Powered by Deep Web Technologies
Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Leadership Development Program Catalog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leadership Development Program Catalog Leadership Development Program Catalog Leadership Development Program Catalog A well-trained workforce is vital to the long-term effectiveness of the Federal Government. As such, all Federal employees, particularly those who serve or hope to serve in senior management positions, are encouraged to take advantage of opportunities to enhance their professional skills and develop the competencies needed for success as leaders. The Leadership Development Program Catalog by ECQ is a comprehensive list of training opportunities intended to assist all Federal leaders grow in the five Executive Core Qualifications (ECQs) and Fundamental Competencies. The resources listed will facilitate your growth and development as both a Federal employee and as a person, and will be helpful to all levels of

2

DOE Leadership & Career Development Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development » DOE Leadership & Career Development Programs Development » DOE Leadership & Career Development Programs DOE Leadership & Career Development Programs Senior Executive Service Candidate Development Program (SESCDP): This program consists of four Senior Executive Service Development Seminars designed to help position participants for selection into the SES. Each seminar reflects different key components of OPM's Executive Core Qualifications (ECQs). For more information please contact David Rosenmarkle Federal Executive Institute (FEI): At FEI, you will explore and build your knowledge and skills in personal leadership, transforming public organizations, the policy framework in which Government leadership occurs, and the broad global context of international trends and events that shape Government agendas. Since 1968,

3

The Effectiveness of Leadership Development Programs on Small Farm Producers  

E-Print Network (OSTI)

Although there were numerous leadership development programs throughout the country, most ignored the small producers located throughout the south. In order to address the needs of these traditionally underserved individuals, the National Small Farmer Agricultural Leadership Institute was created to address the concerns of small farmers in rural communities. This research specifically targeted the effectiveness of leadership development over a period by exploring the factors that motivate the program participants to enhance their leadership skills and the ability to transform that motivation into effective leadership. The group involved in this study is a convenience population of small farmers and ranchers from across the Southern United States, who graduated from the National Small Farm Leadership Institute. These participants represent 2 graduating classes from 2007 and 2009. A retrospective post survey methodology was used to conduct this study. The instrument is divided into a knowledge base before they took the program (pre) and a retrospective post assessment. Each of the questions allowed the participants to rate their ability on a 5 point Likert-Type scale. The responses ranged from 1 to 5 with the following responses Very Poor, Poor, Fair, Good and Very Good. The survey research examined four educational constructs that were covered during the leadership development program. These were Leadership Skill Development, Leadership Theory, Agricultural Skill enhancement and the Transformation of their leadership skills. Through analysis of the four educational constructs the research reveals substantial increases in knowledge and skills such as Group Problem Solving, Consensus Building, Team Building, Group Decision Making and Obtaining information to help in decision making. Participants were definitely found to have increased their leadership skills through teaching of Leadership Philosophy, linkages to Federal and agricultural resources, the appreciation of different styles of leadership and awareness of agricultural policy issues. The study revealed that in each of the four educational construct areas of the National Small Farm Leadership Institute that there were substantial increases in knowledge and changes in behavior such as: understanding and explaining personal leadership philosophy, increased awareness of Agricultural Policy Issues and transferring the leadership back to the community.

Malone, Allen A.

2010-08-01T23:59:59.000Z

4

New Career Development Program Equips EM Employees with Leadership Skills |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Career Development Program Equips EM Employees with Leadership Career Development Program Equips EM Employees with Leadership Skills New Career Development Program Equips EM Employees with Leadership Skills May 30, 2013 - 12:00pm Addthis Members of the 2013 AAGEN SES Development Program class gather for a photo at the program’s kickoff at the White House in March 2012. EM’s John Moon and Dr. Ming Zhu are in the second row; Moon is second from left and Zhu is third from left. Melvin G. Williams, Jr., former Associate Deputy Energy Secretary, is seated far left in the first row. Members of the 2013 AAGEN SES Development Program class gather for a photo at the program's kickoff at the White House in March 2012. EM's John Moon and Dr. Ming Zhu are in the second row; Moon is second from left and Zhu is third from left. Melvin G. Williams, Jr., former Associate Deputy

5

DOE Leadership & Career Development Programs | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

leadership occurs, and the broad global context of international trends and events that shape Government agendas. Since 1968, FEI has been known for the personal attention it gives...

6

NREL: Energy Executive Leadership Academy - Leadership Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership Program NREL's Executive Energy Leadership Program is an in-depth training program conducted over five three-day sessions from May through September. The classroom...

7

Leadership Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Development Leadership Development Leadership Development DOE's Leadership & Development Programs are designed to strengthen the participant's capacity to lead by deepening their understanding of the DOE's core values and key leadership characteristics and behaviors, which is the foundation of our model for success. These programs will help individuals improve performance through the implementation of a personalized development plan that uses competency assessments as the foundation. Participants are introduced to concepts, characteristics, and behaviors needed to enhance leadership skills and/or prepare them for assignment to leadership positions at DOE and beyond. The programs consist of developmental experiences, formal and informal training, active learning

8

Executive Leadership Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leadership Program Leadership Program Executive Leadership Program Program Overview: This program is based on the U.S. Office of Personnel Management's Leadership Effectiveness Framework (LEF), a model for effective leadership/managerial performance. The program helps participants acquire or enhance the LEF competencies needed to become a successful government leader and manager. Participants will complete the following activities: individual needs assessment; leadership development plans; leadership development team activities; developmental work assignment; shadowing assignment; executive interviews; management readings; and four residential training sessions. In order to complete all the components of the program, participants will be away from their position of record for a

9

Leadership Development Resource Center | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leadership Development Resource Center Leadership Development Resource Center Leadership Development Resource Center The Office of Learning and Workforce Development believes that effective leadership is central to organizational success and has implemented the Leadership Development Resource Center. This will provide current and emerging leaders with the tools and information to help them build their leadership capacity. The LDRC is a means of coordinating resources and program efforts in order to meet DOE's mission by progressing in all phases of leadership development. DOE Leadership Philosophy Several themes describe the state of leadership development today: A growing recognition that leadership development, regardless of the theory or model that an organization adopts, involves more than just

10

Leadership Excellence Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leadership Excellence Program Leadership Excellence Program Leadership Excellence Program Overview The Office of Environmental Management (EM) recognizes that leadership enhancement is vital to the program and commits to the development and strengthening of leadership skills for all employees throughout their careers. EM's Leadership Excellence Program (LEP) is a competency-based program designed to develop future leaders and enhance SES leadership skills. EM's LEP is a roadmap to senior leadership in the organization. Every EM employee is a potential leader, whether he or she chooses to become a manager or elects to focus on excellence in a technical or functional role. The LEP is designed to develop team leaders, project leaders, supervisors, managers, and senior executives. The LEP does not

11

Federal Energy Management Program: Leadership Institutional Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership Leadership Institutional Change Principle to someone by E-mail Share Federal Energy Management Program: Leadership Institutional Change Principle on Facebook Tweet about Federal Energy Management Program: Leadership Institutional Change Principle on Twitter Bookmark Federal Energy Management Program: Leadership Institutional Change Principle on Google Bookmark Federal Energy Management Program: Leadership Institutional Change Principle on Delicious Rank Federal Energy Management Program: Leadership Institutional Change Principle on Digg Find More places to share Federal Energy Management Program: Leadership Institutional Change Principle on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Data Center Energy Efficiency

12

Leadership Development | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

include work-life balance, stress management and innovative solutions to career and gender issues. Photo Gallery: Strategic Laboratory Leadership Program Strategic Laboratory...

13

ALCC Program | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Getting Started How to Get an Allocation New User Guide Intrepid to Mira: Key Changes INCITE Program ALCC Program Director's Discretionary Program ALCC Program ASCR Leadership...

14

NNSA Defense Programs leadership meets with Sandia employees...  

NLE Websites -- All DOE Office Websites (Extended Search)

Media Room > Photo Gallery > NNSA Defense Programs leadership meets with Sandia employees NNSA Defense Programs leadership meets with Sandia employees NNSANews posted a photo: NNSA...

15

Leadership and the Boy Scouts of America's High Adventure Program  

E-Print Network (OSTI)

Recreation programs for youth are increasingly being asked to justify their purpose beyond providing fun and games. Stakeholders (e.g., taxpayers, parents, or donors) expect youth programs to develop specific outcomes in young people that will assist them in becoming fully functional adults. More empirical evidence is needed to support the idea that recreational programs indeed provide added educational or developmental benefits. One key outcome that transcends many recreational programs, regardless of setting, is leadership development. Therefore, the purpose of this study was to evaluate leadership development in a Boy Scouts of America (BSA) High Adventure Program. Two research objectives guided this study. First, the researcher sought to determine whether youth participants in Philmonts 12-Day Trek High Adventure Program reported increases in leadership measures as a result of their experiences. Based on the goals of this program, the researcher hypothesized that self-reported leadership qualities would increase after youth had participated in the program. Second, the study went one step further to explore what characteristics of the High Adventure Program potentially promoted or detracted from leadership development within the BSA High Adventure Program. The research design for this study was a non-experimental retrospective research design using quantitative and qualitative data obtained from a single sample of participants at the Philmont Scout Ranch. The method of data collection employed a self-administered survey instrument given to participants upon completion of their program. The survey used the Youth Leadership Life Skills Development Scale in addition to two open-ended questions designed to extract elements that promoted or detracted from leadership development. Results from the Youth Leadership Life Skills Development Scale indicated that there was a statistically significant difference between the mean of participant attitudes before the Philmont experience and the mean of participant attitudes after the Philmont experience. Results from the open-ended questions isolated nine emergent themes that participants reported to promote leadership development and four that detracted from leadership development. Overall, this study provides much needed empirical evidence to contribute to the idea that recreational youth programs, while providing fun leisure experiences, can utilize their settings to make an even bigger contribution to the lives of young people.

Lizzo, Robin

2013-05-01T23:59:59.000Z

16

ESD.801 Leadership Development, Fall 2004  

E-Print Network (OSTI)

Presents basic concepts in group dynamics and leadership. A structured set of outdoor experiences complements classroom activities. Restricted to entering students in the Technology and Policy Program.

Newman, Dava J.

17

Leadership Development Series & Events | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Series & Events Series & Events Leadership Development Series & Events The Office of Learning and Workforce Development (OLWD) sponsors these monthly events to provide opportunities for continuing leadership development. These events are hosted at the headquarters office and broadcasted by request to executives at field offices. The program manager identifies and coordinates speakers. Presenters are nationally known authors or professional speakers on subjects directly related to leadership, executive development or managing organizations. If the speaker is an author, a limited number of books are purchased for distribution at the presentation. Benefits DOE Executives and senior leaders have the opportunity to learn current management strategies for optimizing organization and employee performance.

18

ESD.801 Leadership Development, Fall 2005  

E-Print Network (OSTI)

This seminar meets six times during the semester. Students work in a seminar environment to develop leadership capabilities. An initial Outward Bound experience builds trust, teamwork and communications. Readings and ...

Newman, Dava

19

John Bardeen Engineering Leadership Program | Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview Description The John Bardeen Engineering Leadership Program is designed to provide full-time entry-level opportunities for outstanding engineering graduates who are interested in working in a cutting edge research environment. Fermilab provides opportunities in the fields of electrical, electronics, radio frequency systems, power distribution, magnets, RF cavities, mechanical, materials science and cryogenic engineering. The program honors John Bardeen's revolutionary achievements as both a physicist and engineer. Applications are now being accepted. Eligibilty Applicants must be recipients of a Master or Doctoral degree in engineering from an accredited institution and apply within three years of graduation or completion of a first postdoctoral position.

20

Leadership Development Resource Center (LDRC) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resource Center (LDRC) Resource Center (LDRC) Leadership Development Resource Center (LDRC) There is never a time when building an organization's leadership bench strength is not of critical importance. The results of successful leadership development will always manifest in helping to realize the greatest potential for mission accomplishment. Government and private industry organizations alike depend on their leaders to guide them through change, implement their strategic plans successfully and prepare for future competition. Today, effective leadership is commonly viewed as being central to organizational success and more importance is placed on leadership development than ever. Effective leadership is central to organizational success and we have implemented the Leadership Development Resource Center (LDRC). This will

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

John Bardeen Engineering Leadership Program | Application Procedure  

NLE Websites -- All DOE Office Websites (Extended Search)

Application Procedure Application Procedure Candidates must complete these steps and submit by the application deadline. The next application deadline will be February 2014. Complete the online resume profile on the Fermilab employment website here. Submit the following by email or hardcopy to the address listed in the contact information below. Academic/Professional resume or curriculum vitae Abstract of graduate degree thesis Academic transcript (may be a copy; if selected for interview, original will be required) Three (3) letters of reference either sent directly by the writers, or sealed envelopes from the writers and sent by the candidate Statement of research interest Contact information: Bardeen Engineering Leadership Program Fermilab M.S. 340, P.O. Box 500 Batavia, IL 60510 USA

22

Leadership Development Series: "Leadership In An Age Of Righteousness"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leadership Development Series: "Leadership In An Age Of Leadership Development Series: "Leadership In An Age Of Righteousness" Leadership Development Series: "Leadership In An Age Of Righteousness" January 16, 2014 1:00PM to 3:00PM EST Registration link: By e-mail, $0 Course type: Classroom/Auditorium, Video Cast and Teleconference Course Location: DOE Headquarters, Forrestal Building, Washington, DC/ Main Auditorium Course Description: Dr. Jackson Nickerson, The Brookings Institution. With the pitched battle in Congress that led to the recent government shutdown and the growing debt-ceiling debate, can leadership lessons be drawn from this conflict to help leaders of organizations deal with similar internal battles? Dr. Jackson Nickerson from The Brookings Institution will be joining us at the Department of Energy to discuss the answer to this and

23

DOE Learning & Development Competency Governance Structure Senior HC Leadership  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Learning & Development Learning & Development Competency Governance Structure Senior HC Leadership HC DOE L&D BOD HC-20 Other HR Functions (e.g. Staffing) (Competency Steward) Competency Management HC-23 Other DOE Working and Users Groups Lead Competency Stakeholders (CMWG and CMUG) Management Program (e.g. Union Reps, (CMP) to ensure validity and career & professional consistency of competencies development programs Lead Implementation and Operation of automated Competency Management System (CMS) Competency Steward -Supplies HR/Competency Development subject matter expertise -Maintains DOE Competency Framework and Competency Dictionary to ensure common, valid approaches are used to develop and

24

Business Games for Leadership Development: A Systematic Review  

Science Conference Proceedings (OSTI)

Leadership development poses great challenges to modern organizations. One possible method to develop leaders is the use of experiential techniques based on business games. The objective of this article was to identify, based on literature, business ... Keywords: business games, experiential learning, games, leadership, leadership development, simulations, simulators, systematic review

Mauricio Capobianco Lopes, Francisco A. P. Fialho, Cristiano J. C. A. Cunha, Sofia Ins Niveiros

2013-08-01T23:59:59.000Z

25

Strategic Laboratory Leadership Program | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Erik Gottschalk (F); Devin Hodge (A); Jeff Chamberlain (A); Brad Ullrick (A); Bill Rainey (J). Image courtesy of Argonne National Laboratory. Strategic Laboratory Leadership...

26

An ethnographic case study of transformative learning in leadership development.  

E-Print Network (OSTI)

??This qualitative study investigated how transformative learning and membership in a community of practice influenced leadership development. It sought a phenomenological understanding of how participants (more)

Powell, Linda Chastain

2009-01-01T23:59:59.000Z

27

INCITE Program | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Checks & 5 Tips for INCITE Mira Computational Readiness Assessment ALCC Program Director's Discretionary Program INCITE Program Innovative and Novel Computational Impact on...

28

2013 National Council of La Raza Leadership Development Workshops |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 National Council of La Raza Leadership Development Workshops 2013 National Council of La Raza Leadership Development Workshops 2013 National Council of La Raza Leadership Development Workshops July 20, 2013 4:00PM EDT to July 23, 2013 6:00PM EDT Morial Convention Center for four incredible days in New Orleans, Louisiana The National Council of La Raza (NCLR) is hosting a series of leadership development workshops geared towards Federal employees on July 23, 2013, in New Orleans, LA. These workshops are a part of the 2013 NCLR Annual Conference from July 20-23, 2013. The workshop topics on July 23rd will include an overview of the Senior Executive Service (SES) and instruction on how to prepare and apply for a SES position. The five (5) hours dedicated to the leadership development workshops on July 23rd qualify as training in compliance with 5 U.S.C. chapter 41 and

29

2013 National Council of La Raza Leadership Development Workshops |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 National Council of La Raza Leadership Development Workshops 2013 National Council of La Raza Leadership Development Workshops 2013 National Council of La Raza Leadership Development Workshops July 23, 2013 2:15PM EDT New Orleans, LA The National Council of La Raza (NCLR) is hosting a series of leadership development workshops geared towards Federal employees on July 23, 2013, in New Orleans, LA. These workshops are a part of the 2013 NCLR Annual Conference from July 20-23, 2013. The workshop topics on July 23rd will include an overview of the Senior Executive Service (SES) and instruction on how to prepare and apply for a SES position. The five (5) hours dedicated to the leadership development workshops on July 23rd qualify as training in compliance with 5 U.S.C. chapter 41 and are open to all Federal employees.

30

Early Science Program | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Early Science Program The goals of the Early Science Program (ESP) were to prepare key applications for the architecture and scale of Mira, and to solidify libraries and...

31

Early Science Program Investigators Meeting | Argonne Leadership...  

NLE Websites -- All DOE Office Websites (Extended Search)

through ambitious scientific computations enabled by the ALCF's Early Science Program (ESP). Investigators from each of the 16 ESP projects will overview their simulation...

32

Leadership for Environment and Development | Open Energy Information  

Open Energy Info (EERE)

Leadership for Environment and Development Leadership for Environment and Development Jump to: navigation, search Logo: Leadership for Environment and Development Name Leadership for Environment and Development Address 114 Kensington High Street Place London, United Kingdom Phone number +44 (0)20 7938 8700 Website http://www.lead.org/ Coordinates 51.5009843°, -0.1933809° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.5009843,"lon":-0.1933809,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

33

EM's Development Program for New Managers/Supervisors Presentation  

Energy.gov (U.S. Department of Energy (DOE))

This development program provides new managers and supervisors with 80 hours of developmental activities during the first two years they are in a leadership position.

34

EM's Development Program for New Managers/Supervisors  

Energy.gov (U.S. Department of Energy (DOE))

This development program provides new managers and supervisors with 80 hours of developmental activities during the first two years they are in a leadership position. The program meets OPM, DOE and...

35

CERTS 2012 Program Review - NASPI Leadership and Task Team Technical Support - Joe Gracia, ORNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ORNL's Support of NASPI ORNL's Support of NASPI Presented at: DOE OE Transmission Reliability Program Review ORNL Team: Jose R. Gracia, P.E. (Presenter) D. Tom Rizy Isabelle Snyder, Ph.D. 12 June 2012 2 Managed by UT-Battelle for the U.S. Department of Energy OE Transmission Reliability Program Review NASPI Goal: To improve the reliable operation of the North American power system by successfully transitioning synchrophasor technologies from research to industry adoption. 2 Project Objective(s) ORNL's activities in support of NASPI include: * Participate in NASPI Leadership Team * Support Operations Implementation Task Team * Participate in Performance and Standards Task Team * Develop needed metrology capabilities in partnership with NIST.

36

Leadership | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leadership Leadership Leadership Tracey LeBeau Director, Office of Indian Energy Policy and Programs Tracey A. LeBeau (Cheyenne River Sioux) is Director for the U.S. Department of Energy's Office of Indian Energy Policy and Programs. She was appointed in January 2011 to establish this new Office which is authorized by statute to manage, coordinate, create and facilitate programs and initiatives to encourage tribal energy and energy infrastructure development. Administratively, the Office was established to also coordinate, across the Department, those policies, programs and initiatives involving Indian energy and energy infrastructure development. More about Tracey LeBeau Pilar Thomas Deputy Director, Office of Indian Energy Policy and Programs Pilar Thomas (Pascua Yaqui) is the Deputy Director in the Office of Indian

37

CERTS 2012 Program Review - NASPI Leadership and Task Team Technical Support - Jeff Dagle, PNNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PNNL Support for NASPI PNNL Support for NASPI Jeff Dagle Pacific Northwest National Lab jeff.dagle@pnnl.gov 11/12 June 2012 Washington, DC OE Transmission Reliability Program Review 2 Project Objective(s) To improve the reliable operation of the North American power system by successfully transitioning synchrophasor technologies from research to industry adoption PNNL's activities in support of NASPI include:  Facilitate leadership and planning activities for the NASPI leadership team and work group meetings  Support the NASPI website, mailing lists, and task team administrative support (e.g., conference call scheduling and facilitation) PNNL Activities in Support of NASPI in FY12 (cont.)  Special assignments

38

Sustainable Communities Leadership Academy (SCLA) | Open Energy Information  

Open Energy Info (EERE)

Leadership Academy (SCLA) Leadership Academy (SCLA) Jump to: navigation, search Logo: Sustainable Communities Leadership Academy (SCLA) Name Sustainable Communities Leadership Academy (SCLA) Agency/Company /Organization Institute for Sustainable Communities (ISC) Partner Smart Growth America, Housing and Urban Development (HUD) Sector Climate, Energy Focus Area Buildings, Economic Development, Energy Efficiency, Food Supply, Greenhouse Gas, Land Use, People and Policy, Transportation, Water Conservation Topics Adaptation, Finance, Implementation, Low emission development planning, Policies/deployment programs Program Start 2008 Program End 2015 Country Canada, United States Northern America, Northern America References Sustainable Communities Leadership Academy[1] Overview

39

United States-Sustainable Communities Leadership Academy (SCLA) | Open  

Open Energy Info (EERE)

United States-Sustainable Communities Leadership Academy (SCLA) United States-Sustainable Communities Leadership Academy (SCLA) Jump to: navigation, search Logo: United States-Sustainable Communities Leadership Academy (SCLA) Name United States-Sustainable Communities Leadership Academy (SCLA) Agency/Company /Organization Institute for Sustainable Communities (ISC) Partner Smart Growth America, Housing and Urban Development (HUD) Sector Climate, Energy Focus Area Buildings, Economic Development, Energy Efficiency, Food Supply, Greenhouse Gas, Land Use, People and Policy, Transportation, Water Conservation Topics Adaptation, Finance, Implementation, Low emission development planning, Policies/deployment programs Program Start 2008 Program End 2015 Country United States Northern America References Sustainable Communities Leadership Academy[1]

40

Canada-Sustainable Communities Leadership Academy (SCLA) | Open Energy  

Open Energy Info (EERE)

Canada-Sustainable Communities Leadership Academy (SCLA) Canada-Sustainable Communities Leadership Academy (SCLA) Jump to: navigation, search Logo: Canada-Sustainable Communities Leadership Academy (SCLA) Name Canada-Sustainable Communities Leadership Academy (SCLA) Agency/Company /Organization Institute for Sustainable Communities (ISC) Partner Smart Growth America, Housing and Urban Development (HUD) Sector Climate, Energy Focus Area Buildings, Economic Development, Energy Efficiency, Food Supply, Greenhouse Gas, Land Use, People and Policy, Transportation, Water Conservation Topics Adaptation, Finance, Implementation, Low emission development planning, Policies/deployment programs Program Start 2008 Program End 2015 Country Canada Northern America References Sustainable Communities Leadership Academy[1]

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

SES CANDIDATE DEVELOPMENT PROGRAM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CANDIDATE DEVELOPMENT PROGRAM (SESCDP) CANDIDATE DEVELOPMENT PROGRAM (SESCDP) DOE F 360.1 (11-03) Executive Development Plan (EDP) Name: Title: Organization: Office: RATIONALE FOR PLAN: APPROVALS: Candidate Signature: Date: Supervisor: Date: Mentor: Date: SES Candidate Development Program Manager: Date: DOE Executive Resources Board: Date: 1 U.S. DEPARTMENT OF ENERGY DOE F 360.1 (11-03) SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) Executive Development Plan (EDP) NAME OF SES CANDIDATE: DATE: EXECUTIVE CORE QUALIFICATION 1: LEADING CHANGE This core qualification encompasses the ability to develop and implement an organizational vision which integrates key national and program

42

Bioenergy Feedstock Development Program Status Report  

DOE Green Energy (OSTI)

The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

Kszos, L.A.

2001-02-09T23:59:59.000Z

43

Resources for Program Development  

NLE Websites -- All DOE Office Websites (Extended Search)

may assist those who are developing programs to enhance the knowledge and skills of mathematics, science and technology teachers and provide opportuntities for students to...

44

Argonne's 2013 Summer Training Program a Success | Argonne Leadership...  

NLE Websites -- All DOE Office Websites (Extended Search)

will help us develop technologies that solve real problems faced by the HPC community." Jordan Musser Jordan works as research engineer in the DOE's National Energy Technology...

45

Leadership Development Series: "DOE Executive Forum: Best Practices and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leadership Development Series: "DOE Executive Forum: Best Practices Leadership Development Series: "DOE Executive Forum: Best Practices and Lessons Learned in 2013" Leadership Development Series: "DOE Executive Forum: Best Practices and Lessons Learned in 2013" January 22, 2014 1:00PM to 3:00PM EST Registration link: By e-mail, $0 Course type: Classroom/Auditorium, Video Cast and Teleconference Course Location: DOE Headquarters, Forrestal Building, Washington, DC/ Main Auditorium Course Description: Legacy Management; Office of Science; WAPA 2013 was a challenging and difficult year for most federal agencies. We have asked executives from: - Legacy Management, - Office of Science and - WAPA to brief out their best practices and lessons learned during 2013 while dealing with sequestration, budget reductions and anticipating possible

46

Leadership Development Series: "A Holistic Look at Cyber Security" |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leadership Development Series: "A Holistic Look at Cyber Security" Leadership Development Series: "A Holistic Look at Cyber Security" Leadership Development Series: "A Holistic Look at Cyber Security" January 30, 2014 10:30AM to 12:00PM EST Registration link: By e-mail, $0 Course type: Classroom/Auditorium, Video Cast & Teleconference Course Location: DOE Headquarters, Forrestal Building, Washington, DC/ Main Auditorium Course Description: Dr. Steven Bucci, Director, Douglas and Sarah Allison Center for Foreign Policy Studies. The sheer volume of cyber activity is masking serious threats that impact government, business and our personal lives every day. Incidents are now ubiquitous, pervasive and constitute the new "normal". These day to day threats are not existential, but if not addressed, will hinder our

47

Market leadership by example: Government sector energy efficiency in developing countries  

SciTech Connect

Government facilities and services are often the largest energy users and major purchasers of energy-using equipment within a country. In developing as well as industrial countries, government ''leadership by example'' can be a powerful force to shift the market toward energy efficiency, complementing other elements of a national energy efficiency strategy. Benefits from more efficient energy management in government facilities and operations include lower government energy bills, reduced greenhouse gas emissions, less demand on electric utility systems, and in many cases reduced dependence on imported oil. Even more significantly, the government sector's buying power and example to others can generate broader demand for energy-efficient products and services, creating entry markets for domestic suppliers and stimulating competition in providing high-efficiency products and services. Despite these benefits, with the exception of a few countries government sector actions have often lagged behind other energy efficiency policies. This is especially true in developing countries and transition economies - even though energy used by public agencies in these countries may represent at least as large a share of total energy use as the public sector in industrial economies. This paper summarizes work in progress to inventory current programs and policies for government sector energy efficiency in developing countries, and describes successful case studies from Mexico's implementation of energy management in the public sector. We show how these policies in Mexico, begun at the federal level, have more recently been extended to state and local agencies, and consider the applicability of this model to other developing countries.

Van Wie McGrory, Laura; Harris, Jeffrey; Breceda, Miguel; Campbell, Stephanie; Sachu, Constantine; della Cava, Mirka; Gonzalez Martinez, Jose; Meyer, Sarah; Romo, Ana Margarita

2002-05-20T23:59:59.000Z

48

SES CANDIDATE DEVELOPMENT PROGRAM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 (11-03) SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) Developmental Assignment Opportunity DATE: NAME OF SES CANDIDATE: TITLE: ASSIGNMENT NUMBER: ASSIGNMENT BEGINS: ENDS: TELEPHONE NUMBER: FAX NUMBER: EMAIL ADDRESS: ASSIGNMENT LOCATION HOST ORGANIZATION: PURPOSE OF ASSIGNMENT: ASSIGNMENT POSITION: ASSIGNMENT DUTIES: EXECUTIVE COR QUALIFICATIONS TO BE ADDRESSED: OFFICE ADDRESS: TELEPHONE NUMBER: FAX NUMBER: E-MAIL ADDRESS: 1 U.S. DEPARTMENT OF ENERGY SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP)

49

Multicore and accelerator development for a leadership-class stellar astrophysics code  

Science Conference Proceedings (OSTI)

We describe recent development work on the core-collapse supernova code CHIMERA. CHIMERA has consumed more than 100 million cpu-hours on Oak Ridge Leadership Computing Facility (OLCF) platforms in the past 3 years, ranking it among the most important ... Keywords: GPU, OpenACC, openMP, stellar astrophysics, supernovae

O. E. Bronson Messer; J. Austin Harris; Suzanne Parete-Koon; Merek A. Chertkow

2012-06-01T23:59:59.000Z

50

SES CANDIDATE DEVELOPMENT PROGRAM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 (11-03) SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) Candidate Developmental Assignment Evaluation DATE:_______________ NAME OF SES CANDIDATE TITLE OF POSITION LOCATION ASSIGNMENT DURATION: Which Executive Core Qualification(s) was this assignment intended to meet? Leading Change Leading People Results Driven Business Acumen Building Coalitions/Communication Please provide a brief description of your assignment. Did the experience meet your expectation? Was this a good learning experience? 1 U.S. DEPARTMENT OF ENERGY DOE F 360.5 (11-03) SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) Candidate Developmental Assignment Evaluation

51

Advanced Application Development Program Information  

Energy.gov (U.S. Department of Energy (DOE))

Summary of the Tranmission Reliability program's Advanced Applications Research and Development activity area. This program develops and demonstrates tools to monitor and control the grid with...

