National Library of Energy BETA

Sample records for lcoe levelized cost

  1. Levelized cost of energy (LCOE) metric to characterize solar absorber coatings for the CSP industry

    SciTech Connect (OSTI)

    Boubault, Antoine; Ho, Clifford K.; Hall, Aaron; Lambert, Timothy N.; Ambrosini, Andrea

    2015-07-08

    The contribution of each component of a power generation plant to the levelized cost of energy (LCOE) can be estimated and used to increase the power output while reducing system operation and maintenance costs. The LCOE is used in order to quantify solar receiver coating influence on the LCOE of solar power towers. Two new parameters are introduced: the absolute levelized cost of coating (LCOC) and the LCOC efficiency. Depending on the material properties, aging, costs, and temperature, the absolute LCOC enables quantifying the cost-effectiveness of absorber coatings, as well as finding optimal operating conditions. The absolute LCOC is investigated for different hypothetic coatings and is demonstrated on Pyromark 2500 paint. Results show that absorber coatings yield lower LCOE values in most cases, even at significant costs. Optimal reapplication intervals range from one to five years. At receiver temperatures greater than 700 °C, non-selective coatings are not always worthwhile while durable selective coatings consistently reduce the LCOE—up to 12% of the value obtained for an uncoated receiver. Moreover the absolute LCOC is a powerful tool to characterize and compare different coatings, not only considering their initial efficiencies but also including their durability.

  2. Levelized cost of energy (LCOE) metric to characterize solar absorber coatings for the CSP industry

    SciTech Connect (OSTI)

    Boubault, Antoine; Ho, Clifford K.; Hall, Aaron; Lambert, Timothy N.; Ambrosini, Andrea

    2015-07-08

    The contribution of each component of a power generation plant to the levelized cost of energy (LCOE) can be estimated and used to increase the power output while reducing system operation and maintenance costs. The LCOE is used in order to quantify solar receiver coating influence on the LCOE of solar power towers. Two new parameters are introduced: the absolute levelized cost of coating (LCOC) and the LCOC efficiency. Depending on the material properties, aging, costs, and temperature, the absolute LCOC enables quantifying the cost-effectiveness of absorber coatings, as well as finding optimal operating conditions. The absolute LCOC is investigated for different hypothetic coatings and is demonstrated on Pyromark 2500 paint. Results show that absorber coatings yield lower LCOE values in most cases, even at significant costs. Optimal reapplication intervals range from one to five years. At receiver temperatures greater than 700 °C, non-selective coatings are not always worthwhile while durable selective coatings consistently reduce the LCOE—up to 12% of the value obtained for an uncoated receiver. Moreover the absolute LCOC is a powerful tool to characterize and compare different coatings, not only considering their initial efficiencies but also including their durability.

  3. Levelized cost of energy (LCOE) metric to characterize solar absorber coatings for the CSP industry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boubault, Antoine; Ho, Clifford K.; Hall, Aaron; Lambert, Timothy N.; Ambrosini, Andrea

    2015-07-08

    The contribution of each component of a power generation plant to the levelized cost of energy (LCOE) can be estimated and used to increase the power output while reducing system operation and maintenance costs. The LCOE is used in order to quantify solar receiver coating influence on the LCOE of solar power towers. Two new parameters are introduced: the absolute levelized cost of coating (LCOC) and the LCOC efficiency. Depending on the material properties, aging, costs, and temperature, the absolute LCOC enables quantifying the cost-effectiveness of absorber coatings, as well as finding optimal operating conditions. The absolute LCOC is investigatedmore » for different hypothetic coatings and is demonstrated on Pyromark 2500 paint. Results show that absorber coatings yield lower LCOE values in most cases, even at significant costs. Optimal reapplication intervals range from one to five years. At receiver temperatures greater than 700 °C, non-selective coatings are not always worthwhile while durable selective coatings consistently reduce the LCOE—up to 12% of the value obtained for an uncoated receiver. Moreover the absolute LCOC is a powerful tool to characterize and compare different coatings, not only considering their initial efficiencies but also including their durability.« less

  4. LCOE | OpenEI Community

    Open Energy Info (EERE)

    LCOE Home Kch's picture Submitted by Kch(24) Member 15 July, 2014 - 07:07 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine energy...

  5. LCOE and LACE: Seeking Simplicity

    Gasoline and Diesel Fuel Update (EIA)

    LCOE and LACE Seeking Simplicity Michael Leifman GE Power & Water Marketing Presented to the EIA LCOE/LACE Workshop July 25, 2013 © 2013 General Electric Company. All Rights Reserved 2 GE Power & Water July 25, 2013 A love-hate relationship * We love Levelized Cost of Electricity (LCOE) because it is simple * Everything is boiled down to one number * Provides an easy point of comparison across technologies * Serves as a shorthand for many dimensions BUT * LCOE masks many site-specific

  6. Economic Competitiveness of U.S. Utility-Scale Photovoltaics Systems in 2015: Regional Cost Modeling of Installed Cost ($/W) and LCOE ($/kWh)

    SciTech Connect (OSTI)

    Fu, Ran; James, Ted L.; Chung, Donald; Gagne, Douglas; Lopez, Anthony; Dobos, Aron

    2015-06-14

    Utility-scale photovoltaics (PV) system growth is largely driven by the economic metrics of total installed costs and levelized cost of electricity (LCOE), which differ by region. This study details regional cost factors, including environment (wind speed and snow loads), labor costs, material costs, sales taxes, and permitting costs using a new system-level bottom-up cost modeling approach. We use this model to identify regional all-in PV installed costs for fixed-tilt and one-axis tracker systems in the United States with consideration of union and non-union labor costs in 2015. LCOEs using those regional installed costs are then modeled and spatially presented. Finally, we assess the cost reduction opportunities of increasing module conversion efficiencies on PV system costs in order to indicate the possible economic impacts of module technology advancements and help future research and development (R&D) effects in the context of U.S. SunShot targets.

  7. LCOE Uncertainty Analysis for Hydropower using Monte Carlo Simulations

    SciTech Connect (OSTI)

    Chalise, Dol Raj; O'Connor, Patrick W; DeNeale, Scott T; Uria Martinez, Rocio; Kao, Shih-Chieh

    2015-01-01

    Levelized Cost of Energy (LCOE) is an important metric to evaluate the cost and performance of electricity production generation alternatives, and combined with other measures, can be used to assess the economics of future hydropower development. Multiple assumptions on input parameters are required to calculate the LCOE, which each contain some level of uncertainty, in turn affecting the accuracy of LCOE results. This paper explores these uncertainties, their sources, and ultimately the level of variability they introduce at the screening level of project evaluation for non-powered dams (NPDs) across the U.S. Owing to site-specific differences in site design, the LCOE for hydropower varies significantly from project to project unlike technologies with more standardized configurations such as wind and gas. Therefore, to assess the impact of LCOE input uncertainty on the economics of U.S. hydropower resources, these uncertainties must be modeled across the population of potential opportunities. To demonstrate the impact of uncertainty, resource data from a recent nationwide non-powered dam (NPD) resource assessment (Hadjerioua et al., 2012) and screening-level predictive cost equations (O Connor et al., 2015) are used to quantify and evaluate uncertainties in project capital and operations & maintenance costs, and generation potential at broad scale. LCOE dependence on financial assumptions is also evaluated on a sensitivity basis to explore ownership/investment implications on project economics for the U.S. hydropower fleet. The results indicate that the LCOE for U.S. NPDs varies substantially. The LCOE estimates for the potential NPD projects of capacity greater than 1 MW range from 40 to 182 $/MWh, with average of 106 $/MWh. 4,000 MW could be developed through projects with individual LCOE values below 100 $/MWh. The results also indicate that typically 90 % of LCOE uncertainty can be attributed to uncertainties in capital costs and energy production; however

  8. Levelized Cost of Energy in US | OpenEI Community

    Open Energy Info (EERE)

    Levelized Cost of Energy in US Home I'd like to pull a cost comparison for the levelized cost of energy in the US. How do I do this on this site? Does the LCOE interactive table...

  9. levelized cost of energy | OpenEI Community

    Open Energy Info (EERE)

    levelized cost of energy Home Kch's picture Submitted by Kch(24) Member 15 July, 2014 - 07:07 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of...

  10. LCOEs and Renewables

    Gasoline and Diesel Fuel Update (EIA)

    Victor Niemeyer Program Manager, Energy and Environmental Policy Analysis and Company Strategy Program EIA LCOE/LACE Workshop July 25, 2013 LCOEs and Renewables 2 © 2013 Electric Power Research Institute, Inc. All rights reserved. EPRI Generation Options Report Provides Excellent Example of LCOE Use By Robin Bedillion of EPRI's Strategic Energy Analysis Group Reference: EPRI Report 1026656 (free from EPRI.com, search for "1026656") 3 © 2013 Electric Power Research Institute, Inc. All

  11. 2011 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

    2013-03-01

    This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

  12. levelized costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    levelized costs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  13. Overview of Levelized Cost of Energy in the AEO

    U.S. Energy Information Administration (EIA) Indexed Site

    Presented to the EIA Energy Conference June 17, 2013 Chris Namovicz Assessing the Economic Value of New Utility-Scale Renewable Generation Projects Overview * Levelized cost of energy (LCOE) has been used by planners, analysts, policymakers, advocates and others to assess the economic competitiveness of technology options in the electric power sector * While of limited usefulness in the analysis of "conventional" utility systems, this approach is not generally appropriate when

  14. MHK Cost Breakdown Structure Draft | OpenEI Community

    Open Energy Info (EERE)

    MHK Cost Breakdown Structure Draft Home > Groups > Water Power Forum Kch's picture Submitted by Kch(24) Member 15 July, 2014 - 07:07 CBS current energy GMREC LCOE levelized cost of...

  15. OpenEI Community - LCOE

    Open Energy Info (EERE)

    Cost Breakdown Structure Draft http:en.openei.orgcommunitydocumentmhk-cost-breakdown-structure-draft

    The generalized Cost Breakdown Structure (CBS) for marine and...

  16. New Report Shows Downward Trend in LCOE for Wind | Department...

    Office of Environmental Management (EM)

    New Report Shows Downward Trend in LCOE for Wind New Report Shows Downward Trend in LCOE for Wind May 18, 2015 - 2:48pm Addthis A new report recently published by the U.S. ...

  17. LBNL/NREL Analysis Predicts Record Low LCOE for Wind Energy in 2012-2013 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy LBNL/NREL Analysis Predicts Record Low LCOE for Wind Energy in 2012-2013 LBNL/NREL Analysis Predicts Record Low LCOE for Wind Energy in 2012-2013 February 24, 2012 - 11:27am Addthis This is an excerpt from the First Quarter 2012 edition of the Wind Program R&D Newsletter. A recent analysis conducted by the Lawrence Berkley National Laboratory (LBNL) and the National Renewable Energy Laboratory (NREL) suggests that lower capital costs and continued increases in wind

  18. Levelized cost of energy for a Backward Bent Duct Buoy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bull, Diana; Jenne, D. Scott; Smith, Christopher S.; Copping, Andrea E.; Copeland, Guild

    2016-07-18

    The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publicly available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied withinmore » the Reference Model Project. Furthermore, comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.« less

  19. 2013 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Mone, C.; Smith, A.; Maples, B.; Hand, M.

    2015-02-01

    This report uses representative project types to estimate the levelized cost of wind energy (LCOE) in the United States for 2013. Scheduled to be published on an annual basis, it relies on both market and modeled data to maintain a current understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed from this analysis are used to inform wind technology cost projections, goals, and improvement opportunities.

  20. Levelized Cost of Coating (LCOC) for selective absorber materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ho, Clifford K.; Pacheco, James E.

    2014-08-08

    A new metric has been developed to evaluate and compare selective absorber coatings for concentrating solar power applications. Previous metrics have typically considered the performance of the selective coating (i.e., solar absorptance and thermal emittance), but cost and durability were not considered. This report describes the development of the levelized cost of coating (LCOC), which is similar to the levelized cost of energy (LCOE) commonly used to evaluate alternative energy technologies. The LCOC is defined as the ratio of the annualized cost of the coating (and associated costs such as labor and number of heliostats required) to the average annualmore » thermal energy produced by the receiver. The baseline LCOC using Pyromark 2500 paint was found to be %240.055/MWht, and the distribution of LCOC values relative to this baseline were determined in a probabilistic analysis to range from -%241.6/MWht to %247.3/MWht, accounting for the cost of additional (or fewer) heliostats required to yield the same baseline average annual thermal energy produced by the receiver. A stepwise multiple rank regression analysis showed that the initial solar absorptance was the most significant parameter impacting the LCOC, followed by thermal emittance, degradation rate, reapplication interval, and downtime during reapplication.« less

  1. Levelized Cost of Coating (LCOC) for selective absorber materials

    SciTech Connect (OSTI)

    Ho, Clifford K.; Pacheco, James E.

    2014-08-08

    A new metric has been developed to evaluate and compare selective absorber coatings for concentrating solar power applications. Previous metrics have typically considered the performance of the selective coating (i.e., solar absorptance and thermal emittance), but cost and durability were not considered. This report describes the development of the levelized cost of coating (LCOC), which is similar to the levelized cost of energy (LCOE) commonly used to evaluate alternative energy technologies. The LCOC is defined as the ratio of the annualized cost of the coating (and associated costs such as labor and number of heliostats required) to the average annual thermal energy produced by the receiver. The baseline LCOC using Pyromark 2500 paint was found to be %240.055/MWht, and the distribution of LCOC values relative to this baseline were determined in a probabilistic analysis to range from -%241.6/MWht to %247.3/MWht, accounting for the cost of additional (or fewer) heliostats required to yield the same baseline average annual thermal energy produced by the receiver. A stepwise multiple rank regression analysis showed that the initial solar absorptance was the most significant parameter impacting the LCOC, followed by thermal emittance, degradation rate, reapplication interval, and downtime during reapplication.

  2. Concentrating Solar Power: Advanced Projects Offering Low LCOE...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Projects Offering Low LCOE Opportunities (CSP: APOLLO) Building upon the successful outcomes of the 2012 SunShot Concentrating Solar Power (CSP) Research & Development ...

  3. Cost | OpenEI Community

    Open Energy Info (EERE)

    Cost Home Ocop's picture Submitted by Ocop(5) Member 15 July, 2014 - 07:07 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To...

  4. 2014 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Mone, Christopher; Stehly, Tyler; Maples, Ben; Settle, Edward

    2015-10-01

    This report uses representative commercial projects to estimate the levelized cost of energy (LCOE) for both land-based and offshore wind plants in the United States for 2014. Scheduled to be published on an annual basis, the analysis relies on both market and modeled data to maintain an up-to-date understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed by the National Renewable Energy Laboratory (NREL) are used in this analysis to inform wind technology cost projections, goals, and improvement opportunities.

