Powered by Deep Web Technologies
Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Water an Unusual Liquid; LCLS Provides New Insights | Stanford Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Water an Unusual Liquid; LCLS Provides New Insights Water an Unusual Liquid; LCLS Provides New Insights Wednesday, November 13, 2013 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Anders Nilsson, SUNCAT The anomalous physical properties of water are responsible for sustaining much of life on earth; for example, water displays a higher heat capacity than common liquids and expands upon freezing. Some of these anomalous physical properties become dramatically enhanced upon supercooling below the freezing point. In particular, extrapolations of the thermal expansion coefficient, isothermal compressibility, heat capacity and correlation length can all be fitted with a power law divergence with the same apparent singularity temperature of about 228 K. Experiments on pure bulk water below about ~240 K have so far been difficult: water crystallization occurs

2

LCLS Publications: Statistics  

NLE Websites -- All DOE Office Websites (Extended Search)

LCLS Publications: Statistics LCLS Publications: Statistics Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES LCLS : LCLS Publications: Statistics Linac Coherent Light Source An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar LCLS Lasers Expand Lasers LCLS Quick Launch Home About LCLS Expand About LCLS LCLS News Expand LCLS News User Resources Expand User Resources Instruments Expand Instruments Proposals Publications Expand Publications Schedules Machine Status Machine FAQs Safety Organization Expand Organization Directories Expand Directories Staff Resources Contact Us All Site Content Department of Energy Page Content LCLS Publications: Statistics 2013 | 2012 | 2011 | 2010 | 2009 | Archive | Citations | Statistics

3

National Synchrotron Light Source  

ScienceCinema (OSTI)

A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

None

2010-01-08T23:59:59.000Z

4

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Assessment Environmental Assessment Proposed Upgrade and Improvement of the National Synchrotron Light Source Complex at Brookhaven National Laboratory, Upton, New York This Environmental Assessment addresses the proposed action by the U.S. Department of Energy to upgrade the facilities of the National Synchrotron Light Source Complex, namely the National Synchrotron Light Source (NSLS), the Accelerator Test Facility and the Source Development Laboratory. The environmental effects of a No-Action Alternative as well as a Proposed Action are evaluated in the Environmental Assessment. The “NSLS Environmental Assessment Fact Sheet” link below leads to a one-page summary of the Environmental Assessment. The “NSLS Environmental Assessment” link below leads to the whole 41-page

5

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Report 2001 Report 2001 National Synchrotron Light Source For the period October 1, 2000 through September 30, 2001 Introduction Science Highlights Year in Review Operations Publications Abstracts Nancye Wright & Lydia Rogers The National Synchrotron Light Source Department is supported by the Office of Basic Energy Sciences United States Department of Energy Washington, D.C. Brookhaven National Laboratory Brookhaven Science Associates, Inc. Upton, New York 11973 Under Contract No. DE-AC02-98CH10886 Mary Anne Corwin Steven N. Ehrlich & Lisa M. Miller Managing Editor Science Editors Production Assistants Cover images (clockwise from top left) 1. from Science Highlight by K.R. Rajashankar, M.R. Chance, S.K. Burley, J. Jiang, S.C. Almo, A. Bresnick, T. Dodatko, R. Huang, G. He,

6

National Synchrotron Light Source  

ScienceCinema (OSTI)

A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

BNL

2009-09-01T23:59:59.000Z

7

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

All Documents listed below are part of the Photon Sciences Directorate and All Documents listed below are part of the Photon Sciences Directorate and will be updated as needed. Photon Sciences ESH Standard Operating Procedures (SOPs) SOP No. Standard Operating Procedure for: LS-ES-0002 Procedure for Acid Etching of Silicon and Germanium Crystals LS-ESH-0004 NSLS Operations Group Chemical Spill and Gas Release Response LS-ESH-0010 VUV Injection Shutter LOTO LS-ESH-0012 LINAC LOTO LS-ESH-0013 Controlled Access to the VUV Ring LS-ESH-0014 Radiation Safety Interlocks at the National Synchrotron Light Source LS-ESH-0019 Beam Line Configuration Control Checklist Requirements LS-ESH-0020 Biosafety Requirements at the NSLS LS-ESH-0021 Biosafety Level 2 work at the NSLS/ A Technical Basis LS-ESH-0022 Beam Line Configuration Control Checklist Requirements

8

Two-Color Self-Seeding at LCLS | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Two-Color Self-Seeding at LCLS Two-Color Self-Seeding at LCLS Wednesday, September 18, 2013 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Franz-Josef Decker, Accelerator Directorate The Linac Coherent Light Source (LCLS) produces typically SASE FEL pulses with intensities of up to 5 mJ and at high photon energy an FEL bandwidth 0.2% (FWHM). Self-seeding with a diamond crystal reduces the bandwidth by a factor of 10 to 40. The range depends on which Bragg reflection is used, or the special setup of the electron beam like over-compression. The peak intensity level is lower by a factor of only five, giving the seeded beam an advantage of about 2.5 in average intensity over the use of a monochromator with SASE. At certain energies and crystal angles different Bragg lines cross which allows seeding at two or even three different colors inside the bandwidth

9

National Synchrotron Light Source annual report 1991  

SciTech Connect

This report contains abstracts from research conducted at the national synchrotron light source. (LSP)

Hulbert, S.L.; Lazarz, N.N. (eds.)

1992-04-01T23:59:59.000Z

10

National Synchrotron Light Source annual report 1988  

SciTech Connect

This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

Hulbert, S.; Lazarz, N.; Williams, G. (eds.)

1988-01-01T23:59:59.000Z

11

LCLS CDR Chapter 14  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 4 Radiological Considerations TECHNICAL SYNOPSIS The radiation protection issues for the LCLS are normally encountered at both high-energy electron linacs and synchrotron radiation facilities. The SLAC Radiological Control Manual [1] specifies an annual total effective dose equivalent limit to workers from both internal and external radiation sources of 5 rem. In addition, SLAC maintains an administrative control level of 1.5 rem. Radiation dose criteria used in design of the LCLS radiation safety systems are those required for SLAC facilities. The integrated dose equivalent outside the surface of the FFTB shielding barriers must not exceed 1 rem in a year for normal beam operation [1]. The integrated dose equivalent to personnel working inside and around the experimental

12

LCLS AMO web page  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic, Molecular and Optical Science at the LCLS Atomic, Molecular and Optical Science at the LCLS Links: AMO LCLS SLAC LUSI Proposal Preparation Workshop: A workshop will be held June 2 & 3 at SLAC to assist users in preparing proposals to use the AMO instrument at the LCLS in anticipation of the first call for proposals due September 2008. The LCLS will begin user operations with the AMO instrument in August 2009. Information about the LCLS and the AMO instrument will be presented at the proposal preparation workshop to help users prepare successful proposals. The information will be made available on the LCLS-AMO web site after the meeting. Please see the workshop announcement for more information. LCLS Scientific Instruments: Four scientific instruments are currently being designed to capitalize on the unique properties of the LCLS, namely its high intensity short pulses x-rays. The Atomic, Molecular and Optical (AMO) science instrument will occupy a soft x-ray side branch of the LCLS in hutch 2 of the Near Experimental Hall (NEH). The AMO instrument is being built as a part of the LCLS construction project, while the other three instruments for x-ray pump probe(XPP), coherent x-ray imaging (CXI), and x-ray coherent scattering (XCS) are being built as part of a separate SLAC managed DOE project, the LCLS User Scientific Instruments project, LUSI.

13

Transverse-coherence properties of the FEL at the LCLS  

SciTech Connect

The recently commissioned Linac Coherent Light Source is an x-ray free-electron laser at the SLAC National Accelerator Laboratory, which is now operating at x-ray wavelengths of 20-1.2 Angstrom with peak brightness nearly ten orders of magnitude beyond conventional synchrotron sources. Understanding of coherence properties of the radiation from SASE FELs at LCLS is of great practical importance for some user experiments. We present the numerical analysis of the coherence properties at different wavelengths based on a fast algorithmusing ideal and start-end simulated FEL fields. The sucessful commissioning and operation of the linac coherent light source (LCLS) [1] has demonstrated that the x-ray free-electron laser (FEL) has come of age; these types of x-ray sources are poised to revolutionize the ultra-fast x-ray sciences. The LCLS and other hard x-ray FELs under construction are based on the principle of self-amplified spontaneous emission (SASE) [2, 3], where the amplification process starts from the shot noise in the electron beam. A large number of transverse radiation modes are also excited when the electron beam enters the undulator. The FEL collective instability in the electron beam causes the modulation of the electron density to increase exponentially, and after sufficient undulator distances, a single transverse mode starts to dominate. As a result, SASE FEL is almost fully coherent in the transverse dimension. Understanding of transverse coherence properties of the radiation from SASE FELs is of great practical importance. The longitudinal coherence properties of SASE FELs have been studied before [4]. Some studies on the transverse coherence can be found in previous papers, for example, in ref. [5, 6, 7, 8, 9]. In this paper, we first discuss a new numerical algorithm based on Markov chain Monte Carlo techniques to calculate the FEL transverse coherence. Then we focus on the numerical analysis of the LCLS FEL transverse coherence.

Ding, Yuantao

2010-09-02T23:59:59.000Z

14

LCLS CDR Preface  

NLE Websites -- All DOE Office Websites (Extended Search)

Preface Preface This Conceptual Design Report (CDR) describes the design of the LCLS. It will be updated to stay current with the developing design of the machine. This CDR begins as the baseline conceptual design and will evolve into an "as-built" manual for the completed FEL. The current released version of the CDR can be found on the LCLS web page, http://www-ssrl.slac.stanford.edu/lcls/. The Executive Summary, Chapter 1, gives an introduction to the LCLS project and describes the salient features of its design. Chapter 2 is a stand-alone document that gives an overview of the LCLS. It describes the general parameters of the machine and the basic approaches to implementation. The LCLS project does not include the implementation of specific scientific experiments.

15

National Synchrotron Light Source II Project Progress Report  

E-Print Network (OSTI)

, power supply procurement, BPM electronics testing, and controls system design. With details of technical'S ASSESSMENT FEBRUARY 2010 OVERALL ASSESSMENT The National Synchrotron Light Source II project maintained excellent technical progress and satisfactory cost and schedule performance. The DOE Independent Project

Ohta, Shigemi

16

National Synchrotron Light Source annual report 1991. Volume 2, October 1, 1990--September 30, 1991  

SciTech Connect

This report contains abstracts from research conducted at the national synchrotron light source. (LSP)

Hulbert, S.L.; Lazarz, N.N. [eds.

1992-04-01T23:59:59.000Z

17

Photon Sciences | About the National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Source Source NSLS One of the world's most widely used scientific research facilities, the National Synchrotron Light Source (NSLS) is host each year to 2,400 researchers from more than 400 universities, laboratories, and companies. Research conducted at the NSLS has yielded advances in biology, physics, chemistry, geophysics, medicine, and materials science. Synchrotron light is produced by electrons when they are forced to move in a curved path at nearly the speed of light. At the NSLS, beams of light in the x-ray, ultraviolet, and infrared wavelengths are produced by two synchrotrons for use in experiments. Powerful Light, Diverse Research Since the intensity of synchrotron light can be 10,000 times greater than conventional beams generated in a laboratory, scientists can use these

18

Photon Sciences | Operating the National Synchrotron Light Source,  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Collaborators Industrial Collaborators The National Synchrotron Light Source (NSLS) and its future successor, NSLS-II, can help companies large and small solve research and manufacturing problems, generate new technologies and products, and stay competitive. The Photon Sciences Directorate would like to encourage greater use of its facilities by industrial researchers and facilitate collaborations between industry and NSLS staff, as well as government and academic institutions. Synchrotron Use by Industry What is a synchrotron? A synchrotron light source is a large machine that produces intense beams of infrared, ultraviolet, and x-ray light for the study of substances at very small scales, from looking at the molecular structure of proteins to probing the electronic properties of the next generation of computer-chip

19

Environmental Assessment for the National Synchrotron Light Source II at Brookhaven National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NATIONAL SYNCHROTRON LIGHT SOURCE-II NATIONAL SYNCHROTRON LIGHT SOURCE-II (NSLS-II) BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK U. S. Department Of Energy Brookhaven Site Office September 2006 DOE/EA-1558 i TABLE OF CONTENTS 1.0 PREFACE....................................................................................................................1 2.0 SUMMARY .................................................................................................................2 3.0 PURPOSE AND NEED ............................................................................................10 4.0 DESCRIPTION OF ALTERNATIVES, INCLUDING THE PROPOSED ACTION.....................................................................................................................11

20

NSLS II: The Future National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Call for Beamline Development Proposals 2011 Call for Beamline Development Proposals National Synchrotron Light Source II February 16, 2011 NSLS-II Rendering Critical Dates Call for proposal issued Thursday, February 17, 2011 Letter of Intent due Monday, March 28, 2011 (submitted LOIs) Beamline development workshops April-June 2011 Beamline proposal due Monday, July 25, 2011 Related Materials Proposal template NSLS-II Beamline Development Policy NSLS-II Source Properties NSLS-II User Access Policy Project Beamlines Background Beamline Information Approved Proposals From 2010 The National Synchrotron Light Source II (NSLS-II), currently under construction at the U.S. Department of Energys Brookhaven National Laboratory on Long Island, NY, is pleased to announce the 2011 Call for Beamline Development Proposals for experimental facilities to be implemented at NSLS-II.

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Challenge Met as APS Sends Final Chambers to LCLS  

NLE Websites -- All DOE Office Websites (Extended Search)

A Marriage of Hardware and Hard Work A Marriage of Hardware and Hard Work Shaken but Not Stirred 2008 Rosalind Franklin Young Investigator Award The 2008 3-Way Meeting In R&D, Super X-rays Mark Many Spots APS News Archives: 2012 | 2011 | 2010 | 2009 2008 | 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed Challenge Met as APS Sends Final Chambers to LCLS MAY 21, 2008 Bookmark and Share The final five (of 40) extruded aluminum vacuum chambers for the Linac Coherent Light Source (LCLS) undulator system have been shipped from Argonne National Laboratory - where the chambers were designed and assembled - to the Stanford Linear Accelerator Center, where the LCLS "will be the world's first x-ray free electron laser when it becomes operational in 2009. Pulses of x-ray laser light from LCLS will be many

22

EA-1321: Proposed Upgrade and Improvement of The National Synchrotron Light  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21: Proposed Upgrade and Improvement of The National 21: Proposed Upgrade and Improvement of The National Synchrotron Light Source Complex at Brookhaven National Laboratory, Upton, New York EA-1321: Proposed Upgrade and Improvement of The National Synchrotron Light Source Complex at Brookhaven National Laboratory, Upton, New York SUMMARY This EA evaluates the environmental impacts for the proposal to upgrade the facilities of the U.S. Department of Energy's National Synchrotron Light Source Complex, namely the National Synchrotron Light Source, the Accelerator Test Facility and the Source Development Laboratory. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 12, 2001 EA-1321: Finding of No Significant Impact Proposed Upgrade and Improvement of The National Synchrotron Light Source

23

National Synchrotron Light Source A View of Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

managed for the U.S. Department of Energy managed for the U.S. Department of Energy by Brookhaven Science Associates, a company founded by Stony Brook University and Battelle managed for the U.S. Department of Energy by Brookhaven Science Associates, a company founded by Stony Brook University and Battelle National Synchrotron Light Source A View of Brookhaven Brookhaven National Laboratory is a multipurpose re- search laboratory funded by the U.S. Department of En- ergy. Located on a 5,300-acre site on Long Island, New York, the Laboratory operates large-scale facilities for studies in physics, chemistry, biology, medicine, applied science, and advanced technology. Brookhaven's 2,600 scientists, engineers, and support staff are joined each year by more than 5,000 visiting research- ers from around the world.

24

PHOTOINJECTED ENERGY RECOVERY LINAC UPGRADE FOR THE NATIONAL SYNCHROTRON LIGHT SOURCE *  

E-Print Network (OSTI)

PHOTOINJECTED ENERGY RECOVERY LINAC UPGRADE FOR THE NATIONAL SYNCHROTRON LIGHT SOURCE * Ilan Ben of the National Synchrotron Light Source (NSLS). This upgrade will be based on the Photoinjected Energy Recovering limitations. First, the emittance of a storage ring based light source is proportional to the energy

Brookhaven National Laboratory

25

Photon Sciences | Operating the National Synchrotron Light Source,  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Coordinator Program Coordinator Jun Wang Physicist, Industrial Program Coordinator Phone: 344-2661 Email: junwang@bnl.gov Jun Wang is an Industrial Program Coordinator in the Photon Science Directorate at Brookhaven National Laboratory. She is working closely with industrial researchers as well as beamline staff to identify and explore new opportunities in industrial applications using synchrotron radiation. She has been leading the industrial research program including consultation, collaboration and outreach to the industrial user groups. Before joining BNL in 2008, Jun Wang was a Lead Scientist for a high-resolution high throughput powder diffraction program at the Advanced Photon Source (APS). As a Physicist at BNL, her research focuses on materials structure determination and evolution. Her expertise covers wide

26

LCLS CDR Chapter 12  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 2 Alignment TECHNICAL SYNOPSIS This section describes the procedures and methods used to position the LCLS components with their required accuracy. Most of the alignment requirements are well within the range of proven traditional alignment techniques. Alignment of the undulator section is the most demanding. State-of-the-art equipment and procedures will be needed to meet the positioning requirements. The alignment coordinate system will be the existing Cartesian right-handed system, which was implemented for the SLC project and was also used for the PEPII project. The alignment network will consist of four parts: a small surface network to better integrate the remote hall into the global coordinate system, and three tunnel networks for linac, undulator and transport lines /

27

LCLS CDR Chapter 11 - Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

will be EPICS-based. These systems include: (1) The LCLS Injector systems, such as, the gun, the gun laser, the injector linac and the DL1 beamline. (2) The undulator segments,...

28

LCLS Heavy Met Outgassing Tests  

SciTech Connect

A Heavy Met that is 95% tungsten, 3% nickel and 2% iron and sintered to 100% density and is Ultra High Vacuum (UHV) compatible is proposed for use as the X-ray slit in the Front End Enclosure and the Fixed Mask for the Linac Coherent Light Source (LCLS). The Heavy Met was tested in the LLNL Vacuum Sciences and Engineering Lab (VSEL) to determine its outgassing rate and its overall compatibility with the vacuum requirements for LCLS.

Kishiyama, K. I.

2010-12-01T23:59:59.000Z

29

National Synchrotron Light Source guidelines for the conduct of operations  

SciTech Connect

To improve the quality and uniformity of operations at the Department of Energy`s facilities, the DOE issued Order 5480.19 ``Conduct of Operations Requirements at DOE facilities.`` This order recognizes that the success of a facilities mission critically depends upon a high level of performance by its personnel and equipment. This performance can be severely impaired if the facility`s Conduct of Operations pays inadequate attention to issues of organization, safety, health, and the environment. These guidelines are Brookhaven National Laboratory`s and the National Synchrotron Light Source`s acknowledgement of the principles of Conduct of Operations and the response to DOE Order 5480.19. These guidelines cover the following areas: (1) operations organization and administration; (2) shift routines and operating practices; (3) control area activities; (4) communications; (5) control of on-shift training; (6) investigation of abnormal events; (7) notifications; (8) control of equipment and system studies; (9) lockouts and tagouts; (10) independent verification; (11) log-keeping; (12) operations turnover; (13) operations aspects of facility process control (14) required reading; (15) timely orders to operators; (16) operations procedures; (17) operator aid posting; and (18) equipment sizing and labeling.

Buckley, M. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source

1998-01-01T23:59:59.000Z

30

SciTech Connect: 1994 Activity Report, National Synchrotron Light...  

Office of Scientific and Technical Information (OSTI)

POLICY; 43 PARTICLE ACCELERATORS; NSLS; PROGRESS REPORT; COORDINATED RESEARCH PROGRAMS; X-RAY SPECTROSCOPY; ULTRAVIOLET SPECTRA; SYNCHROTRON RADIATION; USES Word Cloud More Like...

31

The Argonne National Laboratory 67 GeV synchrotron X-ray source  

Science Journals Connector (OSTI)

In 19841985 the Argonne National Laboratory undertook a design study of a 67 GeV synchrotron radiation source. The effort led to a construction proposal which was reviewed early this year and recommended for funding by the US Department of Energy. This paper gives a general description of this Argonne synchrotron X-ray source.

Lee C. Teng

1987-01-01T23:59:59.000Z

32

LCLS Operating Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

LCLS Operating Schedule LCLS Operating Schedule August - December 2009 Ver: 2 10/30/09 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 S Su M T W Th F S Su M T W Th F S Su M T W Th F S Su M T W Th F S Su M 0000-0800 MD MD MD MD MD 0800-1600 ROD MD AMO ROD MD AMO 1600-2400 MD MD Commissioning MD MD Comm. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 T W Th F S Su M T W Th F S Su M T W Th F S Su M T W Th F S Su M T W 0000-0800 MD MD MD MD MD MD MD MD MD 0800-1600 MD ROD AMO MD ROD AMO MD ROD AMO MD ROD AMO ROD 1600-2400 MD MD Commissioning MD MD Commissioning MD MD Commissioning MD MD Commissioning MD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Th F S Su M T W Th F S Su M T W Th F S Su M T W Th F S Su M T W Th F S 0000-0800 MD MD MD MD MD MD MD MD MD 0800-1600 Young MD ROD DiMauro MD ROD Berrah MD ROD Coffee MD ROD Young-II 1600-2400 L018 MD MD L026 MD MD L015 MD MD L027 MD MD L017 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Su

33

LCLS CDR Chapter 3 - Scientific Experiments  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Scientific Basis for Optical Systems TECHNICAL SYNOPSIS The LCLS Scientific Advisory Committee (SAC) has recommended experiments in five scientific disciplines for the initial operation of the LCLS. These experiments cover a variety of scientific disciplines: atomic physics, plasma physics, chemistry, biology and materials science. The x-ray optics and detectors needed to verify the LCLS capability to address these five disciplines will be constructed and installed as part of the LCLS project. The experiments are described in detail in the document "LCLS: The First Experiments" referenced earlier. Two classes of experiments are proposed for the LCLS. The first class consists of experiments where the x-ray beam is used to probe the sample, as is done in most experiments at current

34

LCLS_CDR-ch10  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 0 Conventional Facilities TECHNICAL SYNOPSIS The LCLS takes advantage of the existing infrastructure at SLAC. It uses the last third of the existing 3 km linac including the existing enclosure and utilities. A new injector will be installed at sector 20 in the Off-Axis Injector Tunnel. This branch tunnel was constructed as part of the original construction at SLAC in the 1960s for just such an injector. The existing linac equipment including the klystrons and modulators will be used. The injector tunnel will require some modifications to bring it to current safety standards and to accommodate the specific requirements of the LCLS injector. Two short sections of linac will be removed to accommodate the magnets and vacuum chambers for the two pulse compressors. New systems to bring power and water to these

35

LCLS Gun Solenoid Design Considerations  

SciTech Connect

The LCLS photocathode rf gun requires a solenoid immediately downstream for proper emittance compensation. Such a gun and solenoid have been operational at the SSRL Gun Test Facility (GTF) for over eight years. Based on magnetic measurements and operational experience with the GTF gun solenoid multiple modifications are suggested for the LCLS gun solenoid. The modifications include adding dipole and quadrupole correctors inside the solenoid, increasing the bore to accommodate the correctors, decreasing the mirror plate thickness to allow the solenoid to move closer to the cathode, cutouts in the mirror plate to allow greater optical clearance with grazing incidence cathode illumination, utilizing pancake coil mirror images to compensate the first and second integrals of the transverse fields and incorporating a bipolar power supply to allow for proper magnet standardization and quick polarity changes. This paper describes all these modifications plus the magnetic measurements and operational experience leading to the suggested modifications.

Schmerge, John

2010-12-10T23:59:59.000Z

36

Multi-Device Knob Utility for LCLS  

SciTech Connect

At the SLAC National Accelerator Laboratory (SLAC) the Controls Department (CD) has developed a new Multi-Device Knob Utility (MKB) based on the Experimental Physics and Industrial Control System (EPICS) toolkit for controlling one or more Process Variables (PVs) in unison, or simultaneously, from a physical knob located in the control room, or from various software tools such as the EPICS Extensible Display Manager (EDM) or a Swing slider in Java. A group of devices are hooked up to a knob, and then the value written to the devices is a simple function of the value of the knob. This is used, most commonly, to create a bump in the electron beam for the Linac Coherent Light Source (LCLS). Control system variables typically controlled are magnetic fields, phases, and timing offsets. This paper describes the technologies used to implement this utility.

Zelazny, Michael; Chevtsov, Sergei; Chu, Chungming Paul; Fairley, Diane; Krejcik, Patrick; Rogind, Deborah; Smith, Howard; White, Greg; Yocky, Gerald; /SLAC

2009-12-09T23:59:59.000Z

37

Photon Sciences | Operating the National Synchrotron Light Source,  

NLE Websites -- All DOE Office Websites (Extended Search)

Accessing NSLS Accessing NSLS NSLS strongly advises industrial users to first consult with the Industrial Program Coordinator, Jun Wang (junwang@bnl.gov or 631-344-2661), before beginning the beam time application process. She will discuss your proposed research with you, guiding you to the most appropriate beamline and synchrotron research technique. From there, you will be contacted by the beamline staff at your target beamline. They will work with you to develop the best possible beam time proposal, which you will need to formally apply for beam time. For new users, it is often beneficial to start your NSLS experience by collaborating with seasoned users. Dr. Wang can help establish these collaborations. Whether you decide to consult with the Industrial Program Coordinator or

38

A Stability of LCLS Linac Modulators  

SciTech Connect

Information concerning to a stability of LCLS RF linac modulators is allocated in this paper. In general a 'pulse-to-pulse' modulator stability (and RF phase as well) is acceptable for the LCLS commission and FEL programs. Further modulator stability improvements are possible and approaches are discussed based on our experimental results.

Decker, F.-J.; Krasnykh, A.; Morris, B.; Nguyen, M.; /SLAC

2012-06-13T23:59:59.000Z

39

LCLS CDR Chapter 2 - Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Overview 2.1 Introduction The x-ray research community has become accustomed to exponential increases in performance parameters of synchrotron light sources since the construction of the first dedicated facilities. Each stepwise increase in performance was initially perceived as revolutionary. Indeed, after their initial impact, the successive generations of x-ray sources have become indispensable tools for research in chemistry, materials science, biology and environmental sciences. The immediate and sustained nature of this impact was assessed in the 1984 Seitz-Eastman Report [1] to the National Research Council and, thirteen years later, in the Birgeneau/Shen Report [2] to the DOE Basic Energy Sciences Advisory Committee. The latter report states that:

40

LCLS CDR Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

C C Glossary ACO Anneaux Collisions Orsay, 500 MeV storage ring, LURE, Orsay, France ADC Analog to Digital Converter ADONE 1.5 GeV storage ring, Frascati, Italy ALS Advanced Light Source (LBNL) AMPERES 3D Magnet Modeling Code ANL Argonne National Laboratory APS Advanced Photon Source (ANL) ASSET Accelerator Structure Setup ATF Accelerator Test Facility (BNL) BBO BaB 2 O 4 , Beta barium Borate BC1 Bunch Compressor 1 BC2 Bunch Compressor 2 BC2-ED Emittance Diagnostic Station following BC2 BCS Beam Containment System BES Basic Energy Sciences (DOE) BESAC Basic Energy Sciences Advisory Committee BNL Brookhaven National Laboratory BPM Beam Position Monitor BSOIC Beam Shut-Off Ion Chamber BTM Burn Through Monitor BW Band Width CAMAC Computer Automated Measurement and Control

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Availability Performance and Considerations for LCLS X-Ray FEL at SLAC  

SciTech Connect

The Linac Coherent Light Source (LCLS) is an X-ray Free Electron Laser (FEL) facility located at the SLAC National Accelerator Laboratory. LCLS has been in operation since spring 2009, and it has completed its 3rd user run. LCLS is the first in its class of X-ray FEL user facilities, and presents different availability challenges compared to storage ring light sources. This paper presents recent availability performance of the FEL as well as factors to consider when defining the operational availability figure of merit for user runs. During LCLS [1] user runs, an availability of 95% has been set as a goal. In run III, LCLS photon and electron beam systems achieved availabilities of 94.8% and 96.7%, respectively. The total availability goal can be distributed among subsystems to track performance and identify areas that need attention in order to maintain and improve hardware reliability and operational availability. Careful beam time accounting is needed to understand the distribution of down time. The LCLS complex includes multiple experimental hutches for X-ray science, and each user program has different requirements of a set of parameters that the FEL can be configured to deliver. Since each user may have different criteria for what is considered 'acceptable beam', the quality of the beam must be considered to determine the X-ray beam availability.

Allen, W.B.; Brachmann, A.; Colocho, W.; Stanek, M.; Warren, J.; /SLAC; ,

2011-08-16T23:59:59.000Z

42

Linac Energy Management for LCLS  

SciTech Connect

Linac Energy Management (LEM) is a control system program that scales magnet field set-point settings following a change in beam energy. LEM is necessary because changes in the number, phase, and amplitude of the active klystrons change the beam's rigidity, and therefore, to maintain constant optics, one has to change focusing gradients and bend fields accordingly. This paper describes the basic process, the control system application programs we developed for LEM, and some of the implementation lessons learned at the Linac Coherent Light Source (LCLS).