52

SES CANDIDATE DEVELOPMENT PROGRAM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 (11-03) SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) Evaluation of Formal Training DATE:_______________ CANDIDATE NAME: TITLE OF TRAINING PROGRAM: VENDOR/LOCATION: TRAINING DATES: Which Executive Core Qualification(s) was this assignment intended to meet? Leading Change Leading People Results Driven Business Acumen Building Coalitions/Communication Please check one for each of the following: Level of difficulty: Too Advanced ___ Appropriate ___ Too Elementary ___ Length of course: Too Long ___ Appropriate ___ Too Short ___ Instructor(s): Excellent ___ Satisfactory ___ Fair Poor ___ 1 until U.S. DEPARTMENT OF ENERGY

53

External Leadership Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

External Leadership Resources External Leadership Resources External Leadership Resources Here we provide specific links to resources, including training, guidance, blogs, newsletters, etc., for leadership development. Brainpickings - Brain Pickings is a human-powered discovery engine for interestingness, a subjective lens on what matters in the world and why, bringing you things you didn't know you were interested in - until are you. Department of Commerce- DOC has developed a succession strategy to: 1) Implement a leadership succession pipeline that links to the Department's mission critical occupations; 2) Manage a graduated series of competitive programs that identifies, selects and develops emerging leaders in engaging learning experiences; 3) Create a continuous learning environment that builds skills and enhances competencies throughtout the

54

Developing resident leadership : theory and practice in Boston's neighborhoods  

E-Print Network (OSTI)

For decades, Boston residents have worked together and organized to strengthen and protect their neighborhoods, often in response to encroaching government policy and local development. The South End's Villa Victoria housing ...

Alleyne, Kim L

2005-01-01T23:59:59.000Z

55

Illinois Coal Development Program (Illinois) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois Coal Development Program (Illinois) Illinois Coal Development Program (Illinois) < Back Eligibility Commercial Construction Developer Industrial Program Info State...

56

Leadership | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leadership Leadership Leadership This page features biographies for the members of the Office of Energy Efficiency and Renewable Energy (EERE) management. Executive Leadership David Danielson Assistant Secretary David Danielson leads EERE's energy portfolio, helping hasten the transition to a clean energy economy. He oversees six major technology and strategic areas, including Energy Efficiency, Renewable Power, Sustainable Transportation, Strategic Programs, Financial Management, and Business Operations offices. He represents EERE before national, state, and local audiences to reinforce EERE's mission and to leverage partnerships to transform the nation's economic engine to one powered by clean energy. Mike Carr Principal Deputy Assistant Secretary Mike Carr provides leadership direction on cross-cutting activities in

57

ABC Technology Development Program  

Science Conference Proceedings (OSTI)

The Accelerator-Based Conversion (ABC) facility will be designed to accomplish the following mission: `Provide a weapon`s grade plutonium disposition capability in a safe, economical, and environmentally sound manner on a prudent schedule for [50] tons of weapon`s grade plutonium to be disposed on in [20] years.` This mission is supported by four major objectives: provide a reliable plutonium disposition capability within the next [15] years; provide a level of safety and of safety assurance that meets or exceeds that afforded to the public by modern commercial nuclear power plants; meet or exceed all applicable federal, state, and local regulations or standards for environmental compliance; manage the program in a cost effective manner. The ABC Technology Development Program defines the technology development activities that are required to accomplish this mission. The technology development tasks are related to the following topics: blanket system; vessel systems; reactivity control systems; heat transport system components; energy conversion systems; shutdown heat transport systems components; auxiliary systems; technology demonstrations - large scale experiments.

NONE

1994-10-14T23:59:59.000Z

58

SES CANDIDATE DEVELOPMENT PROGRAM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 (11-03) SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) Supervisor's Evaluation of Candidate's Performance During Developmental Assignment DATE:________________ NAME OF SES CANDIDATE: TITLE OF POSITION: LOCATION OF ASSIGNMENT: ASSIGNMENT DURATION: PART I: EVALUATION OF ASSIGNMENT OBJECTIVES Please evaluate the candidate's level of performance in meeting the objectives of the assignment as Successful or Unacceptable. Objectives Standards Performance Evaluation PLEASE RATE YOUR OVERALL EVALUATION OF THE CANDIDATE'S PERFORMANCE BY CIRCLING A NUMBER ON THE SCALE BELOW: EXCELLENT VERY GOOD SATISFACTORY POOR UNACCEPTABLE

59

Multicore and Accelerator Development for a Leadership-Class Stellar Astrophysics Code  

SciTech Connect

We describe recent development work on the core-collapse supernova code CHIMERA. CHIMERA has consumed more than 100 million cpu-hours on Oak Ridge Leadership Computing Facility (OLCF) platforms in the past 3 years, ranking it among the most important applications at the OLCF. Most of the work described has been focused on exploiting the multicore nature of the current platform (Jaguar) via, e.g., multithreading using OpenMP. In addition, we have begun a major effort to marshal the computational power of GPUs with CHIMERA. The impending upgrade of Jaguar to Titan a 20+ PF machine with an NVIDIA GPU on many nodes makes this work essential.

Messer, Bronson [ORNL; Harris, James A [ORNL; Parete-Koon, Suzanne T [ORNL; Chertkow, Merek A [ORNL

2013-01-01T23:59:59.000Z

60

Berkeley India Joint Leadership on Energy and Environment | Open Energy  

Open Energy Info (EERE)

India Joint Leadership on Energy and Environment India Joint Leadership on Energy and Environment Jump to: navigation, search Logo: Berkeley India Joint Leadership on Energy and Environment Name Berkeley India Joint Leadership on Energy and Environment Agency/Company /Organization Lawrence Berkeley National Laboratory Sector Energy Focus Area Energy Efficiency Topics Policies/deployment programs, Pathways analysis, Background analysis Website http://india.lbl.gov/ Country India Southern Asia References Program Homepage[1] Abstract The Berkeley India Joint Leadership on Energy and Environment (BIJLEE) is a Lawrence Berkeley National Laboratory joint research and development program in which researchers work with the government and private sector of India to assist in the adoption of pathways and approaches for reducing the emissions of greenhouse gases while pursuing sustainable economic development.

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fellows' Prize for Leadership  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership Leadership Fellows' Prize for Leadership Demonstrating outstanding leadership in science or engineering. Fellows' Prize for Leadership recipients 2009 David S. Moore, DE-9 For his inspirational technical leadership in the fields of shock physics and the science of explosives detection 2008 Andrew Shreve, MPA-CINT For his stimulation of young Laboratory staff to develop skills and to make personal sacrifices necessary to become effective leaders 2007 Dan Thoma, INST-OFF For his strong scientific leadership both within and outside the Laboratory, including his support to the JOWOG 22 collaboration, and his serving as a mentor in MST Division, as a senior advisor at the directorate level, in national societies, and most recently in the LANL Institutes Juan Fernandez, P-24

62

Staff Development Program Bibliography  

NLE Websites -- All DOE Office Websites (Extended Search)

"Staff Development and the Individual," in S. Caldwell (Ed.) Staff Development: A Handbook of Effective Practices. Oxford, OH: National Staff Development Council. Lieberman, A....

63

NETL: Carbon Storage - Carbon Sequestration Leadership Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

CSLF Carbon Storage Carbon Sequestration Leadership Forum CSLF Logo The Carbon Sequestration Leadership Forum (CSLF) is a voluntary climate initiative of industrially developed and...

64

Better Buildings Neighborhood Program: Workforce Development  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Better Buildings Neighborhood Program: Workforce Development on Google Bookmark Better Buildings Neighborhood Program: Workforce Development on Delicious...

65

Michigan Business Development Program (Michigan) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Development Program (Michigan) Michigan Business Development Program (Michigan) Eligibility Commercial Investor-Owned Utility Savings For Alternative Fuel Vehicles...

66

Community Economic Development Business Program (Prince Edward...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Economic Development Business Program (Prince Edward Island, Canada) Community Economic Development Business Program (Prince Edward Island, Canada) Eligibility...

67

Lunar exploration rover program developments  

DOE Green Energy (OSTI)

The Robotic All Terrain Lunar Exploration Rover (RATLER) design concept began at Sandia National Laboratories in late 1991 with a series of small, proof-of-principle, working scale models. The models proved the viability of the concept for high mobility through mechanical simplicity, and eventually received internal funding at Sandia National Laboratories for full scale, proof-of-concept prototype development. Whereas the proof-of-principle models demonstrated the mechanical design`s capabilities for mobility, the full scale proof-of-concept design currently under development is intended to support field operations for experiments in telerobotics, autonomous robotic operations, telerobotic field geology, and advanced man-machine interface concepts. The development program`s current status is described, including an outline of the program`s work over the past year, recent accomplishments, and plans for follow-on development work.

Klarer, P.R.

1993-09-01T23:59:59.000Z

68

Rural Development Advantage Program (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

The Rural Development Advantage Program provides qualified businesses with refundable tax incentives for projects that create two new jobs and invest $125,000 in counties with less than 15,000...

69

Texas Tech University is poised to take a leadership role in the development of wind power systems through research, economic development, job creation and education.  

E-Print Network (OSTI)

APR NEWSLETTER Texas Tech University is poised to take a leadership role in the development, such as Texas State Technical College, will benefit from curriculum development in implementation turbines and water desalination mechanisms in a West Texas community. Texas Tech will begin with a 5

Zhang, Yuanlin

70

An assessment of leadership in geothermal energy technology research and development  

DOE Green Energy (OSTI)

Geothermal energy is one of the more promising renewable energy technologies because it is environmentally benign and, unlike most renewable energy sources, can provide base power. This report provides an assessment of the research and development (R&D) work underway in geothermal energy in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. While the R&D work underway in the US exceeds the R&D efforts of the other countries, the lead is eroding. This erosion is due to reductions in federal government funding for geothermal energy R&D and the decline of the US petroleum industry. This erosion of R&D leadership is hindering commercialization of US geothermal energy products and services. In comparison, the study countries are promoting the commercialization of their geothermal energy products and services. As a result, some of these countries, in particular Japan, will probably have the largest share of the global market for geothermal energy products and services; these products and services being targeted toward the developing countries (the largest market for geothermal energy).

Bruch, V.L.

1994-03-01T23:59:59.000Z

71

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT  

SciTech Connect

Progress on reactor programs and in general engineering research and development programs is summarized. Research and development are reported on water-cooled reactors including EBWR and Borax-V, sodium-cooled reactors including ZPR-III, IV, and IX, Juggernaut, and EBR-I and II. Other work included a review of fast reactor technology, and studies on nuclear superheat, thermal and fast reactor safety, and reactor physics. Effort was also devoted to reactor materials and fuels development, heat engineering, separation processes and advanced reactor concepts. (J.R.D.)

1961-04-01T23:59:59.000Z

72

Business Development Executive (BDE) Program  

SciTech Connect

The IPST BDE (Institute of Paper Science and Technology Business Development Executive) program was initiated in 1997 to make the paper industry better aware of the new manufacturing technologies being developed at IPST for the U.S. pulp and paper industry's use. In April 2000, the BDE program management and the 20 BDEs, all retired senior level industry manufacturing and research executives, were asked by Ms. Denise Swink of OIT at DOE to take the added responsibility of bringing DOE developed energy conservation technology to the paper industry. This project was funded by a DOE grant of $950,000.

Rice, E.J. "Woody"; Frederick, W. James

2005-12-05T23:59:59.000Z

73

Environmental Education and Development Program  

SciTech Connect

The Environmental Education and Development Program is a component on the effort to accomplish the Office of Environmental Restoration and Waste Management`s (EM) goal of environmental compliance and cleanup of the 1989 inventory of inactive DOE sites and facilities by the year 2019. Education and Development programs were designed specifically to stimulate the knowledge and workforce capability necessary to achieve EM goals while contributing to DOE`s overall goal of increasing scientific and technical literacy and competency. The primary implementation criterion for E&D activities involved a focus on programs and projects that had both immediate and long-range leveraging effects on infrastructure. This focus included programs that yielded short term results (one to five years), as well as long-term results, to ensure a steady supply of appropriately trained and educated human resources, including women and minorities, to meet EM`s demands.

Not Available

1994-03-01T23:59:59.000Z

74

Leadership | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leadership Leadership Organization Leadership Budget Laboratories & Facilities History Benefits of Research Business & Funding Opportunities ESS&H Jobs & Internships Education...

75

Workforce Development Training Program (South Dakota) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Workforce Development Training Program (South Dakota) Workforce Development Training Program (South Dakota) Eligibility Commercial...

76

NREL: Energy Executive Leadership Academy - Leadership Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Institute Institute Participants in NREL's Executive Energy Leadership Institute learn about renewable energy and energy efficiency from the experts through this accelerated training program typically conducted over a three-day period. Course content includes briefings by technology experts on renewable energy and energy efficiency technologies, market assessments, and analytical and financial tools, as well as associated technology tours. Tours of NREL research facilities are a key component of the Institute. All sessions originate and end at NREL's campus in Golden, Colorado. For additional details, including a customized Leadership Institute in your region, see the sample syllabus or contact Energy Execs. Qualified individuals are invited to apply for the upcoming 2014 Institute.

77

Leadership | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About Us » Leadership About Us » Leadership Leadership Leadership Robert C. Gibbs Chief Human Capital Officer Bob Gibbs was born and raised in Boston, Massachusetts. A retired naval officer, he holds both a B.A. in business management from the University of Washington, and a J.D. from George Mason University. He is a member of the Maryland and the American Bar Associations. More about Bob Gibbs Cyndi L. Mays Deputy Chief Human Capital Officer Ms. Cyndi Mays is a senior level Federal manager with over twenty years of experience managing organizations, projects and people in both large and small civilian and military agencies. She has proven success in Human Capital Strategy and Operations, Human Resources Transformation, Program Management, and Executive and Stakeholder Communications. Her portfolio

78

Wind Energy Career Development Program  

Science Conference Proceedings (OSTI)

Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

Gwen Andersen

2012-03-29T23:59:59.000Z

79

Leadership | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Leadership | National Nuclear Security Administration Leadership | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Leadership Home > Field Offices > Welcome to the Livermore Field Office > Leadership Leadership Kimberly D. Lebak, Manager Kim Lebak became the Livermore Site Manager in January, 2012 for the National Nuclear Security Administration of the U.S. Department of Energy.

80

Nuclear Safety Research and Development (NSR&D) Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety » Nuclear Safety Research and Nuclear Safety » Nuclear Safety Research and Development (NSR&D) Program Nuclear Safety Research and Development (NSR&D) Program In 2011, the Office of Health, Safety and Security (HSS) created the Nuclear Safety Research and Development (NSR&D) Program within the Office of Nuclear Safety to provide corporate-level leadership supporting nuclear safety research and development throughout the Department of Energy (DOE). The NSR&D Program solicits input from the Nuclear Safety Council which includes membership of senior management from each program office. NSR&D Program Objectives: To establish an enduring Departmental commitment and capability to utilize NSR&D in preventing and reducing the hazards and risks posed by DOE/NNSA nuclear facilities;

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Program development fund: FY 1987  

Science Conference Proceedings (OSTI)

It is the objective of the Fund to encourage innovative research to maintain the Laboratory's position at the forefront of science. Funds are used to explore new ideas and concepts that may potentially develop into new directions of research for the Laboratory and that are consistent with the major needs, overall goals, and mission of the Laboratory and the DOE. The types of projects eligible for support from PDF include: work in forefront areas of science and technology for the primary purpose of enriching Laboratory research and development capabilities; advanced study of new hypotheses, new experimental concepts, or innovative approaches to energy problems; experiments directed toward ''proof of principle'' or early determination of the utility of a new concept; and conception, design analyses, and development of experimental devices, instruments, or components. This report is a review of these research programs.

Not Available

1989-03-01T23:59:59.000Z

82

Economic Development Incentive Program (Massachusetts) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Development Incentive Program (Massachusetts) Economic Development Incentive Program (Massachusetts) Economic Development Incentive Program (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Municipal/Public Utility Nonprofit Retail Supplier Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Massachusetts Program Type Corporate Tax Incentive Provider Office of Business Development The Economic Development Incentive Program (EDIP) is a tax incentive program designed to foster job creation and stimulate business growth throughout the Commonwealth. Participating companies may receive state and

83

Small Business Development Loan Program (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

The Small Business Development Loan Program, sponsored by Minnesotas Agricultural and Economic Development Board, issues industrial development bonds to provide small business loans up to $5...

84

Program summary for the Civilian Reactor Development Program  

SciTech Connect

This Civilian Reactor Development Program document has the prime purpose of summarizing the technical programs supported by the FY 1983 budget request. This section provides a statement of the overall program objectives and a general program overview. Section II presents the technical programs in a format intended to show logical technical interrelationships, and does not necessarily follow the structure of the formal budget presentation. Section III presents the technical organization and management structure of the program.

1982-07-01T23:59:59.000Z

85

Example Program and Makefile for BG/P | Argonne Leadership Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Intrepid/Challenger/Surveyor Intrepid/Challenger/Surveyor Introducing Challenger Quick Reference Guide System Overview Data Transfer Data Storage & File Systems Compiling and Linking Example Program and Makefile for BG/P FAQs Compiling and Linking Queueing and Running Jobs Debugging and Profiling Performance Tools and APIs IBM References Software and Libraries Tukey Eureka / Gadzooks Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] Example Program and Makefile for BG/P Program Example Here's an example of compiling a simple MPI program on ALCF Blue Gene/P systems: > cat pi.c #include "mpi.h" #include #include int main(int argc, char** argv)

86

Advanced Emissions Control Development Program  

Science Conference Proceedings (OSTI)

McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and hydrogen chloride and hydrogen fluoride.

M. J. Holmes

1998-12-03T23:59:59.000Z

87

Advanced Emissions Control Development Program  

Science Conference Proceedings (OSTI)

McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species, hydrogen chloride and hydrogen fluoride.

A. P. Evans

1998-12-03T23:59:59.000Z

88

Advanced Emissions Control Development Program  

Science Conference Proceedings (OSTI)

Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W?s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

A. P. Evans

1998-12-03T23:59:59.000Z

89

Advanced Emission Control Development Program.  

SciTech Connect

Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

Evans, A.P.

1997-12-31T23:59:59.000Z

90

Leadership | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leadership Leadership Leadership Leadership Alison Doone Deputy Chief Financial Officer Alison Doone is the Department of Energy's (DOE) Deputy Chief Financial Officer (CFO). More about Deputy Doone Joanne Choi Director, Office of Finance and Accounting Ms. Choi is the Director of the Office of Finance and Accounting, which consists of Energy Finance and Accounting Service Center and Office of Financial Control and Reporting. Ms. Choi is responsible for providing agency-wide accounting and financial management service to the Department. She oversees the production of accurate and timely audited financial statements. Before joining the Department of Energy, Ms. Choi worked at the Office of Management and Budget (OMB) developing financial systems policy for federal agencies. Ms.

91

Leadership | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership Leadership Leadership Dot Harris The Honorable Dot Harris, Director, Office of Economic Impact and Diversity LaDoris "Dot" Harris was nominated by President Obama to be the Director of the Office of Economic Impact and Diversity at the United States Department of Energy. She was confirmed by the U.S. Senate on March 29, 2012. Ms. Harris brings nearly 30 years of management and leadership experience to this position, having served at some of the world's largest firms and leading a successful energy, IT, and healthcare consulting firm. More about Dot Harris Andre H. Sayles Principal Deputy Director of the Office of Economic Impact and Diversity and Acting Deputy Director of the Office of Minority Business and Economic Development Andre H. Sayles, Ph.D., joined the Department of Energy as the Principal

92

Sustainable Development Fund Financing Program (PECO Territory) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Development Fund Financing Program (PECO Territory) Sustainable Development Fund Financing Program (PECO Territory) Sustainable Development Fund Financing Program (PECO Territory) < Back Eligibility Commercial Industrial Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Bioenergy Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Water Heating Wind Program Info State Pennsylvania Program Type Local Loan Program Rebate Amount Varies by project Provider TRF Sustainable Development Fund The Pennsylvania Public Utility Commission created the Sustainable Development Fund (SDF) in its final order of the PECO Energy electric

93

EMSL: Science: Research and Capability Development Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Intramural Research & Capability Development Program Intramural Research & Capability Development Program The EMSL Intramural Research and Capability Development Program facilitates development of new research tools and enables EMSL staff members to advance the important skills and expertise necessary to enhance the EMSL user program. These intramural projects are intended to increase the scientific visibility of EMSL staff in areas that promote the objectives of EMSL's three science themes- Biological Interactions and Dynamics, Geochemistry/Biogeochemistry and Subsurface Science, and Science of Interfacial Phenomena. Technical outcomes of this program include journal publications, scientific presentations, new capabilities or capability enhancements, and expertise to augment EMSL user activities and foster development of innovative

94

Leadership | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About Us » Leadership About Us » Leadership Leadership Peter B. Lyons Assistant Secretary for Nuclear Energy Dr. Peter B. Lyons was confirmed by the Senate as the Assistant Secretary for Nuclear Energy on April 14, 2011. Dr. Lyons was appointed to his previous role as Principal Deputy Assistant Secretary of the Office of Nuclear Energy in September, 2009. As Assistant Secretary, Dr. Lyons is responsible for all programs and activities of the Office of Nuclear Energy. More about Assistant Secretary Lyons Dennis Michael Miotla Chief Operating Officer & Acting Principal Deputy Assistant Secretary Mr. Miotla currently serves as Chief Operating Officer and acting Principal Deputy Assistant Secretary for the Office of Nuclear Energy. Mr. Miotla shares responsibilities with the Assistant Secretary for all research,

95

Automotive Stirling Engine Development Program: A success  

SciTech Connect

The original 5 y Automotive Stirling Engine Development Program has been stretched to a 10 y program due to reduced annual funding levels. With an estimated completion date of April 1988, the technical achievements and the prospectives of meeting the original program objectives are reviewed. Various other applications of this developed Stirling engine technology are also discussed.

Tabata, W.K.

1987-01-01T23:59:59.000Z

96

Nova Scotia Business Development Program (Nova Scotia, Canada...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Development Program (Nova Scotia, Canada) Nova Scotia Business Development Program (Nova Scotia, Canada) Eligibility Agricultural Commercial Construction Developer Fuel...

97

Community-Driven Development Decision Tools for Rural Development Programs  

Open Energy Info (EERE)

Community-Driven Development Decision Tools for Rural Development Programs Community-Driven Development Decision Tools for Rural Development Programs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Community-driven Development Decision Tools for Rural Development Programs Agency/Company /Organization: International Fund for Agricultural Development Topics: Policies/deployment programs Resource Type: Guide/manual, Training materials Website: www.ifad.org/english/cdd/pub/decisiontools.pdf Community-driven Development Decision Tools for Rural Development Programs Screenshot References: Community-Driven Development Decision Tools[1] Overview "The CDD Decision Tools is the final outcome of a series of studies conducted from 2003-08 by IFAD on the CDD activities and approaches it sponsors in a number of countries in Western and Central Africa (WCA). The

98

Laboratory Directed Research and Development Program  

Submit completed application (Word doc) to innovation@lbl.gov by October 15, 2013. August 20, 2013. Title: Laboratory Directed Research and Development Program Author:

99

SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluation of Formal Training SENIOR EXECUTIVE SERVICE CANDIDATE DEVELOPMENT PROGRAM (SESCDP) Evaluation of Formal Training Form is used to evaluate formal training courses in the...

100

Brownfields Revitalization and Economic Development Program ...  

Open Energy Info (EERE)

icon Twitter icon Brownfields Revitalization and Economic Development Program (South Dakota) This is the approved revision of this page, as well as being the most...

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

An assessment of research and development leadership in advanced batteries for electric vehicles  

DOE Green Energy (OSTI)

Due to the recently enacted California regulations requiring zero emission vehicles be sold in the market place by 1998, electric vehicle research and development (R&D) is accelerating. Much of the R&D work is focusing on the Achilles` heel of electric vehicles -- advanced batteries. This report provides an assessment of the R&D work currently underway in advanced batteries and electric vehicles in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. Although the US can be considered one of the leading countries in terms of advanced battery and electric vehicle R&D work, it lags other countries, particularly France, in producing and promoting electric vehicles. The US is focusing strictly on regulations to promote electric vehicle usage while other countries are using a wide variety of policy instruments (regulations, educational outreach programs, tax breaks and subsidies) to encourage the use of electric vehicles. The US should consider implementing additional policy instruments to ensure a domestic market exists for electric vehicles. The domestic is the largest and most important market for the US auto industry.

Bruch, V.L.

1994-02-01T23:59:59.000Z

102

Market leadership by example: Government sector energy efficiency in developing countries  

E-Print Network (OSTI)

current programs and policies for government sector energythe potential for energy-efficient government policies andand the governments White Paper on Energy Policy has

2002-01-01T23:59:59.000Z

103

OCIO Leadership | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OCIO Leadership OCIO Leadership OCIO Leadership Leadership Robert F. Brese Chief Information Officer Mr. Brese is the Chief Information Officer (CIO) for the Department of Energy (DOE). He provides leadership, establishes policy, and maintains oversight of DOE's annual $2 billion investment in information technology (IT), at more than 25 National Laboratories and Production Facilities, to enable urgent missions that span from open science to nuclear security. Mr. Brese is also a leader in the U.S. Government's cybersecurity community and a key contributor to the Administration's efforts in legislation, policy and technology research, development, and deployment. More about Bob Brese Donald E. Adcock Deputy Chief Information Officer More about Don Adcock Photograph of CTO Peter Tseronis

104

Development | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Printable Version Development Commercial Residential Adoption Compliance Regulations Resource Center Development The U.S. Department of Energy (DOE) supports and participates in the model building energy code development processes administered by the ASHRAE and the International Code Council (ICC). DOE activities include developing and submitting code change proposals, conducting analysis of building energy efficiency and cost savings, and formulating underlying evaluation methodologies. Through participation in model energy code development for both commercial and residential buildings, DOE strives to make cost-effective, energy efficient upgrades to current model codes. DOE also establishes energy efficiency standards for federal buildings and manufactured housing. Further information on this process is defined under

105

Market leadership by example: Government sector energy efficiency in developing countries  

E-Print Network (OSTI)

to Save Energy (the Alliance), and Mexicos ComisinAPF program, energy-saving activities in Mexicos governmentstudies from Mexicos government sector energy management

2002-01-01T23:59:59.000Z

106

Program Development Tools and Infrastructures  

SciTech Connect

Exascale class machines will exhibit a new level of complexity: they will feature an unprecedented number of cores and threads, will most likely be heterogeneous and deeply hierarchical, and offer a range of new hardware techniques (such as speculative threading, transactional memory, programmable prefetching, and programmable accelerators), which all have to be utilized for an application to realize the full potential of the machine. Additionally, users will be faced with less memory per core, fixed total power budgets, and sharply reduced MTBFs. At the same time, it is expected that the complexity of applications will rise sharply for exascale systems, both to implement new science possible at exascale and to exploit the new hardware features necessary to achieve exascale performance. This is particularly true for many of the NNSA codes, which are large and often highly complex integrated simulation codes that push the limits of everything in the system including language features. To overcome these limitations and to enable users to reach exascale performance, users will expect a new generation of tools that address the bottlenecks of exascale machines, that work seamlessly with the (set of) programming models on the target machines, that scale with the machine, that provide automatic analysis capabilities, and that are flexible and modular enough to overcome the complexities and changing demands of the exascale architectures. Further, any tool must be robust enough to handle the complexity of large integrated codes while keeping the user's learning curve low. With the ASC program, in particular the CSSE (Computational Systems and Software Engineering) and CCE (Common Compute Environment) projects, we are working towards a new generation of tools that fulfill these requirements and that provide our users as well as the larger HPC community with the necessary tools, techniques, and methodologies required to make exascale performance a reality.

Schulz, M

2012-03-12T23:59:59.000Z

107

Geothermal Energy Research Development and Demonstration Program  

DOE Green Energy (OSTI)

The Federal program's goal, strategy, plans, and achievements are summarized. In addition, geothermal development by state and local governments and, where available, by the private sector is described. (MHR)

Not Available

1980-06-01T23:59:59.000Z

108

Business Development Loan Program (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The Business Development Loan Program assists new and existing businesses in obtaining loans that would have a higher degree of risk than would normally be acceptable to a lending institution. ...

109

Manpower development for new nuclear energy programs  

E-Print Network (OSTI)

In the spring of 2012, nine countries were seriously considering embarking on nuclear energy programs, either having signed contracts with reactor vendors or having made investments for the development of infrastructure ...

Verma, Aditi

2012-01-01T23:59:59.000Z

110

Pine Tree Development Zones Program (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Pine Tree Development Zones program offers eligible businesses the chance to reduce, and sometimes eliminate, state taxes for up to ten years. There is a statutory requirement of hiring a...

111

Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites

area area Contact Us | Careers | Staff Directory | User Support Search form Search Search Argonne Leadership Computing Facility an Office of Science user facility Home . About Overview History Staff Directory Careers Visiting Us Contact Us Resources & Expertise Mira Cetus Vesta Intrepid Challenger Surveyor Visualization Clusters Data and Networking Our Teams User Advisory Council Science at ALCF INCITE 2014 Projects ALCC 2013 Projects ESP Projects View All Projects Allocation Programs Early Science Program Publications Industry Collaborations News & Events Web Articles In the News Upcoming Events Past Events Informational Materials Photo Galleries User Services User Support Machine Status Presentations Training & Outreach User Survey Getting Started How to Get an Allocation New User Guide

112

Leadership | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Message from the Director Board of Governors Organization Chart Argonne Distinguished Fellows Emeritus Scientists & Engineers History Discoveries Prime Contract Contact Us Leadership Argonne integrates world-class science, engineering, and user facilities to deliver innovative research and technologies. We create new knowledge that addresses the scientific and societal needs of our nation. Eric D. Isaacs Eric D. Isaacs, Director, Argonne National Laboratory Director, Argonne National Laboratory Argonne National Laboratory Eric D. Isaacs, a prominent University of Chicago physicist, is President of UChicago Argonne, LLC, and Director of Argonne National Laboratory. Mark Peters Mark Peters, Deputy Lab Director for Programs Deputy Laboratory Director for Programs

113

Our Leadership | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership | National Nuclear Security Administration Leadership | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Our Leadership Home > About Us > Our Leadership Our Leadership The NNSA plays a critical role in ensuring the security of our Nation by maintaining the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear testing; reducing the global danger from

114

Our Leadership | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Leadership | National Nuclear Security Administration Leadership | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Our Leadership Home > About Us > Our Leadership Our Leadership The NNSA plays a critical role in ensuring the security of our Nation by maintaining the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear testing; reducing the global danger from

115

Commercial radioactive waste minimization program development guidance  

SciTech Connect

This document is one of two prepared by the EG G Idaho, Inc., Waste Management Technical Support Program Group, National Low-Level Waste Management Program Unit. One of several Department of Energy responsibilities stated in the Amendments Act of 1985 is to provide technical assistance to compact regions Host States, and nonmember States (to the extent provided in appropriations acts) in establishing waste minimization program plans. Technical assistance includes, among other things, the development of technical guidelines for volume reduction options. Pursuant to this defined responsibility, the Department of Energy (through EG G Idaho, Inc.) has prepared this report, which includes guidance on defining a program, State/compact commission participation, and waste minimization program plans.

