground coal gasification  

SciTech Connect (OSTI)

Underground coal gasification (UCG) is about to undergo some tests. The tests will be conducted by Lawrence Livermore National Laboratory (LLNL) in a coal seam owned by Washington Irrigation and Development Co. A much-improved UCG system has been developed by Stephens and his associates at LLNL - the controlled retracting injection point (CRIP) method. Pritchard Corp., Kansas City, has done some conceptual process design and has further studied the feasibility of using the raw gas from a UCG burn as a feedstock for methanol synthesis and/or MTG gasoline. Each method was described. (DP)

Haggin, J.

1983-07-18T23:59:59.000Z

222

Hydrogen Leak Detection – Low-Cost Distributed Gas Sensors  

Broader source: Energy.gov [DOE]

Presentation slides from the April 3, 2012, Fuel Cell Technologies Program webinar "America's Next Top Energy Innovator Runner-Up Presents Hydrogen Detection Technologies".

223

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

224

Underground coal gasification using oxygen and steam  

SciTech Connect (OSTI)

In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

2009-07-01T23:59:59.000Z

225

Intermediate-Scale Laboratory Experiments of Subsurface Flow and Transport Resulting from Tank Leaks  

SciTech Connect (OSTI)

Washington River Protection Solutions contracted with Pacific Northwest National Laboratory to conduct laboratory experiments and supporting numerical simulations to improve the understanding of water flow and contaminant transport in the subsurface between waste tanks and ancillary facilities at Waste Management Area C. The work scope included two separate sets of experiments: •Small flow cell experiments to investigate the occurrence of potential unstable fingering resulting from leaks and the limitations of the STOMP (Subsurface Transport Over Multiple Phases) simulator to predict flow patterns and solute transport behavior under these conditions. Unstable infiltration may, under certain conditions, create vertically elongated fingers potentially transporting contaminants rapidly through the unsaturated zone to groundwater. The types of leak that may create deeply penetrating fingers include slow release, long duration leaks in relatively permeable porous media. Such leaks may have occurred below waste tanks at the Hanford Site. •Large flow experiments to investigate the behavior of two types of tank leaks in a simple layered system mimicking the Waste Management Area C. The investigated leaks include a relatively large leak with a short duration from a tank and a long duration leak with a relatively small leakage rate from a cascade line.

Oostrom, Martinus; Wietsma, Thomas W.

2014-09-30T23:59:59.000Z

226

Alternative Fuels Data Center: Biodiesel Storage Regulations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Storage Biodiesel Storage Regulations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Storage Regulations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Storage Regulations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Storage Regulations on Google Bookmark Alternative Fuels Data Center: Biodiesel Storage Regulations on Delicious Rank Alternative Fuels Data Center: Biodiesel Storage Regulations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Storage Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Storage Regulations Underground storage tank regulations apply to all biodiesel blends with the exception of 100% biodiesel (B100). An owner changing the use of an

227

Effects of network-average magnitude bias on yield estimates for underground nuclear explosions  

Science Journals Connector (OSTI)

......yield estimates for underground nuclear explosions R. A. Clark Department...ISC, of presumed underground nuclear explosions in Kazakhstan...on estimates for underground nuclear explosions 553 explosions...utilizing a more extensive dataset, including more sources and......

R. A. Clark

1983-11-01T23:59:59.000Z

228

Seasonal thermal signatures of heat transfer by water exchange in an underground vault  

Science Journals Connector (OSTI)

......also to the long-term temperature...underground waste storage and contaminant...underground nuclear waste storage sites is...2000), the long-term impact and...Concerning the long-term temperature...underground waste storage, underlying......

Frédéric Perrier; Pierre Morat; Toshio Yoshino; Osam Sano; Hisashi Utada; Olivier Gensane; Jean-Louis Le Mouël

2004-07-01T23:59:59.000Z

229

Methods for Integrated Leak Detection Inference at CO2 Sequestration Sites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methods for Integrated Leak Detection Inference at CO2 Sequestration Sites Methods for Integrated Leak Detection Inference at CO2 Sequestration Sites Speaker(s): Mitchell Small Date: March 23, 2010 - 12:00pm Location: 90-3122 This seminar will explain a methodology for combining site characterization and soil CO2 monitoring for detecting leaks at geologic CO2 sequestration sites. Near surface CO2 fluxes resulting from a leak are simulated using the TOUGH2 model for different values of soil permeability, leakage rate and vadose zone thickness. Natural background soil CO2 flux rates are characterized by a Bayesian hierarchical model that predicts the background flux as a function of soil temperature. A presumptive leak is assumed if the monitored flux rate exceeds a critical value corresponding to a very high (e.g., 99%) prediction interval for the natural flux conditioned on

230

NETL: News Release - Field Testing Underway of Remote Sensor Gas Leak  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September 16, 2004 September 16, 2004 Field Testing Underway of Remote Sensor Gas Leak Detection Systems CASPER, WY-An extensive field test that will document and demonstrate how effective technologies are in remotely detecting natural gas leaks is being held September 13-17, as the Department of Energy simulates natural gas leaks along a predetermined course at DOE's Rocky Mountain Oilfield Testing Center (RMOTC). Low-flying aircraft, satellites and special ground vehicles carrying advanced leak detection sensors will participate as representatives of the gas industry and potential technology manufacturers observe the technologies in a real-world environment and evaluate their readiness for commercialization. The test plan was devised with strong input from an industry advisory board and test participants to compare the effectiveness of several gas-leak detection devices from ground, air and satellite based platforms.

231

NETL: News Release - Vehicle-Mounted Natural Gas Leak Detector Passes Key  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 2, 2003 October 2, 2003 Vehicle-Mounted Natural Gas Leak Detector Passes Key "Road Test" Spots Natural Gas Leaks from 30 Feet Away At Speeds Approaching 20 Miles Per Hour Handheld Prototype Gas Detector Now Being Outfitted as a Van-Mounted Unit PSI has modified this early prototype of a handheld remote natural gas detector to operate from a moving vehicle. ANDOVER, MA - Physical Sciences Inc. (PSI) recently conducted a successful test of its mobile natural gas detector at the company's research facilities in Andover, Mass. PSI's prototype leak detector demonstrated its ability to spot natural gas leaks from a distance of up to 30 feet from a vehicle moving at speeds approaching 20 miles per hour. In the United States, significant resources are devoted annually to leak

232

Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank |  

Broader source: Energy.gov (indexed) [DOE]

Determines Double-Shell Tank Leaked Waste From Inner Tank Determines Double-Shell Tank Leaked Waste From Inner Tank Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank October 22, 2012 - 12:00pm Addthis Media Contacts Lori Gamache, ORP 509-372-9130 John Britton, WRPS 509-376-5561 RICHLAND - The Department of Energy's Office of River Protection (ORP), working with its Hanford tank operations contractor Washington River Protection Solutions, has determined that there is a slow leak of chemical and radioactive waste into the annulus space in Tank AY-102, the approximately 30-inch area between the inner primary tank and the outer tank that serves as the secondary containment for these types of tanks. This is the first time a double-shell tank (DST) leak from the primary tank into the annulus has been identified. There is no indication of waste in

233

Direct calculation of leak path factors for highly compartmentalized buildings  

SciTech Connect (OSTI)

The large, highly compartmentalized configurations of buildings at many Department of Energy (DOE) facilities call the validity of traditional, simplistic methods for estimating contaminant leak path factors (LPFs) into question. Conversely, rigorous calculation of LPFs using detailed flow-field analysis computer codes is impractical for routine analysis. This paper describes a recent application of a rigorous, yet practical, method of calculating LPFs for the Chemical and Metallurgical Research (CMR) Facility at Los Alamos National Laboratory (LANL). The approach involves computer simulation of airborne contaminant transport using the MELCOR computer code. MELCOR is a general-purpose, fluid flow and aerosol transport analysis code originally developed by the US Nuclear Regulatory Commission to evaluate the release, transport, and deposition of radionuclides in nuclear reactor systems. However, the fundamental mathematical models in the code and the modular code architecture make it suitable to the CMR analysis.

Leonard, M.T. [ITS Corp., Albuquerque, NM (United States); McClure, P.R. [Los Alamos National Lab., NM (United States)

1998-12-01T23:59:59.000Z

234

Permanent Closure of the TAN-664 Underground Storage Tank  

SciTech Connect (OSTI)

This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

Bradley K. Griffith

2011-12-01T23:59:59.000Z

235

Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions  

Science Journals Connector (OSTI)

...Quantification of undersea gas leaks from carbon capture and storage facilities, from...importance of leak detection from carbon capture and storage facilities and the...pipelines or leaks from facilities for carbon capture and storage) have the advantage...

2012-01-01T23:59:59.000Z

236

Underground storage tank management plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Underground Storage Tank (UST) Program at the Oak Ridge Y-12 Plant was established to locate UST systems at the facility and to ensure that all operating UST systems are free of leaks. UST systems have been removed or upgraded in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance. With the closure of a significant portion of the USTs, the continuing mission of the UST Management Program is to manage the remaining active UST systems and continue corrective actions in a safe regulatory compliant manner. This Program outlines the compliance issues that must be addressed, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Program provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. The plan is divided into three major sections: (1) regulatory requirements, (2) active UST sites, and (3) out-of-service UST sites. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Program, and the procedures and guidance for compliance.

NONE

1997-09-01T23:59:59.000Z

237

Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) |  

Broader source: Energy.gov (indexed) [DOE]

Alabama Underground Storage Tank And Wellhead Protection Act Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) < Back Eligibility Commercial Construction Industrial Municipal/Public Utility Savings Category Buying & Making Electricity Water Home Weatherization Program Info State Alabama Program Type Environmental Regulations The department, acting through the commission, is authorized to promulgate rules and regulations governing underground storage tanks and is authorized to seek the approval of the United States Environmental Protection Agency to operate the state underground storage tank program in lieu of the federal program. In addition to specific authorities provided by this chapter, the department is authorized, acting through the commission, to

238

The Strip and Underground Mine Reclamation Act (Montana) | Department of  

Broader source: Energy.gov (indexed) [DOE]

The Strip and Underground Mine Reclamation Act (Montana) The Strip and Underground Mine Reclamation Act (Montana) The Strip and Underground Mine Reclamation Act (Montana) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Environmental Quality The policy of the state is to provide adequate remedies to protect the environmental life support system from degradation and to prevent unreasonable depletion and degradation of natural resources from strip and underground mining. This Act imposes permitting and operating restrictions on strip and underground mining activities for coal and uranium, and authorizes the Department of Environmental Quality to administer a

239

Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel and Fuel and Fueling Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on AddThis.com... More in this section... Federal State Advanced Search

240

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Head of EM Visits Waste Isolation Pilot Plant for First Underground...  

Office of Environmental Management (EM)

Head of EM Visits Waste Isolation Pilot Plant for First Underground Tour Since February Incidents Head of EM Visits Waste Isolation Pilot Plant for First Underground Tour Since...

242

E-Print Network 3.0 - advanced underground gas Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mulder1 Summary: where all current underground activities take place except for oil and gas extraction and mining... with reluctant public perception still hamper such underground...

243

The Remote Video Monitoring System Design and Development for Underground Substation Construction Process  

Science Journals Connector (OSTI)

From the current situation of underground substation construction in China, we design and development ... image enhancement technology, the construction of underground substation can be clearly and accurately tra...

Siguo Zheng; Yugan You; Fanguang Li; Gang Liu

2012-01-01T23:59:59.000Z

244

E-Print Network 3.0 - american underground science Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

underground science Search Powered by Explorit Topic List Advanced Search Sample search results for: american underground science Page: << < 1 2 3 4 5 > >> 1 Studying the Universe...

245

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

246

Surface effects of underground nuclear explosions  

SciTech Connect (OSTI)

The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

1997-06-01T23:59:59.000Z

247

Transportation Fuel Basics - Propane | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Propane Propane Transportation Fuel Basics - Propane July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG or LP-gas), or autogas in Europe, is a high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As pressure is released, the liquid propane vaporizes and turns into gas that is used for combustion. An odorant, ethyl mercaptan, is added for leak detection. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic and presents no threat to soil,

248

Hanford Single-Shell Tank Leak Causes and Locations - 241-SX Farm  

SciTech Connect (OSTI)

This document identifies 241-SX Tank Farm (SX Farm) leak causes and locations for the 100 series leaking tanks (241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114, and 241-SX-115) identified in RPP-ENV-39658, Rev. 0, Hanford SX-Farm Leak Assessments Report. This document satisfies the SX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

Girardot, Crystal L. [Washington River Protection Solutions (United States); Harlow, Donald G. [Washington River Protection Solutions (United States)

2014-01-08T23:59:59.000Z

249

Hanford Single-Shell Tank Leak Causes and Locations - 241-BY and 241-TY Farm  

SciTech Connect (OSTI)

This document identifies 241-BY Tank Farm (BY Farm) and 241-TY Tank Farm (TY Farm) lead causes and locations for the 100 series leaking tanks (241-BY-103, 241-TY-103, 241-TY-104, 241-TY-105 and 241-TY-106) identified in RPP-RPT-43704, Hanford BY Farm Leak Assessments Report, and in RPP-RPT-42296, Hanford TY Farm Leak Assessments Report. This document satisfies the BY and TY Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

Girardot, Crystal L.; Harlow, Donald G.

2014-09-04T23:59:59.000Z

250

Demonstration of rapid and sensitive module leak certification for space station freedom. Final report  

SciTech Connect (OSTI)

A leak detection and quantification demonstration using perflurocarbon tracer (PFT) technology was successfully performed at the NASA Marshall Space Flight Center on January 25, 1991. The real-time Dual Trap Analyzer (DTA) at one-half hour after the start of the first run gave an estimated leak rate of 0.7 mL/min. This has since been refined to be 1.15 {plus_minus} 0.09 mL/min. The leak rates in the next three runs were determined to be 9.8 {plus_minus} 0.7, {minus}0.4 {plus_minus} 0.3, and 76 {plus_minus} 6 mL/min, respectively. The theory on leak quantification in the steady-state and time-dependent modes for a single zone test facility was developed and applied to the above determinations. The laboratory PFT analysis system gave a limit-of-detection (LOD) of 0.05 fL for ocPDCH. This is the tracer of choice and is about 100-fold better than that for the DTA. Applied to leak certification, the LOD is about 0.00002 mL/s (0.000075 L/h), a 5 order-of-magnitude improvement over the original leak certification specification. Furthermore, this limit can be attained in a measurement period of 3 to 4 hours instead of days, weeks, or months. A new Leak Certification Facility is also proposed to provide for zonal (three zones) determination of leak rates. The appropriate multizone equations, their solutions, and error analysis have already been derived. A new concept of seal-integrity certification has been demonstrated for a variety of controlled leaks in the range of module leak testing. High structural integrity leaks were shown to have a linear dependence of flow on {Delta}p. The rapid determination of leak rates at different pressures is proposed and is to be determined while subjecting the module to other external force-generating parameters such as vibration, torque, solar intensity, etc. 13 refs.

Dietz, R.N.; Goodrich, R.W. [Brookhaven National Lab., Upton, NY (United States)

1991-03-01T23:59:59.000Z

251

Demonstration of rapid and sensitive module leak certification for space station freedom  

SciTech Connect (OSTI)

A leak detection and quantification demonstration using perflurocarbon tracer (PFT) technology was successfully performed at the NASA Marshall Space Flight Center on January 25, 1991. The real-time Dual Trap Analyzer (DTA) at one-half hour after the start of the first run gave an estimated leak rate of 0.7 mL/min. This has since been refined to be 1.15 {plus minus} 0.09 mL/min. The leak rates in the next three runs were determined to be 9.8 {plus minus} 0.7, {minus}0.4 {plus minus} 0.3, and 76 {plus minus} 6 mL/min, respectively. The theory on leak quantification in the steady-state and time-dependent modes for a single zone test facility was developed and applied to the above determinations. The laboratory PFT analysis system gave a limit-of-detection (LOD) of 0.05 fL for ocPDCH. This is the tracer of choice and is about 100-fold better than that for the DTA. Applied to leak certification, the LOD is about 0.00002 mL/s (0.000075 L/h), a 5 order-of-magnitude improvement over the original leak certification specification. Furthermore, this limit can be attained in a measurement period of 3 to 4 hours instead of days, weeks, or months. A new Leak Certification Facility is also proposed to provide for zonal (three zones) determination of leak rates. The appropriate multizone equations, their solutions, and error analysis have already been derived. A new concept of seal-integrity certification has been demonstrated for a variety of controlled leaks in the range of module leak testing. High structural integrity leaks were shown to have a linear dependence of flow on {Delta}p. The rapid determination of leak rates at different pressures is proposed and is to be determined while subjecting the module to other external force-generating parameters such as vibration, torque, solar intensity, etc. 13 refs.

Dietz, R.N.; Goodrich, R.W. (Brookhaven National Lab., Upton, NY (United States))

1991-03-01T23:59:59.000Z

252

Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Use Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

253

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative

254

Fire Simulation, Evacuation Analysis and Proposal of Fire Protection Systems Inside an Underground Cavern  

E-Print Network [OSTI]

Fire Simulation, Evacuation Analysis and Proposal of Fire Protection Systems Inside an Underground Cavern

Stella, Carlo

255

A study of the feasibility of construction of underground storage structures in soft soil  

E-Print Network [OSTI]

Introduction Page 44 46 Construction Procedure for an Underground Storage Structure for Liquid Materials Construction Procedure for an Underground Storage Structure for Solid Materials 46 48 Geotechnical Considerations in the Construction Procedure... Introduction Page 44 46 Construction Procedure for an Underground Storage Structure for Liquid Materials Construction Procedure for an Underground Storage Structure for Solid Materials 46 48 Geotechnical Considerations in the Construction Procedure...

Rosner, Stephen Anthony

2012-06-07T23:59:59.000Z

256

U.S. strategic petroleum reserve Big Hill 114 leak analysis 2012.  

SciTech Connect (OSTI)

This report addresses recent well integrity issues related to cavern 114 at the Big Hill Strategic Petroleum Reserve site. DM Petroleum Operations, M&O contractor for the U.S. Strategic Petroleum Reserve, recognized an apparent leak in Big Hill cavern well 114A in late summer, 2012, and provided written notice to the State of Texas as required by law. DM has since isolated the leak in well A with a temporary plug, and is planning on remediating both 114 A- and B-wells with liners. In this report Sandia provides an analysis of the apparent leak that includes: (i) estimated leak volume, (ii) recommendation for operating pressure to maintain in the cavern between temporary and permanent fixes for the well integrity issues, and (iii) identification of other caverns or wells at Big Hill that should be monitored closely in light of the sequence of failures there in the last several years.