Chu, Chungming; /SLAC; Iverson, Richard; /SLAC; Krejcik, Patrick; /SLAC; Rogind, Deborah; /SLAC; White, Greg; /SLAC; Woodley, Mark; /SLAC

2012-07-05T23:59:59.000Z

43

LCLS Undulator Quadrupole Fiducialization Plan  

SciTech Connect

This note presents the fiducialization plan for the LCLS undulator quadrupoles. The note begins by summarizing the requirements for the fiducialization. A discussion of the measurement equipment is presented, followed by the methods used to perform the fiducialization and check the results. This is followed by the detailed fiducialization plan in which each step is enumerated. Finally, the measurement results and data storage formats are presented. The LCLS is made up of 33 assemblies consisting of an undulator, quadrupole, beam finder wire, and other components mounted on a girder. The components must be mounted in such a way that the beam passes down the axis of each component. In this note, we describe how the ideal beam axis is related to tooling balls on the quadrupole. This step, called fiducialization, is necessary because the ideal beam axis is determined magnetically, whereas tangible objects must be used to locate the quadrupole. The note begins with the list of fiducialization requirements. The laboratory in which the work will be performed and the relevant equipment is then briefly described. This is followed by a discussion of the methods used to perform the fiducialization and the methods used to check the results. A detailed fiducialization plan is presented in which all the steps of fiducialization are enumerated. A discussion of the resulting data files and directory structure concludes the note.

Wolf, Zachary; Levashov, Michael; Lundahl, Eric; Reese, Ed; LeCocq, Catherine; Ruland, Robert; /SLAC; ,

2010-11-24T23:59:59.000Z

44

BNL National Synchrotron Light Source activity report 1997  

SciTech Connect

During FY 1997 Brookhaven National Laboratory celebrated its 50th Anniversary and 50 years of outstanding achievement under the management of Associated Universities, Inc. This progress report is divided into the following sections: (1) introduction; (2) science highlights; (3) meetings and workshops; (4) operations; (5) projects; (6) organization; and (7) abstracts and publications.

NONE

1998-05-01T23:59:59.000Z

45

National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines  

SciTech Connect

The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS.

Gmuer, N.F.; White-DePace, S.M. (eds.)

1987-08-01T23:59:59.000Z

46

Time-resolved far-infrared experiments at the National Synchrotron Light Source. Final report  

SciTech Connect

A facility for time-resolved infrared and far-infrared spectroscopy has been built and commissioned at the National Synchrotron Light Source. This facility permits the study of time dependent phenomena over a frequency range from 2-8000cm{sup {minus}1} (0.25 meV-1 eV). Temporal resolution is approximately 200 psec and time dependent phenomena in the time range out to 100 nsec can be investigated.

Tanner, D.B.; Reitze, D.H.; Carr, G.L.

1999-10-12T23:59:59.000Z

47

LCLS  

NLE Websites -- All DOE Office Websites (Extended Search)

are needed. Again, much of this technology exists in the DOE laboratories but will need upgrading and modification. The electron detectors, for example, must be capable of...

48

LCLS_CDR-ch06  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Injector TECHNICAL SYNOPSIS The injector for the LCLS is required to produce a single 150-MeV bunch of charge 1.0 nC and 100 A peak current at a repetition rate of 120 Hz with a normalized rms transverse emittance of 1.0 µm. The required emittance is about a factor of 2 lower than has been achieved to date. The design employs a solenoidal field near the cathode of a specially designed rf photocathode gun that allows the initial emittance growth due to space charge to be almost completely compensated by the end of the booster linac. Following the booster linac, the geometric emittance simply damps linearly with energy. PARMELA simulations show that this design will produce the desired normalized emittance. In addition to low emittance, there are two additional electron-beam requirements that pose

49

LCLS CDR Chapter 8 - Undulator  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Undulator TECHNICAL SYNOPSIS The LCLS Undulator is made up of 33 individual undulator segments. Each undulator segment will be a permanent-magnet planar hybrid device with a period length of 30 mm and a fixed gap of nominally 6 mm. The actual gap will be adjusted as necessary to yield an effective K of 3.71. Each undulator segment is 3.42 m long, with 226 poles per jaw. The poles will be made of vanadium permendur and the magnets of a grade of NdFeB with a high intrinsic coercivity for better resistance to radiation-induced demagnetization. The electron beam will be focused by a separated function FODO lattice, using permanent-magnet quadrupoles placed between the undulator segments. These focusing or defocusing lenses will share the drift spaces between the

50

Welcome to Stanford Synchrotron Radiation Lightsource | Stanford  

NLE Websites -- All DOE Office Websites

content Skip to search content Skip to search SLAC National Accelerator Laboratory DOE Stanford SLAC SSRL LCLS AD PPA SUNCAT PULSE SIMES Stanford Synchrotron Radiation Lightsource An Office of Science User Facility Home About SSRL What is SSRL? Director's Office Organization Advisory Panels History SSRL News SSRL News and Events Science Highlights Press Releases SSRL Newsletter Photon Science Seminars SSRL Presents User Resources User Resources User Portal Schedules Deadlines Forms & Applications Beam Lines Beam Lines Map By Number By Technique Photon Source Parameters SPEAR3 Status Science at SSRL Science at SSRL Science Highlights Photon Science Faculty SSRL Imaging Group SSRL SMB Program Publications Publications & Reports SSRL Headline News SSRL Fact Sheet SSRL Brochure SLAC Discovery Brochure SPEAR3 SPEAR3

51

National synchrotron light source annual report 1987: For the period of October 1, 1986--September 30, 1987  

SciTech Connect

This report contains the reports and operational information of the National Synchrotron Light source facility for 1987. The reports are grouped mainly under VUV research and x-ray research. (LSP)

White-DePace, S.; Gmur, N.F.; Thomlinson, W.

1987-10-01T23:59:59.000Z

52

NSLS II: The Future National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning for Life Sciences at NSLS-II: A Chronology Planning for Life Sciences at NSLS-II: A Chronology Since 2007, through workshops, trips to Washington, white papers, and other activities, NSLS-II planners have been steadily mapping out what promises to be a rich life sciences research program at the new facility. July 17-18, 2007 - Brookhaven Lab hosts the first NSLS-II user workshop, which was attended by over 450 participants, including many members of the life sciences user community and representatives from the National Institutes of Health (NIH) and the Department of Energy's (DOE) Office of Biological and Environmental Research (BER). January 15-16, 2008 - A scientific strategic planning workshop at Brookhaven Lab marked the beginning of plans for life sciences research and beamlines at NSLS-II. The goal of this workshop was to generate a detailed white paper that presented a vision of Life Sciences research, beamlines, and facilities at NSLS-II and describes the path forward and timeline toward achieving this goal.

53

The U.S. Department of Energy's Brookhaven National Laboratory P.O. Box 5000, Upton NY 11973 631 344-2345 www.bnl.gov National Synchrotron Light Source II  

E-Print Network (OSTI)

The U.S. Department of Energy's Brookhaven National Laboratory · P.O. Box 5000, Upton NY 11973 · 631 344-2345 · www.bnl.gov FACTS (04-14) National Synchrotron Light Source II NSLS-II by the Numbers World's Premier SynchrotronWill Light theWay to New Discoveries Like all synchrotrons, the National

Ohta, Shigemi

54

Low-Level Radio Frequency System Development for the National Synchrotron Light Source II  

SciTech Connect

The National Synchrotron Light Source-II (NSLS-II) is a new ultra-bright 3GeV 3rd generation synchrotron radiation light source. The performance goals require operation with a beam current of 500mA and a bunch current of at least 0.5mA. The position and timing specifications of the ultra-bright photon beam imposes a set of stringent requirements on the performance of radio frequency (RF) control. In addition, commissioning and staged installation of damping wigglers and insertion devices requires the flexibility of handling varying beam conditions. To meet these requirements, a digital implementation of the LLRF is chosen, and digital serial links are planned for the system integration. The first prototype of the controller front-end hardware has been built, and is currently being tested.

Ma,H.; Rose, J.

2009-05-04T23:59:59.000Z

55

Racking Up the LCLS Undulator Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

Looking into the Solar Wind Looking into the Solar Wind Board of Governors Awards Tim Fister Earns Henderson Prize from University of Washington Challenge Met as APS Sends Final Chambers to LCLS A Marriage of Hardware and Hard Work APS News Archives: 2012 | 2011 | 2010 | 2009 2008 | 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed Racking Up the LCLS Undulator Controls JUNE 19, 2008 Bookmark and Share Argonne expertise will once again be in the spotlight when the Linac Coherent Light Source (LCLS), the U.S. Department of Energy's next-generation, x-ray free-electron laser light source, enables frontier materials and biological research at the Stanford Linear Accelerator Center (SLAC) beginning in 2009. Scientists, engineers, and technicians at the Argonne Advanced Photon Source (APS), together with co-workers from other

56

RF Design of the LCLS Gun  

SciTech Connect

Final dimensions for the LCLS RF gun are described. This gun, referred to as the LCLS gun, is a modified version of the UCLA/BNL/SLAC 1.6 cell S-Band RF gun [1], referred to as the prototype gun. The changes include a larger mode separation (15 MHz for the LCLS gun vs. 3.5 MHz for the prototype gun), a larger radius at the iris between the 2 cells, a reduced surface field on the curvature of the iris between the two cells, Z power coupling, increased cooling channels for operation at 120 Hz, dual rf feed, deformation tuning of the full cell, and field probes in both cells. Temporal shaping of the klystron pulse, to reduce the average power dissipated in the gun, has also been adopted. By increasing the mode separation, the amplitude of the 0-mode electric field on the cathode decreases from 10% of the peak on axis field for the prototype gun to less than 3% for the LCLS gun for the steady state fields. Beam performance is improved as shown by the PARMELA simulations. The gun should be designed to accept a future load lock system. Modifications follow the recommendations of our RF review committee [2]. Files and reference documents are compiled in Section IV.

Limborg-Deprey, C

2010-12-13T23:59:59.000Z

57

National synchrotron light source. Activity report, October 1, 1994--September 30, 1995  

SciTech Connect

This report discusses research conducted at the National Synchrotron Light Source in the following areas: atomic and molecular science; energy dispersive diffraction; lithography, microscopy, and tomography; nuclear physics; scattering and crystallography studies of biological materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS annual users` meeting; 17th international free electron laser conference; micro bunches workshop; VUV machine; VUV storage ring parameters; beamline technical improvements; x-ray beamlines; x-ray storage ring parameters; the NSLS source development laboratory; the accelerator test facility (ATF); NSLS facility improvements; NSLS advisory committees; NSLS staff; VUV beamline guide; and x-ray beamline guide.

Rothman, E.Z.; Hastings, J. [eds.

1996-05-01T23:59:59.000Z

58

Optical design and performance of the inelastic scattering beamline at the National Synchrotron Light Source  

SciTech Connect

Phase I of the X21 beamline at the National Synchrotron Light Source was commissioned during 1993. The research program at the X21 beamline is focused on the study of electronic excitations in condensed matter with total energy resolution of 0.1 eV to 1.0 eV. The source is a 27 pole hybrid wiggler. A water-cooled horizontal focusing Si(220) monochromator and a spherically bent Si(444) analyzer were installed and commissioned. At 8 keV the energy resolution of the monochromator is about 0.7 eV, and the energy resolution of the analyzer is about 0.1 eV. Results from several selected experiments are also discussed.

Kao, C.C.; Siddons, D.P.; Oversluizen, T.; Hastings, J.B. [Brookhaven National Lab., Upton, NY (United States); Hamalainen, K. [Helsinki Univ. (Finland). Dept. of Physics; Krisch, M. [European Synchrotron Radiation Facility, 38 - Grenoble (France)

1994-12-31T23:59:59.000Z

59

Algorithms to Automate LCLS Undulator Tuning  

SciTech Connect

Automation of the LCLS undulator tuning offers many advantages to the project. Automation can make a substantial reduction in the amount of time the tuning takes. Undulator tuning is fairly complex and automation can make the final tuning less dependent on the skill of the operator. Also, algorithms are fixed and can be scrutinized and reviewed, as opposed to an individual doing the tuning by hand. This note presents algorithms implemented in a computer program written for LCLS undulator tuning. The LCLS undulators must meet the following specifications. The maximum trajectory walkoff must be less than 5 {micro}m over 10 m. The first field integral must be below 40 x 10{sup -6} Tm. The second field integral must be below 50 x 10{sup -6} Tm{sup 2}. The phase error between the electron motion and the radiation field must be less than 10 degrees in an undulator. The K parameter must have the value of 3.5000 {+-} 0.0005. The phase matching from the break regions into the undulator must be accurate to better than 10 degrees. A phase change of 113 x 2{pi} must take place over a distance of 3.656 m centered on the undulator. Achieving these requirements is the goal of the tuning process. Most of the tuning is done with Hall probe measurements. The field integrals are checked using long coil measurements. An analysis program written in Matlab takes the Hall probe measurements and computes the trajectories, phase errors, K value, etc. The analysis program and its calculation techniques were described in a previous note. In this note, a second Matlab program containing tuning algorithms is described. The algorithms to determine the required number and placement of the shims are discussed in detail. This note describes the operation of a computer program which was written to automate LCLS undulator tuning. The algorithms used to compute the shim sizes and locations are discussed.

Wolf, Zachary

2010-12-03T23:59:59.000Z

60

Microsoft PowerPoint - 10 Lee LCLS Lessons Learned PM Workshop Final [Compatibility Mode]  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

i i h i h j Presentation Title Linac Coherent Light Source Project at the SLAC National Accelerator Laboratory Hanley Lee, Federal Project Director DOE Project Management Workshop j g p March 10, 2010 1 1.1 Management, Global Controls g 1.2 Injector 1.3 Linac F CLO Building N E i t H ll Far Experiment Hall Near Experiment Hall Far Experiment Hall Near Experiment Hall 2 LCLS Office of Science William Brinkman, Director Acquisition Executive Basic Energy Sciences Harriet Kung, Associate Dir. Tom Brown, LCLS Prog. Mgr. SLAC Site Office Paul Golan, Site Manager Hanley Lee FPD Hanley Lee, FPD Linac Coherent Light Source John Galayda, Project Director Mark Reichanadter, Deputy Proj. Dir. ES&H, QA Business, Admin 3 X-ray Transport Undulator Injector/Linac Conventional Facilities Instrument

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

International Conference Synchrotron Radiation Instrumentation SRI `94  

SciTech Connect

This report contains abstracts for the international conference on Synchrotron Radiation Instrumentation at Brookhaven National Laboratory.

Not Available

1994-10-01T23:59:59.000Z

62

LCLS LLRF Upgrades to the SLAC Linac  

SciTech Connect

The Linac Coherent Light Source (LCLS) at SLAC will be the brightest X-ray laser in the world when it comes on line. In order to achieve the brightness a 200fS length electron bunch is passed through an undulator. To create the 200fS, 3kA bunch, a 10pS electron bunch, created from a photo cathode in an RF gun, is run off crest on the RF to set up a position to energy correlation. The bunch is then compressed by chicanes. The stability of the RF system is critical in setting up the position to energy correlation. Specifications derived from simulations require the RF system to be stable to below 200fS in several critical injector stations and the last kilometer of linac. The SLAC linac RF system is being upgraded to meet these requirements.

Akre, R.; Dowell, D.; Emma, P.; Frisch, J.; Hong, B.; Kotturi, K.; Krejcik, P.; Wu, J.; /SLAC; Byrd, J.; /LBL, Berkeley

2007-10-04T23:59:59.000Z

63

National Synchrotron Light Source user`s manual: Guide to the VUV and x-ray beamlines. Fifth edition  

SciTech Connect

The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User`s Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines.

Gmuer, N.F. [ed.

1993-04-01T23:59:59.000Z

64

LCLS X-ray mirror measurements using a large aperture visible light interferometer  

SciTech Connect

Synchrotron or FEL X-ray mirrors are required to deliver an X-ray beam from its source to an experiment location, without contributing significantly to wave front distortion. Accurate mirror figure measurements are required prior to installation to meet this intent. This paper describes how a 300 mm aperture phasing interferometer was calibrated to <1 nm absolute accuracy and used to mount and measure 450 mm long flats for the Linear Coherent Light Source (LCLS) at Stanford Linear Accelerator Center. Measuring focus mirrors with an interferometer requires additional calibration, because high fringe density introduces systematic errors from the interferometer's imaging optics. This paper describes how these errors can be measured and corrected. The calibration approaches described here apply equally well to interferometers larger than 300 mm aperture, which are becoming more common in optics laboratories. The objective of this effort was to install LCLS flats with < 10 nm of spherical curvature, and < 2 nm rms a-sphere. The objective was met by measuring the mirrors after fabrication, coating and mounting, using a 300 mm aperture phasing interferometer calibrated to an accuracy < 1 nm. The key to calibrating the interferometer accurately was to sample the error using independent geometries that are available. The results of those measurements helped identify and reduce calibration error sources. The approach used to measure flats applies equally well to focus mirrors, provided an additional calibration is performed to measure the error introduced by fringe density. This calibration has been performed on the 300 mm aperture interferometer, and the measurement correction was evaluated for a typical focus mirror. The 300 mm aperture limitation requires stitching figure measurements together for many X-ray mirrors of interest, introducing another possible error source. Stitching is eliminated by applying the calibrations described above to larger aperture instruments. The authors are presently extending this work to a 600 mm instrument. Instruments with 900 mm aperture are now becoming available, which would accommodate the largest mirrors of interest.

McCarville, T; Soufli, R; Pivovaroff, M

2011-03-02T23:59:59.000Z

65

THE Low-level Radio Frequency System for the superconducting cavities of National Synchrotron Light Source II  

SciTech Connect

A digital low-level radio frequency (LLRF) field controller has been developed for the storage ring of The National Synchrotron Light Source-II (NSLS-II). The primary performance goal for the LLRF is to support the required RF operation of the superconducting cavities with a beam current of 500mA and a 0.14 degree or better RF phase stability. The digital field controller is FPGA-based, in a standard format 19-inch/I-U chassis. It has an option of high-level control support with MATLAB running on a local host computer through a USB2.0 port. The field controller has been field tested with the high-power superconducting RF (SRF) at Canadian light Source, and successfully stored a high beam current of 250 mA. The test results show that required specifications for the cavity RF field stability are met. This digital field controller is also currently being used as a development platform for other functional modules in the NSLS-II RF systems.

Ma, H.; Rose, J.; Holub, B.; Cupolo, J.; Oliva, J.; Sikora, R.; Yeddulla, M.

2011-03-28T23:59:59.000Z

66

Transverse Coherence of the LCLS X-Ray Beam  

SciTech Connect

Self-amplifying spontaneous radiation free-electron lasers, such as the LCLS or the European X-FEL, rely on the incoherent, spontaneous radiation as the seed for the amplifying process. Though this method overcomes the need for an external seed source one drawback is the incoherence of the effective seed signal. The FEL process allows for a natural growth of the coherence because the radiation phase information is spread out within the bunch due to slippage and diffraction of the radiation field. However, at short wavelengths this spreading is not sufficient to achieve complete coherence. In this presentation we report on the results of numerical simulations of the LCLS X-ray FEL. From the obtained radiation field distribution the coherence properties are extracted to help to characterize the FEL as a light source.

Not Available

2010-12-01T23:59:59.000Z

67

Untrapped HOM Radiation Absorption in the LCLS-II Cryomodules  

E-Print Network (OSTI)

The superconducting cavities in the continuous wave (CW) linacs of LCLS-II are designed to operate at 2 K, where cooling costs are very expensive. One source of heat is presented by the higher order mode (HOM) power deposited by the beam. Due to the very short bunch length--especially in L3 the final linac--the LCLS-II beam spectrum extends into the terahertz range. Ceramic absorbers, at 70 K and located between cryomodules, are meant to absorb much of this power. In this report we perform two kinds of calculations to estimate the effectiveness of the absorbers and the amount of beam power that needs to be removed at 2 K.

Bane, K; Adolphsen, C; Raubenheimer, T; Saini, A; Solyak, N; Yakovlev, V

2014-01-01T23:59:59.000Z

68

EA-1975: LINAC Coherent Light Source-Il, SLAC National Accelerator Laboratory, Menlo Park, California  

Energy.gov (U.S. Department of Energy (DOE))

DOE is preparing an EA on the potential environmental impacts of a proposal to upgrade the existing LINAC Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. The proposed LCLS-II would extend the photon energy range, increase control over photon pulses, and enable two-color pump-probe experiments. The X-ray laser beams generated by LCLS-II would enable a new class of experiments: the simultaneous investigation of a materials electronic and structural properties.

69

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

50 50 Hazards of Elastic Tie-Downs (Bungee Cords) Date: April 3, 2012 Editor: Lori Stiegler Elastic (bungee) cords are common, inexpensive tools used for a variety of fastening applications. They can be safe if their use is planned and evaluated. However, a recent injury points out the hazard potential of these common tools. Bungee cords are made of an elastic material with metal J or S shaped hooks on each end. They are convenient to use since the hooks are versatile connectors that can be easily applied using one hand. Bungee cords can also contain stored energy which can be suddenly and forcefully released if not handled carefully. The heavy elastic cords contain tremendous force when they recoil, particularly when stretched beyond the appropriate limits. This can result

70

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Document Index Document Index A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Assessment Tracking System (ATS) Institutional ATS NSLS Family ATS NSLS Family ATS Instructions B Beamline Safety Review Beamline Safety Checklist C Calibration Calibration procedure NSLS Controlled Measuring Test Equipment Calibration List Caution Tags Coaxial cables & connectors Conduct of Operations Manual Cryogenic safety Cryogenic Liquids: Storage, Usage and Handling D Design (see engineering design) Document Control drawings (also refer to Engineer Design) procedures, & policies Approving, Distributing; List of NSLS Active Controlled Documents Periodic Review; Preparing; Reviewing; specification (distribution) specification (preparation) Document list - Active Controlled Documents

71

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Sciences Directorate EMS/OHSAS Documents and Links Photon Sciences Directorate EMS/OHSAS Documents and Links The Photon Sciences Directorate follows the BNL requirements in the SBMS Program and Subject Areas for EMS and OHSAS. The links below contain information that is specific to the Directorate in these areas. The Photon Sciences Directorate follows the BNL Environmental, Safety, Security and Health (ESSH) Policy. Planning Photon Sciences Significant Environmental Aspects Matrix Photon Sciences QA Procedures Policies and Requirements Manual EMS, FUA and SAD/ASE Checklist for Directorate Reviews Job Risk Assessments Facility Risk Assessments ESH Improvement Plans Implementation and Operation Each employee has an associated Roles, Responsibilities, Accountability and Authority (R2A2) listing for their position. Control of Documents is

72

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Inspections of Step Stools, Ladder Stands, and Portable Ladders Date: May 21, 2009 Editors: L. Stiegler There are times when we all need to reach something that is not accessible from the ground level. It could be something just out of reach, so we use a step stool. Or, it could be higher. In those cases we would need to use a ladder stand (a self-supported, portable set of steps), or portable ladder. Any of these devices require inspection prior to each use. The guidelines below will help you with this inspection. General Guidance for all devices: Surfaces must be free from oil, grease and slippery substances All exposed surfaces must be free from sharp edges, burrs, or other safety hazards Stepping surface, including rungs, must be skid resistant All feet or bottom surfaces must be skid resistant (i.e. rubber feet

73

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Directions to Training Office Directions to Training Office The Photon Sciences Training Manager is located in the NSLS facility, Building 725D, Room 2-160. Directions (from the Main Entrance) From the Main (front) entrance, take the stairs or elevator to the second floor. Turn right into the hallway and proceed past the lobby balcony. Continue past the seminar room on the right and through the hallway to make a 90 degree left turn. Continue through this next hallway past the Design Room on the left. Turn left at the overhead sign for "Training" and continue straight through to Room 2-160 on your left. Directions (from the North Entrance) From the North (back) entrance, take the stairs or elevator to the second floor. Turn left into the hallway. Turn right at the doorway marked Room

74

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Job Risk Assessments (JRAs) Job Risk Assessments (JRAs) JRA Blank Form Word Completed JRAs Accelerator Operations PS-JRA-0030 Accelerator or Beam Line Commissioning and Fault Studies PS-JRA-0028 Accelerator or Beam Line Components, Mechanical Assembly PS-JRA-0006 Using a Beamline PS-JRA-0029 Cable Pulling PS-JRA-0042 Chemical Use (Routine Chemicals) PS-JRA-0021 Chemical Work (Hazardous Chemicals) PS-JRA-0020 Chemicals and Radioactive Materials Transport PS-JRA-0022 Compressed Gas Cylinders and Systems Work PS-JRA-0009 Cooling Water Systems Work PS-JRA-0012 Cryogenic Work (General Cryogens) LS-JRA-0010 Driving Electrical and Electronic Shop Work PS-JRA-0001 Electrical Equipment (Zero Energy State) Work PS-JRA-0002 Electrical Equipment, Energized (Troubleshooting in Range >=50V and <=240V) PS-JRA-0003

75

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

49 49 Hand Safety Date: January 7, 2011 Editor: Lori Stiegler It's not unusual for experiment needs to change, and beam time to be limited while conducting research at the NSLS. Unfortunately, these factors, and several other contributing factors, converged recently and adversely affected an experimenter. The result was a hand injury that required a trip to the hospital, and sutures. In the case of this injury, the user was trying to fashion a new sample holder because of difficulty with the equipment he had brought from his home institution. The idea for the substitute sample holder had been previously discussed with his work group, but never tried. Using the alternate tools and holders he had brought, he tried to cut a slot out of a hard plastic tube with a razor

76

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Authorization Documents Authorization Documents Environmental Assessment for NSLS, ATF & SDL NSLS Safety Assessment Document Accelerator Safety Envelope Fire Hazard Analysis Conduct of Operations NSLS-II Environmental Assessment (2006) Finding of No Significant Impact (2006) Comparison of NSLS-II Environmental Assessment with NSLS-II Title II Design Specifications (2008) "NEXT" Beamlines Environmental Evaluation Notification Form and Approval Memo (2011) Linac Commissioning Safety Assessment Document (2011) NSLS-II USI Determination #1 NSLS-II USI Determination #2 NSLS-II USI Determination #3 NSLS-II USI Determination #4 NSLS-II USI Determination #5 Linac Commissioning Accelerator Safety Envelope (2011) Linac Commissioning Plan (2011) Booster Commissioning Safety Assessment Document (2011)

77

National Synchrotron Light Source  

SciTech Connect

A general description is given of the NSLS. Topics covered include: storage ring characteristics; experimental facilities; experimental research; general user proposals; expansion of the NSLS; and transportation to the facility. (GHT)

Klaffky, R.W.

1984-01-01T23:59:59.000Z

78

LCLS CDR Chapter 5 - FEL Parameters and Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FEL Parameters and Performance TECHNICAL SYNOPSIS The FEL parameter optimization and performance characterizations that are described in Chapter 5 are based on three-dimensional theory and computer models. The investigation led to a selection of the best parameters and to a study of the sensitivity to changes in values of accelerator components and beam characteristics and to unavoidable imperfections in the settings of the beam characteristics, magnetic and mechanical components and electron beam monitoring. The focusing of the electron beam plays an important role in the production of the FEL radiation. The LCLS undulator optics has been optimized in terms of its focusing lattice and strength. The electron optics consists of FODO cells; with cell lengths between 7.3 m and 7.5 m.

79

Electron Bunch Length Measurement for LCLS at SLAC  

SciTech Connect

At Stanford Linear Accelerator Center (SLAC) a Bunch Length Measurement system has been developed to measure the length of the electron bunch for its new Linac Coherent Light Source (LCLS). This destructive measurement uses a transverse-mounted RF deflector (TCAV) to vertically streak the electron beam and an image taken with an insertable screen and a camera. The device control software was implemented with the Experimental Physics and Industrial Control System (EPICS) toolkit. The analysis software was implemented in Matlab{trademark} using the EPICS/Channel Access Interface for Scilab{trademark} and Matlab{trademark} (labCA). This architecture allowed engineers and physicists to develop and integrate their control and analysis without duplication of effort.

Zelazny, M.; Allison, S.; Chevtsov, Sergei; Emma, P.; Kotturi, K.d.; Loos, H.; Peng, S.; Rogind, D.; Straumann, T.; /SLAC

2007-10-04T23:59:59.000Z

80

Data Acquisition in a High Harmonic Generation Lab and at LCLS  

SciTech Connect

In this paper, we examine data acquisition in a high harmonic generation (HHG) lab and preliminary data analysis with the Cyclohexadiene Collaboration at the Linac Coherent Lightsource (LCLS) at SLAC National Accelerator Laboratory. HHG experiments have a large number of parameters that need to be monitored constantly. In particular, the pressure of the target is critical to HHG yield. However, this pressure can fluctuate wildly and without a tool to monitor it, it is difficult to analyze the correlation between HHG yield and the pressure. I used the Arduino microcontroller board and created a complementary MATLAB graphical user interface (GUI), thereby enhancing the ease with which users can acquire time-stamped parameter data. Using the Arduino, it is much easier to match the pressure to the corresponding HHG yield. Collecting data by using the Arduino and the GUI is flexible, user-friendly, and cost-effective. In the future, we hope to be able to control and monitor parts of the lab with the Arduino alone. While more parameter information is needed in the HHG lab, we needed to reduce the amount of data during the cyclohexadiene collaboration. This was achieved by sorting the data into bins and filtering out unnecessary details. This method was highly effective in that it minimized the amount of data without losing any valuable information. This effective preliminary data analysis technique will continue to be used to decrease the size of the collected data.