  5. Levelized Power Generation Cost Codes

    Energy Science and Technology Software Center (OSTI)

    1996-04-30

    LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generationmore » cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor.« less

  6. Load Leveling Battery System Costs

    Energy Science and Technology Software Center (OSTI)

    1994-10-12

    SYSPLAN evaluates capital investment in customer side of the meter load leveling battery systems. Such systems reduce the customer's monthly electrical demand charge by reducing the maximum power load supplied by the utility during the customer's peak demand. System equipment consists of a large array of batteries, a current converter, and balance of plant equipment and facilities required to support the battery and converter system. The system is installed on the customer's side of themore » meter and controlled and operated by the customer. Its economic feasibility depends largely on the customer's load profile. Load shape requirements, utility rate structures, and battery equipment cost and performance data serve as bases for determining whether a load leveling battery system is economically feasible for a particular installation. Life-cycle costs for system hardware include all costs associated with the purchase, installation, and operation of battery, converter, and balance of plant facilities and equipment. The SYSPLAN spreadsheet software is specifically designed to evaluate these costs and the reduced demand charge benefits; it completes a 20 year period life cycle cost analysis based on the battery system description and cost data. A built-in sensitivity analysis routine is also included for key battery cost parameters. The life cycle cost analysis spreadsheet is augmented by a system sizing routine to help users identify load leveling system size requirements for their facilities. The optional XSIZE system sizing spreadsheet which is included can be used to identify a range of battery system sizes that might be economically attractive. XSIZE output consisting of system operating requirements can then be passed by the temporary file SIZE to the main SYSPLAN spreadsheet.« less

  7. Funding Opportunity Announcement: Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities

    Broader source: Energy.gov [DOE]

    The SunShot Initiative's Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities (CSP: APOLLO) funding opportunity announcement (FOA) seeks transformative projects targeting all components of a concentrating solar power (CSP) plant. Projects should seek to meet the targets set out in the SunShot Vision Study , enabling CSP to become fully cost-competitive with traditional forms of electric power generation. Projects can address challenges in any technical system of the plant, including solar collectors, receivers and heat transfer fluids, thermal energy storage, power cycles, as well as operations and maintenance.

  8. Cost Analysis: Technology, Competitiveness, Market Uncertainty | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Technology to Market » Cost Analysis: Technology, Competitiveness, Market Uncertainty Cost Analysis: Technology, Competitiveness, Market Uncertainty As a basis for strategic planning, competitiveness analysis, funding metrics and targets, SunShot supports analysis teams at national laboratories to assess technology costs, location-specific competitive advantages, policy impacts on system financing, and to perform detailed levelized cost of energy (LCOE) analyses. This shows the

  9. Levelized cost and levelized avoided cost of new generation resources...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3 The importance of the factors varies among the technologies. For technologies such as solar and wind generation that have no fuel costs and relatively small variable O&M costs,...

  10. Wind Levelized Cost of Energy: A Comparison of Technical and Financing Input Variables

    SciTech Connect (OSTI)

    Cory, K.; Schwabe, P.

    2009-10-01

    The expansion of wind power capacity in the United States has increased the demand for project development capital. In response, innovative approaches to financing wind projects have emerged and are proliferating in the U.S. renewable energy marketplace. Wind power developers and financiers have become more efficient and creative in structuring their financial relationships, and often tailor them to different investor types and objectives. As a result, two similar projects may use very different cash flows and financing arrangements, which can significantly vary the economic competitiveness of wind projects. This report assesses the relative impact of numerous financing, technical, and operating variables on the levelized cost of energy (LCOE) associated with a wind project under various financing structures in the U.S. marketplace. Under this analysis, the impacts of several financial and technical variables on the cost of wind electricity generation are first examined individually to better understand the relative importance of each. Then, analysts examine a low-cost and a high-cost financing scenario, where multiple variables are modified simultaneously. Lastly, the analysis also considers the impact of a suite of financial variables versus a suite of technical variables.

  11. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors

    SciTech Connect (OSTI)

    Townsend, Aaron K.; Webber, Michael E.

    2012-07-15

    This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

  12. 51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

    Broader source: Energy.gov [DOE]

    51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

  13. Understanding Wind Power Costs: The Value of a Comprehensive Approach (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.

    2013-05-01

    The evolution and maturity of the wind industry have often been assessed by considering changes in key metrics including capital costs, capacity factor, turbine pricing, and in some cases electricity sales data. However, wind turbines and plants represent a complex system optimization problem and each of these metrics, in isolation, fails to tell the complete story of technological progress and industry advancement. By contrast, the levelized cost of energy (LCOE) provides a more comprehensive and nuanced perspective on industry trends. LCOE can be used to analyze the effect of individual changes (by holding other variables constant) or to understand the complex interactions that might occur for example between turbine costs and productivity. Moreover, LCOE offers a reflection of the total production costs and required revenue for wind plants. This presentation provides examples of how a narrow focus on individual industry metrics can provide inaccurate representations of industry trends while also demonstrating how LCOE captures the array of critical industry variables to provide a greater level of insight.

  14. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect (OSTI)

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael; Halkyard, John

    2012-05-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the

  15. Levelized Costs for Nuclear, Gas and Coal for Electricity, under...

    Office of Scientific and Technical Information (OSTI)

    Conference: Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario Citation Details In-Document Search Title: Levelized Costs for Nuclear, Gas and ...

  16. 2017 Levelized Costs AEO 2012 Early Release

    U.S. Energy Information Administration (EIA) Indexed Site

    Report," collects the cost and quality of fossil fuel purchases made by electric ... a reduction of approximately 9 percent of natural gas purchases, cost, and quality data. ...

  17. Solar at the cost of coal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cost of coal 1 Domestic shale gas 2 US shale gas enables solar g SunShot: towards 1 Watt SunShot: towards 1 Watt Silicon PV can reach coal parity p y *LCOE calculated ...

  18. IEA Wind Task 26. Wind Technology, Cost and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States. 2007 - 2012

    SciTech Connect (OSTI)

    Vitina, Aisma; Luers, Silke; Wallasch, Anna-Kathrin; Berkhout, Volker; Duffy, Aidan; Cleary, Brendan; Husabo, Leif I.; Weir, David E.; Lacal-Arantegui, Roberto; Hand, M. Maureen; Lantz, Eric; Belyeu, Kathy; Wiser, Ryan; Bolinger, Mark; Hoen, Ben

    2015-06-12

    This report builds from a similar previous analysis (Schwabe et al., 2011) exploring the differences in cost of wind energy in 2008 among countries participating in IEA Wind Task 26 at that time. The levelized cost of energy (LCOE) is a widely recognized metric for understanding how technology, capital investment, operations, and financing impact the life-cycle cost of building and operating a wind plant. Schwabe et al. (2011) apply a spreadsheet-based cash flow model developed by the Energy Research Centre of the Netherlands (ECN) to estimate LCOE. This model is a detailed, discounted cash flow model used to represent the various cost structures in each of the participating countries from the perspective of a financial investor in a domestic wind energy project. This model is used for the present analysis as well, and comparisons are made for those countries who contributed to both reports, Denmark, Germany, and the United States.

  19. PROJECT PROFILE: High-Efficiency, Low-Cost, One-Sun, III-V Photovoltaics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy PROJECT PROFILE: High-Efficiency, Low-Cost, One-Sun, III-V Photovoltaics PROJECT PROFILE: High-Efficiency, Low-Cost, One-Sun, III-V Photovoltaics Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $4,000,000 Low-cost III-V photovoltaics have the potential to lower the levelized cost of energy (LCOE) because III-V cells outperform silicon in terms of efficiency and annual energy

  20. LBNL/NREL Analysis Predicts Record Low LCOE for Wind Energy in...

    Broader source: Energy.gov (indexed) [DOE]

    turbine productivity will drive down the levelized cost of wind energy for U.S. wind projects constructed in 2012 - 2013. Estimates focused on changes in capital costs and turbine ...

  1. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    in 2016. On January 16, economic sanctions on Iran related to its nuclear program were lifted, officially allowing Iran to increase its crude oil production and export levels. ...

  2. Levelized Cost of Energy: A Parametric Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Even if all other variables are held constant, the annual energy yield (kWhkW p ) will vary among module technologies because of differences in response to low-light levels and ...

  3. 2017 Levelized Costs AEO 2012 Early Release

    U.S. Energy Information Administration (EIA) Indexed Site

    Market Prices and Uncertainty Report Crude Oil Prices: After reaching a four-month low in the beginning of August, crude oil prices rebounded close to the highest levels of the year. The front-month Brent crude oil price increased $3.31 per barrel (b) since August 1, settling at $45.45/b on September 1 (Figure 1). The West Texas Intermediate (WTI) front-month crude oil price settled at $43.16/b, an increase of $3.10/b over the same period. Price volatility in global equity markets declined in

  4. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Market Prices and Uncertainty Report Crude Oil Prices: After an upward move in mid-June, crude oil prices retreated close to previous levels. The North Sea Brent front month futures price settled at $111/barrel on July 3, an increase of $2.17/barrel from June 2 (Figure 1). The front month West Texas Intermediate (WTI) contract also rose, settling at $104.06/barrel on July 3, $1.59/barrel higher than on June 2. Tensions in Iraq were the primary driver of the crude oil price increase in mid-June.

  5. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Market Prices and Uncertainty Report Crude Oil Prices: International crude oil futures prices rebounded in April and approached the top of their recent trading range. The North Sea Brent front month futures price settled at $107.76 per barrel (bbl) on May 1, an increase of $2.14/bbl from April 1 (Figure 1). West Texas Intermediate (WTI) prices at the start of May were near the same levels as the beginning of April. The front month WTI contract settled at $99.42/bbl on May 1, a slight decrease

  6. Manufacturing Cost Levelization Model – A User’s Guide

    SciTech Connect (OSTI)

    Morrow, William R.; Shehabi, Arman; Smith, Sarah Josephine

    2015-08-01

    The Manufacturing Cost Levelization Model is a cost-performance techno-economic model that estimates total large-scale manufacturing costs for necessary to produce a given product. It is designed to provide production cost estimates for technology researchers to help guide technology research and development towards an eventual cost-effective product. The model presented in this user’s guide is generic and can be tailored to the manufacturing of any product, including the generation of electricity (as a product). This flexibility, however, requires the user to develop the processes and process efficiencies that represents a full-scale manufacturing facility. The generic model is comprised of several modules that estimate variable costs (material, labor, and operating), fixed costs (capital & maintenance), financing structures (debt and equity financing), and tax implications (taxable income after equipment and building depreciation, debt interest payments, and expenses) of a notional manufacturing plant. A cash-flow method is used to estimate a selling price necessary for the manufacturing plant to recover its total cost of production. A levelized unit sales price ($ per unit of product) is determined by dividing the net-present value of the manufacturing plant’s expenses ($) by the net present value of its product output. A user defined production schedule drives the cash-flow method that determines the levelized unit price. In addition, an analyst can increase the levelized unit price to include a gross profit margin to estimate a product sales price. This model allows an analyst to understand the effect that any input variables could have on the cost of manufacturing a product. In addition, the tool is able to perform sensitivity analysis, which can be used to identify the key variables and assumptions that have the greatest influence on the levelized costs. This component is intended to help technology researchers focus their research attention on tasks

  7. Cost and Potential of Monolithic CIGS Photovoltaic Modules

    SciTech Connect (OSTI)

    Horowitz, Kelsey A.; Woodhouse, Michael

    2015-06-14

    A bottom-up cost analysis of monolithic, glass-glass Cu(In,Ga)(Se,S)2 (CIGS) modules is presented, illuminating current cost drivers for this technology and possible pathways to reduced cost. At 14% module efficiency, for the case of U.S. manufacturing, a manufacturing cost of $0.56/WDC and a minimum sustainable price of $0.72/WDC were calculated. Potential for reduction in manufacturing costs to below $0.40/WDC in the long-term may be possible if module efficiency can be increased without significant increase in $/m2 costs. The levelized cost of energy (LCOE) in Phoenix, AZ under different conditions is assessed and compared to standard c-Si.

  8. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    SciTech Connect (OSTI)

    Tidball, Rick; Bluestein, Joel; Rodriguez, Nick; Knoke, Stu

    2010-11-01

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  9. Cost and Potential of Monolithic CIGS Photovoltaic Modules

    SciTech Connect (OSTI)

    Horowitz, Kelsey; Woodhouse, Michael

    2015-06-17

    A bottom-up cost analysis of monolithic, glass-glass Cu(In,Ga)(Se,S)2 (CIGS) modules is presented, illuminating current cost drivers for this technology and possible pathways to reduced cost. At 14% module efficiency, for the case of U.S. manufacturing, a manufacturing cost of $0.56/WDC and a minimum sustainable price of $0.72/WDC were calculated. Potential for reduction in manufacturing costs to below $0.40/WDC in the long-term may be possible if module efficiency can be increased without significant increase in $/m2 costs. The levelized cost of energy (LCOE) in Phoenix, AZ under different conditions is assessed and compared to standard c-Si.

  10. Renewable Energy Cost Modeling. A Toolkit for Establishing Cost-Based Incentives in the United States

    SciTech Connect (OSTI)

    Gifford, Jason S.; Grace, Robert C.; Rickerson, Wilson H.

    2011-05-01

    This report serves as a resource for policymakers who wish to learn more about levelized cost of energy (LCOE) calculations, including cost-based incentives. The report identifies key renewable energy cost modeling options, highlights the policy implications of choosing one approach over the other, and presents recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, FITs, or similar policies. These recommendations shaped the design of NREL's Cost of Renewable Energy Spreadsheet Tool (CREST), which is used by state policymakers, regulators, utilities, developers, and other stakeholders to assist with analyses of policy and renewable energy incentive payment structures. Authored by Jason S. Gifford and Robert C. Grace of Sustainable Energy Advantage LLC and Wilson H. Rickerson of Meister Consultants Group, Inc.

  11. Installation, Operation, and Maintenance Strategies to Reduce the Cost of Offshore Wind Energy

    SciTech Connect (OSTI)

    Maples, B.; Saur, G.; Hand, M.; van de Pietermen, R.; Obdam, T.

    2013-07-01

    Currently, installation, operation, and maintenance (IO&M) costs contribute approximately 30% to the LCOE of offshore wind plants. To reduce LCOE while ensuring safety, this paper identifies principal cost drivers associated with IO&M and quantifies their impacts on LCOE. The paper identifies technology improvement opportunities and provides a basis for evaluating innovative engineering and scientific concepts developed subsequently to the study. Through the completion of a case study, an optimum IO&M strategy for a hypothetical offshore wind project is identified.

  12. Low Cost Heliostat Development Phase II Final Report

    SciTech Connect (OSTI)

    Kusek, Stephen M.

    2014-04-21

    The heliostat field in a central receiver plant makes up roughly one half of the total plant cost. As such, cost reductions for the installed heliostat price greatly impact the overall plant cost and hence the plant’s Levelized Cost of Energy. The general trend in heliostat size over the past decades has been to make them larger. One part of our thesis has been that larger and larger heliostats may drive the LCOE up instead of down due to the very nature of the precise aiming and wind-load requirements for typical heliostats. In other words, it requires more and more structure to precisely aim the sunlight at the receiver as one increases heliostat mirror area and that it becomes counter-productive, cost-wise, at some point.

  13. Cost Contributors to Geothermal Power Production

    SciTech Connect (OSTI)

    Nathwani, Jay; Mines, Greg

    2011-07-01

    The US Department of Energy Geothermal Technologies Office (DOE-GTO) has developed the tool Geothermal Electricity Technologies Evaluation Model (GETEM) to assess the levelized cost of electricity (LCOE) of power produced from geothermal resources. Recently modifications to GETEM allow the DOE-GTO to better assess how different factors impact the generation costs, including initial project risk, time required to complete a development, and development size. The model characterizes the costs associated with project risk by including the costs to evaluate and drill those sites that are considered but not developed for commercial power generation, as well as to assign higher costs to finance those activities having more risk. This paper discusses how the important parameters impact the magnitude project costs for different project scenarios. The cost distributions presented include capital cost recovery for the exploration, confirmation, well field completion and power plant construction, as well as the operation and maintenance (O&M) costs. The paper will present these cost distributions for both EGS and hydrothermal resources.