Lord, David L.; Roberts, Barry L.; Lord, Anna C. Snider; Sobolik, Steven Ronald; Park, Byoung Yoon; Rudeen, David Keith [GRAM, Inc., Albuquerque, NM

2013-06-01T23:59:59.000Z

257

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas or  

E-Print Network [OSTI]

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas or a generator? NOTIFY the University Police. FOLLOW evacuation procedures. NOTIFY Building Safety personnel

Fernandez, Eduardo

258

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas  

E-Print Network [OSTI]

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas. . What should I do if the if the building does not have emergency lighting or a generator? NOTIFY

Fernandez, Eduardo

259

PLC Software Program for Leak Detector Station A1 SALW-LD-ST-A1  

SciTech Connect (OSTI)

This document describes the software program for the programmable logic controller for the leak detector station ''SALW-LD-ST-A1''. The appendices contains a copy of the printout of the software program.

KOCH, M.R.

2001-01-25T23:59:59.000Z

260

Calculation Notes for Subsurface Leak Resulting in Pool, TWRS FSAR Accident Analysis  

SciTech Connect (OSTI)

This document includes the calculations performed to quantify the risk associated with the unmitigated and mitigated accident scenarios described in the TWRS FSAR for the accident analysis titled: Subsurface Leaks Resulting in Pool.

Hall, B.W.

1996-09-25T23:59:59.000Z

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Calculation notes for surface leak resulting in pool, TWRS FSAR accident analysis  

SciTech Connect (OSTI)

This document includes the calculations performed to quantify the risk associated with the unmitigated and mitigated accident scenarios described in the TWRS FSAR for the accident analysis titled: Surface Leaks Resulting in Pool.

Hall, B.W.

1996-09-25T23:59:59.000Z

262

Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability  

DOE Patents [OSTI]

A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo's structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1995-01-01T23:59:59.000Z

263

AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION  

SciTech Connect (OSTI)

Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

Jerry Myers

2005-04-15T23:59:59.000Z

264

Thermal Imaging of Canals for Remote Detection of Leaks: Evaluation in the United Irrigation District  

E-Print Network [OSTI]

This report summarizes our initial analysis of the potential of thermal imaging for detecting leaking canals and pipelines. Thermal imagery (video format) was obtained during a fly over of a portion of the main canal of United Irrigation District...

Huang, Yanbo; Fipps, Guy

265

BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010...  

Broader source: Energy.gov (indexed) [DOE]

3 of 4) BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010 (3 of 4) Addthis Description Footage of the BP Oil Spill Duration 0:19...

266

BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010...  

Broader source: Energy.gov (indexed) [DOE]

2 of 4) BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010 (2 of 4) Addthis Description Footage of the BP Oil Spill Duration 0:13...

267

BP Oil Spill Footage (High Def) - Leak at 4840' - June 3 2010...  

Broader source: Energy.gov (indexed) [DOE]

40' - June 3 2010 (1 of 4) BP Oil Spill Footage (High Def) - Leak at 4840' - June 3 2010 (1 of 4) Addthis Description Footage of the BP Oil Spill Duration 0:15...

268

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

269

Prince George's County Underground Storage Act (Maryland) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Prince George's County Underground Storage Act (Maryland) Prince George&#039;s County Underground Storage Act (Maryland) Prince George's County Underground Storage Act (Maryland) < Back Eligibility Commercial Retail Supplier Tribal Government Program Info State Maryland Program Type Environmental Regulations Provider Maryland Department of the Environment A gas storage company may invoke eminent domain to acquire property in Prince George's County for underground gas storage purposes. The area acquired must lie not less than 800 feet below the surface of a maximum of 12,000 acres of land, and may be owned by a public body. A permit from the Department of the Environment, along with an order from the Public Service Commission, is required prior to the use of eminent domain. The Act contains further information on eminent domain, landowner, and property

270

DOE - Office of Legacy Management -- Los Alamos Underground Med Pipelines -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Los Alamos Underground Med Los Alamos Underground Med Pipelines - NM 02 FUSRAP Considered Sites Site: Los Alamos Underground Med Pipelines ( NM.02 ) Eliminated - Remedial action being performed by the Los Alamos Area Office of the DOE Albuquerque Operations Office Designated Name: Not Designated Alternate Name: Los Alamos County Industrial Waste Lines NM.02-1 Location: Los Alamos , New Mexico NM.02-1 Evaluation Year: 1986 NM.02-1 Site Operations: From 1952 to 1965, underground pipelines or industrial waste lines were used at Los Alamos Scientific Laboratory to transport liquid wastes from Technical Areas 1, 3, 48, and 43 to a chemical waste treatment plant (Technical Area 45). NM.02-1 Site Disposition: Eliminated - Remedial action being performed by another DOE office NM.02-1

271

Georgia Underground Gas Storage Act of 1972 (Georgia) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Georgia Underground Gas Storage Act of 1972 (Georgia) Georgia Underground Gas Storage Act of 1972 (Georgia) Georgia Underground Gas Storage Act of 1972 (Georgia) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Gas Storage Act, which permits the building of reserves for withdrawal in periods of peak demand, was created to promote the economic development of the State of Georgia and provide for more economical distribution of gas to the domestic, commercial, and industrial consumers of the State. Any gas utility desiring to utilize or operate an

272

Appendix E: Underground Storage Annual Site Environmental Report  

E-Print Network [OSTI]

Appendix E: Underground Storage Tank Data #12;Annual Site Environmental Report Appendix E identification service Contents Status ( ) date to Corrective action Tank Out-of- assessment number date regulatory Installation Capacity Preliminary date (gallons) investigation Environmental agency Petroleum USTs

Pennycook, Steve

273

NM Underground Storage Tank Registration | Open Energy Information  

Open Energy Info (EERE)

OpenEI Reference LibraryAdd to library Legal Document- OtherOther: NM Underground Storage Tank RegistrationLegal Published NA Year Signed or Took Effect 2012 Legal Citation...

274

Colorado Natural Gas in Underground Storage (Base Gas) (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Base Gas) (Million Cubic Feet) Colorado Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 39,062 39,062...

275

,"Colorado Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1302015 12:57:42 PM" "Back to Contents","Data 1: Colorado Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070CO2"...

276

ARM 17-56 - Underground Storage Tanks Petroleum and Chemical...  

Open Energy Info (EERE)

Underground Storage Tanks Petroleum and Chemical Substance Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: ARM 17-56 -...

277

Alaska Underground Storage Tanks Website | Open Energy Information  

Open Energy Info (EERE)

Tanks Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Underground Storage Tanks Website Author Division of Spill Prevention and Response...

278

30 TAC, part 1, chapter 334 Underground storage tanks general...  

Open Energy Info (EERE)

Underground storage tanks general provisions Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 30 TAC, part 1, chapter 334...

279

Investigating dynamic underground coal fires by means of numerical simulation  

Science Journals Connector (OSTI)

......available within the combustion centre. Combustion will only proceed whenever...controls the overall combustion rate. For numerical...transport-only and a chemistry-only part. Common...rate of underground coal fires by oxygen transport......

S. Wessling; W. Kessels; M. Schmidt; U. Krause

2008-01-01T23:59:59.000Z

280

,"New York Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:49:33 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NY2"...

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

,"New York Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:49:32 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NY2"...

282

Underground helium travels to the Earth's surface via aquifers...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

carried to the surface with the flow of water. The only place where helium is made on Earth is underground, where deep veins of uranium and thorium give off atoms of helium as...

283

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS  

E-Print Network [OSTI]

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16.............................................................................................21 Coal and Methane Production

Maxwell, Bruce D.

284

Physical security of cut-and-cover underground facilities  

SciTech Connect (OSTI)

To aid designers, generic physical security objectives and design concepts for cut-and-cover underground facilities are presented. Specific aspects addressing overburdens, entryways, security doors, facility services, emergency egress, security response force, and human elements are discussed.

Morse, W.D.

1998-08-01T23:59:59.000Z

285

Microsoft Word - WIPP Updates_Underground Recovery Process Begins  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5DR0314 002NWPR0314 NWP Media Contacts: Donavan Mager Nuclear Waste Partnership LLC (575) 234-7586 www.wipp.energy.gov For Immediate Release WIPP UPDATES: Underground Recovery...

286

P-wave Spectra from Underground Nuclear Explosions  

Science Journals Connector (OSTI)

......three underground explosions at the Nevada Test Site and three earthquakes recorded...nuclear explosions detonated in Nevada (Jorum and Handley) and for a...spectra from two explosions at the Nevada Test Site (Jorum and Handley) and a presumed......

Peter Molnar

1971-08-01T23:59:59.000Z

287

,"New York Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:07:28 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NY2"...

288

,"New York Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:06:47 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060NY2"...

289

,"New York Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:06:48 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060NY2"...

290

,"New York Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:07:27 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NY2"...

291

Underground Salt Haul Truck Fire at the Waste Isolation Pilot...  

Office of Environmental Management (EM)

Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant February 5, 2014 March 2014 Salt Haul Truck Fire at the Waste Isolation Pilot Plant Salt Haul Truck Fire at the...

292

One-man video verite: thoughts on Scenes from underground  

E-Print Network [OSTI]

This thesis considers the making of a documentary videotape on the Red Line Subway Extension project in Cambridge and Somerville, Massachusetts entitled Scenes From Underground. It traces my initial plans for an expository ...

Strongin, Barry

1984-01-01T23:59:59.000Z

293

Fuel pin  

DOE Patents [OSTI]

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

294

Waste package and underground facility design  

SciTech Connect (OSTI)

The design of the waste package and the underground facility for radioactive waste disposal presents many challenges never before addressed in an engineering design effort. The designs must allow for handling and emplacement of the waste and must ensure that the waste will be isolated over time periods that extend beyond those normally dealt with in engineering solutions. Once developed, these designs must be defended in a licensing arena to allow construction and operation of the disposal system. The design of the waste package and the repository is being conducted iteratively. Each iteration of the design is accompanied by an assessment of the performance of the design and an assessment of remaining design issues. These assessments are used to establish the basis for the next design phase. Design requirements are assessed and revised as necessary before the initiation of each design phase. In addition, the design effort is being closely integrated with the siting effort through the application of an issue identification and resolution strategy.

Frei, M.W.; Dayem, N.J.

1988-01-01T23:59:59.000Z

295

if it is a gas leak, do not activate building alarms, use mobile phones, hand held radios, electronic equipment or light flammable material!  

E-Print Network [OSTI]

gas leak gas leak if it is a gas leak, do not activate building alarms, use mobile phones, hand held radios, electronic equipment or light flammable material! 1. If you discover a Gas Leak, shout and check that the nearest gas isolator switch is off. 4. Evacuate the building immediately, avoiding

Hickman, Mark

296

Experiences and prospects of nuclear astrophysics in underground laboratories  

SciTech Connect (OSTI)

Impressive progress has been made in the course the last decades in understanding astrophysical objects. Increasing precision of nuclear physics data has contributed significantly to this success, but now a better understanding of several important findings is frequently limited by uncertainties related to the available nuclear physics data. Consequently it is desirable to improve significantly the quality of these data. An important step towards higher precision is an excellent signal to background ratio of the data. Placing an accelerator facility inside an underground laboratory reducing the cosmic ray induced background by six orders of magnitude is a powerful method to reach this goal, even though careful reduction of environmental and beam induced background must still be considered. Experience in the field of underground nuclear astrophysics has been gained since 20 years due to the pioneering work of the LUNA Collaboration (Laboratory for Underground Nuclear Astrophysics) operating inside the underground laboratories of the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. Based on the success of this work presently also several other projects for underground laboratories dedicated to nuclear astrophysics are being pursued worldwide. This contribution will give a survey of the past experience in underground nuclear astrophysics as well as an outlook on future developments.

Junker, M. [INFN - Laboratori Nazionali del Gran Sasso, Via Acitelli, 22, 67100 L'Aquila, Località Assergi (Italy)

2014-05-09T23:59:59.000Z

297

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and Fueling Infrastructure Funding and Technical Assistance and Fueling Infrastructure Funding and Technical Assistance to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Digg

298

Fuel System and Fuel Measurement  

Science Journals Connector (OSTI)

Fuel management provides optimal solutions to reduce fuel consumption. Merchant vessels, such as container ships, drive at a reduced speed to save fuel since the reduction of the speed from...?1 lowers consumption

Michael Palocz-Andresen

2013-01-01T23:59:59.000Z

299

A LOW-COST GPR GAS PIPE & LEAK DETECTOR  

SciTech Connect (OSTI)

A light-weight, easy to use ground penetrating radar (GPR) system for tracking metal/non-metal pipes has been developed. A pre-production prototype instrument has been developed whose production cost and ease of use should fit important market niches. It is a portable tool which is swept back and forth like a metal detector and which indicates when it goes over a target (metal, plastic, concrete, etc.) and how deep it is. The innovation of real time target detection frees the user from having to interpret geophysical data and instead presents targets as dots on the screen. Target depth is also interpreted automatically, relieving the user of having to do migration analysis. In this way the user can simply walk around looking for targets and, by ''connecting the dots'' on the GPS screen, locate and follow pipes in real time. This is the first tool known to locate metal and non-metal pipes in real time and map their location. This prototype design is similar to a metal detector one might use at the beach since it involves sliding a lightweight antenna back and forth over the ground surface. The antenna is affixed to the end of an extension that is either clipped to or held by the user. This allows him to walk around in any direction, either looking for or following pipes with the antenna location being constantly recorded by the positioning system. Once a target appears on the screen, the user can locate by swinging the unit to align the cursor over the dot. Leak detection was also a central part of this project, and although much effort was invested into its development, conclusive results are not available at the time of the writing of this document. Details of the efforts that were made as a part of this cooperative agreement are presented.

David Cist; Alan Schutz

2005-03-30T23:59:59.000Z

300

Alternative Fuels Data Center: Alternative Fuel and Special Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel and Fuel and Special Fuel Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Special Fuel Definitions

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Motor Fuel Motor Carrier Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Motor Carrier Fuel Tax Effective January 1, 2014, a person who operates a commercial motor vehicle

302

How to effectively recover free product at leaking underground storage tank sites. A guide for state regulators. Final report, January-October 1995  

SciTech Connect (OSTI)

The objective of the report is to provide guidance that will help state and local regulators to review free product recovery plans or that portion of a Corrective Action Plan (CAP) that proposes free product recovery technologies. The report focuses on appropriate technology use, taking into consideration site-specific conditions. It addresses the following three basic questions when reviewing a free product recovery plan: (1) is free product recovery necessary; (2) has an appropriate method been proposed for free product recovery; and (3) does the free product recovery plan provide a technically sound approach to remediating the site. The text focuses on scientific and engineering-related considerations for evaluating alternative technologies for the recovery of free product.

Faust, C.R.; Montroy, M.P.

1996-09-01T23:59:59.000Z

303

A feasibility study for underground coal gasification at Krabi Mine, Thailand  

SciTech Connect (OSTI)

A study to evaluate the technical, economical, and environmental feasibility of underground coal gasification (UCG) in the Krabi Mine, Thailand, was conducted by the Energy and Environmental Research Center (EERC) in cooperation with B.C. Technologies (BCT) and the Electricity Generating Authority of Thailand (EGAT). The selected coal resource was found suitable to fuel a UCG facility producing 460,000 MJ/h (436 million Btu/h) of 100--125 Btu/scf gas for 20 years. The raw UCG gas could be produced for a selling price of $1.94/MMBtu. The UCG facility would require a total investment of $13.8 million for installed capital equipment, and annual operating expenses for the facility would be $7.0 million. The UCG gas could be either cofired in a power plant currently under construction or power a 40 MW simple-cycle gas turbine or a 60 MW combined-cycle power plant.

Solc, J.; Steadman, E.N. [Energy and Environmental Research Center, Grand Forks, ND (United States); Boysen, J.E. [BC Technologies, Laramie, WY (United States)

1998-12-31T23:59:59.000Z

304

Winter Fuels Market Assessment 2000  

Gasoline and Diesel Fuel Update (EIA)

September 13, 2000 September 13, 2000 Winter Fuels Market Assessment 2000 09/14/2000 Click here to start Table of Contents Winter Fuels Market Assessment 2000 West Texas Intermediate Crude Oil Prices Perspective on Real Monthly World Oil Prices, 1976 - 2000 U.S. Crude Oil Stocks Total OECD Oil Stocks Distillate and Spot Crude Oil Prices Distillate Stocks Expected to Remain Low Distillate Stocks Are Important Part of East Coast Winter Supply Consumer Winter Heating Oil Costs Natural Gas Prices: Well Above Recent Averages Annual Real Natural Gas Prices by Sector End-of-Month Working Gas in .Underground Storage Residential Prices Do Not Reflect the Volatility Seen in Wellhead Prices Consumer Natural Gas Heating Costs Winter Weather Uncertainty Author: John Cook Email: jcook@eia.doe.gov

305

Microstructured Hydrogen Fuel Cells  

Science Journals Connector (OSTI)

Micro fuel cells ; Polymer electrolyte membrane fuel cells ; Proton exchange membrane fuel cells ...

Luc G. Frechette

2014-05-01T23:59:59.000Z

306

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The definition of an alternative fuel includes natural gas, liquefied petroleum gas, electricity, hydrogen, fuel mixtures containing not less

307

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

308

Alternative Fuels Data Center: Alternative Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Promotion The Missouri Alternative Fuels Commission (Commission) promotes the continued production and use of alternative transportation fuels in

309

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

310

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

311

AUTOMATED LEAK DETECTION OF BURIED TANKS USING GEOPHYSICAL METHODS AT THE HANFORD NUCLEAR SITE  

SciTech Connect (OSTI)

At the Hanford Nuclear Site in Washington State, the Department of Energy oversees the containment, treatment, and retrieval of liquid high-level radioactive waste. Much of the waste is stored in single-shelled tanks (SSTs) built between 1943 and 1964. Currently, the waste is being retrieved from the SSTs and transferred into newer double-shelled tanks (DSTs) for temporary storage before final treatment. Monitoring the tanks during the retrieval process is critical to identifying leaks. An electrically-based geophysics monitoring program for leak detection and monitoring (LDM) has been successfully deployed on several SSTs at the Hanford site since 2004. The monitoring program takes advantage of changes in contact resistance that will occur when conductive tank liquid leaks into the soil. During monitoring, electrical current is transmitted on a number of different electrode types (e.g., steel cased wells and surface electrodes) while voltages are measured on all other electrodes, including the tanks. Data acquisition hardware and software allow for continuous real-time monitoring of the received voltages and the leak assessment is conducted through a time-series data analysis. The specific hardware and software combination creates a highly sensitive method of leak detection, complementing existing drywell logging as a means to detect and quantify leaks. Working in an industrial environment such as the Hanford site presents many challenges for electrical monitoring: cathodic protection, grounded electrical infrastructure, lightning strikes, diurnal and seasonal temperature trends, and precipitation, all of which create a complex environment for leak detection. In this discussion we present examples of challenges and solutions to working in the tank farms of the Hanford site.