Fischer, D.K.

1991-01-01T23:59:59.000Z

116

Commercial radioactive waste minimization program development guidance  

SciTech Connect

This document is one of two prepared by the EG&G Idaho, Inc., Waste Management Technical Support Program Group, National Low-Level Waste Management Program Unit. One of several Department of Energy responsibilities stated in the Amendments Act of 1985 is to provide technical assistance to compact regions Host States, and nonmember States (to the extent provided in appropriations acts) in establishing waste minimization program plans. Technical assistance includes, among other things, the development of technical guidelines for volume reduction options. Pursuant to this defined responsibility, the Department of Energy (through EG&G Idaho, Inc.) has prepared this report, which includes guidance on defining a program, State/compact commission participation, and waste minimization program plans.

Fischer, D.K.

1991-01-01T23:59:59.000Z

117

Executive Order 13514: Federal Leadership in Environmental, Energy, and Economic Performance; Comprehensive Federal Fleet Management Handbook, July 2011, Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Leadership in Environmental, Energy, and Economic Performance Comprehensive Federal Fleet Management Handbook July 2011 Visit femp.energy.gov/pdfs/eo13514_fleethandbook.pdf for the latest version of this Handbook. i Comprehensive Federal Fleet Management Handbook Contacts Mark Reichhardt Federal Energy Management Program (FEMP) U.S. Department of Energy (DOE) 202-586-4788 federal_fleets@ee.doe.gov FEMP General Contact Information EE-2L 1000 Independence Avenue, SW Washington, DC 20585-0121 202-586-5772 DOE's Office of Energy Efficiency and Renewable Energy (EERE) Information Center 877-337-3463 www.eere.energy.gov/informationcenter/ Acknowledgements This document was prepared by Julian Bentley of LMI in McLean, Virginia, and Ryan Daley of the

118

CCEF - Renewable Energy Projects in Pre-Development Program ...  

Open Energy Info (EERE)

Program Incentive Type State Loan Program Applicable Sector Commercial, Renewable energy project developers Eligible Technologies Solar Thermal Electric, Photovoltaics,...

119

Fuel Cycle Research and Development Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Program Presentation to Office of Environmental Management Tank Waste Corporate Board James C. Bresee, ScD, JD Advisory Board Member Office of Nuclear Energy July 29, 2009 July 29, 2009 Fuel Cycle Research and Development DM 195665 2 Outline Fuel Cycle R&D Mission Changes from the Former Advanced Fuel Cycle Initiative The Science-Based Approach Key Collaborators Budget History Program Elements Summary July 29, 2009 Fuel Cycle Research and Development DM 195665 3 Fuel Cycle R&D Mission The mission of Fuel Cycle Research and Development is to develop options to current fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while reducing proliferation risks by conducting

120

HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM  

SciTech Connect

The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the experimental combustion evaluations to several specific technologies that can be used with HAT technology. After 5 years of extensive research and development, P&W is pleased to report that the HAT Technology Development Program goals have been achieved. With 0 to 10 percent steam addition, emissions achieved during this program featured less than 8 ppm NO{sub x}, less than 16 ppm CO, and unburned hydrocarbons corrected to 15 percent O{sub 2} for an FT8 engine operating between 0 and 120 F with 65 to 100 percent power at any day.

Richard Tuthill

2002-07-18T23:59:59.000Z

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Recent developments of the US RERTR program  

SciTech Connect

The status of the US Reduced Enrichment Research and Test Reactor (RERTR) Program is reviewed. After a brief outline of the RERTR Program objectives, goals and past accomplishments, emphasis is placed on the developments which took place during 1983 and on current program plans and schedules. Most program activities have proceeded as planned and a combination of two silicide fuels (U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al) was found to hold excellent promise for achieving the long-term program goals. A modification of the program plan, including the development and demonstration of those fuels, was prepared and is now being implemented. The uranium density of qualified RERTR fuels for plate-type reactors is forecasted to grow by approximately 1 g U/cm/sup 3/ each year, from the current 1.7 g U/cm/sup 3/ to the 7.0 g U/cm/sup 3/ which will be reached in 1988. The technical needs of research reactors for HEU exports are also forecasted to undergo a gradual and dramatic decline in the coming years.

Travelli, A.

1983-01-01T23:59:59.000Z

122

An assessment of research and development leadership in ocean energy technologies  

SciTech Connect

Japan is clearly the leader in ocean energy technologies. The United Kingdom also has had many ocean energy research projects, but unlike Japan, most of the British projects have not progressed from the feasibility study stage to the demonstration stage. Federally funded ocean energy research in the US was stopped because it was perceived the technologies could not compete with conventional sources of fuel. Despite the probable small market for ocean energy technologies, the short sighted viewpoint of the US government regarding funding of these technologies may be harmful to US economic competitiveness. The technologies may have important uses in other applications, such as offshore construction and oil and gas drilling. Discontinuing the research and development of these technologies may cause the US to lose knowledge and miss market opportunities. If the US wishes to maintain its knowledge base and a market presence for ocean energy technologies, it may wish to consider entering into a cooperative agreement with Japan and/or the United Kingdom. Cooperative agreements are beneficial not only for technology transfer but also for cost-sharing.

Bruch, V.L.

1994-04-01T23:59:59.000Z

123

Geothermal Logging Instrumentation Development Program Plan (U)  

DOE Green Energy (OSTI)

This Geothermal Logging Instrumentation Development Program Plan outlines a nine-year, industry-based program to develop and apply high temperature instrumentation technology which is needed by the borehole logging industry to serve the rapidly expanding geothermal market. Specifically, this program will upgrade existing materials and sondes to improve their high-temperature reliability. To achieve this goal specialized equipment such as high temperature electronics, cables and devices for measuring formation temperature, flow rate, downhole pressure, and fractures will be developed. In order to satisfy critical existing needs, the near-term (FY80) goal is for operation at or above 275/sup 0/C in pressures up to 48.3 MPa (7,000 psi). The long-term (FY84) goal is for operation up to 350/sup 0/C and 138 MPa (20,000 psi). This program plan has been prepared for the Department of Energy's Division of Geothermal Energy (DGE) and is a portion of the DGE long-range Geothermal Well Technology Program.

Veneruso, A.F.; Polito, J.; Heckman, R.C.

1978-08-01T23:59:59.000Z

124

START Program for Renewable Energy Project Development Assistance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program for Renewable Energy Project Development Assistance START Program for Renewable Energy Project Development Assistance Education and Training Energy Resource Library Funding...

125

Automotive Stirling Engine Development Program Mod I Stirling engine development  

SciTech Connect

The Automotive Stirling Engine (ASE) Development Program was established to enable research and development of alternate propulsion systems. The program was awarded to Mechanical Technology Incorporated (MTI) for the purpose of developing an automotive Stirling engine, and transferring Stirling-engine technology to the United States. MTI has fabricated and tested four Mod I engines that have accumulated over 1900 test hours to date. The engines evaluated in the test cell have achieved an average of 34.5% efficiency at their maximum efficiency point (2000 rpm), and have developed an average maximum output power (power available to the drive train) level of 54.4 kW (73.2 bhp). All engines are still operating, and are being used to develop components and control strategy for the Upgraded Mod I engine design (predicted to increase maximum power output and efficiency while reducing total engine system weight).

Simetkosky, M.A.

1983-08-01T23:59:59.000Z

126

Robotics Technology Development Program. Technology summary  

SciTech Connect

The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

Not Available

1994-02-01T23:59:59.000Z

127

Tubular solid oxide fuel cell development program  

DOE Green Energy (OSTI)

This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

Ray, E.R.; Cracraft, C.

1995-12-31T23:59:59.000Z

128

NP-MHTGR Fuel Development Program Results  

Science Conference Proceedings (OSTI)

In August 1988, the Secretary of Energy announced a strategy to acquire New Production Reactor capacity for producing tritium. The strategy involved construction of a New Production Modular High Temperature Gas-Cooled Reactor (NP-MHTGR) where the Idaho National Engineering and Environmental Laboratory (INEEL) was selected as the Management and Operations contractor for the project. Immediately after the announcement in August 1988, tritium target particle development began with the INEEL selected as the lead laboratory. Fuel particle development was initially not considered to be on a critical path for the project, therefore, the fuel development program was to run concurrently with the design effort of the NP-MHTGR.

Maki, John Thomas; Petti, David Andrew; Hobbins, Richard Redfield; McCardell, Richard K.; Shaber, Eric Lee; Southworth, Finis Hio

2002-10-01T23:59:59.000Z

129

Program to develop advanced gas turbine systems  

SciTech Connect

The need for an advanced turbine program for land-based engines has been broadly recognized in light of reductions in military funding for turbines, rapid growth in the sale of gas turbines for utility and industrial usage, and the fierce competition with off-shore manufacturers. Only with Government support can US manufacturers meet rapidly changing market conditions such as increased emissions requirements and lower capital cost requirements. In light of this, ATS planning was requested by Congress in the fiscal year (FY) 92 appropriations and is included in thee Energy Policy Act of 1992. The program budget has increased rapidly, with the FY 94 budget including. over $28 million for ATS program activities. The Natural Gas Strategic Plan and Multi-Year Program Crosscut Plan, 1993--1998, includes the ATS program as part of the overall DOE plan for natural gas-related research and development (R&D) activities. Private sector support for the program is sufficient. Three open meetings have been held during the last 2 years to provide an opportunity for industry suggestions and comments. As the result of a public review of the program plan held June 4, 1993, in Pittsburgh, 46 letters of support were received from industry, academia, and others. Gas turbines represent the fastest growing market segment in electrical and cogeneration markets, with over 60 percent of recent installations based on gas turbines. Gas turbine systems offer low installation and operating costs, low emissions (currently with add-on equipment for non-attainment areas), and quick installation (1--2 years). According to the Annual Energy Outlook 1993, electricity and natural gas demand should both grow substantially through 2010. Natural gas-fired gas turbine systems continue to be the prime candidates for much of both new and retrofit capacity in this period. Emissions requirements continue to ratchet downward with single-digit NO{sub x} ppM required in several non-attainment areas in the US

Webb, H.A. [USDOE Morgantown Energy Technology Center, WV (United States); Parks, W.P. [USDOE, Washington, DC (United States)

1994-07-01T23:59:59.000Z

130

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT, SEPTEMBER 1961  

SciTech Connect

BS>Data from examination of blade-type control rods which were used in BORAX are discussed. Operation and maintenance of EBWR is outlined. In work on Borax V, modifications for easier installation of reactor and components is outlined followed by discussion of superheat fuel element development, and fabrication of various reactor components. Borax reactor design is also reported along with information on development and testing. In research on sodiumcooled reactors, activities are summarized in the LPR III and LPR IV programs along with developmental work on EBR I and II. Studies on reactor safety are reported and activities in a program of nuclear technology and general support are outlined. (J.R.D.)

1961-10-15T23:59:59.000Z

131

Clean Technology Evaluation & Workforce Development Program  

Science Conference Proceedings (OSTI)

The overall objective of the Clean Technology Evaluation portion of the award was to design a process to speed up the identification of new clean energy technologies and match organizations to testing and early adoption partners. The project was successful in identifying new technologies targeted to utilities and utility technology integrators, in developing a process to review and rank the new technologies, and in facilitating new partnerships for technology testing and adoption. The purpose of the Workforce Development portion of the award was to create an education outreach program for middle & high-school students focused on clean technology science and engineering. While originally targeting San Diego, California and Cambridge, Massachusetts, the scope of the program was expanded to include a major clean technology speaking series and expo as part of the USA Science & Engineering Festival on the National Mall in Washington, D.C.

Patricia Glaza

2012-12-01T23:59:59.000Z

132

Laboratory Directed Research and Development Program FY 2007  

Science Conference Proceedings (OSTI)

Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2007

Hansen, Todd C; editor, Todd C Hansen,

2008-03-12T23:59:59.000Z

133

Economic Development Tax Credit Program (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credit Program (Wisconsin) Tax Credit Program (Wisconsin) Economic Development Tax Credit Program (Wisconsin) < Back Eligibility Commercial Agricultural Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Retail Supplier Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Wind Solar Program Info State Wisconsin Program Type Corporate Tax Incentive Provider Wisconsin Economic Development Corporation The Economic Development Tax Credit (ETC) program was enacted in 2009 and eliminated five existing tax credit programs (Agricultural Development Zones, Airport Development Zones, Community Development Zones, Enterprise

134

Presentation to the EAC - NSF Workforce Development Related Activities and Programs - Barbara Kenny  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NSF Workforce Development NSF Workforce Development Related Activities and Programs Barbara Kenny June 11, 2012 NSF Mission and Vision * Mission: From the NSF Act of 1950: ..."To promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense...." * Vision: NSF envisions a nation that capitalizes on new concepts in science and engineering and provides global leadership in advancing research and education $B * ARRA ? 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 2005 2006 2007 2008 2009 2010 2011 2012 2013 Request Actual Fiscal Year NSF Budget Mathematical & Physical Sciences (MPS) Geosciences (GEO) Engineering (ENG) Computer & Information Science & Engineering (CISE) Biological Sciences (BIO) Office of the Inspector General (OIG)

135

Executive Order 13514: Federal Leadership in Environmental, Energy, and Economic Performance; Guidance for Federal Agencies on E.O. 13514 Section 12, Federal Fleet Management, April 2010, Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Executive Order 13514 Executive Order 13514 Federal Leadership in Environmental, Energy, and Economic Performance Guidance for Federal Agencies on E.O. 13514 Section 12, Federal Fleet Management April 2010 FEDERAL ENERGY MANAGEMENT PROGRAM FEDERAL ENERGY MANAGEMENT PROGRAM E.O. 13514 Section 12 Guidance Page i Contacts Amanda Sahl Federal Energy Management Program (FEMP) U.S. Department of Energy (DOE) 202-586-1662 federal_fleets@ee.doe.gov FEMP General Contact Information EE-2L 1000 Independence Avenue, SW Washington, DC 20585-0121 202-586-5772

136

Sandia National Laboratories: About Sandia: Leadership: Vice President and  

NLE Websites -- All DOE Office Websites (Extended Search)

Julia M. Phillips Julia M. Phillips Vice-President and Chief Technology Officer Julia Phillips Julia M. Phillips is vice president and chief technology officer at Sandia National Laboratories. Responsibilities include leadership of the Laboratory's $165 million Laboratory Directed Research and Development (LDRD) program, research strategy development and implementation, and intellectual property protection and deployment. Previous positions at Sandia include deputy chief technology officer and director of laboratory research strategy and partnerships, director, nuclear weapons science and technology programs, director, Physical, Chemical, and Nano Sciences Center, and director of the DOE Center for Integrated Nanotechnologies (CINT) at Sandia and Los Alamos National Laboratories. She is a member of the National Academy of Engineering,

137

Oak Ridge Leadership Computing Facility How the Jaguar supercomputer helps assure America's energy security  

E-Print Network (OSTI)

on Theory and Experiment (INCITE) program, jointly managed by Leadership Computing Facilities at Oak Ridge works best before they build. Reduce nuclear waste. One way to reduce nuclear waste is to fuel a fast reactor with it. But the enormous expense of experiments has slowed development of a commercially viable

138

Renewable Energy Development Grant Program (Oregon) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Grant Program (Oregon) Development Grant Program (Oregon) Renewable Energy Development Grant Program (Oregon) < Back Eligibility Commercial Residential Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Heating & Cooling Water Heating Wind Maximum Rebate Up to $250,000, or 35% of total project costs Program Info Funding Source tax credit auctions Start Date 1/1/2012 State Oregon Program Type State Grant Program Rebate Amount Varies by project Provider Program Coordinator '''''This program is not currently accepting applications. Applications under the most recent solicitation were due March 29, 2013.''''' The Oregon Department of Energy (ODOE) offers competitive grants to renewable energy projects as part of ODOE's Energy Incentives Program. ODOE

139

Lightweight composite fighting cover prototype development program  

SciTech Connect

The U.S. Army Field Assistance Science and Technology Program requested Oak Ridge National Laboratory (ORNL) to demonstrate the use of lightweight composite materials in construction of overhead covers for reinforced infantry fighting positions. In recent years, ORNL researchers have designed and tested several concepts for lightweight ballistic protection structures, and they have developed numerous prototype composite structures for military and civilian applications. In the current program, composite panel designs and materials are tested and optimized to meet anticipated static and dynamic load conditions for the overhead cover structure. Ten prototype composite covers were built at ORNL for use in Army field tests. Each composite cover has a nominal surface area of 12 ft[sup 2] and a nominal weight of 8 lb. Four of the prototypes are made with folding sections to improve their handling characteristics. The composite covers exhibit equivalent performance in Army field tests to covers made with conventional materials that weigh four times as much.

Wrenn, G.E. Jr.; Frame, B.J.; Gwaltney, R.C.; Akerman, M.A.

1996-07-01T23:59:59.000Z

140

Moving Granular Bed Filter Development Program  

SciTech Connect

The granular bed filter was developed through low pressure, high temperature (1600{degrees}F) testing in the late 1970`s and early 1980`s`. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a coal-fired pressurized, fluidized bed combustor. High particulate removal efficiencies were confirmed as it was shown that both New Source Performance Standards and turbine tolerance limits could be met. The early scale-up work of the granular bed filter indicated potential limitations due to size, cost, and mechanical complexity. These limitations were addressed in the present program by utilizing the information gained from the filter development up through the NYU test program to reassess the commercial approach. Two studies were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the economic study of the 250 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, airblown KRW gasifier. A cross-flow inter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting cost of electricity (COE) is compared.

Wilson, K.B.; Haas, J.C.; Eshelman, M.B.

1992-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Moving Granular Bed Filter Development Program  

SciTech Connect

The granular bed filter was developed through low pressure, high temperature (1600[degrees]F) testing in the late 1970's and early 1980's'. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a coal-fired pressurized, fluidized bed combustor. High particulate removal efficiencies were confirmed as it was shown that both New Source Performance Standards and turbine tolerance limits could be met. The early scale-up work of the granular bed filter indicated potential limitations due to size, cost, and mechanical complexity. These limitations were addressed in the present program by utilizing the information gained from the filter development up through the NYU test program to reassess the commercial approach. Two studies were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the economic study of the 250 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, airblown KRW gasifier. A cross-flow inter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting cost of electricity (COE) is compared.

Wilson, K.B.; Haas, J.C.; Eshelman, M.B.

1992-01-01T23:59:59.000Z

142

Low-Enrichment Fuel Development Program  

SciTech Connect

The national program of the Department of Energy at Argonne National Laboratory for the development of highly loaded uranium fuels, which provide the means for enrichment reduction, has been briefly described. The objectives of > 60 wt % uranium in plate-type fuels and greater than or equal to 45 wt % uranium in U--ZrH/sub x/ rod-type fuels are expected to be met. The most promising fuels will be further evaluated in full-size element irradiations and whole-core demonstrations on the route toward commercialization.

Stahl, D.

1978-01-01T23:59:59.000Z

143

Hot Dry Rock Geothermal Energy Development Program  

DOE Green Energy (OSTI)

The overall objective of the Hot Dry Rock (HDR) Geothermal Energy Development Program is to determine the technical and economic feasibility of HDR as a significant energy source and to provide a basis for its timely commercial development. Principal operational tasks are those activities required to enable a decision to be made by FY86 on the ultimate commercialization of HDR. These include development and analyis of a 20- to 50-MW Phase II HDR reservoir at Site 1 (Fenton Hill) with the potential construction of a pilot electric generating station, Phase III; selection of a second site with subsequent reservoir development and possible construction of a direct heat utilization pilot plant of at least 30 MW thermal thereon; the determination of the overall domestic HDR energy potential; and the evaluation of 10 or more target prospect areas for future HDR plant development by commercial developers. Phase I of the Los Alamos Scientific Laboratory's Fenton Hill project was completed. Phase I evaluated a small subterranean system comprised of two boreholes connected at a depth of 3 km by hydraulic fracturing. A closed-loop surface system has been constructed and tests involving round-the-clock operation have yielded promising data on heat extraction, geofluid chemistry, flow impedance, and loss of water through the underground reservoir between the two holes, leading to cautions optimism for the future prospects of private-sector HDR power plants. (MHR)

Franke, P.R.

1979-01-01T23:59:59.000Z

144

Learning Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Programs Programs Learning Programs Learning Programs Our learning programs help DOE employees grow and develop across a wide range of skills in a variety of disciplines. Training and development activities are designed to help employees fulfill the DOE mission through education, performance improvement and knowledge management. DOE's corporate learning programs address a continuum of knowledge and experience from entry-level to senior executives and represent a major commitment by DOE in its talent development. Whether it is in traditional classroom-learning, online-learning, distance-learning, or blended learning options, we are committed to meeting the Department's talent development goals. Learning Programs Leadership Development Career Development Technical & Professional

145

OE Power Systems Engineering Research & Development Program Partnerships |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission » Power Systems Engineering Research and Development » OE Mission » Power Systems Engineering Research and Development » OE Power Systems Engineering Research & Development Program Partnerships OE Power Systems Engineering Research & Development Program Partnerships The OE Power Systems Research and Development Program engages a broad group of stakeholders in program planning, identification of high-priority technology gap areas, and joint participation in research, development, demonstration, and deployment activities. The partnerships involve: Partnerships with Other Federal Programs Federal partnerships include participation with the Federal Energy Management Program (FEMP) to promote and install distributed energy systems at Federal facilities; the Office of Energy Assurance and the Department of

146

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT, FEBRUARY 1961  

SciTech Connect

Design, development, and testing efforts were continued on BORAX-V, EBR- I, EBR-II, EBWR, JUGGERNAUT ZPRIII, ZPR-VI, and ZPR-W. An evaluation program is outlined for Pebble Bed Reactor designs. Fast and thermal reactor safety studies were conducted. Experimental and theoretical studies in applied nuclear and reactor physics are dsscribed. Developments made in reactor components, fuels, and materials are discussed. Heat engineering studies were conducted on steam separation, and velocity and void distributions in two-phase systems. Fluidization and fluoride volatility separation, and chemical-metallurgical separation processes were studied. Advanced reactor concepts that were discusssd includsed. Basic Radiation Effects Beactor, Biogeonuclear Reactor, Fast Reactor Test Facility, compact high-power density fast reactors, AHFR hydraulic test loop, Packed Bed Reactor, and direct conversion. (For preceding period see ANL- 6328.) (B.O.G.)

1961-03-15T23:59:59.000Z

147

Develop programs and policies | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Develop programs and policies Develop programs and policies Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Policies that specify the use of ENERGY STAR tools Campaigns and incentive programs that incorporate ENERGY STAR Lead by example Gather support Develop programs and policies Host a competition Use financing vehicles Promote energy efficiency Develop programs and policies

148

JGI - Technology Development Pilot Program (TDP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Inquires | Proposal Review Purpose JGI's current main User Program, the Community Sequencing Program (CSP) is intended for large (terabase-) scale sequencing projects, with...

149

Develop programs and policies | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section...

150

Individual Development Plan (IDP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Individual Development Plan (IDP) Individual Development Plan (IDP) SAMPLE 10/01/2012 to 09/30/2013 Training Reason Developmental Activity Description Training Cost Travel Cost Total Cost Hours Start Date/ Completion Date Short Range Goal 1: Enhance Leadership Skills Development Mentoring Receive mentoring from a higher grade employee (s) and provide mentoring to lower grade employee(s). 0 0 0 TBD 1/1/2013 Development Instructor led EM Leadership Excellence Program - Interpersonal Communication Skills 0 0 0 8 6/15/2013 Development Instructor led Federal Executive Institute (OPM): Leadership for a Democratic Society $18,300 0 0 30 day residential TBD Development Shadowing Shadow one or more SES employees for one or two day period to learn leadership techniques. 0 0 0 TBD TBD

151

Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.  

DOE Green Energy (OSTI)

As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

(Office of The Director)

2012-04-25T23:59:59.000Z

152

Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.  

DOE Green Energy (OSTI)

As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

(Office of The Director)

2012-04-25T23:59:59.000Z

153

Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.  

SciTech Connect

As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

(Office of The Director)

2012-04-25T23:59:59.000Z

154

Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.  

SciTech Connect

As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

(Office of The Director)

2012-04-25T23:59:59.000Z

155

Developing a Training Program for Collection Managers  

E-Print Network (OSTI)

management Conclusion Essentially, the Task Force has reassessed and reorganized our training program

2002-01-01T23:59:59.000Z

156

Alternative Fuels Data Center: Fuel-Efficient Tire Program Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel-Efficient Tire Fuel-Efficient Tire Program Development to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Digg Find More places to share Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel-Efficient Tire Program Development The California Energy Commission (CEC) must adopt and implement a

157

"Recovery Act: Training Program Development for Commercial Building...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act: Training Program Development for Commercial Building Equipment Technicians, Building Operators, and Energy Commissioning AgentsAuditors" "Recovery Act: Training...

158

ILC Marx Modulator Development Program Status  

DOE Green Energy (OSTI)

Development of a first generation prototype (P1) Marx-topology klystron modulator for the International Linear Collider is nearing completion at the Stanford Linear Accelerator Center. It is envisioned as a smaller, lower cost, and higher reliability alternative to the present, bouncer-topology, 'Baseline Conceptual Design'. The Marx presents several advantages over conventional klystron modulator designs. It is physically smaller; there is no pulse transformer (quite massive at ILC parameters) and the energy storage capacitor bank is quite small, owing to the active droop compensation. It is oil-free; voltage hold-off is achieved using air insulation. It is air cooled; the secondary air-water heat exchanger is physically isolated from the electronic components. The P1-Marx employs all solid state elements; IGBTs and diodes, to control the charge, discharge and isolation of the cells. A general overview of the modulator design and the program status are presented.

Burkhart, C.; Beukers, T.; Larsen, R.; Macken, K.; Nguyen, M.; Olsen, J.; Tang, T.; /SLAC

2009-03-04T23:59:59.000Z

159

Studying Code Development for High Performance Computing: The HPCS Program  

E-Print Network (OSTI)

Studying Code Development for High Performance Computing: The HPCS Program Jeff Carver1 , Sima at measuring the development time for programs written for high performance computers (HPC). Our goal. Introduction The development of High-Performance Computing (HPC) programs (codes) is crucial to progress

Basili, Victor R.

160

Small Enterprise Development Finance Program (Mississippi) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Enterprise Development Finance Program (Mississippi) Small Enterprise Development Finance Program (Mississippi) Small Enterprise Development Finance Program (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type Corporate Tax Incentive Loan Program Sales Tax Incentive

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Preface Multi-Year Research, Development, and Demonstration Plan Page i Preface The Fuel Cell Technologies Program Multi-Year Research, Development, and Demonstration Plan (MYRD&D...

162

The Development Infrastructure Grant Program (Mississippi) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Infrastructure Grant Program (Mississippi) Development Infrastructure Grant Program (Mississippi) The Development Infrastructure Grant Program (Mississippi) < Back Eligibility Construction Developer Local Government Municipal/Public Utility Schools Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Maximum Rebate $150,000 Program Info State Mississippi Program Type Grant Program Provider Community Service Divison The Development Infrastructure Grant Program (DIP) is a grant program that is available to fund publicly owned infrastructure, including electricity generation and distribution. Funding from this program can be used by municipalities and counties to assist with the location or expansion of businesses. Usage of the funds must be directly related to the

163

Industrial Energy Efficiency Programs: Development and Trends  

E-Print Network (OSTI)

As more states establish Energy Efficiency Resource Standards (EERS), goals for energy efficiency savings are increasing across the country. Increasingly, states are relying on their industrial energy efficiency programs to find and help implement those savings. Historically, industrial energy efficiency programs have not been completely effective at finding those savings, in large part because the programs have not been flexible enough to accommodate the heterogeneous needs and unique characteristics of the industrial sector. This paper will discuss the state of industrial energy efficiency programs today. Relying on an ACEEE-administered survey of 35 industrial energy efficiency programs, we will determine current trends and challenges, address emerging needs, and identify best practices in the administration of today's industrial efficiency programs. The paper will serve as an update on industrial energy efficiency program activities and discuss the ways in which today's programs are trying to serve their industrial clients better.

Chittum, A.; Kaufman, N.; Elliot, N.

2010-01-01T23:59:59.000Z

164

Hot Dry Rock Geothermal Energy Development Program  

DOE Green Energy (OSTI)

During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

1989-12-01T23:59:59.000Z

165

"Recovery Act: Training Program Development for Commercial Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training Program Development for Commercial Training Program Development for Commercial Building Equipment Technicians, Building Operators, and Energy Commissioning Agents/Auditors" "Recovery Act: Training Program Development for Commercial Building Equipment Technicians, Building Operators, and Energy Commissioning Agents/Auditors" A report detailling the Recovery Act: training program development for commercial building equipment technicians, building operators, and energy commissioning agents/auditors. "Recovery Act: Training Program Development for Commercial Building Equipment Technicians, Building Operators, and Energy Commissioning Agents/Auditors" More Documents & Publications Microsoft Word - FOA cover sheet.doc Microsoft Word - kDE-FOA-0000090.rtf Recovery Act: Wind Energy Consortia between Institutions of Higher Learning

166

Recipient: 1997 Leadership Award  

Science Conference Proceedings (OSTI)

Citation: "For her outstanding leadership in policy setting national materials ... the U.S. Department of Energy, and steering committees of the National Science...