Hirokawa, Takako; /U. Colorado, Boulder /SLAC; ,

2011-06-22T23:59:59.000Z

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Electron Beam Alignment Strategy in the LCLS Undulators  

SciTech Connect

The x-ray FEL process puts very tight tolerances on the straightness of the electron beam trajectory (2 {micro}m rms) through the LCLS undulator system. Tight but less stringent tolerances of 80 {micro}m rms vertical and 140 {micro}m rms horizontally are to be met for the placement of the individual undulator segments with respect to the beam axis. The tolerances for electron beam straightness can only be met through beam-based alignment (BBA) based on electron energy variations. Conventional alignment will set the start conditions for BBA. Precision-fiducialization of components mounted on remotely adjustable girders and the use of beam-finder wires (BFW) will satisfy placement tolerances. Girder movement due to ground motion and temperature changes will be monitored continuously by an alignment monitoring system (ADS) and remotely corrected. This stabilization of components as well as the monitoring and correction of the electron beam trajectory based on BPMs and correctors will increase the time between BBA applications. Undulator segments will be periodically removed from the undulator Hall and measured to monitor radiation damage and other effects that might degrade undulator tuning.

Nuhn, H.-D.; Emma, P.J.; Gassner, G.L.; LeCocq, C.M.; Peters, E.; Ruland, R.E.; /SLAC

2007-01-03T23:59:59.000Z

82

Location of Maximum Credible Beam Losses in LCLS Injector  

SciTech Connect

The memo describes the maximum credible beam the LCLS injector can produce and lose at various locations along the beamline. The estimation procedure is based upon three previous reports [1, 2, 3]. While specific numbers have been updated to accurately reflect the present design parameters, the conclusions are very similar to those given in Ref 1. The source of the maximum credible beam results from the explosive electron emission from the photocathode if the drive laser intensity exceeds the threshold for plasma production. In this event, the gun's RF field can extract a large number of electrons from this plasma which are accelerated out of the gun and into the beamline. This electron emission persists until it has depleted the gun of all its energy. Hence the number of electrons emitted per pulse is limited by the amount of stored RF energy in the gun. It needs to be emphasized that this type of emission is highly undesirable, as it causes permanent damage to the cathode.

Mao, Stan

2010-12-13T23:59:59.000Z

83

Finding of No Significant Impact for the Construction and Operation of the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC), California (DOE/EA-1426) (2/28/03)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy (DOE) U.S. Department of Energy (DOE) Finding of No Significant Impact Construction and Operation of the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC), California. AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1426, evaluating the proposed action to construct and operate the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC). Based upon the information and analyses in the EA, the DOE has determined that the proposed federal action does not significantly affect the quality of the human environment within the meaning of the National Environmental Policy Act of 1969.

84

Abstract Presented at Synchrotron Environmental Science II (SES-II)  

E-Print Network (OSTI)

Abstract Presented at Synchrotron Environmental Science II (SES-II) Argonne National Laboratory - 6 such as dioxins and furans, polychlorinated biphenyls (PCBs), and polynuclear aromatic hydrocarbons (PAHs). *Work

Brookhaven National Laboratory

85

Hazards analysis for the E.O. Lawrence Berkeley National Laboratory x-ray absorption experiments to be performed at Stanford Synchrotron Radiation Laboratory  

SciTech Connect

The objective of this experiment is to determine the oxidation state(s) of neptunium (Np) in mouse skeleton and in soft tissue by X-ray Absorption Near Edge Structure (XANES). If Np is present in sufficient concentration, X-ray Absorption Fine Structure (XAFS) data will be obtained in order to further identify the Np species present. These data will be crucial in understanding the metabolic pathway of Np in mammals which will help in the design of reagents which can eliminate Np from mammals in the event of accidental exposure. It is proposed to run these experiments at the Standard Synchrotron Radiation Laboratory (SSRL). This laboratory is a DOE national user facility located at the Stanford Linear Accelerator Center (SLAC). The {sup 237}Np nucleus decays by the emission of an alpha particle and this particle emission is the principal hazard in handling Np samples. This hazard is mitigated by physical containment of the sample which stops the alpha particles within the containment. The total amount of Np material that will be shipped to and be at SSRL at any one time will be less than 1 gram. This limit on the amount of Np will ensure that SLAC remains a low hazard, non-nuclear facility. The Np samples will be solids or Np ions in aqueous solution. The Np samples will be shipped to SSRL/SLAC OHP. SLAC OHP will inventory the samples and swipe the containers holding the triply contained samples, and then bring them to the SSRL Actinide trailer located outside building 131. The QA counting records from the samples, as measured at LBNL, will be provided to SSRL and SLAC OHP prior to the arrival of the samples at SLAC OHP. In addition, strict monitoring of the storage and experimental areas will be performed in accordance with SLAC/OHP radiation protection procedures to ensure against the release of contamination.

Edelstein, N.M.; Shuh, D.K.; Bucher, J.B. [Lawrence Berkeley National Lab., CA (United States). Chemical Sciences Div.

1995-04-01T23:59:59.000Z

86

Simulations of Ion Migration in the LCLS RF Gun and Injector  

SciTech Connect

The motivation for this work was the observed surface contamination of the first LCLS RF gun copper cathode. We will present the results of simulations in regards to ion migration in the LCLS gun. Ions of residual gases will be created by interaction of molecular gas species with the UV drive laser beam and by the electron beam itself. The larger part of those ionized molecules remain in the vicinity of creation, are transported towards beam line walls or away from the cathode. However a small fraction gains enough kinetic energy, focused by RF and magnetic fields and propagates to the cathode, producing an undesirable increase of the cathode's surface work function. Although this fraction is small, during long term operation, this effect may become a significant factor limiting the source performance.

Brachmann, Axel; /SLAC; Dowell, David; /SLAC

2012-06-25T23:59:59.000Z

87

Application of synchrotron radiation to elemental analysis  

SciTech Connect

The use of a synchrotron storage ring as a high brightness source for production of monoergic, variable energy, and highly polarized x-ray beams promises to revolutionize the field of elemental analysis. The results of exploratory work using the Cornell synchrotron facility, CHESS, will be described. Design considerations and features of the new X-Ray Microprobe Facility now under construction at the Brookhaven National Synchrotron Light Source will be presented. This facility will be used for bulk analysis and for microanalysis with an initial spatial resolution of the order of 30 ..mu..m.

Jones, K.W.; Gordon, B.M.; Hanson, A.L.; Hastings, J.B.; Howells, M.R.; Kraner, H.W.; Chen, J.R.

1983-01-01T23:59:59.000Z

88

X-ray Vision for Aerosol Scientists: LCLS Snapshots of Soot (Narrated)  

ScienceCinema (OSTI)

This short conceptual animation depicts how scientists can now simultaneously capture fractal morphology (structure), chemical composition and nanoscale imagery of individual aerosol particles in flight. These particles, known as "PM2.5" because they are smaller than 2.5 microns in diameter, affect climate by interacting with sunlight and impact human health by entering the lungs. The single LCLS laser pulses travel to the Atomic, Molecular and Optical Sciences (AMO) laboratory in the Near Experimental Hall. As we zoom in, we see deep inside a simplified aerosol inlet, where the complex fractal structure of the soot particles, each one completely unique, is shown. Individual soot particles are then delivered into the pulses of the LCLS beam, which destroys them. X-rays are scattered to the detector before the particle is destroyed, giving information about the morphology of the particle. Ion fragments released in the explosion are sent into a mass spectrometer, which measures their mass-to-charge ratio -- giving scientists information about the chemical composition of the particle. Many different particles are analyzed in this manner, allowing scientists to probe variations in the particles due to changes in their environment before being sent through the aerosol inlet. The final visual of aerosols emitted from a factory is representative of the goal that such LCLS aerosol dynamics experiments can provide critical feedback into modeling and understanding combustion, aerosol processes in manufacturing or aerosol effects on climate change.

None

2014-06-03T23:59:59.000Z

89

Calculating the Loss factor of the LCLS Beam Line Elements for Ultra-Shrot Bunches  

SciTech Connect

The Linac Coherent Light Source (LCLS) is a SASE 1.5-15 {angstrom} x-ray Free-Electron Laser (FEL) facility. Since an ultra-short intense bunch is used in the LCLS operation one might suggest that wake fields, generated in the vacuum chamber, may have an effect on the x-ray production because these fields can change the beam particle energies thereby increasing the energy spread in a bunch. At LCLS a feedback system precisely controls the bunch energy before it enters a beam transport line after the linac. However, in the transport line and later in the undulator section the bunch energy and energy spread are not under feedback control and may change due to wake field radiation, which depends upon the bunch current or on a bunch length. The linear part of the energy spread can be compensated in the upstream linac; the energy loss in the undulator section can be compensated by varying the K-parameter of the undulators, however we need a precise knowledge of the wake fields in this part of the machine. Resistive wake fields are known and well calculated. We discuss an additional part of the wake fields, which comes from the different vacuum elements like bellows, BPMs, transitions, vacuum ports, vacuum valves and others. We use the code 'NOVO' together with analytical estimations for the wake potential calculations.

Novokhatski, A.; /SLAC

2009-10-17T23:59:59.000Z

90

Electromagnetic design of the RF cavity beam position monitor for the LCLS.  

SciTech Connect

A high-resolution X-band cavity BPM has been developed for the LCLS. A dipole mode cavity and a monopole mode reference cavity have been designed in order to achieve micron-level accuracy of the beam position. The rf properties of the BPM as well as beam interaction with the cavities will be discussed including output power and tuning. In addition, methods will be presented for improving the isolation of the output ports to differentiate between horizontal/vertical beam motion and to reject extraneous modes from affecting the output signal. The predicted simulation results will be compared to data collected from low-power experimental tests.

Waldschmidt, G.; Lill, B.; Morrison, L.

2008-01-01T23:59:59.000Z

91

Tests of Coordinate Transfer from Magnetic to Mechanical Reference for LCLS Undulator Fiducialization  

SciTech Connect

Fiducialization of the LCLS undulators will be based on magnetic measurements by Hall probe. Pointed magnets, proposed by I.Vasserman for quadrupole lens fiducialization will be used as an intermediate reference. A prototype of the pointed magnet fixture has been made and tested. In this note we will describe a procedure for measuring the position of the center of the Hall probe sensitive area with respect to the undulator fiducial marks. The pointed magnet calibration procedure, a two-point algorithm for locating the magnetic center of the fixture, and test results are presented.

Levashov, Yu.

2010-12-13T23:59:59.000Z

92

Macromolecular crystallography at synchrotron radiation sources: current status and future developments  

Science Journals Connector (OSTI)

...European Synchrotron Radiation Facility (ESRF...SPring8, Harima, Japan; 1997). SPring8...National Synchrotron Radiation Research Centre...Factory (Tsukuba, Japan) SR: 2.5; AR...SPring8 (Hyogo, Japan) 8 100 1436 12...Shanghai Synchrotron Radiation Facility, Shanghai...

2010-01-01T23:59:59.000Z

93

Linac Coherent Light Source (LCLS) | U.S. DOE Office of Science...  

Office of Science (SC) Website

Syncrotron Light Source (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects...

94

Biological Applications of Synchrotron Radiation:  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Applications of Synchrotron Radiation: Biological Applications of Synchrotron Radiation: An Evaluation of the State of the Field in 2002 A BioSync Report. Issued by the Structural Biology Synchrotron users Organization, October, 2002. 2 Table of Contents: Introduction .................................................................................................... 3 Abbreviations .................................................................................................. 5 Executive Summary ......................................................................................... 6 General Concerns ............................................................................................ 9 Synchrotron operations and maintenance ............................................... 9 NSLS, CHESS and the geographical distribution of beam lines

95

electronic reprint Synchrotron  

E-Print Network (OSTI)

electronic reprint Journal of Synchrotron Radiation ISSN 0909-0495 Editor: G. Ice Accurate dose required to produce a defined outcome, following the Grotthuss­Draper law (King & Laidler, 1984

Hitchcock, Adam P.

96

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Sign Overview Synchrotron light is created by bending the path of electrons traveling the speed of light around a storage ring. These extremely bright x-rays are used by scientists...

97

Opportunities in Catalysis Research Using Synchrotron Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

in Catalysis Research Using Synchrotron Radiation in Catalysis Research Using Synchrotron Radiation Tuesday 10/8/02 Chair: Lars Pettersson 1:30-1:40 Anders Nilsson Welcome 1:40-2:30 Gabor Somorjai University of California, Berkeley and LBLN Need for New Directions of Research at the Frontiers of Catalysis Science 2:30-3:00 Geoff Thornton University of Manchester Influence of defects on the reactivity of ZnO 3:00-3:30 Anders Nilsson Stanford Synchrotron Radiation Laboratory Soft X-ray Spectroscopy of Surfaces and Reactions 3:30-3:45 Break Chair: Anders Nilsson 3:45-4:15 Lars Pettersson Stockholm University Adsorbate-Substrate Bonding: An Experimental and Theoretical MO Picture 4:15-4:45 Miquel Salmeron Lawrence Berkeley National Laboratory Photoelectron Spectroscopy studies of surfaces in high pressure gas

98

Chemical applications of synchrotron radiation: Workshop report  

SciTech Connect

The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

Not Available

1989-04-01T23:59:59.000Z

99

Operating the LCLS Gas Attenuator and Gas Detector System with Apertures of 6mm Diameter  

SciTech Connect

The possibility of increasing the apertures of the LCLS gas attenuator/gas detector system is considered. It is shown that increase of the apertures from 3 to 6 mm, together with 4-fold reduction of the operation pressure does not adversely affect the vacuum conditions upstream or downstream. No change of the pump speed and the lengths of the differential pumping cells is required. One minor modification is the use of 1.5 cm long tubular apertures in the end cells of the differential pumping system. Reduction of the pressure does not affect performance of the gas attenuator/gas detector system at the FEL energies below, roughly, 2 keV. Some minor performance degradation occurs at higher energies.

Ryutov, D.D.; Bionta, R.M.; Hau-Riege, S.P.; Kishiyama, K.I.; Roeben, M.D.; Shen, S.; /LLNL, Livermore; Stefan, P.M.; /SLAC; ,

2010-11-17T23:59:59.000Z

100

RHIC | Booster Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Booster Synchrotron Booster Synchrotron Construction of the Alternating Gradient Synchrotron (AGS) Booster was begun in 1986 and completed in 1991. The Booster is less than one quarter the size of the AGS. It is used to preaccelerate particles entering the AGS ring, increasing the intensity of the proton beams generated by the AGS. The Booster also plays an important role in the operation of the Relatavistic Heavy Ion Collider by accepting heavy ions from EBIS or protons from the 200-million electron volt (MeV) Linac. It then feeds them to the AGS for further acceleration and delivery to RHIC. After the installation of the heavy-ion transfer line in 1986, the AGS was capable of accelerating ions up to silicon with its atomic mass of 28. However, due to its superior vacuum, the Booster makes it possible for the AGS to

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Photo of the Week: The Alternating Gradient Synchrotron | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Alternating Gradient Synchrotron The Alternating Gradient Synchrotron Photo of the Week: The Alternating Gradient Synchrotron March 11, 2013 - 6:00pm Addthis Since 1960, the Alternating Gradient Synchrotron (AGS) has been one of the world's premiere particle accelerators, well known for the three Nobel Prizes won as a result of research performed there. The AGS name is derived from the concept of alternating gradient focusing, in which the field gradients of the accelerator's 240 magnets are successively alternated inward and outward, permitting particles to be propelled and focused in both the horizontal and vertical plane at the same time. In this 1958 photo, giant magnets await installation into the AGS accelerator ring tunnel at Brookhaven National Laboratory. | Photo courtesy of Brookhaven National Laboratory.

102

Photo of the Week: The Alternating Gradient Synchrotron | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Alternating Gradient Synchrotron The Alternating Gradient Synchrotron Photo of the Week: The Alternating Gradient Synchrotron March 11, 2013 - 6:00pm Addthis Since 1960, the Alternating Gradient Synchrotron (AGS) has been one of the world's premiere particle accelerators, well known for the three Nobel Prizes won as a result of research performed there. The AGS name is derived from the concept of alternating gradient focusing, in which the field gradients of the accelerator's 240 magnets are successively alternated inward and outward, permitting particles to be propelled and focused in both the horizontal and vertical plane at the same time. In this 1958 photo, giant magnets await installation into the AGS accelerator ring tunnel at Brookhaven National Laboratory. | Photo courtesy of Brookhaven National Laboratory.

103

Energy Secretary Moniz Dedicates the Worlds Brightest Synchrotron Light Source  

Energy.gov (U.S. Department of Energy (DOE))

U.S. Department of Energy (DOE) Secretary Ernest Moniz today dedicated the worlds most advanced light source, the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL).

104

The Argonne Zero Gradient Synchrotron (ZGS)  

Science Journals Connector (OSTI)

A 12.5 billion electron volt (BeV) particle accelerator the Zero Gradient Synchrotron was constructed and put into operation at the Argonne National Laboratory in August 1963. The ZGS will form the center for high energy physics research in the Midwestern part of this country. In this paper a brief description of the ZGS is given together with a discussion of the aims methods and equipment of experimental high energy physics research.

L. C. Teng

1964-01-01T23:59:59.000Z

105

A Proposal to the Department of Energy for The Fabrication of a Very High Energy Polarized Gama Ray Beam Facility and A Program of Medium Energy Physics Research at The National Synchrotron Light Source  

SciTech Connect

This proposal requests support for the fabrication and operation of a modest facility that would provide relatively intense beams of monochromatic and polarized photons with energies in the range of several hundreds of MeV. These {gamma} rays would be produced by Compton backscattering laser light from the electrons circulating in the 2.5-3.0 GeV 'X-RAY' storage ring of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The excellent emittance, phase space, and high current of this state-of-the-art storage ring will allow the production of 2 x 10{sup 7} {gamma} rays per second. These photons would be tagged by detecting the scattered electrons, thereby determining the energy to 2.7 MeV for all {gamma}-ray energies. The efficiency of this tagging procedure is 100% and the {gamma}-ray beam would be essentially background free. Tagging will also allow the flexibility of operating with a dynamic range as large as 200 MeV in photon energy while still preserving high resolution and polarization. These beams will permit a fruitful study of important questions in medium-energy nuclear physics. The initial goals of this program are to reach reliable operation with photon energies up to 300 MeV and to develop {gamma}-ray beams with energies up to about 500 MeV. To demonstrate reliable operation, a modest physics program is planned that, for the most part, utilizes existing magnets and detector systems but nonetheless addresses several important outstanding problems. Gamma ray beams of the versatility, intensity, energy, and resolution that can be achieved at this facility are not currently available at any other world facility either existing or under construction. Furthermore, the proposed program would produce the first intense source of medium-energy {gamma} rays that are polarized. Because of the difficulties in producing such polarized beams, it is very unlikely that viable alternate sources can be developed in the near future; at present, no others are planned.

Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

1982-09-01T23:59:59.000Z

106

Design and Start-to-End Simulation of an X-Band RF Driven Hard X-Ray FEL with LCLS Injector  

SciTech Connect

In this note, it is briefly discussed the accelerator design and start-to-end 3D macro particles simulation (using ELEGANT and GENESIS) of an X-band RF driven hard X-ray FEL with LCLS injector. A preliminary design and LiTrack 1D simulation studies were presented before in an older publication [1]. In numerical simulations this X-band RF driven hard X-ray FEL achieves/exceeds LCLS-like performance in a much shorter overall length of 350 m, compared with 1200 m in the LCLS case. One key feature of this design is that it may achieve a higher final beam current of 5 kA plus a uniform energy profile, mainly due to the employment of stronger longitudinal wake fields in the last X-band RF linac [2].

Sun, Yipeng; /SLAC

2012-08-20T23:59:59.000Z

107

Presentation: Synchrotron Radiation Light Sources  

Energy.gov (U.S. Department of Energy (DOE))

A briefing to the Secretary's Energy Advisory Board on Synchrotron Radiation Light Sources delivered by Patricia Dehmer, U.S. Department of Energy

108

National Synchrotron Light Source annual report 1991  

SciTech Connect

This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

Hulbert, S.L.; Lazarz, N.M. (eds.)

1992-04-01T23:59:59.000Z

109

Sandia National Laboratories: Synchrotron photoionization measurements...  

NLE Websites -- All DOE Office Websites (Extended Search)

photoionization measurements of fundamental autoignition reactions: Product formation in low-temperature isobutane oxidation Two CRF Papers Named "Distinguished" for 34th...

110

Biophysics and synchrotron radiation  

SciTech Connect

This book, contains contributions to the conference on Biophysics and Synchrotron Radiation held in July 1986 at Frascati. It is devoted to advances in the resolution of biological molecule structure obtainable through synchroton radiation studies. The use of synchroton radiation has firmly established x-ray spectroscopy of biological molecules. More detailed knowledge on the local structure of active sites of metalloproteins, as well as a number of studies on the interaction of metal ions with other important biological macromolecular systems are presented. This new method for protein structure analysis is a major improvement for the rapidly expanding field of protein engineering.

Bianconi, A.; Castellano, C.C.

1987-01-01T23:59:59.000Z

111

Application of synchrotron radiation to x-ray fluorescence analysis of trace elements  

SciTech Connect

The development of synchrotron radiation x-ray sources has provided the means to greatly extend the capabilities of x-ray fluorescence analysis for determinations of trace element concentrations. A brief description of synchrotron radiation properties provides a background for a discussion of the improved detection limits compared to existing x-ray fluorescence techniques. Calculated detection limits for x-ray microprobes with micrometer spatial resolutions are described and compared with experimental results beginning to appear from a number of laboratories. The current activities and future plans for a dedicated x-ray microprobe beam line at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory are presented.

Gordon, B.M.; Jones, K.W.; Hanson, A.L.

1986-08-01T23:59:59.000Z

112

THE STANFORD SYNCHROTRON RADIATION LIGHTSOURCE STRATEGIC PLAN:  

NLE Websites -- All DOE Office Websites (Extended Search)

THE STANFORD SYNCHROTRON THE STANFORD SYNCHROTRON RADIATION LIGHTSOURCE STRATEGIC PLAN: 2013 - 2018 MEETING THE SCIENTIFIC CHALLENGES OF THE FUTURE FEBRUARY 2013 TABLE OF CONTENTS 1 Executive Summary ................................................................................................................................................. 1 2 Synchrotron Radiation - A Unique Tool .................................................................................................................. 1 3 Stanford Synchrotron Radiation Lightsource .......................................................................................................... 3 3.1 Looking into the Future: Building a New User Facility Paradigm at SSRL ....................................................... 4

113

Material science: Academy backs synchrotron  

Science Journals Connector (OSTI)

... gruelling effort to reach a consensus, gave its strongest endorsement to a new 6 GeV synchroton radiation facility, estimated to cost $160 million. This new generation synchrotron would, according ...

Stephen Budiansky

1984-08-09T23:59:59.000Z

114

An adaptive crystal bender for high power synchrotron radiation beams  

SciTech Connect

Perfect crystal monochromators cannot diffract x-rays efficiently, nor transmit the high source brightness available at synchrotron radiation facilities, unless surface strains within the beam footprint are maintained within a few arcseconds. Insertion devices at existing synchrotron sources already produce x-ray power density levels that can induce surface slope errors of several arcseconds on silicon monochromator crystals at room temperature, no matter how well the crystal is cooled. The power density levels that will be produced by insertion devices at the third-generation sources will be as much as a factor of 100 higher still. One method of restoring ideal x-ray diffraction behavior, while coping with high power levels, involves adaptive compensation of the induced thermal strain field. The design and performance, using the X25 hybrid wiggler beam line at the National Synchrotron Light Source (NSLS), of a silicon crystal bender constructed for this purpose are described.

Berman, L.E.; Hastings, J.B.

1992-01-01T23:59:59.000Z

115

An adaptive crystal bender for high power synchrotron radiation beams  

SciTech Connect

Perfect crystal monochromators cannot diffract x-rays efficiently, nor transmit the high source brightness available at synchrotron radiation facilities, unless surface strains within the beam footprint are maintained within a few arcseconds. Insertion devices at existing synchrotron sources already produce x-ray power density levels that can induce surface slope errors of several arcseconds on silicon monochromator crystals at room temperature, no matter how well the crystal is cooled. The power density levels that will be produced by insertion devices at the third-generation sources will be as much as a factor of 100 higher still. One method of restoring ideal x-ray diffraction behavior, while coping with high power levels, involves adaptive compensation of the induced thermal strain field. The design and performance, using the X25 hybrid wiggler beam line at the National Synchrotron Light Source (NSLS), of a silicon crystal bender constructed for this purpose are described.

Berman, L.E.; Hastings, J.B.

1992-10-01T23:59:59.000Z

116

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25, 2012 25, 2012 A view of one of the aisles of racks that hold Sequoia's 1.6 million cores. Its 16.32 sustained petaflops and 1.6 petabytes of memory make it the world's fastest supercomputer. | Photo courtesy of Lawrence Livermore National Laboratory. Sequoia Ranked as Fastest Supercomputer in the World With 1.6 million cores and 1.6 petabytes of memory, Sequoia takes the title for the fastest supercomputer on the planet. June 22, 2012 This rendering shows a lysozyme structural model against its X-ray diffraction pattern from SLAC's Linac Coherent Light Source (LCLS), a powerful X-ray laser facility. Researchers have achieved high-resolution images of these simple biomolecules using advanced crystallography at LCLS. | Photo by Anton Barty/DESY Cracking Molecular Structures with Bright Lights - and a Few Good Eggs

117

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Access to High Technology User Facilities at DOE National Laboratories Access to High Technology User Facilities at DOE National Laboratories In recognition of the nation's expanding need to engage businesses and universities in the areas of commercial and basic science research, the Department of Energy has developed two special types of agreements for use at all DOE National Laboratories with approved designated user facilities, see http://www.gc.doe.gov/1002.htm. User Agreements All user experiments must be run under the terms of a User Agreement executed by the appropriate institutional officer(s) at your institution and their counterpart at Stanford University. A single User Agreement covers all experimenters from that institution (User Institution = "user"). Collaborators who are not coming to SSRL do not require a User Agreement.

118

History of the Stanford Synchrotron Radiation Lightsource | Stanford...  

NLE Websites -- All DOE Office Websites (Extended Search)

History of the Stanford Synchrotron Radiation Lightsource SPEAR Based on new applications of synchrotron radiation, SSRL began in 1973 as the Stanford Synchrotron Radiation Project...

119

FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance  

SciTech Connect

When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization.

Reffner, J.A.; Martoglio, P.A. [Spectra-Tech, Inc., Shelton, CT (United States); Williams, G.P. [Brookhaven National Lab., Upton, NY (United States)

1995-01-01T23:59:59.000Z

120

User Facility Access Policy | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Access Policy Facility Access Policy 1. Summary The Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC National Accelerator Laboratory is a U.S. Department of Energy (DOE) Office of Science national user facility that provides synchrotron radiation to researchers in many fields of science and technology, including biology, catalysis, chemistry, energy, engineering, forensics, geoscience, materials science, medicine, molecular environmental science, and physics. With a pioneering start in 1974, the facility was upgraded to a state-of-the-art third generation lightsource in 2004, providing major improvements in emittance, ring current and new or upgraded beam lines. SSRL's research programs include both the x-ray and ultraviolet regions of the spectrum. SSRL is primarily supported by the DOE Offices of Basic Energy Sciences

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

FRONTIER SYNCHROTRON INFRARED SPECTROSCOPY BEAMLINE UNDER EXTREME CONDITIONS (FIS)  

NLE Websites -- All DOE Office Websites (Extended Search)

FRONTIER SYNCHROTRON INFRARED SPECTROSCOPY FRONTIER SYNCHROTRON INFRARED SPECTROSCOPY BEAMLINE UNDER EXTREME CONDITIONS (FIS) Proposal Team: L. Carr 1 , D. Dolan 2 , R. Hemley 3 , S. Jacobson 4 , S. Karato 5 , Z. Liu 3 , W. Panero 6 , M. Pravica 7 , and T. Zhou 8 1 Brookhaven National Laboratory, 2 Sandia National Laboratories, 3 Carnegie Institution of Washington, 4 Northwestern University, 5 Yale University, 6 Ohio State University, 7 University of Nevada, 8 New Jersey Institute of Technology TECHNIQUES AND CAPABILITIES APPLICATIONS SPECIFIC PROJECTS / ADDITIONAL INFORMATION * TECHNIQUE(S): Fourier transform infrared spectroscopy; Raman and visible spectroscopy; Diamond anvil cell techniques for static high pressure; Gas-gun launchers for dynamic compression; Cryogenic techniques combined with DACs;

122

Deutsches Elektronen-Synchrotron DESY Interne Verffentlichung  

E-Print Network (OSTI)

Deutsches Elektronen-Synchrotron DESY Interne Veröffentlichung DESY-Rundschreiben Nr.: 45/2006 DESY- Gemeinschaft, unterzeichnet wurde, unterstützt das Deutsche Elektronen-Synchrotron die Open- Access research organizations, the Helmholtz Association among them, the Deutsches Elektronen-Synchrotron supports

123

Synchrotron Moessbauer Spectroscopy and Resistivity Studies of Iron Oxide Under High Viktor V. Struzhkin1  

E-Print Network (OSTI)

Advanced Photon Source, Argonne National laboratory, Argonne, IL, 60439 5 HPCAT, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439 ABSTRACT The strong electron correlations play a crucial prepared for nuclear resonance measurements. The results of synchrotron Mössbauer spectroscopy (nuclear

Lin, Jung-Fu "Afu"

124

Medical applications of synchrotron radiation  

SciTech Connect

Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

Thomlinson, W.