CALENDINE S; SCHOFIELD JS; LEVITT MT; FINK JB; RUCKER DF

2011-03-30T23:59:59.000Z

312

Underground Gasification: An Alternate Way to Exploit Coal  

Science Journals Connector (OSTI)

...quality of the product gas were pre-dictable...spec-ulate that the cost of gas from the Soviet process...gasification could allow gas to leak out of the chamber...future, and the sole remaining question will be the economics...how it affects marine life are among the most complex...

THOMAs H. MAUGH II

1977-12-16T23:59:59.000Z

313

Characterization of Vadose Zone Sediments from C Waste Management Area: Investigation of the C-152 Transfer Line Leak  

SciTech Connect (OSTI)

A geologic/geochemical investigation in the vicinity of UPR-200-E-82 was performed using pairs of cone-penetrometer probe holes. A total of 41 direct-push cone-penetrometer borings (19 pairs to investigate different high moisture zones in the same sampling location and 3 individual) were advanced to characterize vadose zone moisture and the distribution of contaminants. A total of twenty sample sets, containing up to two split-spoon liners and one grab sample, were delivered to the laboratory for characterization and analysis. The samples were collected around the documented location of the C-152 pipeline leak, and created an approximately 120-ft diameter circle around the waste site. UPR-200-E-82 was a loss of approximately 2,600 gallons of Cs-137 Recovery Process feed solution containing an estimated 11,300 Ci of cesium-137 and 5 Ci of technetium-99. Several key parameters that are used to identify subsurface contamination were measured, including: water extract pH, electrical conductivity, nitrate, technetium-99, sodium, and uranium concentrations and technetium-99 and uranium concentrations in acid extracts. All of the parameters, with the exception of electrical conductivity, were elevated in at least some of the samples analyzed as part of this study. Specifically, soil pH was elevated (from 8.69 to 9.99) in five samples collected northeast and southwest of the C-152 pipeline leak. Similarly, samples collected from these same cone-pentrometer holes contained significantly more water-extractable sodium (more than 50 ?g/g of dry sediment), uranium (as much as 7.66E-01 ?g/g of dry sediment), nitrate (up to 30 ?g/g of dry sediment), and technetium-99 (up to 3.34 pCi/g of dry sediment). Most of the samples containing elevated concentrations of water-extractable sodium also had decreased levels of water extractable calcium and or magnesium, indicating that tank-related fluids that were high in sodium did seep into the vadose zone near these probe holes. Several of the samples containing high concentrations of water-leachable uranium also contained high pore water corrected alkalinity (3.26E+03 mg/L as CaCO3), indicating that the elevated water-leachable uranium could be an artifact of uranyl-carbonate complexation of naturally occurring labile uranium. However, a mass scan of the water extract containing the highest concentration of uranium was performed via inductively coupled mass spectrometry over the range of 230 to 240 atomic mass units, and a discernable peak was observed at mass 236. Although the data is considered qualitative, the presence of uranium-236 in the 1:1 sediment:water extract is a clear indication that the sample contains contaminant uranium [Hanford reprocessed fuel waste]. After evaluating all the characterization and analytical data, there is no question that the vadose zone surrounding the C-152 pipeline leak site has been contaminated by waste generally sent to tanks. The two zones or regions that contained the largest amount of contaminants, either in concentration or by occurrence of several key constituents/contaminants of concern, were located: 1) between the 241-C-151 and 241-C-152 Diversion Boxes (near the location of UPR-200-E-82) and 2) directly across the C-152 waste site near the C-153 Diversion Box (near where a pipeline, which connects the two diversion boxes, is shown on old blue prints . Without the use of more sophisticated analytical techniques, such as isotope signature analysis of ruthenium fission product isotopes, it is impossible to determine if the contamination observed at these two locations are from the same waste source or are a result of different leak events.

Brown, Christopher F.; Serne, R. JEFFREY; Bjornstad, Bruce N.; Valenta, Michelle M.; Lanigan, David C.; Vickerman, Tanya S.; Clayton, Ray E.; Geiszler, Keith N.; Iovin, Cristian; Clayton, Eric T.; Kutynakov, I. V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

2007-02-05T23:59:59.000Z

314

Underground physics without underground labs: large detectors in solution-mined salt caverns  

E-Print Network [OSTI]

A number of current physics topics, including long-baseline neutrino physics, proton decay searches, and supernova neutrino searches, hope to someday construct huge (50 kiloton to megaton) particle detectors in shielded, underground sites. With today's practices, this requires the costly excavation and stabilization of large rooms in mines. In this paper, we propose utilizing the caverns created by the solution mining of salt. The challenge is that such caverns must be filled with pressurized fluid and do not admit human access. We sketch some possible methods of installing familiar detector technologies in a salt cavern under these constraints. Some of the detectors discussed are also suitable for deep-sea experiments, discussed briefly. These sketches appear challenging but feasible, and appear to force few major compromises on detector capabilities. This scheme offers avenues for enormous cost savings on future detector megaprojects.

Benjamin Monreal

2014-09-30T23:59:59.000Z

315

Underground physics without underground labs: large detectors in solution-mined salt caverns  

E-Print Network [OSTI]

A number of current physics topics, including long-baseline neutrino physics, proton decay searches, and supernova neutrino searches, hope to someday construct huge (50 kiloton to megaton) particle detectors in shielded, underground sites. With today's practices, this requires the costly excavation and stabilization of large rooms in mines. In this paper, we propose utilizing the caverns created by the solution mining of salt. The challenge is that such caverns must be filled with pressurized fluid and do not admit human access. We sketch some possible methods of installing familiar detector technologies in a salt cavern under these constraints. Some of the detectors discussed are also suitable for deep-sea experiments, discussed briefly. These sketches appear challenging but feasible, and appear to force few major compromises on detector capabilities. This scheme offers avenues for enormous cost savings on future detector megaprojects.

Monreal, Benjamin

2014-01-01T23:59:59.000Z

316

Winter fuels report  

SciTech Connect (OSTI)

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

Not Available

1990-10-04T23:59:59.000Z

317

Ultrasensitive leak detection during ultrahigh vacuum evacuation by quadrupole mass spectrometer  

SciTech Connect (OSTI)

One must do ultrasensitive leak detection during ultrahigh-vacuum (UHV) evacuation, especially just before the device is sealed off from the vacuum system, to guarantee the longevity of the sealed high-vacuum or even UHV devices with small volume. A quadrupole mass spectrometer (QMS) with an UHV evacuation system can be used under accumulation mode to do the testing. Possible accumulate modes, as well as their advantages and shortcomings, are studied experimentally and discussed in this paper. We found that the opening action of the metal valve during accumulation mode always severely affects the height of the peak indicated by QMS and causes considerable errors. If we determine the leak rate by the peak area instead of the peak height, the situation is much improved. This method has proven quite useful in ensuring the tightness quality for complex sealed UHV devices with small volumes. Ultrasensitive leak detection has been carried out for such real evacuating devices, and a leak rate of 2x10{sup -14} Pa{center_dot}m{sup 3}/s was detected, which is far lower than its dynamic mode and the detection limit of the current advanced commercial leak detectors.

Chen Xu; Huang Tianbin; Wang Ligong; Jin Qiji; Cha Liangzhen [Department of Electronic Engineering, Tsinghua University, Beijing, 100084 (China)

2006-01-15T23:59:59.000Z

318

Flight Testing of an Advanced Airborne Natural Gas Leak Detection System  

SciTech Connect (OSTI)

ITT Industries Space Systems Division (Space Systems) has developed an airborne natural gas leak detection system designed to detect, image, quantify, and precisely locate leaks from natural gas transmission pipelines. This system is called the Airborne Natural Gas Emission Lidar (ANGEL) system. The ANGEL system uses a highly sensitive differential absorption Lidar technology to remotely detect pipeline leaks. The ANGEL System is operated from a fixed wing aircraft and includes automatic scanning, pointing system, and pilot guidance systems. During a pipeline inspection, the ANGEL system aircraft flies at an elevation of 1000 feet above the ground at speeds of between 100 and 150 mph. Under this contract with DOE/NETL, Space Systems was funded to integrate the ANGEL sensor into a test aircraft and conduct a series of flight tests over a variety of test targets including simulated natural gas pipeline leaks. Following early tests in upstate New York in the summer of 2004, the ANGEL system was deployed to Casper, Wyoming to participate in a set of DOE-sponsored field tests at the Rocky Mountain Oilfield Testing Center (RMOTC). At RMOTC the Space Systems team completed integration of the system and flew an operational system for the first time. The ANGEL system flew 2 missions/day for the duration for the 5-day test. Over the course of the week the ANGEL System detected leaks ranging from 100 to 5,000 scfh.

Dawn Lenz; Raymond T. Lines; Darryl Murdock; Jeffrey Owen; Steven Stearns; Michael Stoogenke

2005-10-01T23:59:59.000Z

319

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

320

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on AddThis.com...

322

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel and Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on AddThis.com... More in this section...

323

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel and Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on AddThis.com...

324

A CT scan aided core-flood study of the leak-off process in oil-based drilling fluids :.  

E-Print Network [OSTI]

??An experimental study on the leak-off of oil based drilling fluid sandstone cores is reported. First we revised the theoretical models for the rheology of… (more)

Van Overveldt, A.S.

2011-01-01T23:59:59.000Z

325

New Texas Oil Project Will Help Keep Carbon Dioxide Underground |  

Broader source: Energy.gov (indexed) [DOE]

Texas Oil Project Will Help Keep Carbon Dioxide Underground Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy’s National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen production facilities. The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy's National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen

326

New Texas Oil Project Will Help Keep Carbon Dioxide Underground |  

Broader source: Energy.gov (indexed) [DOE]

New Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy’s National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen production facilities. The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy's National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen

327

Western Consuming Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 341 1994-Jan 01/07 331 01/14 316 01/21 303 01/28 290 1994-Feb 02/04 266 02/11 246 02/18 228 02/25 212 1994-Mar 03/04 206 03/11 201 03/18 205 03/25 202 1994-Apr 04/01 201 04/08 201 04/15 202 04/22 210 04/29 215 1994-May 05/06 225 05/13 236 05/20 242 05/27 256

328

Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide  

Broader source: Energy.gov (indexed) [DOE]

storage of natural gas, liquid hydrocarbons, and carbon storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting The Louisiana Department of Environmental Quality regulates the underground storage of natural gas or liquid hydrocarbons and carbon dioxide. Prior to the use of any underground reservoir for the storage of natural gas and prior to the exercise of eminent domain by any person, firm, or corporation having such right under laws of the state of Louisiana, the commissioner, shall have found all of the following:

329

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 841 2007-Jan 01/05 823 01/12 806 01/19 755 01/26 716 2007-Feb 02/02 666 02/09 613 02/16 564 02/23 538 2007-Mar 03/02 527 03/09 506 03/16 519 03/23 528 03/30 550 2007-Apr 04/06 560 04/13 556 04/20 568 04/27 590 2007-May 05/04 610 05/11 629 05/18 648 05/25 670

330

Office of Enforcement Final Notice of Violation to Pacific Underground  

Broader source: Energy.gov (indexed) [DOE]

Enforcement Final Notice of Violation to Pacific Enforcement Final Notice of Violation to Pacific Underground Construction, Inc. September 3, 2009 Office of Enforcement Final Notice of Violation to Pacific Underground Construction, Inc. September 3, 2009 Pursuant to section 234C of the Atomic Energy Act, as amended, 42 U.S.C. § 2282c, and the Department of Energy's (DOE) regulations at 10 C.F.R. Part 851, Worker Safety and Health Program, DOE is issuing this Final Notice of Violation (FNOV) to Pacific Underground Construction, Inc. (PUC). The FNOV finds PUC liable for violating DOE's worker safety and health requirements. The FNOV is based upon the Office of Enforcement's July 23, 2008, Investigation Report and a careful and thorough review of all evidence presented to DOE by PUC, including your response to the Preliminary Notice

331

Underground radio technology saves miners and emergency response personnel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Underground radio technology saves miners and emergency response Underground radio technology saves miners and emergency response personnel Underground radio technology saves miners and emergency response personnel Founded through LANL, Vital Alert Technologies, Inc. (Vital Alert) has launched a wireless, two-way real-time voice communication system that is effective through 1,000+ feet of solid rock. April 3, 2012 Vital Alert's C1000 mine and tunnel radios use magnetic induction, advanced digital communications techniques and ultra-low frequency transmission to wirelessly provide reliable 2-way voice, text, or data links through rock strata and other solid media. Vital Alert's C1000 mine and tunnel radios use magnetic induction, advanced digital communications techniques and ultra-low frequency transmission to wirelessly provide reliable 2-way voice, text, or data links through rock

332

Producing Region Natural Gas Working Underground Storage (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 570 1994-Jan 01/07 532 01/14 504 01/21 440 01/28 414 1994-Feb 02/04 365 02/11 330 02/18 310 02/25 309 1994-Mar 03/04 281 03/11 271 03/18 284 03/25 303 1994-Apr 04/01 287 04/08 293 04/15 308 04/22 334 04/29 353 1994-May 05/06 376 05/13 399 05/20 429 05/27 443

333

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Infrastructure Grants to someone by E-mail Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

334

MEMOIRS OF A LEAK: Infiltrating Research for a Quarter of a Century  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MEMOIRS OF A LEAK: Infiltrating Research for a Quarter of a Century MEMOIRS OF A LEAK: Infiltrating Research for a Quarter of a Century Speaker(s): Max Sherman Date: November 16, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: David Faulkner Infiltration is the (usually uncontrolled) flow of air through leaks in the building envelope, driven by natural and mechanical pressures. Before the oil crises, there was not a lot of interest in infiltration. For houses and other envelope-dominated buildings, however, infiltration typically accounted for all of their ventilation needs and 1/3-1/2 of their space-conditioning load. Starting in the mid-70s there was a realization that this important problem was not well understood, but represented an important energy-saving opportunity. Research institutions around the world

335

Saltwell Leak Detector Station Programmable Logic Controller (PLC) Software Configuration Management Plan (SCMP)  

SciTech Connect (OSTI)

This document provides the procedures and guidelines necessary for computer software configuration management activities during the operation and maintenance phases of the Saltwell Leak Detector Stations as required by HNF-PRO-309, Rev. 1, Computer Software Quality Assurance, Section 2.4, Software Configuration Management. The software configuration management plan (SCMP) integrates technical and administrative controls to establish and maintain technical consistency among requirements, physical configuration, and documentation for the Saltwell Leak Detector Station Programmable Logic Controller (PLC) software during the Hanford application, operations and maintenance. This SCMP establishes the Saltwell Leak Detector Station PLC Software Baseline, status changes to that baseline, and ensures that software meets design and operational requirements and is tested in accordance with their design basis.

WHITE, K.A.

2000-11-28T23:59:59.000Z

336

SIXTH INTERIM STATUS REPORT: MODEL 9975 PCV O-RING FIXTURE LONG-TERM LEAK PERFORMANCE  

SciTech Connect (OSTI)

A series of experiments to monitor the aging performance of Viton{reg_sign} GLT O-rings used in the Model 9975 package has been ongoing for seven years at the Savannah River National Laboratory. Seventy tests using mock-ups of 9975 Primary Containment Vessels (PCVs) were assembled and heated to temperatures ranging from 200 to 450 F. They were leak-tested initially and have been tested periodically to determine if they meet the criterion of leak-tightness defined in ANSI standard N14.5-97. Fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 F. High temperature aging continues for 33 GLT O-ring fixtures at 200-300 F. Room temperature leak test failures have been experienced in all of the GLT O-ring fixtures aging at 350 F and higher temperatures, and in 7 fixtures aging at 300 F. No failures have yet been observed in GLT O-ring fixtures aging at 200 F for 41-60 months, which is still bounding to O-ring temperatures during storage in K-Area Complex (KAC). Based on expectations that the fixtures aging at 200 F will remain leak-tight for a significant period yet to come, 2 additional fixtures began aging within the past year at an intermediate temperature of 270 F, with hopes that they may leak before the 200 F fixtures. High temperature aging continues for 6 GLT-S O-ring fixtures at 200-300 F. Room temperature leak test failures have been experienced in all 8 of the GLT-S O-ring fixtures aging at 350 and 400 F. No failures have yet been observed in GLT-S O-ring fixtures aging at 200-300 F for up to 26 months. For O-ring fixtures that have failed the room temperature leak test and been disassembled, the Orings displayed a compression set ranging from 51-96%. This is greater than seen to date for packages inspected during KAC field surveillance (24% average). For GLT O-rings, separate service life estimates have been made based on the O-ring fixture leak test data and based on compression stress relaxation (CSR) data. These two predictive models show reasonable agreement at higher temperatures (350-400 F). However, at 300 F, the room temperature leak test failures to date experienced longer aging times than predicted by the CSR-based model. This suggests that extrapolations of the CSR model predictions to temperatures below 300 F will provide a conservative prediction of service life relative to the leak rate criterion. Leak test failure data at lower temperatures are needed to verify this apparent trend. Insufficient failure data exist currently to perform a similar comparison for GLT-S O-rings. Aging and periodic leak testing will continue for the remaining fixtures.

Daugherty, W.

2011-08-31T23:59:59.000Z

337

Control Surveys for Underground Construction of the Superconducting Super Collider  

SciTech Connect (OSTI)

Particular care had to be taken in the design and implementation of the geodetic control systems for the Superconducting Super Collider (SSC) due to stringent accuracy requirements, the demanding tunneling schedule, long duration and large size of the construction effort of the project. The surveying requirements and the design and implementation of the surface and underground control scheme for the precise location of facilities which include approximately 120 km of bored tunnel are discussed. The methodology used for the densification of the surface control networks, the technique used for the transfer of horizontal and vertical control into the underground facilities, and the control traverse scheme employed in the tunnels is described.