  14. Lighting system replacement brings energy costs down, light levels up

    SciTech Connect (OSTI)

    Radmer, D.J.

    1984-11-08

    The R.J. Frisby Mfg. Co. operates on three shifts and produces precision screw machine products for a variety of industries, including automotive, marine, machine tool, hydraulics and pneumatics, business machines, electrical and electronics, photography, and precision instruments. The required degree of manufacturing precision demands high light levels in manufacturing areas. When the 100,000 sq ft plant was built in 1973, mercury vapor lighting was installed consistent with the current state of the art for lighting such facilities. In the ensuing years, it became apparent that the soaring electric bills that came in the wake of the Arab oil embargo of 1973-74 would have to be controlled. Estimates by the U.S. Department of Energy indicated that electric energy costs were likely to rise by 160 percent over the next 10 yr. Based on this estimate, and the fact that lighting accounted for $70,000, or half of the annual electric bill, it was estimated that $900,000 to $1,000,000 would be spent for lighting energy over the next decade. The concern over the probability of rapidly escalating electrical costs was soon justified when, in three steps over one 12 mo period, the electric energy rate increased from $0.0305/kwh to $0.0416/kwh -more than a 36 percent increase. During that same period, the demand charge was raised in two steps from $3.75/kw to $4.85/kw --more than a 29 percent increase.

  15. Transparent Cost Database for Generation at Regional Level? ...

    Open Energy Info (EERE)

    cost of electricity generation using different technologies. I think at all these data are national averages, however. I was wondering if such data was available at...

  16. The Role of Advancements in Photovoltaic Efficiency, Reliability, and Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy The Role of Advancements in Photovoltaic Efficiency, Reliability, and Costs The Role of Advancements in Photovoltaic Efficiency, Reliability, and Costs The Role of Advancements in Photovoltaic Efficiency, Reliability, and Costs Although tremendous progress has been made in reducing the cost of PV systems, additional LCOE reductions of 40%-50% between 2015 and 2020 will be required to reach the SunShot Initiative's targets (see Woodhouse et al. 2016). Understanding the

  17. Waste Management Facilities cost information for mixed low-level waste. Revision 1

    SciTech Connect (OSTI)

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing mixed low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  18. Current and future costs for parabolic trough and power tower systems in the US market.

    SciTech Connect (OSTI)

    Turchi, Craig; Kolb, Gregory J.; Mehos, Mark Steven; Ho, Clifford Kuofei

    2010-08-01

    NREL's Solar Advisor Model (SAM) is employed to estimate the current and future costs for parabolic trough and molten salt power towers in the US market. Future troughs are assumed to achieve higher field temperatures via the successful deployment of low melting-point, molten-salt heat transfer fluids by 2015-2020. Similarly, it is assumed that molten salt power towers are successfully deployed at 100MW scale over the same time period, increasing to 200MW by 2025. The levelized cost of electricity for both technologies is predicted to drop below 11 cents/kWh (assuming a 10% investment tax credit and other financial inputs outlined in the paper), making the technologies competitive in the marketplace as benchmarked by the California MPR. Both technologies can be deployed with large amounts of thermal energy storage, yielding capacity factors as high as 65% while maintaining an optimum LCOE.

  19. Current and Future Costs for Parabolic Trough and Power Tower Systems in the US Market: Preprint

    SciTech Connect (OSTI)

    Turchi, C.; Mehos, M.; Ho, C. K.; Kolb, G. J.

    2010-10-01

    NREL's Solar Advisor Model (SAM) is employed to estimate the current and future costs for parabolic trough and molten salt power towers in the US market. Future troughs are assumed to achieve higher field temperatures via the successful deployment of low melting-point, molten-salt heat transfer fluids by 2015-2020. Similarly, it is assumed that molten salt power towers are successfully deployed at 100MW scale over the same time period, increasing to 200MW by 2025. The levelized cost of electricity for both technologies is predicted to drop below 11 cents/kWh (assuming a 10% investment tax credit and other financial inputs outlined in the paper), making the technologies competitive in the marketplace as benchmarked by the California MPR. Both technologies can be deployed with large amounts of thermal energy storage, yielding capacity factors as high as 65% while maintaining an optimum LCOE.

  20. The Role of Advancements in Photovoltaic Efficiency, Reliability, and Costs

    Broader source: Energy.gov [DOE]

    Although tremendous progress has been made in reducing the cost of PV systems, additional LCOE reductions of 40%–50% between 2015 and 2020 will be required to reach the SunShot Initiative’s targets (see Woodhouse et al. 2016). Understanding the tradeoffs between installed prices and other PV system characteristics—such as module efficiency, module degradation rate, and system lifetime—are vital. For example, with 29%-efficient modules and high reliability (a 50-year lifetime and a 0.2%/year module degradation rate), a residential PV system could achieve the SunShot LCOE goal with modules priced at almost $1.20/W. But change the lifetime to 10 years and the degradation rate to 2%/year, and the system would need those very high-efficiency modules at zero cost to achieve the same LCOE. Although these examples are extreme, they serve to illustrate the wide range of technological combinations that could help drive PV toward the LCOE goals. SunShot’s PV roadmaps illustrate specific potential pathways to the target cost reductions.

  1. Derivation of a Levelized Cost of Coating (LCOC) metric for evaluation of solar selective absorber materials

    SciTech Connect (OSTI)

    Ho, C. K.; Pacheco, J. E.

    2015-06-05

    A new metric, the Levelized Cost of Coating (LCOC), is derived in this paper to evaluate and compare alternative solar selective absorber coatings against a baseline coating (Pyromark 2500). In contrast to previous metrics that focused only on the optical performance of the coating, the LCOC includes costs, durability, and optical performance for more comprehensive comparisons among candidate materials. The LCOC is defined as the annualized marginal cost of the coating to produce a baseline annual thermal energy production. Costs include the cost of materials and labor for initial application and reapplication of the coating, as well as the cost of additional or fewer heliostats to yield the same annual thermal energy production as the baseline coating. Results show that important factors impacting the LCOC include the initial solar absorptance, thermal emittance, reapplication interval, degradation rate, reapplication cost, and downtime during reapplication. The LCOC can also be used to determine the optimal reapplication interval to minimize the levelized cost of energy production. As a result, similar methods can be applied more generally to determine the levelized cost of component for other applications and systems.

  2. Interim report: Waste management facilities cost information for mixed low-level waste

    SciTech Connect (OSTI)

    Feizollahi, F.; Shropshire, D.

    1994-03-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for treating alpha and nonalpha mixed low-level radioactive waste. This report contains information on twenty-seven treatment, storage, and disposal modules that can be integrated to develop total life cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of estimating data is also summarized in this report.

  3. Operating cost guidelines for benchmarking DOE thermal treatment systems for low-level mixed waste

    SciTech Connect (OSTI)

    Salmon, R.; Loghry, S.L.; Hermes, W.H.

    1994-11-01

    This report presents guidelines for estimating operating costs for use in benchmarking US Department of Energy (DOE) low-level mixed waste thermal treatment systems. The guidelines are based on operating cost experience at the DOE Toxic Substances Control Act (TSCA) mixed waste incinerator at the K-25 Site at Oak Ridge. In presenting these guidelines, it should be made clear at the outset that it is not the intention of this report to present operating cost estimates for new technologies, but only guidelines for estimating such costs.

  4. LCOE and LACE

    Gasoline and Diesel Fuel Update (EIA)

    728 386 519 519 420 341 1981-2014 Natural Gas Nonassociated, Wet After Lease Separation 215 279 468 391 332 273 1981-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 513 107 51 128 88 68 1981-2014 Dry Natural Gas 701 371 502 502 402 327 1981-2014 Natural Gas Liquids (Million Barrels) 1981 Lease Separation

    15 279 468 391 332 273 1981-2014 Adjustments -8 115 53 158 -57 -34 1981-2014 Revision Increases 45 46 34 65 59 4 1981-2014 Revision Decreases 40 64 12 209 19 41

  5. Derivation of a Levelized Cost of Coating (LCOC) metric for evaluation of solar selective absorber materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ho, C. K.; Pacheco, J. E.

    2015-06-05

    A new metric, the Levelized Cost of Coating (LCOC), is derived in this paper to evaluate and compare alternative solar selective absorber coatings against a baseline coating (Pyromark 2500). In contrast to previous metrics that focused only on the optical performance of the coating, the LCOC includes costs, durability, and optical performance for more comprehensive comparisons among candidate materials. The LCOC is defined as the annualized marginal cost of the coating to produce a baseline annual thermal energy production. Costs include the cost of materials and labor for initial application and reapplication of the coating, as well as the costmore » of additional or fewer heliostats to yield the same annual thermal energy production as the baseline coating. Results show that important factors impacting the LCOC include the initial solar absorptance, thermal emittance, reapplication interval, degradation rate, reapplication cost, and downtime during reapplication. The LCOC can also be used to determine the optimal reapplication interval to minimize the levelized cost of energy production. As a result, similar methods can be applied more generally to determine the levelized cost of component for other applications and systems.« less

  6. A Survey of State-Level Cost and Benefit Estimates of Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report surveys and summarizes existing state-level RPS cost and benefit estimates and examines the various methods used to calculate such estimates. The report relies largely upon data or results reported directly by electric utilities and state regulators. As such, the estimated costs and benefits itemized in this document do not result from the application of a standardized approach or the use of a consistent set of underlying assumptions. Because the reported values may differ from those derived through a more consistent analytical treatment, we do not provide an aggregate national estimate of RPS costs and benefits, nor do we attempt to quantify net RPS benefits at national or state levels.

  7. Survey of State-Level Cost and Benefit Estimates of Renewable Portfolio Standards

    SciTech Connect (OSTI)

    Heeter, J.; Barbose, G.; Bird, L.; Weaver, S.; Flores-Espino, F.; Kuskova-Burns, K.; Wiser, R.

    2014-05-01

    Most renewable portfolio standards (RPS) have five or more years of implementation experience, enabling an assessment of their costs and benefits. Understanding RPS costs and benefits is essential for policymakers evaluating existing RPS policies, assessing the need for modifications, and considering new policies. This study provides an overview of methods used to estimate RPS compliance costs and benefits, based on available data and estimates issued by utilities and regulators. Over the 2010-2012 period, average incremental RPS compliance costs in the United States were equivalent to 0.8% of retail electricity rates, although substantial variation exists around this average, both from year-to-year and across states. The methods used by utilities and regulators to estimate incremental compliance costs vary considerably from state to state and a number of states are currently engaged in processes to refine and standardize their approaches to RPS cost calculation. The report finds that state assessments of RPS benefits have most commonly attempted to quantitatively assess avoided emissions and human health benefits, economic development impacts, and wholesale electricity price savings. Compared to the summary of RPS costs, the summary of RPS benefits is more limited, as relatively few states have undertaken detailed benefits estimates, and then only for a few types of potential policy impacts. In some cases, the same impacts may be captured in the assessment of incremental costs. For these reasons, and because methodologies and level of rigor vary widely, direct comparisons between the estimates of benefits and costs are challenging.

  8. Estimating costs of low-level radioactive waste disposal alternatives for the Commonwealth of Massachusetts

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This report was prepared for the Commonwealth of Massachusetts by the Idaho National Engineering Laboratory, National Low-Level Waste Management Program. It presents planning life-cycle cost (PLCC) estimates for four sizes of in-state low-level radioactive waste (LLRW) disposal facilities. These PLCC estimates include preoperational and operational expenditures, all support facilities, materials, labor, closure costs, and long-term institutional care and monitoring costs. It is intended that this report bc used as a broad decision making tool for evaluating one of the several complex factors that must be examined when deciding between various LLRW management options -- relative costs. Because the underlying assumptions of these analyses will change as the Board decides how it will manage Massachusett`s waste and the specific characteristics any disposal facility will have, the results of this study are not absolute and should only be used to compare the relative costs of the options presented. The disposal technology selected for this analysis is aboveground earth-mounded vaults. These vaults are reinforced concrete structures where low-level waste is emplaced and later covered with a multi-layered earthen cap. The ``base case`` PLCC estimate was derived from a preliminary feasibility design developed for the Illinois Low-Level Radioactive Waste Disposal Facility. This PLCC report describes facility operations and details the procedure used to develop the base case PLCC estimate for each facility component and size. Sensitivity analyses were performed on the base case PLCC estimate by varying several factors to determine their influences upon the unit disposal costs. The report presents the results of the sensitivity analyses for the five most significant cost factors.

  9. A system-level cost-of-energy wind farm layout optimization with landowner modeling

    SciTech Connect (OSTI)

    Chen, Le [Ames Laboratory; MacDonald, Erin [Ames Laboratory

    2013-10-01

    This work applies an enhanced levelized wind farm cost model, including landowner remittance fees, to determine optimal turbine placements under three landowner participation scenarios and two land-plot shapes. Instead of assuming a continuous piece of land is available for the wind farm construction, as in most layout optimizations, the problem formulation represents landowner participation scenarios as a binary string variable, along with the number of turbines. The cost parameters and model are a combination of models from the National Renewable Energy Laboratory (NREL), Lawrence Berkeley National Laboratory, and Windustiy. The system-level cost-of-energy (COE) optimization model is also tested under two land-plot shapes: equally-sized square land plots and unequal rectangle land plots. The optimal COEs results are compared to actual COE data and found to be realistic. The results show that landowner remittances account for approximately 10% of farm operating costs across all cases. Irregular land-plot shapes are easily handled by the model. We find that larger land plots do not necessarily receive higher remittance fees. The model can help site developers identify the most crucial land plots for project success and the optimal positions of turbines, with realistic estimates of costs and profitability. (C) 2013 Elsevier Ltd. All rights reserved.

  10. Evaluation of the Super ESPC Program: Level 2 -- Recalculated Cost Savings

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick

    2009-04-01

    This report presents the results of Level 2 of a three-tiered evaluation of the U.S. Department of Energy Federal Energy Management Program's Super Energy Savings Performance Contract (Super ESPC) Program. Level 1 of the analysis studied all of the Super ESPC projects for which at least one Annual Measurement & Verification (M&V) Report had been produced by April 2006. For those 102 projects in aggregate, we found that the value of cost savings reported by the energy service company (ESCO) in the Annual M&V Reports was 108% of the cost savings guaranteed in the contracts. We also compared estimated energy savings (which are not guaranteed, but are the basis for the guaranteed cost savings) to the energy savings reported by the ESCO in the Annual M&V Report. In aggregate, reported energy savings were 99.8% of estimated energy savings on the basis of site energy, or 102% of estimated energy savings based on source energy. Level 2 focused on a random sample of 27 projects taken from the 102 Super ESPC projects studied in Level 1. The objectives were, for each project in the sample, to: repeat the calculations of the annual energy and cost savings in the most recent Annual M&V Report to validate the ESCO's results or correct any errors, and recalculate the value of the reported energy, water, and operations and maintenance (O&M) savings using actual utility prices paid at the project site instead of the 'contract' energy prices - the prices that are established in the project contract as those to be used by the ESCO to calculate the annual cost savings, which determine whether the guarantee has been met. Level 3 analysis will be conducted on three to five projects from the Level 2 sample that meet validity criteria for whole-building or whole-facility data analysis. This effort will verify energy and cost savings using statistical analysis of actual utility use, cost, and weather data. This approach, which can only be used for projects meeting particular validity

  11. Low-cost household paint abatement to reduce children's blood lead levels

    SciTech Connect (OSTI)

    Taha, T.; Kanarek, M.S.; Schultz, B.D.; Murphy, A.