1991-10-01T23:59:59.000Z

125

Medical Applications of Synchrotron Radiation  

DOE R&D Accomplishments (OSTI)

Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

Thomlinson, W.

1991-10-00T23:59:59.000Z

126

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

National Synchrotron Light Source National Synchrotron Light Source Subject: NSLS Conduct of Operations Manual Number: LS-CO-0001 Revision: B Effective: 10/22/2007 Page 1 of 38 M. Buckley E. Zivogel A. Ackerman S. Dierker Prepared By: Approved By: J. Murphy C-C. Kao Revision Log *Approval signatures on file with master copy. TABLE OF CONTENTS Page INTRODUCTION ........DOE Order 5480.19...........................................................................................2 CHAPTER I ..................OPERATIONS ORGANIZATION AND ADMINISTRATION ......................3 CHAPTER II.................SHIFT ROUTINES & OPERATING PRACTICES .........................................6 CHAPTER III ...............CONTROL AREA ACTIVITIES......................................................................9

127

Nuclear Resonant Scattering on Earth Materials using Synchrotron Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

NRS2005 Home NRS2005 Home Agenda Organizing Committee Nuclear Resonant Scattering on Earth Materials using Synchrotron Radiation February 12-13, 2005 Advanced Photon Source Argonne National Laboratory - Argonne, Illinois, USA Nuclear Resonant Scattering (NRS) techniques provide the Earth and planetary science community with opportunities for new and exciting results on the properties of materials at high pressure and temperature conditions. Such NRS experiments have become possible due to the extreme brightness of third-generation synchrotron radiation sources. NRS techniques fall into two broad areas, which are in many ways ideally or even uniquely suited for addressing a number of important geophysical questions: Nuclear Resonant Inelastic X-ray Scattering (NRIXS) provides information on

128

SSRL Director Appointment Announcement | Stanford Synchrotron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Stanford Synchrotron Radiation Lightsource (SSRL), I am very pleased to announce that Kelly Gaffney, a faculty member in the SLAC Photon Science Department and a member of the...

129

Martin Dohlus Deutsches Elektronen Synchrotron rissen dec 2002 Martin Dohlus Deutsches Elektronen Synchrotron rissen dec 2002  

E-Print Network (OSTI)

1 Seite 1 Martin Dohlus Deutsches Elektronen Synchrotron rissen dec 2002 Martin Dohlus Deutsches.1 W monopole single passage losses #12;2 Seite 2 Martin Dohlus Deutsches Elektronen Synchrotron rissen T > 70K >70K Martin Dohlus Deutsches Elektronen Synchrotron rissen dec 2002 3.3.2 foreseen in tdr #12

130

Evaluation of Synchrotron Mössbauer Spectroscopy Data using the CONUSS  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Photon Source Advanced Photon Source A U.S. Department of Energy, Office of Science, Office of Basic Energy Science national synchrotron x-ray research facility Argonne National Laboratory Argonne Home > Advanced Photon Source > Workshop Home Program Deadlines Lodging Maps Organizing Committee * Wolfgang Sturhahn (ANL) * Jay D. Bass (UIUC) * Guoyin Shen (U of C) * Michael Lerche(UIUC) Evaluation of Synchrotron Mössbauer Spectroscopy Data using the CONUSS software Nuclear Resonant Scattering (NRS) techniques provide the Earth and planetary science community with opportunities for new and exciting results on the properties of materials at high pressure and temperature conditions. Such NRS experiments have become possible due to the characteristics of third-generation synchrotron radiation sources such as the Advanced Photon Source. NRS techniques fall into two broad areas:

131

Operation of the Australian Store.Synchrotron for macromolecular crystallography  

Science Journals Connector (OSTI)

The Store.Synchrotron service, a fully functional, cloud computing-based solution to raw X-ray data archiving and dissemination at the Australian Synchrotron, is described.

Meyer, G.R.

2014-09-30T23:59:59.000Z

132

Science DMZ National Oceanic and Atmospheric Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

NOAA NOAA About ESnet Overview ESnet Staff Governance Our Network Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ CU Science DMZ Penn State & VTTI Science DMZ NOAA Science DMZ NERSC Science DMZ ALS Multi-facility Workflow LCLS ESnet Strategic Plan ESnet Organizational Chart ESnet History Science Requirements Careers Contact Us Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Science DMZ National Oceanic and Atmospheric Administration The National Oceanic and Atmospheric Administration (NOAA) in Boulder houses the Earth System Research Lab, which supports a "reforecasting" project. The initiative involves running several decades of historical

133

Ten Things You Didnt Know About the Electron Racetrack at Brookhaven National Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

See how the National Synchrotron Light Source II speeds electrons around a racetrack, producing some of the worlds brightest X-rays.

134

Synchrotron Infrared Unveils a Mysterious Microbial Community  

NLE Websites -- All DOE Office Websites (Extended Search)

Synchrotron Infrared Unveils a Synchrotron Infrared Unveils a Mysterious Microbial Community Synchrotron Infrared Unveils a Mysterious Microbial Community Print Tuesday, 22 January 2013 00:00 A cold sulfur spring in Germany is the only place where archaea are known to dominate bacteria in a microbial community. How this unique community thrives and the lessons it may hold for understanding global carbon and sulfur cycles are beginning to emerge from research by the University of Regensburg's Christine Moissl-Eichinger and her colleagues, including Advanced Light Source guest Alex Probst. Crucial microbial biochemistry was done at Berkeley Lab by Hoi-Ying Holman, director of the Berkeley Synchrotron Infrared Structural Biology facility, and her staff at the ALS, and by Phylochip inventors Todd DeSantis and Gary Anderson.

135

Simulation of synchrotron motion with rf noise  

SciTech Connect

The theoretical formulation is described that is behind an algorithm for synchrotron phase-space tracking with rf noise and some preliminary simulation results of bunch diffusion under rf noise obtained by actual tracking.

Leemann, B.T.; Forest, E.; Chattopadhyay, S.

1986-08-01T23:59:59.000Z

136

SSRL Meetings, Workshops & Training Archive | Stanford Synchrotron...  

NLE Websites -- All DOE Office Websites (Extended Search)

8-11 October 2014 SSRLLCLS Users' Conference and Workshops 7-8 October 2014 High Power Laser Workshop 3-5 June 2014 7th SSRL School on Synchrotron X-ray Scattering in Materials...

137

The LCLS Design Group  

NLE Websites -- All DOE Office Websites (Extended Search)

nor is intended to imply approval, disapproval, or fitness for any particular use. A royalty-free, nonexclusive right to use and disseminate same for any purpose whatsoever, is...

138

Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992  

SciTech Connect

SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included.

Cantwell, K.; St. Pierre, M. [eds.

1992-12-31T23:59:59.000Z

139

Synchrotron radiation studies of the  

Science Journals Connector (OSTI)

Two questions thought to have a significant effect on SiC-MOS device characteristics are treated. The existence of carbon clusters or carbon containing by-products and the existence of sub-oxides at the SiO2/SiC interface. Results of photoemission studies using synchrotron radiation of the interface of the Si-terminated surface of n-type SiC(0001) crystals are presented. The results show that no carbon clusters or carbon containing by-product can be detected at the interface of insitu or ex situ grown samples with an oxide layer thickness larger than . The presence of sub-oxides at the SiO2/SiC interface was predicted in a theoretical calculation and has been revealed in Si 2p core level data by several groups. These results were not unanimous; significant differences in the number of sub-oxide and shifts were reported. A study also including the Si 1s core level and Si KLL Auger transitions was therefore made. These data show the presence of only one sub-oxide at the interface, assigned to Si1+ oxidation states. The SiO2 chemical shift is shown to exhibit a dependence on oxide thickness, similar to but smaller in magnitude than the thickness dependence earlier revealed for SiO2/Si.

L I Johansson; C Virojanadara

2004-01-01T23:59:59.000Z

140

Photon Sciences | Operating the National Synchrotron Light Source,  

NLE Websites -- All DOE Office Websites (Extended Search)

Transition Topics Transition Topics The Photon Sciences Directorate intends to run a full schedule (~5000 hours per year) of NSLS operations to the end of fiscal year 2014 (September 30, 2014). NSLS-II will be ramped up as rapidly as possible to serve our large and productive user community. The tabs below provide information related to various transition topics. If you have comments, suggestions or questions, please contact the Photon Sciences User Administrator, at gcisco@bnl.gov. News & Updates FAQs Techniques Across DOE DOE Partner Facilities Contact Us User Transition Forum, May 2012 The User Transition Planning Forum was held on May 21, 2012, as part of the annual NSLS/CFN Users' Meeting. Below are copies of slide presentations and notes taken during the Forum. Johnson Presentation

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Photon Sciences | Operating the National Synchrotron Light Source,  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Highlights Science Highlights high-resolution scanning transmission electron microscopy image Nanocrystal Catalyst Transforms Impure Hydrogen into Electricity September 18, 2013 Brookhaven Lab scientists use simple, 'green' process to create novel core-shell catalyst that tolerates carbon monoxide in fuel cells and opens new, inexpensive pathways for zero-emission vehicles. Organic Solar Cells Shedding New Light on the 'Electron Highways' of Organic Solar Cells August 30, 2013 Researchers at Brookhaven Lab and Stony Brook University have developed a way to map out the degree of "traffic congestion" on the electron highways within the photoactive layer of organic solar cells. Li-ion Batteries For Better Li-ion Batteries, Scientists Watch One at Work August 29, 2013

142

NSLS II: The Future National Synchrotron Light Source | 2010 Beamline  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 Beamline Development Proposals - Approved Proposals 2010 Beamline Development Proposals - Approved Proposals Proposal Results Announcement Acronym Title Spokesperson Type Information 4DE 4-Dimensional Studies in Extreme Environments Donald J. Weidner, Stony Brook University 1 Slide ABS A Highly Automated Instrument for Static X-ray Scattering Measurements of Biological Molecules in Solution Lin Yang, BNL 1 Slide AIM Advanced Infrared Microspectroscopy Lisa Miller, BNL 1 Slide AMX Flexible Access Macromolecular Crystallography at an Undulator Beamline Dieter Schneider, BNL 1 Slide | Proposal BMM Hard X-ray Absorption Spectroscopy and Diffraction - Beamline for Materials Measurements Daniel Fischer, NIST 2 Slide | Proposal CDI Coherent X-ray Diffraction Ian Robinson, University College London 1 Slide | Proposal

143

(SUNY beamline facilities at the National Synchrotron Light Source)  

SciTech Connect

This report contains short discussions on the following topics which mainly deal with superconductors: crystallography; surface structure; scattering and EXAFS studies; small angle scattering of x-rays. (LSP)

Coppens, P.

1992-01-01T23:59:59.000Z

144

Workshop on atomic physics at the National Synchrotron Light Source  

SciTech Connect

The workshop emphasis was to acquaint the atomic physics community with the range of experimental capabilities of the NSLS. (GHT)

Jones, K.W.; Johnson, B.M.; Gregory, D.C. (eds.)

1981-01-01T23:59:59.000Z

145

National Synchrotron Light Source II Project Progress Report  

E-Print Network (OSTI)

not changed. Activities funded by the American Recovery and Reinvestment Act (ARRA) continue to be on schedule, heat conditioning to achieve good vacuum, and performing fine leak checking. More than 20% of carbon fiber stands were delivered, and 22 dipole and 11 multipole extrusions were also received. Over 25

Ohta, Shigemi

146

National Synchrotron Light Source guidelines for the conduct of operations  

SciTech Connect

This report briefly discusses the following topics: NSLS operations organization and administration; shift routines and operating practices; NSLS control room activities; communications; control of on-shift training; investigation of abnormal events; notifications; control of equipment and system status; lock-out tagout; independent verification; logkeeping; shift turnover; required reading; shift orders; equipment operations guides; operator aid postings; and equipment labeling.

Fewell, N.

1990-03-01T23:59:59.000Z

147

National Synchrotron Light Source II Project Progress Report  

E-Print Network (OSTI)

and electrical utilities and infrastructure elements continued in pentants 2 and 3. Good progress continued of the lead and steel hutches led to an approval for manufacturing of the first hutch. Activities funded, leaving only a few items like waveguides, cable trays and cables, and the front end to be delivered

Ohta, Shigemi

148

National Synchrotron Light Source II Project Progress Report  

E-Print Network (OSTI)

magnets with their improved EDM machine. Test results for these magnets will be availab 10 microns or better, using the electrical wire erosion (EDM) technique. The first 90mm

Ohta, Shigemi

149

PLANNING STUDY FOR ADVANCED NATIONAL SYNCHROTRON-RADIATION FACILITIES  

NLE Websites -- All DOE Office Websites (Extended Search)

While the focus of the report is a series of recommended actions, it also contains data, analyses, observations, and criticisms, so that it can serve as a resource for...

150

National Synchrotron Light Source II Project Progress Report  

E-Print Network (OSTI)

for vacuum impregnation at Budker Institute of Nuclear Physics (BINP). Figure 1: Quadrupole coil ready erection is progressing rapidly. The installation of underground utilities is beginning to accelerate of Accelerator Systems, maintaining its cost and schedule goals. The linac contract is ready to be awarded under

Ohta, Shigemi

151

National Synchrotron Light Source II Project Progress Report  

E-Print Network (OSTI)

are nearing completion. Excellent progress continued in the production of girders, vacuum chambers and pumps, linac, booster, controls, power supplies, and electrical utilities for Accelerator Systems. A proposal Act (ARRA) continued to be on schedule and on budget. UPCOMING EVENTS 2011 Budker Institute of Nuclear

Ohta, Shigemi

152

NSLS Industrial User Program | Synchrotron Techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

Synchrotron X-ray Techniques for Industrial Research Synchrotron X-ray Techniques for Industrial Research Techniques http://www.sc.doe.gov/bes/synchrotron_techniques/ Spectroscopy Spectroscopy is used to study the energies of particles emitted or absorbed by samples that are exposed to beam to determine the characteristics of chemical bonding and electron energy band structure. Extended X-Ray Absorption Fine Structure Spectroscopy (EXAFS) X-Ray Absorption Near Edge Spectroscopy (XANES) Hard X-ray Photoelectron Spectroscopy (HAXPES) Scanning X-Ray Microscopy: Micro-XRF, -XAFS, -XRD Soft X-Ray Absorption and Scattering Infrared Vibrational Microspectroscopy Photoemission Electron Microscopy / Low-Energy Electron Microscopy (PEEM/LEEM) Scattering/Diffraction Scattering/diffraction makes use of the patterns of scattered x-rays when

153

K-Edge Subtraction Angiography with Synchrotron X-Rays  

SciTech Connect

The purpose of this project was to utilize dual energy, monochromatic X-rays produced from synchrotrons radiation in order to obtain noninvasive medical imaging. The application of synchrotrons radiation to medical imaging is based on the principle of iodine dichromography, first described by Bertil Jacobson of the Karolinska Institute in 1953. Medical imaging using synchrotrons radiation and K-edge dichromography was pioneered at Stanford University under the leadership of Dr. Ed Rubenstein, and the late Nobel Laureate in Physics, Dr. Robert Hofstadter. With progressive refinements in hardware, clinical-quality images were obtained of human coronary arteries utilizing peripheral injections of iodinated contrast agent. These images even now are far superior to those being presented by investigators using MRI as an imaging tool for coronary arteries. However, new supplies and instruments in the cardiac catheterization laboratory have served to transform coronary angiography into an outpatient procedure, with relatively little morbidity. We extended the principles learned with coronary angiography to noninvasive imaging of the human bronchial tree. For these images, we utilized xenon as the contrast agent, as it has a K-edge very similar to that of iodine. In this case, there is no true competing diagnostic test, and pulmonary neoplasm is an enormous public health concern. In early experiments, we demonstrated remarkably clear images of the human bronchial tree. These images have been shown internationally; however, funding difficulties primarily with the Department of Energy have not allowed for progression of this promising avenue of research. One potential criticism of the project is that in order to obtain these images, we utilized national laboratories. Some have questioned whether this would lead to a practical imaging modality. However, we have shown that the technology exists to allow for construction of a miniature storage ring, with a superconducting wiggler magnet, which would occupy minimal space, and would be of a cost comparable with that of a clinical cardiac catheterization laboratory. Much of the focus of this research is now shifting to Europe, where individual whom we have trained or with whom we have worked are now heading up extensive efforts in medical imaging and K-edge dichromography. This work is occurring mostly at DESY in Hamburg, and at the European Synchrotrons Research Laboratory (ESRF) in Grenoble. (B204)

Giacomini, John C.

1996-12-31T23:59:59.000Z

154

Coherent Synchrotron Radiation: Theory and Simulations.  

SciTech Connect

The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum achievable emittance in the synchrotron light sources for short bunches.

Novokhatski, Alexander; /SLAC

2012-03-29T23:59:59.000Z

155

Dynamics of synchrotron VUV-induced intracluster reactions  

SciTech Connect

Photoionization mass spectrometry (PIMS) using the tunable vacuum ultraviolet radiation available at the National Synchrotron Light Source is being exploited to study photoionization-induced reactions in small van der Waals mixed complexes. The information gained includes the observation and classification of reaction paths, the measurement of onsets, and the determination of relative yields of competing reactions. Additional information is obtained by comparison of the properties of different reacting systems. Special attention is given to finding unexpected features, and most of the reactions investigated to date display such features. However, understanding these reactions demands dynamical information, in addition to what is provided by PIMS. Therefore the program has been expanded to include the measurement of kinetic energy release distributions.

Grover, J.R. [Brookhaven National Laboratory, Upton, NY (United States)

1993-12-01T23:59:59.000Z

156

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron  

E-Print Network (OSTI)

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron Ein: Wissenschaftliche Mitarbeiterin (w/m) in Teilzeit (27,3 Std./W.) DESY Das Deutsche Elektronen-Synchrotron DESY ist E-Mail: Deutsches Elektronen-Synchrotron DESY Personalabteilung | Kennziffer: EM124/2014 Notkestra?e

157

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron  

E-Print Network (OSTI)

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron Ein Engineer (w/m) DESY Das Deutsche Elektronen-Synchrotron DESY ist eines der weltweit führenden Zentren Angabe der Kennziffer, auch per E-Mail: Deutsches Elektronen-Synchrotron DESY Personalabteilung

158

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron  

E-Print Network (OSTI)

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron Ein Beamline Ingenieurin (w/m) DESY Das Deutsche Elektronen-Synchrotron DESY ist eines der weltweit führenden mit Angabe der Kennziffer, auch per E-Mail: Deutsches Elektronen-Synchrotron DESY Personalabteilung

159

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron  

E-Print Network (OSTI)

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron Ein/m) NanoLab (SEM/Mikroskopie) DESY Das Deutsche Elektronen-Synchrotron DESY ist eines der weltweit Angabe der Kennziffer, auch per E-Mail: Deutsches Elektronen-Synchrotron DESY Personalabteilung

160

Production of radioactivity in local soil at AGS (Alternating Gradient Synchrotron) fast neutrino beam  

SciTech Connect

Brookhaven National Laboratory (BNL) has constructed a new neutrino production target station at the Alternating Gradient Synchrotron (AGS). A study has been conducted in the vicinity of the old target area to determine the radiological consequences of operating this experimental facility. Results from all areas of the study are presented along with estimates of the potential environmental impact of the old and new facilities. 12 refs., 15 figs., 3 tabs.

Gollon, P.J.; Rohrig, N.; Hauptmann, M.G.; McIntyre, K.; Miltenberger, R.; Naidu, J.

1989-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Secretary Chu to Join Representatives Lofgren and Honda at the SLAC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Representatives Lofgren and Honda at the SLAC Representatives Lofgren and Honda at the SLAC National Accelerator Laboratory Secretary Chu to Join Representatives Lofgren and Honda at the SLAC National Accelerator Laboratory August 13, 2010 - 12:00am Addthis Washington, D.C. - On Monday, U.S. Energy Secretary Steven Chu will visit the SLAC National Accelerator Laboratory in Menlo Park, California. Secretary Chu will join Representatives Zoe Lofgren and Mike Honda and Stanford University President John Hennessy at a dedication ceremony for the Linac Coherent Light Source (LCLS). The Recovery Act-funded LCLS produces x-ray pulses millions of times brighter than the world's most powerful synchrotron sources, capable of capturing images of atoms and molecules in motion. The LCLS is led by SLAC National Accelerator Laboratory (SLAC). Operated by

162

Photon Sciences Directorate at Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Directorate at Directorate at Brookhaven National Laboratory 2010 ANNUAL REPORT DISCOVERY 2010 AnnuAl RepoRt Photon Sciences Directorate at Brookhaven National Laboratory Photon Sciences Directorate at Brookhaven National Laboratory 2010 ANNUAL REPORT Kendra Snyder Editor Laura Mgrdichian Science Writer Mona S. Rowe Science Writer Tiffany Bowman Graphic Designer Office of Science the photon Sciences Directorate at Brookhaven national laboratory operates the national Synchrotron light Source (nSlS) and is constructing the national Synchrotron light Source II (nSlS-II). nSlS and nSlS-II are offi ce of Science user Facilities supported by the u.S. Department of energy offi ce of Science. 2010 AnnuAl RepoRt Photon Sciences Directorate at Brookhaven National Laboratory Disclaimer

163

Synchrotron-radiation experiments with recoil ions  

SciTech Connect

Studies of atoms, ions and molecules with synchrotron radiation have generally focused on measurements of properties of the electrons ejected during, or after, the photoionization process. Much can also be learned, however, about the atomic or molecular relaxation process by studies of the residual ions or molecular fragments following inner-shell photoionization. Measurements are reported of mean kinetic energies of highly charged argon, krypton, and xenon recoil ions produced by vacancy cascades following inner-shell photoionization using white and monochromatic synchrotron x radiation. Energies are much lower than for the same charge-state ions produced by charged-particle impact. The results may be applicable to design of future angle-resolved ion-atom collision experiments. Photoion charge distributions are presented and compared with other measurements and calculations. Related experiments with synchrotron-radiation produced recoil ion, including photoionization of stored ions and measurement of shakeoff in near-threshold excitation, are briefly discussed. 24 refs., 6 figs., 1 tab.

Levin, J.C.

1989-01-01T23:59:59.000Z

164

Synchrotron Mesodiffraction: A Tool for Understanding Turbine Engine  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 B. L. Boyce,1 A. Mehta,2 J. O. Peters,3 and R. O. Ritchie4 1Sandia National Laboratories, PO Box 5800, MS: 0889, Albuquerque, NM 87185-0889 blboyce@sandia.gov 2Stanford Synchrotron Radiation Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025 3Lufthansa Technik AG, HAM WR 124, Weg Beim Jäger 193, 22335 Hamburg, Germany janoke.peters@lht.dlh.de 4Lawrence Berkeley National Laboratory, MS: 62-203, 1 Cyclotron Rd., Berkeley, CA 94720 roritchie@lbl.gov Aircraft turbine engines routinely experience the ingestion of debris resulting in "foreign object damage" or FOD. Failures associated with foreign object damage have been estimated to cost the aerospace industry $4 billion per year. Often, FOD does not lead to sudden catastrophic failure, yet such damage can dramatically reduce the lifetime of components subjected to cyclic fatigue stresses. Turbine blades, for example, are susceptible to debris strikes and also experience significant fatigue loading. The current study seeks to develop insight into the driving forces and predictability of fatigue failures induced by foreign object damage. Such insight can be used to improve existing design methodologies for turbine engine components and inspection regimens.

165

High pressure--high temperature research using high energy synchrotron radiation at the TRISTAN accumulation ring  

SciTech Connect

High energy synchrotron radiation emitted from the bending magnet of the TRISTAN accumulation ring (6.5 GeV) at the National Laboratory for High Energy Physics has been used for the high pressure--high temperature diffraction experiments using a multianvil press system, MAX80. Owing to the specific features of high energy synchroton radiation, significant improvements have been brought to the high pressure research. The wide energy range of diffraction spectrum leads to an increase in the number of observable diffraction peaks in an energy-dispersive method, resulting in an increase in the accuracy of the measurements of the lattice and thermal parameters. Due to the high penetrating power of radiation, diffraction patterns can be taken in a short time from materials containing heavy elements or materials surrounded by a metal foil. Typical examples of high pressure--high temperature experiments with high energy synchrotron radiation are also described.

Kikegawa, T.; Shimomura, O.; Iwasaki, H.; Sato, S.; Mikuni, A.; Iida, A.; Kamiya, N.

1989-07-01T23:59:59.000Z

166

Room-temperature macromolecular serial crystallography using synchrotron radiation  

Science Journals Connector (OSTI)

The room-temperature structure of lysozyme is determined using 40000 individual diffraction patterns from micro-crystals flowing in liquid suspension across a synchrotron microfocus beamline.

Stellato, F.

2014-05-30T23:59:59.000Z

167

Stanford Synchrotron Radiation Light Source (SSRL) | U.S. DOE...  

Office of Science (SC) Website

Syncrotron Light Source (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects...

168

Variable-Period Undulators for Synchrotron Radiation  

SciTech Connect

A new and improved undulator design is provided that enables a variable period length for the production of synchrotron radiation from both medium-energy and high energy storage rings. The variable period length is achieved using a staggered array of pole pieces made up of high permeability material, permanent magnet material, or an electromagnetic structure. The pole pieces are separated by a variable width space. The sum of the variable width space and the pole width would therefore define the period of the undulator. Features and advantages of the invention include broad photon energy tunability, constant power operation and constant brilliance operation.

Shenoy, Gopal; Lewellen, John; Shu, Deming; Vinokurov, Nikolai

2005-02-22T23:59:59.000Z

169

Synchrotron-Radiation-Based Moessbauer Spectroscopy  

SciTech Connect

We have developed a new method that yields Moessbauer absorption spectra using synchrotron radiation (SR); this method is applicable for almost all Moessbauer nuclides including those that cannot be measured by previous methods using radioisotope (RI) sources. The Moessbauer spectrum of the 68.752 keV excited state of {sup 73}Ge, which cannot be measured using a RI source, was measured using SR. Our results show that this method can be used to perform advanced Moessbauer spectroscopy measurements owing to the excellent features of SR.

Seto, Makoto [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-04 (Japan); Japan Atomic Energy Agency, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan); CREST, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Masuda, Ryo; Mitsui, Takaya [Japan Atomic Energy Agency, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan); CREST, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Higashitaniguchi, Satoshi; Kitao, Shinji; Kobayashi, Yasuhiro [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-04 (Japan); CREST, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Inaba, Chika [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-04 (Japan); Yoda, Yoshitaka [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198 (Japan); CREST, Japan Science and Technology Agency, Saitama 332-0012 (Japan)

2009-05-29T23:59:59.000Z

170

Optical Synchrotron Precursors of Radio Hypernovae  

E-Print Network (OSTI)

Some hypernova (HN) explosions accompany much brighter radio afterglows than those of ordinary core-collapse supernovae (SNe), which we here term radio HNe. Due to their association with low-luminosity gamma-ray bursts (llGRBs), and with implied relativistic ejecta velocities, previous studies suggested that the enhanced radio emissions are essentially energized by relativistic jets. By re-examining some observed radio HNe based on the refreshed shock model, we find, however, that they can be consistently explained by afterglow emissions from spherical HN explosions without jet component. In this model, a sequence of shock breakout shells interacts with the circumstellar wind medium and induces multi-band synchrotron emission. Our model can be confirmed by optical synchrotron precursors from ~ 1000 s to 1 day after shock breakouts, which are detectable by current and future high-cadence wide-field surveys. They can be also associated with ordinary HNe with an event rate of ~ 0.32/yr from <~ 40 Mpc. Most of...

Nakauchi, Daisuke; Nagakura, Hiroki; Suwa, Yudai; Nakamura, Takashi

2014-01-01T23:59:59.000Z

171

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron  

E-Print Network (OSTI)

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron Ein: Ingenieurin (w/m) der Elektrotechnik für die Leitung der Elektronikfertigung DESY Das Deutsche Elektronen mit Angabe der Kennziffer, auch per E-Mail: Deutsches Elektronen-Synchrotron DESY Personalabteilung

172

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron  

E-Print Network (OSTI)

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron Ein Produktdesignerin (w/m) DESY Das Deutsche Elektronen-Synchrotron DESY ist eines der weltweit führenden uns auf Ihre Bewerbung mit Angabe der Kennziffer, auch per E-Mail: Deutsches Elektronen

173

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron  

E-Print Network (OSTI)

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron Ein: Studentische IT-Hilfskräfte (w/m) 1st-Level-Support DESY Das Deutsche Elektronen-Synchrotron DESY ist eines der uns auf Ihre Bewerbung mit Angabe der Kennziffer, auch per E-Mail: Deutsches Elektronen

174

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron  

E-Print Network (OSTI)

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron Ein: Sachbearbeiterin Kreditoren (w/m) DESY Das Deutsche Elektronen-Synchrotron DESY ist eines der weltweit führenden Kindergarten. Wir freuen uns auf Ihre Bewerbung mit Angabe der Kennziffer, auch per E-Mail: Deutsches

175

The First International Workshop on Synchrotron Radiation Circular Dichroism  

E-Print Network (OSTI)

The First International Workshop on Synchrotron Radiation Circular Dichroism (SRCD) Spectroscopy and biochemists and has been operational for about a year. Drs. Kunihiko Gekko (HiSOR, Japan) and Ye Tao (BSRF REPORTS SYNCHROTRON RADIATION NEWS, Vol. 15, No. 1, 2002 33 1st International Workshop on SRCD

Wallace, Bonnie Ann

176

Parton energy loss due to synchrotron-like gluon emission  

E-Print Network (OSTI)

We develop a quasiclassical theory of the synchrotron-like gluon radiation. Our calculations show that the parton energy loss due to the synchrotron gluon emission may be important in the jet quenching phenomenon if the plasma instabilities generate a sufficiently strong chromomagnetic field. Our gluon spectrum disagrees with that obtained by Shuryak and Zahed within the Schwinger's proper time method.