Greening, W.J.Trevor; Robinson, Gregory L.; /Measurment Science Inc.; Robbins, Jeffrey S.; Ruland, Robert E.; /SLAC

2005-08-16T23:59:59.000Z

338

Sudden stratospheric warmings seen in MINOS deep underground muon data  

SciTech Connect (OSTI)

The rate of high energy cosmic ray muons as measured underground is shown to be strongly correlated with upper-air temperatures during short-term atmospheric (10-day) events. The effects are seen by correlating data from the MINOS underground detector and temperatures from the European Centre for Medium Range Weather Forecasts during the winter periods from 2003-2007. This effect provides an independent technique for the measurement of meteorological conditions and presents a unique opportunity to measure both short and long-term changes in this important part of the atmosphere.

Osprey, S.; /Oxford U.; Barnett, J.; /Oxford U.; Smith, J.; /Oxford U.; Adamson, P.; /Fermilab; Andreopoulos, C.; /Rutherford; Arms, K.E.; /Minnesota U.; Armstrong, R.; /Indiana U.; Auty, D.J.; /Sussex U.; Ayres, D.S.; /Argonne; Baller, B.; /Fermilab; Barnes, P.D., Jr.; /LLNL, Livermore /Oxford U.

2009-01-01T23:59:59.000Z

339

EXTENDED PERFORMANCE HANDHELD AND MOBILE SENSORS FOR REMOTE DETECTION OF NATURAL GAS LEAKS  

SciTech Connect (OSTI)

This report summarizes work performed by Physical Sciences Inc. (PSI) to advance the state-of-the-art of surveying for leaks of natural gas from transmission and distribution pipelines. The principal project goal was to develop means of deploying on an automotive platform an improved version of the handheld laser-based standoff natural gas leak detector previously developed by PSI and known as the Remote Methane Leak Detector or RMLD. A laser beam which interrogates the air for methane is projected from a spinning turret mounted upon a van. As the van travels forward, the laser beam scans an arc to the front and sides of the van so as to survey across streets and to building walls from a moving vehicle. When excess methane is detected within the arc, an alarm is activated. In this project, we built and tested a prototype Mobile RMLD (MRMLD) intended to provide lateral coverage of 10 m and one lateral scan for every meter of forward motion at forward speeds up to 10 m/s. Using advanced detection algorithms developed as part of this project, the early prototype MRMLD, installed on the back of a truck, readily detected simulated gas leaks of 50 liters per hour. As a supplement to the originally planned project, PSI also participated in a DoE demonstration of several gas leak detection systems at the Rocky Mountain Oilfield Testing Center (RMOTC) during September 2004. Using a handheld RMLD upgraded with the advanced detection algorithms developed in this project, from within a moving vehicle we readily detected leaks created along the 7.4 mile route of a virtual gas transmission pipeline.

Michael B. Frish; B. David Green; Richard T. Wainner; Francesca Scire-Scappuzzo; Paul Cataldi; Matthew C. Laderer

2005-05-01T23:59:59.000Z

340

Synthetic Fuel  

ScienceCinema (OSTI)

Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

2010-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The leak resistance of 2-inch N-80 API treaded tubular connection  

E-Print Network [OSTI]

THE LEAK RESISTANCE OF 2-INCH N-80 API THREAD TOBULAR CONNECTION A Thesis Peter D. Weiner Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in Partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE January 1961 Ma)or Subject: Mechanical Engineering THE LEAK RESISTANCE OF 2-INCH N-80 API THREADED TUBULAR COHHECTIOH A Thesis By Peter D. Weiner Approved as to style and content by: Chairman of ittee Head of Department January 1961...

Weiner, Peter Douglas

2012-06-07T23:59:59.000Z

342

The inspection of recovery boilers to detect factors that cause critical leaks  

SciTech Connect (OSTI)

Records compiled by the Black Liquor Recovery Boiler Advisory Committee (BLRBAC) include more than 140 recovery boiler explosions that occurred from 1948 to 1990. Although some incidents were due to improper boiler operation, many were caused by critical leaks arising from corrosion, erosion, metal fatigue, or other processes not directly under the control of the boiler operator. In this paper, the authors will examine the extent to which common boiler inspection practices can be expected to expose conditions like those that have led to critical leaks.

Bauer, D.G.; Sharp, W.B.A. (Westvaco Corp., Laurel Research Lab., Laurel, MD (United States))

1991-09-01T23:59:59.000Z

343

Underground coal gasification (UCG) gas to methanol and MTG-gasoline: an economic and sensitivity study, Task B  

SciTech Connect (OSTI)

This report, identified as Task B, examines the technical and economic aspects of the production of methanol and MTG-Gasoline using gas from an underground coal gasification (UCG) facility. The report is a sequel to a previous study performed in 1981 and identified as Task A. The Task A report, titled Cost Saving Concepts on the Production of Methanol from Underground Gasified Coal, examined the economics of producing fuel grade methanol using UCG gas. In this study we examine the economics of producing MTG-Gasoline as well as a number of other aspects of the economics of upgrading UCG gas. Capital and operating costs for three different capacities of MTG-Gasoline plant are presented. These are 1600 BPD, 4800 BPD, and 9600 BPD. These capacities are equivalent to fuel grade methanol plants having capacities of 4000 BPD, 12,000 BPD, and 24,000 BPD - the methanol capacities considered in the previous studies. The economics of the MTG-Gasoline plant were developed using published information and our best estimate of the processing steps in the MTG-Gasoline process. As part of this study, several sensitivity studies were undertaken to examine the sensitivity of both methanol and MTG-Gasoline product cost to changes in technical and economic parameters. Table 1.1 lists the various sensitivity studies undertaken. All cost figures are in first quarter 1982 dollars.

Not Available

1982-06-01T23:59:59.000Z

344

H.A.R. 11-281 - Underground Storage Tanks | Open Energy Information  

Open Energy Info (EERE)

1 - Underground Storage Tanks Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: H.A.R. 11-281 - Underground Storage...

345

Horizontal Hydraulic Conductivity Estimates for Intact Coal Barriers Between Closed Underground Mines  

Science Journals Connector (OSTI)

...discharges were obtained from industry reports stored at the Consol...mining beneath surface water and waste impoundments: In Proceedings...associated with underground coal gasification: Canadian Geotechnical Journal...underground mining United States waste disposal water quality West...

KURT J. McCOY; JOSEPH J. DONOVAN; BRUCE R. LEAVITT

346

C.R.S. 37-90 - Underground Water | Open Energy Information  

Open Energy Info (EERE)

StatuteStatute: C.R.S. 37-90 - Underground WaterLegal Abstract This article governs the management of underground water in Colorado. Published NA Year Signed or Took Effect 2014...

347

Assessment of seawater intrusion into underground oil storage cavern and prediction of its sustainability  

Science Journals Connector (OSTI)

Operation of underground oil (gas) storage cavern in coastal area can induce seawater intrusion because excavation of underground storage cavern causes the groundwater level decrease of coastal aquifer. Seawater ...

Eunhee Lee; Jeong-Won Lim; Hee Sun Moon; Kang-Kun Lee

2014-07-01T23:59:59.000Z

348

Managing expert-information uncertainties for assessing collapse susceptibility of abandoned underground structures  

E-Print Network [OSTI]

by the vast number of quarries and marl pits, but also for various other reasons resulting in underground be sufficiently violent to cause human loss. Thus, in 1961, the collapse of an underground chalk quarry

Boyer, Edmond

349

Alternative Fuels Data Center: Alternative Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fueling Alternative Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

350

Lower 48 States Natural Gas Underground Storage Withdrawals (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (Million Cubic Feet) Gas Underground Storage Withdrawals (Million Cubic Feet) Lower 48 States Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 849,115 666,248 313,952 100,096 58,314 80,472 115,649 125,989 55,418 51,527 183,799 473,674 2012 619,332 515,817 205,365 126,403 73,735 90,800 129,567 133,919 66,652 85,918 280,933 489,707 2013 791,849 646,483 480,032 134,680 48,945 68,117 98,141 101,568 66,273 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Withdrawals of Natural Gas from Underground Storage - All Operators

351

Appendix C: Underground Storage Annual Site Environmental Report  

E-Print Network [OSTI]

Appendix C: Underground Storage Tank Data #12;#12;Annual Site Environmental Report Appendix C identification service Contents Status ( ) date to Corrective action Tank Out-of- assessment number date regulatory Installation Capacity Preliminary date (gallons) investigation Environmental agency Petroleum USTs

Pennycook, Steve

352

Coal properties and system operating parameters for underground coal gasification  

SciTech Connect (OSTI)

Through the model experiment for underground coal gasification, the influence of the properties for gasification agent and gasification methods on underground coal gasifier performance were studied. The results showed that pulsating gasification, to some extent, could improve gas quality, whereas steam gasification led to the production of high heating value gas. Oxygen-enriched air and backflow gasification failed to improve the quality of the outlet gas remarkably, but they could heighten the temperature of the gasifier quickly. According to the experiment data, the longitudinal average gasification rate along the direction of the channel in the gasifying seams was 1.212 m/d, with transverse average gasification rate 0.069 m/d. Experiment indicated that, for the oxygen-enriched steam gasification, when the steam/oxygen ratio was 2:1, gas compositions remained stable, with H{sub 2} + CO content virtually standing between 60% and 70% and O{sub 2} content below 0.5%. The general regularities of the development of the temperature field within the underground gasifier and the reasons for the changes of gas quality were also analyzed. The 'autopneumatolysis' and methanization reaction existing in the underground gasification process were first proposed.

Yang, L. [China University of Mining & Technology, Xuzhou (China)

2008-07-01T23:59:59.000Z

353

Effect of repository underground ventilation on emplacement drift temperature control  

SciTech Connect (OSTI)

The repository advanced conceptual design (ACD) is being conducted by the Civilian Radioactive Waste Management System, Management & Operating Contractor. Underground ventilation analyses during ACD have resulted in preliminary ventilation concepts and design methodologies. This paper discusses one of the recent evaluations -- effects of ventilation on emplacement drift temperature management.

Yang, H.; Sun, Y.; McKenzie, D.G.; Bhattacharyya, K.K. [Morrison Knudson Corporation, Las Vegas, NV (United States)

1996-02-01T23:59:59.000Z

354

Case study of groundwater impact caused by underground mining  

SciTech Connect (OSTI)

An investigative methodology is presented to assist mining and regulatory personnel in determining the effect underground mining can have on local aquifers in the Appalachian coal region. The impact of underground mining on groundwater may be more extensive than first realized by the mining industry and regulatory agencies. The primary reason for this possible under-assessment of deep mining's influence on groundwater is the methods used to calculate groundwater movement. Since groundwater calculations are based on primary hydraulic conductivity, i.e. the conductivity through solid rock measured from rock core samples, erroneous results may be expected. In many cases, groundwater flow times and the corresponding areas of influence are much greater than those assumed since water is rapidly moved through fractured zones that commonly occur throughout Appalachia. A case study illustrating this phenomenon is drawn from underground mining operations in Pike County. A survey of 144 wells was conducted to determine if any loss of water supply and/or quality was found. This was correlated to the extent and time progression of underground mining operations. Other parameters qualified are water level fluctuations, groundwater quality, precipitation, seasonal effects, geology, and mine dewatering. The analysis includes a comprehensive compilation of a well inventory of domestic water supplies. The case study draws conclusions regarding cause and effect relationships.

Sloan, P.; Warner, R.C.

1984-12-01T23:59:59.000Z

355

Underground test area subproject waste management plan. Revision No. 1  

SciTech Connect (OSTI)

The Nevada Test Site (NTS), located in southern Nevada, was the site of 928 underground nuclear tests conducted between 1951 and 1992. The tests were performed as part of the Atomic Energy Commission and U.S. Department of Energy (DOE) nuclear weapons testing program. The NTS is managed by the DOE Nevada Operations Office (DOE/NV). Of the 928 tests conducted below ground surface at the NTS, approximately 200 were detonated below the water table. As an unavoidable consequence of these testing activities, radionuclides have been introduced into the subsurface environment, impacting groundwater. In the few instances of groundwater sampling, radionuclides have been detected in the groundwater; however, only a very limited investigation of the underground test sites and associated shot cavities has been conducted to date. The Underground Test Area (UGTA) Subproject was established to fill this void and to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the NTS. One of its primary objectives is to gather data to characterize the deep aquifer underlying the NTS.

NONE

1996-08-01T23:59:59.000Z

356

Underground—and the City of the Future  

Science Journals Connector (OSTI)

... , warehouses and other public service buildings, as well as traffic routes for vehicles and pedestrians, would be constructed in this way. Already there exists a plan for the diversion ... in the well-known École spéciale d'Architecture, on the lighting of underground traffic and pedestrian routes. He reviews the practice exemplified in some of the short subways in Paris, ...

1940-01-06T23:59:59.000Z

357

Grounding Analysis in Heterogeneous Soil Models: Application to Underground Substations  

E-Print Network [OSTI]

Grounding Analysis in Heterogeneous Soil Models: Application to Underground Substations Ignasi category includes all step- up and step-down transmission substations, as well as a number of distribution substations indeed. Nevertheless, the current trend in electric power Engineering moves in another direction

Colominas, Ignasi

358

,"New York Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

"Sourcekey","N5030NY2","N5010NY2","N5020NY2","N5070NY2","N5050NY2","N5060NY2" "Date","New York Natural Gas Underground Storage Volume (MMcf)","New York Natural Gas in...

359

Radon concentrations in three underground lignite mines in Turkey  

Science Journals Connector (OSTI)

......being operated by the Aegean Lignite Enterprise (Ege Linyitleri...determined in three underground lignite mines, namely Tuncbilek...which is the main state body of lignite coal production, processing...of TKi. GLi Tuncbilek coal reserve, which is located on the mid-west......

S. Çile; N. Altinsoy; N. Çelebi

2010-01-01T23:59:59.000Z

360

EARLY DEVELOPMENT OF THE UNDERGROUND SNO LABORATORY IN CANADA  

E-Print Network [OSTI]

EARLY DEVELOPMENT OF THE UNDERGROUND SNO LABORATORY IN CANADA by G.T. Ewan and W.F. Davidson Council of Canada, Ottawa, Ontario Fundamental physics measurements can be made by many different of high energy cos- mic rays, solar neutrino measure- ments, and searches for rare process- es

Abolmaesumi, Purang

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Lower 48 States Total Natural Gas Injections into Underground Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Lower 48 States Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 50,130 81,827 167,632 312,290 457,725 420,644 359,267 370,180 453,548 436,748 221,389 90,432 2012 74,854 56,243 240,351 263,896 357,965 323,026 263,910 299,798 357,109 327,767 155,554 104,953 2013 70,592 41,680 99,330 270,106 465,787 438,931 372,458 370,471 418,848 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Injections of Natural Gas into Underground Storage - All Operators

362

Design and Field Testing of an Autonomous Underground Tramming System  

E-Print Network [OSTI]

-haul-dump (LHD) machine is often used to excavate fragmented rock, haul it to an assigned location, and then dump, the hazardous nature of underground envi- ronments, driver safety and fatigue, labor costs, and the cyclic" attempts worked by outfitting the mine with signal- emitting cables [2], light-emitting ropes [1

Paris-Sud XI, Université de

363

Alternative Fuels Data Center: Emerging Fuels  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative Fuels Data Center: Emerging Fuels on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Emerging Alternative Fuels Several emerging alternative fuels are under development or already developed and may be available in the United States. These fuels may

364

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

365

Nuclear Fuel Facts: Uranium | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Uranium Management and Uranium Management and Policy » Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Uranium is a silvery-white metallic chemical element in the periodic table, with atomic number 92. It is assigned the chemical symbol U. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium has the highest atomic weight (19 kg m) of all naturally occurring elements. Uranium occurs naturally in low concentrations in soil, rock and water, and is commercially extracted from uranium-bearing minerals such as uraninite. Uranium ore can be mined from open pits or underground excavations. The ore can then be crushed and treated at a mill to separate the valuable uranium from the ore. Uranium may also be dissolved directly from the ore deposits

366

Leak-rate of seals: effective medium theory and comparison with experiment  

E-Print Network [OSTI]

Seals are extremely useful devices to prevent fluid leakage. We present an effective medium theory of the leak-rate of rubber seals, which is based on a recently developed contact mechanics theory. We compare the theory with experimental results for seals consisting of silicon rubber in contact with sandpaper and sand-blasted PMMA surfaces.

B. Lorenz; B. N. J. Persson

2009-11-16T23:59:59.000Z

367

Location of Leaks in Pressure Testable Direct Burial Steam Distribution Conduits  

E-Print Network [OSTI]

to determine where the breach occurred. The breach can be detected using sulfur hexafluoride (SF6) tracer gas injected into the conduit. After injection, maintenance personnel walk the path of the steam line with an SF6 detector that precisely locates the leak...

Sittel, M. G.; Messock, R. K.

368

Method for sealing remote leaks in an enclosure using an aerosol  

DOE Patents [OSTI]

The invention is a method and device for sealing leaks remotely by means of injecting a previously prepared aerosol into the enclosure being sealed according to a particular sealing efficiency defined by the product of a penetration efficiency and a particle deposition efficiency. By using different limits in the relationship between penetration efficiency and flowrate, the same method according the invention can be used for coating the inside of an enclosure. Specifically the invention is a method and device for preparing, transporting, and depositing a solid phase aerosol to the interior surface of the enclosure relating particle size, particle carrier flow rate, and pressure differential, so that particles deposited there can bridge and substantially seal each leak, with out providing a substantial coating at inside surfaces of the enclosure other than the leak. The particle size and flow parameters can be adjusted to coat the interior of the enclosure (duct) without substantial plugging of the leaks depending on how the particle size and flowrate relationships are chosen.

Modera, Mark P. (Piedmont, CA); Carrie, Francois R. (Lyons, FR)

1999-01-01T23:59:59.000Z

369

Atmospheric emissions from the Deepwater Horizon spill constrain airwater partitioning, hydrocarbon fate, and leak rate  

E-Print Network [OSTI]

releases of gas and oil mixtures is initially determined by solubility and volatility of individual bioavailability of different fractions of the gasoil mixture, and to develop a comprehensive picture of the fate of leaked hydrocarbons in the marine environ- ment. Analysis of airborne atmospheric data shows massive

Toohey, Darin W.