    1999-11-01

    The purpose was to examine the effectiveness of low-cost abatement on children's blood lead levels. Blood lead was analyzed before and after abatement in 37 homes of children under 7 years old with initial blood lead levels of 25--44 {micro}g/dL. Ninety-five percent of homes were built before 1950. Abatement methods used were wet-scraping and repainting deteriorated surfaces and wrapping window wells with aluminum or vinyl. A control group was retrospectively selected. Control children were under 7 years old, had initial blood lead levels of 25--44 {micro}g/dL and a follow-up level at least 28 days afterward, and did not have abatements performed in their homes between blood lead levels. After abatement, statistically significant declines occurred in the intervention children's blood lead levels. The mean decline was 22%, 1 to 6 months after treatment. After adjustment for seasonality and child's age, the mean decline was 6.0 {micro}g/dL, or 18%. The control children's blood levels did not decline significantly. There was a mean decline of 0.25 {micro}g/dL, or 0.39%. After adjustment for seasonality and age, the mean decline for control children was 1.6 {micro}g/dL, or 1.8%. Low-cost abatement and education are effective short-term interim controls.

  12. Comparison of costs for solidification of high-level radioactive waste solutions: glass monoliths vs metal matrices

    SciTech Connect (OSTI)

    Jardine, L.J.; Carlton, R.E.; Steindler, M.J.

    1981-05-01

    A comparative economic analysis was made of four solidification processes for liquid high-level radioactive waste. Two processes produced borosilicate glass monoliths and two others produced metal matrix composites of lead and borosilicate glass beads and lead and supercalcine pellets. Within the uncertainties of the cost (1979 dollars) estimates, the cost of the four processes was about the same, with the major cost component being the cost of the primary building structure. Equipment costs and operating and maintenance costs formed only a small portion of the building structure costs for all processes.

  13. Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2

    SciTech Connect (OSTI)

    Ramsden, T.; Steward, D.; Zuboy, J.

    2009-09-01

    Analysis of the levelized cost of producing hydrogen via different pathways using the National Renewable Energy Laboratory's H2A Hydrogen Production Model, Version 2.

  14. Cost estimate of high-level radioactive waste containers for the Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Russell, E.W.; Clarke, W.; Domian, H.A.; Madson, A.A.

    1991-08-01

    This report summarizes the bottoms-up cost estimates for fabrication of high-level radioactive waste disposal containers based on the Site Characterization Plan Conceptual Design (SCP-CD). These estimates were acquired by Babcock and Wilcox (B&S) under sub-contract to Lawrence Livermore National Laboratory (LLNL) for the Yucca Mountain Site Characterization Project (YMP). The estimates were obtained for two leading container candidate materials (Alloy 825 and CDA 715), and from other three vendors who were selected from a list of twenty solicited. Three types of container designs were analyzed that represent containers for spent fuel, and for vitrified high-level waste (HLW). The container internal structures were assumed to be AISI-304 stainless steel in all cases, with an annual production rate of 750 containers. Subjective techniques were used for estimating QA/QC costs based on vendor experience and the specifications derived for the LLNL-YMP Quality Assurance program. In addition, an independent QA/QC analysis is reported which was prepared by Kasier Engineering. Based on the cost estimates developed, LLNL recommends that values of $825K and $62K be used for the 1991 TSLCC for the spent fuel and HLW containers, respectively. These numbers represent the most conservative among the three vendors, and are for the high-nickel anstenitic steel (Alloy 825). 6 refs., 7 figs.

  15. Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models: Preprint

    SciTech Connect (OSTI)

    Jenne, D. S.; Yu, Y. H.; Neary, V.

    2015-04-24

    In 2010 the U.S. Department of Energy initiated the development of six marine energy converter reference models. The reference models are point designs of well-known marine energy converters. Each device was designed to operate in a specific marine resource, instead of a generic device that can be deployed at any location. This method allows each device to be used as a benchmark for future reference model to benchmark future devices. The six designs consist of three current energy converters and three wave energy converters. The reference model project has generated both technical and economic data sets that are available in the public domain. The methodology to calculate the levelized cost of energy for the reference model project and an overall comparison of the cost of energy from these six reference-model designs are presented in this paper.

  16. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Main Report

    SciTech Connect (OSTI)

    Murphy, E. S.; Holter, G. M.

    1980-06-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 1 (Main Report) contains background information and study results in summary form.

  17. Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models Preprint D. S. Jenne and Y.-H. Yu National Renewable Energy Laboratory V. Neary Sandia National Laboratories To be presented at the 3 rd Marine Energy Technology Symposium (METS 2015) Washington, D.C. April 27-29, 2015 Conference Paper NREL/CP-5000-64013 April 2015 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government

  18. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Appendices

    SciTech Connect (OSTI)

    1980-06-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 2 (Appendices) contains the detailed analyses and data needed to support the results given in Volume 1.

  19. SAND2013-7205

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with other forms of power generation. Technological advancements are needed to lower the lifetime levelized cost of energy (LCOE) for large-scale deployments of OWCs...

  20. SAND2013-7204

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with other forms of power generation. Technological advancements are needed to lower the lifetime levelized cost of energy (LCOE) for large-scale deployments of point...

  1. SAND2013-7207

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with other forms of power generation. Technological advancements are needed to lower the lifetime levelized cost of energy (LCOE) for large-scale deployments of...

  2. Search for: "stirling engines" | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... The unique innovation in this project is an integrated TES... for minimizing the levelized cost of energy (LCOE). ... The primary loop includes the nuclear reactor with the lower ...

  3. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    SciTech Connect (OSTI)

    NREL,; Wiser, Ryan; Lantz, Eric; Hand, Maureen

    2012-03-26

    The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions. Our findings indicate that steady cost reductions were interrupted between 2004 and 2010, but falling turbine prices and improved turbine performance are expected to drive a historically low LCOE for current installations. In addition, the majority of studies indicate continued cost reductions on the order of 20%-30% through 2030. Moreover, useful cost projections are likely to benefit from stronger consideration of the interactions between capital cost and performance as well as trends in the quality of the wind resource where projects are located, transmission, grid integration, and other cost variables.

  4. Comparison of SRP high-level waste disposal costs for borosilicate glass and crystalline ceramic waste forms

    SciTech Connect (OSTI)

    McDonell, W R

    1982-04-01

    An evaluation of costs for the immobilization and repository disposal of SRP high-level wastes indicates that the borosilicate glass waste form is less costly than the crystalline ceramic waste form. The wastes were assumed immobilized as glass with 28% waste loading in 10,300 reference 24-in.-diameter canisters or as crystalline ceramic with 65% waste loading in either 3400 24-in.-diameter canisters or 5900 18-in.-diameter canisters. After an interim period of onsite storage, the canisters would be transported to the federal repository for burial. Total costs in undiscounted 1981 dollars of the waste disposal operations, excluding salt processing for which costs are not yet well defined, were about $2500 million for the borosilicate glass form in reference 24-in.-diameter canisters, compared to about $2900 million for the crystalline ceramic form in 24-in.-diameter canisters and about $3100 million for the crystalline ceramic form in 18-in.-diameter canisters. No large differences in salt processing costs for the borosilicate glass and crystalline ceramic forms are expected. Discounting to present values, because of a projected 2-year delay in startup of the DWPF for the crystalline ceramic form, preserved the overall cost advantage of the borosilicate glass form. The waste immobilization operations for the glass form were much less costly than for the crystalline ceramic form. The waste disposal operations, in contrast, were less costly for the crystalline ceramic form, due to fewer canisters requiring disposal; however, this advantage was not sufficient to offset the higher development and processing costs of the crystalline ceramic form. Changes in proposed Nuclear Regulatory Commission regulations to permit lower cost repository packages for defense high-level wastes would decrease the waste disposal costs of the more numerous borosilicate glass forms relative to the crystalline ceramic forms.

  5. A Survey of State-Level Cost and Benefit Estimates of Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... have used different methods to estimate RPS ... to the cost of a new coal-fired facility, determined by ... potential future federal regulation of coal plants. ...

  6. Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to the Rooftop

    SciTech Connect (OSTI)

    Michael Deck; Rick Russell

    2010-01-05

    Soliant Energy is a venture-capital-backed startup focused on bringing advanced concentrating solar panels to market. Our fundamental innovation is that we are the first company to develop a racking solar concentrator specifically for commercial rooftop applications, resulting in the lowest LCOE for rooftop electricity generation. Today, the commercial rooftop segment is the largest and fastest-growing market in the solar industry. Our concentrating panels can make a major contribution to the SAI's objectives: reducing the cost of solar electricity and rapidly deploying capacity. Our commercialization focus was re-shaped in 2009, shifting from an emphasis solely on panel efficiency to LCOE. Since the inception of the SAI program, LCOE has become the de facto standard for comparing commercial photovoltaic systems. While estimation and prediction models still differ, the emergence of performance-based incentive (PBI) and feed-in tariff (FIT) systems, as well as power purchase agreement (PPA) financing structures make LCOE the natural metric for photovoltaic systems. Soliant Energy has designed and demonstrated lower-cost, higher-power solar panels that consists of 6 (500X) PV module assemblies utilizing multi-junction cells and an integrated two-axis tracker. In addition, we have designed and demonstrated a prototype 1000X panel assembly with 8. Cost reductions relative to conventional flat panel PV systems were realized by (1) reducing the amount of costly semiconductor material and (2) developing strategies and processes to reduce the manufacturing costs of the entire system. Performance gains against conventional benchmarks were realized with (1) two-axis tracking and (2) higher-efficiency multi-junction PV cells capable of operating at a solar concentration ratio of 1000X (1000 kW/m2). The program objectives are: (1) Develop a tracking/concentrating solar module that has the same geometric form factor as a conventional flat, roof mounted photovoltaic (PV) panel

  7. Funding Opportunity: Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program seeks non-prime mover technologies that have the potential to contribute to reducing the levelized cost of electricity from new hydrothermal development to 6¢/ kWh by 2020 and Enhanced Geothermal Systems (EGS) to 6¢/ kWh by 2030.

  8. Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    267 September 2009 Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2 T. Ramsden and D. Steward National Renewable Energy Laboratory J. Zuboy Independent Contractor National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for

  9. Logistics, Costs, and GHG Impacts of Utility-Scale Co-Firing with 20% Biomass

    SciTech Connect (OSTI)

    Nichol, Corrie Ian

    2013-06-01

    This study analyzes the possibility that biopower in the U.S. is a cost-competitive option to significantly reduce greenhouse gas emissions. In 2009, net greenhouse gas (GHG) emitted in the United States was equivalent to 5,618 million metric tons CO2, up 5.6% from 1990 (EPA 2011). Coal-fired power generation accounted for 1,748 million metric tons of this total. Intuitively, life-cycle CO2 emissions in the power sector could be reduced by substituting renewable biomass for coal. If just 20% of the coal combusted in 2009 had been replaced with biomass, CO2 emissions would have been reduced by 350 million metric tons, or about 6% of net annual GHG emission. This would have required approximately 225 million tons of dry biomass. Such an ambitious fuel substitution would require development of a biomass feedstock production and supply system tantamount to coal. This material would need to meet stringent specifications to ensure reliable conveyance to boiler burners, efficient combustion, and no adverse impact on heat transfer surfaces and flue gas cleanup operations. Therefore, this report addresses the potential cost/benefit tradeoffs of co-firing 20% specification-qualified biomass (on an energy content basis) in large U.S. coal-fired power plants. The dependence and sensitivity of feedstock cost on source of material, location, supply distance, and demand pressure was established. Subsequently, the dependence of levelized cost of electricity (LCOE) on feedstock costs, power plant feed system retrofit, and impact on boiler performance was determined. Overall life-cycle assessment (LCA) of greenhouse gas emissions saving were next evaluated and compared to wind and solar energy to benchmark the leading alternatives for meeting renewable portfolio standards (or RPS).

  10. Weighing the Costs and Benefits of Renewables Portfolio Standards:A Comparative Analysis of State-Level Policy Impact Projections

    SciTech Connect (OSTI)

    Chen, Cliff; Wiser, Ryan; Bolinger, Mark

    2007-01-16

    State renewables portfolio standards (RPS) have emerged as one of the most important policy drivers of renewable energy capacity expansion in the U.S. Collectively, these policies now apply to roughly 40% of U.S. electricity load, and may have substantial impacts on electricity markets, ratepayers, and local economies. As RPS policies have been proposed or adopted in an increasing number of states, a growing number of studies have attempted to quantify the potential impacts of these policies, focusing primarily on projecting cost impacts, but sometimes also estimating macroeconomic and environmental effects. This report synthesizes and analyzes the results and methodologies of 28 distinct state or utility-level RPS cost impact analyses completed since 1998. Together, these studies model proposed or adopted RPS policies in 18 different states. We highlight the key findings of these studies on the costs and benefits of RPS policies, examine the sensitivity of projected costs to model assumptions, assess the attributes of different modeling approaches, and suggest possible areas of improvement for future RPS analysis.

  11. 2011 Cost of Wind Energy Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... LCOE values reported here are expected to be greater than negotiated contract prices for wind power, as reflected by recent power purchase agreements. This is because recent power ...

  12. Cost savings associated with landfilling wastes containing very low levels of uranium

    SciTech Connect (OSTI)

    Boggs, C.J.; Shaddoan, W.T.

    1996-03-01

    The Paducah Gaseous Diffusion Plant (PGDP) has operated captive landfills (both residential and construction/demolition debris) in accordance with the Commonwealth of Kentucky regulations since the early 1980s. Typical waste streams allowed in these landfills include nonhazardous industrial and municipal solid waste (such as paper, plastic, cardboard, cafeteria waste, clothing, wood, asbestos, fly ash, metals, and construction debris). In July 1992, the U.S. Environmental Protection Agency issued new requirements for the disposal of sanitary wastes in a {open_quotes}contained landfill.{close_quotes} These requirements were promulgated in the 401 Kentucky Administrative Record Chapters 47 and 48 that became effective 30 June 1995. The requirements for a new contained landfill include a synthetic liner made of high-density polyethylene in addition to the traditional 1-meter (3-foot) clay liner and a leachate collection system. A new landfill at Paducah would accept waste streams similar to those that have been accepted in the past. The permit for the previously existing landfills did not include radioactivity limits; instead, these levels were administratively controlled. Typically, if radioactivity was detected above background levels, the waste was classified as low-level waste (LLW), which would be sent off-site for disposal.

  13. Reevaluation Of Vitrified High-Level Waste Form Criteria For Potential Cost Savings At The Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Ray, J. W.; Marra, S. L.; Herman, C. C.

    2013-01-09

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form.

  14. Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598

    SciTech Connect (OSTI)

    Ray, J.W.; Marra, S.L.; Herman, C.C.

    2013-07-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

  15. Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage

    SciTech Connect (OSTI)

    Glatzmaier, G.