167

Leadership | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership Melanie A. Kenderdine Director of the Office of Energy Policy and Systems Analysis Melanie A. Kenderdine joined the Department of Energy as Director of the Office of...

168

Gender Diversity in Corporate Leadership  

E-Print Network (OSTI)

te NOVEMBER 2011 Gender Diversity in Corporate Leadershipin that greater gender diversity in top leadership positions23). GREATER GENDER DIVERSITY IN TOP LEADERSHIP POSITIONS OF

McLean, Lindsey

2011-01-01T23:59:59.000Z

169

Austria-Program on Technologies for Sustainable Development | Open Energy  

Open Energy Info (EERE)

Austria-Program on Technologies for Sustainable Development Austria-Program on Technologies for Sustainable Development Jump to: navigation, search Name Austria-Program on Technologies for Sustainable Development Agency/Company /Organization Nachhaltig Wirtschaften Sector Energy Focus Area Renewable Energy Topics Background analysis, Technology characterizations Website http://www.nachhaltigwirtschaf Country Austria UN Region Western Europe References Program on Technologies for Sustainable Development[1] Background "This initiative has been developed by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT). It initiates and supports trendsetting research and development projects and the implementation of exemplary pilot projects." Objectives "*New opportunities for the economy

170

NIST, UM Program To Support Nanotech Development  

Science Conference Proceedings (OSTI)

... National Institute of Standards and Technology (NIST) and the University of Maryland (UM) have joined in a $1.5 million cooperative program that ...

2013-08-13T23:59:59.000Z

171

Ohio Coal Research and Development Program (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio Coal Research and Development Program (Ohio) Ohio Coal Research and Development Program (Ohio) Ohio Coal Research and Development Program (Ohio) < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools Program Info Funding Source Ohio Development Services Agency State Ohio Program Type Grant Program Provider Ohio Development Services Agency The Ohio Coal Development Office invests in the development and implementation of technologies that can use Ohio's vast reserves of coal in an economical, environmentally sound manner. Projects are identified through public solicitations and may include technologies that improve combustion efficiencies, remove various pollutants from emissions, develop productive uses for the by-products of combustion, and investigate new uses

172

Federal Energy Management Program: Develop an Institutional Change Action  

NLE Websites -- All DOE Office Websites (Extended Search)

Develop an Develop an Institutional Change Action Plan for Sustainability to someone by E-mail Share Federal Energy Management Program: Develop an Institutional Change Action Plan for Sustainability on Facebook Tweet about Federal Energy Management Program: Develop an Institutional Change Action Plan for Sustainability on Twitter Bookmark Federal Energy Management Program: Develop an Institutional Change Action Plan for Sustainability on Google Bookmark Federal Energy Management Program: Develop an Institutional Change Action Plan for Sustainability on Delicious Rank Federal Energy Management Program: Develop an Institutional Change Action Plan for Sustainability on Digg Find More places to share Federal Energy Management Program: Develop an Institutional Change Action Plan for Sustainability on AddThis.com...

173

Public Sector Procurement: Issues in Program Development & Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Sector Procurement: Issues in Program Development & Delivery Public Sector Procurement: Issues in Program Development & Delivery Title Public Sector Procurement: Issues in Program Development & Delivery Publication Type Report LBNL Report Number LBNL-6015E Year of Publication 2012 Authors Payne, Christopher T., and Andrew Weber Publisher LBNL Abstract The primary intention of this document is to illustrate the key issues and considerations made during the course of implementing a sustainable procurement program. Our primary sources of information have been our partners in the Super Efficient Equipment and Appliance Deployment (SEAD) Initiative Procurement Working Group. Where applicable, we have highlighted specific ways in which working group participants have successfully overcome these barriers. It is our hope that the issues discussed in this book will benefit developed and developing programs alike. In countries with less developed sustainable procurement programs, we hope that the discussions contained in the document will aid in the planning process. In addition, we hope that consideration of some of these key issues in the beginning stages of program implementation will help avoid some of the pitfalls experienced by more mature programs. In the case of more developed programs, we hope this book will spur conversation among those responsible for administering and evaluating sustainable procurement programs. In many cases, developed programs are seeking to improve existing processes and develop more effective purchaser resources.

174

Summary Report: Systematic IPT Integration in Lean Development Programs  

E-Print Network (OSTI)

This document provides a summary report of the M.I.T. Masters Thesis, "Systematic IPT Integration in Lean Development Programs" by Tyson R. Browning. These studies argue for the inclusion of program integration principles ...

Browning, Tyson R.

175

Associate Directorate of Plutonium Science and Manufacturing Workforce Development Program  

E-Print Network (OSTI)

Associate Directorate of Plutonium Science and Manufacturing Workforce Development Program Issue No elements address workforce challenges faced by a Pu Enterprise Environment with a focus on Pu Sustainment. The Plutonium Science & Manufacturing Summer Student Program (PSMSSP) supports the Laboratory's need

176

Florida International University Science and Technology Workforce Development Program  

Energy.gov (U.S. Department of Energy (DOE))

The DOE-Florida International University (FIU) Science and Technology Workforce Development Program is an innovative grant program between DOE-EM and FIU's Applied Research Center designed to...

177

Guidelines for Developing an Operator Excellence Program  

Science Conference Proceedings (OSTI)

This guide explains the elements of a power plant operator excellence program along with how these elements can be combined to create the program. The elements consist of the following: regulatory (for example, environmental and Occupational Safety and Health Administration (OSHA)), pre-qualification (for example, adult basic skills training), technical training, hands-on training, and post-qualification.

2001-12-13T23:59:59.000Z

178

Argonne Leadership Computing Facility  

E-Print Network (OSTI)

on constant Q surface. (Credit: Anurag Gupta/GE Global) www.alcf.anl.gov The Leadership Computing Facility Division operates the Argonne Leadership Computing Facility -- the ALCF -- as part of the U.S. Department.......................................................................................... 63 2010 ALCF Projects ............................................................................ 64

Kemner, Ken

179

The Argonne Leadership Computing  

E-Print Network (OSTI)

Leadership Computing Facility (ALCF) was created and exists today as a preeminent global resource t y #12;Argonne Leadership Computing Facility ALCF Continues a Tradition of Computing Innovation--a tradition that continues today at the ALCF. The seedbed for such groundbreaking software as MPI, PETSc, PVFS

Kemner, Ken

180

Baseline Gas Turbine Development Program. Fourteenth quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a Baseline Gas Turbine Development Program sponsored by the Heat Engine Systems Branch, Division of Transportation Energy Conservation (TEC) of the Energy Research and Development Administration (ERDA). Structurally, this program is made up of three parts: (1) documentation of the existing automotive gas turbine state-of-the-art; (2) conduction of an extensive component improvement program; and (3) utilization of the improvements in the design, and building of an Upgraded Engine capable of demonstrating program goals.

Schmidt, F W; Wagner, C E

1976-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Better Buildings Neighborhood Program: Step 7: Develop a Marketing Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

7: 7: Develop a Marketing Plan to someone by E-mail Share Better Buildings Neighborhood Program: Step 7: Develop a Marketing Plan on Facebook Tweet about Better Buildings Neighborhood Program: Step 7: Develop a Marketing Plan on Twitter Bookmark Better Buildings Neighborhood Program: Step 7: Develop a Marketing Plan on Google Bookmark Better Buildings Neighborhood Program: Step 7: Develop a Marketing Plan on Delicious Rank Better Buildings Neighborhood Program: Step 7: Develop a Marketing Plan on Digg Find More places to share Better Buildings Neighborhood Program: Step 7: Develop a Marketing Plan on AddThis.com... Getting Started Driving Demand Set Goals & Objectives Create an Evaluation Plan Conduct Audience Research Identify Target Audiences & Behavior Changes

182

Thailand-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Thailand-Low Emissions Asian Development (LEAD) Program Thailand-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Thailand-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Thailand South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

183

Nepal-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Nepal-Low Emissions Asian Development (LEAD) Program Nepal-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Nepal-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Nepal Southern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

184

Vietnam-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Vietnam-Low Emissions Asian Development (LEAD) Program Vietnam-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Vietnam-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Vietnam South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

185

Malaysia-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Malaysia-Low Emissions Asian Development (LEAD) Program Malaysia-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Malaysia-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Malaysia South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

186

Philippines-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Philippines-Low Emissions Asian Development (LEAD) Program Philippines-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Philippines-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Philippines South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

187

Laos-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Laos-Low Emissions Asian Development (LEAD) Program Laos-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Laos-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Laos South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

188

Bangladesh-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Bangladesh-Low Emissions Asian Development (LEAD) Program Bangladesh-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Bangladesh-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Bangladesh Southern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

189

Perceptions of Leadership and Student Performance in Science From Campus Leaders in Selected High Schools  

E-Print Network (OSTI)

This naturalistic study focused on the perceptions of leadership and student performance in science from campus leaders in three purposefully selected secondary campuses of ninth through twelfth grades. Each school had experienced an improvement in student passing rates on the science TAKS test that exceeded the state?s percent improvement in passing rates for the past three years and had a record of improving science TAKS scores for the period of 2003 to 2008 exceeding fifteen percentage points. The qualitative research technique of multi-case studies design was used. Data was collected through semi-structured, in-depth interviews with four campus leaders from each of the selected schools. These campus leaders included campus administrators, science department chairs, and grade-level team leaders. A framework of transformational leadership was utilized in the analysis of the data generated from the interviews. The perception from the campus leaders was that leadership has a positive impact on student success in science. The findings indicated perceptions of leadership from the campus leaders had certain leadership practices in common. These included (a) clear vision and goals from the campus principal, (b) high performance expectations for teachers and students from administrators and science department leaders, (c) encouragement and support from campus administrators and science department leaders to develop new programs to address problem areas, (d) emphasis on collaborative teams, and (e) open door policy from administrators.

Wilder, Sharon

2010-05-01T23:59:59.000Z

190

ICPP waste management technology development program  

SciTech Connect

A program has been implemented at the Idaho Chemical Processing Plant (ICPP) to identify technologies for disposing of sodium-bearing liquid radioactive waste, radioactive calcine, and irradiated spent fuel stored at the Idaho National Engineering Laboratory (INEL). The sodium bearing waste and calcine, have resulted from ICPP reprocessing operations conducted since 1953. The irradiated spent fuel consists of various fuel compositions and ranges from complete fuel elements to fuel pieces for which no reprocessing flowsheet had been identified. The program includes a very strong systems analysis program to assure complete consideration of all issues (technical, economic, safety, environmental, etc.) affecting final disposal of the waste and spent fuel. A major goal of the program is to assure the final implementation is environmentally acceptable, ensures public and worker safety, and is economically feasible.

Hogg, G.W.; Olson, A.L.; Knecht, D.A. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Bonkoski, M.J. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

1993-06-01T23:59:59.000Z

191

Program Development Plan and Team up  

DOE Green Energy (OSTI)

The final summary report is a comprehensive view of TEAM-UP, with documented data, information, and experiences that SEPA has collected throughout the program, including lessons learned by participating ventures, and sections covering costs and other information on both large and small systems. This report also covers the barriers that TEAM-UP faced to PV commercialization at the beginning of the program, barriers the project was able to remove or reduce, and what barriers remain on the road ahead.

Solar Electric Power Association

2001-12-01T23:59:59.000Z

192

Programs | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Featured Science Slice of the translationally-invariant proton hexadecapole density of the ground state of 8Li, Nuclear Structure and Nuclear Reactions James Vary Allocation...

193

Nuclear Safety Research and Development Program Operating Plan | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Operating Plan Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating plan outlines the mission, goals, and processes for the Department of Energy's (DOE) Nuclear Safety Research & Development (NSR&D) Program. This first version of the operating plan also discusses the startup phase of the program. NSR&D involves a systematic search for knowledge to advance the fundamental understanding of nuclear safety science and technology through scientific study, analysis, modeling, and experiments. Maintaining an effective NSR&D program will support DOE and the National Nuclear Security Administration (NNSA) in standards development, validation of analytical models and

194

Economic Development for a Growing Economy Tax Credit Program (Illinois) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Development for a Growing Economy Tax Credit Program Economic Development for a Growing Economy Tax Credit Program (Illinois) Economic Development for a Growing Economy Tax Credit Program (Illinois) < Back Eligibility Agricultural Commercial Construction Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Illinois Program Type Corporate Tax Incentive Provider Illinois Department of Commerce and Economic Opportunity The Economic Development for a Growing Economy Tax Credit Program encourages companies to remain, expand, or locate in Illinois. The program provides tax credits to qualifying companies equal to the amount of state income taxes withheld from salaries for newly created jobs. A company must

195

Lighting Development, Adoption, and Compliance Guide BUILDING TECHNOLOGIES PROGRAM I  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Development, Adoption, and Compliance Guide BUILDING TECHNOLOGIES PROGRAM I Lighting Development, Adoption, and Compliance Guide BUILDING TECHNOLOGIES PROGRAM I Lighting BUILDING TECHNOLOGIES PROGRAM Development, Adoption, and Compliance Guide Lighting BUILDING TECHNOLOGIES PROGRAM September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 | PNNL-SA-90653 Development, Adoption, and Compliance Guide 3.3 Exterior Lighting Controls ...........................................................................24 3.3.1 Dusk to Dawn Controls ...............................................................................25 3.3.2 Lighting Power Reduction Controls ........................................................25 3.3.3 Parking Garage Controls ............................................................................26

196

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Appendix D - Project Evaluation Form Multi-Year Research, Development and Demonstration Plan Page D- 1 DOE Hydrogen Program 2011 Annual Merit Review Project Evaluation Form...

197

Residential Code Development | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Code Development Subscribe to updates To receive news and updates about code development activities subscribe to the BECP Mailing List. The model residential building...

198

Biofuels Feedstock Development Program annual progress report for 1991  

DOE Green Energy (OSTI)

This report provides an overview of the ongoing research funded in 1991 by the Department of Energy's Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

1992-12-01T23:59:59.000Z

199

Biofuels Feedstock Development Program annual progress report for 1991  

DOE Green Energy (OSTI)

This report provides an overview of the ongoing research funded in 1991 by the Department of Energy`s Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

1992-12-01T23:59:59.000Z

200

Light Water Reactor Sustainability Research and Development Program Plan -- Fiscal Year 20092013  

SciTech Connect

Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to declineeven with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary this year. U.S. regulators have begun considering extended operations of nuclear power plants and the research needed to support long-term operations. The Light Water Reactor Sustainability (LWRS) Research and Development (R&D) Program, developed and sponsored by the Department of Energy, is performed in close collaboration with industry R&D programs. The purpose of the LWRS R&D Program is to provide technical foundations for licensing and managing long-term, safe and economical operation of the current operating nuclear power plants. The LWRS R&D Program vision is captured in the following statements: Existing operating nuclear power plants will continue to safely provide clean and economic electricity well beyond their first license- extension period, significantly contributing to reduction of United States and global carbon emissions, enhancement of national energy security, and protection of the environment. There is a comprehensive technical basis for licensing and managing the long-term, safe, economical operation of nuclear power plants. Sustaining the existing operating U.S. fleet also will improve its international engagement and leadership on nuclear safety and security issues.

Idaho National Laboratory

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Light Water Reactor Sustainability Research and Development Program Plan -- Fiscal Year 2009201/span>3  

Science Conference Proceedings (OSTI)

Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to declineeven with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary this year. U.S. regulators have begun considering extended operations of nuclear power plants and the research needed to support long-term operations. The Light Water Reactor Sustainability (LWRS) Research and Development (R&D) Program, developed and sponsored by the Department of Energy, is performed in close collaboration with industry R&D programs. The purpose of the LWRS R&D Program is to provide technical foundations for licensing and managing long-term, safe and economical operation of the current operating nuclear power plants. The LWRS R&D Program vision is captured in the following statements: Existing operating nuclear power plants will continue to safely provide clean and economic electricity well beyond their first license- extension period, significantly contributing to reduction of United States and global carbon emissions, enhancement of national energy security, and protection of the environment. There is a comprehensive technical basis for licensing and managing the long-term, safe, economical operation of nuclear power plants. Sustaining the existing operating U.S. fleet also will improve its international engagement and leadership on nuclear safety and security issues.

Idaho National Laboratory

2009-12-01T23:59:59.000Z

202

Leadership | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About Us » Leadership About Us » Leadership Leadership David G. Huizenga Senior Advisor, Office of Environmental Management President Obama designated David G. Huizenga as the Acting Assistant Secretary for the Office of Environmental Management, effective July 20, 2011. More about Senior Advisor Huizenga Tracy Mustin Principal Deputy Assistant Secretary for Environmental Management Tracy Mustin has been the Principal Deputy Assistant Secretary for Environmental Management since August 2011. In this capacity, she is responsible for the policy direction, management, and execution of the Department of Energy's nuclear cleanup portfolio. More about Principal Deputy Assistant Secretary Mustin Alice C. Williams Associate Principal Deputy Assistant Secretary for Environmental Management

203

ORNL Global Change and Developing Country Programs | Open Energy  

Open Energy Info (EERE)

ORNL Global Change and Developing Country Programs ORNL Global Change and Developing Country Programs (Redirected from Global Change and Developing Country Programs) Jump to: navigation, search Logo: Global Change and Developing Country Programs Name Global Change and Developing Country Programs Agency/Company /Organization Oak Ridge National Laboratory Sector Energy Website http://www.esd.ornl.gov/eess/g References Global Change [1] "For more than twenty years, ORNL has been active in energy and environmental collaborations with developing countries. Projects have involved more than forty countries in Africa, Asia, Eastern Europe, Latin America and the Caribbean, and the Middle East; and they have included every major kind of energy technology and policy, along with a wide range of environmental technologies and policies." [1]

204

Sandia/DOE geothermal drilling and completion technology development program  

DOE Green Energy (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the US Department of Energy (DOE) has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs 25% by 1982 and 50% by 1986. Sandia Laboratories has managed this technology development program since October 1977, and this paper presents an overview of the program. A statement of program goals and structure is given. The content of the FY-79 program is presented and recent results of R and D projects are given. Plans for development of an advanced drilling and completion system are discussed.

Barnette, J.H.

1979-01-01T23:59:59.000Z

205

Indonesia-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Indonesia-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Indonesia-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Indonesia South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and

206

Nuclear Safety Reserch and Development Program Operating Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Research and Development Safety Research and Development Program Operating Plan Office of Nuclear Safety Office of Health, Safety and Security U.S. Department of Energy June 2012 INTENTIONALLY BLANK NSR&D Program Operating Plan June 2012 Table of Contents 1.0 INTRODUCTION................................................................................................................. 1 2.0 BACKGROUND ................................................................................................................... 1 3.0 OBJECTIVES ....................................................................................................................... 2 4.0 NSR&D PROGRAM PROCESSES .................................................................................... 3

207

Overview of PNGV Battery Development and Test Programs  

SciTech Connect

Affordable, safe, long-lasting, high-power batteries are requisites for successful commercialization of hybrid electric vehicles. The U.S. Department of Energys Office of Advance Automotive Technologies and the Partnership for a New Generation of Vehicles are funding research and development programs to address each of these issues. An overview of these areas is presented along with a summary of battery development and test programs, as well as recent performance data from several of these programs.

Motloch, Chester George; Murphy, Timothy Collins; Sutula, Raymond; Miller, Ted J.

2002-02-01T23:59:59.000Z

208

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT, FEBRUARY 1962  

SciTech Connect

Progress is reported on EBWR, BORAX-V, and development of liquid metal cooled reactors including EBR-I and -II. Developments in general reactor technology are reported in sections on physics, fuels, components, materials, engineering, and chemical separations. Other research and development is reported in advanced systems and nuclear ssfety. (J.R.D.)

1962-02-01T23:59:59.000Z

209

Leadership | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership Leadership Leadership Ingrid Ann Christner Kolb Photo of Ingrid Kolb Director, Office of Management Ingrid Kolb was appointed Director of the Office of Management on December 1, 2005. As the Director she leads an organization comprised of nearly 260 employees with a budget of $55 million. The Office of Management (MA) is the Department of Energy's central management organization providing leadership in such mission critical areas as project and acquisition management. MA also provides direction and policy guidance in support of efforts to reform the Department's management through implementation of the President's Management Agenda. More about Ingrid Kolb Marilyn L. Dillon Marilyn Dillon Director, Office of Resource Management and Planning As Director of the Office of Resource Management and Planning, Ms. Dillon

210

Leadership | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

About Us » Leadership About Us » Leadership Leadership Leadership Eric J. Fygi Deputy General Counsel Eric J. Fygi has served as the Deputy General Counsel since the Department of Energy's founding in October 1977, and periodically has served since then as the Department's Acting General Counsel. Together with the General Counsel, he is responsible to the Secretary of Energy for all the Department's legal affairs and the management of a 100-plus complement of attorneys at the Department's headquarters. More about Eric J. Fygi Gena E. Cadieux Deputy General Counsel for Technology Transfer & Procurement Ms. Cadieux is the Deputy General Counsel for Technology Transfer and Procurement at the United States Department of Energy (DOE). She manages a legal staff responsible for providing legal counsel to the procurement

211

Economic Development Bond Program (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bond Program (Iowa) Bond Program (Iowa) Economic Development Bond Program (Iowa) < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Funding Source Iowa Finance Authority State Iowa Program Type Bond Program Provider Iowa Finance Authority Through its Economic Development Bond Program, the Iowa Finance Authority (IFA) issues tax-exempt bonds on behalf of private entities or organizations for eligible purposes. The responsibility for repayment of the bonds rests with the applicant. Neither IFA nor the State of Iowa has

212

New Leader Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Leader Program New Leader Program New Leader Program Program Overview: The New Leader Program (NLP) is a six-month leadership program designed to develop future public service leaders by providing assessment, experiential learning, and individual development opportunities. The program provides a solid training and development foundation of leadership skills and team building, which are enhanced by agency developmental experiences. The New Leader Program (NLP) is administered by the Graduate School. Nomination Due Date: The nomination package must be received by the nomination deadline. For (NLP 2014-1 January 10, 2014) and (For NLP 2014-2 June 27, 2014). In addition, applicants are advised that their organization may have different requirements and different deadline dates

213

Sustainable Development Fund Financing Program (PECO Territory...  

Open Energy Info (EERE)

Unicom merger settlement. That settlement added funding for new wind development, for solar photovoltaics and for renewable energy education, as well as a lump-sum payment and...

214

Status of granular bed filter development program  

SciTech Connect

The objective of this project was to design and develop moving bed granular filters and ceramic candle filters for particulate control from combined cycle systems. Results are described.

Wilson, K.B.; Haas, J.C.; Prudhomme, J.

1995-11-01T23:59:59.000Z

215

Program of Energy Enterprise Development and Investment  

DOE Green Energy (OSTI)

To provide training in enterprise development and technical applications, local partner capacity building, individualized enterprise development services and seed capital investment to catalyze the creation of sustainable renewable energy enterprises that deliver clean energy services to households and businesses in South Africa, Ethiopia and Tanzania.

Christine Eibs Singer

2005-03-11T23:59:59.000Z

216

Development and Implementation of a Program Management Maturity Model  

SciTech Connect

In 2006, Honeywell Federal Manufacturing & Technologies (FM&T) announced an updatedvision statement for the organization. The vision is To be the most admired team within the NNSA [National Nuclear Security Administration] for our relentless drive to convert ideas into the highest quality products and services for National Security by applying the right technology, outstanding program management and best commercial practices. The challenge to provide outstanding program management was taken up by the Program Management division and the Program Integration Office (PIO) of the company. This article describes how Honeywell developed and deployed a program management maturity model to drive toward excellence.

Hartwig, Laura; Smith, Matt

2008-12-15T23:59:59.000Z

217

Federal Energy Management Program Contacts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About the Program » Federal Energy Management Program Contacts About the Program » Federal Energy Management Program Contacts Federal Energy Management Program Contacts October 8, 2013 - 1:32pm Addthis Contact information for the U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) is available for: Leadership Staff Information is also available for: FEMP Field Contacts Federal Financing Specialists National Laboratory Liaisons DOE Sustainability Performance Office. Leadership The FEMP leadership team is composed of the following contacts. Dr. Timothy Unruh Director 202-586-5772 Jerry Dion Strategic Program Development 202-586-9470 Daniel Gore Supervisor, Technology Services 202-586-6477 Brad Gustafson Supervisor, Customer Services 202-586-5865 Hayes Jones Supervisor, Operations 202-586-8873 Schuyler (Skye) Schell

218

AAGEN SES Development Program - Application Deadline | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AAGEN SES Development Program - Application Deadline AAGEN SES Development Program - Application Deadline AAGEN SES Development Program - Application Deadline December 31, 2013 8:00AM EST Course Start/End Date: The training sessions will be held each quarter, the next class will commence in April 2014, and the program will continue through March 2015. Course Type: Classroom Course Location: Washington, D.C. metro area Course Description: The Asian American Government Executives Network (AAGEN) is now accepting applications from anyone interested in this SES Development Program through December 31, 2013. This career enhancing opportunity is available to aspiring SES candidates at the GS-15 equivalent level or higher with at least one year of experience as a supervisor. Twenty applicants will be selected from the federal civil service and four

219

START Program for Renewable Energy Project Development Assistance |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program for Renewable Energy Program for Renewable Energy Project Development Assistance START Program for Renewable Energy Project Development Assistance The Strategic Technical Assistance Response Team (START) Program is part of the DOE Office of Indian Energy effort to assist in the development of tribal renewable energy projects. Through the START Program for Renewable Energy Project Development Assistance, a team of DOE and national laboratory experts will work directly with tribal communities to evaluate project financial and technical feasibility, provide on-going training to community members, and help implement a variety of clean energy projects, including energy storage infrastructure, renewable energy deployment, and energy efficiency. The following projects were selected for the 2013 START Renewable Energy

220

Low Emissions Asian Development (LEAD) Program | Open Energy Information  

Open Energy Info (EERE)

Development (LEAD) Program Development (LEAD) Program (Redirected from Low Emission Asian Development (LEAD) Program) Jump to: navigation, search Name Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Bangladesh, Cambodia, India, Indonesia, Laos, Malaysia, Nepal, Papua New Guinea, Philippines, Thailand, Vietnam Southern Asia, South-Eastern Asia, Southern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia, Southern Asia, Melanesia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

REACTOR DEVELOPMENT PROGRAM, PROGRESS REPORT, MAY 1961  

SciTech Connect

General research and development on water-cooled and sodium-cooled reactors are reported along with specific developments on EBWR, BORAK-V, EBR-I, and EBR-H. Thermal and fast reactor safety studies are summarized in terms of fuel-coolant chemical reactions, kinetics of oxidation and ignition of reactor materials, core meltdown studies, and a sodium vapor pressure furnace. Evaluations were made of improved fast reactors for central station power and of a 50-Mwe Prototype Organic Power Reactor (POPR). Developments in instruments, reactcr fuels and materials, reactor components, heat engineering, separations processes, and advanced reactcrs are discussed. (M.C.G.)

1961-06-15T23:59:59.000Z

222

Fuel Cycle Research and Development Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Corporate Board James C. Bresee, ScD, JD Advisory Board Member Office of Nuclear Energy July 29, 2009 July 29, 2009 Fuel Cycle Research and Development DM 195665 2 Outline...

223

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT, OCTOBER 1962  

SciTech Connect

Technical progress in specific reactor projects and in general engineering research and development is reported. The information is presented in five main sections for each of which a separate abstract was prepared. (J.R.D.)

1962-11-15T23:59:59.000Z

224

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT, MAY 1962  

SciTech Connect

Research progress is reported on water-cooled reactors, liquid-metal- cooled reactors, general reactor technology, plutonium recycle, advanced systems research and development, and nuclear safety. (M.C.G.)

1962-06-15T23:59:59.000Z

225

ICPP Waste Management Technology Development Program  

SciTech Connect

As a result of the decision to curtail reprocessing at the Idaho Chemical Processing Plant (ICPP), a Spent fuel and Waste Management Technology Development plan has been implemented to identify acceptable options for disposing of the (1) sodium-bearing liquid radioactive waste, (2) radioactive calcine, and (3) irradiated spent fuel stored at the Idaho National Engineering Laboratory (INEL). The plan was developed jointly by DOE and WINCO.

Hogg, G.W.; Olson, A.L.; Knecht, D.A. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Bonkoski, M.J. [USDOE, Washington, DC (United States)

1993-01-01T23:59:59.000Z

226

Corporate Entrepreneurship programs : practices and their implications in developing economies  

E-Print Network (OSTI)

Corporate Entrepreneurship is driven by external demands and internal leadership. However, this process is difficult to implement in firms because it often conflicts with the core of corporate activities and the accumulated ...