370

What are the potential impacts of a leak? a) To the aquifer,  

E-Print Network [OSTI]

and irrigation wells, c) In the sandhills geology, d) In the Platte River valley geology, e) In southern Nebraska pollution in the sandhills region, j) Financially (How much would remediation cost?). Response by Professor that a leak from this pipeline would not be a great amount and would be localized to an area of 10's to 100's

Nebraska-Lincoln, University of

371

Oil spill nears the beaches of Florida, and the leak may not be plugged before Christmas  

E-Print Network [OSTI]

Oil spill nears the beaches of Florida, and the leak may not be plugged before Christmas By David Gardner Last updated at 11:32 AM on 3rd June 2010 BP's giant oil slick was bearing down on Florida holidaymakers a year visit Florida and state leaders fear the oil will devastate a tourist industry

Belogay, Eugene A.

372

FIFTH INTERIM STATUS REPORT: MODEL 9975 PCV O-RING FIXTURE LONG-TERM LEAK PERFORMANCE  

SciTech Connect (OSTI)

A series of experiments to monitor the aging performance of Viton{reg_sign} GLT O-rings used in the Model 9975 package has been ongoing for six years at the Savannah River National Laboratory. Sixty-seven mock-ups of 9975 Primary Containment Vessels (PCVs) were assembled and heated to temperatures ranging from 200 to 450 F. They were leak-tested initially and have been tested at nominal six month intervals to determine if they meet the criterion of leaktightness defined in ANSI standard N14.5-97. Fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 F. High temperature aging continues for 36 GLT O-ring fixtures at 200-350 F. Room temperature leak test failures have been experienced in 6 of the GLT O-ring fixtures aging at 300 and 350 F, and in all 3 of the GLT O-ring fixtures aging at higher temperatures. No failures have yet been observed in GLT O-ring fixtures aging at 200 F for 30-48 months, which is still bounding to O-ring temperatures during storage in KAMS. High temperature aging continues for 6 GLT-S O-ring fixtures at 200-300 F. Room temperature leak test failures have been experienced in all 8 of the GLT-S O-ring fixtures aging at 350 and 400 F. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 or 300 F for 19 months. For O-ring fixtures that have failed the room temperature leak test and been disassembled, the Orings displayed a compression set ranging from 51-95%. This is significantly greater than seen to date for packages inspected during KAMS field surveillance (23% average). For GLT O-rings, service life based on the room temperature leak rate criterion is comparable to that predicted by compression stress relaxation (CSR) data at higher temperatures (350-400 F). While there are no comparable failure data yet at aging temperatures below 300 F, extrapolations of the data for GLT O-rings suggests the CSR model predictions provide a conservative prediction of service life relative to the leak rate criterion. Failure data at lower temperatures are needed to verify this apparent trend. Insufficient failure data exist currently to perform a similar comparison for GLT-S O-rings. Aging and periodic leak testing will continue for the remaining fixtures.

Daugherty, W.; Hoffman, E.

2011-04-11T23:59:59.000Z

373

FIFTH INTERIM STATUS REPORT: MODEL 9975 PCV O-RING FIXTURE LONG-TERM LEAK PERFORMANCE  

SciTech Connect (OSTI)

A series of experiments to monitor the aging performance of Viton{sup reg.} GLT O-rings used in the Model 9975 package has been ongoing for six years at the Savannah River National Laboratory. Sixty-seven mock-ups of 9975 Primary Containment Vessels (PCVs) were assembled and heated to temperatures ranging from 200 to 450 F. They were leak-tested initially and have been tested at nominal six month intervals to determine if they meet the criterion of leaktightness defined in ANSI standard N14.5-97. Fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 F. High temperature aging continues for 36 GLT O-ring fixtures at 200--350 F. Room temperature leak test failures have been experienced in 5 of the GLT O-ring fixtures aging at 300 and 350 F, and in all 3 of the GLT O-ring fixtures aging at higher temperatures. No failures have yet been observed in GLT O-ring fixtures aging at 200 F for 30--48 months, which is still bounding to O-ring temperatures during storage in KAMS. High temperature aging continues for 6 GLT-S O-ring fixtures at 200--300 F. Room temperature leak test failures have been experienced in all 8 of the GLT-S O-ring fixtures aging at 350 and 400 F. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 or 300 F for 19 months. For O-ring fixtures that have failed the room temperature leak test and been disassembled, the O-rings displayed a compression set ranging from 51--95%. This is significantly greater than seen to date for packages inspected during KAMS field surveillance (23% average). For GLT O-rings, service life based on the room temperature leak rate criterion is comparable to that predicted by compression stress relaxation (CSR) data at higher temperatures (350--400 F). While there are no comparable failure data yet at aging temperatures below 300 F, extrapolations of the data for GLT O-rings suggests that CSR model predictions provide a conservative prediction of service life relative to the leak rate criterion. Failure data at lower temperatures is needed to verify this apparent trend. Insufficient failure data exist currently to perform a similar comparison for GLT-S O-rings. Aging and periodic leak testing will continue for the remaining fixtures.

Daugherty, W.; Hoffman, E.

2010-11-01T23:59:59.000Z

374

Engineering evaluation of alternatives: Managing the assumed leak from single-shell Tank 241-T-101  

SciTech Connect (OSTI)

At mid-year 1992, the liquid level gage for Tank 241-T-101 indicated that 6,000 to 9,000 gal had leaked. Because of the liquid level anomaly, Tank 241-T-101 was declared an assumed leaker on October 4, 1992. SSTs liquid level gages have been historically unreliable. False readings can occur because of instrument failures, floating salt cake, and salt encrustation. Gages frequently self-correct and tanks show no indication of leak. Tank levels cannot be visually inspected and verified because of high radiation fields. The gage in Tank 241-T-101 has largely corrected itself since the mid-year 1992 reading. Therefore, doubt exists that a leak has occurred, or that the magnitude of the leak poses any immediate environmental threat. While reluctance exists to use valuable DST space unnecessarily, there is a large safety and economic incentive to prevent or mitigate release of tank liquid waste into the surrounding environment. During the assessment of the significance of the Tank 241-T-101 liquid level gage readings, Washington State Department of Ecology determined that Westinghouse Hanford Company was not in compliance with regulatory requirements, and directed transfer of the Tank 241-T-101 liquid contents into a DST. Meanwhile, DOE directed WHC to examine reasonable alternatives/options for safe interim management of Tank 241-T-101 wastes before taking action. The five alternatives that could be used to manage waste from a leaking SST are: (1) No-Action, (2) In-Tank Stabilization, (3) External Tank Stabilization, (4) Liquid Retrieval, and (5) Total Retrieval. The findings of these examinations are reported in this study.

Brevick, C.H. [ICF Kaiser Hanford Co., Richland, WA (United States); Jenkins, C. [Westinghouse Hanford Co., Richland, WA (United States)

1996-02-01T23:59:59.000Z

375

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science » Materials Science » Fuel Cells Fuel Cells Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electrochemical Devices Email Fernando Garzon Sensors & Electrochemical Devices Email Piotr Zelenay Sensors & Electrochemical Devices Email Rod Borup Sensors & Electrochemical Devices Email Karen E. Kippen Experimental Physical Sciences Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

376

Alternative Fuels Data Center: Fuel Prices  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicles Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel Prices on AddThis.com... Fuel Prices As gasoline prices increase, alternative fuels appeal more to vehicle fleet managers and consumers. Like gasoline, alternative fuel prices can fluctuate based on location, time of year, and political climate. Alternative Fuel Price Report

377

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Any person acting as an alternative fuels dealer must hold a valid alternative fuel license and certificate from the Wisconsin Department of Administration. Except for alternative fuels that a dealer delivers into a

378

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Alternative fuel providers, bulk users, and retailers, or any person who fuels an alternative fuel vehicle from a private source that does not pay

379

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per

380

GRR/Section 14-HI-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-HI-c - Underground Injection Control Permit GRR/Section 14-HI-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-HI-c - Underground Injection Control Permit 14HIC - UndergroundInjectionControlPermit (1).pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Safe Drinking Water Branch Regulations & Policies Hawaii Administrative Rules Title 11, Chapter 23 Triggers None specified Click "Edit With Form" above to add content 14HIC - UndergroundInjectionControlPermit (1).pdf 14HIC - UndergroundInjectionControlPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The developer must receive an Underground Injection Control Permit from the

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Numerical Simulations of Leakage from Underground LPG Storage Caverns  

SciTech Connect (OSTI)

To secure a stable supply of petroleum gas, underground storage caverns for liquified petroleum gas (LPG) are commonly used in many countries worldwide. Storing LPG in underground caverns requires that the surrounding rock mass remain saturated with groundwater and that the water pressure be higher than the liquid pressure inside the cavern. In previous studies, gas containment criteria for underground gas storage based on hydraulic gradient and pressure have been discussed, but these studies do not consider the physicochemical characteristics and behavior of LPG such as vaporization and dissolution in groundwater. Therefore, while these studies are very useful for designing storage caverns, they do not provide better understanding of the either the environmental effects of gas contamination or the behavior of vaporized LPG. In this study, we have performed three-phase fluid flow simulations of gas leakage from underground LPG storage caverns, using the multiphase multicomponent nonisothermal simulator TMVOC (Pruess and Battistelli, 2002), which is capable of solving the three-phase nonisothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. A two-dimensional cross-sectional model resembling an actual underground LPG facility in Japan was developed, and gas leakage phenomena were simulated for three different permeability models: (1) a homogeneous model, (2) a single-fault model, and (3) a heterogeneous model. In addition, the behavior of stored LPG was studied for the special case of a water curtain suddenly losing its function because of operational problems, or because of long-term effects such as clogging of boreholes. The results of the study indicate the following: (1) The water curtain system is a very powerful means for preventing gas leakage from underground storage facilities. By operating with appropriate pressure and layout, gas containment can be ensured. (2) However , in highly heterogeneous media such as fractured rock and fault zones, local flow paths within which the gas containment criterion is not satisfied could be formed. To eliminate such zones, treatments such as pre/post grouting or an additional installment of water-curtain boreholes are essential. (3) Along highly conductive features such as faults, even partially saturated zones possess certain effects that can retard or prevent gas leakage, while a fully unsaturated fault connected to the storage cavern can quickly cause a gas blowout. This possibility strongly suggests that ensuring water saturation of the rock surrounding the cavern is a very important requirement. (4) Even if an accident should suddenly impair the water curtain, the gas plume does not quickly penetrate the ground surface. In these simulations, the plume takes several months to reach the ground surface.

Yamamoto, Hajime; Pruess, Karsten

2004-09-01T23:59:59.000Z

382

Modeling Energy Flow in an Integrated Pollutant Removal (IPR) System with CO2 Capture Integrated with Oxy-fuel Combustion  

Science Journals Connector (OSTI)

Oxy-coal combustion is one of the technical solutions for mitigating CO2 in thermal power plants. ... Currently, more than 85% of the energy that drives modern economies comes from fossil fuels, and this has stimulated research and development into more sustainable alternative energy sources. ... Other species, such as SO2, various nitrogen compounds, HCl, and Hg, are also present in quantities dependent upon the fossil fuel composition and the amount of air that leaks into the boiler. ...

Sivaram Harendra; Danylo Oryshcyhn; Stephen Gerdemann; Thomas Ochs; John Clark

2012-10-13T23:59:59.000Z

383

Alternative fuels  

SciTech Connect (OSTI)

This paper presents the preliminary results of a review, of the experiences of Brazil, Canada, and New Zealand, which have implemented programs to encourage the use of alternative motor fuels. It will also discuss the results of a separate completed review of the Department of Energy's (DOE) progress in implementing the Alternative Motor Fuels Act of 1988. The act calls for, among other things, the federal government to use alternative-fueled vehicles in its fleet. The Persian Gulf War, environmental concerns, and the administration's National Energy Strategy have greatly heightened interest in the use of alternative fuels in this country.

Not Available

1991-07-01T23:59:59.000Z

384

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust...

385

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

386

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of

387

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax A state excise tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The current tax rates are as

388

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the U.S. to contain a minimum volume of

389

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuels Tax Alternative Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Excise taxes on alternative fuels are imposed on a gasoline gallon equivalent basis. The tax rate for each alternative fuel type is based on the number of motor vehicles licensed in the state that use the specific

390

Alternative Fuels Data Center: Alternative Fuel Loans  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Loans Fuel Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated

391

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels are subject to an excise tax at a rate of $0.205 per gasoline gallon equivalent, with a variable component equal to at least 5% of the average wholesale price of the fuel. (Reference Senate Bill 454,

392

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax The excise tax imposed on an alternative fuel distributed in New Mexico is $0.12 per gallon. Alternative fuels subject to the excise tax include liquefied petroleum gas (or propane), compressed natural gas, and liquefied

393

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The Minnesota Department of Revenue imposes an excise tax on the first licensed distributor that receives E85 fuel products in the state and on distributors, special fuel dealers, or bulk purchasers of other alternative

394

Department of Energy Announces 15 Projects Aimed at Secure Underground  

Broader source: Energy.gov (indexed) [DOE]

15 Projects Aimed at Secure 15 Projects Aimed at Secure Underground Storage of CO2 Department of Energy Announces 15 Projects Aimed at Secure Underground Storage of CO2 August 11, 2010 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today the selection of 15 projects to develop technologies aimed at safely and economically storing carbon dioxide (CO2) in geologic formations. Funded at $21.3 million over three years, today's selections will complement existing DOE initiatives to help develop the technology and infrastructure to implement large-scale CO2 storage in different geologic formations across the Nation. The projects selected today will support the goals of helping reduce U.S. greenhouse gas emissions, developing and deploying near-zero-emission coal technologies, and making the U.S. a leader in

395

Underground Natural Gas Working Storage Capacity - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Underground Natural Gas Working Storage Capacity Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Overview Natural gas working storage capacity increased by about 2 percent in the Lower 48 states between November 2011 and November 2012. The U.S. Energy Information Administration (EIA) has two measures of working gas storage capacity, and both increased by similar amounts: Demonstrated maximum volume increased 1.8 percent to 4,265 billion cubic feet (Bcf) Design capacity increased 2.0 percent to 4,575 Bcf Maximum demonstrated working gas volume is an operational measure of the highest level of working gas reported at each storage facility at any time

396

one mile underground into a deep saline formation. The injection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mile underground into a deep saline formation. The injection, mile underground into a deep saline formation. The injection, which will occur over a three-year period and is slated to start in early 2010, will compress up to 1 million metric tonnes of CO 2 from the ADM ethanol facility into a liquid-like, dense phase. The targeted rock formation, the Mt. Simon Sandstone, is the thickest and most widespread saline reservoir in the Illinois Basin, with an estimated CO 2 storage capacity of 27 to 109 billion metric tonnes. A comprehensive monitoring program, which will be evaluated yearly, will be implemented after the injection to ensure the injected CO 2 is stored safely and permanently. The RCSP Program was launched by the Office of Fossil Energy (FE)

397

Westinghouse Earns Mine Safety Award for Exceptional Underground Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Westinghouse Earns Mine Safety Award Westinghouse Earns Mine Safety Award For Exceptional Underground Operations CARLSBAD, N.M., October 5, 2000 - For the 14 th consecutive year, the Westinghouse Waste Isolation Division (WID) has been recognized for "excellence in underground operations" at the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). On September 19, New Mexico State Inspector of Mines Gilbert Miera and the New Mexico Mining Association presented Westinghouse with the "Mine Operator of the Year" award. The presentation took place at the New Mexico Mining Association's annual convention in Farmington. The "Mine Operator of the Year" award recognizes Westinghouse's close attention to safety in a mining environment. WID received the award in the category of "non-producing

398

Advanced Underground Gas Storage Concepts Refrigerated-Mined Cavern Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UNDERGROUND GAS STORAGE CONCEPTS UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE FINAL REPORT DOE CONTRACT NUMBER DE-AC26-97FT34349 SUBMITTED BY: PB-KBB INC. 11757 KATY FREEWAY, SUITE 600 HOUSTON, TX 77079 SEPTEMBER 1998 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily

399

DIANA - A deep underground accelerator for nuclear astrophysics experiments  

SciTech Connect (OSTI)

DIANA (Dakota Ion Accelerator for Nuclear Astrophysics) is a proposed facility designed to be operated deep underground. The DIANA collaboration includes nuclear astrophysics groups from Lawrence Berkeley National Laboratory, Michigan State University, Western Michigan University, Colorado School of Mines, and the University of North Carolina, and is led by the University of Notre Dame. The scientific goals of the facility are measurements of low energy nuclear cross-sections associated with sun and pre-supernova stars in a laboratory setup at energies that are close to those in stars. Because of the low stellar temperatures associated with these environments, and the high Coulomb barrier, the reaction cross-sections are extremely low. Therefore these measurements are hampered by small signal to background ratios. By going underground the background due to cosmic rays can be reduced by several orders of magnitude. We report on the design status of the DIANA facility with focus on the 3 MV electrostatic accelerator.

Winklehner, Daniel; Leitner, Daniela [Michigan State University, 640 S Shaw Lane, East Lansing MI 48824 (United States); Lemut, Alberto; Hodgkinson, Adrian [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720 (United States); Couder, Manoel; Wiescher, Michael [University of Notre Dame, Notre Dame, IN 46556 (United States)

2013-04-19T23:59:59.000Z

400

200-Area plateau inactive miscellaneous underground storage tanks locations  

SciTech Connect (OSTI)

Fluor Daniel Northwest (FDNW) has been tasked by Lockheed Martin Hanford Corporation (LMHC) to incorporate current location data for 64 of the 200-Area plateau inactive miscellaneous underground storage tanks (IMUST) into the centralized mapping computer database for the Hanford facilities. The IMUST coordinate locations and tank names for the tanks currently assigned to the Hanford Site contractors are listed in Appendix A. The IMUST are inactive tanks installed in underground vaults or buried directly in the ground within the 200-East and 200-West Areas of the Hanford Site. The tanks are categorized as tanks with a capacity of less than 190,000 liters (50,000 gal). Some of the IMUST have been stabilized, pumped dry, filled with grout, or may contain an inventory or radioactive and/or hazardous materials. The IMUST have been out of service for at least 12 years.

Brevick, C.H.

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Light weight underground pipe or cable installing device  

SciTech Connect (OSTI)

This invention pertains to a light weight underground pipe or cable installing device adapted for use in a narrow and deep operating trench. More particularly this underground pipe installing device employs a pair of laterally movable gates positioned adjacent the bottom of the operating trench where the earth is more solid to securely clamp the device in the operating trench to enable it to withstand the forces exerted as the actuating rod is forced through the earth from the so-called operating trench to the target trench. To accommodate the laterally movable gates positioned adjacent the bottom of the narrow pipe installing device, a pair of top operated double-acting rod clamping jaws, operated by a hydraulic cylinder positioned above the actuating rod are employed.