    2011-12-01

    This report provides an update on the previous cost model for thermal energy storage (TES) systems. The update allows NREL to estimate the costs of such systems that are compatible with the higher operating temperatures associated with advanced power cycles. The goal of the Department of Energy (DOE) Solar Energy Technology Program is to develop solar technologies that can make a significant contribution to the United States domestic energy supply. The recent DOE SunShot Initiative sets a very aggressive cost goal to reach a Levelized Cost of Energy (LCOE) of 6 cents/kWh by 2020 with no incentives or credits for all solar-to-electricity technologies.1 As this goal is reached, the share of utility power generation that is provided by renewable energy sources is expected to increase dramatically. Because Concentrating Solar Power (CSP) is currently the only renewable technology that is capable of integrating cost-effective energy storage, it is positioned to play a key role in providing renewable, dispatchable power to utilities as the share of power generation from renewable sources increases. Because of this role, future CSP plants will likely have as much as 15 hours of Thermal Energy Storage (TES) included in their design and operation. As such, the cost and performance of the TES system is critical to meeting the SunShot goal for solar technologies. The cost of electricity from a CSP plant depends strongly on its overall efficiency, which is a product of two components - the collection and conversion efficiencies. The collection efficiency determines the portion of incident solar energy that is captured as high-temperature thermal energy. The conversion efficiency determines the portion of thermal energy that is converted to electricity. The operating temperature at which the overall efficiency reaches its maximum depends on many factors, including material properties of the CSP plant components. Increasing the operating temperature of the power generation

  16. ocean energy | OpenEI Community

    Open Energy Info (EERE)

    ocean energy Home Kch's picture Submitted by Kch(24) Member 15 July, 2014 - 07:07 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine...

  17. current energy | OpenEI Community

    Open Energy Info (EERE)

    current energy Home Kch's picture Submitted by Kch(24) Member 15 July, 2014 - 07:07 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine...

  18. CBS | OpenEI Community

    Open Energy Info (EERE)

    CBS Home Kch's picture Submitted by Kch(24) Member 15 July, 2014 - 07:07 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine energy MHK...

  19. marine energy | OpenEI Community

    Open Energy Info (EERE)

    marine energy Home Kch's picture Submitted by Kch(24) Member 15 July, 2014 - 07:07 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine...

  20. GMREC | OpenEI Community

    Open Energy Info (EERE)

    GMREC Home Kch's picture Submitted by Kch(24) Member 15 July, 2014 - 07:07 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine energy...

  1. Claims for Solar Cell Efficiency Put to Test at NREL | Community...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... will require the levelized cost of energy (LCOE) for solar in the continental United ... To reach that goal, system prices will have to drop. Manufacturing costs will have to ...

  2. Final Report- High throughput CIGS solar cell fabrication via ultra-thin absorber layer with optical confinement and (Cd, CBD)- free heterojunction partner

    Broader source: Energy.gov [DOE]

    The main objective of this proposal was to use several pathways to reduce the production cost of CIGS PV modules and therefore the levelized cost of energy (LCOE) associated with this technology.

  3. Low-Cost High-Concentration Photovoltaic Systems for Utility Power Generation

    SciTech Connect (OSTI)

    McConnell, R.; Garboushian, V.; Gordon, R.; Dutra, D.; Kinsey, G.; Geer, S.; Gomez, H.; Cameron, C.

    2012-03-31

    Under DOE's Technology Pathway Partnership (TPP) program, Amonix, Inc. developed a new generation of high-concentration photovoltaic systems using multijunction technology and established the manufacturing capacity needed to supply multi-megawatt power plants buing using the new Amonix 7700-series solar energy systems. For this effort, Amonix Collaborated with a variety of suppliers and partners to complete project tasks. Subcontractors included: Evonik/Cyro; Hitek; the National Renewable Energy Laboratory (NREL); Raytech; Spectrolab; UL; University of Nevada, Las Vegas; and TUV Rheinland PTL. The Amonix TPP tasks included: Task 1: Multijunction Cell Optimization for Field Operation, Task 2: Fresnel Lens R&D, Task 3: Cell Package Design & Production, Task 4: Standards Compliance and Reliability Testing, Task 5: Receiver Plate Production, Task 6: MegaModule Performance, Task 7: MegaModule Cost Reduction, Task 8: Factory Setup and MegaModule Production, Task 9: Tracker and Tracking Controller, Task 10: Installation and Balance of System (BOS), Task 11: Field Testing, and Task 12: Solar Advisor Modeling and Market Analysis. Amonix's TPP addressed nearly the complete PV value chain from epitaxial layer design and wafer processing through system design, manufacturing, deployment and O&M. Amonix has made progress toward achieving these reduced costs through the development of its 28%+ efficient MegaModule, reduced manufacturing and installation cost through design for manufacturing and assembly, automated manufacturing processes, and reduced O&M costs. Program highlights include: (1) Optimized multijunction cell and cell package design to improve performance by > 10%; (2) Updated lens design provided 7% increased performance and higher concentration; (3) 28.7% DC STC MegaModule efficiency achieved in Phase II exceeded Phase III performance goal; (4) New 16' focal length MegaModule achieved target materials and manufacturing cost reduction; (5) Designed and placed into

  4. Integrating Volume Reduction and Packaging Alternatives to Achieve Cost Savings for Low Level Waste Disposal at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Church, A.; Gordon, J.; Montrose, J. K.

    2002-02-26

    In order to reduce costs and achieve schedules for Closure of the Rocky Flats Environmental Technology Site (RFETS), the Waste Requirements Group has implemented a number of cost saving initiatives aimed at integrating waste volume reduction with the selection of compliant waste packaging methods for the disposal of RFETS low level radioactive waste (LLW). Waste Guidance Inventory and Shipping Forecasts indicate that over 200,000 m3 of low level waste will be shipped offsite between FY2002 and FY2006. Current projections indicate that the majority of this waste will be shipped offsite in an estimated 40,000 55-gallon drums, 10,000 metal and plywood boxes, and 5000 cargo containers. Currently, the projected cost for packaging, shipment, and disposal adds up to $80 million. With these waste volume and cost projections, the need for more efficient and cost effective packaging and transportation options were apparent in order to reduce costs and achieve future Site packaging a nd transportation needs. This paper presents some of the cost saving initiatives being implemented for waste packaging at the Rocky Flats Environmental Technology Site (the Site). There are many options for either volume reduction or alternative packaging. Each building and/or project may indicate different preferences and/or combinations of options.

  5. Levelized life-cycle costs for four residue-collection systems and four gas-production systems

    SciTech Connect (OSTI)

    Thayer, G.R.; Rood, P.L.; Williamson, K.D. Jr.; Rollett, H.

    1983-01-01

    Technology characterizations and life-cycle costs were obtained for four residue-collection systems and four gas-production systems. All costs are in constant 1981 dollars. The residue-collection systems were cornstover collection, wheat-straw collection, soybean-residue collection, and wood chips from forest residue. The life-cycle costs ranged from $19/ton for cornstover collection to $56/ton for wood chips from forest residues. The gas-production systems were low-Btu gas from a farm-size gasifier, solar flash pyrolysis of biomass, methane from seaweed farms, and hydrogen production from bacteria. Life-cycle costs ranged from $3.3/10/sup 6/ Btu for solar flash pyrolysis of biomass to $9.6/10/sup 6/ Btu for hydrogen from bacteria. Sensitivity studies were also performed for each system. The sensitivity studies indicated that fertilizer replacement costs were the dominate costs for the farm-residue collection, while residue yield was most important for the wood residue. Feedstock costs were most important for the flash pyrolysis. Yields and capital costs are most important for the seaweed farm and the hydrogen from bacteria system.

  6. Potential for savings in compliance costs for reducing ground-level ozone possible by instituting seasonal versus annual nitric oxide emission limits

    SciTech Connect (OSTI)

    Lookman, A.A.

    1996-12-31

    Ground-level ozone is formed in the atmosphere from its precursor emissions, namely nitric oxide (NO{sub x}) and volatile organic compounds (VOC), with its rate of formation dependent on atmospheric conditions. Since ozone levels tend to be highest during the summer months, seasonal controls of precursors have been suggested as a means of reducing the costs of decreasing ozone concentrations to acceptable levels. This paper attempts to quantify what the potential savings if seasonal control were instituted for coal-fired power plants, assuming that only commercially available NO{sub x} control technologies are used. Cost savings through seasonal control is measured by calculating the total annualized cost of NO{sub x} removal at a given amount of seasonal control for different target levels of annual control. For this study, it is assumed that trading of NO{sub x} emissions will be allowed, as has been proposed by the Ozone Transportation Commission (OTC). The problem has been posed as a binary integer linear programming problem, with decision variables being which control to use at each power plant. The results indicate that requiring annual limits which are lower than seasonal limits can substantially reduce compliance costs. These savings occur because requiring stringent compliance only on a seasonal basis allows power plants to use control methods for which the variable costs are paid for only part of the year, and through the use of gas-based controls, which are much cheaper to operate in the summer months.

  7. Wave | OpenEI Community

    Open Energy Info (EERE)

    Submitted by Ocop(5) Member 15 July, 2014 - 07:07 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing...

  8. Performance | OpenEI Community

    Open Energy Info (EERE)

    Submitted by Ocop(5) Member 15 July, 2014 - 07:07 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing...

  9. numerical modeling | OpenEI Community

    Open Energy Info (EERE)

    Submitted by Ocop(5) Member 15 July, 2014 - 07:07 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing...

  10. Current | OpenEI Community

    Open Energy Info (EERE)

    Submitted by Ocop(5) Member 15 July, 2014 - 07:07 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing...

  11. Tidal | OpenEI Community

    Open Energy Info (EERE)

    Submitted by Ocop(5) Member 15 July, 2014 - 07:07 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing...

  12. Alaska Strategic Energy Plan and Planning Handbook

    Broader source: Energy.gov (indexed) [DOE]

    Btu British thermal unit DOE U.S. Department of Energy EERE Office of Energy Efficiency and Renewable Energy kW kilowatt kWh kilowatt-hour LCOE levelized cost of energy NSEDC ...

  13. Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections

    SciTech Connect (OSTI)

    Chen, Cliff; Wiser, Ryan; Mills, Andrew; Bolinger, Mark

    2008-01-07

    State renewables portfolio standards (RPS) have emerged as one of the most important policy drivers of renewable energy capacity expansion in the U.S. As RPS policies have been proposed or adopted in an increasing number of states, a growing number of studies have attempted to quantify the potential impacts of these policies, focusing primarily on cost impacts, but sometimes also estimating macroeconomic, risk reduction, and environmental effects. This article synthesizes and analyzes the results and methodologies of 31 distinct state or utility-level RPS cost-impact analyses completed since 1998. Together, these studies model proposed or adopted RPS policies in 20 different states. We highlight the key findings of these studies on the projected costs of state RPS policies, examine the sensitivity of projected costs to model assumptions, evaluate the reasonableness of key input assumptions, and suggest possible areas of improvement for future RPS analyses. We conclude that while there is considerable uncertainty in the study results, the majority of the studies project modest cost impacts. Seventy percent of the state RPS cost studies project retail electricity rate increases of no greater than one percent. Nonetheless, there is considerable room for improving the analytic methods, and therefore accuracy, of these estimates.

  14. An Analysis of the Costs, Benefits, and Implications of Different Approaches to Capturing the Value of Renewable Energy Tax Incentives

    Broader source: Energy.gov [DOE]

    This report compares the costs, benefits, and implications of capturing the value of renewable energy tax incentives in three different ways – applying them against outside income, carrying them forward in time until they can be absorbed internally, or monetizing them through third-party tax equity investors – to see which method is most competitive under various scenarios. It finds that under late-2013 market conditions, monetization makes sense for all but the most tax-efficient project sponsors. Under a variety of plausible future policy scenarios relevant to wind and solar projects, however, the benefit of monetization no longer outweighs the high cost of tax equity, and it makes more sense for sponsors – even those without tax appetite – to use tax benefits internally rather than to monetize them. These findings have implications for how wind and solar projects are likely to be financed in the future, which, in turn, influences their LCOE. For example, under these scenarios, many wind and solar projects would likely forego tax equity in favor of cheaper sources of capital. This shift to lower-cost capital would, in turn, partially mitigate any negative impact on LCOE resulting from the policy change itself (e.g., in the case of tax credit expiration).

  15. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    PM Daling; SB Ross; BM Biwer

    1999-12-17

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal

  16. Assessing the Economic Value of New Utility-Scale Generation Projects

    Gasoline and Diesel Fuel Update (EIA)

    LCOE/LACE Workshop July 25, 2013 Chris Namovicz Assessing the Economic Value of New Utility-Scale Generation Projects Overview * Levelized cost of energy (LCOE) has been used by planners, analysts, policymakers, advocates and others to assess the economic competitiveness of technology options in the electric power sector * While of limited usefulness in the analysis of "conventional" utility systems, this approach is not generally appropriate when considering "unconventional"

  17. Levelized cost and levelized avoiced cost of new generation resources...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Technologies Wind 34 56.6 13.3 0.0 3.2 73.1 Wind - Offshore 37 141.7 22.8 0.0 5.7 170.3 Solar PV 2 25 95.3 11.4 0.0 4.0 110.8 -9.5 101.3 Solar Thermal 20 156.2 42.1 0.0 5.9 204.3...

  18. Levelized Cost of Electricity and Levelized Avoided Cost of Electricit...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... are the number of hours in a year that the plant is assumed to operate. For dispatchable generation such as coal, nuclear, or gas-fired plants, EIA calculates this based on an ...

  19. Startup Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter discusses startup costs for construction and environmental projects, and estimating guidance for startup costs.

  20. About Cost Breakdown Structure for Wave Energy Device Created...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Sensitvity Graphs Mean Wave Height (m) Wave Power Density (kWm) LCoE - centskWh 1.5 10.390967780483027 160.88775532305041 1.7 14.407267528007228 126.74104631588072 1.9 ...

  1. Technical and economic assessments of electrochemical energy storage systems: Topical report on the potential for savings in load-leveling battery and balance of plant costs

    SciTech Connect (OSTI)

    Abraham, J.; Binas, G.; Del Monaco, J.L.; Pandya, D.A.; Sharp, T.E.; Consiglio, J.A.

    1985-08-31

    The battery technologies considered in this study are zinc-bromide, lead-acid, zinc-chloride and sodium sulfur. Results of the study are presented in self contained sections in the following order: Balance of Plant, Zinc-Bromide, Lead-Acid, Zinc-chloride, and Sodium-Sulfur. The balance of plant cost estimates are examined first since the results of this section are utilized in the following battery sections to generate cost reductions in the battery plant costs for each of the battery technologies.

  2. Low Cost Thin Film Building-Integrated Photovoltaic Systems

    SciTech Connect (OSTI)

    Dr. Subhendu Guha; Dr. Jeff Yang

    2012-05-25

    The goal of the program is to develop 'LOW COST THIN FILM BUILDING-INTEGRATED PV SYSTEMS'. Major focus was on developing low cost solution for the commercial BIPV and rooftop PV market and meet DOE LCOE goal for the commercial market segment of 9-12 cents/kWh for 2010 and 6-8 cents/kWh for 2015. We achieved the 2010 goal and were on track to achieve the 2015 goal. The program consists of five major tasks: (1) modules; (2) inverters and BOS; (3) systems engineering and integration; (4) deployment; and (5) project management and TPP collaborative activities. We successfully crossed all stage gates and surpassed all milestones. We proudly achieved world record stable efficiencies in small area cells (12.56% for 1cm2) and large area encapsulated modules (11.3% for 800 cm2) using a triple-junction amorphous silicon/nanocrystalline silicon/nanocrystalline silicon structure, confirmed by the National Renewable Energy Laboratory. We collaborated with two inverter companies, Solectria and PV Powered, and significantly reduced inverter cost. We collaborated with three universities (Syracuse University, University of Oregon, and Colorado School of Mines) and National Renewable Energy Laboratory, and improved understanding on nanocrystalline material properties and light trapping techniques. We jointly published 50 technical papers in peer-reviewed journals and International Conference Proceedings. We installed two 75kW roof-top systems, one in Florida and another in New Jersey demonstrating innovative designs. The systems performed satisfactorily meeting/exceeding estimated kWh/kW performance. The 50/50 cost shared program was a great success and received excellent comments from DOE Manager and Technical Monitor in the Final Review.