Teran, Marco (Marco A. Teran Aguilar)

2012-01-01T23:59:59.000Z

227

Recent Developments in Japan's HDR Program  

DOE Green Energy (OSTI)

Japan is one of the most active volcanic countries in the world, and it is understood to have very abundant geothermal energy. In Japan, where only a limited amount of other natural energy resources are domestically available, geothermal energy is one of the nation's purely indigenous energy sources. Its development therefore, has, been anxiously urged. Geothermal energy is classified generally in several types: vapor dominated type resources, which are mainly used to generate electric power, and low grade hydrothermal fluid and hot dry rock type resources, most of which are not used at present in Japan. NEDO, the New Energy and Industrial Technology Development Organization, promotes the technological development of geothermal energy utilization in order to increase the use of this type of energy, particularly in such technical fields as the development of a power plant that uses hydrothermal fluids. This type of plant will enable the effective use for power generation of not only steam, but also geothermal fluid, so as to permit the use of hot water that flows out in great quantities together with useful geothermal steam. The vast volume of geothermal water with medium to high temperature left intact underground will also be possible to utilize. Research themes promoted by NEDO, the Geothermal Energy Technology Department and the budget for FY 1991 (from April 1991 to March 1992) are: (1) Development of 10MW Class Binary Cycle Power Plant ($2.0M); (2) Development of Down-hole Pump ($3.0M); (3) Development of Technology for increasing Geothermal Energy Recovery ($5.9M); (4) Development of Measurement While Drilling System ($0.4M); and (5) Development of Hot Dry Rock Power Generation Technology ($7.1M). The total amount of 18.4 Million dollars is allocated for FY 1991 ($1 = 130 yen). Figure 1 shows the budgets from FY 1990 to 1992 (requested). The total amount of budgets listed above is grouped into ''Technology R & D'' in Figure 1. Figure 1 also shows the budgets for ''Survey & Promotion'' items conducted by NEDO. This paper reviews the history of HDR development in Japan and summarizes the recent development of NEDO's HDR project. Since FY 1985, NEDO has been conducting research to develop basic technologies for hot dry rock geothermal power generation at Hijiori, Okura Village in Yamagata Prefecture. The main purpose of this research is developing a heat extracting circulation system in hot dry rock of depth and temperature similar to those expected for a commercial scale operation. Within this scope, NEDO developed fundamental technologies for creating an artificial geothermal reservoir, establishing hydraulic communication between wells, logging boreholes, observing acoustic emission (AE) events for fracture mapping, evaluating flow through the reservoir, and estimating geothermal heat recovery. In the hot dry rock geothermal project, especially in Japan, it is important to understand how pre-existing fractures affect hydrofracture development. At present, there are a number of methods that can be employed to understand the fractures, but it is necessary to evaluate which are, most appropriate and accurate. Since FY 1989, we have been performing small-scale fracture characterization experiments on-site in I-itate Village, Fukushima Prefecture, where the granite basement rock outcrops.

Yamaguchi, Tsutomu

1992-03-24T23:59:59.000Z

228

Leadership | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Organization » Leadership Organization » Leadership About Organization Organization Chart .pdf file (77KB) Leadership Director of the Office of Science Deputy Director for Science Programs Deputy Director for Field Operations Deputy Director for Resource Management Science Programs Field Operations Resource Management Budget Field Offices Federal Advisory Committees History Scientific and Technical Information Honors & Awards Jobs Brochures, Logos, & Information Resources Contact Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Organization Leadership Print Text Size: A A A RSS Feeds FeedbackShare Page " DOE's science programs provide the technical underpinnings to accomplish the Department's missions and form part of the backbone of basic research

229

Laboratory Directed Research and Development Program FY 2006 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

Sjoreen, Terrence P [ORNL

2007-04-01T23:59:59.000Z

230

Laboratory Directed Research and Development Program FY 2006 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

Sjoreen, Terrence P [ORNL

2007-04-01T23:59:59.000Z

231

Senior Executive Service Candidate Development Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Service Candidate Development Program Service Candidate Development Program Senior Executive Service Candidate Development Program The Office of Learning and Workforce Development coordinates applications for all DOE Federal Employees. Overview The Department of Energy's (DOE) Senior Executive Service (SES) Candidate Development Program (SESCDP) is a critical component of the Department's succession planning strategy for executives. We currently project approximately from 25 to 50 Senior Executive vacancies every year over the next several years. DOE's SESCDP is intended to produce a cadre of SES-ready federal employees capable of being placed non-competitively into SES vacancies. Although successful completion of the SESCDP does not guarantee placement into an SES position, it does result in

232

ORNL Global Change and Developing Country Programs | Open Energy  

Open Energy Info (EERE)

Change and Developing Country Programs Change and Developing Country Programs Jump to: navigation, search Logo: Global Change and Developing Country Programs Name Global Change and Developing Country Programs Agency/Company /Organization Oak Ridge National Laboratory Sector Energy Website http://www.esd.ornl.gov/eess/g References Global Change [1] "For more than twenty years, ORNL has been active in energy and environmental collaborations with developing countries. Projects have involved more than forty countries in Africa, Asia, Eastern Europe, Latin America and the Caribbean, and the Middle East; and they have included every major kind of energy technology and policy, along with a wide range of environmental technologies and policies." [1] References ↑ 1.0 1.1 Global Change Retrieved from

233

Low Emissions Asian Development (LEAD) Program | Open Energy Information  

Open Energy Info (EERE)

Emissions Asian Development (LEAD) Program Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Bangladesh, Cambodia, India, Indonesia, Laos, Malaysia, Nepal, Papua New Guinea, Philippines, Thailand, Vietnam Southern Asia, South-Eastern Asia, Southern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia, Southern Asia, Melanesia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia References LEAD Program[1]

234

Contacts for Geospatial Science Program | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Program CIO Leadership Organization Contact Us Acquisition Administration Cyber Security E-Gov Enterprise Architecture Geospatial Science Program Information...

235

Clean coal technologies: Research, development, and demonstration program plan  

SciTech Connect

The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

Not Available

1993-12-01T23:59:59.000Z

236

Tools for Nanotechnology Education Development Program  

Science Conference Proceedings (OSTI)

The overall focus of this project was the development of reusable, cost-effective educational modules for use with the table top scanning electron microscope (TTSEM). The goal of this project's outreach component was to increase students' exposure to the science and technology of nanoscience.

Dorothy Moore

2010-09-27T23:59:59.000Z

237

DOE's Advanced Coal Research, Development, and Demonstration Program to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Advanced Coal Research, Development, and Demonstration DOE's Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies DOE's Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies March 11, 2009 - 3:18pm Addthis Statement of Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Subcommittee on Energy and Environment, Committee on Science and Technology, U.S. House of Representatives. Thank you, Mr. Chairman and Members of the Committee. I appreciate this opportunity to provide testimony on the U.S. Department of Energy's (DOE's) advanced coal research, development, and demonstration program to develop low-carbon emission coal technologies. Introduction Fossil fuel resources represent a tremendous national asset. An abundance

238

DOE's Advanced Coal Research, Development, and Demonstration Program to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Coal Research, Development, and Demonstration Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies DOE's Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies March 11, 2009 - 3:18pm Addthis Statement of Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Subcommittee on Energy and Environment, Committee on Science and Technology, U.S. House of Representatives. Thank you, Mr. Chairman and Members of the Committee. I appreciate this opportunity to provide testimony on the U.S. Department of Energy's (DOE's) advanced coal research, development, and demonstration program to develop low-carbon emission coal technologies. Introduction Fossil fuel resources represent a tremendous national asset. An abundance

239

Aspiring Leader Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aspiring Leader Program Aspiring Leader Program Aspiring Leader Program Program Overview: The Aspiring Leader Program is a two-month program structured around two, one-week seminars. Classroom learning and self-study assignments allow you to tailor the program to specifically fit your developmental needs. In addition, the program contains several developmental work assignments to be completed outside the classroom. Because teamwork is critical to good management, you are also assigned to a Leadership Development Team during your residential sessions. These teams strengthen leadership and interpersonal skills, stimulate commitment to personal development and provide a forum for exploring and addressing current issues facing supervisors and managers in the federal workplace. Each team will prepare and deliver a one-hour presentation on a

240

Guideline for Developing and Managing an Infrared Thermography (IRT) Program  

Science Conference Proceedings (OSTI)

The Guideline for Developing and Managing an Infrared Thermography Program is an extension of a number of reports addressing the use and benefits of infrared thermography (IRT) as a diagnostic tool. This document expands on more of the technology's intricacies, as well as defining procedures for setting up a comprehensive IRT program.

2001-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Geothermal energy, research, development and demonstration program. Third annual report  

DOE Green Energy (OSTI)

The following topics are covered: the geothermal resource potential in the U.S., national geothermal utilization estimates, the Federal geothermal development strategy and program, Federal progress and achievements FY 1978, regional progress FY 1978, and Federal program plans for FY 1979. (MHR)

Not Available

1979-03-01T23:59:59.000Z

242

17.5 - Program Research and Development Accouncement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 (June 2004) 5 (June 2004) 1 PROGRAM RESEARCH AND DEVELOPMENT ANNOUNCEMENTS Overview This section discusses procedures for the submission, evaluation, and selection for award of proposals offered in response to Program Research and Development Announcements (PRDAs). PRDAs are issued by DOE to conduct research, development, and related activities in the energy field. Background PRDAs are competitive solicitations for research, development, and related projects in specified areas of interest. They differ from traditional research and development acquisition solicitations which seek the best technical/cost approach to a specific problem. Under PRDAs, it is contemplated that multiple awards will be made covering a variety of areas of interest with a

243

Collaborative development of Estonian nuclear master's program  

Science Conference Proceedings (OSTI)

In 2009 Estonia approved the National Development Plan for the Energy Sector, including the nuclear energy option. This can be realized by construction of a nuclear power plant (NPP) in Estonia or by participation in neighboring nuclear projects (e.g., Lithuania and/or Finland). Either option requires the availability of competent personnel. It is necessary to prepare specialists with expertise in all aspects related to nuclear infrastructure and to meet workforce needs (e.g. energy enterprises, public agencies, municipalities). Estonia's leading institutions of higher education and research with the support of the European Social Fund have announced in this context a new nuclear master's curriculum to be developed. The language of instruction will be English. (authors)

Tkaczyk, A. H.; Kikas, A.; Realo, E.; Kirm, M.; Kiisk, M.; Isakar, K.; Suursoo, S.; Koch, R.; Feldbach, E.; Lushchik, A.; Reivelt, K. [Inst. of Physics, Univ. of Tartu, Riia 142, Tartu 51014 (Estonia)

2012-07-01T23:59:59.000Z

244

Information for Development Program (infoDev) | Open Energy Information  

Open Energy Info (EERE)

Development Program (infoDev) Development Program (infoDev) Jump to: navigation, search Logo: Information for Development Program (infoDev) Name Information for Development Program (infoDev) Place Washington DC Coordinates 38.8951118°, -77.0363658° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8951118,"lon":-77.0363658,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

Business and Market Development Program (Newfoundland and Labrador, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

The Business and Market Development Program provides new entrepreneurs and expanding small businesses with funding to help them acquire the necessary expertise to pursue new business ideas and new...

246

Community Economic Development Business Program (Prince Edward Island, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

The Community Economic Development Business (CEDB) program has been created as part of the Prince Edward Island Rural Action Plan to support local investment in innovative Prince Edward Island...

247

PERMITTING LEADERSHIP IN THE UNITED STATES  

SciTech Connect

In accordance with the Southern States Energy Board (SSEB) proposal, as incorporated into NETL/DE-FC26-97FT34199, the objective of this agreement is to streamline the environmental technology permitting process site-to-site, state-to-state, and industry-to-industry to achieve remediation and waste processing faster, better and cheaper. SSEB is working with member Governors, legislators and regulators to build consensus on streamlining the permitting process for new and innovative technologies for addressing the legacy of environmental problems from 50 years of weapons research, development and production. This report reviews mechanisms whereby industry consortiums and the Department of Energy (DOE) have been working with State regulators and other officials in technology deployment decisions within the DOE complex. The historic development of relationships with State regulators is reviewed and the current nature of the relationships examined. The report contains observations from internal DOE reviews as well as recommendations from the General Accounting Office (GAO) and other external organizations. The report discusses reorganization initiatives leading up to a DOE Top-to-Bottom review of the Environmental Management (EM) Program and highlights points of consideration for maintaining effective linkages with State regulators. It notes how the proposed changes will place new demands upon the National Energy Technology Laboratory (NETL) and how NETL can leverage its resources by refocusing existing EM efforts specifically to states that have DOE facilities within their borders (host-states). Finally, the report discusses how SSEB's Permitting Leadership in the United States (PLUS) program can provide the foundation for elements of NETL's technical assistance program that are delivered to regulators and other decision- makers in host-states. As a regional compact commission, SSEB provides important direct linkages to regulators and stakeholders who need technical assistance to evaluate DOE's cleanup plans. In addition, the PLUS program has facilitated the involvement of key regulators from host-states beyond the Southern region.

Ken Nemeth

2002-09-01T23:59:59.000Z

248

Leadership | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leadership Leadership Leadership David Geiser Director and Acting Deputy Director of the Office of Legacy Management Dave Geiser graduated from Cornell University with a bachelor's degree in chemical engineering and received his commission in the U.S. Navy in 1981. He served in the Navy for eight years as a nuclear-trained officer on the USS Daniel Webster and at the Naval Sea Systems Command. After leaving the Navy, Mr. Geiser received a master of engineering administration degree from The George Washington University and joined Science Applications International Corporation. During his three years with SAIC, he spent two years in Paris, France, evaluating European waste management practices. More about Director David Geiser Barbara McNeal Lloyd Director, Office of Business Operations

249

Leadership | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Us » Leadership Us » Leadership Leadership Jonathan Elkind Assistant Secretary for Policy & International Affairs (Acting) Jonathan Elkind serves as Acting Assistant Secretary for the Office of Policy and International Affairs (PI) and has served as the Principal Deputy Assistant Secretary for PI since June 2009. Prior to joining the Energy Department, Mr. Elkind worked as a senior fellow at the Brookings Institution, focusing on energy security and foreign policy issues. He also founded and headed EastLink Consulting, LLC, an independent consultancy focusing on energy, environment, and investment. From 1998 to 2001, Elkind served on the staff of the U.S. More about Acting Assistant Secretary Elkind Andrea Lockwood Deputy Assistant Secretary for Eurasia, Africa, and the Middle East

250

Leadership | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About Us » Leadership About Us » Leadership Leadership Melanie A. Kenderdine Director of the Office of Energy Policy and Systems Analysis Melanie A. Kenderdine joined the Department of Energy as Director of the Office of Energy Policy and Systems Analysis and Energy Counselor to the Secretary in May 2013. Prior to serving in her current role at DOE, Ms. Kenderdine worked as the Executive Director and Associate Director of the MIT Energy Initiative (MITEI). During her six-year tenure at MITEI, she raised over $500 million from industry and private donors for energy research and education, was a member of the research team for MIT's Future of Natural Gas Study, and was the rapporteur and editor for the MITEI Symposium Series. More about Melanie A. Kenderdine Jonathan Pershing Principal Deputy Director of the Office of Energy Policy and Systems

251

Organization of Chinese Americans Federal Leadership Training | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Organization of Chinese Americans Federal Leadership Training Organization of Chinese Americans Federal Leadership Training Organization of Chinese Americans Federal Leadership Training July 18, 2013 2:15PM EDT to July 19, 2013 5:15PM EDT Washington DC The Organization of Chinese Americans (OCA) will hold its Federal Leadership Training (FLT) on July 18-19, 2013, during its National Convention in Washington, D.C. The theme of this year's convention is "Celebrating 40 Years of Advocacy and Empowerment." The FLT is focused on promoting the professional development and continuing education of all employees. This FLT qualifies as training in compliance with 5 U.S.C. chapter 41, and is open to all Federal employees. It will provide training and workshops in a variety of areas including Professional Development, Leadership

252

Algebraic specification and program development by stepwise refinement (Extended Abstract)  

E-Print Network (OSTI)

. Various formalizations of the concept of "refinement step" as used in the formal development of programs from algebraic specifications are presented and compared. 1 Introduction Algebraic specification aims to provide a formal basis to support the systematic development of correct programs from specifications by means of verified refinement steps. Obviously, a central piece of the puzzle is how best to formalize concepts like "specification", "program" and "refinement step". Answers are required that are simple, elegant and general and which enjoy useful properties, while at the same time taking proper account of the needs of practice. Here I will concentrate on the last of these concepts, but first I need to deal with the other two. For "program", I take the usual approach of algebraic specification whereby programs are modelled as many-sorted algebras consisting of a collection of sets of data values together with functions over those sets. This level of abstraction is commens...

Donald Sannella

1999-01-01T23:59:59.000Z

253

Progress in The Lost Circulation Technology Development Program  

DOE Green Energy (OSTI)

Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the US Department of Energy. The goal of the program is to reduce lost circulation costs by 30--50{percent} through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April, 1990--March, 1991. 4 refs., 15 figs., 1 tab.

Glowka, D.A.; Schafer, D.M.; Loeppke, G.E.; Wright, E.K.

1991-01-01T23:59:59.000Z

254

Raciometry J. W. Griffin, Technical Monitor ARM Instrument Development Program  

NLE Websites -- All DOE Office Websites (Extended Search)

J. W. Griffin, Technical Monitor J. W. Griffin, Technical Monitor ARM Instrument Development Program Pacific Northwest Laboratory Richland, Washington the end of FY93 are noted. Fiscal Year 1993 is the third and final year of the initial (3-year) funding cycle for ARM- funded instrument development projects. That is, IDP principal investigators will be required to submit a new proposal in order to be considered for funding beyond September 30, 1993. As for the first funding cycle, continuation proposals will be peer-reviewed and funding awarded on a competitive basis. Goals of the Instrument Development Program The primary goal of the Atmospheric Radiation Measurement (ARM) Instrument Development Program (lOP) is to develop fieldable atmospheric sensing systems which 1) provide a needed atmospheric observation/

255

Integrated demonstrations, integrated programs, and special programs within DOE`s Office of Technology Development  

SciTech Connect

This poster session presents information on integrated demonstrations, integrated programs, and special programs within the EM Office of Technology Development that will accelerate cleanup of sites within the Nuclear Weapons Complex. Presented topics include: Volatile organic compounds in soils and ground water, uranium in soils, underground storage tanks, mixed waste landfills, decontamination and decommissioning, in situ remediation, and separations technology.

Peterson, M.E.; Frank, C.; Stein, S.; Steele, J.

1994-08-01T23:59:59.000Z

256

Information for Development Program (infoDev) Feed | Open Energy  

Open Energy Info (EERE)

for Development Program (infoDev) Feed for Development Program (infoDev) Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP)

257

Clark County Develops On-the-Job Weatherization Training Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark County Develops On-the-Job Weatherization Training Program Clark County Develops On-the-Job Weatherization Training Program Clark County Develops On-the-Job Weatherization Training Program June 9, 2010 - 11:02am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Southwest Washington Workforce Development Council and the State Board of Community and Technical Colleges received over $200,000 under the American Recovery and Reinvestment Act to fund the weatherization training at Clark College There was a classic chicken-or-the-egg moment in Washington State's Clark County last year when officials learned about the million dollars heading their way for additional home energy upgrades. What comes first, weatherization training or jobs? "We knew the Stimulus funds were coming...but there was not a huge

258

An overview of DOE`s wind turbine development programs  

DOE Green Energy (OSTI)

The development of technologically advanced, higher efficiency wind turbines continues to be a high priority activity of the US wind industry. The United States Department of Energy (DOE) is conducting and sponsoring a range of programs aimed at assisting the wind industry with system design, development, and testing. The overall goal is to develop systems that can compete with conventional electric generation for $.05/kWh at 5.8 m/s (13 mph sites) by the mid-1990s and with fossil-fuel-based generators for $.04/kWh at 5.8 m/s sites by the year 2000. These goals will be achieved through several programs. The Value Engineered Turbine Program will promote the rapid development of US capability to manufacture wind turbines with known and well documented records of performance, cost, and reliability, to take advantage of near-term market opportunities. The Advanced Wind Turbine Program will assist US industry to develop and integrate innovative technologies into utility-grade wind turbines for the near-term (mid 1990s) and to develop a new generation of turbines for the year 2000. The collaborative Electric Power Research Institute (EPRI)/DOE Utility Wind Turbine Performance Verification Program will deploy and evaluate commercial-prototype wind turbines in typical utility operating environments, to provide a bridge between development programs currently underway and commercial purchases of utility-grade wind turbines. A number of collaborative efforts also will help develop a range of small systems optimized to work in a diesel hybrid environment to provide electricity for smaller non-grid-connected applications.

Laxson, A; Dodge, D; Flowers, L [National Renewable Energy Lab., Golden, CO (United States); Loose, R; Goldman, P [Dept. of Energy, Washington, DC (United States)

1993-09-01T23:59:59.000Z

259

Fermilab Leadership Institute Integrating Internet, Instruction and  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab Leadership Institute Integrating Fermilab Leadership Institute Integrating Internet, Instruction and Curriculum Online Materials Projects ACT Program Information Example ACT Class Page Example LInC Class Page Please sign up here to be notified of future LInC program opportunities. Fermilab LInC Online is creating a cadre of educational leaders who effectively integrate technology in their classrooms to support engaged learning student investigations on real-world issues. Participants range from classroom teachers and technology coordinators through library media specialists, who create engaged learning projects that incorporate the best uses of technology. The new Fermilab LInC ACT course guides teachers through the process of evaluating, selecting and customizing an inquiry-based online project to

260

Developing and Implementing an Asset Health Management Program  

Science Conference Proceedings (OSTI)

In 2009, the Electric Power Research Institute's (EPRI's) Maintenance Management and Technology program worked with its member companies to develop an overview that described the functionality of a system health management program. Since that time, EPRI and its members have also worked on initiatives that focus on component health management and performance monitoring. To encompass these similar and integrated initiatives, EPRI has more recently focused on the broader concept of asset health management. ...

2011-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Entrepreneurial Programs | Tech Transfer | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic Economic Development | Entrepreneurial Development Programs SHARE Entrepreneurial Development Programs Partnerships staff believes that one of the very best ways to foster economic development in the region and state is to support the creation of new start-ups businesses that can will license ORNL technology and focus on developing commercial applications. We devote significant time on entrepreneurial activities each year, including: Technology Innovation Program - Bridging the Gap - ORNL hosts a major annual celebration of technology commercialization and entrepreneurship called Bridging the Gap. This event is open to the public for registration. The audience has opportunities to hear about promising technology commercialization opportunities, meet with lab leadership and entrepreneurially-minded staff,

262

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT (FOR) JULY 1961  

SciTech Connect

A summary is presented of activities in reactor and general engineering research programs. Discussions are included for developments in EBWR, BORAX-V, ZPR-III. ZPR-VI, ZPR-IX, EBR-I, and EBR-II. Reactor safety studies were performed for fast and thermal reactors. Nuclear technology developments are discussed for applied nuclear and reactor physics, reactor fuels and materials development, heat engineering studies, separations processes, and advanced reactor concepts. (B.O.G.)

1961-08-15T23:59:59.000Z

263

Laboratory directed research and development program, FY 1996  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

1997-02-01T23:59:59.000Z

264

Federal hot dry rock geothermal energy development program: an overview  

DOE Green Energy (OSTI)

The formulation and evolution of the Federal Hot Dry Rock Geothermal Energy Development Program at the Los Alamos Scientific Laboratory are traced. Program motivation is derived from the enormous potential of the resource. Accomplishments to date, including the establishment and evaluation of the 5-MW/sub t/ Phase 1 reservoir at Fenton Hill, NM and various instrument and equipment developments, are discussed. Future plans presented include (1) establishment of a 20- to 50-MW/sub t/ Phase 2 reservoir at Fenton Hill that will be used to demonstrate longevity and, eventually, electric power production and (2) the selection of a second site at which a direct thermal application will be demonstrated.

Nunz, G.J.

1979-01-01T23:59:59.000Z

265

A Structured Approach to Develop Concurrent Programs in UML  

E-Print Network (OSTI)

. This paper presents a methodology to develop synchronization code based on the global invariant (GI) approach in the context of the Unified Process in UML. This approach has the following advantages: (1) it is a formal approach that enables formal verification of programs being developed, (2) the most important activity in the programming process lies at a high level; namely, specification of GIs, (3) GIs are platform independent, and (4) existing GIs may be composed to produce GIs for more complex synchronization. We provide a set of useful GIs which work as basic patterns. Programmers can compose these GIs to produce appropriate GIs for specific applications. 1

Masaaki Mizuno Gurdip; Masaaki Mizuno; Gurdip Singh; Mitchell Neilsen

2000-01-01T23:59:59.000Z

266

Laboratory Directed Research and Development Program Assessment for FY 2007  

SciTech Connect

Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps BNL to respond new scientific opportunities within existing mission areas, as well as to develop new research mission areas in response to DOE and National needs. As the largest expense in BNL's LDRD program is the support graduate students, post-docs, and young scientists, LDRD provides base for continually refreshing the research staff as well as the education and training of the next generation of scientists. The LDRD Program Assessment Report contains a review of the program. The report includes a summary of the management processes, project peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included are a metric of success indicators and Self Assessment.

Looney,J.P.; Fox, K.J.

2008-03-31T23:59:59.000Z

267

Development of an injection augmentation program at the Dixie Valley,  

Open Energy Info (EERE)

an injection augmentation program at the Dixie Valley, an injection augmentation program at the Dixie Valley, Nevada geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Development of an injection augmentation program at the Dixie Valley, Nevada geothermal field Abstract Evaporative cooling at geothermal power plants generally reduces reservoir pressures even if all available geothermal liquids are reinjected. Controlled programs of injecting non geothermal waters directly into reservoirs have been tested or implemented at only four fields, three of them being vapor dominated. At the liquid-dominated Dixie Valley geothermal field an unsuccessful search for a large volume source of warm,chemically desirable fluid for augmentation was conducted.After determining water

268

Ceramic stationary gas turbine development program -- Fifth annual summary  

SciTech Connect

A program is being performed under the sponsorship of the US Department of Energy, Office of Industrial Technologies, to improve the performance of stationary gas turbines in cogeneration through the selective replacement of metallic hot section components with ceramic parts. The program focuses on design, fabrication, and testing of ceramic components, generating a materials properties data base, and applying life prediction and nondestructive evaluation (NDE). The development program is being performed by a team led by Solar Turbines Incorporated, and which includes suppliers of ceramic components, US research laboratories, and an industrial cogeneration end user. The Solar Centaur 50S engine was selected for the development program. The program goals included an increase in the turbine rotor inlet temperature (TRIT) from 1,010 C (1,850 F) to 1,121 C (2,050 F), accompanied by increases in thermal efficiency and output power. The performance improvements are attributable to the increase in TRIT and the reduction in cooling air requirements for the ceramic parts. The ceramic liners are also expected to lower the emissions of NOx and CO. Under the program uncooled ceramic blades and nozzles have been inserted for currently cooled metal components in the first stage of the gas producer turbine. The louvre-cooled metal combustor liners have been replaced with uncooled continuous-fiber reinforced ceramic composite (CFCC) liners. Modifications have been made to the engine hot section to accommodate the ceramic parts. To date, all first generation designs have been completed. Ceramic components have been fabricated, and are being tested in rigs and in the Centaur 50S engine. Field testing at an industrial co-generation site was started in May, 1997. This paper will provide an update of the development work and details of engine testing of ceramic components under the program.

Price, J.R.; Jimenez, O.; Faulder, L.; Edwards, B.; Parthasarathy, V.

1999-10-01T23:59:59.000Z

269

Guiding Principles for Federal Leadership in High-Performance and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guiding Principles for Federal Leadership in High-Performance and Guiding Principles for Federal Leadership in High-Performance and Sustainable Buildings Guiding Principles for Federal Leadership in High-Performance and Sustainable Buildings October 4, 2013 - 4:49pm Addthis The Federal Energy Management Program (FEMP) provides guidance and assistance for compliance with the guiding principles established by the 2006 Federal Leadership in High-Performance and Sustainable Buildings Memorandum of Understanding (MOU), which became mandatory through Executive Order (E.O.) 13423 and reinforced in E.O. 13514. The common set of guiding principles include those for: Integrated design Energy performance Water conservation Materials to help: Reduce the total ownership cost of facilities Improve energy efficiency and water conservation

270

Program plan for molten carbonate fuel-cell systems development  

DOE Green Energy (OSTI)

The purpose of this document is to describe in both programmatic and technical terms the methodology that the US Department of Energy will use to commercialize a molten carbonate fuel cell power plant. Responsibility for the planning and management of the program resides in the molten carbonate fuel cell program office at the Argonne National Laboratory which reports to the Assistant Director for Fuel Cells in the Division of Fossil Fuel utilization of DOE/FE. The actual development of technology is carried out by selected contractors. The technology development phase of the program will culminate with the construction and operation of two demonstration power plants. The first power plant will be an industrial cogeneration plant which will be completed in 1987. The other power plant will be a baseload electric power plant to be completed in 1989.

Not Available

1978-10-27T23:59:59.000Z

271

Laboratory Directed Research and Development Program Assessment for FY 2007  

SciTech Connect

Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Program Assessment Report contains a review of the program. The report includes a summary of the management processes, project peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included are a metric of success indicators and Self Assessment.

Newman,L.; Fox, K.J.

2007-12-31T23:59:59.000Z

272

LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.  

Science Conference Proceedings (OSTI)

Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Program Assessment Report contains a review of the program. The report includes a summary of the management processes, project peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators and Self Assessment.

FOX,K.J.

2006-01-01T23:59:59.000Z

273

NREL: Education Programs - Teacher Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Teacher Programs Teacher Programs Photo of a man and woman working together in a laboratory. They are both wearing safety glasses as they look at a small white box the man is holding. NREL promotes excellence in teaching and learning and contributes to improving critical elements of the science, mathematics, and technology education system. Teachers are offered research and development opportunities to enhance their content knowledge, instructional strategies, and leadership abilities. Visiting Faculty Program (VFP) Visiting Faculty Program (VFP), formerly called Faculty and Student Teams (FaST), seeks to increase the research competitiveness of faculty members and their students at institutions historically underrepresented in the research community in order to expand the workforce vital to the Department

274

HTGR Spent Fuel Treatment Program. HTGR Spent Fuel Treatment Development Program Plan  

SciTech Connect

The spent fuel treatment (SFT) program plan addresses spent fuel volume reduction, packaging, storage, transportation, fuel recovery, and disposal to meet the needs of the HTGR Lead Plant and follow-on plants. In the near term, fuel refabrication will be addressed by following developments in fresh fuel fabrication and will be developed in the long term as decisions on the alternatives dictate. The formulation of this revised program plan considered the implications of the Nuclear Waste Policy Act of 1982 (NWPA) which, for the first time, established a definitive national policy for management and disposal of nuclear wastes. Although the primary intent of the program is to address technical issues, the divergence between commercial and government interests, which arises as a result of certain provisions of the NWPA, must be addressed in the economic assessment of technically feasible alternative paths in the management of spent HTGR fuel and waste. This new SFT program plan also incorporates a significant cooperative research and development program between the United States and the Federal Republic of Germany. The major objective of this international program is to reduce costs by avoiding duplicate efforts.