B. G. Zakharov

2008-09-03T23:59:59.000Z

177

Synchrotron Production of Photons by a Two-body System  

E-Print Network (OSTI)

The power spectrum of the synchrotron radiation generated by the motion of a two-body charged system in an accelerator is derived in the framework of the Schwinger source theory. The final formula can be used to verify the Lorentz length contraction of the two-body system moving in the synchrotron.

Miroslav Pardy

2000-08-24T23:59:59.000Z

178

2012 Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

2Publications 2Publications Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES LCLS : Linac Coherent Light Source An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar LCLS Lasers Expand Lasers LCLS Quick Launch Home About LCLS Expand About LCLS LCLS News Expand LCLS News User Resources Expand User Resources Instruments Expand Instruments Proposals Publications Expand Publications Schedules Machine Status Machine FAQs Safety Organization Expand Organization Directories Expand Directories Staff Resources Contact Us All Site Content Department of Energy Page Content 2012 Publications 2013 | 2012 | 2011 | 2010 | 2009 | Archive | Citations | Statistics

179

2010 Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

0Publications 0Publications Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES LCLS : Linac Coherent Light Source An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar LCLS Lasers Expand Lasers LCLS Quick Launch Home About LCLS Expand About LCLS LCLS News Expand LCLS News User Resources Expand User Resources Instruments Expand Instruments Proposals Publications Expand Publications Schedules Machine Status Machine FAQs Safety Organization Expand Organization Directories Expand Directories Staff Resources Contact Us All Site Content Department of Energy Page Content 2010 Publications 2013 | 2012 | 2011 | 2010 | 2009 | Archive | Citations | Statistics

180

Archived Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

ArchivedPublications ArchivedPublications Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES LCLS : Linac Coherent Light Source An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar LCLS Lasers Expand Lasers LCLS Quick Launch Home About LCLS Expand About LCLS LCLS News Expand LCLS News User Resources Expand User Resources Instruments Expand Instruments Proposals Publications Expand Publications Schedules Machine Status Machine FAQs Safety Organization Expand Organization Directories Expand Directories Staff Resources Contact Us All Site Content Department of Energy Page Content Archived Publications 2013 | 2012 | 2011 | 2010 | 2009 | Archive | Citations | Statistics

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Synchrotron X-ray Studies of Super-critical Carbon Dioxide /...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Synchrotron X-ray Studies of Super-critical Carbon Dioxide Reservoir Rock Interfaces Synchrotron X-ray Studies of Super-critical Carbon Dioxide Reservoir Rock Interfaces...

182

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X7B  

E-Print Network (OSTI)

shoes Soldering Y N Use a designated area, periodically clean surfaces High temperature Y Y Warning signs Training High pressure Y Y Warning signs Training Cutting/razor blades Be aware of hand

Ohta, Shigemi

183

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X8A  

E-Print Network (OSTI)

concerns ­ awkward postures Y Y Be aware of body posture Take frequent breaks Soldering Y Y Use concerns ­ moving/lifting Y Y Be aware of body posture, Ask for help in moving or lifting Ergonomics a designated area, periodically clean surfaces Cutting/razor blades Y Y Be aware of hand positioning Use safety

Ohta, Shigemi

184

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X22B  

E-Print Network (OSTI)

glasses, nitrile gloves Soldering Y Y Use a designated area, periodically clean surfaces High temperature Y Be aware of hand positioning Use safety knife when possible Consider using cut resistant gloves

Ohta, Shigemi

185

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X6B  

E-Print Network (OSTI)

check gas lines Ergonomics concerns ­ moving/lifting Y Y Be aware of body posture, Ask for help in moving or lifting Ergonomics concerns ­ awkward postures Y Y Be aware of body posture Take frequent breaks Soldering Y Y Use a designated area, periodically clean surfaces Beryllium use Y Y Handle articles

Ohta, Shigemi

186

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline U3C  

E-Print Network (OSTI)

gloves Enclosed shoes Ergonomics concerns ­ moving/lifting Y Y Be aware of body posture, Ask for help in moving or lifting Ergonomics concerns ­ awkward postures Y Y Be aware of body posture Take frequent breaks Soldering Y Y Use a designated area, periodically clean surfaces Visible light Y Y Covers Warning

Ohta, Shigemi

187

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X18A  

E-Print Network (OSTI)

Laser registration, warning signs Soldering Y N Use a designated area, periodically clean surfaces High OpCo if damaged Cutting/razor blades Y Y Be aware of hand positioning Use safety knife when possible

Ohta, Shigemi

188

Brookhaven National Laboratory -Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X14A  

E-Print Network (OSTI)

-out, turbo pump set- up, set-up displex Y Y Be aware of body posture, Ask for help in moving or lifting Soldering Y N Use a designated area, periodically clean surfaces High temperature ­ furnace with beryllium OpCo if damaged Material Handling/Crane Y N Training Cutting/razor blades Y Y Be aware of hand

Ohta, Shigemi

189

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X27C  

E-Print Network (OSTI)

/lifting ­ detector has to be moved often (~ 40 lbs) Y Y Be aware of body posture, Ask for help in moving or lifting Ergonomics concerns ­ awkward postures ­ moving detector Y Y Be aware of body posture Take frequent breaks Soldering Y Y Use a designated area, periodically clean surfaces High temperature ­ heat stage Y Y BLOSA

Ohta, Shigemi

190

Brookhaven National Laboratory -Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline U4B  

E-Print Network (OSTI)

guidance/checklist from PRM 5.1.0 Soldering Y Y Use a designated area, periodically clean surfaces High Y Be aware of hand positioning Use safety knife when possible Consider using cut resistant gloves

Ohta, Shigemi

191

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X24C  

E-Print Network (OSTI)

cryogens (pockets, cuffs) Cryogen or heavy gloves Enclosed shoes Soldering Y N Use a designated area Training Cutting/razor blades Y Y Be aware of hand positioning Use safety knife when possible Consider

Ohta, Shigemi

192

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X18B  

E-Print Network (OSTI)

, warning signs Soldering Y N Use a designated area, periodically clean surfaces High temperature Y Y/razor blades Y Y Be aware of hand positioning Use safety knife when possible Consider using cut resistant

Ohta, Shigemi

193

Brookhaven National Laboratory National Synchrotron Light Source Beamline Hazard Analysis Beamline X23A2  

E-Print Network (OSTI)

cotton liners · Enclosed shoes · Use tongs or tools whenever possible Soldering Y N · Use a designated area, periodically clean surfaces Working at heights Y N · Be aware of body posture, training

Ohta, Shigemi

194

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X19A  

E-Print Network (OSTI)

Be aware of body posture, Ask for help in moving or lifting Soldering Y N Use a designated area fixed, or HEPA filtered exhaust Cutting/razor blades Y Y Be aware of hand positioning Use safety knife

Ohta, Shigemi

195

Synchrotron studies of narrow band materials  

SciTech Connect

Since last year, we have had three 3-week blocks of beamtime, in April and November 1991 and February 1992, on the Ames/Montana beamline at the Wisconsin Synchrotron Radiation Center (SRC). These runs continued our program on high temperature superconductors, heavy Fermion and related uranium and rare earth materials, and started some work on transition metal oxides. We have also had beamtime at the Brookhaven NSLS, 5 days of beamtime on the Dragon monochromator, beamline U4B, studying resonant photoemission of transition metal oxides using photon energies around the transition metal 2p edges. Data from past runs has been analyzed, and in some cases combined with photoemission and bremsstrahlung isochromat spectroscopy (BIS) data taken in the home U-M lab. 1 fig.

Not Available

1992-01-01T23:59:59.000Z

196

Introduction to nuclear resonant scattering with synchrotron radiation  

SciTech Connect

In recent years, the use of synchrotron radiation has enjoyed increasing interest in applications to topics of Moessbauer spectroscopy. The development was initiated by the pioneering experimental work of Gerdau et al. following the original proposal of Ruby to use synchrotron radiation for the excitation of low energy nuclear resonances. From the early experiments it was clear that synchrotron radiation experiments with nuclear resonances would only succeed if familiar energy resolved measurements were replaced with a new time resolved technique. During the last decade, the authors experienced the refinement of this novel method for obtaining hyperfine parameters. This exciting development-materialized because of more intense synchrotron radiation sources at the European Synchrotron Radiation Facility (ESRF) and at the Advanced Photon Source (APS), powerful new avalanche photo diode detectors, and improved high energy resolution monochromators. Simultaneously the tools for evaluation of the novel time spectra were created, e.g., Sturhahn and Gerdau developed extensive computer codes based on the theoretical descriptions of Hannon and Trammel. Many beautiful demonstrations of the basic features of the coherent elastic scattering channel using Bragg- and Laue-reflections from single crystals deepened the understanding of nuclear resonant scattering. The concepts leading to the application of synchrotron radiation to elastic and inelastic nuclear resonant scattering are discussed. The resulting new experimental techniques are compared to conventional Moessbauer spectroscopy. A survey of situations that favor experiments with synchrotron radiation is offered.

Sturhahn, W.; Alp, E.E.; Toellner, T.S.; Hession, P.; Hu, M.; Sutter, J.

1997-08-01T23:59:59.000Z

197

3 GeV Booster Synchrotron Conceptual Design Report  

SciTech Connect

Synchrotron light cna be produced from a relativistic particle beam circulating in a storage ring at extremely high intensity and brilliance over a large spectral region reaching from the far infrared regime to hard x-rays. The particles, either electrons or positrons, radiate as they are deflected in the fields of the storage ring bending magnets or of magnets specially optimized for the production of synchrotron light. The synchrotron light being very intense and well collimated in the forward direction has become a major tool in a large variety of research fields in physics, chemistry, material science, biology, and medicine.

Wiedemann, Helmut

2009-06-02T23:59:59.000Z

198

Proceedings of the workshop on LAMPF II synchrotron  

SciTech Connect

Topics covered at the workshop include: considerations for a staged approach to synchrotron construction; consideration of energy and cost for a kaon and/or antiproton factory; changing the transition energy in the main ring for the Fermilab antiproton beam; a lattice with 50% undispersed straight sections; bunch width considerations in a stretcher ring; a self-consistent longitudinal distribution; rapid-cycling tuned rf cavity for synchrotron use; considerations on a high-shunt impedance tunable RF cavity; rotating condensers; low extraction from the stretcher ring; an antiproton source for LAMPF II; synchrotron magnet circuit; power supply and ring magnet options; and notes for a kaon factory design. (GHT)

Cooper, R.K. (comp.)

1983-01-01T23:59:59.000Z

199

The Synchrotron Boiler a Thermalizer in Seyfert Galaxies  

E-Print Network (OSTI)

There are difficulties in understanding what keeps the plasma thermalized in compact sources, especially during rapid variations of the emitted flux. Particle-particle collisions are too inefficient in hot rarefied plasmas, and a faster process is called for. Synchrotron absorption is such a process. We show that relativistic electrons can thermalize in a few synchrotron cooling times by emitting and absorbing cyclo-synchrotron photons. The resulting equilibrium distribution is a Maxwellian at low energies, with a high energy power law tail when Compton cooling is important. Assuming that the particles emit completely self absorbed synchrotron radiation while they at the same time Compton scatter ambient UV photons, we calculate the time dependent behavior of the distribution function, and the final high energy spectra.

Ghisellini, G; Svensson, R; Ghisellini, Gabriele; Haardt, Francesco; Svensson, Roland

1996-01-01T23:59:59.000Z

200

The Synchrotron Boiler: a Thermalizer in Seyfert Galaxies  

E-Print Network (OSTI)

There are difficulties in understanding what keeps the plasma thermalized in compact sources, especially during rapid variations of the emitted flux. Particle-particle collisions are too inefficient in hot rarefied plasmas, and a faster process is called for. Synchrotron absorption is such a process. We show that relativistic electrons can thermalize in a few synchrotron cooling times by emitting and absorbing cyclo-synchrotron photons. The resulting equilibrium distribution is a Maxwellian at low energies, with a high energy power law tail when Compton cooling is important. Assuming that the particles emit completely self absorbed synchrotron radiation while they at the same time Compton scatter ambient UV photons, we calculate the time dependent behavior of the distribution function, and the final high energy spectra.

Gabriele Ghisellini; Francesco Haardt; Roland Svensson

1996-12-09T23:59:59.000Z

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Characterization of New Cathode Materials using Synchrotron-based...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Techniques and the Studies of Li-Air Batteries Characterization of New Cathode Materials using Synchrotron-based X-ray Techniques and the Studies of Li-Air Batteries 2009 DOE...

202

Serial crystallography on in vivo grown microcrystals using synchrotron radiation  

Science Journals Connector (OSTI)

The structure solution of T. brucei cathepsin B from 80 in vivo grown crystals with an average volume of 9 ?m3 obtained by serial synchrotron crystallography at a microfocus beamline is reported.

Gati, C.

2014-02-10T23:59:59.000Z

203

Noninvasive emittance and energy spread monitor using optical synchrotron radiation  

E-Print Network (OSTI)

We propose a design for a minimally perturbing diagnostic minichicane, which utilizes optical synchrotron radiation (OSR) generated from magnetic bends in the chicane, to measure the rms horizontal and vertical beam sizes, ...

Fiorito, R.

204

Iran Thomas Auditorium, 8600 Materials For Energy: In Situ Synchrotron...  

NLE Websites -- All DOE Office Websites (Extended Search)

December 15, 2011 4:00 pm Iran Thomas Auditorium, 8600 Materials For Energy: In Situ Synchrotron X-Ray Studies for Materials Design and Discovery Stephen K. Streiffer Deputy...

205

The History of X-ray Free-Electron Lasers  

SciTech Connect

The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 {angstrom}, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 10{sup 13} to 10{sup 11}, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.

Pellegrini, C.; /UCLA /SLAC; ,

2012-06-28T23:59:59.000Z

206

Nuclear dynamical diffraction using synchrotron radiation  

SciTech Connect

The scattering of synchrotron radiation by nuclei is extensively explored in this thesis. From the multipole electric field expansion resulting from time-dependent nonrelativistic perturbation theory, a dynamical scattering theory is constructed. This theory is shown, in the many particle limit, to be equivalent to the semi-classical approach where a quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave equation. The Moessbauer specimen whose low-lying energy levels were probed is a ferromagnetic lattice of {sup 57}Fe embedded in a yttrium iron garnet (YIG) crystal matrix. The hyperfine fields in YIG thin films were studied at low and room temperature using time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats were measured using a fast plastic scintillator coincidence photodetector and associated electronics having a time resolution of 2.5 nsec. The variation of the quantum beat patterns near the Bragg [0 0 2] diffraction peak gave a Lamb-Moessbauer factor of 8.2{plus_minus}0.4. Exploring characteristic dynamical features in the higher order YIG [0 0 10] reflection revealed that one of the YIG crystals had bifurcated into two different layers. The dynamics of nuclear superradiance was explored. This phenomenon includes the radiative speedup exhibited by a collective state of particles, and, in striking concurrence, resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat frequency shift of 1{1/2} natural resonance linewidths were observed. Nuclear resonance scattering was also found to be a useful way of performing angular interferometry experiments, and it was used to observe the phase shift of a rotated quantum state. On the whole, nuclear dynamical diffraction theory has superbly explained many of the fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei.

Brown, D.E.

1993-05-01T23:59:59.000Z

207

Secretary of Energy Advisory Board SLAC National Accelerator Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SLAC National Accelerator Laboratory SLAC National Accelerator Laboratory Menlo Park, CA April 11, 2011 Agenda Open Plenary Meeting Session 8:00 AM - 8:15 AM Welcome and Overview Dr. William Perry 8:15 AM - 8:45 AM Key Issues for DOE Secretary Steven Chu 9:00 AM - 9:45 AM SLAC Overview Persis Drell 9:45 AM - 10:15 AM Breakthrough in Protein Structure Determination Enabled by LCLS Henry Chapman 10:15 AM - 11:00 AM Lab Overview - Progress and Path Forward George Miller 11:00 AM - 11:45 AM Stockpile Stewardship Overview Bruce Goodwin 11:45 AM - 12:30 PM Energy of the Future - National Ignition Facility (NIF) and Laser Inertial Fusion Energy (LIFE) Ed Moses 12:30 PM - 1:45 PM Lunch Break 2:00 PM - 2:30 PM Subcommittee Reports 2:30 PM - 3:30 PM Discussion of DOD-DOE MOU

208

User Agreements | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Agreements Agreements Institutional Agreements Required to Access DOE National User Facilities In recognition of the nation's expanding need to engage businesses and universities in the areas of commercial and basic science research, the Department of Energy (DOE) has developed two special types of agreements for use at all DOE National Laboratories with approved designated user facilities, see http://www.gc.doe.gov/1002.htm. Non-Proprietary User Agreement (PDF) (General User Agreement; no cost for general users) Proprietary User Agreement (PDF) (For Confidential or Proprietary Research; also requires advance payment) A User Agreement is required for all users and must be executed by the appropriate institutional officer(s) at the user's institution. A single User Agreement covers all experimenters from that institution (User

209

Structural biology research at the National Synchroton Light Source  

SciTech Connect

The world`s foremost facility for scientific research using x-rays and ultraviolet and infrared radiation is operated by the national synchrotron Light Source Department. This year alone, a total of 2200 guest researchers performed experiments at the world`s largest source of synchrotron light. Researchers are trying to define the three- dimensional structures of biological macromolecules to create a map of life, a guide for exploring the biological and chemical interactions of the vast variety of molecules found in living organisms. Studies in structural biology may lead to new insights into how biological systems are formed and nourished, how they survive and grow, how they are damaged and die. This document discusses some the the structural biological research done at the National Synchrotron Light Source.

NONE

1996-05-01T23:59:59.000Z

210

Top-Off Injection and Higher Currents at the Stanford Synchrotron Radiation Lightsource  

SciTech Connect

The Stanford Synchrotron Radiation Lightsource (SSRL) at the SLAC National Accelerator Laboratory is a 234 m circumference storage ring for 3 GeV electrons with its synchrotron radiation serving currently 13 beamlines with about 27 experimental stations. It operated for long time with 100 mA peak current provided by usually three injections per day. In July 2009, the maximum beam current was raised to 200 mA. Over the period from June 2009 to March 2010, Top-Off operation started at every beamline. Top-Off, i.e., the injection of electrons into the storage ring with injection stoppers open, is necessary for SSRL to reach its design current of 500 mA. In the future, the maximal power of the injection current will also soon be raised from currently 1.5 W to 5 W. The Radiation Protection Department at SLAC worked with SSRL on the specifications for the safety systems for operation with Top-Off injection and higher beam currents.

Bauer, Johannes M.; Liu, James C.; Prinz, Alyssa A.; Rokni, Sayed H.; /SLAC; ,

2011-04-05T23:59:59.000Z

211

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Building 725 Fire Hazard Analysis/Fire Hazard Assessment Number: LS-ESH-0068 Revision: 1 Effective: 7/15/2009 Page 1 of 18 Prepared By: Robert Chmiel Approved By: Andrew Ackerman Approved By: Joe Levesque *Approval signatures on file with master copy. Revision Log Purpose/Scope The purpose of this Assessment is to comprehensively and qualitatively assess the risk from fire within the National Synchrotron Light Source (NSLS) to ensure DOE fire safety objectives are met. DOE fire protection criteria are outlined in DOE Order 420.1. The Fire Protection Assessment includes identifying the risks from fire and related hazards (direct flame impingement, hot gases, smoke migration, fire-fighting water damage, etc.). A Fire Hazard

212

Project X with Rapid Cycling and Dual Storage Superconducting Synchrotrons  

E-Print Network (OSTI)

Investigation of neutrino oscillations and rare meson decays are main physics goals of Project X. The successful physics outcome relies on the feasibility of high-intensity neutrino and meson (K+ and \\mu) beams. In order to meet this goal we propose accelerator system dominated by the synchrotrons (Option A) as a technologically easier and significantly more cost-effective alternative to the accelerator system dominated by the linear accelerators (Option B). The synchrotron-based accelerator system and its main components are outlined and the expected proton beam power for the neutrino and meson beams production is presented and discussed.

Piekarz, Henryk

2012-01-01T23:59:59.000Z

213

Synchrotron radiation as a light source in confocal microscopy  

Science Journals Connector (OSTI)

The optical properties of a confocal scanning microscope that was designed to utilize a synchrotron as light source are presented. The usable spectral range is from 200 nm up to 700 nm. Using 325?nm laser light it is shown that the lateral resolution is about 125 nm and the axial resolution better than 250 nm. After transport of the microscope from Utrecht to the Daresbury Synchrotron Source 200?nm excitation can be applied and the lateral resolution will drop to below 100 nm.

C. J. R. van der Oord; H. C. Gerritsen; Y. K. Levine; W. J. Myring; G. R. Jones; I. H. Munro

1992-01-01T23:59:59.000Z

214

Synchrotron x-ray reflectivity study of oxidation/passivation of copper and silicon.  

SciTech Connect

Synchrotron x-ray-scattering technique studies of copper and silicon electrochemical interfaces are reported. These two examples illustrate the application of synchrotron x-ray techniques for oxidation, passivation, and dissolution of metals and semiconductors.

Chu, Y.; Nagy, Z.; Parkhutik, V.; You, H.

1999-07-21T23:59:59.000Z

215

Publication Submission Form  

NLE Websites -- All DOE Office Websites (Extended Search)

Pages Pages publicationsubmission Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES LCLS : Linac Coherent Light Source An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar LCLS Lasers Expand Lasers LCLS Quick Launch Home About LCLS Expand About LCLS LCLS News Expand LCLS News User Resources Expand User Resources Instruments Expand Instruments Proposals Publications Expand Publications Schedules Machine Status Machine FAQs Safety Organization Expand Organization Directories Expand Directories Staff Resources Contact Us All Site Content Department of Energy Page Content Publication Submission Form Th Tell LCLS about new publications Please submit this form to notify LCLS about new publications relating to

216

Synchrotron-Radiation Induced X-Ray Emission (SRIXE)  

SciTech Connect

Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change and increase in scientific use can be maintained for the synchrotron x-ray source. A short summary of the present state of the synchrotron radiation-induced x-ray emission (SRIXE) method is presented here. Basically, SRIXE experiments can include any that depend on the detection. of characteristic x-rays produced by the incident x-ray beam born the synchrotron source as they interact with a sample. Thus, experiments done to measure elemental composition, chemical state, crystal, structure, and other sample parameters can be considered in a discussion of SRIXE. It is also clear that the experimentalist may well wish to use a variety of complementary techniques for study of a given sample. For this reason, discussion of computed microtomography (CMT) and x-ray diffraction is included here. It is hoped that this present discussion will serve as a succinct introduction to the basic ideas of SRIXE for those not working in the field and possibly help to stimulate new types of work by those starting in the field as well as by experienced practitioners of the art. The topics covered include short descriptions of (1) the properties of synchrotron radiation, (2) a description of facilities used for its production, (3) collimated microprobe, (4) focused microprobes, (5) continuum and monoenergetic excitation, (6) detection limits, (7) quantitation, (8) applications of SRIXE, (9) computed microtomography (CMT), and (10)chemical speciation using x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS). An effort has been made to cite a wide variety of work from different laboratories to show the vital nature of the field.

Jones, Keith W.

1999-09-01T23:59:59.000Z

217

A perspective view of the medical applications of synchrotron radiation in Japan  

Science Journals Connector (OSTI)

In this review article, the medical applications of synchrotron radiation in Japan are briefly described, principally on angiography and...

Yuji Itai

1998-01-01T23:59:59.000Z

218

Calculation of synchrotron radiation from high intensity electron beam at eRHIC  

SciTech Connect

The Electron-Relativistic Heavy Ion Collider (eRHIC) at Brookhaven National Lab is an upgrade project for the existing RHIC. A 30 GeV energy recovery linac (ERL) will provide a high charge and high quality electron beam to collide with proton and ion beams. This will improve the luminosity by at least 2 orders of magnitude. The synchrotron radiation (SR) from the bending magnets and strong quadrupoles for such an intense beam could be penetrating the vacuum chamber and producing hazards to electronic devices and undesired background for detectors. In this paper, we calculate the SR spectral intensity, power density distributions and heat load on the chamber wall. We suggest the wall thickness required to stop the SR and estimate spectral characteristics of the residual and scattered background radiation outside the chamber.

Jing Y.; Chubar, O.; Litvinenko, V.

2012-05-20T23:59:59.000Z

219

Energy recovery linacs as synchrotron radiation sources ,,invited... Sol M. Grunera)  

E-Print Network (OSTI)

, Cornell University, Ithaca, New York 14853 Don Bilderback Cornell High Energy Synchrotron Source York 14853 Ken Finkelstein Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York, Ithaca, New York 14853 Qun Shen Cornell High Energy Synchrotron Source and Department of Materials

Shen, Qun

220

THE INSTITUTE FOR SOLID STATE PHYSICS 2013 Laser and Synchrotron Research Center  

E-Print Network (OSTI)

coherent light sources based on laser and synchrotron technology over a wide spectrum range from X-ray67 THE INSTITUTE FOR SOLID STATE PHYSICS 2013 Laser and Synchrotron Research Center LASOR X X LASOR D X E SPring-8 BL07 X Laser and Synchrotron Research (LASOR) Center

Katsumoto, Shingo

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Ecological and agricultural applications of synchrotron IR microscopy  

E-Print Network (OSTI)

Ecological and agricultural applications of synchrotron IR microscopy T.K. Raab a,*, J.P. Vogel b factors to the fungus Erysiphe cichoracearum, a causative agent of powdery mildew disease. Three genes to pro- liferate when environmental conditions and re- sources are optimum. Cellulose, an abundant

222

LEFT The electron gun at the Diamond Synchrotron in  

E-Print Network (OSTI)

LEFT The electron gun at the Diamond Synchrotron in Didcot, Oxfordshire WWW.HOWITWORKSDAILY.COM026" Electron guns are a very versatile electrical component. They are essential to a number of devices, from 3D currents. When installed in an electrical device's vacuum tube, the gun turns electrons and ions

Crowther, Paul

223

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron  

E-Print Network (OSTI)

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron A Research Centre of the Helmholtz Association ACCELERATOR RESEARCH· DESY, Hamburg location, is seeking: Senior Scientist (f/m) Accelerator Research DESY DESY is one of the world's leading research centres for photon science, particle

224

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron  

E-Print Network (OSTI)

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron A Research Centre of the Helmholtz Association ACCELERATOR RESEARCH· DESY, Hamburg location, is seeking: Scientist (f/m) Tenure Track physics as well as accelerator physics. Accelerator research at DESY in Hamburg, Germany, is being

225

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron  

E-Print Network (OSTI)

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron A Research Centre and astroparticle physics as well as accelerator physics. The Photo Injector Test Facility PITZ in Zeuthen (near XFEL. As part of the accelerator R&D program of the Helmholtz Association the focus of the research

226

Image processing pipeline for synchrotron-radiation-based tomographic microscopy  

Science Journals Connector (OSTI)

A software environment has been developed for processing and reconstructing online the large amount of data generated at TOMCAT, a synchrotron-radiation-based tomographic microscopy beamline of the Swiss Light Source at Paul Scherrer Institute, Switzerland. It has been designed to minimize user interaction and maximize the reconstruction speed and therefore optimize beam time usage.

Hintermller, C.