  3. Operating Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  4. Workplace Charging Equipment Costs

    Broader source: Energy.gov [DOE]

    Charging stations are available from a variety of manufacturers in a range of models for all charging applications. For a single port charging station, Level 1 hardware costs range from $300-$1,500...

  5. Transmission line capital costs

    SciTech Connect (OSTI)

    Hughes, K.R.; Brown, D.R.

    1995-05-01

    The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

  6. Cost analysis guidelines

    SciTech Connect (OSTI)

    Strait, R.S.

    1996-01-10

    The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

  7. Emerging Issues and Challenges with Integrating High Levels of Solar into the Electrical Generation and Transmission Systems

    Broader source: Energy.gov [DOE]

    Increasing the use of grid-flexibility options (improved grid management, demand response, and energy storage) could enable 25% or higher penetration of PV at low costs (see Denholm et al. 2016). Considering the large-scale integration of solar into electric-power systems complicates the calculation of the value of solar. In fact a comprehensive examination reveals that the value of solar technologies—or any other power-system technology or operating strategy—can only be understood in the context of the generation system as a whole. This is well illustrated by analysis of curtailment at high PV penetrations within the bulk power and transmission systems. As the deployment of PV increases, it is possible that during some sunny midday periods due to limited flexibility of conventional generators, system operators would need to reduce (curtail) PV output in order to maintain the crucial balance between electric supply and demand. As a result, PV’s value and cost competitiveness would degrade. For example, for utility-scale PV with a baseline SunShot LCOE of 6¢/kWh, increasing the annual energy demand met by solar energy from 10% to 20% would increase the marginal LCOE of PV from 6¢/kWh to almost 11¢/kWh in a California grid system with limited flexibility. However, this loss of value could be stemmed by increasing system flexibility via enhanced control of variable-generation resources, added energy storage, and the ability to motivate more electricity consumers to shift consumption to lower-demand periods. The combination of these measures would minimize solar curtailment and keep PV cost-competitive at penetrations at least as high as 25%. Efficient deployment of the grid-flexibility options needed to maintain solar’s value will require various innovations, from the development of communication, control, and energy storage technologies to the implementation of new market rules and operating procedures.

  8. BPA's Costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings and Workshops Customer...

  9. Current Status of Concentrator Photovoltaic (CPV) Technology

    SciTech Connect (OSTI)

    Philipps, S. P.; Bett, A. W.; Horowitz, K.; Kurtz, S.

    2015-01-01

    This report describes the current status of the market and technology for concentrator photovoltaic (CPV) cells and modules. Significant progress in CPV has been achieved, including record efficiencies for modules (36.7%) and cells (46%), as well as growth of large field installations in recent years. CPV technology may also have the potential to be cost-competitive on a levelized cost of energy (LCOE) basis in regions of high direct normal irradiance (DNI). The study includes an overview of all installations larger than 1 MW, information on companies currently active in the CPV field, efficiency data, and estimates of the LCOE in different scenarios.

  10. Recovery Act - Demonstration of Sodium Ion Battery for Grid Level Applications

    SciTech Connect (OSTI)

    Wiley, Ted; Whitacre, Jay; Eshoo, Michael; Noland, James; Campbell, Williams; Spears, Christopher

    2012-08-31

    predicted with no indication that it will not tolerate well beyond 10 calendar years and 10,000 cycles. It has been in continuous operation for more than 1 year with 1,000 cycles (of varying depth of discharge, including 100% depth of discharge) and no identifiable degradation to the system. The final thick electrode cell structure has shown an energy density of 25 kWh/m3 at a five hour (or greater) discharge time. The primary chemistry has remained non-toxic, containing no acids or other corrosive chemicals, and the battery units have passed numerous safety tests, including flame resistance testing. These tests have verified the claim that the device is safe to use and contains no hazardous materials. Current projections show costs at the pack level to offer best in class value and are competitive with lead-acid batteries, factoring in LCOE.

  11. LIFE Cost of Electricity, Capital and Operating Costs

    SciTech Connect (OSTI)

    Anklam, T

    2011-04-14

    Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

  12. System Cost Model

    Energy Science and Technology Software Center (OSTI)

    1996-03-27

    SCM is used for estimation of the life-cycle impacts (costs, health and safety risks) of waste management facilities for mixed low-level, low-level, and transuranic waste. SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing waste management facilities at Department of Energy (DOE) installations. SCM also provides transportation costs for intersite transfer of DOE wastes. SCM covers the entire DOE waste management complex tomore » allow system sensitivity analysis including: treatment, storage, and disposal configuration options; treatment technology selection; scheduling options; transportation options; waste stream and volume changes; and site specific conditions.« less

  13. MHK LCOE Reporting Guidance Draft | OpenEI Community

    Open Energy Info (EERE)

    details on the Reference Models can be found here. The presentation was created in Microsoft Powerpoint, therefore it is recommended that Microsoft Powerpoint or Powerpoint...

  14. Development of Reference Models and Design Tools (LCOE Models...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 09 Lab Call: Research & Assessment for MHK Development 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies Effects on the Physical ...

  15. Concentrating Solar Power: Advanced Projects Offering Low LCOE

    Office of Environmental Management (EM)

    Energy Compliance Order issued to Los Alamos National Laboratory Compliance Order issued to Los Alamos National Laboratory Pursuant to the authority of the Secretary of Energy under section 234B of the Atomic Energy Act of 1954, as amended, and 10 C.F.R. 5 824.4(b) of the Department's Procedural Rules for the Assessment of Civil Penalties for Classzjied Information Security Violations, I am today issuing the enclosed Compliance Order to Los Alamos National Security, LLC (LANS). Compliance

  16. Low cost electronic ultracapacitor interface technique to provide load leveling of a battery for pulsed load or motor traction drive applications

    DOE Patents [OSTI]

    King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson

    1998-01-01

    A battery load leveling arrangement for an electrically powered system in which battery loading is subject to intermittent high current loading utilizes a passive energy storage device and a diode connected in series with the storage device to conduct current from the storage device to the load when current demand forces a drop in battery voltage. A current limiting circuit is connected in parallel with the diode for recharging the passive energy storage device. The current limiting circuit functions to limit the average magnitude of recharge current supplied to the storage device. Various forms of current limiting circuits are disclosed, including a PTC resistor coupled in parallel with a fixed resistor. The current limit circuit may also include an SCR for switching regenerative braking current to the device when the system is connected to power an electric motor.

  17. George Taylor, Ph.D. Founder, Palmetto Energy Institute Senior Fellow, ATI Center for Energy Studies

    Gasoline and Diesel Fuel Update (EIA)

    Copyright © 2013 PERF George Taylor, Ph.D. Founder, Palmetto Energy Institute Senior Fellow, ATI Center for Energy Studies EIA Workshop on LCOE / LACE July 25, 2013 Improving the Completeness and Accuracy of Levelized Cost of Electricity Calculations Copyright © 2013 PERF EIA 2012 Annual Energy Outlook Estimated Levelized Cost of New Generation Sources, 2017 U.S. Average Levelized Costs ($2010 per MWh) for plants entering service in 2017 Levelized Fixed Variable Trans- Total Capacity Capital

  18. GETEM -Geothermal Electricity Technology Evaluation Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 GETEM -Geothermal Electricity Technology Evaluation Model Background: GETEM was originally developed for the Department of Energy's Geothermal Technologies Program to provide both a method for quantifying the power generation cost from geothermal energy, and a means of assessing how technology advances might impact those generation costs. Generation cost is determined as the Levelized-Cost-of-Electricity (LCOE). The model is intended to provide representative estimates of cost and performance

  19. Small Modular Reactor: First of a Kind (FOAK) and Nth of a Kind (NOAK) Economic Analysis

    SciTech Connect (OSTI)

    Lauren M. Boldon; Piyush Sabharwall

    2014-08-01

    Small modular reactors (SMRs) refer to any reactor design in which the electricity generated is less than 300 MWe. Often medium sized reactors with power less than 700 MWe are also grouped into this category. Internationally, the development of a variety of designs for SMRs is booming with many designs approaching maturity and even in or nearing the licensing stage. It is for this reason that a generalized yet comprehensive economic model for first of a kind (FOAK) through nth of a kind (NOAK) SMRs based upon rated power, plant configuration, and the fiscal environment was developed. In the model, a particular project’s feasibility is assessed with regards to market conditions and by commonly utilized capital budgeting techniques, such as the net present value (NPV), internal rate of return (IRR), Payback, and more importantly, the levelized cost of energy (LCOE) for comparison to other energy production technologies. Finally, a sensitivity analysis was performed to determine the effects of changing debt, equity, interest rate, and conditions on the LCOE. The economic model is primarily applied to the near future water cooled SMR designs in the United States. Other gas cooled and liquid metal cooled SMR designs have been briefly outlined in terms of how the economic model would change. FOAK and NOAK SMR costs were determined for a site containing seven 180 MWe water cooled SMRs and compared to a site containing one 1260 MWe reactor. With an equal share of debt and equity and a 10% cost of debt and equity, the LCOE was determined to be $79 $84/MWh and $80/MWh for the SMR and large reactor sites, respectively. With a cost of equity of 15%, the SMR LCOE increased substantially to $103 $109/MWh. Finally, an increase in the equity share to 70% at the 15% cost of equity resulted in an even higher LCOE, demonstrating the large variation in results due to financial and market factors. The NPV and IRR both decreased with increasing LCOE. Unless the price of electricity

  20. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Confidentiality of information The information contained on Form EIA-877 will be kept confidential and not disclosed to the public to the extent that it satisfies the criteria for ...

  1. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 6. Natural gas processed, liquids extracted, and natural gas plant liquids production, by state, 2014 Alabama 80,590 5,139 7,044 Alabama Onshore Alabama 31,116 2,620 3,323 Alabama Offshore Alabama 49,474 2,519 3,721 Alaska 2,735,783 15,724 18,434 Alaska Onshore 2,735,783 15,724 18,434 Alaska Offshore 0 0 0 Arkansas 8,058 457 582 Arkansas 8,058 457 582 California 162,794 9,605 13,201 California Onshore California 162,413 9,597 13,192 California Offshore California 381 8 9 Federal Offshore

  2. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    5 1 April 2015 Short-Term Energy Outlook Market Prices and Uncertainty Report Crude Oil Prices: After increasing in February, global crude oil prices declined in March. The North Sea Brent front month futures price settled at $54.95/bbl on April 2, a decline of $4.59/bbl since the close on March 2 (Figure 1). The West Texas Intermediate (WTI) front month futures price declined by $0.45/bbl over the same period to settle at $49.14/bbl on April 2. The average Brent price for March was 3.2% lower

  3. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Outlook Market Prices and Uncertainty Report Crude Oil Prices: After increasing at the start of March, crude oil prices stabilized and traded within a relatively narrow range through the first week of April. The North Sea Brent front month futures price rose $2.62 per barrel (b) from March 1 to settle at $39.43/b on April 7 (Figure 1). The West Texas Intermediate (WTI) front month futures price rose $2.86/b and settled at $37.26 over the same period. The increase in crude oil prices alongside

  4. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Market Prices and Uncertainty Report Crude Oil Prices: Crude oil prices moved lower through much of July and early August. The North Sea Brent front month futures price declined $12.49 per barrel (b) since July 1 to settle at $49.52/b on August 6 (Figure 1). The West Texas Intermediate (WTI) front month futures price declined $12.30/b over the same time, settling at $44.66/b on August 6. Both benchmarks recorded their largest month-over-month decline since January 2015. One of the factors that

  5. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    1 December 2014 Short-Term Energy Outlook Market Prices and Uncertainty Report Crude Oil Prices: Crude oil prices continued to move lower in November and recorded their fifth consecutive month of declines. The North Sea Brent front month futures price settled at $69.64/bbl on December 4, a decline of $15.14/bbl from November 3 (Figure 1). The front month West Texas Intermediate (WTI) contract price settled at $66.81/bbl on December 4, decreasing by $11.97/bbl since the start of November. The

  6. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Market Prices and Uncertainty Report Crude Oil Prices: Crude oil prices moved higher toward the end of January and into the first week of February. The North Sea Brent front month futures price settled at $56.57/bbl on February 5, an increase of $0.15/bbl from January 2 (Figure 1). The front month West Texas Intermediate (WTI) contract price settled at $50.48/bbl on February 5, $2.21/bbl lower than at the start of January. These changes were relatively small compared to an average

  7. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Market Prices and Uncertainty Report Crude Oil Prices: Global and domestic crude oil prices traded in a narrow range in June. The North Sea Brent front month futures price declined $2.87 per barrel (b) since June 1 to settle at $62.01/b on July 1 (Figure 1). The West Texas Intermediate (WTI) front month futures price declined $3.24/b over the month, settling at $56.96/b on July 1. As global crude oil supply remains robust, demand-side factors are likely contributing to renewed price stability

  8. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Market Prices and Uncertainty Report Crude Oil Prices: International crude oil prices declined in May and in the first week of June while domestic crude oil prices stayed relatively stable. The North Sea Brent front month futures declined $4.43 per barrel (b) since May 1 to settle at $62.03/b on June 4 (Figure 1). The West Texas Intermediate (WTI) front month futures price decreased $1.15/b over the same period to settle at $58/b on June 4. Elevated crude oil production from members of The

  9. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Market Prices and Uncertainty Report Crude Oil Prices: International crude oil futures prices rose over the previous month but remained within the recent, and relatively narrow, trading range. The North Sea Brent front month futures price settled at $108.10 per barrel (bbl) on March 6, an increase of $2.06/bbl from February 3 (Figure 1). Over the same period, the West Texas Intermediate (WTI) front month futures contract rose $5.13/bbl, settling at $101.56/bbl on March 6. The brief uptick in

  10. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Market Prices and Uncertainty Report Crude Oil Prices: North Sea Brent and West Texas Intermediate (WTI) front month futures contracts continued their recent decline in October and the first week of November as a larger-than-normal seasonal decrease in global refinery runs from August through October lessened demand for crude oil. The Brent contract settled at $103.46 per barrel on November 7, a decline of $4.48 per barrel compared to October 1 (Figure 1). The decreases in WTI futures prices

  11. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    4 1 November 2014 Short-Term Energy Outlook Market Prices and Uncertainty Report Crude Oil Prices: Both international and domestic crude oil prices moved sharply lower over the previous five weeks. The North Sea Brent front month futures price settled at $82.86/bbl on November 6, a decline of $11.30/bbl from October 1 (Figure 1). The front month West Texas Intermediate (WTI) contract price settled at $77.91/bbl on November 6, decreasing by $12.82/bbl since the start of October. November marked

  12. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    3 1 October 2013 Short-Term Energy Outlook Market Prices and Uncertainty Report Crude Oil Prices: Front month futures prices for the Brent and West Texas Intermediate (WTI) crude oil benchmarks fell in September. The Brent contract settled at $109.00 per barrel on October 3, a decline of $6.68 per barrel since September 3, and WTI settled at $103.31 per barrel on October 3, falling by $5.23 per barrel over the same period (Figure 1). These changes marked the first month-over-month declines in

  13. 2017 Levelized Costs AEO 2012 Early Release

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Energy Consumption Survey (RECS) End-Use Models FAQs 1 February 2013 Residential Energy Consumption Survey (RECS) End-Use Models FAQs What is an end-use model? An end-use model is a set of equations designed to disaggregate a RECS sample household's total annual fuel consumption into end uses such as space heating, air conditioning, water heating, refrigeration, and so on. These disaggregated values are then weighted up to produce population estimates of total and average energy end

  14. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Table 7d), electricity generation fuel consumption (Table 7e), and renewable energy (Table 8). ... industrial sectors into a single "end use" sector. 1 Table 7a will now ...