Schosek, W. O.

1985-01-08T23:59:59.000Z

402

depleted underground oil shale for the permanent storage of carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

depleted underground oil shale for the permanent storage of carbon depleted underground oil shale for the permanent storage of carbon dioxide (CO 2 ) generated during the oil shale extraction process. AMSO, which holds a research, development, and demonstration (RD&D) lease from the U.S. Bureau of Land Management for a 160-acre parcel of Federal land in northwest Colorado's oil-shale rich Piceance Basin, will provide technical assistance and oil shale core samples. If AMSO can demonstrate an economically viable and environmentally acceptable extraction process, it retains the right to acquire a 5,120-acre commercial lease. When subject to high temperatures and high pressures, oil shale (a sedimentary rock that is rich in hydrocarbons) can be converted into oil. Through mineralization, the CO 2 could be stored in the shale

403

Methodology for EIA Weekly Underground Natural Gas Storage Estimates  

Weekly Natural Gas Storage Report (EIA)

Methodology for EIA Weekly Underground Natural Gas Storage Estimates Methodology for EIA Weekly Underground Natural Gas Storage Estimates Latest Update: November 25, 2008 This report consists of the following sections: Survey and Survey Processing - a description of the survey and an overview of the program Sampling - a description of the selection process used to identify companies in the survey Estimation - how the regional estimates are prepared from the collected data Computing the 5-year Averages, Maxima, Minima, and Year-Ago Values for the Weekly Natural Gas Storage Report - the method used to prepare weekly data to compute the 5-year averages, maxima, minima, and year-ago values for the weekly report Derivation of the Weekly Historical Estimates Database - a description of the process used to generate the historical database for the

404

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

assessor. For more information, see the Department's Biodiesel In Underground Storage Tanks fact sheet. (Reference Washington Administrative Code 173-360) Point of Contact...

405

Rating underground pipeline tape and shrink sleeve coating systems  

SciTech Connect (OSTI)

A rating system was developed for several coating types used for underground pipeline systems. Consideration included soil stress, adhesion, surface preparation, cathodic protection (CP) shielding, CP requirements, handling and construction, repair, field joint system, bends and other components, and the application process. Polyethylene- and polyvinyl chloride-backed tapes, woven polyolefin geotextile fabric (WGF)-backed tapes, hot-applied tapes, petrolatum- and wax-based tapes, and shrink sleeves were evaluated. WGF-backed tapes had the highest rating.

Norsworthy, R.

1999-11-01T23:59:59.000Z

406

Fuel Research  

Science Journals Connector (OSTI)

... FUEL research was discussed by Sir Harry McGowan, who succeeds Sir William Larke as president of the Institute of Fuel, in ... has a ragged front, and new knowledge is continually changing relative national positions. Sir Harry McGowan referred to the domestic use of raw coal, which is still preferred to ...

1934-11-24T23:59:59.000Z

407

Iowa Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Iowa Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 228,019 220,410 215,229 215,377 219,838 224,572 230,226 236,154 239,871 243,782 241,829 227,519 1991 225,964 215,495 211,852 213,588 218,084 228,720 234,297 240,868 252,335 263,855 255,740 241,570 1992 221,741 209,087 205,548 208,105 217,022 225,236 236,833 247,704 258,372 267,472 258,308 237,797 1993 218,826 208,027 205,378 210,868 217,693 225,793 236,688 247,032 259,649 265,238 258,580 240,957 1994 222,694 213,205 210,208 212,114 217,678 224,185 234,433 245,426 257,120 266,215 261,645 243,875 1995 223,356 212,480 208,011 207,340 211,295 219,417 229,558 244,448 256,135 263,260 252,590 237,557

408

Utah Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Utah Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 59,806 56,937 55,229 54,606 57,328 55,249 67,314 75,921 83,365 86,778 66,668 58,461 1991 61,574 54,369 50,745 51,761 54,314 60,156 66,484 70,498 74,646 75,367 70,399 63,453 1992 59,541 59,119 59,059 60,896 64,403 67,171 70,690 75,362 78,483 79,756 74,021 67,181 1993 61,308 56,251 52,595 52,028 58,713 65,349 69,968 75,120 80,183 85,406 79,818 75,184 1994 70,826 63,733 66,678 68,028 74,061 78,089 83,551 89,773 98,223 102,035 99,841 94,306 1995 86,450 83,059 79,507 80,647 84,154 90,012 97,005 100,430 101,993 102,510 103,779 93,925

409

New York Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) New York Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 124,150 116,994 113,349 121,215 131,103 139,757 148,861 155,592 158,419 160,981 150,947 1991 127,051 118,721 114,190 117,571 124,275 132,029 140,317 149,058 157,799 163,054 158,736 151,036 1992 146,171 131,831 119,880 122,969 132,698 142,107 153,543 163,508 169,298 172,708 169,361 158,828 1993 145,521 129,184 118,756 122,771 133,838 144,835 154,895 162,969 172,642 174,589 171,253 161,801 1994 143,310 129,129 120,675 129,563 138,273 150,582 159,688 168,628 173,584 174,977 172,352 163,470 1995 149,768 135,478 129,570 130,077 138,659 150,010 156,744 165,026 173,947 175,635 165,945 148,196

410

Iowa Natural Gas Injections into Underground Storage (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Injections into Underground Storage (Million Cubic Feet) Injections into Underground Storage (Million Cubic Feet) Iowa Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,740 243 1,516 3,236 5,817 8,184 5,657 5,928 4,903 4,971 1,423 854 1991 1,166 155 231 1,829 4,897 8,985 6,518 8,058 11,039 10,758 2,782 860 1992 488 43 1,246 3,184 7,652 7,568 11,453 11,281 11,472 9,000 1,228 1,203 1993 0 0 733 5,547 6,489 7,776 10,550 10,150 12,351 8,152 2,437 0 1994 0 75 1,162 3,601 7,153 7,638 11,999 12,405 13,449 10,767 2,678 0 1995 0 0 251 1,041 5,294 9,889 12,219 17,805 13,756 8,855 1,283 391 1996 2 2 0 40 1,921 7,679 12,393 13,168 12,537 10,556 2,760 0

411

Oklahoma Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Oklahoma Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 296,629 281,511 286,917 279,978 298,202 307,083 317,720 325,432 332,591 338,392 353,804 327,277 1991 283,982 278,961 284,515 298,730 313,114 323,305 324,150 328,823 338,810 342,711 317,072 306,300 1992 288,415 280,038 276,287 282,263 290,192 301,262 318,719 326,705 339,394 346,939 330,861 299,990 1993 275,054 253,724 246,989 257,844 277,833 296,860 311,870 325,201 341,207 348,646 330,986 316,146 1994 285,115 259,794 257,148 273,797 298,007 311,154 327,281 340,312 349,174 353,630 350,671 334,502 1995 310,835 297,169 287,302 291,768 308,245 320,842 327,910 326,131 338,685 351,385 343,918 320,269

412

Montana Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Montana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 293,785 290,491 289,197 288,193 293,815 288,808 290,947 293,015 295,663 296,921 295,421 290,602 1991 289,270 287,858 286,548 286,491 287,718 288,959 290,667 292,107 292,226 290,844 288,112 284,559 1992 281,148 279,325 278,909 279,042 280,038 280,751 281,777 282,543 282,117 280,760 277,412 271,811 1993 266,711 262,291 259,532 257,822 256,665 255,940 257,149 257,450 257,904 257,816 253,710 250,503 1994 246,679 239,940 238,777 237,993 238,931 240,738 242,090 243,176 244,948 245,981 244,275 241,603 1995 238,103 236,109 235,420 236,218 237,498 239,637 242,554 245,760 246,856 246,301 243,255 238,004

413

AGA Western Consuming Region Natural Gas Underground Storage Volume  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) AGA Western Consuming Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 888,010 816,597 813,746 830,132 876,457 908,444 941,985 966,686 1,002,402 1,021,144 997,644 956,234 1995 902,782 884,830 865,309 860,012 897,991 945,183 975,307 986,131 1,011,948 1,032,357 1,033,363 982,781 1996 896,744 853,207 837,980 849,221 885,715 916,778 929,559 928,785 946,748 949,983 939,649 899,689 1997 833,239 796,139 788,601 801,955 844,880 890,703 923,845 947,277 969,170 980,388 967,286 880,627 1998 828,658 780,476 768,264 773,053 823,311 872,913 900,181 925,287 965,846 1,001,548 1,009,978 953,379

414

Indiana Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Indiana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 96,943 93,233 91,600 91,945 93,696 95,361 97,632 101,323 105,497 108,028 108,772 105,317 1991 99,409 90,625 87,381 86,706 88,659 89,700 93,022 97,673 102,161 119,470 106,066 101,121 1992 94,379 89,893 85,767 85,259 86,457 88,999 94,154 98,267 103,478 106,422 103,871 100,288 1993 95,109 90,016 87,368 88,414 89,388 91,515 95,971 100,516 104,709 106,058 104,160 101,505 1994 95,846 92,274 90,200 89,473 89,417 91,870 97,002 101,310 105,300 109,518 110,149 107,215 1995 101,661 95,902 93,464 92,724 93,156 94,955 97,862 101,470 106,201 110,610 111,401 106,609

415

Illinois Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Illinois Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 806,109 754,941 721,785 717,863 749,618 782,498 812,054 847,731 881,760 900,526 903,640 870,265 1991 801,635 753,141 727,699 720,275 751,641 781,883 810,535 844,477 877,485 904,206 885,341 851,258 1992 791,129 743,484 716,909 709,150 742,812 774,578 805,097 843,543 878,334 905,597 887,454 844,108 1993 783,875 735,236 710,377 713,214 746,899 779,762 810,546 844,320 882,456 907,957 898,655 854,691 1994 781,826 737,719 723,108 722,735 746,576 776,189 808,832 843,372 880,762 907,622 898,872 866,846 1995 803,422 745,457 721,311 716,886 745,970 774,803 804,912 837,002 868,941 899,868 885,665 841,580

416

Ohio Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Ohio Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 439,384 418,280 409,494 412,498 435,089 454,844 474,266 493,301 510,714 521,774 518,006 489,515 1991 477,781 454,923 439,191 448,258 461,362 490,259 505,168 523,544 538,399 546,343 533,483 506,672 1992 463,200 428,363 392,474 394,514 420,383 452,412 478,259 500,938 516,378 527,568 522,419 491,542 1993 452,510 407,121 368,376 371,641 401,431 433,291 462,741 490,248 515,994 522,961 510,471 470,120 1994 413,475 378,216 361,279 377,103 406,526 438,293 471,603 498,156 519,996 530,505 526,490 498,597 1995 448,479 410,867 391,082 385,953 413,796 445,322 472,162 495,448 513,913 522,766 498,715 455,782

417

Kansas Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Kansas Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 245,145 234,971 229,066 227,002 227,589 232,695 244,279 256,395 272,036 278,715 307,106 283,959 1991 247,980 246,067 240,702 238,606 244,878 254,222 257,114 260,728 271,373 282,551 273,225 274,836 1992 267,254 254,115 244,632 239,589 241,818 244,415 248,599 260,231 270,362 273,183 262,414 247,855 1993 229,148 213,533 208,832 213,112 235,850 247,585 253,023 261,780 276,136 278,233 268,816 259,719 1994 243,371 229,217 228,379 229,034 240,066 245,355 256,229 268,820 278,655 283,143 276,402 266,198 1995 251,176 239,135 228,409 230,202 239,892 252,703 252,472 252,461 269,034 280,066 272,406 255,483

418

Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 167,899 166,624 167,576 172,320 177,680 185,467 192,473 199,674 202,983 198,545 192,581 1991 183,697 180,169 176,535 181,119 183,491 186,795 192,143 195,330 198,776 198,351 191,831 189,130 1992 189,866 188,587 183,694 182,008 180,781 182,342 185,893 187,501 191,689 202,391 200,871 197,857 1993 192,736 181,774 172,140 171,465 177,888 185,725 193,275 198,075 204,437 205,524 199,683 188,970 1994 170,283 157,974 153,378 158,141 167,847 177,200 186,856 193,717 197,308 200,665 200,993 192,700 1995 179,376 166,756 162,223 165,687 178,354 185,982 192,799 196,645 203,357 205,882 196,585 185,704

419

Salt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 101 2007-Jan 01/05 109 01/12 107 01/19 96 01/26 91 2007-Feb 02/02 78 02/09 63 02/16 52 02/23 54 2007-Mar 03/02 59 03/09 58 03/16 64 03/23 70 03/30 78 2007-Apr 04/06 81 04/13 80 04/20 80 04/27 83 2007-May 05/04 85 05/11 88 05/18 92 05/25 97 2007-Jun 06/01 100 06/08 101 06/15 102 06/22 102 06/29 102

420

AGA Eastern Consuming Region Natural Gas Injections into Underground  

Gasoline and Diesel Fuel Update (EIA)

Gas Injections into Underground Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 7,862 17,834 34,190 160,946 247,849 262,039 269,285 244,910 208,853 134,234 47,094 16,471 1995 13,614 4,932 36,048 85,712 223,991 260,731 242,718 212,493 214,385 160,007 37,788 12,190 1996 12,276 39,022 32,753 130,232 233,717 285,798 303,416 270,223 247,897 166,356 39,330 28,875 1997 16,058 14,620 25,278 93,501 207,338 258,086 250,776 252,129 233,730 152,913 53,097 10,338 1998 21,908 13,334 48,068 139,412 254,837 234,427 234,269 207,026 178,129 144,203 52,518 28,342

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Lower 48 States Natural Gas Working Underground Storage (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 2,322 1994-Jan 01/07 2,186 01/14 2,019 01/21 1,782 01/28 1,662 1994-Feb 02/04 1,470 02/11 1,303 02/18 1,203 02/25 1,149 1994-Mar 03/04 1,015 03/11 1,004 03/18 952 03/25 965 1994-Apr 04/01 953 04/08 969 04/15 1,005 04/22 1,085 04/29 1,161 1994-May 05/06 1,237 05/13 1,325 05/20 1,403 05/27 1,494

422

Mississippi Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Mississippi Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 79,285 79,603 80,373 85,161 89,985 93,156 99,475 104,348 108,323 111,705 112,191 106,545 1991 91,368 86,763 86,679 92,641 96,297 98,701 100,991 103,104 108,211 112,270 104,184 98,741 1992 89,008 87,873 85,498 85,665 89,979 94,898 99,555 100,116 106,504 107,770 107,015 100,433 1993 94,466 86,908 80,802 83,305 90,316 94,786 99,933 103,264 109,076 109,790 108,869 101,774 1994 92,881 89,305 92,689 97,058 101,796 102,770 109,298 114,566 116,697 120,326 121,207 115,933 1995 107,126 102,620 98,569 103,285 110,250 111,888 116,039 116,791 123,081 125,717 116,280 109,906

423

Texas Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Texas Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 456,385 449,625 443,662 508,009 518,658 531,197 544,212 538,450 539,191 556,768 562,961 526,092 1991 444,671 436,508 436,440 453,634 468,302 487,953 491,758 497,878 513,315 517,099 502,004 486,831 1992 455,054 440,895 435,515 438,408 456,948 469,532 491,515 508,950 511,787 516,598 496,232 459,458 1993 414,216 388,921 376,731 396,804 423,544 444,755 453,961 466,560 450,853 457,581 445,059 431,719 1994 381,924 342,046 350,039 374,226 407,219 419,997 446,215 462,725 485,146 495,417 500,640 478,036 1995 465,108 443,908 434,564 455,756 479,313 497,829 498,982 490,940 510,646 520,173 509,944 463,202

424

Colorado Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Colorado Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 66,554 61,757 56,567 52,684 52,375 56,614 62,829 68,028 73,035 74,259 80,053 1991 71,524 69,768 62,807 61,367 62,448 66,425 70,705 75,800 80,506 82,065 83,134 82,145 1992 78,319 74,888 68,199 64,030 63,685 65,682 69,830 76,095 82,007 84,134 81,041 78,303 1993 73,838 68,733 66,224 62,799 65,511 70,157 73,322 77,155 81,457 81,981 79,475 78,303 1994 72,798 67,880 65,147 60,034 65,538 67,050 71,639 76,943 82,093 82,347 80,736 77,356 1995 73,047 69,545 64,567 59,852 62,142 70,945 73,047 77,326 80,150 81,357 82,831 77,475

425

Maryland Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Maryland Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 50,980 47,820 48,924 49,656 52,214 53,271 55,370 58,030 60,465 61,702 59,577 58,586 1991 55,450 52,159 50,537 51,458 52,941 54,594 55,998 58,233 60,342 61,017 61,304 61,207 1992 56,350 51,413 48,752 47,855 51,162 53,850 55,670 58,057 60,123 61,373 61,882 59,775 1993 56,503 52,155 50,240 49,746 51,939 53,114 54,206 55,924 58,423 61,103 61,504 58,605 1994 52,059 49,590 50,127 51,375 53,420 54,885 56,985 58,443 59,992 61,761 60,987 59,854 1995 57,642 53,398 53,293 53,049 55,049 57,080 56,891 58,074 60,121 61,273 60,740 57,798

426

Arkansas Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Arkansas Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 27,878 27,848 27,810 27,846 27,946 28,419 28,946 29,427 29,707 29,734 29,656 29,429 1991 27,498 27,132 26,811 26,616 26,747 27,086 27,573 27,587 27,587 27,587 26,958 26,294 1992 25,642 25,124 24,681 24,523 24,507 25,016 25,868 26,532 26,966 26,770 26,404 25,781 1993 25,148 24,276 23,798 23,676 22,852 22,866 22,856 22,856 22,856 22,731 22,096 21,239 1994 19,771 18,729 17,426 17,116 17,647 18,199 18,762 19,566 19,776 19,712 19,354 18,757 1995 17,752 16,999 16,460 16,330 16,541 17,854 19,348 20,738 20,895 20,815 20,197 18,048

427

Pennsylvania Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Pennsylvania Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 516,257 477,783 453,124 462,399 511,406 619,401 671,431 711,942 717,828 719,002 665,421 1991 543,808 501,265 471,608 482,628 527,550 545,866 569,927 607,093 651,148 669,612 658,358 627,857 1992 559,416 497,895 441,187 445,158 485,227 535,829 579,713 622,943 665,414 690,920 692,280 650,707 1993 580,189 479,149 417,953 444,095 494,680 547,289 592,762 632,195 680,452 695,718 689,050 639,761 1994 532,216 455,494 434,081 475,107 527,242 583,595 634,007 677,221 700,758 716,066 696,721 656,431 1995 590,100 497,162 469,515 481,690 525,118 578,640 611,291 648,080 695,988 713,882 669,744 594,750