2010-05-14T23:59:59.000Z

227

Synchrotron radiation identified human chemical fingerprints a novel forensic approach  

E-Print Network (OSTI)

Synchrotron radiation identified human chemical fingerprints ­ a novel forensic approach T with the goal of developing an advanced forensic technique to identify complicated partial latent prints a forensic analysis of the fingerprint chemistry, or to identify the latent prints of pre-pubescent children

228

User Financial Accounts | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Accounts Financial Accounts Why Have a User Financial Account? Each user group should establish a user financial account to procure gases, chemicals, supplies or services to support your experiment at SLAC's user facilities and to send samples, dewars, or other equipment between SLAC and your institution. Establishing/Renewing a User Financial Account The most common method of establishing or renewing a user financial account is by providing a purchase order (PO) (or a letter from the financial officer of the user institution). The PO should be made to SLAC National Accelerator Laboratory for the amount of estimated expenditures (the suggested minimum is $1,000). The PO should include the expiration date, user names, funding agency, grant/contract number and whether expenditures

229

Nobel Prize | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Nobel Prize Nobel Prize Nobel Prize Home 2009 2003 2002 1988 1980 1976 1957 Other Prizes Brookhaven National Laboratory is home to world-class research facilities and scientific departments which attract resident and visiting scientists in many fields. This outstanding mix of machine- and mind-power has on seven occasions produced research deemed worthy of the greatest honor in science: the Nobel Prize. placeholder 2009 Steitz, Ramakrishnan 2009 Nobel Prize in Chemistry Venkatraman Ramakrishnan, of the Medical Research Council Laboratory of Molecular Biology in Cambridge, UK, a former employee in Brookhaven's biology department, and a long-time user of Brookhaven's National Synchrotron Light Source (NSLS), and Thomas A. Steitz of Yale University, also a long-time NSLS user, shared the prize with Ada E. Yonath of the

230

The Dale E. Sayers Fellowship | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Dale E. Sayers Fellowship Dale E. Sayers Fellowship North Carolina State University Physical and Mathematical Sciences Foundation A dear colleague, Dale E. Sayers, one of the three pioneers of the analytical technique Extended X- ray Absorption Fine Structure (EXAFS), died in November 2004 at age 60. The key EXAFS developments in which Dale participated (now about 30 years ago) opened a new field of research that is extensively useat almost all synchrotron radiation facilities worldwide. Dale was an extraordinary man - generous and witty, as well as a great scientist. Dale was a highly visible synchrotron radiation user for over 20 years. He touched the lives of many in this world-wide scientific community. You or some of your colleagues might have even known Dale personally. Of Dale's many qualities, his colleagues and friends would like to single

231

Pixel and Microstrip detectors for current and future synchrotron light  

NLE Websites -- All DOE Office Websites (Extended Search)

Pixel and Microstrip detectors for current and future synchrotron light Pixel and Microstrip detectors for current and future synchrotron light sources Friday, July 1, 2011 - 1:00pm SLAC, Kavli Auditorium Dr. Christian Brönnimann, CEO, DECTRIS Ltd., CH-5400 Baden, Switzerland The PILATUS pixel detectors, large area modular two-dimensional hybrid pixel array detectors, have revolutionized protein crystallography and biological small- and wide-angle scattering by combining noise-free counter properties with highest data acquisition rates. These features enable optimized data acquisition modes and new experimental techniques. The PILATUS 6M detector was developed at the Paul Scherrer Institut specifically for protein crystallography. DECTRIS has successfully commercialized the PILATUS technology. Currently eight 6M-systems are in

232

Application of X-ray synchrotron microscopy instrumentation in biology  

SciTech Connect

X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazil working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)

Gasperini, F. M. [Medical Science Program, Fluminense Federal Univ., Niteroi (Brazil); Pereira, G. R. [Dept. of Metallurgical and Materials Engineering, Federal Univ. of Rio de Janeiro (Brazil); Granjeiro, J. M. [Molecular and Cell Biology Dept., Fluminense Federal Univ., Niteroi, Rio de Janeiro (Brazil); Calasans-Maia, M. D. [Oral Surgery Dept., Fluminense Federal Univ., Niteroi, Rio de Janeiro (Brazil); Rossi, A. M. [Biomaterials Laboratory, Brazilian Center of Physics Research, Rio de Janeiro (Brazil); Perez, C. A. [Brazilian Synchrotron Laboratory, Campinas, Sao Paulo (Brazil); Lopes, R. T.; Lima, I. [Nuclear Engineering Laboratory, Federal Univ. of Rio de Janeiro (Brazil)

2011-07-01T23:59:59.000Z

233

Optical Synchrotron Radiation Beam Imaging with a Digital Mask  

SciTech Connect

We have applied a new imaging/optical masking technique, which employs a digital micro-mirror device (DMD) and optical synchrotron radiation (OSR), to perform high dynamic range (DR) beam imaging at the JLAB Energy Recovery Linac and the SLAC/SPEAR3 Synchrotron Light Source. The OSR from the beam is first focused onto the DMD to produce a primary image; selected areas of this image are spatially filtered by controlling the state of individual micro-mirrors; and finally, the filtered image is refocused onto a CCD camera. At JLAB this technique has been used successfully to view the beam halo with a DR ~ 105. At SPEAR3 the DMD was used to filter out the bright core of the stored beam to study the turn-by-turn dynamics of the 10-3 weaker injected beam. We describe the optical performance, present limitations and our plans to improve the DR of both experimental systems.

Fiorito, R. B. [University of Maryland, College Park, MD (United States); Zhang, H. D. [University of Maryland, College Park, MD (United States); Corbett, W. J. [SLAC, Menlo Park, CA (United States); Fisher, A. S. [SLAC, Menlo Park, CA (United States); Mok, W. Y. [SLAC, Menlo Park, CA (United States); Tian, K. [SLAC, Menlo Park, CA (United States); Douglas, D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Wilson, F. G. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Mitsuhashi, T. M. [KEK, Tsukuba (Japan); Shkvarunets, A. G. [University of Maryland, College Park, MD (United States)

2012-11-01T23:59:59.000Z

234

First Beam Measurements with the LHC Synchrotron Light Monitors  

SciTech Connect

The continuous monitoring of the transverse sizes of the beams in the Large Hadron Collider (LHC) relies on the use of synchrotron radiation and intensified video cameras. Depending on the beam energy, different synchrotron light sources must be used. A dedicated superconducting undulator has been built for low beam energies (450 GeV to 1.5 TeV), while edge and centre radiation from a beam-separation dipole magnet are used respectively for intermediate and high energies (up to 7 TeV). The emitted visible photons are collected using a retractable mirror, which sends the light into an optical system adapted for acquisition using intensified CCD cameras. This paper presents the design of the imaging system, and compares the expected light intensity with measurements and the calculated spatial resolution with a cross calibration performed with the wire scanners. Upgrades and future plans are also discussed.

Lefevre, Thibaut; /CERN; Bravin, Enrico; /CERN; Burtin, Gerard; /CERN; Guerrero, Ana; /CERN; Jeff, Adam; /CERN; Rabiller, Aurelie; /CERN; Roncarolo, Federico; /CERN; Fisher, Alan; /SLAC

2012-07-13T23:59:59.000Z

235

A VERY FAST RAMPING MUON SYNCHROTRON FOR A NEUTRINO FACTORY.  

SciTech Connect

A 4600 Hz fast ramping synchrotron is studied as an economical way of accelerating muons from 4 to 20 GeV/c for a neutrino factory. Eddy current losses are minimized by the low machine duty cycle plus thin grain oriented silicon steel laminations and thin copper wires. Combined function magnets with high gradients alternating within single magnets form the lattice. Muon survival is 83%.

SUMMERS,D.J.BERG,J.S.PALMER,R.B.GARREN,A.A.

2003-05-12T23:59:59.000Z

236

Putting synchrotron radiation to work for technology: Analytic methods  

SciTech Connect

This report contains viewgraphs on: Advanced Light Source; Ultra-ESCA: Advanced Capabilities of XPS with High-Brightness Synchrotron Radiation; High-Resolution (20 nm) XPS and XANES with the ALS; Photoelectron Spectroscopy in Industry: Current Capabilities, Needs, and Possible Roles for the ALS; Materials Analysis by Photoemission: Is This Practical at ALS?; Applications of Long-Wavelength X-Ray Fluorescence Spectrometry and X-Ray Powder Diffractometry.

Not Available

1992-02-01T23:59:59.000Z

237

Putting synchrotron radiation to work for technology: Analytic methods  

SciTech Connect

This report contains viewgraphs on: Advanced Light Source; Ultra-ESCA: Advanced Capabilities of XPS with High-Brightness Synchrotron Radiation; High-Resolution (20 nm) XPS and XANES with the ALS; Photoelectron Spectroscopy in Industry: Current Capabilities, Needs, and Possible Roles for the ALS; Materials Analysis by Photoemission: Is This Practical at ALS ; Applications of Long-Wavelength X-Ray Fluorescence Spectrometry and X-Ray Powder Diffractometry.

Not Available

1992-02-01T23:59:59.000Z

238

NUMERICAL METHODS FOR THE SIMULATION OF HIGH INTENSITY HADRON SYNCHROTRONS.  

SciTech Connect

Numerical algorithms for PIC simulation of beam dynamics in a high intensity synchrotron on a parallel computer are presented. We introduce numerical solvers of the Laplace-Poisson equation in the presence of walls, and algorithms to compute tunes and twiss functions in the presence of space charge forces. The working code for the simulation here presented is SIMBAD, that can be run as stand alone or as part of the UAL (Unified Accelerator Libraries) package.

LUCCIO, A.; D'IMPERIO, N.; MALITSKY, N.

2005-09-12T23:59:59.000Z

239

Application of Synchrotron Radiation in the Geological and Environmental Sciences  

SciTech Connect

A survey of some of the different ways that synchrotrons x-ray beams can be used to study geological materials is presented here. This field developed over a period of about 30 years, and it is clear that the geological community has made major use of the many synchrotrons facilities operating around the world during this time period. This was a time of rapid change in the operational performance of the synchrotrons facilities and this in itself has made it possible for geologists to develop new and more refined types of experiments that have yielded many important results. The advance in experimental techniques has proceeded in parallel with a revolution in computing techniques that has made it possible to cope with the great amount of data accumulated in the experiments. It is reasonable, although risky, to speculate about what might be expected to develop in the field during the next five- to ten-year period. It does seem plausible that the rate of change in the performance of what might now be called conventional x-ray storage rings will slow. There are no new facilities that are superior to the ESRF, ALS, APS, or SPring8 facilities under construction or about to come into operation. Thus, performance increments in the characteristics of the x-ray sources may come through the introduction of specialized devices in existing storage rings. The free electron laser is one example of a developing new technology that should take us into new regions of performance for radiation sources and stimulate new types of experimental applications. It is also likely that major advances will come through the introduction of more sophisticated experimental devices developed for use with the very recently operational undulator or wiggler sources at the newer rings. Improved x-ray optics and x-ray detectors and more powerful computation and high-speed data transmission can bring about more refined experiments and make the synchrotrons facilities more widely available to the experimental community. The next years should therefore be a time of high productivity and great excitement quite comparable to the previous era of synchrotron-based geological research.

Jones, Keith W.

1999-09-01T23:59:59.000Z

240

Artificial neural networks applied to the analysis of synchrotron nuclear resonant scattering data  

Science Journals Connector (OSTI)

The capabilities of artificial neural networks for the automatic and instantaneous analysis of nuclear resonant scattering spectra obtained at a synchrotron source are discussed.

Planckaert, N.

2009-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Contemporary X-ray electron-density studies using synchrotron radiation  

Science Journals Connector (OSTI)

The use of synchrotron radiation for experimental electron-density determination during the last decade is reviewed. Possible future directions of this field are examined.

J?rgensen, M.R.V.

2014-08-29T23:59:59.000Z

242

Low-temperature catalyst activator: mechanism of dense carbon nanotube forest growth studied using synchrotron radiation  

Science Journals Connector (OSTI)

The mechanism of dense vertically aligned carbon nanotube growth achieved by a recently developed thermal chemical vapor deposition method was studied using synchrotron radiation spectroscopic techniques.

Takashima, A.

2014-05-22T23:59:59.000Z

243

Throughput Measurement of a Multilayer-Coated Schwarzschild Objective Using Synchrotron Radiation  

Science Journals Connector (OSTI)

The throughput of a Schwarzschild objective using undulator synchrotron radiation was measured. ... estimated from the squared reflectivity of one multilayer mirror and from the obstruction ratio. However,...

Takanori Kiyokura; Fumihiko MAEDA; Yoshio Watanabe; Yoshinori Iketaki

244

E-Print Network 3.0 - argentina synchrotron radiation Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mathematics 13 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 35, NO. 5, MAY 1999 709 Tunable Coherent Radiation in the Soft X-Ray Summary: of synchrotron radiation generated...

245

Stanford Synchrotron Radiation Laboratory activity report for 1986  

SciTech Connect

1986 was another year of major advances for SSRL as the ultimate capabilities of PEP as a synchrotron radiation source became more apparent and a second PEP beam line was initiated, while effective development and utilization of SPEAR proceeded. Given these various PEP developments, SSRL abandoned its plans for a separate diffraction limited ring, as they abandoned their plans for a 6--7 GeV ring of the APS type last year. It has become increasingly apparent that SSRL should concentrate on developing SPEAR and PEP as synchrotron radiation sources. Consequently, initial planning for a 3 GeV booster synchrotron injector for SPEAR was performed in 1986, with a proposal to the Department of Energy resulting. As described in Chapter 2, the New Rings Group and the Machine Physics Group were combined into one Accelerator Physics Group. This group is focusing mainly on the improvement of SPEAR`s operating conditions and on planning for the conversion of PEP into a fourth generation x-ray source. Considerable emphasis is also being given to the training of accelerator physics graduate students. At the same time, several improvements of SSRL`s existing facilities were made. These are described in Chapter 3. Chapter 4 describes new SSRL beam lines being commissioned. Chapter 5 discusses SSRL`s present construction projects. Chapter 6 discusses a number of projects presently underway in the engineering division. Chapter 7 describes SSRL`s advisory panels while Chapter 8 discusses SSRL`s overall organization. Chapter 9 describes the experimental progress reports.

Cantwell, K. [ed.

1987-12-31T23:59:59.000Z

246

Measurement of parameters in Indus-2 synchrotron radiation source  

SciTech Connect

The paper presents the measurement of optics parameters in Indus-2 synchrotron radiation source, which include betatron tune, beta function, dispersion function, natural chromaticity, corrected chromaticity, central RF frequency, momentum compaction factor, and linear betatron coupling. Two methods were used for beta function measurement; a conventional quadrupole scan method and a method using the fitting of the orbit response matrix. A robust Levenberg-Marquardt algorithm was used for nonlinear least square fitting of the orbit response matrix. In this paper, detailed methods for the parameter measurements are described. The measured results are discussed and compared with the theoretical values obtained using accelerator simulation code Accelerator Toolbox in MATLAB.

Ghodke, A. D.; Husain, Riyasat; Kumar, Pradeep; Yadav, Surendra; Puntambekar, T. A. [Raja Ramanna Centre for Advanced Technology, 452013, Indore (India)

2012-10-15T23:59:59.000Z

247

An 8-GeV Synchrotron-Based Proton Driver  

SciTech Connect

In January 2002, the Fermilab Director initiated a design study for a high average power, modest energy proton facility. Such a facility is a possible candidate for a construction project in the U.S. starting in the middle of this decade. The key technical element is a new machine, dubbed the ''Proton Driver,'' as a replacement of the present Booster. The study of an 8-GeV synchrotron-based proton driver has been completed and published. This paper will give a summary report, including machine layout and performance, optics, beam dynamics issues, technical systems design, civil construction, cost estimate and schedule.

Weiren Chou

2003-06-04T23:59:59.000Z

248

Focusing optics for a synchrotron x radiation microprobe  

SciTech Connect

We propose two constant deviation and energy-tunable fluorescent microprobe optical designs which efficiently use x rays available from ending magnets and insertion devices of synchrotron radiation sources. The simpler system consists of a cylindrically bent multilayer to focus the vertical opening angle by in-plane scattering, a fixed radius cylindrically curved multilayer which sagittally focuses the horizontal divergence, and a pinhole to further reduce the beam to microprobe dimensions. A more versatile system has a pair of flat nondispersively arranged diffracting optics followed by crossed elliptical mirrors. These nondispersive combinations can produce a fixed-exit beam. We compare the relative intensity with other optical systems.

Ice, G.E.; Sparks, C.J. Jr.

1983-01-01T23:59:59.000Z

249

Some Recent Polarized Proton Beam Experiments at the Argonne National Laboratory Zero Gradient Synchrotron  

Science Journals Connector (OSTI)

Let me begin by picking up on the religious reference made by Professor Kabir in his first lecture. In the midwestern part of the United States there are frequent evening tent meetings which feature evangeli...

E. C. Swallow

1976-01-01T23:59:59.000Z

250

National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991  

SciTech Connect

This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

Hulbert, S.L.; Lazarz, N.M. [eds.

1992-04-01T23:59:59.000Z

251

Performance of new infrared beamline U12IR at the National Synchrotron Light Source  

E-Print Network (OSTI)

frequency limit of 2 cm 1 i.e., 60 GHz or a photon energy of 250 eV . The infrared light from infrared beamline at the NSLS and, with increasing demand for measurement time, has been followed by a series of new infrared ports presently under construction and com- missioning. This also allowed for some

Tanner, David B.

252

Brookhaven National Laboratory Photon Sciences -National Synchrotron Light Source Beamline Hazard Analysis -Beamline X17B2  

E-Print Network (OSTI)

/3a laser Y Y Laser registration, warning signs Soldering Y N Use a designated area, periodically is being moved Training Cutting/razor blades Y Y Be aware of hand positioning Use safety knife when

Ohta, Shigemi

253

Injection and capture simulations for a high intensity proton synchrotron  

SciTech Connect

The injection and capture processes in a high intensity, rapid cycling, proton synchrotron are simulated by numerical integration. The equations of motion suitable for rapid numerical simulation are derived so as to maintain symplecticity and second-order accuracy. By careful bookkeeping, the authors can, for each particle that is lost, determine its initial phase space coordinates. They use this information as a guide for different injection schemes and rf voltage programming, so that a minimum of particle losses and dilution are attained. A fairly accurate estimate of the space charge fields is required, as they influence considerably the particle distribution and reduce the capture efficiency. Since the beam is represented by a relatively coarse ensemble of macro particles, the authors study several methods of reducing the statistical fluctuations while retaining the fine structure (high intensity modulations) of the beam distribution. A pre-smoothing of the data is accomplished by the cloud-in-cell method. The program is checked by making sure that it gives correct answers in the absence of space charge, and that it reproduces the negative mass instability properly. Results of simulations for stationary distributions are compared to their analytical predictions. The capture efficiency for the rapid-cycling synchrotron is analyzed with respect to variations in the injected beam energy spread, bunch length, and rf programming.

Cho, Y.; Lessner, E. [Argonne National Lab., IL (United States); Symon, K. [Argonne National Lab., IL (United States)]|[Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics

1994-07-01T23:59:59.000Z

254

Synchrotron radiation in transactinium research report of the workshop  

SciTech Connect

This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe[sub 2] and U-S; the laser plasma laboratory light source: a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.

Not Available

1992-11-01T23:59:59.000Z

255

Synchrotron radiation in transactinium research report of the workshop  

SciTech Connect

This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe{sub 2} and U-S; the laser plasma laboratory light source: a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.

Not Available

1992-11-01T23:59:59.000Z

256

SYNCHROTRON SPECTRAL CURVATURE FROM 22 MHz TO 23 GHz  

SciTech Connect

We combine surveys of the radio sky at frequencies 22 MHz to 1.4 GHz with data from the ARCADE-2 instrument at frequencies 3 GHz to 10 GHz to characterize the frequency spectrum of diffuse synchrotron emission in the Galaxy. The radio spectrum steepens with frequency from 22 MHz to 10 GHz. The projected spectral index at 23 GHz derived from the low-frequency data agrees well with independent measurements using only data at frequencies 23 GHz and above. Comparing the spectral index at 23 GHz to the value from previously published analyses allows extension of the model to higher frequencies. The combined data are consistent with a power-law index {beta} = -2.64 {+-} 0.03 at 0.31 GHz, steepening by an amount of {Delta}{beta} = 0.07 every octave in frequency. Comparison of the radio data to models including the cosmic-ray energy spectrum suggests that any break in the synchrotron spectrum must occur at frequencies above 23 GHz.

Kogut, A., E-mail: Alan.J.Kogut@nasa.gov [Code 665, Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2012-07-10T23:59:59.000Z

257

Stanford Synchrotron Radiation Laboratory activity report for 1987  

SciTech Connect

During 1987, SSRL achieved many significant advances and reached several major milestones utilizing both SPEAR and PEP as synchrotron radiation sources as described in this report. Perhaps the following two are worthy of particular mention: (1) SPEAR reached an all time high of 4,190 delivered user-shifts during calendar year 1987, highlights of the many scientific results are given; (2) during a 12 day run in December of 1987, PEP was operated in a low emittance mode (calculated emittance 6.4 nanometer-radians) at 7.1 GeV with currents up to 33 mA. A second undulator beam line on PEP was commissioned during this run and used to record many spectra showing the extremely high brightness of the radiation. PEP is now by far the highest brightness synchrotron radiation source in the world. The report is divided into the following sections: (1) laboratory operations; (2) accelerator physics programs; (3) experimental facilities; (4) engineering division; (5) conferences and workshops; (6) SSRL organization; (7) experimental progress reports; (8) active proposals; (9) SSRL experiments and proposals by institution; and (10) SSRL publications.

Robinson, S.; Cantwell, K. [eds.

1988-12-31T23:59:59.000Z

258

Transrelativistic Synchrotron Emissivity, Cross-Section, and Polarization  

E-Print Network (OSTI)

The spectrum and polarization produced by particles spiraling in a magnetic field undergo dramatic changes as the emitters transition from nonrelativistic to relativistic energies. However, none of the currently available methods for calculating the characteristics of this radiation field are adequate for the purpose of sustaining accuracy and speed of computation in the intensity, and none even attempt to provide a means of determining the polarization fraction other than in the cyclotron or synchrotron limits. But the transrelativistic regime, which we here find to lie between $5\\times 10^7$ K and $5\\times 10^9$ K for a thermal plasma, is becoming increasingly important in high-energy astrophysical environments, such as in the intra-cluster medium, and in the accretion flows of supermassive black holes. In this paper, we present simple, yet highly accurate, fitting formulae for the magnetobremsstrahlung (also known as cyclo-synchrotron) emissivity, its polarization fraction (and content), and the absorption cross-section. We demonstrate that both the harmonic and high-energy limiting behavior are well represented, incurring at most an error of $\\sim 5%$ throughout the transition region.

Brandon Wolfe; Fulvio Melia

2005-05-06T23:59:59.000Z

259

Electron cloud observations at the ISIS Proton Synchrotron  

E-Print Network (OSTI)

The build up of electron clouds inside a particle accelerator vacuum chamber can produce strong transverse and longitudinal beam instabilities which in turn can lead to high levels of beam loss often requiring the accelerator to be run below its design specification. To study the behaviour of electron clouds at the ISIS Proton Synchrotron, a Micro-Channel Plate (MCP) based electron cloud detector has been developed. The detector is based on the Retarding Field Analyser (RFA) design and consists of a retarding grid, which allows energy analysis of the electron signal, and a MCP assembly placed in front of the collector plate. The MCP assembly provides a current gain over the range 300 to 25K, thereby increasing the signal to noise ratio and dynamic range of the measurements. This paper presents the first electron cloud observations at the ISIS Proton Synchrotron. These results are compared against signals from a beam position monitor and a fast beam loss monitor installed at the same location.

Pertica, A

2013-01-01T23:59:59.000Z

260

Sandia National Laboratories: Sandia National Laboratories: Locations...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Park District Joshua Tree National Park Lassen Volcanic National Park Sequoia & Kings Canyon National Parks Yosemite National Park Cave exploring Diablo Grotto Moaning...

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Core-level photoemission of the Si(1 1 1) surface using synchrotron radiation  

E-Print Network (OSTI)

-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan c Synchrotron Radiation Laboratory, The Institute of Solid StateCore-level photoemission of the Si(1 1 1)± 21 p ? 21 p -Ag surface using synchrotron radiation, Wako-shi, Saitama 351-0198, Japan b Department of Physics, School of Science, University of Tokyo, 7

Hasegawa, Shuji

262

Putting synchrotron radiation to work: New opportunities for industrial R D  

SciTech Connect

This paper describes the basic categories of experimental techniques that have been successfully exploited at existing synchrotron facilities or, in some cases, that are expected to join the research armamentarium at the next-generation synchrotron sources now under construction, such as the ALS. In each case, a selection of typical industrial applications is noted.

Not Available

1991-03-01T23:59:59.000Z

263

Biological equivalent dose studies for dose escalation in the stereotactic synchrotron radiation therapy clinical trials  

E-Print Network (OSTI)

at the European Synchrotron Radiation Facility ESRF . To estimate the possible risks, the doses receivedBiological equivalent dose studies for dose escalation in the stereotactic synchrotron radiation technique a radiation dose enhancement specific to the tumor is obtained. The tumor is loaded with a high

Boyer, Edmond

264

Applications of Synchrotron Infrared Microspectroscopy to the Study of Fingerprints  

E-Print Network (OSTI)

. Perry, Ernest Orlando Lawrence Berkeley National Laboratory. Email: DLPerry@lbl.gov. Telephone: 510. J. Wilkinson, Michael C. Martin, and Wayne R. McKinney Ernest Orlando Lawrence Berkeley National conducted at the Advanced Light Source at Lawrence Berkeley National Laboratory. Initial data using

265

Synchrotron x-ray fluorescence and extended x-ray absorption fine structure analysis  

SciTech Connect

The advent of dedicated synchrotron radiation sources has led to a significant increase in activity in many areas of science dealing with the interaction of x-rays with matter. Synchrotron radiation provides intense, linearly polarized, naturally collimated, continuously tunable photon beams, which are used to determine not only the elemental composition of a complex, polyatomic, dilute material but also the chemical form of the elements with improved accuracy. Examples of the application of synchrotron radiation include experiments in synchrotron x-ray fluorescence (SXRF) analysis and extended x-ray absorption fine structure (EXAFS) analysis. New synchrotron radiation x-ray microprobes for elemental analysis in the parts per billion range are under construction at several laboratories. 76 references, 24 figures.

Chen, J.R.; Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kraner, H.W.; Chao, E.C.T.; Minkin, J.A.

1984-01-01T23:59:59.000Z

266

Edwin M. McMillan, Neptunium, Phase Stability, and the Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Edwin M. McMillan, Neptunium, Edwin M. McMillan, Neptunium, Phase Stability, and the Synchrotron Resources with Additional Information · Patents · About Edwin McMillian Transuranium (Heavy Elements) · McMillan in LBNL History Edwin M. McMillan Courtesy of Lawrence Berkeley National Laboratory 'For many years, scientists believed that Uranium, with its atomic weight of 92, was the upper limit of the periodic table. But in 1940, more than a century and a half after Uranium was first discovered, UC Berkeley physicist Edwin M. McMillan, working with Philip Abelson at Lawrence Radiation Laboratory, boosted the number of known elements to 93. Neptunium led the way for the discovery of many other elements heavier than Uranium and the development of various nuclear fuels. ... With the aid of the cyclotron ..., McMillan and Abelson conducted their ... fission experiments and eventually produced a true sample of element 93. Following the naming of uranium, the new element was dubbed neptunium for the next planet out in our solar system. ...

267

Strains in Thermally Growing Alumina Films Measured in-situ usingSynchrotron X-rays  

SciTech Connect

Strains in thermally grown oxides have been measured in-situ, as the oxides develop and evolve. Extensive data have been acquired from oxides grown in air at elevated temperatures on different model alloys that form Al{sub 2}O{sub 3}. Using synchrotron x-rays at the Advanced Photon Source (Beamline 12BM, Argonne National Laboratory), Debye-Scherrer diffraction patterns from the oxidizing specimen were recorded every 5 minutes during oxidation and subsequent cooling. The diffraction patterns were analyzed to determine strains in the oxides, as well as phase changes and the degree of texture. To study a specimen's response to stress perturbation, the oxidizing temperature was quickly cooled from 1100 to 950 C to impose a compressive thermal stress in the scale. This paper describes this new experimental approach and gives examples from oxidized {beta}-NiAl, Fe-20Cr-10Al, Fe-28Al-5Cr and H{sub 2}-annealed Fe-28Al-5Cr (all at. %) alloys to illustrate some current understanding of the development and relaxation of growth stresses in Al{sub 2}O{sub 3}.

Hou, P.Y.; Paulikas, A.P.; Veal, B.W.

2006-01-02T23:59:59.000Z

268

Spatial distribution of elements in the spheroids by prostate tumor cells using synchrotron radiation x-ray fluorescence  

SciTech Connect

The formation of three-dimensional cell microspheres such as spheroids has attracted attention as a useful culture technique. In this study, we investigated the trace elemental distribution (mapping) in spheroids derived from tissue prostate cancer (PCa). The measurements were performed in standard geometry of 45 deg. incidence, exciting with a white beam and using an optical capillary with 20 {mu}m diameter collimation in the XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). The results showed that most elements analyzed presented non-uniform distribution. P, S and Cl showed similar elemental distribution in all the samples analyzed. K, Ca, Fe, and Cu showed different elemental distribution for the spheroids analyzed. Zinc presented more intense distributions in the spheroid central region for all spheroids analyzed.

Leitao, Roberta G.; Santos, Carlos Antonio N.; Junior, Antonio Palumbo; Souza, Pedro A. V. R.; Canellas, Catarine G. L.; Anjos, Marcelino J.; Nasciutti, Luiz E.; Lopes, Ricardo T. [Laboratorio de Instrumentacao Nuclear, PEN/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, 21941-972, Rio de Janeiro, RJ (Brazil); Laboratorio de Biotecnologia - Bioengenharia - DIPRO, Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial, Xerem. 25250-020, Duque de Caxias, RJ (Brazil); Laboratorio de Interacoes Celulares, ICB-CCS, Universidade Federal do Rio de Janeiro, Ilha do Fundao, 21941- 590, Rio de Janeiro, RJ (Brazil); Laboratorio de Instrumentacao Nuclear, PEN/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, 21941-972, Rio de Janeiro, RJ (Brazil); Laboratorio de Interacoes Celulares, ICB-CCS, Universidade Federal do Rio de Janeiro, Ilha do Fundao, 21941- 590, Rio de Janeiro, RJ (Brazil); Laboratorio de Instrumentacao Nuclear, PEN/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, 21941-972, Rio de Janeiro, RJ (Brazil)

2012-05-17T23:59:59.000Z

269

National Security  

NLE Websites -- All DOE Office Websites (Extended Search)

because NIF provides the only process for scientists to gain access to and examine thermonuclear burn. These experiments will also help the nation maintain the skills of nuclear...