  15. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    The number of operational oil rigs in the United States dropped each week in September and the latest Petroleum ... Fall seasonal maintenance at U.S. refineries typically does not ...

  16. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    when global demand for petroleum products is weakening, ... into the United States were relatively constant from September to October, and with U.S. refineries currently ...

  17. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Key members of The Organization of Petroleum Exporting ... straight weeks in the United States through November 27 and ... 3), gross inputs to refineries rose 0.21 million ...

  18. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    At a time of seasonally increasing demand and higher petroleum product consumption in the United States and ... Over time, refineries can adjust petroleum product yields in order ...

  19. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    supply reductions and better economic data in the United States. ... leading Organization of Petroleum Exporting Countries ... Gross inputs to refineries in PADD 3 rose 0.1 million bd ...

  20. 2017 Levelized Costs AEO 2012 Early Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent manufacturing data for the United States and China were above expectations, supporting demand for petroleum ... by the ability of refineries in the U.S. to absorb ...

  1. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    ... Those schedules include; * Schedule 2, General Information and Energy Sources and ... EIA-861. These schedules include Schedule 2C Green Pricing and Schedule 2D Net Metering. ...

  2. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Recent actions by the People's Bank of China (PBoC) and worse-than-expected economic data from China and Japan have increased uncertainty about global economic growth, particularly ...

  3. 2017 Levelized Costs AEO 2012 Early Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing activity in China continued to contract and volatility in Chinese financial ... purchasing managers' index: The Caixin China General Manufacturing Purchasing Managers' ...

  4. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    ... Outlook September 2014 3 Brent and the U.S. dollar: The divergence of growth expectations between the United States and the rest of the world is also reflected in currency markets. ...

  5. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... curves further suggests that the recent tightness in the crude oil markets reflects high refinery runs in the United States and the rest of the world as well as supply issues. ...

  6. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Although the U.S. economic data was strong, economic data in the rest of the world was generally below expectations and was met with declining equity prices and higher bond yields ...

  7. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    On the consumption side, the demand response to lower oil prices may be higher than anticipated, particularly in the United States and Europe, and could tighten markets during peak ...

  8. Levelized Cost of Energy: A Parametric Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Reliability and Performance Model Jennifer E. Granata, Steven Miller, and Joshua S. Stein PO Box 5800, Sandia National Laboratories, Albuquerque, NM 87185-1033 Contact info: 505 844 8813, jegrana@sandia.gov INTRODUCTION Accurately predicting the performance of photovoltaic systems can be a challenging undertaking, but a necessary one to assess the financial viability of a PV system and to accelerate the wide scale deployment of PV. PV system energy production can be affected by

  9. Microsoft Word - Levelized Cost of Energy Analysis

    Broader source: Energy.gov (indexed) [DOE]

    ... between OK and TN) Assumptions on alternatives Plains & Eastern line o Electric losses - 5% o Transmission charge - 8.00 kW-mo Oklahoma wind o Utilization rate - see OK ...

  10. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    liquid fuels Fuels (other than alcohol) derived from biological materials (biofuels such as soy diesel fuel) Electricity (including electricity from solar energy) ...

  11. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    ... Notes: The approximate break between historical and forecast values is shown with ... EIA does not estimate or project end-use consumption of non-marketed renewable energy. (d) ...

  12. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    From a market perspective, commodity buyers do not typically care about the source of a product as long as its chemical composition meets specifications. We are proposing to rework ...

  13. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    202-586-6419 Vishakh Mantri, Ph.D, P.E. Chemical Engineer, Energy Information ... tcapehart@ers.usda.gov 202-694-5313 Chemical Production in the AEO Peter Gross Energy ...

  14. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    The decline was largely due to U.S. Gulf Coast (PADD 3) crude oil prices strengthening against international benchmarks. The Brent-Light Louisiana Sweet (LLS) price spread settled ...

  15. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    The Brent-Louisiana Light Sweet (LLS) spread settled at -0.34bbl on October 2, a decline of 4.30bbl since September 2 (Figure 3). A small differential between Brent and LLS, ...

  16. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information Administration | Short-Term Energy Outlook May 2016 2 Louisiana Light Sweet (LLS) crude oil prices rose more than other crude oils and is trading at a premium to Brent. ...

  17. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    The differential is composed of a relatively stable Louisiana Light Sweet (LLS)-WTI ... on the discount needed to incentivize PADD 3 refineries to run light sweet crude oil. ...

  18. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    International crude oil prices increased compared with domestic ones in June. The Brent-Light Louisiana Sweet (LLS) differential increased 50 centsb since June 1, settling at -54 ...

  19. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    Decreased demand for crude oil from refineries on the U.S. Gulf Coast closed the import window for light sweet crude oil into the U.S. Gulf Coast, as can been by the LLS-Brent ...

  20. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Increases in both the Brent-Louisiana Light Sweet (LLS) and LLS-WTI contributed to the wider Brent-WTI differential. These spread movements should encourage incremental movements ...

  1. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    ... The buyer must return the propane portion to the seller either through physical delivery or a separate payment at the propane market price. Propane prices were high enough that ...

  2. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... as well as a general loosening of international balances, impacted the Brent curve. ... Oil company integration: Most energy companies recently released full-year financial ...

  3. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oklahoma, inventories for the week ending August 1. Crude production in the Permian Basin, the largest crude oil producing region in the United States, increased 0.23 million ...

  4. 2017 Levelized Costs AEO 2012 Early Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... prices and future policies may cause plant owners or investors who finance plants to ... when evaluating investments in new coal-fired power plants, new coal-to-liquids (CTL) ...

  5. SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    69 4. Photovoltaics: Technologies, Cost, and Performance 4.1 INTRODUCTION Photovoltaic (PV) technologies currently supply only a small fraction of U.S. energy needs, largely because PV-generated electricity historically has cost more than electricity from conventional sources. Achieving the SunShot Initiative's PV cost- reduction targets-reducing the price of PV systems by about 75% by 2020-is projected to make PV competitive with conventional sources on a levelized cost of energy (LCOE) basis.

  6. Wind Power Technologies Office FY 2015 Budget At-A-Glance

    Broader source: Energy.gov (indexed) [DOE]

    electricity generation from the lowest-cost fossil generation (natural gas). This would include wind grid integration and variability costs. Reduce the unsubsidized market LCOE ...

  7. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  8. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  9. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  10. Estimating Specialty Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Specialty costs are those nonstandard, unusual costs that are not typically estimated. Costs for research and development (R&D) projects involving new technologies, costs associated with future regulations, and specialty equipment costs are examples of specialty costs. This chapter discusses those factors that are significant contributors to project specialty costs and methods of estimating costs for specialty projects.

  11. Replacement Cost of Domestic Crude

    Energy Science and Technology Software Center (OSTI)

    1994-12-01

    The DEEPWATER model forecasts the replacement cost of domestic crude oil for 13 offshore regions in the lower 48 states. The replacement cost of domestic crude oil is the constant or levelized selling price that will recover the full expense of exploration, development, and productions with a reasonable return on capital.

  12. Department of Energy Environmental Management cost infrastructure development program: Cost analysis requirements

    SciTech Connect (OSTI)

    Custer, W.R. Jr.; Messick, C.D.

    1996-03-31

    This report was prepared to support development of the Department of Energy Environmental Management cost infrastructure -- a new capability to independently estimate and analyze costs. Currently, the cost data are reported according to a structure that blends level of effort tasks with product and process oriented tasks. Also. the budgetary inputs are developed from prior year funding authorizations and from contractor-developed parametric estimates that have been adjusted to planned funding levels or appropriations. Consequently, it is difficult for headquarters and field-level activities to use actual cost data and technical requirements to independently assess the costs generated and identify trends, potential cost savings from process improvements, and cost reduction strategies.

  13. Realistic costs of carbon capture

    SciTech Connect (OSTI)

    Al Juaied, Mohammed . Belfer Center for Science and International Affiaris); Whitmore, Adam )

    2009-07-01

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding

  14. Factory Cost Model

    Energy Science and Technology Software Center (OSTI)

    1996-12-17

    The Factory Cost Model (FCM) is an economic analysis tool intended to provide flat panel display (FPD) and other similar discrete component manufacturers with the ability to make first-order estimates of the cost of unit production. This software has several intended uses. Primary among these is the ability to provide first-order economic analysis for future factories. Consequently, the model requires a minimal level of input detail, and accomodates situations where actual production data are notmore » available. This software is designed to be activity based such that most of the calculated direct costs are associated with the steps of a manufacturibg process. The FCM architecture has the ability to accomodate the analysis of existing manufacturing facilities. The FCM can provide assistance with strategic economic decisions surrounding production related matters. For instance, the program can project the effect on costs and resources of a new product''s introduction, or it can assess the potential cost reduction produced by step yield improvements in the manufacturing process.« less

  15. Cost Study Manual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Cost Study Manual Executive Summary This Cost Study Manual documents the procedures for preparing a Cost Study to compare the cost of a contractor's employee benefits to the industry average from a broad-based national benefit cost survey. The annual Employee Benefits Cost Study Comparison (Cost Study) assists with the analysis of contractors' employee benefits costs. The Contracting Officer (CO) may require corrective action when the average benefit per capita cost or the benefit cost as a

  16. 2010 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions, and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  17. 2010 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  18. Solar Advisor Model; Session: Modeling and Analysis (Presentation)

    SciTech Connect (OSTI)

    Blair, N.

    2008-04-01

    This project supports the Solar America Initiative by: (1) providing a consistent framework for analyzing and comparing power system costs and performance across the range of solar technologies and markets, PV, solar heat systems, CSP, residential, commercial and utility markets; (2) developing and validating performance models to enable accurate calculation of levelized cost of energy (LCOE); (3) providing a consistent modeling platform for all TPP's; and (4) supporting implementation and usage of cost models.

  19. Pathways to Low-Cost Electrochemical Energy Storage: A Comparison...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 16, 2014, Research Highlights Pathways to Low-Cost Electrochemical Energy Storage: A ... First comprehensive determination of materials to system level performance and cost ...

  20. Energy Cost Calculator for Electric and Gas Water Heaters | Department...

    Office of Environmental Management (EM)

    Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters Vary equipment size, energy cost, hours of operation, and or efficiency level. INPUT ...

  1. PAFC Cost Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PAFC Cost Challenges Sridhar Kanuri Manager, PAFC Technology *Sridhar.Kanuri@utcpower.com 2 AGENDA Purecell® 400 cost challenge Cost reduction opportunities Summary 3 PURECELL ® FUEL CELL SYSTEM First cost 2010 cost reduction is being accomplished by incremental changes in technology & low cost sourcing Technology advances are required to reduce further cost and attain UTC Power's commercialization targets 2010 First unit 2010 Last unit Commercialization target Powerplant cost 4

  2. Renewable Portfolio Standards: Costs and Benefits (Poster)

    SciTech Connect (OSTI)

    Bird, L.; Heeter, J.; Barbose, G.; Weaver, S.; Flores, F.; Kuskova-Burns, K.; Wiser, R.

    2014-10-01

    This report summarizes state-level RPS costs to date, and considers how those costs may evolve going forward given scheduled increases in RPS targets and cost containment mechanisms. The report also summarizes RPS benefits estimates, based on published studies for individual states and discusses key methodological considerations.

  3. Cost Model and Cost Estimating Software

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter discusses a formalized methodology is basically a cost model, which forms the basis for estimating software.

  4. Electric power substation capital costs

    SciTech Connect (OSTI)

    Dagle, J.E.; Brown, D.R.

    1997-12-01

    The displacement or deferral of substation equipment is a key benefit associated with several technologies that are being developed with the support of the US Department of Energy`s Office of Utility Technologies. This could occur, for example, as a result of installing a distributed generating resource within an electricity distribution system. The objective of this study was to develop a model for preparing preliminary estimates of substation capital costs based on rudimentary conceptual design information. The model is intended to be used by energy systems analysts who need ``ballpark`` substation cost estimates to help establish the value of advanced utility technologies that result in the deferral or displacement of substation equipment. This cost-estimating model requires only minimal inputs. More detailed cost-estimating approaches are recommended when more detailed design information is available. The model was developed by collecting and evaluating approximately 20 sets of substation design and cost data from about 10 US sources, including federal power marketing agencies and private and public electric utilities. The model is principally based on data provided by one of these sources. Estimates prepared with the model were compared with estimated and actual costs for the data sets received from the other utilities. In general, good agreement (for conceptual level estimating) was found between estimates prepared with the cost-estimating model and those prepared by the individual utilities. Thus, the model was judged to be adequate for making preliminary estimates of typical substation costs for US utilities.

  5. Workplace Charging Equipment and Installation Costs | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Charging equipment costs depend on the type of charging station you decide to install in your workplace. Level 1 (300-1,500) and Level 2 (400-6,500) charging stations are ...

  6. Activity Based Costing

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Activity Based Costing (ABC) is method for developing cost estimates in which the project is subdivided into discrete, quantifiable activities or a work unit. This chapter outlines the Activity Based Costing method and discusses applicable uses of ABC.

  7. Concentrating Solar Power: Concentrating Optics for Lower Levelized...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy Costs (CSP: COLLECTS) Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy Costs ...

  8. Cellulosic Ethanol Cost Target

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plenary Talk May 21, 2013 Cellulosic Ethanol Cost Target 2 | Biomass Program ... "Our goal is to make cellulosic ethanol practical and cost competitive within 6 ...

  9. Development of surface mine cost estimating equations

    SciTech Connect (OSTI)

    Not Available

    1980-09-26

    Cost estimating equations were developed to determine capital and operating costs for five surface coal mine models in Central Appalachia, Northern Appalachia, Mid-West, Far-West, and Campbell County, Wyoming. Engineering equations were used to estimate equipment costs for the stripping function and for the coal loading and hauling function for the base case mine and for several mines with different annual production levels and/or different overburden removal requirements. Deferred costs were then determined through application of the base case depreciation schedules, and direct labor costs were easily established once the equipment quantities (and, hence, manpower requirements) were determined. The data points were then fit with appropriate functional forms, and these were then multiplied by appropriate adjustment factors so that the resulting equations yielded the model mine costs for initial and deferred capital and annual operating cost. (The validity of this scaling process is based on the assumption that total initial and deferred capital costs are proportional to the initial and deferred costs for the primary equipment types that were considered and that annual operating cost is proportional to the direct labor costs that were determined based on primary equipment quantities.) Initial capital costs ranged from $3,910,470 in Central Appalachia to $49,296,785; deferred capital costs ranged from $3,220,000 in Central Appalachia to $30,735,000 in Campbell County, Wyoming; and annual operating costs ranged from $2,924,148 in Central Appalachia to $32,708,591 in Campbell County, Wyoming. (DMC)

  10. Electricity Generation Cost Simulation Model

    Energy Science and Technology Software Center (OSTI)

    2003-04-25

    The Electricity Generation Cost Simulation Model (GENSIM) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration ofmore » a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the U.S. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emission trade-offs. The base case results using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax

  11. Cost Estimation Package

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter focuses on the components (or elements) of the cost estimation package and their documentation.