428

Eastern Consuming Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 1,411 1994-Jan 01/07 1,323 01/14 1,199 01/21 1,040 01/28 958 1994-Feb 02/04 838 02/11 728 02/18 665 02/25 627 1994-Mar 03/04 529 03/11 531 03/18 462 03/25 461 1994-Apr 04/01 465 04/08 475 04/15 494 04/22 541 04/29 593 1994-May 05/06 636 05/13 690 05/20 731 05/27 795

429

Louisiana Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Louisiana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 377,554 379,627 371,519 372,188 379,245 393,418 407,240 421,000 435,705 450,886 459,955 452,883 1991 405,740 373,892 361,085 367,797 387,769 411,591 425,349 435,719 453,303 477,425 464,906 433,184 1992 387,456 358,639 345,049 348,097 369,129 388,728 403,713 413,375 432,171 452,989 447,115 411,919 1993 365,128 321,651 298,841 302,181 340,366 375,731 402,638 430,431 466,345 481,609 468,227 421,634 1994 376,035 357,247 343,892 365,948 400,035 421,714 451,504 474,085 497,428 506,525 502,477 463,847 1995 412,075 372,991 364,320 374,312 392,968 420,738 441,510 442,655 466,060 480,119 455,669 408,882

430

California Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) California Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 369,842 350,519 355,192 376,146 401,513 414,633 418,894 421,696 426,235 440,326 397,785 1991 376,267 376,879 359,926 380,826 407,514 431,831 445,387 448,286 448,383 448,081 441,485 417,177 1992 374,166 357,388 341,665 355,718 382,516 404,547 418,501 431,069 445,438 455,642 446,085 390,868 1993 357,095 337,817 348,097 356,320 385,972 399,994 423,027 433,552 448,573 461,473 446,120 411,943 1994 372,605 328,438 327,546 346,463 374,574 394,821 412,465 421,818 438,754 450,997 434,260 408,636 1995 377,660 373,010 365,068 362,271 388,641 414,650 428,646 426,927 442,131 460,286 462,316 436,346

431

Tennessee Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Tennessee Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 799 683 623 539 539 539 673 807 919 1,022 1,126 1,127 1999 996 872 741 661 658 802 909 985 1,089 1,194 1,251 1,195 2000 1,031 855 792 729 711 711 711 711 711 760 874 959 2001 963 903 830 761 865 978 1,009 1,072 1,118 1,180 938 937 2002 987 988 990 990 965 962 949 945 942 940 852 852 2003 744 634 566 519 554 630 705 800 803 848 848 787 2004 684 633 621 652 685 731 794 849 854 879 867 826 2005 784 704 605 524 483 466 466 466 428 419 413 400

432

Nebraska Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Nebraska Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 82,538 81,491 81,181 82,095 83,472 85,002 83,477 83,923 85,020 84,918 81,317 1991 79,407 78,372 77,653 78,788 81,843 83,985 83,721 83,657 84,562 84,253 83,847 81,475 1992 79,888 78,880 78,837 79,448 81,080 83,708 85,758 86,968 88,154 87,853 85,260 81,824 1993 78,414 76,448 75,412 76,380 79,328 82,649 85,226 87,084 88,593 88,564 86,793 84,418 1994 81,833 79,100 79,242 80,202 82,339 83,239 85,362 85,709 87,835 88,765 88,935 86,932 1995 84,820 83,825 82,895 82,697 83,340 84,206 35,388 35,566 35,950 35,183 33,585 31,992

433

U.S. Department of Energy Categorical Exclusion ...  

Broader source: Energy.gov (indexed) [DOE]

Excavate to repair underground domestic water leak between Tanks 5 and 7 Savannah River Site AikenAikenSouth Carolina Excavate to repair underground domestic water leak between...

434

Alternative Fuels Data Center: Renewable Fuels Assessment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuels Renewable Fuels Assessment to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Assessment on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Assessment on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Assessment on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Assessment on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Assessment The U.S. Department of Defense (DOD) prepared a report, Opportunities for DOD Use of Alternative and Renewable Fuels, on the use and potential use of

435

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be

436

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard At least 2% of all diesel fuel sold in Washington must be biodiesel or renewable diesel. This requirement will increase to 5% 180 days after the

437

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Fuel Use to Biodiesel Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The Iowa Department of Transportation (IDOT) may purchase biodiesel for use in IDOT vehicles through the biodiesel fuel revolving fund created in the state treasury. The fund consists of money received from the sale of Energy

438

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Special fuels, including biodiesel, biodiesel blends, biomass-based diesel, biomass-based diesel blends, and liquefied natural gas, have a reduced tax rate of $0.27 per gallon. Liquefied petroleum gas (LPG or propane) and

439

Alternative Fuels Data Center: Special Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Special Fuel Tax to Special Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Special Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Special Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Special Fuel Tax on Google Bookmark Alternative Fuels Data Center: Special Fuel Tax on Delicious Rank Alternative Fuels Data Center: Special Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Special Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Special Fuel Tax Effective January 1, 2014, certain special fuels sold or used to propel motor vehicles are subject to a license tax. Liquefied natural gas is subject to a tax of $0.16 per diesel gallon equivalent. Compressed natural

440

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Use to Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The South Dakota Department of Transportation and employees using state diesel vehicles must stock and use fuel blends containing a minimum of 2% biodiesel (B2) that meets or exceeds the most current ASTM specification

442

Alternative Fuels Data Center: Hydrogen Fuel Specifications  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Fuel Hydrogen Fuel Specifications to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Specifications on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Specifications on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Specifications on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) established interim specifications for hydrogen fuels for

443

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicles on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicles Photo of a flexible fuel vehicle.

444

Alternative Fuels Data Center: Alternative Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Use Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Use All state employees operating flexible fuel or diesel vehicles as part of the state fleet must use E85 or biodiesel blends whenever reasonably available. Additionally, the Nebraska Transportation Services Bureau and

445

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels used to propel vehicles of any kind on public highways are taxed at a rate determined on a gasoline gallon equivalent basis. The tax rates are posted in the Pennsylvania Bulletin. (Reference Title 75

446

Is the situation and immediate threat to life and health? Spill/Leak/Release Medical Emergency Fire or Flammable Gas Spill/Leak/Release Medical Emergency Fire or Flammable Gas Chemical Odor? Possible Fire / Natural Gas  

E-Print Network [OSTI]

? Possible Fire / Natural Gas (including chemicals and bio agents") (not including chemicals or bio agents Fire or Flammable Gas Spill/Leak/Release Medical Emergency Fire or Flammable Gas Chemical Odor

447

Hanford Double-Shell Tank AY-102 Radioactive Waste Leak Investigation Update - 15302  

SciTech Connect (OSTI)

Tank AY-102 was the first of 28 double-shell radioactive waste storage tanks constructed at the U. S. Department of Energy’s Hanford Site, near Richland, WA. The tank was completed in 1970, and entered service in 1971. In August, 2012, an accumulation of material was discovered at two sites on the floor of the annulus that separates the primary tank from the secondary liner. The material was sampled and determined to originate from the primary tank. This paper summarizes the changes in leak behavior that have occurred during the past two years, inspections to determine the capability of the secondary liner to continue safely containing the leakage, and the initial results of testing to determine the leak mechanism.

Washenfelder, D. J.; Johnson, J. M.

2014-12-22T23:59:59.000Z

448

California Fuel Cell Partnership: Alternative Fuels Research  

Broader source: Energy.gov [DOE]

This presentation by Chris White of the California Fuel Cell Partnership provides information about alternative fuels research.

449

Fuel Processing Valri Lightner  

E-Print Network [OSTI]

, ORNL, NETL #12;Accomplishments · Demonstrated in the lab an advanced fuel flexible fuel processor

450

Development of a cold cathode ion source for a mass spectrometer type vacuum leak detector  

E-Print Network [OSTI]

DEVELOPMENT OF A COLD CATHODE ION SOURCE FOR A MASS SPECTROL'ETER TYPE VACUUM LEAK DETECTOR A Dissertation By Harold A. Thomas June 1947 Approval as to style and content recommended* Head Deparanent of Electrical Engineering DEVELOPMENT OF A... Investigation of Ion Source ? .......... 6 III. Investigation of Ion Energies ...................... 21 IV. Development of Lrass Spectrometer Tube Utilizing the Cold Cathode Ion S o u r c e ........ 41 V* Conclusions...

Thomas, Harold Albert

2013-10-04T23:59:59.000Z

451

Aerosol penetration of leak pathways : an examination of the available data and models.  

SciTech Connect (OSTI)

Data and models of aerosol particle deposition in leak pathways are described. Pathways considered include capillaries, orifices, slots and cracks in concrete. The Morewitz-Vaughan criterion for aerosol plugging of leak pathways is shown to be applicable only to a limited range of particle settling velocities and Stokes numbers. More useful are sampling efficiency criteria defined by Davies and by Liu and Agarwal. Deposition of particles can be limited by bounce from surfaces defining leak pathways and by resuspension of particles deposited on these surfaces. A model of the probability of particle bounce is described. Resuspension of deposited particles can be triggered by changes in flow conditions, particle impact on deposits and by shock or vibration of the surfaces. This examination was performed as part of the review of the AP1000 Standard Combined License Technical Report, APP-GW-GLN-12, Revision 0, 'Offsite and Control Room Dose Changes' (TR-112) in support of the USNRC AP1000 Standard Combined License Pre-Application Review.

Powers, Dana Auburn

2009-04-01T23:59:59.000Z

452

Leak Path Factor Evaluation: A MELCOR Application for Nonreactor Nuclear Facilities  

SciTech Connect (OSTI)

This paper presents a Leak Path Factor (LPF) analysis for a postulated fire accident on a building containing plutonium powder when the resulting outside release is partly through the ventilation/filtration system and partly through other pathways such as building access doorways. When analyzing an accident scenario involving the release of radioactive powders inside a building, various pathways for the release to the outside environment can exist. This study is presented to show how the multiple building leak path factors (combination of filtered and unfiltered releases) can be evaluated in an integrated manner to assess the magnitude of the source term to be used in the consequence analysis. The core of the analysis is to calculate the leak path factor, which represents the fraction of respirable radioactive powder that is made airborne that leaves the building through the various pathways. The computer code of choice for this determination is MELCOR1. The analysis results can be used for the transport and dispersion of powder material released to the atmosphere and to estimate the resulting dose that is received by the downwind receptors of interest. This work can be used as model for performing analyses for systems similar in nature where releases can propagate to the outside environment via filtered and unfiltered pathways. This example provides guidance to analysts outlining the essential steps needed to perform a sound and defensible analysis.

POLIZZI, MARIO

2004-05-03T23:59:59.000Z

453

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

454

Alternative Fuels Data Center: Renewable Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuels Renewable Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Promotion Recognizing that biofuels such as ethanol and biodiesel will be an important part of the state's energy economy and advanced research in

455

Alternative Fuels Data Center: Fuel Quality Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Quality Standards Fuel Quality Standards to someone by E-mail Share Alternative Fuels Data Center: Fuel Quality Standards on Facebook Tweet about Alternative Fuels Data Center: Fuel Quality Standards on Twitter Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Google Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Delicious Rank Alternative Fuels Data Center: Fuel Quality Standards on Digg Find More places to share Alternative Fuels Data Center: Fuel Quality Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Quality Standards The South Dakota Department of Public Safety may promulgate rules establishing: Standards for the maximum volume percentages of ethanol and methanol

456

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

457

Alternative Fuels Data Center: Alternative Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuels Alternative Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Promotion The state of Hawaii has signed a memorandum of understanding (MOU) with the U.S. Department of Energy to collaborate to produce 70% of the state's

458

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can be paid through an annual flat rate sticker tax based on the

459

Alternative Fuels Data Center: Renewable Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Renewable Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Promotion The Texas Bioenergy Policy Council and the Texas Bioenergy Research Committee were established to promote the goal of making biofuels a

460

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The state road tax for vehicles that operate on propane (liquefied petroleum gas, or LPG) or natural gas is paid through the purchase of an annual flat fee sticker, and the amount is based on the vehicle's gross

462

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

463

Alternative Fuels Data Center: Alternative Fuel Study  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Study Alternative Fuel Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Study As directed by the Nevada Legislature, the Legislative Commission (Commission) conducted an interim study in 2011 concerning the production and use of energy in the state. The study included information on the use

464

Revitalized Board Lays Out New Path amid EM's Recent Underground Tank  

Broader source: Energy.gov (indexed) [DOE]

Revitalized Board Lays Out New Path amid EM's Recent Underground Revitalized Board Lays Out New Path amid EM's Recent Underground Tank Waste Successes Revitalized Board Lays Out New Path amid EM's Recent Underground Tank Waste Successes August 20, 2012 - 12:00pm Addthis Cement trucks transport a specially formulated grout that is pumped into two underground waste tanks at the Savannah River Site as part of work to close the massive structures. Cement trucks transport a specially formulated grout that is pumped into two underground waste tanks at the Savannah River Site as part of work to close the massive structures. A view of the interior of the Integrated Waste Treatment Unit at the Idaho site. A view of the interior of the Integrated Waste Treatment Unit at the Idaho site. Cement trucks transport a specially formulated grout that is pumped into two underground waste tanks at the Savannah River Site as part of work to close the massive structures.

465

GRR/Elements/14-CA-c.12 - Does the DOGGR Approve the Underground Injection  

Open Energy Info (EERE)

- Does the DOGGR Approve the Underground Injection - Does the DOGGR Approve the Underground Injection Project < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-c.12 - Does the DOGGR Approve the Underground Injection Project After the end of the comment period and after reviewing any proposed revisions furnished by the Regional Board, the State Board decides whether to approve the Underground Injection Project. Logic Chain No Parents \V/ GRR/Elements/14-CA-c.12 - Does the DOGGR Approve the Underground Injection Project (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/14-CA-c.12_-_Does_the_DOGGR_Approve_the_Underground_Injection_Project&oldid=539630

466

GRR/Section 14-WA-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-WA-c - Underground Injection Control Permit GRR/Section 14-WA-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-WA-c - Underground Injection Control Permit 14-WA-c - Underground Injection Control Permit.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Chapter 173-218 WAC Non-endangerment Standard Triggers None specified The Safe Drinking Water Act requires Washington to implement technical criteria and standards to protect underground sources of drinking water from contamination. Under Chapter 173-218 WAC, the Washington State Department of Ecology (WSDE) regulates and permits underground injection control (UIC) wells in Washington. The Environmental Protection Agency

467

GRR/Section 18-WA-a - Underground Storage Tank Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-WA-a - Underground Storage Tank Process GRR/Section 18-WA-a - Underground Storage Tank Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-WA-a - Underground Storage Tank Process 18-WA-a - Underground Storage Tank Process.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington Chapter 90.76 Washington Administrative Code Chapter 173-360 Triggers None specified Washington has a federally-approved state Underground Storage Tank (UST) program regulated by the Washington State Department of Ecology (WSDE) under Revised Code of Washington Chapter 90.76 and Washington Administrative Code Chapter 173-360. Washington defines an "Underground

468

GRR/Section 18-OR-a - State Underground Storage Tank | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-OR-a - State Underground Storage Tank GRR/Section 18-OR-a - State Underground Storage Tank < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-OR-a - State Underground Storage Tank 18ORAStateUndergroundStorageTank (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies OAR 340-150: Underground Storage Tank Rules Triggers None specified Click "Edit With Form" above to add content 18ORAStateUndergroundStorageTank (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 18-OR-a.1 - Application for General Permit Registration Certificate, EPA

469

Fuels - Biodiesel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Biodiesel * Biodiesel * Butanol * Ethanol * Hydrogen * Natural Gas * Fischer-Tropsch Batteries Cross-Cutting Assessments Engines GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Clean Diesel Fuels Background Reducing our country's dependence on foreign oil and the rising costs of crude oil are primary reasons for a renewed interest in alternative fuels for the transportation sector. Stringent emissions regulations and public concern about mobile sources of air pollution provide additional incentives to develop fuels that generate fewer emissions, potentially reducing the need for sophisticated, expensive exhaust after-treatment devices.

470

Nuclear Fuels  

Science Journals Connector (OSTI)

The core of a nuclear reactor is composed of a controlled critical configuration of a fissile material, which in strict a sense is the fuel. This fissile material is contained in a matrix, normally a ceramic c...

Rudy J. M. Konings; Thierry Wiss…

2011-01-01T23:59:59.000Z

471

Fuel economizer  

SciTech Connect (OSTI)

A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

Zwierzelewski, V.F.

1984-06-26T23:59:59.000Z

472

NINTH INTERIM STATUS REPORT: MODEL 9975 PCV O-RING FIXTURE LONG-TERM LEAK PERFORMANCE  

SciTech Connect (OSTI)

A series of experiments to monitor the aging performance of Viton® GLT O-rings used in the Model 9975 package has been ongoing since 2004 at the Savannah River National Laboratory. One approach has been to periodically evaluate the leak performance of O-rings being aged in mock-up 9975 Primary Containment Vessels (PCVs) at elevated temperatures. Other methods such as compression-stress relaxation (CSR) tests and field surveillance are also on-going to evaluate O-ring behavior. Seventy tests using PCV mock-ups were assembled and heated to temperatures ranging from 200 to 450 ºF. They were leak-tested initially and have been tested periodically to determine if they continue to meet the leak-tightness criterion defined in ANSI standard N14.5-97. Due to material substitution, fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 ºF. High temperature aging continues for 23 GLT O-ring fixtures at 200 – 270 ºF. Room temperature leak test failures have been experienced in all of the GLT O-ring fixtures aging at 350 ºF and higher temperatures, and in 8 fixtures aging at 300 ºF. The earliest 300 °F GLT O-ring fixture failure was observed at 34 months. The remaining GLT O-ring fixtures aging at 300 ºF have been retired from testing following more than 5 years at temperature without failure. No failures have yet been observed in GLT O-ring fixtures aging at 200 ºF for 72 - 96 months, which bounds O-ring temperatures anticipated during storage in K-Area Complex (KAC). Based on expectations that the 200 ºF fixtures will remain leak-tight for a significant period yet to come, 2 additional fixtures began aging in 2011 at 270 ºF, with hopes that they may reach a failure condition before the 200 ºF fixtures, thus providing additional time to failure data. High temperature aging continues for 6 GLT-S O-ring fixtures at 200 – 300 ºF. Room temperature leak test failures have been experienced in all 8 of the GLT-S O-ring fixtures aging at 350 and 400 ºF. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 - 300 ºF for 54 - 57 months. No additional O-ring failures have been observed since the last interim report was issued. Aging and periodic leak testing will continue for the remaining PCV fixtures. Additional irradiation of several fixtures is recommended to maintain a balance between thermal and radiation exposures similar to that experienced in storage, and to show the degree of consistency of radiation response between GLT and GLT-S O-rings.