270

MINIMUM EMITTANCE LATTICE FOR SYNCHROTRON RADIATION STORAGE RINGS  

NLE Websites -- All DOE Office Websites (Extended Search)

MINIMUM EMITTANCE LATTICE FOR MINIMUM EMITTANCE LATTICE FOR SYNCHROTRON RADIATION STORAGE RINGS 1. C. Teng ANL/FNAL LS-17 L. Teng March 18, 1985 The natural emittance of an electron beam in a storage ring is given by (see e.g., M. Sands, SLAC 21) (1) where Cq =~~= 3.832 x 10-l3 m 32/3 mc J x partition factor in the bending plane y = total energy in mc 2 uni ts p orbit radius in bending magnets (assumed the same in all magne ts) H yn 2 - + 2ann ' + Bn I 2 ( a, B, Y = betatron functions ) n, n I dispersion functions <> = averaging over bending magnets We shall calculate for each bending magnet, then average over all magnets. 2 A. General Expression for H This can be calculated in a straightforward manner, but we can save a great deal of arithmetic with some preliminary formal analytical

271

Performance of multilayers in intense synchrotron x-ray beams  

SciTech Connect

The use of multilayer reflectors under intense synchroton x-ray beams requires to develop a new generation of multilayered materials that can withstand a high-power load in excess of 100 W/mm/sup 2/. Multilayers with the high-/ital Z/ layer consisting either of a pure element or of compounds such as carbides, nitrides, or silicides have been produced. Because the fabrication conditions are not yet optimized, thin films with satisfactory layer were not obtained leading to poor reflectivities. Such multilayers have been both thermally annealed in a furnace and exposed to a synchrotron beam with a power density of about 1 W/mm/sup 2/. The resulting damage ranges from the total destruction of the layering to a reduction of the reflectivity by typically 40%--60%. In some cases an only 1%--15% loss in reflectivity has been observed.

Ziegler, E.; Lepetre, Y.; Joksch, S.; Saile, V.; Mourikis, S.; Viccaro, P. J.; Rolland, G.; Laugier, F.

1989-07-01T23:59:59.000Z

272

Bounding isotropic Lorentz violation using synchrotron losses at LEP  

Science Journals Connector (OSTI)

Some deviations from special relativityespecially isotropic effectsare most efficiently constrained using particles with velocities very close to 1. While there are extremely tight bounds on some of the relevant parameters coming from astrophysical observations, many of these rely on our having an accurate understanding of the dynamics of these high-energy sources. It is desirable to have reliable laboratory constraints on these same parameters. The fastest-moving particles in a laboratory were electrons and positrons at LEP. The energetics of the LEP beams were extremely well understood, and measurements of the synchrotron emission rate indicate that the isotropic Lorentz violation coefficient |?tr-43c00| must be smaller than 510-15.

Brett Altschul

2009-11-10T23:59:59.000Z

273

Compensating effect of the coherent synchrotron radiation in bunch compressors  

Typical bunch compression for a high-gain free-electron laser (FEL) requires a large compression ratio. Frequently, this compression is distributed in multiple stages along the beam transport line. However, for a high-gain FEL driven by an energy recovery linac (ERL), compression must be accomplished in a single strong compressor located at the beam lines end; otherwise the electron beam would be affected severely by coherent synchrotron radiation (CSR) in the ERLs arcs. In such a scheme, the CSR originating from the strong compressors could greatly degrade the quality of the electron beam. In this paper, we present our design for a bunch compressor that will limit the effect of CSR on the e-beams quality. We discuss our findings from a study of such a compressor, and detail its potential for an FEL driven by a multipass ERL developed for the electron-Relativistic Heavy Ion Collider.

Jing, Yichao; Hao, Yue; Litvinenko, Vladimir N.

2013-06-01T23:59:59.000Z

274

Synchrotron Infrared Measurements of Dense Hydrogen to 360GPa  

Science Journals Connector (OSTI)

Diamond-anvil-cell techniques have been developed to confine and measure hydrogen samples under static conditions to pressures above 300GPa from 12 to 300K using synchrotron infrared and optical absorption techniques. A decreasing absorption threshold in the visible spectrum is observed, but the material remains transparent at photon energies down to 0.1eV at pressures to 360GPa over a broad temperature range. The persistence of the strong infrared absorption of the vibron characteristic of phase III indicates the stability of the paired state of hydrogen. There is no evidence for the predicted metallic state over these conditions, in contrast to recent reports, but electronic properties consistent with semimetallic behavior are observed.

Chang-Sheng Zha, Zhenxian Liu, and Russell J. Hemley

2012-04-03T23:59:59.000Z

275

Stanford Synchrotron Radiation Laboratory. Activity report for 1989  

SciTech Connect

The April, 1990 SPEAR synchrotron radiation run was one of the two or three best in SSRL`s history. High currents were accumulated, ramping went easily, lifetimes were long, beam dumps were infrequent and the average current was 42.9 milliamps. In the one month of operation, 63 different experiments involving 208 scientists from 50 institutions received beam. The end-of-run summary forms completed by the experimenters indicated high levels of user satisfaction with the beam quality and with the outstanding support received from the SSRL technical and scientific staffs. These fine experimental conditions result largely from the SPEAR repairs and improvements performed during the past year and described in Section I. Also quite significant was Max Cornacchia`s leadership of the SLAG staff. SPEAR`s performance this past April stands in marked contrast to that of the January-March, 1989 run which is also described in Section I. It is, we hope, a harbinger of the operation which will be provided in FY `91, when the SPEAR injector project is completed and SPEAR is fully dedicated to synchrotron radiation research. Over the coming years, SSRL intends to give highest priority to increasing the effectiveness of SPEAR and its various beam lines. The beam line and facility improvements performed during 1989 are described in Section III. In order to concentrate effort on SSRL`s three highest priorities prior to the March-April run: (1) to have a successful run, (2) to complete and commission the injector, and (3) to prepare to operate, maintain and improve the SPEAR/injector system, SSRL was reorganized. In the new organization, all the technical staff is contained in three groups: Accelerator Research and Operations Division, Injector Project and Photon Research and Operations Division, as described in Section IV. In spite of the limited effectiveness of the January-March, 1989 run, SSRL`s users made significant scientific progress, as described in Section V of this report.

NONE

1996-01-01T23:59:59.000Z

276

Protein Characterisation by Synchrotron Radiation Circular Dichroism (SRCD) Spectroscopy  

SciTech Connect

Circular dichroism (CD) spectroscopy is a well-established technique for the study of proteins. Synchrotron radiation circular dichroism (SRCD) spectroscopy extends the utility of conventional CD spectroscopy (i.e. using laboratory-based instruments) because the high light flux from a synchrotron enables collection of data to lower wavelengths, detection of spectra with higher signal-to-noise levels and measurements in the presence of strongly absorbing non-chiral components such as salts, buffers, lipids and detergents. This review describes developments in instrumentation, methodologies and bioinformatics that have enabled new applications of the SRCD technique for the study of proteins. It includes examples of the use of SRCD spectroscopy for providing static and dynamic structural information on molecules, including determinations of secondary structures of intact proteins and domains, assessment of protein stability, detection of conformational changes associated with ligand and drug binding, monitoring of environmental effects, examination of the processes of protein folding and membrane insertion, comparisons of mutant and modified proteins, identification of intermolecular interactions and complex formation, determination of the dispositions of proteins in membranes, identification of natively disordered proteins and their binding partners and examination of the carbohydrate components of glycoproteins. It also discusses how SRCD can be used in conjunction with macromolecular crystallography and other biophysical techniques to provide a more complete picture of protein structures and functions, including how proteins interact with other macromolecules and ligands. This review also includes a discussion of potential new applications in structural and functional genomics using SRCD spectroscopy and future instrumentation and bioinformatics developments that will enable such studies. Finally, the appendix describes a number of computational/bioinformatics resources for secondary structure analyses that take advantage of the improved data quality available from SRCD. In summary, this review discusses how SRCD can be used for a wide range of structural and functional studies of proteins.

Wallace, B.

2009-01-01T23:59:59.000Z

277

LCLS CDR Chapter 4 - FEL Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 FEL Physics TECHNICAL SYNOPSIS This chapter presents a review of the historical and technological developments of the Free Electron Laser that led to proposals to operate an FEL in the large gain regime, starting from the spontaneous radiation noise, without using an optical cavity. In this mode, called "Self- Amplified-Spontaneous-Emission" (SASE), lasing is produced in a single pass of an electron beam with high phase-space density through a long undulator, eliminating the need for optical cavities, which are difficult to build in the soft x-ray or x-ray spectral region. A discussion of the spontaneous radiation produced in an undulator introduces the concepts and formulae for the radiation intensity, the number of photons produced per electron,

278

LCLS CDR Appendix A - Parameter Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Y direction 0.5 mm Supporting pillar alignment: Z direction 2.0 mm Pitch, roll and yaw of pillars 0.75 mrad Undulator vertical and horizontal remote 2.0 mm Undulator...

279

Synchrotron X-ray Studies of Super-critical Carbon Dioxide / Reservoir Rock Interfaces  

Energy.gov (U.S. Department of Energy (DOE))

Project obectives: Utilize synchrotron X-ray measurements, to monitor all aspects of atomic to nanoscale structural changes resulting from chemical interactions of scCO2-H2O binary fluids with rocks under environments directly relevant to EGS.

280

Pitch angle scattering and synchrotron radiation of relativistic runaway electrons in tokamak stochastic magnetic fields  

E-Print Network (OSTI)

Pitch angle scattering and synchrotron radiation of relativistic runaway electrons in tokamak is of a very different nature leading to a pitch angle scattering process which, under proper conditions, may

Martín-Solís, José Ramón

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Evaluation of Residual Stresses in the Bulk of Materials by High Energy Synchrotron Diffraction  

Science Journals Connector (OSTI)

High energy synchrotron diffraction is introduced as a new ... for residual stress analysis in the bulk of materials. It is shown that energy dispersive measurements are sufficiently precise so that...?4...can be...

W. Reimers; M. Broda; G. Brusch; D. Dantz

1998-09-01T23:59:59.000Z

282

Evaluation of residual stresses in the bulk of materials by high energy synchrotron diffraction  

Science Journals Connector (OSTI)

High energy synchrotron diffraction is introduced as a new ... for residual stress analysis in the bulk of materials. It is shown that energy dispersive measurements are sufficiently precise so that...?4...can be...

W. Reimers; M. Broda; G. Brusch; D. Dantz

1998-09-01T23:59:59.000Z

283

E-Print Network 3.0 - ags booster synchrotron Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

radiation J.M. Byrd *, Michael C... synchrotron radiation (CSR) over the far-infrared terahertz wavelength range from 200 lm to about 1 cm. ... Source: Martin, Michael C. -...

284

Characterisation of organic photovoltaics by synchrotron soft X-ray techniques.  

E-Print Network (OSTI)

??Research Doctorate - Doctor of Philosophy (PhD) The use of advanced synchrotron X-ray spectroscopy and microspectroscopy techniques can probe the nanoscale structure of organic solar (more)

Burke, Kerry B.

2011-01-01T23:59:59.000Z

285

Template fitting of WMAP 7-year data: anomalous dust or flattening synchrotron emission?  

E-Print Network (OSTI)

Anomalous microwave emission at 20-40GHz has been detected across our Galactic sky. It is highly correlated with thermal dust emission and hence it is thought to be due to spinning dust grains. Alternatively, this emission could be due to synchrotron radiation with a flattening (hard) spectral index. We cross-correlate synchrotron, free- free and thermal dust templates with the WMAP 7-year maps using synchrotron templates at both 408MHz and 2.3GHz to assess the amount of flat synchrotron emission that is present, and the impact that this has on the correlations with the other components. We find that there is only a small amount of flattening visible in the synchrotron spectral indices by 2.3GHz, of around \\Delta{\\beta} \\approx 0.05, and that the significant level of dust-correlated emission in the lowest WMAP bands is largely unaffected by the choice of synchrotron template, particularly at high latitudes (it decreases by only ~7 per cent when using 2.3 GHz rather than 408 MHz). This agrees with expectation ...

Peel, M W; Davies, R D; Banday, A J; Jaffe, T R; Jonas, J L

2011-01-01T23:59:59.000Z

286

SRS Research - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Synchrotron Radiation Studies Research Overview This program develops new capabilities using the nation's synchrotron radiation facilities and applies them to cutting-edge problems in materials science. In particular, we aim to play a leading scientific role at the Advanced Photon Source (APS). X-ray scattering studies take advantage of the high brilliance APS x-ray source for in-situ and time-resolved studies of surface and thin film structure. These include investigations of synthesis processes such as vapor-phase epitaxy and electrochemical deposition, and studies of electric-field-driven ferroelectric domain dynamics. High-resolution angle-resolved photoemission is used to understand the nature of superconductivity in the hi-Tc materials. New thrusts focus on exploring science enabled by future facilities such as

287

Archaeopteryx Feathers and Bone Chemistry Fully Revealed via Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Archaeopteryx Feathers and Bone Chemistry Fully Revealed via Archaeopteryx Feathers and Bone Chemistry Fully Revealed via Synchrotron Imaging Archaeopteryx specimens are important but extremely rare fossils. Due to their possession of both reptilian (jaws with teeth, long bony tail) and avian (feathered wings) characters, Archaeopteryx has been crucial in the development of Darwinian evolution. Despite their importance, no Archaeopteryx specimen has ever been chemically analyzed. This in large part may be explained by the analytical obstacles which preclude applying standard methods to such valuable specimens; destructive sampling is not an option and most non-destructive methods cannot handle large specimens. Furthermore, mapping using conventional methods is far too slow to enable chemical zonation to be reasonably determined. Mapping of trace element chemistry is of tremendous interest, however, because it opens a window into understanding several critical questions about Archaeopteryx in particular, and about fossil specimens in general. Preserved trace chemistry in bones and soft tissue may be remnants of the living organism, and therefore may give insight into life processes of extinct organisms. When mapping includes the embedding rock matrix, mass transfer between the fossil and the matrix can be constrained, hence giving information about mode of preservation. Chemical analysis can also resolve artefacts of the curation process. Finally, accurate chemical maps can also be useful for directing future work by highlighting regions that may be promising for other types of analysis including structural methods (CT, diffraction) or techniques that use other parts of the electromagnetic spectrum (infra-red).

288

Synchrotron and Coulomb Boiler in Cygnus X-1  

SciTech Connect

We use a new code to simulate the radiation and kinetic processes in the X-ray emitting region around accreting black holes and constrain the magnetic field and temperature of the hot protons in the corona of Cygnus X-1. In the hard state we find a magnetic field below equipartition with radiation, suggesting that the corona is not powered through magnetic field dissipation (as assumed in most accretion disc corona models). On the other hand, our results also point toward proton temperatures that are substantially lower than typical temperatures of the ADAF models. Finally, we show that in both spectral states Comptonising plasma could be powered essentially through power-law acceleration of non-thermal electrons, which are then partly thermalised by the synchrotron and Coulomb boiler. This suggests that, contrary to current beliefs, the corona of the HSS and that of the LHS could be of very similar nature. The differences between the LHS and HSS coronal spectra would then be predominantly caused by the strong disc soft cooling emission which is present in the HSS and absent in the LHS.

Malzac, Julien; Belmont, Renaud [CESR, Universite de Toulouse (UPS), CNRS (UMR 5187), 9 Avenue du colonel Roche BP44346, 31028 Toulouse Cedex 4 (France)

2009-05-11T23:59:59.000Z

289

GRB Spectra in the complex of synchrotron and Compton processes  

E-Print Network (OSTI)

Under the steady state condition, the spectrum of electrons is investigated by solving the continuity equation under the complex radiation of both the synchrotron and Compton processes. The resulted GRB spectrum is a broken power law in both the fast and slow cooling phases. On the basis of this electron spectrum, the spectral indices of the Band function in four different phases are presented. In the complex radiation frame, the detail investigation on physical parameters reveals that both the reverse shock photosphere model and the forward shock with strong coupling model can answer the $\\alpha \\sim -1$ problem. A possible marginal to fast cooling phase transition in GRB 080916C is discussed. The time resolved spectra in different pulses of GRB 100724B, GRB 100826A and GRB 130606B are investigated. We found that the flux is proportional to the peak energy in almost all pulses. The phases for different pulses are determined according to the spectral index revolution. We found the strong correlations between ...

Jiang, Yunguo; Chen, Xu; Li, Kai; Guo, Di-Fu; Li, Yu-Tong; Li, Huai-Zhen; Lin, Hai-Nan; Chang, Zhe

2015-01-01T23:59:59.000Z

290

In situ characterization of AIPO-14 using synchrotron powder diffraction.  

SciTech Connect

The separation of propane/propylene mixtures is an important yet difficult industrial process that can be accomplished by a pressure swing adsorption process using AlPO-14 as the adsorbent. Although the AlPO-14 structure has been studied with different techniques, the detailed structure under conditions of the adsorption process has not been clarified. We have used synchrotron x-ray powder diffraction and an in situ reactor system to obtain detailed structural information of AlPO-14 with the Rietvield method. Molecular modeling using the structural data allowed determination of the diffusion path of propylene in AlPO-14. The design of the in situ reactor system allows different chemicals to be loaded and the system to be heated and pressurized up to 90 psi with various gases or liquids. For this work, AlPO-14 powder was loaded into a 1 mm capillary tube and attached to the cell. Diffraction scans were collected during treatments in nitrogen, propane and propylene at various temperatures up to 300 C and various pressures up to 90 psig. A selected region of the x-ray diffraction patterns under different experimental conditions is shown in Fig.1. The diffraction patterns for AlPO-14 in nitrogen and propane are very similar, whereas the pattern in propylene changes considerably suggesting structure changes caused by adsorption of propylene into the pores.

Yang, N.; Greenlay, N.; Karapetrova, J.; Zschack, P.; Gatter, M.; Wilson, S.; Broach, R. W.; Experimental Facilities Division (APS); UOP

2006-01-01T23:59:59.000Z

291

Condenser for illuminating a ringfield camera with synchrotron emission light  

DOE Patents (OSTI)

The present invention relates generally to the field of condensers for collecting light from a synchrotron radiation source and directing the light into a ringfield of a lithography camera. The present invention discloses a condenser comprising collecting, processing, and imaging optics. The collecting optics are comprised of concave and convex spherical mirrors that collect the light beams. The processing optics, which receive the light beams, are comprised of flat mirrors that converge and direct the light beams into a real entrance pupil of the camera in a symmetrical pattern. In the real entrance pupil are located flat mirrors, common to the beams emitted from the preceding mirrors, for generating substantially parallel light beams and for directing the beams toward the ringfield of a camera. Finally, the imaging optics are comprised of a spherical mirror, also common to the beams emitted from the preceding mirrors, images the real entrance pupil through the resistive mask and into the virtual entrance pupil of the camera. Thus, the condenser is comprised of a plurality of beams with four mirrors corresponding to a single beam plus two common mirrors.

Sweatt, William C. (13027 Arroyo de Vista, Albuquerque, NM 87111)

1996-01-01T23:59:59.000Z

292

Condenser for illuminating a ringfield camera with synchrotron emission light  

DOE Patents (OSTI)

The present invention relates generally to the field of condensers for collecting light from a synchrotron radiation source and directing the light into a ringfield of a lithography camera. The present invention discloses a condenser comprising collecting, processing, and imaging optics. The collecting optics are comprised of concave and convex spherical mirrors that collect the light beams. The processing optics, which receive the light beams, are comprised of flat mirrors that converge and direct the light beams into a real entrance pupil of the camera in a symmetrical pattern. In the real entrance pupil are located flat mirrors, common to the beams emitted from the preceding mirrors, for generating substantially parallel light beams and for directing the beams toward the ringfield of a camera. Finally, the imaging optics are comprised of a spherical mirror, also common to the beams emitted from the preceding mirrors, images the real entrance pupil through the resistive mask and into the virtual entrance pupil of the camera. Thus, the condenser is comprised of a plurality of beams with four mirrors corresponding to a single beam plus two common mirrors. 9 figs.

Sweatt, W.C.

1996-04-30T23:59:59.000Z

293

Oak Ridge National Laboratory National Security Programs  

E-Print Network (OSTI)

Oak Ridge National Laboratory National Security Programs Dr. Michael A. Kuliasha, Chief Scientist National Security Technologies Oak Ridge National Laboratory #12;2 OAK RIDGE NATIONAL LABORATORY U. S Security Challenges #12;3 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY How Will Our Enemies

294

Simulating Electron Transport and Synchrotron Emission in Radio Galaxies: Shock Acceleration and Synchrotron Aging in Three-Dimensional Flows  

E-Print Network (OSTI)

We present the first three-dimensional MHD radio galaxy simulations that explicitly model transport of relativistic electrons, including diffusive acceleration at shocks as well as radiative and adiabatic cooling in smooth flows. We discuss three simulations of light Mach 8 jets, designed to explore the effects of shock acceleration and radiative aging on the nonthermal particle populations that give rise to synchrotron and inverse-Compton radiations. We also conduct detailed synthetic radio observations of our simulated objects. We have gained several key insights from this approach: 1. The jet head in these multidimensional simulations is extremely complex. The classical jet termination shock is often absent, but motions of the jet terminus spin a ``shock-web complex'' within the backflowing jet material of the head. 2. Understanding the spectral distribution of energetic electrons in these simulations relies partly upon understanding the shock-web complex, for it can give rise to distributions that confound interpretation in terms of the standard model for radiative aging of radio galaxies. 3. The magnetic field outside of the jet itself becomes very intermittent and filamentary in these simulations, yet adiabatic expansion causes most of the cocoon volume to be occupied by field strengths considerably diminished below the nominal jet value. Thus population aging rates vary considerably from point to point.

I. L. Tregillis; T. W. Jones; Dongsu Ryu

2001-04-18T23:59:59.000Z

295

National System Templates: Building Sustainable National Inventory  

Open Energy Info (EERE)

National System Templates: Building Sustainable National Inventory National System Templates: Building Sustainable National Inventory Management Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National System Templates: Building Sustainable National Inventory Management Systems Agency/Company /Organization: United States Environmental Protection Agency, United States Agency for International Development Sector: Energy, Land Focus Area: Non-renewable Energy, Forestry, Agriculture Topics: GHG inventory Resource Type: Guide/manual, Training materials Website: www.epa.gov/climatechange/emissions/ghginventorycapacitybuilding/templ National System Templates: Building Sustainable National Inventory Management Systems Screenshot References: National System Templates: Building Sustainable National Inventory Management Systems[1]

296

NSLS-II: Nonlinear Model Calibration for Synchrotrons  

SciTech Connect

This tech note is essentially a summary of a lecture we delivered to the Acc. Phys. Journal Club Apr, 2010. However, since the estimated accuracy of these methods has been naive and misleading in the field of particle accelerators, i.e., ignores the impact of noise, we will elaborate on this in some detail. A prerequisite for a calibration of the nonlinear Hamiltonian is that the quadratic part has been understood, i.e., that the linear optics for the real accelerator has been calibrated. For synchrotron light source operations, this problem has been solved by the interactive LOCO technique/tool (Linear Optics from Closed Orbits). Before that, in the context of hadron accelerators, it has been done by signal processing of turn-by-turn BPM data. We have outlined how to make a basic calibration of the nonlinear model for synchrotrons. In particular, we have shown how this was done for LEAR, CERN (antiprotons) in the mid-80s. Specifically, our accuracy for frequency estimation was {approx} 1 x 10{sup -5} for 1024 turns (to calibrate the linear optics) and {approx} 1 x 10{sup -4} for 256 turns for tune footprint and betatron spectrum. For a comparison, the estimated tune footprint for stable beam for NSLS-II is {approx}0.1. Since the transverse damping time is {approx}20 msec, i.e., {approx}4,000 turns. There is no fundamental difference for: antiprotons, protons, and electrons in this case. Because the estimated accuracy for these methods in the field of particle accelerators has been naive, i.e., ignoring the impact of noise, we have also derived explicit formula, from first principles, for a quantitative statement. For e.g. N = 256 and 5% noise we obtain {delta}{nu} {approx} 1 x 10{sup -5}. A comparison with the state-of-the-arts in e.g. telecomm and electrical engineering since the 60s is quite revealing. For example, Kalman filter (1960), crucial for the: Ranger, Mariner, and Apollo (including the Lunar Module) missions during the 60s. Or Claude Shannon et al since the 40s for that matter. Conclusion: what's elementary in the latter is considered 'advanced', if at all, in the former. It is little surprise then that published measurements typically contains neither error bars (for the random errors) nor estimates for the systematic in the former discipline. We have also showed how to estimate the state space by turn-by-turn data from two adjacent BPMs. And how to improve the resolution of the nonlinear resonance spectrum by Fourier analyzing the linear action variables instead of the betatron motion. In fact, the state estimator could be further improved by adding a Kalman filter. For transparency, we have also summarized on how these techniques provide a framework- and method for a TQM (Total Quality Management) approach for the main ring. Of course, to make the ($2.5M) turn-by-turn data acquisition system that is being implemented (for all the BPMs) useful, a means ({approx}10% contingency for the BPM system) to drive the beam is obviously required.

Bengtsson, J.

2010-10-08T23:59:59.000Z

297

Synchrotron Vacuum-Ultraviolet Postionization Mass Spectrometry with Laser and Ion Probes for Intact Molecular Spatial Mapping of Lignin  

E-Print Network (OSTI)

and Biosynthesis of Lignin; Springer-Verlag: Berlin, 1968. (chemical imaging studies of lignin and related compounds.and Alkali and Organosolv Lignins with Synchrotron Vacuum-UV

Takahashi, Lynelle Kazue

2011-01-01T23:59:59.000Z

298

National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Homesteading on the Pajarito Plateau Homesteading on the Pajarito Plateau topic of inaugural lecture at Los Alamos National Laboratory January 4, 2013 Lecture series begins yearlong commemoration of 70th anniversary LOS ALAMOS, NEW MEXICO, Jan. 3, 2013-In commemoration of its 70th anniversary, Los Alamos National Laboratory kicks off a yearlong lecture series on Wednesday, Jan. 9, at 5:30 p.m. with a presentation about homesteading on the Pajarito Plateau at the Bradbury Science Museum, 1350 Central Avenue, Los Alamos. - 2 - The inaugural lecture is based on a book by local writers Dorothy Hoard, Judy Machen and Ellen McGehee about the area's settlement between 1887 and 1942. On hikes across the Pajarito Plateau, Hoard envisioned the Los Alamos area before modern roads and bridges made transportation much easier. The trails she walked

299

NATIONAL NEWS  

NLE Websites -- All DOE Office Websites (Extended Search)

March 5, 2010 National News......................................................................3 Schumer Proposal to Halt ARRA Funds for Renewable Projects Would Cause Immediate Job Loss in U.S., DOE Officials Tell Congress .................................................................................................................................. 3 Geothermal Energy Holds Strong Presence at Renewable Energy World Conference; Applications with Oil and Gas Coproduction Gain Attention .......................................................................................................................... 4 House Subcommittee on Energy and Mineral Resources Hold Legislative Hearing on the Geothermal Production and Expansion Act, HR 3709 ..............................................................................................................

300

SSRL School on Synchrotron X-ray Spectroscopy Techniques in Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home Agenda Location Visitor Information Transportation Tourism & Dining SSRL School on Synchrotron X-ray Spectroscopy Techniques in Environmental and Materials Sciences: Theory and Application June 2-5, 2009 Group photo of the attendees at the SSRL School on X-ray Spectropscopy Techniques in Environmental and Materials Sciences: Theory and Application held June 2-5, 2009 at the Stanford Synchrotron Radiation Lightsource. » View photos from XAS 2009 Overview: Modern synchrotron radiation based X-ray absorption spectroscopy (SR-XAS) techniques offer the ability to probe local molecular scale physical and electronic structures that govern key properties of technological and environmental materials and molecular complexes. The high collimation, intensity, and tunability of SR allow the investigation of a wide range of materials, including thin films and interfaces, nanoparticles, amorphous materials, solutions, hydrated and disordered bacteriogenic minerals, soils, interfaces, and dissolved species.

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cross-Fertilization between Spallation Neutron Source and Third Generation Synchrotron Radiation Detectors  

SciTech Connect

Suffering presently from relatively low source strengths compared to synchrotron radiation investigations, neutron scattering methods will greatly benefit from the increase of instantaneous flux attained at the next generation of pulsed spallation neutron sources. In particular at ESS, the strongest projected source, the counting rate load on the detectors will rise by factors of up to 50-150 in comparison with present generic instruments. For these sources the detector requirements overlap partly with those for modern synchrotron radiation detectors as far as counting rate capability and two-dimensional position resolution are concerned. In this paper, examples of the current and forthcoming detector development, comprising e.g. novel solutions for low-pressure micro-strip gas chamber detectors, for silicon micro-strip detectors and for the related front-end ASICs and data acquisition (DAQ) systems, are summarized, which will be of interest for detection of synchrotron radiation as well.

Gebauer, B.; Schulz, Ch.; Alimov, S.S.; Wilpert, Th. [Hahn-Meitner-Instiut Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Levchanovsky, F.V. [Hahn-Meitner-Instiut Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Frank Laboratory of Neutron Physics, Joint Institute of Nuclear Research, 141980 Dubna (Russian Federation); Litvinenko, E.I.; Nikiforov, A.S. [Frank Laboratory of Neutron Physics, Joint Institute of Nuclear Research, 141980 Dubna (Russian Federation)

2004-05-12T23:59:59.000Z

302

Real world issues for the new soft x-ray synchrotron sources  

SciTech Connect

A new generation of synchrotron radiation light sources covering the VUV, soft x-ray and hard x-ray spectral regions is under construction in several countries. They are designed specifically to use periodic magnetic undulators and low-emittance electron or positron beams to produce high-brightness near-diffraction-limited synchrotron radiation beams. An introduction to the properties of undulator radiation is followed by a discussion of some of the challenges to be faced at the new facilities. Examples of predicted undulator output from the Advanced Light Source, a third generation 1--2 GeV storage ring optimized for undulator use, are used to highlight differences from present synchrotron radiation sources, including high beam power, partial coherence, harmonics, and other unusual spectral and angular properties of undulator radiation. 8 refs., 2 figs.