1984-12-01T23:59:59.000Z

275

Environmental development plan for transportation programs: FY80 update  

DOE Green Energy (OSTI)

This is the second annual update of the environmental development plan (EDP) for transportation programs. It has been prepared as a cooperative effort of the Assistant Secretaries for Conservation and Solar Energy (ASCS) Office of Transportation Programs (CS/TP) and the Environment (ASEV) Office of Environmental Assessments. EDPs identify the ecosystem, resource, physical environment, health, safety, socioeconomic, and environmental control concerns associated with DOE programs. The programs include the research, development, demonstration, and assessment (RDD and A) of 14 transportation technologies and several strategy implementation projects. This EDP update presents a research and assessment plan for resolving any potentially adverse environmental concerns arising from these programs. The EDP process provides a framework for: incorporating environmental concerns into CS/TP planning and decision processes early to ensure they are assigned the same importance as technological, fiscal, and institutional concerns in decision making; resolving environmental concerns concurrently with energy technology and strategy development; and providing a research schedule that mitigates adverse environmental effects through sound technological design or policy analysis. This EDP also describes the status of each environmental concern and the plan for its resolution. Much of ongoing DOE reseirch and technology development is aimed at resolving concerns identified in this EDP. Each EDP is intended to be so comprehensive that no concerns escape notice. Care is taken to include any CS/TP action that may eventually require an Environmental Impact Statement. Because technology demonstration and commercialization tend to raise more environmental concerns than other portions of the transportation program, most of this EDP addresses these concerns.

Saricks, C.L.; Singh, M.K.; Bernard, M.J. III; Bevilacqua, O.M.

1980-09-01T23:59:59.000Z

276

Harvard Medical ScHool Minority Faculty Development Program  

E-Print Network (OSTI)

Harvard Medical ScHool Minority Faculty Development Program training directory 2009-2010 #12 and medical school graduation, you face important decisions regarding internships, post-graduate education and future fellowship training. Harvard Medical School and its affiliated hospitals and research institutions

Church, George M.

277

DOE/NREL Advanced Wind Turbine Development Program  

DOE Green Energy (OSTI)

The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

1993-05-01T23:59:59.000Z

278

Utility Battery Exploratory Technology Development Program report for FY91  

DOE Green Energy (OSTI)

Sandia National Laboratories, Albuquerque, manages the Utility Battery Exploratory Technology Development Program, which is sponsored by the US Department of Energy's Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses and development of rechargeable batteries for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1991. Sodium/Sulfur, Zinc/Bromine, Nickel/Hydrogen, Aluminium/Air and Lead/Acid batteries are evaluated.

Magnani, N.J.; Butler, P.C.; Akhil, A.A.; Braithwaite, J.W.; Clark, N.H.; Freese, J.M.

1991-12-01T23:59:59.000Z

279

Utility Battery Exploratory Technology Development Program report for FY91  

DOE Green Energy (OSTI)

Sandia National Laboratories, Albuquerque, manages the Utility Battery Exploratory Technology Development Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses and development of rechargeable batteries for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1991. Sodium/Sulfur, Zinc/Bromine, Nickel/Hydrogen, Aluminium/Air and Lead/Acid batteries are evaluated.

Magnani, N.J.; Butler, P.C.; Akhil, A.A.; Braithwaite, J.W.; Clark, N.H.; Freese, J.M.

1991-12-01T23:59:59.000Z

280

Austin's Green Building Program: A Tool for Sustainable Development  

E-Print Network (OSTI)

In a new approach to home rating systems, Austin's Green Building Program was designed in 1991 as a marketing approach to encourage builders, architects, and designers to incorporate sustainable building practices, systems, and materials into residential construction. A secondary goal of the program was to encourage "green" business development in the Austin area. A rating system of accumulated points translates to a "sustainability rating" of one to four stars. Four resource areas relating to the home are considered: water, energy, building materials, and solid waste. Seventeen criteria were used to develop points for more than 130 building options listed under the four categories. The criteria for evaluating the options included consideration of the source, process (i.e. from raw material to finished product), use, postlife (recyclability, disposal), integration (with other systems), and difficulty in offering the option. The options are presented in the Green Building Guide, which includes an overview of the program, a discussion of sustainability and local and regional resources, the rating worksheets, and a comprehensive glossary of terns. The Green Building Guide is supplemented by a Sustainable Building Sourcebook which gives more detailed design and source information for each option listed in the Guide. The Green Building Guide is being revised in a simpler format, and the marketing package is being evaluated based upon our experience of the past two years of program operation. The Green Building Program supports participants through general marketing and technical seminars. Response to the Green Building Program has indicated pent-up demand from the market for more environmentally sensitive building practices. Reaction from the building industry has shown a desire for a mechanism to present building and development in a more positive light to an environmentally aware public. The broad acceptance of this strategy was highlighted at the United Nations Conference for Environment and Development (UNCED), called the "Earth Summit," when the Green Building Program was selected as one of twelve finalists worldwide for the United Nations Local Government Honours Programme. The most recent of several awards was the Award for Innovation presented by the Association of Demand Side Management Professionals in November, 1993. This paper will follow the implementation and operation of the Green Building Program, with discussions on the successes, challenges, and modifications of the program since its introduction to the public in early 1992.

Seiter, D. L.

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Science Education Programs | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs Programs Science Education Student Programs Undergraduates Community College Internship (CCI) National Undergraduate Fellowship Program (NUF) Science Undergraduate Laboratory Internship (SULI) Visiting Faculty Program (VFP) High School High School Internship New Jersey Regional Science Bowl PathSci Young Women's Conference in Science, Technology, Engineering & Mathematics K-8 New Jersey Regional Science Bowl Young Women's Conference in Science, Technology, Engineering & Mathematics Science Education Educator Programs Teacher Professional Development CLOuDS: Classroom Leadership: Operating in µ-gravity while Discovering Science Plasma Camp Science Education Outreach Programs Requests Classroom Visits Seminar Series Science on Saturday Lecture Series Community

282

Leadership Philosophy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leadership » Leadership Philosophy Leadership » Leadership Philosophy Leadership Philosophy We are diverse, talented, knowledgeable, and dedicated people committed to public service and to the success of Legacy Management. We are trustworthy stewards of DOE's intergenerational legacy responsibilities and of the American tax dollars. Our full potential is realized through teamwork, respecting each other, promoting open communication and productivity, and supporting creativity and initiative. We trust each other, and we feel responsible for and dedicated to each other's success. Through our leadership and commitment, holding ourselves accountable for producing superior quality products, we - the DOE Office of Legacy Management - can best achieve our shared goals. Each of us shares responsibility for creating a safe work environment with clear goals,

283

Geothermal Energy Research, Development and Demonstration Program. First annual report  

DOE Green Energy (OSTI)

The following are discussed: program achievements and progress, interagency coordination and program management, international cooperation program, non-federal activities, and future program plans. (MHR)

Not Available

1977-04-01T23:59:59.000Z

284

Laboratory Directed Research and Development Program FY98  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

Hansen, T. [ed.; Chartock, M.

1999-02-05T23:59:59.000Z

285

ORNL's Peng wins Fusion Power Associates Leadership Award | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Peng Wins Leadership Award Peng Wins Leadership Award ORNL's Peng wins Fusion Power Associates Leadership Award Morgan McCorkle - August 17, 2010 ORNL's Martin Peng, recipient of Fusion Power Associates' Leadership Award, explains an ITER fusion experiment diagram. OAK RIDGE, Tenn., Aug. 17, 2010 - Martin Peng, a researcher in the Fusion Energy Division of Department of Energy's Oak Ridge National Laboratory, has been selected by the Fusion Power Associates board of directors to receive a 2010 FPA Leadership Award. The FPA Leadership awards have been given annually since 1980 to individuals who have shown outstanding leadership qualities in accelerating the development of fusion as an energy source. The award will be presented at the Fusion Power Associates annual meeting and symposium to be held Dec. 1-2 in Washington, D.C. The FPA board said

286

Laboratory Directed Research and Development Program Activities for FY 2007.  

SciTech Connect

Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of the Strategic Initiatives listed at the LDRD web site. These included support for NSLS-II, RHIC evolving to a quantum chromo dynamics (QCD) lab, nanoscience, translational and biomedical neuroimaging, energy and, computational sciences. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL.

Newman,L.

2007-12-31T23:59:59.000Z

287

Careers | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Specialist As a member of the Argonne Leadership Computing Facilitys (ALCF) High Performance Computing (HPC) team, appointee will participate in the technical operation, support...

288

Educational Technology| Leadership and Implementation.  

E-Print Network (OSTI)

?? The purpose of this study was to evaluate two important aspects of educational technology: leadership and implementation. The research conducted in this study aimed (more)

Galla, Anthony J.

2011-01-01T23:59:59.000Z

289

Leadership Team | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

About ORNL Fact Sheet Brochure Diversity Leadership Team Organization History Environmental Policy Corporate Giving Research Integrity Who we are, aren't Home | ORNL | About ORNL |...

290

The Argonne Leadership Computing Facility 2010 annual report.  

SciTech Connect

Researchers found more ways than ever to conduct transformative science at the Argonne Leadership Computing Facility (ALCF) in 2010. Both familiar initiatives and innovative new programs at the ALCF are now serving a growing, global user community with a wide range of computing needs. The Department of Energy's (DOE) INCITE Program remained vital in providing scientists with major allocations of leadership-class computing resources at the ALCF. For calendar year 2011, 35 projects were awarded 732 million supercomputer processor-hours for computationally intensive, large-scale research projects with the potential to significantly advance key areas in science and engineering. Argonne also continued to provide Director's Discretionary allocations - 'start up' awards - for potential future INCITE projects. And DOE's new ASCR Leadership Computing (ALCC) Program allocated resources to 10 ALCF projects, with an emphasis on high-risk, high-payoff simulations directly related to the Department's energy mission, national emergencies, or for broadening the research community capable of using leadership computing resources. While delivering more science today, we've also been laying a solid foundation for high performance computing in the future. After a successful DOE Lehman review, a contract was signed to deliver Mira, the next-generation Blue Gene/Q system, to the ALCF in 2012. The ALCF is working with the 16 projects that were selected for the Early Science Program (ESP) to enable them to be productive as soon as Mira is operational. Preproduction access to Mira will enable ESP projects to adapt their codes to its architecture and collaborate with ALCF staff in shaking down the new system. We expect the 10-petaflops system to stoke economic growth and improve U.S. competitiveness in key areas such as advancing clean energy and addressing global climate change. Ultimately, we envision Mira as a stepping-stone to exascale-class computers that will be faster than petascale-class computers by a factor of a thousand. Pete Beckman, who served as the ALCF's Director for the past few years, has been named director of the newly created Exascale Technology and Computing Institute (ETCi). The institute will focus on developing exascale computing to extend scientific discovery and solve critical science and engineering problems. Just as Pete's leadership propelled the ALCF to great success, we know that that ETCi will benefit immensely from his expertise and experience. Without question, the future of supercomputing is certainly in good hands. I would like to thank Pete for all his effort over the past two years, during which he oversaw the establishing of ALCF2, the deployment of the Magellan project, increases in utilization, availability, and number of projects using ALCF1. He managed the rapid growth of ALCF staff and made the facility what it is today. All the staff and users are better for Pete's efforts.

Drugan, C. (LCF)

2011-05-09T23:59:59.000Z

291

TEN-YEAR SODIUM-REACTOR DEVELOPMENT PROGRAM  

SciTech Connect

>A 10-year program of development and construction of large-scale, sodium-cooled reactors is summarized. The current state of development of the SGR and its associated components is sufficiently advanced to permit construction of economic plants within the 10-year period. Two advanced Sodium Reactor concepts are presented. A construction program involving two reactor experiments and two full-scale plants with a capacity of 550 Mwe, together with associated development, is estimated to cost 6 million. Of this amount approximately 06 million would be borne by the AEC and the remainder by power utility companies. Escalation and construction loan interest charges are included in these figures. The cost of power from the larger power plant would be approximately 6 mills/kw-hr, based on 1959 dollars. (auth)

1959-04-11T23:59:59.000Z

292

Photovoltaic energy program overview: Fiscal year 1994  

DOE Green Energy (OSTI)

This is the 1994 overview for the Photovoltaic Energy Program. The topics of this overview include cooperative research projects to improve PV systems and develop pre-commercial prototypes of new PV products, expanding understanding of the fundamental mechanisms governing the formation and performance of PV materials, and helping US industry enhance its leadership position in the PV market.

NONE

1995-03-01T23:59:59.000Z

293

Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation. FY 1993 Program Summary  

Science Conference Proceedings (OSTI)

DOE has set a goal to clean up its complex and to bring all sites into compliance with applicable environmental regulations. This initiative is slated for completion by the year 2019. Four years ago there was no coordinated plan for identifying or cleaning these contaminated sites. Since 1989, DOE`s Office of Environmental Restoration and Waste Management has invested time, money, and manpower to establish a wide range of programs to meet this immense challenge. DOE is responsible for waste management and clean up of more than 100 contaminated installations in 36 states and territories. This includes 3,700 sites: over 26,000 acres, with hazardous or radioactive contaminated surface or groundwater, soil, or structures; over 26,000 acres requiring remediation, with the number growing as new sites are defined; 500 surplus facilities awaiting decontamination and decommissioning and approximately 5,000 peripheral properties (residences, businesses) that have soil contaminated with uranium tailings.

Not Available

1993-10-01T23:59:59.000Z

294

Laboratory Directed Research and Development Program FY 2006  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

Hansen (Ed.), Todd

2007-03-08T23:59:59.000Z

295

Laboratory Directed Research and Development Program FY2004  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions periodically under review by the Office of Science Program Offices, such as strategic LDRD projects germane to new research facility concepts and new fundamental science directions.

Hansen, Todd C.

2005-03-22T23:59:59.000Z

296

Laboratory Directed Research and Development Program FY2004  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions periodically under review by the Office of Science Program Offices, such as strategic LDRD projects germane to new research facility concepts and new fundamental science directions.

Hansen, Todd C.

2005-03-22T23:59:59.000Z

297

Laboratory Directed Research and Development Program Activities for FY 2008.  

SciTech Connect

Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts with limited management filtering to encourage the creativity of individual researchers. The competition is open to all BNL staff in programmatic, scientific, engineering, and technical support areas. Researchers submit their project proposals to the Assistant Laboratory Director for Policy and Strategic Planning. A portion of the LDRD budget is held for the Strategic LDRD (S-LDRD) category. Projects in this category focus on innovative R&D activities that support the strategic agenda of the Laboratory. The Laboratory Director entertains requests or articulates the need for S-LDRD funds at any time. Strategic LDRD Proposals also undergo rigorous peer review; the approach to review is tailored to the size and scope of the proposal. These Projects are driven by special opportunities, including: (1) Research project(s) in support of Laboratory strategic initiatives as defined and articulated by the Director; (2) Research project(s) in support of a Laboratory strategic hire; (3) Evolution of Program Development activities into research and development activities; and (4) ALD proposal(s) to the Director to support unique research opportunities. The goals and objectives of BNL's LDRD Program can be inferred fronl the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. To be one of the premier DOE National Laboratories, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and d

Looney,J.P.; Fox, K.

2009-04-01T23:59:59.000Z

298

Laboratory Directed Research and Development Program. Annual report  

SciTech Connect

Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

Ogeka, G.J.

1991-12-01T23:59:59.000Z

299

The DOE Advanced Gas Reactor Fuel Development and Qualification Program  

Science Conference Proceedings (OSTI)

The high outlet temperatures and high thermal-energy conversion efficiency of modular High Temperature Gas-cooled Reactors (HTGRs) enable an efficient and cost effective integration of the reactor system with non-electricity generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300C and 900C. The Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission-product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete, fundamental understanding of the relationship between the fuel fabrication process and key fuel properties, the irradiation and accident safety performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. An overview of the program and recent progress is presented.

David Petti

2010-09-01T23:59:59.000Z

300

EERE Program Management Guide - Appendix F  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F F Model Position Description for Deputy Assistant Secretary for the Office of Technology Development Deputy Assistant Secretary, Office of Technology Development Office of Energy Efficiency and Renewable Energy Introduction The Office of Technology Development provides effective program management leadership for all of the Office of Energy Efficiency and Renewable Energy's (EERE) energy efficiency and renewable energy programs. The Office of Technology Development is led by two Deputy Assistant Secretaries: The Deputy Assistant Secretary for Renewable Energy; and, the Deputy Assistant Secretary for Energy Efficiency. The two Deputy Assistant Secretaries are supported by 10 program offices, one for each EERE program-Solar Energy Technology; Wind and Hydropower Technologies;

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Laboratory directed research and development program FY 1999  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

Hansen, Todd; Levy, Karin

2000-03-08T23:59:59.000Z

302

Laboratory Directed Research and Development Program FY 2001  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

Hansen, Todd; Levy, Karin

2002-03-15T23:59:59.000Z

303

Laboratory Directed Research and Development Program FY 2008 Annual Report  

Science Conference Proceedings (OSTI)

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.

editor, Todd C Hansen

2009-02-23T23:59:59.000Z

304

Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993  

DOE Green Energy (OSTI)

The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

Not Available

1990-07-01T23:59:59.000Z

305

Advanced Turbine Systems Program industrial system concept development  

DOE Green Energy (OSTI)

Solar approached Phase II of ATS program with the goal of 50% thermal efficiency. An intercolled and recuperated gas turbine was identified as the ultimate system to meet this goal in a commercial gas turbine environment. With commercial input from detailed market studies and DOE`s ATS program, Solar redefined the company`s proposed ATS to fit both market and sponsor (DOE) requirements. Resulting optimized recuperated gas turbine will be developed in two sizes, 5 and 15 MWe. It will show a thermal efficiency of about 43%, a 23% improvement over current industrial gas turbines. Other ATS goals--emissions, RAMD (reliability, availability, maintainability, durability), cost of power--will be met or exceeded. During FY95, advanced development of key materials, combustion and component technologies proceeded to the point of acceptance for inclusion in ATS Phase III.

Gates, S.

1995-12-31T23:59:59.000Z

306

MHD magnet technology development program summary, September 1982  

DOE Green Energy (OSTI)

The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references.

Not Available

1983-11-01T23:59:59.000Z

307

Laboratory Directed Research and Development Program FY 2004 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2005-04-01T23:59:59.000Z

308

Laboratory Directed Research and Development Program FY 2004 Annual Report  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2005-04-01T23:59:59.000Z

309

Laboratory Directed Research and Development Program FY 2007 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2008-04-01T23:59:59.000Z

310

Laboratory Directed Research and Development Program FY 2005 Annual Report  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2006-04-01T23:59:59.000Z

311

Laboratory Directed Research and Development Program FY 2007 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2008-04-01T23:59:59.000Z

312

Laboratory Directed Research and Development Program FY 2005 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2006-04-01T23:59:59.000Z

313

Superconducting magnet development program progress report, July 1974--June 1975  

SciTech Connect

During FY 1975, the superconducting magnet development program at the Lawrence Livermore Laboratory was primarily directed toward the development of multifilamentary Nb$sub 3$Sn conductor for large CTR machines. It was secondarily concerned with preliminary work for the MX experiment and with the acquisition of additional testing facilities. Among the significant achievements was the construction and operation of a 27-cm-bore coil to its short-sample limit of 7-T at the windings. The coil was wound with a 100-m length of 67,507- filament Nb$sub 3$Sn conductor. (auth)

Cornish, D.N.; Harvey, A.R.; Nelson, R.L.; Taylor, C.E.; Zbasnik, J.P.

1975-10-24T23:59:59.000Z

314

AEC FUELS AND MATERIALS DEVELOPMENT PROGRAM. Seventh Annual Report.  

SciTech Connect

This report is the seventh annual report of the unclassified portion of the Fuels and Materials Development Programs being conducted by the General Electric Company's Nuclear Materials and Propulsion Operation under Contract AT(40-1)-2847, issued by the Fuels and Materials Branch, Division of Reactor Development and Technology, of the Atomic Energy Commission. This report covers the period from January 31, 1967 to January 31, 1968, and thus also serves as the quarterly progress report for the final quarter of the year.

1968-01-01T23:59:59.000Z

315

Career Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Programs » Career Programs » Career Development Career Development Career Development The career development objective is to produce better employees and maximizing employee potential. DOE Leadership & Career Development Programs can help provide employees with the skills and tools they need to advance in their career. There are 3 instruments that will aid employees through this process: Career Paths, Competency Development, and Skills Assessments & Gap Analysis. Career Paths The employee career path is instrumental in helping organizations and individuals plan for short and long-term development activities. These paths will define the core technical competencies that are mission critical for successful performance at DOE, and each competency description includes

316

Leadership and Leading Indicators Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership Leadership and Leading Indicators Peter S. Winokur, Ph.D., Member Defense Nuclear Facilities Safety Board Thanks to Matt Moury and Doug Minnema August 28, 2008 Objectives * A few thoughts about leadership * Actions taken by leaders * Role of leading indicators * Consider the future August 28, 2008 2 3 Safety Culture Safety culture is an organization's values and behaviors - modeled by its leaders and internalized by its members - that serve to make nuclear safety an overriding priority.* - Dating back to SEN-35-91, it's DOE Policy; - It's perishable; - EFCOG/DOE ISMS Safety Culture Task Team. *INPO, Principles for a Strong Nuclear Safety Culture, November 2004. August 28, 2008 4 Leadership & Mission Top 10 Ways To Know You Have A Safety Culture: * #1 is Leadership - the talk and the walk

317

Biofuels feedstock development program. Annual progress report for 1992  

DOE Green Energy (OSTI)

The Department of Energy`s (DOE`s) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires.

Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Martin, S.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

1993-11-01T23:59:59.000Z

318

[Gas cooled fuel cell systems technology development program  

DOE Green Energy (OSTI)

Objective is the development of a gas-cooled phosphoric acid fuel cell for electric utility power plant application. Primary objectives are to: demonstrate performance endurance in 10-cell stacks at 70 psia, 190 C, and 267 mA/cm[sup 2]; improve cell degradation rate to less than 8 mV/1000 hours; develop cost effective criteria, processes, and design configurations for stack components; design multiple stack unit and a single 100 kW fuel cell stack; design a 375 kW fuel cell module and demonstrate average cell beginning-of-use performance; manufacture four 375-kW fuel cell modules and establish characteristics of 1.5 MW pilot power plant. The work is broken into program management, systems engineering, fuel cell development and test, facilities development.

Not Available

1988-03-01T23:59:59.000Z

319

Recent developments in the hot dry rock geothermal energy program  

DOE Green Energy (OSTI)

In recent years, most of the Hot Dry Rock Programs effort has been focused on the extraction technology development effort at the Fenton Hill test site. The pair of approximately 4000 m wells for the Phase II Engineering System of the Fenton Hill Project have been completed. During the past two years, hydraulic fracture operations have been carried out to develop the geothermal reservoir. Impressive advances have been made in fracture identification techniques and instrumentation. To develop a satisfactory interwellbore flow connection the next step is to redrill the lower section of one of the wells into the fractured region. Chemically reactive tracer techniques are being developed to determine the effective size of the reservoir area. A new estimate has been made of the US hot dry rock resource, based upon the latest geothermal gradiant data. 3 figs.

Franke, P.R.; Nunz, G.J.

1985-01-01T23:59:59.000Z

320

1995 Federal Research and Development Program in Materials Science and Technology  

Science Conference Proceedings (OSTI)

The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The materials R&D program also supports the Administration's specific technological objectives, emphasizing development of affordable, high-performance commercial and military aircraft; ultra-fuel-efficient, low-emissions automobiles that are also safe and comfortable; powerful yet inexpensive electronic systems; environmentally safe products and processes; and a durable building and transportation infrastructure.

None

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Next Generation Nuclear Plant Materials Research and Development Program Plan  

SciTech Connect

The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for managing the R&D program elements; (2) Developing a specific work package for the R&D activities to be performed during each government fiscal year; (3) Reporting the status and progress of the work based on committed deliverables and milestones; (4) Developing collaboration in areas of materials R&D of benefit to the NGNP with countries that are a part of the Generation IV International Forum; and (5) Ensuring that the R&D work performed in support of the materials program is in conformance with established Quality Assurance and procurement requirements. The objective of the NGNP Materials R&D Program is to provide the essential materials R&D needed to support the design and licensing of the reactor and balance of plant, excluding the hydrogen plant. The materials R&D program is being initiated prior to the design effort to ensure that materials R&D activities are initiated early enough to support the design process and support the Project Integrator. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge; thus, new materials and approaches may be required.

G.O. Hayner; R.L. Bratton; R.N. Wright

2005-09-01T23:59:59.000Z

322

LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.  

Science Conference Proceedings (OSTI)

Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2002. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, the LDRD activities have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All Fy 2002 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2003. The BNL LDRD budget authority by DOE in FY 2002 was $7 million. The actual allocation totaled $6.7 million. The following sections in this report contain the management processes, peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators.

FOX,K.J.

2002-12-31T23:59:59.000Z

323

Explosives program development study: Phase 3, Final report  

SciTech Connect

Under the sponsorship of Lawrence Livermore National Laboratory (LLNL) and the Defense Advanced Research Agency (DARPA), The BDM Corporation has been conducting a survey and assessment of the status of research and development in high energy materials, particulary explosives. The objectives of the DARPA Explosives Program Development Study is to provide LLNL and DARPA with: (1) An assessment of the current research and development in high energy materials and an identification of needs for further work; (2) A set of recommendations to address those needs with DARPA (3) A program plan to implement these recommendations. The study consisted of review of papers from the principal high energy materials research and development conferences of 1985 - 1987; personal and telephone interviews with experts in the field in military services and DOE laboratories; review of papers of the ONR detonation symposia; principal technical journals; government reports; and a questionnaire survey of the explosives community for their ranking of research topics in materials. Four principal categories of operational issues and requirements were surveyed: energetic materials; performance; sensitivity/vulnerability; and manufacture and cost factors. These four categories are fully covered. 24 refs.

Hill, M.E.

1988-01-31T23:59:59.000Z

324

Laboratory Directed Research and Development Program Activities for FY 2007.  

SciTech Connect

Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of the Strategic Initiatives listed at the LDRD web site. These included support for NSLS-II, RHIC evolving to a quantum chromo dynamics (QCD) lab, nanoscience, translational and biomedical neuroimaging, energy and, computational sciences. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL.

Newman,L.

2007-12-31T23:59:59.000Z

325

Baseline gas turbine development program. Sixteenth quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program whose goals are to demonstrate an experimental ungraded gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, compact-size American automobile. Initial running of the upgraded engine took place on July 13, 1976. The engine proved to be mechanically sound but was also seriously deficient in power. Principal program effort has therefore been in the area of diagnostic testing and corrective development. To date, three upgraded engines were assembled and two were run in the test cell. Special diagnostic instrumentation was installed on Engine 3 to evaluate the compressor, turbine, and hot engine leakage. Engine airflow, starting characteristics, oil flow/heat rejection/blowby, emissions, leakage, and component performance tests were conducted in this quarter.

Schmidt, F W; Wagner, C E

1976-10-31T23:59:59.000Z

326

Materials Development Program, Ceramic Technology Project addendum to program plan: Cost effective ceramics for heat engines  

DOE Green Energy (OSTI)

This is a new thrust in the Ceramic Technology project. This effort represents an expansion of the program and an extension through FY 1997. Moderate temperature applications in conventional automobile and truck engines will be included along with high-temp. gas turbine and low heat rejection diesel engines. The reliability goals are expected to be met on schedule by end of FY 1993. Ceramic turbine rotors have been run (in DOE`s ATTAP program) for 1000 h at 1370C and full speed. However, the cost of ceramic components is a deterrrent to near-term commercialization. A systematic approach to reducing this cost includes the following elements: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, and testing and data base development. A draft funding plan is outlined. 6 figs, 1 tab.

Not Available

1992-08-01T23:59:59.000Z

327

Materials Development Program, Ceramic Technology Project addendum to program plan: Cost effective ceramics for heat engines  

DOE Green Energy (OSTI)

This is a new thrust in the Ceramic Technology project. This effort represents an expansion of the program and an extension through FY 1997. Moderate temperature applications in conventional automobile and truck engines will be included along with high-temp. gas turbine and low heat rejection diesel engines. The reliability goals are expected to be met on schedule by end of FY 1993. Ceramic turbine rotors have been run (in DOE's ATTAP program) for 1000 h at 1370C and full speed. However, the cost of ceramic components is a deterrrent to near-term commercialization. A systematic approach to reducing this cost includes the following elements: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, and testing and data base development. A draft funding plan is outlined. 6 figs, 1 tab.

Not Available

1992-08-01T23:59:59.000Z

328

Laboratory directed research and development program FY 2003  

SciTech Connect

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

Hansen, Todd

2004-03-27T23:59:59.000Z

329

Recovery Act: Training Program Development for Commercial Building Equipment Technicians  

Science Conference Proceedings (OSTI)

The overall goal of this project has been to develop curricula, certification requirements, and accreditation standards for training on energy efficient practices and technologies for commercial building technicians. These training products will advance industry expertise towards net-zero energy commercial building goals and will result in a substantial reduction in energy use. The ultimate objective is to develop a workforce that can bring existing commercial buildings up to their energy performance potential and ensure that new commercial buildings do not fall below their expected optimal level of performance. Commercial building equipment technicians participating in this training program will learn how to best operate commercial buildings to ensure they reach their expected energy performance level. The training is a combination of classroom, online and on-site lessons. The Texas Engineering Extension Service (TEEX) developed curricula using subject matter and adult learning experts to ensure the training meets certification requirements and accreditation standards for training these technicians. The training targets a specific climate zone to meets the needs, specialized expertise, and perspectives of the commercial building equipment technicians in that zone. The combination of efficient operations and advanced design will improve the internal built environment of a commercial building by increasing comfort and safety, while reducing energy use and environmental impact. Properly trained technicians will ensure equipment operates at design specifications. A second impact is a more highly trained workforce that is better equipped to obtain employment. Organizations that contributed to the development of the training program include TEEX and the Texas Engineering Experiment Station (TEES) (both members of The Texas A&M University System). TEES is also a member of the Building Commissioning Association. This report includes a description of the project accomplishments, including the course development phases, tasks associated with each phase, and detailed list of the course materials developed. A summary of each year's activities is also included.