Daugherty, W.

2014-08-06T23:59:59.000Z

473

Numerical Simulation of Underground Solar Thermal Energy Storage.  

E-Print Network [OSTI]

??The United States Department of Energy indicates that 97% of all homes in the US use fossil fuels either directly or indirectly for space heating.… (more)

Sweet, Marshall

2010-01-01T23:59:59.000Z

474

Carbon dioxide sequestration underground laser based detection system.  

E-Print Network [OSTI]

??Carbon dioxide (CO 2) is a known greenhouse gas. Due to the burning of fossil fuels by industrial and power plants the atmospheric concentration of… (more)

Barr, Jamie Lynn.

2009-01-01T23:59:59.000Z

475

E-Print Network 3.0 - aging underground reinforced Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University Summary: -Infrastructure Developments in Southeast Asia: Case Study of Thailand Underground Suchatvee Suwansawat Dean of Engineering... is the second phase...

476

Site Characterization, Sustainability Evaluation and Life Cycle Emissions Assessment of Underground Coal Gasification.  

E-Print Network [OSTI]

??Underground Coal Gasification (UCG), although not a new concept, is now attracting considerable global attention as a viable process to provide a âcleanâ and economic… (more)

Hyder, Zeshan

2012-01-01T23:59:59.000Z

477

You've got that Sinking Feeling: Measuring Subsidence above Abandoned Underground Mines in Ohio, USA.  

E-Print Network [OSTI]

??As a result of more than 200 years of underground coal mining, many urbanized areas throughout Ohio, USA, are susceptible to land subsidence. Approximately 6,000… (more)

Siemer, Kyle W

2013-01-01T23:59:59.000Z

478

A system with a tracking concentrating heliostat for lighting underground spaces with beams of sunlight  

Science Journals Connector (OSTI)

The results of the introduction of a solar-power installation for lighting and creating light effects in an underground room using mirror-concentrating systems are described.

Zh. Z. Akhadov; A. A. Abdurakhmanov; Yu. B. Sobirov; Sh. R. Kholov…

2014-04-01T23:59:59.000Z

479

Electromagnetic full wave modal analysis of frequency-dependent underground cables.  

E-Print Network [OSTI]

??In this thesis, a new method has been proposed for calculating the frequencydependent parameters of underground cables. The method uses full wave formulation for calculating… (more)

Habib, Md. Shahnoor

2011-01-01T23:59:59.000Z

480

DOE Hydrogen Analysis Repository: Gasification-Based Fuels and Electricity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasification-Based Fuels and Electricity Production from Biomass Gasification-Based Fuels and Electricity Production from Biomass Project Summary Full Title: Gasification-Based Fuels and Electricity Production from Biomass, without and with Carbon Capture and Storage Project ID: 226 Principal Investigator: Eric D. Larson Keywords: Biomass; Fischer Tropsch; hydrogen Purpose Develop and analyze process designs for gasification-based thermochemical conversion of switchgrass into Fischer-Tropsch (F-T) fuels, dimethyl ether (DME), and hydrogen. All process designs will have some level of co-production of electricity, and some will include capture of byproduct CO2 for underground storage. Performer Principal Investigator: Eric D. Larson Organization: Princeton University Telephone: 609-258-4966 Email: elarson@princeton.edu

Note: This page contains sample records for the topic "leaking underground fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Expert system for identification of simultaneous and sequential reactor fuel failures with gas tagging  

DOE Patents [OSTI]

Failure of a fuel element in a nuclear reactor core is determined by a gas tagging failure detection system and method. Failures are catalogued and characterized after the event so that samples of the reactor's cover gas are taken at regular intervals and analyzed by mass spectroscopy. Employing a first set of systematic heuristic rules which are applied in a transformed node space allows the number of node combinations which must be processed within a barycentric algorithm to be substantially reduced. A second set of heuristic rules treats the tag nodes of the most recent one or two leakers as "background" gases, further reducing the number of trial node combinations. Lastly, a "fuzzy" set theory formalism minimizes experimental uncertainties in the identification of the most likely volumes of tag gases. This approach allows for the identification of virtually any number of sequential leaks and up to five simultaneous gas leaks from fuel elements.

Gross, Kenny C. (Bolingbrook, IL)

1994-01-01T23:59:59.000Z

482

Expert system for identification of simultaneous and sequential reactor fuel failures with gas tagging  

DOE Patents [OSTI]

Failure of a fuel element in a nuclear reactor core is determined by a gas tagging failure detection system and method. Failures are catalogued and characterized after the event so that samples of the reactor's cover gas are taken at regular intervals and analyzed by mass spectroscopy. Employing a first set of systematic heuristic rules which are applied in a transformed node space allows the number of node combinations which must be processed within a barycentric algorithm to be substantially reduced. A second set of heuristic rules treats the tag nodes of the most recent one or two leakers as background'' gases, further reducing the number of trial node combinations. Lastly, a fuzzy'' set theory formalism minimizes experimental uncertainties in the identification of the most likely volumes of tag gases. This approach allows for the identification of virtually any number of sequential leaks and up to five simultaneous gas leaks from fuel elements. 14 figs.

Gross, K.C.

1994-07-26T23:59:59.000Z

483

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Definition to someone by E-mail Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition Alternative fuel is defined as compressed natural gas, propane, ethanol, or any mixture containing 85% or more ethanol (E85) with gasoline or other

484

Alabama Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Alabama Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 1,379 1,377 1,113 1,113 1,140 1,182 1,218 1,436 2,028 1,955 1,766 1,365 1996 1,311 1,014 852 1,006 1,373 2,042 2,247 2,641 3,081 3,198 3,069 2,309 1997 1,778 1,594 1,619 1,749 2,020 2,113 2,156 2,443 2,705 2,956 2,713 2,713 1998 1,963 1,775 1,527 1,772 1,917 2,540 2,531 2,730 2,329 2,942 2,943 2,805 1999 1,992 1,878 1,566 1,703 2,173 2,383 2,618 2,699 3,101 3,024 3,158 2,969 2000 2,055 2,053 2,368 2,302 2,392 2,999 3,080 3,080 2,970 2,828 2,624 2,539 2001 2,210 2,451 1,847 2,041 1,997 2,574 2,728 2,841 2,859 2,739 5,527 5,538

485

Michigan Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Michigan Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 706,889 648,325 624,515 616,656 665,124 729,161 807,726 878,119 930,596 949,922 938,864 867,940 1991 743,402 679,102 654,930 682,092 729,387 786,753 845,224 891,823 911,554 952,843 894,499 818,602 1992 733,877 658,347 592,859 592,608 637,515 705,740 780,590 849,043 917,537 946,090 899,631 810,348 1993 710,139 607,908 543,589 559,454 637,732 723,706 807,040 889,450 955,444 989,143 937,100 847,136 1994 702,694 613,074 582,416 623,584 696,448 770,914 845,328 922,211 987,829 1,019,096 999,421 936,290 1995 830,235 717,515 666,164 665,004 718,094 783,569 857,995 914,295 966,578 998,665 931,432 813,622

486

West Virginia Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) West Virginia Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 406,358 395,084 390,792 397,000 415,841 433,111 451,251 467,272 480,567 484,278 484,868 464,807 1991 434,160 413,996 410,940 418,771 433,924 450,027 464,274 474,984 483,421 487,004 475,927 453,446 1992 423,942 396,889 367,681 369,328 393,606 411,353 433,399 452,065 465,496 478,316 472,378 449,402 1993 417,527 374,171 344,142 349,414 388,771 415,925 435,814 454,993 475,298 482,458 468,770 435,687 1994 379,825 347,246 330,957 352,059 377,614 406,195 433,763 456,009 476,854 482,830 475,145 450,055 1995 406,251 364,959 352,876 358,628 383,018 407,328 422,458 431,357 449,075 463,546 440,460 401,144

487

AGA Western Consuming Region Natural Gas Underground Storage Withdrawals  

Gasoline and Diesel Fuel Update (EIA)

Gas Underground Storage Withdrawals (Million Cubic Feet) Gas Underground Storage Withdrawals (Million Cubic Feet) AGA Western Consuming Region Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 58,880 70,469 16,774 11,878 2,078 1,522 2,158 2,524 1,024 3,314 29,483 47,719 1995 56,732 27,801 27,857 15,789 4,280 2,252 3,265 11,858 5,401 6,025 14,354 53,469 1996 89,320 52,624 24,847 9,346 4,785 4,298 12,886 21,661 6,866 14,578 24,096 48,438 1997 73,240 41,906 22,756 15,182 4,297 3,613 5,381 8,030 7,770 12,343 22,625 88,975 1998 54,800 50,704 27,864 16,746 3,265 2,619 6,278 6,049 5,822 4,599 14,013 62,377 1999 54,762 45,467 35,081 31,196 7,773 3,792 4,982 14,342 6,642 10,488 15,128 54,531

488

AGA Western Consuming Region Natural Gas Injections into Underground  

Gasoline and Diesel Fuel Update (EIA)

Gas Injections into Underground Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Western Consuming Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,449 542 13,722 29,089 48,055 33,801 35,146 27,858 45,903 22,113 5,766 6,401 1995 2,960 9,426 8,840 10,680 42,987 47,386 37,349 22,868 31,053 25,873 15,711 3,003 1996 2,819 8,696 9,595 20,495 41,216 36,086 25,987 20,787 24,773 17,795 13,530 9,122 1997 6,982 4,857 15,669 28,479 47,040 49,438 38,542 31,080 29,596 23,973 10,066 1,975 1998 5,540 1,847 14,429 21,380 49,816 48,423 30,073 34,243 31,710 34,744 26,456 6,404 1999 4,224 3,523 10,670 17,950 41,790 42,989 40,381 26,942 30,741 20,876 18,806 4,642

489

Virginia Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Virginia Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 3,654 3,215 2,903 3,108 3,416 3,720 3,906 4,241 4,507 4,731 4,691 4,330 1999 4,004 3,548 3,215 3,397 3,666 3,872 4,078 4,280 4,691 4,792 4,599 4,118 2000 3,398 3,283 3,289 3,456 3,735 3,941 4,160 4,366 4,357 4,785 4,434 3,720 2001 3,183 3,135 2,844 3,275 3,788 4,180 4,424 4,728 4,988 5,013 5,073 4,875 2002 4,401 3,728 3,339 3,462 4,014 4,285 4,568 4,709 5,017 5,225 4,945 4,451 2003 3,429 2,933 2,754 3,047 3,494 3,969 4,381 5,469 6,083 6,035 6,003 5,458 2004 4,324 3,958 3,647 3,806 4,539 4,866 5,121 5,915 6,379 7,223 7,191 6,185

490

Oregon Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Oregon Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 6,996 5,657 4,959 6,140 7,648 8,892 9,656 10,292 10,664 10,853 10,808 10,057 1991 8,982 8,017 6,250 5,271 5,985 7,539 8,997 10,089 10,763 11,102 11,125 10,638 1992 9,070 7,530 5,944 5,502 7,074 8,614 9,809 10,819 11,272 11,445 10,346 9,766 1993 7,848 6,452 5,724 5,298 6,942 8,240 9,421 10,463 11,041 11,531 10,800 9,697 1994 8,436 7,309 6,364 5,544 6,754 8,253 9,449 10,524 11,208 11,462 11,025 10,388 1995 8,710 8,325 7,885 8,752 9,932 10,965 11,661 11,661 12,147 12,147 12,090 11,268 1996 10,016 9,076 8,424 8,293 9,015 10,188 11,321 11,758 11,862 11,655 11,103 9,863

491

AGA Producing Region Natural Gas Underground Storage Withdrawals (Million  

Gasoline and Diesel Fuel Update (EIA)

Gas Underground Storage Withdrawals (Million Cubic Feet) Gas Underground Storage Withdrawals (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 201,567 147,250 61,339 23,149 9,789 29,178 13,371 19,352 10,151 24,102 52,809 137,962 1995 166,242 120,089 100,955 31,916 17,279 19,712 35,082 62,364 16,966 33,762 102,735 181,097 1996 223,932 157,642 141,292 36,788 27,665 26,393 32,861 27,599 20,226 34,000 116,431 142,519 1997 204,601 103,715 43,894 54,285 24,898 34,122 65,631 42,757 30,579 32,257 113,422 180,582 1998 143,042 69,667 97,322 25,555 30,394 38,537 33,314 37,034 51,903 17,812 60,078 168,445 1999 189,816 77,848 104,690 44,930 22,829 26,085 58,109 60,549 25,888 43,790 66,980 165,046

492

AGA Eastern Consuming Region Natural Gas Underground Storage Withdrawals  

Gasoline and Diesel Fuel Update (EIA)

Gas Underground Storage Withdrawals (Million Cubic Feet) Gas Underground Storage Withdrawals (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 530,741 349,007 159,102 30,353 9,093 4,218 8,493 5,462 6,537 22,750 119,120 256,340 1995 419,951 414,116 196,271 76,470 8,845 14,449 13,084 9,496 3,715 25,875 247,765 398,851 1996 435,980 333,314 236,872 66,149 12,958 4,261 2,804 5,141 5,152 24,515 213,277 269,811 1997 474,777 267,717 218,640 76,956 11,974 4,401 7,277 5,503 5,269 39,662 165,807 309,399 1998 339,858 244,813 256,560 37,278 8,764 11,317 14,830 15,207 16,026 23,854 94,110 287,801 1999 437,182 261,305 244,041 43,642 13,904 11,738 17,499 14,984 9,984 37,822 122,731 385,958

493

AGA Producing Region Natural Gas Injections into Underground Storage  

Gasoline and Diesel Fuel Update (EIA)

Gas Injections into Underground Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Producing Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 20,366 29,330 55,297 93,538 129,284 83,943 104,001 98,054 88,961 65,486 49,635 27,285 1995 24,645 25,960 57,833 78,043 101,019 100,926 77,411 54,611 94,759 84,671 40,182 33,836 1996 34,389 48,922 38,040 76,100 98,243 88,202 88,653 109,284 125,616 91,618 37,375 48,353 1997 45,327 35,394 89,625 83,137 107,821 99,742 71,360 95,278 116,634 117,497 49,750 33,170 1998 41,880 59,324 73,582 119,021 128,323 96,261 107,136 94,705 87,920 129,117 58,026 47,924 1999 35,830 50,772 49,673 80,879 110,064 100,132 72,348 67,286 103,587 79,714 66,465 32,984

494

New Mexico Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) New Mexico Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 32,289 31,416 31,096 32,921 25,403 33,699 37,281 40,474 42,033 45,200 46,210 43,675 1991 40,230 38,226 36,059 39,127 42,052 45,061 46,102 44,144 46,786 46,696 46,457 47,414 1992 45,395 44,683 43,948 42,349 42,253 42,795 40,695 42,640 43,838 46,401 45,364 45,776 1993 43,130 38,966 38,843 35,916 38,621 39,842 40,111 37,793 38,782 40,310 37,597 37,680 1994 34,718 33,061 33,341 31,698 33,727 34,304 34,155 34,287 38,474 40,591 40,040 39,500 1995 37,356 37,353 37,790 38,013 39,236 40,341 40,358 39,269 39,788 39,823 38,746 37,256

495

AGA Eastern Consuming Region Natural Gas Underground Storage Volume  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 3,605,263 3,281,694 3,164,033 3,297,696 3,531,074 3,786,195 4,043,225 4,279,875 4,477,279 4,588,167 4,522,088 4,292,649 1995 3,905,789 3,514,201 3,360,765 3,369,823 3,576,559 3,812,014 3,968,751 4,159,006 4,362,855 4,483,271 4,279,539 3,905,710 1996 3,483,209 3,190,123 2,987,233 3,052,606 3,272,105 3,557,334 3,859,973 4,122,060 4,364,848 4,508,821 4,334,814 4,094,033 1997 3,630,708 3,381,047 3,190,271 3,205,661 3,398,322 3,660,850 3,905,985 4,151,456 4,379,374 4,493,802 4,383,068 4,084,339 1998 3,774,740 3,544,699 3,335,505 3,436,983 3,680,419 3,909,517 4,166,130 4,309,452 4,461,762 4,580,963 4,542,742 4,295,021

496

Minnesota Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Minnesota Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 6,363 5,796 5,866 6,343 6,672 6,784 6,916 6,964 7,025 7,052 7,050 6,662 1991 6,206 5,968 5,862 6,017 6,274 6,586 6,878 6,869 6,962 6,928 6,846 6,789 1992 6,341 6,211 5,883 5,675 6,064 6,371 6,668 6,848 6,974 6,970 6,962 6,759 1993 6,363 5,945 5,527 5,479 5,796 6,140 6,549 6,678 6,916 6,999 6,923 6,612 1994 6,085 5,890 5,700 5,543 5,892 6,265 6,634 6,836 6,985 6,983 6,979 6,907 1995 6,394 5,917 5,660 5,613 5,944 6,207 6,513 6,744 6,985 6,991 6,988 6,733 1996 5,952 5,692 5,470 5,558 5,924 6,219 6,506 6,716 6,918 6,951 6,920 6,693

497

AGA Producing Region Natural Gas Underground Storage Volume (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,433,462 1,329,400 1,322,914 1,388,877 1,498,496 1,553,493 1,643,445 1,714,361 1,785,350 1,819,344 1,810,791 1,716,773 1995 1,601,428 1,510,175 1,467,414 1,509,666 1,586,445 1,662,195 1,696,619 1,688,515 1,768,189 1,818,098 1,757,160 1,613,046 1996 1,436,765 1,325,994 1,223,139 1,264,513 1,334,894 1,395,779 1,443,970 1,525,797 1,631,006 1,686,652 1,614,154 1,519,539 1997 1,379,108 1,303,888 1,356,678 1,385,616 1,461,221 1,536,339 1,542,480 1,596,011 1,683,987 1,770,002 1,707,810 1,559,636 1998 1,456,136 1,442,993 1,420,644 1,515,050 1,610,474 1,666,304 1,739,745 1,803,097 1,840,984 1,950,772 1,945,897 1,807,163