  12. Life Cycle Cost Estimate

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  13. A chronicle of costs

    SciTech Connect (OSTI)

    Elioff, T.

    1994-04-01

    This report contains the history of all estimated costs associated with the superconducting super collider.

  14. Examples of Cost Estimation Packages

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Estimates can be performed in a variety of ways. Some of these are for projects for an undefined scope, a conventional construction project, or where there is a level of effort required to complete the work. Examples of cost estimation packages for these types of projects are described in this appendix.

  15. Hydrogen Threshold Cost Calculation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing

  16. Hydrogen Pathway Cost Distributions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathway Cost Distributions Jim Uihlein Fuel Pathways Integration Tech Team January 25, 2006 2 Outline * Pathway-Independent Cost Goal * Cost Distribution Objective * Overview * H2A Influence * Approach * Implementation * Results * Discussion Process * Summary 3 Hydrogen R&D Cost Goal * Goal is pathway independent * Developed through a well defined, transparent process * Consumer fueling costs are equivalent or less on a cents per mile basis * Evolved gasoline ICE and gasoline-electric

  17. OOTW COST TOOLS

    SciTech Connect (OSTI)

    HARTLEY, D.S.III; PACKARD, S.L.

    1998-09-01

    This document reports the results of a study of cost tools to support the analysis of Operations Other Than War (OOTW). It recommends the continued development of the Department of Defense (DoD) Contingency Operational Support Tool (COST) as the basic cost analysis tool for 00TWS. It also recommends modifications to be included in future versions of COST and the development of an 00TW mission planning tool to supply valid input for costing.

  18. PROJECT PROFILE: Advanced Thermal Management for Higher Module Power Output

    Broader source: Energy.gov [DOE]

    Higher temperatures of photovoltaic (PV) modules are causing lower than projected module performance. For example, a free-standing Si PV module has 0.4% decrease in efficiency per degree Celsius. Reducing the module temperature to near ambient levels will increase yearly energy output by 8%. This project will enable lower operating temperatures for modules, resulting in higher module power output and lower levelized cost of electricity (LCOE).

  19. PRELIMINARY TECHNICAL AND ECONOMIC FEASIBILITY STUDY ON THE INTEGRATION OF A PROCESS UTILIZING LOW-ENERGY SOLVENTS FOR CARBON DIOXIDE CAPTURE ENABLED BY A COMBINATION OF ENZYMES AND ULTRASONICS WITH A SUBCRITICAL PC POWER PLANT

    SciTech Connect (OSTI)

    Swaminathan, Saravanan; Kuczynska, Agnieszka; Hume, Scott; Mulgundmath, Vinay; Freeman, Charles; Bearden, Mark; Remias, Joe; Ambedkar, Balraj; Salmon, Sonja; House, Alan

    2012-11-01

    The results of the preliminary techno-economic assessment for integrating a process utilizing low-energy solvents for carbon dioxide (CO2) capture enabled by a combination of enzymes and ultrasonics with a subcritical pulverized coal (PC) power plant are presented. Four cases utilizing the enzyme-activated solvent are compared using different methodologies of regeneration against the DOE/NETL reference MEA case. The results are shown comparing the energy demand for post-combustion CO2 capture and the net higher heating value (HHV) efficiency of the power plant integrated with the post-combustion capture (PCC) plant. A levelized cost of electricity (LCOE) assessment was performed showing the costs of the options presented in the study. The key factors contributing to the reduction of LCOE were identified as enzyme make-up rate and the capability of the ultrasonic regeneration process. The net efficiency of the integrated PC power plant with CO2 capture changes from 24.9% with the reference Case 10 plant to between 24.34% and 29.97% for the vacuum regeneration options considered, and to between 26.63% and 31.41% for the ultrasonic regeneration options. The evaluation also shows the effect of the critical parameters on the LCOE, with the main variable being the initial estimation of enzyme dosing rate. The LCOE ($/MWh) values range from 112.92 to 125.23 for the vacuum regeneration options and from 108.9 to 117.50 for the ultrasonic regeneration cases considered in comparison to 119.6 for the reference Case 10. A sensitivity analysis of the effect of critical parameters on the LCOE was also performed. The results from the preliminary techno-economic assessment show that the proposed technology can be investigated further with a view to being a viable alternative to conventional CO2 scrubbing technologies.

  20. ASPEN costing manual

    SciTech Connect (OSTI)

    Schwint, K.J.

    1986-07-25

    The ASPEN program contains within it a Cost Estimation System (CES) which estimates the purchase cost and utility consumption rates for major pieces of equipment in a process flowsheet as well as installed equipment costs. These estimates are ''preliminary-study grade'' with an accuracy of plus or minus 30%. The ASPEN program also contains within it an Economic Evaluation System (EES) which estimates overall capital investment costs, annual operating expenses and profitability indices for a chemical plant. This ASPEN costing manual has been written as a guide for those inexperienced in the use of ASPEN and unfamiliar with standard cost estimating techniques who want to use the ASPEN CES and EES. The ASPEN Costing Manual is comprised of the following sections: (1) Introduction, (2) ASPEN Input Language, (3) ASPEN Cost Estimation System (CES), (4) ASPEN Cost Blocks; and (5) ASPEN Economic Evaluation System (EES).

  1. PHENIX WBS notes. Cost and schedule review copy

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.

  2. PHENIX Work Breakdown Structure. Cost and schedule review copy

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate shows Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.

  3. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Annual Fuel Cost gal Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and ...

  4. Direct/Indirect Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

  5. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  6. PROJECT PROFILE: Addressing Soiling: From Interface Chemistry to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Practicality | Department of Energy Addressing Soiling: From Interface Chemistry to Practicality PROJECT PROFILE: Addressing Soiling: From Interface Chemistry to Practicality Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $6,000,000 Natural soiling is responsible for about 4% output power loss and may be adding one cent per kilowatt hour to the levelized cost of energy (LCOE) depending on the site.

  7. Project Profile: Encapsulated Phase Change Material in Thermal Storage for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Baseload CSP Plants | Department of Energy Concentrating Solar Power » Project Profile: Encapsulated Phase Change Material in Thermal Storage for Baseload CSP Plants Project Profile: Encapsulated Phase Change Material in Thermal Storage for Baseload CSP Plants Terrafore logo Terrafore, under the Baseload CSP FOA, developed novel encapsulated phase change materials (PCM) for use in thermal storage applications to significantly reduce the levelized cost of energy (LCOE) for baseload CSP

  8. NREL: Energy Analysis - Michael Woodhouse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Woodhouse Photo of Michael Woodhouse Michael Woodhouse is a member of the Technology Systems and Sustainability Analysis Group in the Strategic Energy Analysis Center. Solar PV Technologies and Economics Analyst On staff since 2008 Phone number: 303-384-7623 E-mail: Michael.Woodhouse@nrel.gov Areas of expertise Fundamental science of photovoltaics (PV) and solar hydrogen technologies Economics of PV - From manufacturing to levelized cost of energy (LCOE) Primary research interests Manufacturing

  9. NREL Identifies Investments for Wind Turbine Drivetrain Technologies (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    examines current U.S. manufacturing and supply chain capabilities for advanced wind turbine drivetrain technologies. Innovative technologies are helping boost the capacity and operating reliability of conventional wind turbine drivetrains. With the proper manufacturing and supply chain capabilities in place, the United States can better develop and deploy these advanced technologies- increasing the competitiveness of the U.S. wind industry and reducing the levelized cost of energy (LCOE).

  10. Call for Proposals: DuraMat Consortium | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Call for Proposals: DuraMat Consortium Call for Proposals: DuraMat Consortium Funding Amount: $30,000,000 Description This Call for Proposals is intended to establish a national laboratory-led Energy Materials Network (EMN) Consortium for durable module materials (DuraMat) aimed at dramatically accelerating the development of new module materials that enable significant reductions in the levelized cost of energy (LCOE) of photovoltaic (PV) systems. It is envisioned that the DuraMat EMN

  11. DOE Office of Indian Energy Renewable Energy Project Development: Advanced Financing Concepts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concepts Why It Makes Sense to Bring on a Third-Party Partner Course Outline What we will cover...  About the DOE Office of Indian Energy Education Initiative  Concepts for Financing Renewable Energy Projects on Tribal Lands - Levelized Cost of Energy (LCOE) - Business Structures - Tax-Equity Partnerships - Introduction  Additional Information and Resources 2 Introduction The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs is responsible for assisting Tribes

  12. Oxygenate Supply/Demand Balances

    Gasoline and Diesel Fuel Update (EIA)

    Energy Conference June 17, 2013 Chris Namovicz Assessing the Economic Value of New Utility-Scale Renewable Generation Projects Overview * Levelized cost of energy (LCOE) has been used by planners, analysts, policymakers, advocates and others to assess the economic competitiveness of technology options in the electric power sector * While of limited usefulness in the analysis of "conventional" utility systems, this approach is not generally appropriate when considering

  13. Process Equipment Cost Estimation, Final Report

    SciTech Connect (OSTI)

    H.P. Loh; Jennifer Lyons; Charles W. White, III

    2002-01-01

    This report presents generic cost curves for several equipment types generated using ICARUS Process Evaluator. The curves give Purchased Equipment Cost as a function of a capacity variable. This work was performed to assist NETL engineers and scientists in performing rapid, order of magnitude level cost estimates or as an aid in evaluating the reasonableness of cost estimates submitted with proposed systems studies or proposals for new processes. The specific equipment types contained in this report were selected to represent a relatively comprehensive set of conventional chemical process equipment types.

  14. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    Office of Energy Efficiency and Renewable Energy (EERE)

    This independent review report assesses the 2009 state-of-the-art and 2020 projected capital cost, energy efficiency, and levelized cost for hydrogen production from biomass via gasification.

  15. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect (OSTI)

    Francesco Ganda; Brent Dixon

    2012-09-01

    The U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative “Island” approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this island’s used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of

  16. SunShotBook-all.indd

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Photovoltaics To meet the SunShot Initiative goal of an unsubsidized utility- scale PV system cost of $1/W and to attain a levelized cost of energy (LCOE) of $0.06/kWh by 2020, the PV program has the following targets: * Module cost of $0.50/W (including margin) * Module efficiency of 20% While module costs have decreased dramatically since the start of the SunShot Initiative, an additional 1/3 cost reduction is necessary. Further, increases in module efficiency enable decreases in the balance

  17. Workplace Charging Installation Costs

    Broader source: Energy.gov [DOE]

    Installation costs and services vary considerably, so employers are encouraged to obtain a number of quotes before moving forward with any installation. An initial site investigation should include:

  18. Low Cost, Durable Seal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UTC Power Corporation February 14, 2007 This presentation does not contain any proprietary or confidential information 1 LOW COST, DURABLE SEAL Outline * Project Objective * ...

  19. substantially reduced production costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    production costs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  20. SOFT COST GRAND CHALLENGE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energycenter.org California Center for Sustainable Energy Soft Cost Grand Challenge May 22, 2014 Accelerating the transition to a sustainable world powered by clean energy 2...

  1. Energy Department Awards $3.5 Million to Develop Cost-Competitive...

    Broader source: Energy.gov (indexed) [DOE]

    project aimed at accelerating the development of sustainable, affordable algal biofuels. ... toward reducing the cost of algal biofuels to cost-competitive levels of 5,000 ...

  2. Computerized operating cost model for industrial steam generation

    SciTech Connect (OSTI)

    Powers, T.D.

    1983-02-01

    Pending EPA regulations, establishing revised emission levels for industrial boilers are perceived to have an effect on the relative costs of steam production technologies. To aid in the comparison of competitive boiler technologies, the Steam Cost Code was developed which provides levelized steam costs reflecting the effects of a number of key steam cost parameters. The Steam Cost Code is a user interactive FORTRAN program designed to operate on a VAX computer system. The program requires the user to input a number of variables describing the design characteristics, capital costs, and operating conditions for a specific boiler system. Part of the input to the Steam Cost Code is the capital cost of the steam production system. The capital cost is obtained from a program called INDCEPT, developed by Oak Ridge National Laboratory under Department of Energy, Morgantown Energy Technology Center sponsorship.

  3. Simple Modular LED Cost Model

    Broader source: Energy.gov [DOE]

    The LED Cost Model, developed by the DOE Cost Modeling Working Group, provides a simplified method for analyzing the manufacturing costs of an LED package. The model focuses on the major cost...

  4. Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Costs (CSP: COLLECTS) | Department of Energy Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy Costs (CSP: COLLECTS) Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy Costs (CSP: COLLECTS) Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy Costs (CSP: COLLECTS) The Concentrating Solar Power: Concentrating Optics for Lower Levelized Energy Costs (CSP: COLLECTS) funding program aims to further accelerate progress toward

  5. Decommissioning Unit Cost Data

    SciTech Connect (OSTI)

    Sanford, P. C.; Stevens, J. L.; Brandt, R.

    2002-02-26

    The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for

  6. Economics of Developing Hot Stratigraphic Reservoirs

    SciTech Connect (OSTI)

    Greg Mines; Hillary Hanson; Rick Allis; Joseph Moore

    2014-09-01

    Stratigraphic geothermal reservoirs at 3 – 4 km depth in high heat-flow basins are capable of sustaining 100 MW-scale power plants at about 10 c/kWh. This paper examines the impacts on the levelized cost of electricity (LCOE) of reservoir depth and temperature, reservoir productivity, and drillhole/casing options. For a reservoir at 3 km depth with a moderate productivity index by hydrothermal reservoir standards (about 50 L/s/MPa, 5.6 gpm/psi), an LCOE of 10c/kWh requires the reservoir to be at about 200°C. This is the upper temperature limit for pumps. The calculations assume standard hydrothermal drilling costs, with the production interval completed with a 7 inch liner in an 8.5 inch hole. If a reservoir at 4 km depth has excellent permeability characteristics with a productivity index of 100 L/s/MPa (11.3 gpm/psi), then the LCOE is about 11 c/kWh assuming the temperature decline rate with development is not excessive (< 1%/y, with first thermal breakthrough delayed by about 10 years). Completing wells with modest horizontal legs (e.g. several hundred meters) may be important for improving well productivity because of the naturally high, sub-horizontal permeability in this type of reservoir. Reducing the injector/producer well ratio may also be cost-effective if the injectors are drilled as larger holes.

  7. Cost Estimating Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-09

    This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates. No cancellations.

  8. Liquefaction and Pipeline Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution Pipeline Costs Collected historical Oil & Gas Journal data, and surveyed for ... mile Downtown: 1 to 8 in. Downtown: 4 to 20 in. Urban H2A Right of Way Oil & Gas Journal

  9. INDEPENDENT COST REVIEW (ICR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Report SOP Standard Operating Procedure TEC Total Estimated Cost TIPR Technical ... FY13 FY14 FY15 FY16 Total PED Construction TEC OPC TPC Note: above values include MR...

  10. Soft Costs Fact Sheet

    Broader source: Energy.gov (indexed) [DOE]

    Energy SunShot Initiative is a collaborative national effort to make solar energy technologies cost-competitive with conventional forms of energy by the end of the decade. ...