Leah Glameyer

2012-07-12T23:59:59.000Z

330

Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs-Summary Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 41 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs-Summary Report LR O'Neil TJ Vanderhorst, Jr MJ Assante J Januszewski, III DH Tobey R Leo TJ Conway K Perman July 2013 PNNL- 22641 Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs-Summary Report LR O'Neil TJ Vanderhorst, Jr MJ Assante J Januszewski, III DH Tobey R Leo TJ Conway K Perman Contributors: SGC Panel Members July, 2013 Prepared by: Pacific Northwest National Laboratory and NBISE Secure Power Systems Professional Project Team This document is a summarization of the report, Developing Secure Power Systems

331

Baseline gas turbine development program. Eighteenth quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program whose goals are to demonstrate an experimental upgraded gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, compact-size American automobile. Initial running of the upgraded engine took place on July 13, 1976. The engine proved to be mechanically sound, but was also 43% deficient in power. A continuing corrective development effort has to date reduced the power deficiency to 32%. Compressor efficiency was increased 2 points by changing to a 28-channel diffuser and tandem deswirl vanes; improved processing of seals has reduced regenerator leakage from about 5 to 2.5% of engine flow; a new compressor turbine nozzle has increased compressor turbine stage efficiency by about 1 point; and adjustments to burner mixing ports has reduced pressure drop from 2.8 to 2.1% of engine pressure. Key compressor turbine component improvements are scheduled for test during the next quarterly period. During the quarter, progress was also made on development of the Upgraded Vehicle control system; and instrumentation of the fourth program engine was completed by NASA. The engine will be used for development efforts at NASA LeRC.

Schmidt, F W; Wagner, C E [comps.] [comps.

1977-04-30T23:59:59.000Z

332

Advanced Lighting Program Development (BG9702800) Final Report  

Science Conference Proceedings (OSTI)

The report presents a long-range plan for a broad-based, coordinated research, development and market transformation program for reducing the lighting energy intensities in commercial and residential buildings in California without compromising lighting quality. An effective program to advance lighting energy efficiency in California must be based on an understanding that lighting is a mature field and the lighting industry has developed many specialized products that meet a wide variety of light needs for different building types. Above all else, the lighting field is diverse and there are applications for a wide range of lighting products, systems, and strategies. Given the range of existing lighting solutions, an effective energy efficient lighting research portfolio must be broad-based and diverse to match the diversity of the lighting market itself. The belief that there is one solution--a magic bullet, such as a better lamp, for example--that will propel lighting efficiency across all uses to new heights is, in the authors' opinion, an illusion. A multi-path program is the only effective means to raising lighting efficiency across all lighting applications in all building types. This report presents a list of 27 lighting technologies and concepts (key activities) that could form the basis of a coordinated research and market transformation plan for significantly reducing lighting energy intensities in California buildings. The total 27 key activities into seven broad classes as follows: Light sources; Ballasts; Luminaires; Lighting Controls; Lighting Systems in Buildings; Human Factors and Education. Each of the above technology classes is discussed in terms of background, key activities, and the energy savings potential for the state. The report concludes that there are many possibilities for targeted research, development, and market transformation activities across all sectors of the building lighting industry. A concerted investment by the state to foster efficiency improvements in lighting systems in commercial and residential buildings would have a major positive impact on energy use and environmental quality in California.

Rubinstein, Francis; Johnson, Steve

1998-02-01T23:59:59.000Z

333

Industrial pollution prevention programs in selected developing Asian countries  

SciTech Connect

This paper presents the information on current activities to promote industrial pollution prevention (P2) in five selected Asian economies including Hong Kong, Republic of Korea, the Philippines, ROC in Taiwan, and Thailand. These activities, generally initiated in the last 5 years, are classified into 6 categories: awareness promotion, education and training, information transfer, technology development an demonstration, technical assistance, and financial incentives. Although participation is voluntary, these programs are all important at the early stages of P2 promotion and should be useful in informing industries of the benefit of P2 and helping them identify specific P2 measures as viable environmental management alternatives.

Chiu, Shen-yann [Argonne National Lab., IL (United States)]|[East-West Center, Honolulu, HI (United States)

1995-12-31T23:59:59.000Z

334

Laboratory Directed Research and Development Program, FY 1992  

SciTech Connect

This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

1993-01-01T23:59:59.000Z

335

Next Generation Nuclear Plant Research and Development Program Plan  

DOE Green Energy (OSTI)

The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

None

2005-01-01T23:59:59.000Z

336

Next Generation Nuclear Plant Research and Development Program Plan  

DOE Green Energy (OSTI)

The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

P. E. MacDonald

2005-01-01T23:59:59.000Z

337

Mixed Waste Integrated Program -- Problem-oriented technology development  

SciTech Connect

The Mixed Waste Integrated Program (MWIP) is responding to the need for DOE mixed waste treatment technologies that meet these dual regulatory requirements. MWIP is developing emerging and innovative treatment technologies to determine process feasibility. Technology demonstrations will be used to determine whether processes are superior to existing technologies in reducing risk, minimizing life-cycle cost, and improving process performance. Technology development is ongoing in technical areas required to process mixed waste: materials handling, chemical/physical treatment, waste destruction, off-gas treatment, final forms, and process monitoring/control. MWIP is currently developing a suite of technologies to process heterogeneous waste. One robust process is the fixed-hearth plasma-arc process that is being developed to treat a wide variety of contaminated materials with minimal characterization. Additional processes encompass steam reforming, including treatment of waste under the debris rule. Advanced off-gas systems are also being developed. Vitrification technologies are being demonstrated for the treatment of homogeneous wastes such as incinerator ash and sludge. An alternative to conventional evaporation for liquid removal--freeze crystallization--is being investigated. Since mercury is present in numerous waste streams, mercury removal technologies are being developed.

Hart, P.W.; Wolf, S.W. [Dept. of Energy, Germantown, MD (United States); Berry, J.B. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

1994-12-31T23:59:59.000Z

338

Federal Energy Management Program: Outreach  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Awards for Leadership in Federal Energy Management, and Department of Energy (DOE) Sustainability programs. Energy Action Month: Observed in October of each year, FEMP Energy...

339

Baseline Gas Turbine Development Program. Tenth quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program to demonstrate by 1976 an experimental gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, standard size American automobile. A fuel control system is being developed to allow program evaluation of a very promising low emissions, single stage, fixed geometry proprietary burner. Ceramic regenerators are under test in the free-rotor vehicle, and some have completed 30 hours of performance evaluation. Three-dimensional ceramic regenerator transient thermal and structural analysis programs are operational. Initial friction and wear test fixture results show that zirconium oxide fully stabilized by yttrium oxide is an effective substitute for nickel oxide in a plasma sprayed seal. A preprototype control system was adapted for variable inlet guide vane control in a vehicle installation. An evaluation of the free-rotor accessory drive concept in a vehicle showed no serious mechanical integrity problems. Simplifications are being made to the water injection system; significant metallurgical analysis of observed erosion/corrosion problems was accomplished. Variable inlet guide vane aerodynamic loss characteristics were determined. Generally satisfactory results with linerless insulation are resulting in extended use and application. Pattern work for the upgraded engine housing and the power turbine wheel castings are in process. A computer design analysis of the regenerator drive gears was made, and an analysis was completed of a three peripheral roller regenerator support and drive proposal for the upgraded engine.

Schmidt, F.W.; Wagner, C.E.

1975-04-30T23:59:59.000Z

340

Baseline Gas Turbine Development Program fifth quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program to demonstrate by 1976 an experimental gas turbine powered automobile which meets the 1976 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, standard size American automobile. Baseline engines 5, 6, and 7 were built. Action to correct a 7 percent power deficiency is underway. Two baseline vehicles are operational, with the third ready for engine installation. Measurement of baseline performance and emissions is in process. NASA Lewis has their baseline engine installation operational. They are also assemblying a cold flow power turbine test rig and have made substantial progress in defining upgraded engine aerodynamics. A study was made of sizing the upgraded engine for a compact size vehicle. Chrysler's proprietary linerless insulation was installed into the endurance engine. Evaluation was delayed by a power turbine section failure. Substantial progress was made in Chrysler's proprietary low emissions burner program. Preparations are being made to evaluate the Solar burner. Evaluation of ceramic regenerator cores are in process. A seal development program was initiated. AiResearch has most of the integrated control system preprototype elements defined, and has many key elements under test. Their transient engine simulation model is nearly operational. A compressor turbine wheel disc is being designed utilizing Pratt-Whitney superplastic forging properties. Procurement of two variable inlet guide vane assemblies is about complete. Detail drawings of a Free Rotor vehicle installation are being completed.

Wagner, C.E.

1974-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Vision, Leadership and Commitment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ie w o nl ine at ie w o nl ine at energy.gov/cio Vision, Leadership and Commitment... Enabling the Future through Technology and Information Strategic Plan OCIO FY 2012 - FY 2017 Transformation. Sustainability. Innovation. Teamwork. Partnerships. U.S. Department of energy | office of the Chief information officer | oCio Strategic Plan 3 of 28 table of contents Table of Contents Message from Michael Locatis, Chief Information Officer ���������������������������������������������� 5

342

U.S. Department of Housing and Urban Development PROGRAMS OF HUD  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Housing and Urban Development Housing and Urban Development PROGRAMS OF HUD Major Mortgage, Grant, Assistance, and Regulatory Programs 2013 ii Table of Contents Table of Contents ................................................................................................................ ii Community Planning and Development ............................................................................ 1 Brownfields Economic Development Initiative (BEDI) ........................................................ 1 Capacity Building for Community Development and Affordable Housing .......................... 2 Community Development Block Grants (Disaster Recovery Assistance) ............................. 3 Community Development Block Grants (CDBG) (Entitlement) ........................................... 4

343

Role of nuclear power in the Philippine power development program  

SciTech Connect

The reintroduction of nuclear power in the Philippines is favored by several factors such as: the inclusion of nuclear energy in the energy sector of the science and technology agenda for national development (STAND); the Large gap between electricity demand and available local supply for the medium-term power development plan; the relatively lower health risks in nuclear power fuel cycle systems compared to the already acceptable power systems; the lower environmental impacts of nuclear power systems compared to fossil fuelled systems and the availability of a regulatory framework and trained personnel who could form a core for implementing a nuclear power program. The electricity supply gap of 9600 MW for the period 1993-2005 could be partly supplied by nuclear power. The findings of a recent study are described, as well as the issues that have to be addressed in the reintroduction of nuclear power.

Aleta, C.R. [Philippine Nuclear Research Institite, Quezon City (Philippines)

1994-12-31T23:59:59.000Z

344

Special Applications RTG Technology Program: Thermoelectric module development summary report  

DOE Green Energy (OSTI)

The primary objective of the Special Applications thermoelectric module development program is to design, develop and demonstrate the performance of a module which provides a significant thermoelectric conversion efficiency improvement over available technology for low power, relatively high voltage RTGS intended for terrestrial applications. ``Low power`` can be construed as an RTG power output of 10 watts or less, and ``high voltage`` can be considered as a load voltage of 5 volts or greater. In particular, the effort is to improve the system efficiency characteristic of the state-of-the-art bismuth telluride-based RTG system (e.g., Five-Watt RTG and Half-Watt RTG), typically 3 to 4%, to the range of 6% or better. This increase in efficiency will also permit reductions in the weight and size of RTGs in the low power range.

Brittain, W.M.

1988-09-01T23:59:59.000Z

345

Moving granular-bed filter development program. Topical report  

Science Conference Proceedings (OSTI)

Advanced, coal-based, power plants, such as IGCC and Advanced-PFBC, are currently nearing commercial demonstration. These power plant technologies require hot gas filtration as part of their gas cleaning trains. Ceramic barrier filters are the major filter candidates being developed for these hot gas cleaning applications. While ceramic barrier filters achieve high levels of particle removal, concerns exist for their reliability and operability in these applications. An alternative hot gas filtration technology is the moving granular bed filter. An advanced, moving granular bed filter has been conceived, and early development activities performed by the Westinghouse Electric Corporation, Science and Technology Center. This document reports on the Base Contract tasks performed to resolve the barrier technical issues for this technology. The concept, the Standleg Moving Granular Bed Filter (SMGBF) has a concurrent downward, gas and bed media flow configuration that results in simplified features and improved scaleup feasibility compared to alternative designs. Two modes of bed media operation were assessed in the program: once-through using pelletized power plant waste as bed media, and recycle of bed media via standleg and pneumatic transport techniques. Cold Model testing; high-temperature, high-pressure testing; and pelletization testing using advanced power plant wastes, have been conducted in the program. A commercial, economic assessment of the SMGBF technology was performed for IGCC and Advanced-PFBC applications. The evaluation shows that the barrier technical issues can be resolved, and that the technology is potentially competitive with ceramic barrier filters.

Newby, R.A.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

1994-04-01T23:59:59.000Z

346

Materials Development Program: Ceramic Technology Project bibliography, 1984--1992  

DOE Green Energy (OSTI)

The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

Not Available

1994-03-01T23:59:59.000Z

347

Advanced Turbine Systems (ATS) program conceptual design and product development  

SciTech Connect

Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

1996-08-31T23:59:59.000Z

348

Sustainability Outreach Program Brochure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Health, Safety and Security (HSS) is Health, Safety and Security (HSS) is the Department of Energy's (DOE) central organization responsible for health, safety, environment, and security; providing corporate-level leadership and strategic vision to coordinate and integrate these vital programs. HSS is responsible for policy development and technical assistance; safety analysis; corporate safety and security programs; education and training; complex-wide independent oversight; and enforcement. The Chief Health, Safety and Security Officer advises the Secretary and the Deputy Secretary on all matters related to health, safety and security across the complex. Our Stakeholders Labor Unions/Workers Local Communities/General Public Contractors Universities/Academic Institutions Professional Associations

349

Oak Ridge Leadership Computing Facility  

NLE Websites -- All DOE Office Websites

Oak Ridge Leadership Computing Facility Oak Ridge Leadership Computing Facility The OLCF was established at Oak Ridge National Laboratory in 2004 with the mission of standing up a supercomputer 100 times more powerful than the leading systems of the day. Connect with OLCF Facebook Twitter YouTube Vimeo Search OLCF.ORNL.GOV Home About OLCF Overview Leadership Team Groups Org Chart User Council Careers Visitor Information & Tours Contact Us Leadership Science Biological Sciences Chemistry Computer Science Earth Science Engineering Materials Science Physics 2013 INCITE Projects 2013 ALCC Projects Computing Resources Titan Cray XK7 Eos Lens EVEREST Rhea Sith Smoky Data Management Data Analysis Center Projects Adios CCI eSiMon File System Projects IOTA OpenSFS SWTools XGAR User Support Getting Started System User Guides KnowledgeBase

350

Gender Diversity in Corporate Leadership  

E-Print Network (OSTI)

Female Lead- ership and Gender Equity: Evidence from PlantCSW upda te NOVEMBER 2011 Gender Diversity in CorporateF emale Leadership and Gender Equity: Evi- dence from Plant

McLean, Lindsey

2011-01-01T23:59:59.000Z

351

Leadership and Leading Indicators Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

has to do with casting vision and motivating people." John C. Maxwell August 28, 2008 6 A Call for Leadership Sampling of recent Board-to-DOE letters found *60% had safety...

352

Federal Technical Capabilities Program (FTCP) 2004 Annual Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Technical Capalbility Program Federal Technical Capalbility Program Fiscal Year (FY) 2004 Annual Plan November 20,2003 FTCP Annual Plan. FY 2004 INTRODUCTION The objective of the Federal Technical Capability Program (Program) is to recruit, deploy, develop, and retain Federal personnel with the necessary technical capabilities to safely accomplish the Department's missions and responsibilities. The current Program was formalized in 1998 through Department directives DOE P 426.1, Federal Technical Capability Program for Defense Nuclear Facilities, and DOE M 426. l-l, Federal Technical Capability Manual. The Federal Technical Capability Panel (FTCP) provides leadership in implementing the Program. The FTCP consists of senior technical safety managers representing nuclear facilities,

353

New Member of EM's Leadership Team Envisions Success Following  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Member of EM's Leadership Team Envisions Success Following New Member of EM's Leadership Team Envisions Success Following Reorganization New Member of EM's Leadership Team Envisions Success Following Reorganization February 1, 2012 - 12:00pm Addthis Alice Williams was named EM’s Associate Principal Deputy Assistant Secretary on Jan. 1. Alice Williams was named EM's Associate Principal Deputy Assistant Secretary on Jan. 1. WASHINGTON, D.C. - Alice Williams was named EM's Associate Principal Deputy Assistant Secretary on Jan. 1. Williams recently talked with EM Update about her role in EM's new organizational structure, which is based on a matrix construct and facilitates collaborative decision-making around shared goals and objectives. This structure aims to better align the program to achieve success in the Cold War cleanup. As part of its

354

The photovoltaic market analysis program : background, model development, applications and extensions  

E-Print Network (OSTI)

The purpose of this report is to describe and motivate the market analysis program for photovoltaics that has developed over the last several years. The main objective of the program is to develop tools and procedures to ...

Lilien, Gary L.

1981-01-01T23:59:59.000Z

355

Geothermal technology development program. Annual progress report, October 1981-September 1982  

DOE Green Energy (OSTI)

The status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program is described. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement.

Kelsey, J.R. (ed.)

1983-08-01T23:59:59.000Z

356

Recent reflux receiver developments under the US DOE program  

DOE Green Energy (OSTI)

The United States Department of Energy (DOE) Solar Thermal Program, through Sandia National Laboratories (SNL), is cooperating with industry to commercialize dish-Stirling technology. Sandia and the DOE have actively encouraged the use of liquid metal reflux receivers in these systems to improve efficiency and lower the levelized cost of electricity. The reflux receiver uses two-phase heat transfer as a {open_quotes}thermal transformer{close_quotes} to transfer heat from a parabolic tracking-concentrator to the heater heads of the Stirling engine. The two-phase system leads to a higher available input temperature, lower thermal stresses, longer life, and independent design of the absorber and engine sections. Two embodiments of reflux receivers have been investigated: Pool boilers and heat pipes. Several pool-boiler reflux receivers have been successfully demonstrated on sun at up to 64 kWt throughput at SNL. In addition, a bench-scale device was operated for 7500 hours to investigate materials compatibility and boiling stability. Significant progress has also been made on heat pipe receiver technology. Sintered metal wick heat pipes have been investigated extensively for application to 7.5 kWe and 25 kWe systems. One test article has a massed over 1800 hours of on-sun operation. Another was limit tested at Sandia to 65 kWt throughput. These devices incorporate a nickel-powder thick wick structure with condensate return directly to the wick surface. Circumferential tubular arteries are optionally employed to improve the operating margin. In addition, DOE has begun a development program for advanced wick structures capable of supporting the Utility Scale Joint Venture Program, requiring up to 100 kWt throughput. Promising technologies include a brazed stainless steel powdered metal wick and a stainless steel metal felt wick. Bench-scale testing has been encouraging, and on-sun testing is expected this fall. Prototype gas-fired hybrid solar receivers have also been.

Andraka, C.E.; Diver, R.B.; Moreno, J.B.; Moss, T.A.; Adkins, D.R.

1994-10-01T23:59:59.000Z

357

Baseline gas turbine development program. Seventeenth quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program whose goals are to demonstrate an experimental upgraded gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, compact-size American automobile. Initial running of the upgraded engine took place on July 13, 1976. The engine has proved to be mechanically sound, but has also been seriously deficient in power. Principal program effort has therefore been in the area of diagnostic testing and corrective development. To date, three upgraded engines have been assembled and run in the test cell. Engine 2 was installed in an upgraded vehicle and became operational on January 25, 1977. Special diagnostic instrumentation was installed on Engine 3 to evaluate the compressor, turbine, and hot engine leakage. It was determined that the power deficiency was principally due to problems in the compressor and first stage turbine areas and during this quarter several corrective changes have been initiated. Parts for a fourth engine being built for NASA Lewis have been shipped to NASA for installation of special instrumentation.

Schmidt, F W; Wagner, C E

1977-01-31T23:59:59.000Z

358

FY2000 Progress Report for the Advanced Technology Development Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Advanced Automotive Technologies 1000 Independence Avenue S.W. Washington, D.C. 20585-0121 FY 2000 Progress Report for the Advanced Technology Development Program Energy Efficiency and Renewable Energy Office of Transportation Technologies Office of Advanced Automotive Technologies Energy Management Team Raymond A. Sutula Energy Management Team Leader December 2000 This document highlights work sponsored by agencies of the U.S. Government. Neither the U.S. Government nor any agency, thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

359

National program plan for electric vehicle battery research and development  

SciTech Connect

EVs offer the prospect of reducing US petroleum fuel usage and air pollution in major metropolitan areas. In 1987, DOE-EHP commissioned a two-phase study at INEL to produce a national plan for R D on battery technology -- the limiting component in EVs. The battery assessment phase identified the most-promising'' technologies from a comprehensive list of viable EV batteries. This multi-year R D program plan identifies development schedules, milestones, and tasks directed at resolving the critical technical and economic issues for the most-promising developmental batteries: bipolar lead/acid, flow-through lead/acid, iron/air, lithium/iron sulfide, nickel/iron, sodium/metal chloride, sodium/sulfur, zinc/air, and zinc/bromine. 8 refs., 1 fig., 6 tabs.

Henriksen, G.L.; Douglas, D.L.; Warde, C.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA); Douglas (David L.), Inc., Bloomington, MN (USA); Warde Associates, Inc., Greensboro, NC (USA))

1989-08-01T23:59:59.000Z

360

Northwest Energy Efficient Manufactured Housing Program Specification Development  

SciTech Connect

The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

Hewes, T.; Peeks, B.

2013-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

VARIABLE MODERATOR REACTOR DEVELOPMENT PROGRAM. Quarterly Progress Report No. 1  

SciTech Connect

Development of the boiling water UO/sub 2/ fueled Variable Moderator Reactor (VMR) is conducted under contract for the USAEC. The initiation and progress of work under Phase I of the contract, Physics and Kinetic Analysis and Initial Evaluation,'' and the preparation for Phase II, Critical Experiment and Analysis of Results,'' are reported. A hydrodynamic flow sheet representing the sequence of calculations for the BOCH program was prepared. A preliminary block diagram of the kinetics model of the VMR was prepared. Work is reported on the PUREE code which is designed to give an accurate representation of the physics of the VMR core. A fuel element fabrication speciftcation was prepared and released for quotations. A study was made to select the most appropriate material for void simulation throughout the range of interest in the VMR. (W.D.M.)

1959-08-31T23:59:59.000Z

362

In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy Efficiency In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy Efficiency November 22, 2013 - 10:46am Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's efforts to double our nation's energy productivity by 2030, the Energy Department today recognized aluminum manufacturer Alcoa and steel manufacturer ArcelorMittal for leadership in the Better Buildings, Better Plants Program. As a part of the Better Plants Challenge, Alcoa has demonstrated leadership by setting an ambitious goal to reduce the energy intensity of 29 of its plants by 25 percent by 2020 and sharing strategies and best practices to help other U.S. companies improve their energy efficiency. Additionally, in

363

In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy Efficiency In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy Efficiency November 22, 2013 - 10:46am Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's efforts to double our nation's energy productivity by 2030, the Energy Department today recognized aluminum manufacturer Alcoa and steel manufacturer ArcelorMittal for leadership in the Better Buildings, Better Plants Program. As a part of the Better Plants Challenge, Alcoa has demonstrated leadership by setting an ambitious goal to reduce the energy intensity of 29 of its plants by 25 percent by 2020 and sharing strategies and best practices to help other U.S. companies improve their energy efficiency. Additionally, in

364

Sodium Heat Engine Development Program. Phase 1, Final report  

DOE Green Energy (OSTI)

The Sodium Heat Engine (SHE) is an efficient thermoelectric conversion device which directly generates electricity from a thermally regenerative electrochemical cell that relies on the unique conduction properties of {beta}{double_prime}-alumina solid electrolyte (BASE). Laboratory models of a variety of SHE devices have demonstrated the feasibility and efficiency of the system, engineering development of large prototype devices has been slowed by a series of materials and fabrication problems. Failure of the electrolyte tubes has been a recurring problem and a number of possible causes have been postulated. To address these issues, a two-phase engineering development program was undertaken. This report summarizes the final results of the first phase of the program, which included extensive materials characterization activities, a study of applicable nondestructive evaluation methods, an investigation of possible stress states that would contribute to fracture, and certain operational issues associated with the electromagnetic pumps used in the SHE prototype. Mechanical and microstructural evaluation of commercially obtained BASE tubes revealed that they should be adequate for SHE applications and that sodium exposure produced no appreciable deleterious strength effects. Processing activities to produce a more uniform and smaller grain size for the BASE tubes were completed using isostatic pressing, extrusion, and slip casting. Green tubes were sintered by conventional and microwave plasma methods. Of particular interest is the residual stress state in the BASE tubes, and both analysis and nondestructive evaluation methods were employed to evaluate these stresses. X-ray and neutron diffraction experiments were performed to determine the bulk residual stresses in commercially fabricated BASE tubes; however, tube-to-tube variations and variations among the various methods employed did not allow formulation of a definitive definition of the as-fabricated stress state.

Singh, J.P.; Kupperman, D.S.; Majumdar, S.; Dorris, S.; Gopalsami, N.; Dieckman, S.L.; Jaross, R.A.; Johnson, D.L.; Gregar, J.S.; Poeppel, R.B.; Raptis, A.C.; Valentin, R.A.

1992-01-01T23:59:59.000Z

365

Baseline Gas Turbine Development Program second quaterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program to demonstrate by 1976 an experimental gas turbine powered automobile which meets the 1976 Federal Emissions standards and which is competitive in fuel economy, performance, reliability, and potential manufacturing cost with the conventional piston engine powered, standard size American automobile. Procurement delays have caused engine deliveries to slip one to two months. Assembly of Engine 3 with special instrumentation for NASA and Engine 4 to be used in the first vehicle has commenced. Resolution of some intake design details will complete the vehicle installation design. Other vehicle component and modification efforts are on schedule. Support activity has included: (1) studies and proposals for improving engine fuel economy; (2) ceramic recuperator calculations; (3) cooperation with NASA's program by giving a design review, providing engine drawings, planning and fabricating instrumentation for their engine, and advising them on matters relating to their engine test facilities; (4) refinement of a combustor test procedure; and (5) two ''sixth generation'' vehicle demonstrations. Engine endurance activity has started with the evaluation of a proprietary molded insulation. Limited progress was made in the experimental determination of variable geometry combustor control parameters. Ceramic regenerator specifications were prepared. A sub-contractor for an integrated control system was selected pending approval by the EPA Contract Officer. Design studies in support of the ''Gatorized'' turbine wheel contract are underway. Initial development tests on a rotary nozzle actuator are showing good progress towards achieving fast response times. A limited amount of development of the fuel control still remains before acceleration tests with and without a Free Rotor can be run.

Wagner, C.E.

1973-04-30T23:59:59.000Z

366

Analysis of Remote Sensing Data for Development of I/M Program Evaluation  

E-Print Network (OSTI)

Analysis of Remote Sensing Data for Development of I/M Program Evaluation Protocols Sajal S 48105 Order number: 9A-0633-NAEX #12;Analysis of Remote Sensing Data for Development of I/M Program of Remote Sensing Data for Development of I/M Program Evaluation Protocols 2 226.5 nm in the ultraviolet

Denver, University of

367

Needs assessment for volunteer leadership training among volunteer based organizations in the Bryan/College Station area: an exploratory study  

E-Print Network (OSTI)

A strong volunteer development program is important to the success of volunteer based organizations. Such a program can bolster volunteer recruitment efforts, increase retention of current volunteers, and improve their performance. But, in order for the training to be successful, the training must help the volunteers achieve their personal goals as well as helping the organization achieve its own goals. For this reason a skills approach to leadership was used in this study since it would be beneficial to both the organization and the volunteer. The seven leadership competencies chosen for the study based on the literature review were: (1) identifying problems, (2) gathering information, (3) solving problems in new ways, (4) communicating effectively, (5) understanding other roles in the organization, (6) understanding others attitudes, and (7) adapting behavior to work with others. The purpose of the study was to determine for which of these leadership competencies volunteers at Bryan/College Station nonprofit organizations needed training. To determine this, it was important to first determine the current leadership competencies of local area volunteers and how important each of these competencies were to nonprofit organizations. With this information, it was possible to draw conclusions and determine what areas of volunteer leadership training would be most beneficial to both nonprofits and their volunteers. This study found that all seven leadership competencies chosen were important to the organizations studied. More than eighty percent of organizations asked their volunteers to explicitly or implicitly perform each competency. Furthermore, each competency was rated as either important or very important by at least half of the organizations. Based on the findings, it was concluded that communicating effectively and adapting behavior to work with others were the two most important competencies. At least two thirds of the organizations demonstrated a need for training in these areas. Identifying problems, solving problems in new ways, understanding other roles in the organization, and understanding others attitudes showed a need for training in about half of the organizations. These competencies should be developed, but show less potential for training benefits. Finally, gathering information showed limited need for training.

Snapp, Byron Webster

2008-08-01T23:59:59.000Z

368

Leadership Training, Inter-ethnic Conflict Management, and the Youth: A Case Study of One Non-Governmental Organization (NGO) in Nairobi, Kenya  

E-Print Network (OSTI)

While many non-governmental organizations provide leadership training in inter-ethnic conflict management to Kenyan youth, relatively little is known about what goes into such training. This dissertation is a case study illustrating how the training structure operates. The purpose of this dissertation is to address the challenges associated with youth leadership training in inter-ethnic conflict management, how these challenges are managed, what differences the training makes, and how it is transferred back into the real-life of the youth. To better understand these issues, a two-month qualitative study was conducted divided in two phases involving trainers, youth participants, program designers, and community leaders. Twenty two interviews and 2 focus groups were completed. Results demonstrated four communicative challenges involved in the design of youth leadership training were: (1) audience analysis, (2) material resources, (3) participant challenges, and (4) diversity. Results showed that trainers addressed the communicative challenges by using the following management strategies: needs assessment, financial management, stakeholder education, and dialogue facilitation. The analysis suggested that the conditions that facilitate transfer of training were: participatory models, training organization, and trainee motivation. Similarly, conditions that inhibit training transfer included: resource constraints, youth motivation, environmental conditions, and diversity. Finally, results also suggested that the differences that leadership training made in the lives of the youth were: behavioral transformation, participant input, improved peaceful relationships, and skill development. Successfully managing the communicative challenges in the design and implementation of the training were the main goals of trainers, and the more they took ownership of these goals the more likely the training would be successful. This dissertation suggests that managing the communicative challenges associated with the design and conduct of youth leadership training is the first step to ensuring the training transfer for youth participants and achieving a workable leadership training in inter-ethnic conflict management.

Mbutu, Paul

2012-08-01T23:59:59.000Z

369

Geothermal energy, research, development and demonstration program. Second annual report  

DOE Green Energy (OSTI)

The discussion is presented under the following section headings: executive summary; national geothermal utilization estimates; Federal Geothermal Energy Program objective; Federal Geothermal Energy strategy; Federal Program planning, implementation, and progress monitoring; organization of the report; national progress and achievements; regional progress and accomplishments; fiscal year 1978 activities; federal program activities in fiscal year 1979 and beyond; Appendix A--interagency coordination and program management Interagency Geothermal Coordinating Council (IGCC); and appendix B--international activities.

Not Available

1978-04-01T23:59:59.000Z

370

Baseline Gas Turbine Development Program ninth quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program to demonstrate by 1976 an experimental gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, standard size American automobile. NASA completed the first phase of their baseline engine heat balance tests, and an upgraded engine compressor is being scaled for test. EPA completed their report on vehicle tests including emissions and vehicle performance, and a new endurance engine is on test. Significant development progress was made on both fixed and variable geometry combustors. After 45 hours of engine operation with Vendor A ceramic regenerator, no significant deterioration of the matrix, seals, or elastomeric mount was encountered. Ceramic regenerator stress analysis has commenced. Additional developments in non-nickel oxide regenerator rubbing seals are encouraging. The first preprototype integrated control system is in vehicle operation. Control adaptation for variable inlet guide vanes and water injection is progressing. AiRefrac turbine wheels were verified dimensionally and are being processed for engine testing. Water injection tests with a four nozzle system were run, and additional performance documentation of variable inlet guide vanes was obtained. Linerless insulation is on test in the free rotor engine, the new endurance engine, and a performance engine. The free rotor engine completed test cell checkout and was installed in a vehicle. Vehicle checkout, including a preprototype integrated control, is underway. Detailed specifications of the upgraded engine were written.

Schmidt, C.E.

1975-01-31T23:59:59.000Z

371

NREL: About NREL - Leadership  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Director, Strategic Programs & Partnerships Photo of a man smiling. Mr. Ken Powers Deputy Laboratory Director and Chief Operating Officer The laboratory is managed for...

372

Baseline Gas Turbine Development Program eighth quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program to demonstrate by 1976 an experimental gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, standard size American automobile. Major preparations for engine heat balance tests by NASA were completed. EPA laboratories completed Baseline vehicle emissions, noise, and odor tests. Assembly of the program endurance engine is nearing completion. Test cell evaluation of the government furnished combustor (Solar) verified steady state emissions to be extremely low. Initial engine tests of Vendor A ceramic regenerator cores with an elastomeric drive verified performance predictions. Efforts towards developing a non-nickel oxide regenerator seal show extreme sensitivity to porosity differences between cores of different suppliers. All three preprototype integrated control systems were built. Modifications are being worked out to achieve a stable low speed operation. Two prototype compressor turbine wheels made from the reuseable pattern process are being inspected and processed for testing. The engine housing modified for operation at higher cycle temperatures and pressures was received. The baseline engine converted to free rotor is completing test cell check out. The modified vehicle is ready for engine installation. The upgraded engine characterization was updated to include the latest information on V.I.G.V., rotors, and bearings. The upgraded engine housing is being modeled physically and analytically for design and stress studies. An accessory drive system for the upgraded engine was selected, and a final layout is in process.

Schmidt, C.E.

1974-10-31T23:59:59.000Z

373

Argonne Leadership Computing Facility | www.alcf.anl.gov | info@alcf.anl.gov | (877) 737-8615 Materials Science  

E-Print Network (OSTI)

CONTACT Argonne Leadership Computing Facility | www.alcf.anl.gov | info@alcf.anl.gov | (877) 737 and computational readiness. For more information about ALCC and other programs at the ALCF, visit: http://www.alcf 2012 alcf-alcc_list-0212 ALCC ASCR Leadership Computing Challenge ENERGY U.S. DEPARTMENT OF Argonne

Kemner, Ken

374

Geothermal drilling ad completion technology development program. Semi-annual progress report, April-September 1979  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

Varnado, S.G. (ed.)

1980-05-01T23:59:59.000Z

375

Geothermal drilling and completion technology development program. Annual progress report, October 1979-September 1980  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

Varnado, S.G. (ed.)

1980-11-01T23:59:59.000Z

376

Geothermal drilling and completion technology development program. Quarterly progress report, January-March 1980  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

Varnado, S.G. (ed.)

1980-04-01T23:59:59.000Z

377

Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

Varnado, S.G.

1980-07-01T23:59:59.000Z

378

Geothermal drilling and completion technology development program. Semi-annual progress report, October 1978-March 1979  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drill bits, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

Varnado, S.G. (ed.)

1979-09-01T23:59:59.000Z

379

Geothermal drilling and completion technology development program. Quarterly progress report, October-December 1979  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

Varnado, S.G. (ed.)

1980-01-01T23:59:59.000Z

380

Emergency Medicine in Guyana: Lessons from Developing the Countrys First Degree-conferring Residency Program  

E-Print Network (OSTI)

emergency medicine training program at the University ofterm emergency medicine training programs in low and middle-medicine residency training program. Residency development

Forget, Nicolas Pierre; Rohde, John Paul; Rambaran, Navindranauth; Rambaran, Madan; Wright, Seth Warren

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sandia National Laboratories: About Sandia: Leadership: Information...  

NLE Websites -- All DOE Office Websites (Extended Search)

vision and leadership of Sandia's information technology, information management, and cyber security strategy. The balance between information technology and information...

382

CIVILIAN POWER REACTOR PROGRAM. PART II. ECONOMIC POTENTIAL AND DEVELOPMENT PROGRAM. HEAVY WATER-MODERATED POWER REACTOR  

SciTech Connect

The reactor design which forms the base for the current economic status of D/sub 2/O-moderated reactors was estimated from developments in several reactor programs. However, since a heavy water-moderated reactor was not operated on natural U fuel at power reactor conditions, considerable improvement from this current status can be foreseen. A summary of improvements is presented concerning the concept which would result solely from operation of succeeding generation plants without a parallel development program, and improvements which would result from the successful completion of the development program as presented. One plant size was used in the evaluation of plant potential, with a 300 Mw/sub e/ nominal rating. The boiling D/sub 2/O-cooled, pressure tube direct cycle plant design was used. The current development program is outlined; this work includes several items leading to the long-range development of the concept. (auth)

Hutton, J.H.; Davis, S.A.; Graves, C.C.; Duffy, J.G. comps.

1960-08-19T23:59:59.000Z

383

EERE Program Management Guide - Appendix G  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

G G Model Position Description for EERE Program Managers Program Manager, Office of the Federal Energy Management Program Office of the Deputy Assistant Secretary for Technology Development Office of Energy Efficiency and Renewable Energy (EERE). Introduction The mission of the Federal Energy Management Program (FEMP) is to provide federal leadership to increase the energy security and decrease the environmental impact and cost of government by advancing energy efficiency and water conservation, promoting the use of distributed and renewable energy, and improving utility management decisions at federal sites. FEMP represents and provides the national programmatic expertise in federal facilities energy management, formulates and executes national energy

384

Oak Ridge Leadership Computing Facility Position Paper  

Science Conference Proceedings (OSTI)

This paper discusses the business, administration, reliability, and usability aspects of storage systems at the Oak Ridge Leadership Computing Facility (OLCF). The OLCF has developed key competencies in architecting and administration of large-scale Lustre deployments as well as HPSS archival systems. Additionally as these systems are architected, deployed, and expanded over time reliability and availability factors are a primary driver. This paper focuses on the implementation of the Spider parallel Lustre file system as well as the implementation of the HPSS archive at the OLCF.

Oral, H Sarp [ORNL; Hill, Jason J [ORNL; Thach, Kevin G [ORNL; Podhorszki, Norbert [ORNL; Klasky, Scott A [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL

2011-01-01T23:59:59.000Z

385

Director's Discretionary (DD) Program | Argonne Leadership Computing...  

NLE Websites -- All DOE Office Websites (Extended Search)

is not required. Review Process: Projects must demonstrate a need for high-performance computing resources. Reviewed by ALCF. Application Period: ongoing (available year...

386

Baseline Gas Turbine Development Program twelfth quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program to demonstrate by 1976 an experimental gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, standard size American automobile. The endurance engine was modified to incorporate a power turbine drive to the regenerators in order to simulate free rotor (upgraded) conditions. A portable baseline engine fixture complete with controls, intake, exhaust, and transmission is being assembled for odor evaluation. An additional 502 engine hours were accumulated on ceramic regenerators and seals. No core or seal failures were experienced during engine test. Initial fixture tests of zirconia seals show torque levels comparable with nickle oxide seals against the same matrix. An ambient compensation schedule was devised for the upgraded engine integrated control, and the integrated control system specifications were updated. A proposed hydromechanical automotive continuously variable ratio transmission (CVT) was evaluated and approved for preliminary development. Tests of heat rejection to the oil for lined versus linerless insulated engine assemblies indicated no heat loss penalty in omitting the metal liners. A study was made of various power turbine rotor assemblies and a final design was selected. Optimization studies of the two-stage power turbine reduction gears and regenerator spur and worm gears were completed. Initial tests on the fixture for simulating the scaled S-26 upgraded burner have begun.

Schmidt, F W; Wagner, C E

1975-10-31T23:59:59.000Z

387

Arizona strip breccia pipe program: exploration, development, and production  

Science Conference Proceedings (OSTI)

As part of the long-range plans for the Energy Fuels Corporation, they have embarked on one of the most active and aggressive uranium exploration programs in the US. These exploration efforts are located in the northwestern part of Arizona in an area referred to as the Arizona Strip. At a time when the domestic uranium industry is staggering to recover from its worst economic slump, Energy Fuels is spending millions of dollars a year on exploration, development, production, and milling. The reason for Energy Fuels' commitment to uranium exploration and production lies in the ground of Arizona in unique geologic formations called breccia pipes. Some of these structures, generally no more than 300 to 350 ft in diameter, contain uranium that is, on the average, five to ten times richer than ore found elsewhere in the US. The richness of this Arizona ore makes it the only conventionally mined uranium in the US that can compete in today's market of cheaper, high-grade foreign sources. Between January 1980 and December 1986, Energy Fuels has mined more than 10 billion lb of uranium from breccia pipe deposits at an average grade of 0.65% U/sub 3/O/sub 8/. Currently, Energy Fuels is operating six breccia pipe mines, and a plan of operations on a seventh mine has been submitted to the appropriate government agencies for the necessary mining permits.

Mathisen, I.W. Jr.

1987-05-01T23:59:59.000Z

388

Solar energy research and development: program balance. Annex, Volume II  

DOE Green Energy (OSTI)

Each of the seven solar energy technologies that have been assessed in the study are treated: photovoltaic devices, solar thermal power systems, wind energy systems, solar heating and cooling systems, agricultural and industrial heat processes, biomass conversion technologies, and ocean thermal energy conversion systems. A brief technical overview of storage for solar electric technologies is presented and some principles concerning how different levels of success on electrical storage can affect the commercial viability of solar electric options are discussed. A description is given of the solar penetration model that was developed and applied as an analytical tool in the study. This computer model has served the primary purpose of evaluating the competiveness of the solar energy systems in the markets in which they are expected to compete relative to that of the alternative energy sources. This is done under a variety of energy supply, demand, and price conditions. The seven sections treating the solar energy technologies contain discussions on each of six subject areas: description of the technology; economic projections; the potential contribution of the technology in different marketplaces; environmental considerations; international potential; and the present and possible future emphases within the RD and D program. The priority item for each of the technology sections has been the documentation of the economic projections.

None

1978-02-01T23:59:59.000Z

389

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980  

Science Conference Proceedings (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

Kelsey, J.R. (ed.)

1981-03-01T23:59:59.000Z

390

OE Power Systems Engineering Research & Development Program Partnershi...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Federal Energy Management Program (FEMP) to promote and install distributed energy systems at Federal facilities; the Office of Energy Assurance and the Department of Homeland...

391

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

safety. HTAC is tasked with reviewing and making recommendations to the Secretary in an annual report on: * The implementation of programs and activities under Title VIII of...

392

Development of an injection augmentation program at the Dixie...  

Open Energy Info (EERE)

water rights, rehabilitating an irrigation well, and constructing a polyethylene pipeline to a dedicated injector.During the first two years of this program four different...

393

Nuclear Safety Research and Development (NSR&D) Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety (HS-30) Office of Nuclear Safety Home Directives Nuclear and Facility Safety Policy Rules Nuclear Safety Workshops Technical Standards Program Search ...

394

JM to Develop DOE O 470.X, Insider Threat Program  

Directives, Delegations, and Requirements

The Order establishes top-level responsibilities and requirements for DOE's Insider Threat Program, which is intended to deter, detect, and mitigate insider ...

2013-10-17T23:59:59.000Z

395

Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96  

SciTech Connect

This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

Chase, L.

1997-03-01T23:59:59.000Z

396

Creating innovative new media programs: need, challenges, and development framework  

Science Conference Proceedings (OSTI)

This paper presents a framework for creating innovative New Media programs. Demand for traditional Computer Science and Information Technology (CS/IT) programs has gone down in recent years, while new multimedia applications have grown exponentially ... Keywords: creativity, innovation, multimedia education, problem based learning, story-centred curriculum

Nalin K. Sharda

2007-09-01T23:59:59.000Z

397

Metrics Evolution in an Energy Research & Development Program  

Science Conference Proceedings (OSTI)

All technology programs progress through three phases: Discovery, Definition, and Deployment. The form and application of program metrics needs to evolve with each phase. During the discovery phase, the program determines what is achievable. A set of tools is needed to define program goals, to analyze credible technical options, and to ensure that the options are compatible and meet the program objectives. A metrics system that scores the potential performance of technical options is part of this system of tools, supporting screening of concepts and aiding in the overall definition of objectives. During the definition phase, the program defines what specifically is wanted. What is achievable is translated into specific systems and specific technical options are selected and optimized. A metrics system can help with the identification of options for optimization and the selection of the option for deployment. During the deployment phase, the program shows that the selected system works. Demonstration projects are established and classical systems engineering is employed. During this phase, the metrics communicate system performance. This paper discusses an approach to metrics evolution within the Department of Energy's Nuclear Fuel Cycle R&D Program, which is working to improve the sustainability of nuclear energy.

Brent Dixon

2011-08-01T23:59:59.000Z

398

Leadership in Energy and Environmental Design (LEED) Project Profiles |  

Open Energy Info (EERE)

Leadership in Energy and Environmental Design (LEED) Project Profiles Leadership in Energy and Environmental Design (LEED) Project Profiles Jump to: navigation, search Tool Summary Name: Leadership in Energy and Environmental Design (LEED) Project Profiles Agency/Company /Organization: U.S. Green Building Council Sector: Energy Focus Area: Buildings Phase: Create a Vision, Evaluate Options, Develop Goals Resource Type: Case studies/examples User Interface: Website Website: www.usgbc.org/DisplayPage.aspx?CMSPageID=1721 Cost: Free The LEED Project Profile (page) is repository of LEED certified projects which provides profiles for specific projects, including strategies which were included in the project. This page can be used to generate ideas for various building types through a community. Overview The LEED Project Profile (page) is repository of LEED certified projects

399

Papua New Guinea-Low Emissions Asian Development (LEAD) Program | Open  

Open Energy Info (EERE)

Papua New Guinea-Low Emissions Asian Development (LEAD) Program Papua New Guinea-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Papua New Guinea-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Papua New Guinea Melanesia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

400

FUEL CYCLE PROGRAM, A BOILING WATER REACTOR RESEARCH DEVELOPMENT PROGRAM. First Summary Report for March 1959-July 1960  

SciTech Connect

The Fuel Cycle Development Program is a basic development program for boiling and other water technology. It covers the areas of oxide fuel fabrication. irradiation. and examination; the physics of water-moderated reactore; and boiling-water heat transfer and stability. Schedules for the fuel- cycle program were examined. and it was concluded that portions of the Task A program should be conducted during the period May to Dec. 1959 in order to keep costs of the work as low as possible and to allow initiation of the fuel-cycle program at the earliest possible date after the Vallecitos BWR was returned to service. The basis for the scheduling of the work is discussed. and a chronological summary describing the content of the work is given. Technical progress is outlined and details are summarized. Subsequent reports issued monthly and quarterly will summarize the progress of the prognam. (W.D.M.)

Cook, W.H.

1961-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Satellite power system. Concept development and evaluation program  

DOE Green Energy (OSTI)

The Reference System description emphasizes technical and operational information required in support of environmental, socioeconomic, and comparative assessment studies. Supporting information has been developed according to a guideline of implementing two 5 GW SPS systems per year for 30 years beginning with an initial operational data of 2000 and with SPS's being added at the rate of two per year (10 GW/year) until 2030. The Reference System concept, which features gallium--aluminum--arsenide (GaAlAs) and silicon solar cell options, is described in detail. The concept utilizes a planar solar array (about 55 km/sup 2/) built on a graphite fiber reinforced thermoplastic structure. The silicon array uses a concentration ratio of one (no concentration), whereas the GaAlAs array uses a concentration ratio of two. A one-kilometer diameter phased array microwave antenna is mounted on one end. The antenna uses klystrons as power amplifiers with slotted waveguides as radiating elements. The satellite is constructed in geosynchronous orbit in a six-month period. The ground receiving stations (rectenna) are completed during the same time period. The other two major components of an SPS program are (1) the construction bases in space and launch and mission control bases on earth and (2) fleets of various transportation vehicles that support the construction and maintenance operations of the satellites. These transportation vehicles include Heavy Lift Launch Vehicles (HLLV), Personnel Launch Vehicles (PLV), Cargo Orbit Transfer Vehicles (COTV), and Personnel Orbit Transfer Vehicles (POTV). The earth launch site chosen is the Kennedy Space Center, pending further study.

Not Available

1978-10-01T23:59:59.000Z

402

Contact Nonproliferation Program Offices | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press...

403

Building technological capability within satellite programs in developing countries  

E-Print Network (OSTI)

Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are ...

Wood, Danielle Renee

2012-01-01T23:59:59.000Z

404

California Enterprise Development Authority- Statewide PACE Program (California)  

Energy.gov (U.S. Department of Energy (DOE))

FIGTREE Energy Financing is administering a Property Assessed Clean Energy (PACE) financing program in a number of California cities and counties through a partnership with the Pacific Housing &...

405

Geothermal Energy Research and Development Program; Project Summaries  

Science Conference Proceedings (OSTI)

This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

None

1994-03-01T23:59:59.000Z

406

Developing High-Quality Field Program Sounding Datasets  

Science Conference Proceedings (OSTI)

Enormous resources of time, effort, and finances are expended in collecting field program rawinsonde (sonde) datasets. Correcting the data and performing quality control (QC) in a timely fashion after the field phase of an experiment are important for ...

Paul E. Ciesielski; Patrick T. Haertel; Richard H. Johnson; Junhong Wang; Scot M. Loehrer

2012-03-01T23:59:59.000Z

407

Vibration Monitoring and Analysis Program Development: Interim Guideline  

Science Conference Proceedings (OSTI)

This report has been prepared by an EPRI team and will serve as an interim guideline to assist the member utilities in the further improvement of maintenance processes by presenting, in detail, the key elements that should be included in a well-organized vibration monitoring and analysis program, as well as conducting comprehensive vibration program evaluations. This report uses the EPRI Monitoring and Diagnostics Center's "Spider Chart" approach to depict graphic representation of the vibration monitori...

2004-12-22T23:59:59.000Z

408

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, January 1981-March 1981  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods as they apply to advanced drilling systems.

Kelsey, J.R. (ed.)

1981-06-01T23:59:59.000Z

409

Federal Technical Capabilities Program (FTCP) 2005 Annual Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Technical Capability Program Fiscal Year (FY) 2005 Annual Plan January 15, 2005 FTCP Annual Plan, FY 2005 INTRODUCTION The objective of the Federal Technical Capability Program (Program) is to recruit, deploy, develop, and retain Federal personnel with the necessary technical capabilities to safely accomplish the U.S. Department of Energy (also known as the "Department" or DOE) missions and responsibilities. The current Program was formalized in 1998 through Department directives DOE Policy 426.1, Federal Technical Capability Program for Defense Nuclear Facilities, and DOE Manual (M) 426.1-1A, Federal Technical Capability Manual. The Federal Technical Capability Panel (FTCP) provides leadership in implementing the

410

Materials Reliability Program: Pressurized Water Reactor Internals Aging Management Program Development Template (MRP-342)  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Materials Reliability Program (MRP) has completed and published guidance for managing the effects of aging degradation in pressurized water reactor (PWR) internals. The initial version of this report, Materials Reliability Program: Pressurized Water Reactor Internals Inspection and Evaluation Guidelines (MRP-227, Revision 0), was submitted to the staff of the U. S. Nuclear Regulatory Commission (NRC) ...

2012-10-23T23:59:59.000Z

411

Federal Technical Capability Program (FTCP) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assistance » Federal Technical Capability Program Assistance » Federal Technical Capability Program (FTCP) Federal Technical Capability Program (FTCP) Vision For DOE to be a technically proficient enterprise, with federal technical personnel overseeing Defense Nuclear Facilities in a manner that enables and enhances the DOE mission in a technically defensible fashion, while being recognized as preeminent in federal technical leadership and competency. Missions and Functions The Department of Energy is committed to developing and maintaining a technically competent workforce to accomplish its missions in a safe and efficient manner. The Federal Technical Capability Program (FTCP) provides for the recruitment, deployment, development, and retention of Federal personnel with the demonstrated technical capability to safely

412

Better Buildings Neighborhood Program: Step 3: Develop Plans...  

NLE Websites -- All DOE Office Websites (Extended Search)

Financing Workforce Development Step 3: Develop Plans of Action Process Mapping for Problem Solving Austin Energy's detailed planning process was critical to the successful...

413

Director's Discretionary Research and Development Program: Annual Report, Fiscal Year 2006  

Science Conference Proceedings (OSTI)

The Director's Discretionary Research and Development Program, Annual Report Fiscal Year 2006 is an annual management report that summarizes research projects funded by the DDRD program. The NREL DDRD program comprises projects that strengthen NREL's four technical competencies: Integrated Systems, Renewable Electricity, Renewable Fuels, and Strategic Analysis.

Not Available

2007-03-01T23:59:59.000Z

414

IFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou  

E-Print Network (OSTI)

IFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou chamber technology testing program in NIF involoving: criteria for evaluation prior to NIF testing were addressed in this paper. In order to maximize the benefits of testing program

Abdou, Mohamed

415

NREL Photovoltaic Program FY 1996 Annual Report  

DOE Green Energy (OSTI)

This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

Not Available

1997-08-01T23:59:59.000Z

416

NREL Photovoltaic Program FY 1996 Annual Report  

SciTech Connect

This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

1997-08-01T23:59:59.000Z

417

Web Site: http://www.coop-program.engr.uga.edu/ms.html UGA Cooperative Engineering Program Development Key Points and Notes.docx  

E-Print Network (OSTI)

Web Site: http://www.coop-program.engr.uga.edu/ms.html UGA Cooperative Engineering Program;Web Site: http://www.coop-program.engr.uga.edu/ms.html UGA Cooperative Engineering Program Development can be earned for their degree. #12;Web Site: http://www.coop-program.engr.uga.edu/ms.html UGA

Arnold, Jonathan

418

External Program Review University of Idaho  

E-Print Network (OSTI)

7/20/2012 External Program Review University of Idaho Overview 1 Program review, as it is widely that the University of Idaho "exercise the leadership and coordination necessary for periodic program review

Kyte, Michael

419

Research and Development Programs in HTSE for Automotive ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Recent national R+D programs open up new possibilities for ... targeting synergic objectives and building up long-term, strategic partnership for joint .... Half-loop Model for Equilibrium Strain in Tensile and Compressive Layers on InP ... Nanothermites: Unconventional Nanomaterials with High Energy Output .

420

Developing Oregon's renewable energy portfolio using fuzzy goal programming model  

Science Conference Proceedings (OSTI)

Renewable energy continues to be a hot topic in the United States affecting security and sustainability. A model to create renewable energy portfolio is established using guidelines drawn by Oregon's Renewable Portfolio Standard (RPS) legislation with ... Keywords: Fuzzy goal programming, Oregon, Renewable energy portfolio

Tugrul U. Daim; Gulgun Kayakutlu; Kelly Cowan

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "leadership development program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Laboratory Directed Research and Development Program, FY 1995  

Science Conference Proceedings (OSTI)

This program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical nation science and technology problems: accelerators and fusion, chemical sciences, earth sciences, energy and environment, engineering, life sciences, materials, nuclear science, physics, and structural biology (hyperthermophilic microorganisms).

NONE

1995-12-31T23:59:59.000Z

422

EAC Presentation: How DOE is Organized to Provide Leadership on Electricity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EAC Presentation: How DOE is Organized to Provide Leadership on EAC Presentation: How DOE is Organized to Provide Leadership on Electricity Delivery, October 29, 2010 EAC Presentation: How DOE is Organized to Provide Leadership on Electricity Delivery, October 29, 2010 Presentation to the DOE Electricity Advisory Committee on the Department of Energy and the Office of Electricity Delivery and Energy Reliability by the Assistant Secretary Patricia Hoffman on October 29, 2010. How DOE is Organized to Provide Leadership on Electricity Delivery More Documents & Publications Electricity Advisory Committee Meeting Presentations October 2011 - Microgrids Approach for Calculating OE Benefits: Electricity Delivery and Energy Reliability EAC Presentation: Metrics and Benefits Analysis for the ARRA Smart Grid Programs - March 10, 2011

423

ADVANCED SORBENT DEVELOPMENT PROGRAM; DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS  

SciTech Connect

The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.?s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 C (700 F) to 538 C (1000 F) and regeneration tempera-tures up to 760 C (1400 F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent develop-ment at General Electric?s Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

R.E. AYALA; V.S. VENKATARAMANI

1998-09-30T23:59:59.000Z

424

PNNL: About PNNL - Laboratory Leadership  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Leadership Laboratory Leadership PNNL science and technology inspires and enables the world to live prosperously, safely, and securely. Our leaders turn this vision into action, guiding all of PNNL's efforts. They ensure that our multidisciplinary research teams perform safely, securely and sustainably while advancing science and technology to solve the nation's most pressing problems in energy, the environment and national security. Leaders Mike Kluse Photo Mike Kluse PNNL Laboratory Director Mike Kluse establishes the vision and strategic direction of the Laboratory which combines excellence in science and technology, management and operations, and community stewardship. Steve Ashby Photo Steve Ashby Deputy Director of Science & Technology Steve Ashby leads PNNL's strategic planning agenda and stewards efforts to

425

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Page B - 1 Multi-Year Research, Development and Demonstration Plan Page B - 2 Multi-Year Research, Development and Demonstration Plan Page B - 3 Multi-Year Research,...

426

Geothermal Technology Development Program. Annual progress report, October 1983-September 1984  

DOE Green Energy (OSTI)

This report describes the status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program. The work reported is sponsored by the Department of Energy/Geothermal Hydropower Technology Division (DOE/GHTD), with program management provided by Sandia National Laboratories. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement. 102 figs., 16 tabs.

Kelsey, J.R. (ed.)

1985-08-01T23:59:59.000Z

427

Developing neural structure of two agents that play checkers using cartesian genetic programming  

Science Conference Proceedings (OSTI)

A developmental model of neural network is presented and evaluated in the game of Checkers. The network is developed using cartesian genetic programs (CGP) as genotypes. Two agents are provided with this network and allowed to co-evolve untill they start ... Keywords: artificial neural networks, cartesian genetic programming, checkers, co-evolution, computational development

Gul Muhammad Khan; Julian Francis Miller; David M. Halliday

2008-07-01T23:59:59.000Z

428

Work with Apple's Rhapsody Operating System which Allows Simultaneous UNIX Program Development, UNIX Program Execution, and PC Application Execution  

E-Print Network (OSTI)

Over the past decade, UNIX workstations have provided a very powerful program development environment. However, workstations are more expensive than PCs and Macintoshes and require a system manager for day-to-day tasks such as disk backup, adding users, and setting up print queues. Native commercial software for system maintenance and "PC applications" has been lacking under UNIX. Apple's new Rhapsody operating system puts the current MacOS on a NeXT UNIX foundation and adds an enhanced NeXTSTEP object oriented development environment called Yellow Box. Rhapsody simultaneously runs UNIX and commercial Macintosh applications such as word processing or spreadsheets. Thus a UNIX detector Monte Carlo can run for days in the background at the same time as a commercial word processing program. And commercial programs such as Dantz Retrospect are being made available to make disk backup easy under Rhapsody. Apple has announced that in 1999 they intend to be running Rhapsody, or MacOS X as it will be called in the commercial release, on all their newer computers. MacOS X may be of interest to those who have trouble hiring expert UNIX system managers; and to those who would prefer to have a single computer and operating system on their desktop that serves both the needs of UNIX program development and running commercial applications, simultaneously. We present our experiences running UNIX programs and Macintosh applications under the Rhapsody DR2 Developer Release.

Don Summers; Chris Riley; Lucien Cremaldi; David Sanders

2001-05-27T23:59:59.000Z

429

ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS  

SciTech Connect

The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were i