Kincaid, B.M.

1991-05-01T23:59:59.000Z

303

Uncertainty of Radiant Power Calibration based on Synchrotron Radiation caused by Spectral Distribution and Polarization State  

SciTech Connect

We have been attempting to establish an absolute scale of spectral radiance in ultraviolet and vacuum ultraviolet regions by using synchrotron radiation as a primary standard light source and also attempting to transfer the absolute scale to an under-test light source by comparing the under-test source with synchrotron radiation. The calibration apparatus does not function as ideal comparator because some properties of incident radiation, which are spectral distribution and polarization state, are different between synchrotron radiation and the under-test light source, and the signal of the apparatus accordingly depends on not only spectral radiant power but also depends on the properties of the incident radiation. We evaluated how the detector signal ratio was affected by the difference both experimentally and theoretically, and also evaluated the uncertainty of the scale transfer caused by the difference.

Zama, Tatsuya; Saito, Ichiro [National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan (NMIJ) (Japan)

2010-06-23T23:59:59.000Z

304

National System Templates: Building Sustainable National Inventory...  

Open Energy Info (EERE)

Templates: Building Sustainable National Inventory Management Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National System Templates: Building Sustainable...

305

Sandia National Laboratories: Japanese National Institute of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Japanese National Institute of Advanced Industrial Science and Technology Sandia-California Partners with Japanese National Institute of Advanced Industrial Science and Technology...

306

Groundbreaking at National Ignition Facility | National Nuclear...  

National Nuclear Security Administration (NNSA)

Ignition Facility May 29, 1997 Groundbreaking at National Ignition Facility Livermore, CA Secretary Pena participates in the ground breaking ceremony for the National Ignition...

307

Diffraction and Transmission Synchrotron Imaging at the German Light Source ANKA--Potential Industrial Applications  

SciTech Connect

Diffraction and transmission synchrotron imaging methods have proven to be highly suitable for investigations in materials research and non-destructive evaluation. The high flux and spatial coherence of X-rays from modern synchrotron light sources allows one to work using high resolution and different contrast modalities. This article gives a short overview of different transmission and diffraction imaging methods with high potential for industrial applications, now available for commercial access via the German light source ANKA (Forschungszentrum Karlsruhe) and its new department ANKA Commercial Service (ANKA COS, http://www.anka-cos.de)

Rack, Alexander; Weitkamp, Timm [Institute for Synchrotron Radiation-ANKA, Forschungszentrum Karlsruhe/K.I.T., Postfach 3640, D-76021 Karlsruhe (Germany); European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Helfen, Lukas; Simon, Rolf; Luebbert, Daniel; Baumbach, Tilo [Institute for Synchrotron Radiation-ANKA, Forschungszentrum Karlsruhe/K.I.T., Postfach 3640, D-76021 Karlsruhe (Germany); Danilewsky, Andreas N. [Crystallographic Institute, University Freiburg, Hermann-Herder-Str. 5, D-79104 Freiburg (Germany)

2009-03-10T23:59:59.000Z

308

Experimental Studies on Coherent Synchrotron Radiation at an Emittance Exchange Beamline  

SciTech Connect

One of the goals of the Fermilab A0 photoinjector is to experimentally investigate the transverse to longitudinal emittance exchange (EEX) principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR) in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy chirped beam.

Thangaraj, J.C.T.; Thurman-Keup, R.; Ruan, J.; Johnson, A.S.; Lumpkin, A.H.; Santucci, J.; /Fermilab

2012-04-01T23:59:59.000Z

309

Synchrotron 3D microtomography of halite aggregates during experimental pressure solution creep and evolution of the permeability  

E-Print Network (OSTI)

Synchrotron 3D microtomography of halite aggregates during experimental pressure solution creep and permeability variations in the upper crust. The three- dimensional geometry of the porous network of halite), Synchrotron 3D microtomography of halite aggregates during experimental pressure solution creep and evolution

310

Lawrence Livermore National Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

Lawrence Livermore National Laboratorys (LLNL) primary mission is research and development in support of national security.

311

Sandia National Laboratories  

Energy.gov (U.S. Department of Energy (DOE))

Sandia National Laboratories' (SNL) primary mission is to provide scientific and technology support to national security programs.

312

Performance of a high-resolution, synchrotron-based, small-angle x-ray scattering instrument  

SciTech Connect

We describe the construction and performance of a small-angle x-ray scattering (SAXS) instrument which we have used on several beam lines at the National Synchrotron Light Source. The analyzer crystal was a channel cut Si(1,1,1) designed for use at {lambda}=1.54 A with a measured efficiency of 60{percent} and an angular resolution full width at half maximum of 0.001{degree}. In the case of strongly scattering samples (i.e., powders), momentum transfer {ital q} between 1{times}10{sup {minus}4} A{lt}{ital q}{lt}0.1 A{sup {minus}1} could be studied with over eight decades of dynamic intensity range. We demonstrate the versatility of this instrument by performing scattering experiments on a variety of spherical latex samples spanning the size range from 50 to 800 nm, liquid crystal samples with sharp, asymmetrical Bragg peaks, and metal clusters with sizes less than 10 nm. Small-angle x-ray scattering data for the larger polystyrene samples is compared with light scattering data and theoretical structure factors, and the relative roles of instrument smearing, sample polydispersity, and interparticle interference are elucidated. In the case of the liquid crystal samples, the high resolution of the instrument allows structural features to be observed that were previously obscured by the instrumental resolution in other small-angle neutron and synchroton-based Kratky camera data taken on the same samples. {copyright} {ital 1996 American Institute of Physics.}

Wilcoxon, J.P.; Craft, S.A. [Nanostructured Materials Division, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Nanostructured Materials Division, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Thurston, T.R. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)] [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

1996-09-01T23:59:59.000Z

313

A Synchrotron-Based Facility for the in-situ Location, Chemical and Mineralogical Characterization of ~10 um Particles Captured in Aerogel  

SciTech Connect

NASA's Stardust mission collected dust from the coma of Comet Wild-2 on January 2nd, 2004, by direct capture into aerogel cells that flew through the dust coma at 6 km/s. Stardust collected several hundred comet particles >10 {mu}m in size. These comet samples were delivered to Earth on January 15th, 2006. We developed a facility at the National Synchrotron Light Source at Brookhaven National Laboratory (Upton, NY, USA) for the in-situ characterization of 10 {mu}m particles collected in aerogel. These analytical instruments allow us to perform extensive chemical, mineralogical, and size-frequency characterization of particles captured in aerogel. These analyses are conducted without any invasive extraction, minimizing the possibility of contamination or particle loss during preparation. This facility was used to determine the chemical composition, the oxidation state, the mineralogy and to provide an indication of the grain size of the Wild-2 particles before they were removed from the aerogel. This information provides a catalog of particle types, allowing a more reasoned allocation of the particles to subsequent investigators based on a relatively detailed knowledge of the chemical composition and mineralogy of each particle. These measurements allowed a comparison of the chemical and mineralogical properties of the Wild-2 particles with other types of extraterrestrial materials, including interplanetary dust particles and meteorites. The success of in-situ analysis for Wild 2 particles demonstrates that synchrotron-based facilities will be important for the analysis of particles collected in aerogel on future earth-orbiting satellites and spacecraft.

Flynn, G.; Sutton, S; Lanzirotti, A

2009-01-01T23:59:59.000Z

314

High counting rates of x-ray photon detection using APD detectors on synchrotron machines  

SciTech Connect

In this work we show the results of 10 x 10 mm{sup 2} Si-APD detector's test with guard ring detecting x-rays. The result of mapping surface is also exhibited. We show and discuss the difficulty of single photon detection in high counting rate experiments in synchrotrons machines.

Kakuno, E. M.; Giacomolli, B. A.; Scorzato, C. R. [Universidade Federal do Pampa - UNIPAMPA-Bage, 96413-170 (Brazil); Laboratorio Nacional de Luz Sincrotron - LNLS, 13086-100 (Brazil)

2012-05-17T23:59:59.000Z

315

SUPERCONDUCTING RF STRUCTURES TEST FACILITIES AND H. Weise, Deutsches Elektronen-Synchrotron, Hamburg, Germany  

E-Print Network (OSTI)

-Synchrotron, Hamburg, Germany for the TESLA Collaboration Abstract The design of the TESLA superconducting electron than 16 thousand hours of operation demonstrated this technology. Results of single cavity tests followed by drying in a class 100 clean room; annealing at 800°C in an Ultra High Vacuum oven to relieve

316

Cold drawn steel wires--processing, residual stresses and ductility Part II: Synchrotron and neutron diffraction  

E-Print Network (OSTI)

Cold drawn steel wires--processing, residual stresses and ductility Part II: Synchrotron Received in final form 29 September 2005 ABSTRACT Cold drawing of steel wires leads to an increase proposed that cold drawing would induce a phase transformation of the steel, possibly a martensitic

317

ApJ (submitted) Synchrotron self-inverse Compton radiation from reverse shock on  

E-Print Network (OSTI)

ApJ (submitted) Synchrotron self-inverse Compton radiation from reverse shock on GRB120326A Yuji Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan 6 Center for the Exploration of the Origin-ku, Nagoya, Aichi 464- 8601, Japan 8 Division of Particle and Astrophysical Science, Graduate School

Pak, Soojong

318

Biosensors and Bioelectronics 23 (2007) 253260 Single-cell-based sensors and synchrotron FTIR spectroscopy  

E-Print Network (OSTI)

Biosensors and Bioelectronics 23 (2007) 253­260 Single-cell-based sensors and synchrotron FTIR Microarrays of single macrophage cell-based sensors were developed and demonstrated for potential real with fibronectin to mediate cell adhesion and the silicon oxide background was passivated with polyethylene glycol

319

Evolution of mineralfluid interfaces studied at pressure with synchrotron X-ray techniques  

E-Print Network (OSTI)

(CaCO3) and halite (NaCl) as reactant crystals are presented and compared to other atomic at this pressure cannot be monitored in experiments of several days duration. Experiments with halite, a much more to pressure solution. © 2006 Elsevier B.V. All rights reserved. Keywords: Synchrotron; Calcite; Halite

Dysthe, Dag Kristian

320

Synchrotron 3D microtomography of halite aggregates during experimental pressure solution creep and evolution of  

E-Print Network (OSTI)

1 Synchrotron 3D microtomography of halite aggregates during experimental pressure solution creep of the porous network of halite aggregates was imaged during compaction driven by pressure solution creep using. For these purposes, 3D X-ray microtomography (µCT) was successfully applied for visualizing several halite aggregate

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The measurement and analysis of the magnetic field of a synchrotron light source magnet  

E-Print Network (OSTI)

In this thesis a unique system is used to measure the magnetic field of a superconducting synchrotron light source magnet. The magnet measured is a superferric dipole C-magnet designed to produce a magnetic field up to 3 Tesla in magnitude. Its...

Graf, Udo Werner

2012-06-07T23:59:59.000Z

322

ISPyB: an information management system for synchrotron macromolecular crystallography  

Science Journals Connector (OSTI)

......DATA AND TEXT MINING ISPyB: an information...Blundell, 2010 for a review). Increased...biologists to plan, direct and document...uniform and standard interface to ISPyB...data collection plan is also provided...Managing and mining protein crystallization...commercialized standard. J. Synchrotron......

Solange Delagenire; Patrice Brenchereau; Ludovic Launer; Alun W. Ashton; Ricardo Leal; Stphanie Veyrier; Jos Gabadinho; Elspeth J. Gordon; Samuel D. Jones; Karl Erik Levik; Sen M. McSweeney; Stphanie Monaco; Max Nanao; Darren Spruce; Olof Svensson; Martin A. Walsh; Gordon A. Leonard

2011-11-15T23:59:59.000Z

323

Characterizing Three-Dimensional Textile Ceramic Composites Using Synchrotron X-Ray Micro-Computed-Tomography  

E-Print Network (OSTI)

, Thousand Oaks, CA 91360 Three-dimensional (3-D) images of two ceramic-matrix textile composites were studied represent a new class of integrally woven ceramic matrix composites for high-temperature appliCharacterizing Three-Dimensional Textile Ceramic Composites Using Synchrotron X-Ray Micro

Ritchie, Robert

324

ELECTRON STRING SOURCE OF HIGHLY CHARGED IONS: STUDIES AND THE FIRST TEST ON A SYNCHROTRON  

E-Print Network (OSTI)

ELECTRON STRING SOURCE OF HIGHLY CHARGED IONS: STUDIES AND THE FIRST TEST ON A SYNCHROTRON E. D, MSL, 104 05 Stockholm, Sweden Abstract Operation of an electron beam ion source (EBIS) in the reflex in Electron String Ion Source (ESIS). We describe the experiments and results on studies of electron string

325

Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry  

Science Journals Connector (OSTI)

...Institut Curie, F75248 Paris Cedex 05, France; and National Synchroton Light Source, Brookhaven National Laboratory, Upton...mu}s scanning infrared microspectrometer and the National Synchroton Light Source at Brookhaven National Laboratory. Spectra were...

Nadge Jamin; Paul Dumas; Janine Moncuit; Wolf-Herman Fridman; Jean-Luc Teillaud; G. Lawrence Carr; Gwyn P. Williams

1998-01-01T23:59:59.000Z

326

E-Print Network 3.0 - australian synchrotron project Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

University ... Source: Australian National University, Department of Engineering, Solar Energy Program Collection: Renewable Energy ; Engineering 84 Brookhaven National...

327

CONSTRAINTS ON THE SYNCHROTRON EMISSION MECHANISM IN GAMMA-RAY BURSTS  

SciTech Connect

We reexamine the general synchrotron model for gamma-ray bursts' (GRBs') prompt emission and determine the regime in the parameter phase space in which it is viable. We characterize a typical GRB pulse in terms of its peak energy, peak flux, and duration and use the latest Fermi observations to constrain the high-energy part of the spectrum. We solve for the intrinsic parameters at the emission region and find the possible parameter phase space for synchrotron emission. Our approach is general and it does not depend on a specific energy dissipation mechanism. Reasonable synchrotron solutions are found with energy ratios of 10{sup -4} < {epsilon}{sub B}/{epsilon}{sub e} < 10, bulk Lorentz factor values of 300 < {Gamma} < 3000, typical electrons' Lorentz factor values of 3 Multiplication-Sign 10{sup 3} < {gamma}{sub e} < 10{sup 5}, and emission radii of the order 10{sup 15} cm < R < 10{sup 17} cm. Most remarkable among those are the rather large values of the emission radius and the electron's Lorentz factor. We find that soft (with peak energy less than 100 keV) but luminous (isotropic luminosity of 1.5 Multiplication-Sign 10{sup 53}) pulses are inefficient. This may explain the lack of strong soft bursts. In cases when most of the energy is carried out by the kinetic energy of the flow, such as in the internal shocks, the synchrotron solution requires that only a small fraction of the electrons are accelerated to relativistic velocities by the shocks. We show that future observations of very high energy photons from GRBs by CTA could possibly determine all parameters of the synchrotron model or rule it out altogether.

Beniamini, Paz; Piran, Tsvi, E-mail: paz.beniamini@mail.huji.ac.il, E-mail: tsvi.piran@mail.huji.ac.il [Racah Institute for Physics, Hebrew University, Jerusalem 91904 (Israel)

2013-05-20T23:59:59.000Z

328

SSRL Experimental Run Schedule | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental Run Schedule Experimental Run Schedule SLAC National Accelerator Laboratory will be closed for the winter holidays, December 21, 2013 through January 5, 2014. SSRL generally operates November through August, using the shutdown period for upgrades and maintenance projects. SSRL operates at 500mA and employs a frequent fill schedule to maintain the SPEAR3 current approximately constant. Automatic injections will be conducted every 5 minutes. Automatic injections will only occur at the designated 5 minute intervals (i.e., on the hour and every 5 minutes thereafter). If the injector is not functional at the designated fill time, then the fill will be skipped. The current will be replenished at the next scheduled fill time after the injector is repaired and normal injection intervals will resume. The operator will give

329

Previous Sandia National Laboratories | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Previous Sandia National Laboratories | National Nuclear Security Previous Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Previous Sandia National Laboratories Home > About Us > Our Operations > Acquisition and Project Management > M & O Support Department > Sandia National Laboratories > Previous Sandia

330

Sandia National Laboratories: National Security Missions: Defense...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cybersecurity Delivering experience & expertise Training the next generation of cyber defenders Cybersecurity computing Defending national security Applying science and engineering...

331

National synchrotron light source user's manual: Guide to the VUV and x-ray beamlines: Third edition  

SciTech Connect

This report contains information on the following topics: A Word on the Writing of Beamline Descriptions; Beamline Equipment Utilization for General Users; the Vacuum Ultraviolet (VUV) Storage Ring and Beamlines; VUV Beamline Descriptions--An Explanation; VUV Beamline Descriptions; X-Ray Storage Ring and Beamlines; X-Ray Beamline Descriptions--An Explanation; and X-Ray Beamline Descriptions.

Gmuer, N.F.; Thomlinson, W.; White-DePace, S.

1989-01-01T23:59:59.000Z

332

Structural Investigations of Complex Oxides using Synchrotron Radiation  

SciTech Connect

The work is a collaborative effort between Prof. Hanno zur Loye at the University of South Carolina and Dr. Tom Vogt at Brookhaven National Laboratory. The collaborative research focuses on the synthesis and the structural characterization of perovskites and perovskite related oxides and will target new oxide systems where we have demonstrated expertise in synthesis, yet lack the experimental capabilities to answer important structural issues. Synthetically, we will focus on two subgroups of perovskite structures, the double and triple perovskites, and the 2H-perovskite related oxides belonging to the A3n+3mAnB3m+nO9m+6n family. In the first part of the proposal, our goal of synthesizing and structurally characterizing new ruthenium, iridium, rhodium and ruthenium containing double and triple perovskites, with the emphasis on exercising control over the oxidation state(s) of the metals, is described. These oxides will be of interest for their electronic and magnetic properties that will be investigated as well.

Hans-Conrad zur Loye

2007-03-24T23:59:59.000Z

333

Argonne's National Security Information Systems National  

NLE Websites -- All DOE Office Websites (Extended Search)

National Security National Security Information Systems National Security The NSIS team has worked with various government agencies and programs over the past 15 years to create customized technological solutions that meet specific needs, while also fulfilling national security objectives, improving efficiency and reducing costs. Applying a broad range of expertise and experience, the Argonne team develops both unclassified and classified information technology (IT) systems for national security and nonproliferation programs, with a focus on security operations, international treaty implementation, export control and law enforcement support. Some examples of NSIS-developed systems include:  Electronic Facility Clearance (e-FCL) System for the U.S. Department of Defense (DOD)

334

National Science Bowl Finals  

ScienceCinema (OSTI)

National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

None

2010-09-01T23:59:59.000Z

335

Sandia National Laboratories: Photovoltaics  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

336

Sandia National Laboratories: PV  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

337

Sandia National Laboratories: Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

338

Sandia National Laboratories: solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

339

Sandia National Laboratories: ACEC  

NLE Websites -- All DOE Office Websites (Extended Search)

ACEC Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar...

340

Crystal Structure and Hydrogen-Bonding System in Cellulose I? from Synchrotron X-ray and Neutron Fiber Diffraction  

Science Journals Connector (OSTI)

The crystal and molecular structure together with the hydrogen-bonding system in cellulose I? has been determined using synchrotron and neutron diffraction data recorded from oriented fibrous samples prepared by aligning cellulose microcrystals from ...?

Yoshiharu Nishiyama; Paul Langan; Henri Chanzy

2002-07-10T23:59:59.000Z

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Single-cell resolution in high-resolution synchrotron X-ray CT imaging with gold nanoparticles  

Science Journals Connector (OSTI)

It is demonstrated that single-cell resolution can be obtained ex vivo in the brain of small animals using gold nanoparticles with the synchrotron-based computed tomography technique.

Sch?ltke, E.

2013-12-11T23:59:59.000Z

342

Synchrotron Vacuum-Ultraviolet Postionization Mass Spectrometry with Laser and Ion Probes for Intact Molecular Spatial Mapping of Lignin  

E-Print Network (OSTI)

Alcohol and Alkali and Organosolv Lignins with SynchrotronAlcohol and Alkali and Organosolv Lignins with Synchrotronof ~6.6 MW/cm 2 , (b) organosolv lignin (Sigma Aldrich)

Takahashi, Lynelle Kazue

2011-01-01T23:59:59.000Z

343

Chemist, Sandia National Laboratories | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Chemist, Sandia National Laboratories | National Nuclear Security Chemist, Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Jerilyn Timlin Chemist, Sandia National Laboratories Jerilyn Timlin Jerilyn Timlin Role: Chemist, Sandia National Laboratories Award: National Institutes of Health (NIH) New Innovator Award

344

Design studies of superconducting cos? magnets for a fast-pulsed synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

BNL-68235-AB BNL-68235-AB Abstract submitted to the 17 th International Conference on Magnet Technology (MT-17), Geneva, Switzerland, September 24-28, 2001 Design studies of superconducting cosθ θ θ θ magnets for a fast-pulsed synchrotron M. Wilson, G. Moritz, G. Ganetis, A. K. Ghosh, A. Jain, J. Muratore, R. Thomas, P. Wanderer, W. Hassenzahl Part of the GSI future project is an accelerator facility with two synchrotron rings in the same tunnel. The lower and upper rings have a rigidity of 100 and 200 Tm respectively. The upper ring will be equipped with superconducting cosθ magnets. The dipoles will be operated with fields up to 4 T and ramp rates up to 4 T/s and will be similar to the RHIC- dipoles. The challenge in building such magnets is the high ramp rate. Induced coupling and persistent

345

SHIELDING ESTIMATES FOR THE ANL 6.0 GeV SYNCHROTRON LIGHT SOURCE  

NLE Websites -- All DOE Office Websites (Extended Search)

SHIELDING ESTIMATES FOR THE ANL 6.0 GeV SHIELDING ESTIMATES FOR THE ANL 6.0 GeV SYNCHROTRON LIGHT SOURCE H. J. Moe V. R. Veluri LS-55-Revised Harch 1987 2 1.0 Introduction Shielding estimates for the linac, positron converter, booster synchrotron and the positron storage ring have been computed using preliminary design information. Calculations have been made of the resulting radiation for several types of operations involving normal beam loss, as well as, certain accidental beam losses. When available, experimental data from existing accelerator and light source facilities have been used in lieu of theoretical estimates. 2.0 Shielding Design Objective The Department of Energy's basic occupational exposure limit is 5 rem per year (DOE 81). However, in its guidance for maintaining exposures "as

346

The synchrotron boiler and the spectral states of black hole binaries  

E-Print Network (OSTI)

We study the effects of synchrotron self-absorption on the Comptonising electron distribution in the magnetised corona of accreting black holes. We solve the kinetic equations assuming that power is supplied to the coronal electrons through Coulomb collisions with a population of hot protons and/or through the injection of non-thermal energetic electrons by some unspecified acceleration process. We compute numerically the steady state particle distributions and escaping photon spectra. These numerical simulations confirm that synchrotron self-absorption, together with e-e Coulomb collisions, constitute an efficient thermalising mechanism for the coronal electrons. When compared to the data, they allow us to constrain the magnetic field and temperature of the hot protons in the corona independently of any dynamical accretion flow model or geometry. A preliminary comparison with the Low Hard State (LHS) spectrum of Cygnus X-1 indicates a magnetic field below equipartition with radiation, suggesting that the cor...

Malzac, Julien

2008-01-01T23:59:59.000Z

347

Application of synchrotron radiation computed microtomography for quantification of bone microstructure in human and rat bones  

SciTech Connect

This work aims to evaluate histomorphometric quantification by synchrotron radiation computed microto-mography in bones of human and rat specimens. Bones specimens are classified as normal and pathological (for human samples) and irradiated and non-irradiated samples (for rat ones). Human bones are specimens which were affected by some injury, or not. Rat bones are specimens which were irradiated, simulating radiotherapy procedures, or not. Images were obtained on SYRMEP beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. The system generated 14 {mu}m tomographic images. The quantification of bone structures were performed directly by the 3D rendered images using a home-made software. Resolution yielded was excellent what facilitate quantification of bone microstructures.

Parreiras Nogueira, Liebert; Barroso, Regina Cely; Pereira de Almeida, Andre; Braz, Delson; Almeida, Carlos Eduardo de; Borba de Andrade, Cherley; Tromba, Giuliana [Nuclear Instrumentation Laboratory / COPPE / UFRJ, P.O. Box 68509, 21945-970, Rio de Janeiro (Brazil); Physics Institute / State University of Rio de Janeiro, 20550-900, Rio de Janeiro (Brazil); Nuclear Instrumentation Laboratory / COPPE / UFRJ, P.O. Box 68509, 21945-970, Rio de Janeiro (Brazil); Laboratory of Radiological Sciences / State University of Rio de Janeiro, Rio de Janeiro (Brazil); Sincrotrone Trieste SCpA, Strada Statale S.S. 14 km 163.5, 34012 Basovizza, Trieste (Italy)

2012-05-17T23:59:59.000Z

348

Investigations of chemical vapor deposition of GaN using synchrotron radiation  

SciTech Connect

The authors apply synchrotron x-ray analysis techniques to probe the surface structure of GaN films during synthesis by metal-organic chemical vapor deposition (MOCVD). Their approach is to observe the evolution of surface structure and morphology in real time using grazing incidence x-ray scattering (GIXS). This technique combines the ability of x-rays to penetrate the chemical vapor deposition environment for in situ measurements, with the sensitivity of GIXS to atomic scale structure. In this paper they present examples from some of their studies of growth modes and surface evolution as a function of process conditions that illustrate the capabilities of synchrotron x-ray analysis during MOCVD growth. They focus on studies of the homoepitaxial growth mode, island coarsening dynamics, and effects of impurities.

Thompson, C.; Stephenson, G. B.; Eastman, J. A.; Munkholm, A.; Auciello, O.; Murty, M. V. R.; Fini, P.; DenBaars, S. P.; Speck, J. S.

2000-05-25T23:59:59.000Z

349

IKNO, a user facility for coherent terahertz and UV synchrotron radiation  

SciTech Connect

IKNO (Innovation and KNOwledge) is a proposal for a multi-user facility based on an electron storage ring optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range, and of broadband incoherent synchrotron radiation (SR) ranging from the IR to the VUV. IKNO can be operated in an ultra-stable CSR mode with photon flux in the terahertz frequency region up to nine orders of magnitude higher than in existing 3rd generation light sources. Simultaneously to the CSR operation, broadband incoherent SR up to VUV frequencies is available at the beamline ports. The main characteristics of the IKNO storage and its performance in terms of CSR and incoherent SR are described in this paper. The proposed location for the infrastructure facility is in Sardinia, Italy.

Sannibale, Fernando; Marcelli, Augusto; Innocenzi, Plinio

2008-04-26T23:59:59.000Z

350

Loops and spurs: the angular power spectrum of the Galactic synchrotron background  

SciTech Connect

We present a new model of the diffuse Galactic synchrotron radiation, concentrating on its angular anisotropies. While previous studies have focussed on either the variation of the emissivity on large ( ? kpc) scales, or on fluctuations due to MHD turbulence in the interstellar medium, we unify these approaches to match the angular power spectrum. We note that the usual turbulence cascade calculation ignores spatial correlations at the injection scale ( ? 100 pc) due to compression of the interstellar medium by of O(1000) old supernova remnants the 'radio loops' only four of which are visible in radio maps. This new component naturally provides the otherwise missing power on intermediate and small scales in the all-sky map at 408 MHz. Our model can enable more reliable subtraction of the synchrotron foreground for studies of CMB anisotropies or searches for dark matter annihilation. We conclude with some remarks on the relevance to modelling of the polarised foreground.

Mertsch, Philipp [Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025 (United States); Sarkar, Subir, E-mail: pmertsch@stanford.edu, E-mail: sarkar@nbi.dk [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)

2013-06-01T23:59:59.000Z

351

Nanopositioning techniques development for synchrotron radiation instrumentation applications at the Advanced Photon Source  

SciTech Connect

At modern synchrotron radiation sources and beamlines, high-precision positioning techniques present a significant opportunity to support state-of-the-art synchrotron radiation research. Meanwhile, the required instrument positioning performance and capabilities, such as resolution, dynamic range, repeatability, speed, and multiple axes synchronization are exceeding the limit of commercial availability. This paper presents the current nanopositioning techniques developed for the Argonne Center for Nanoscale Materials (CNM)/Advanced Photon Source (APS) hard x-ray nanoprobe and high-resolution x-ray monochromators and analyzers for the APS X-ray Operations and Research (XOR) beamlines. Future nanopositioning techniques to be developed for the APS renewal project will also be discussed.

Shu Deming [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

2010-06-23T23:59:59.000Z

352

Design and Fabrication of Safety Shutter for Indus-2 Synchrotron Front-ends  

SciTech Connect

This paper describes the design and fabrication of safety shutter for the Indus-2 synchrotron source on bending magnet front-ends. The purpose of the safety shutter is to absorb Bremsstrahlung radiation generated due to scattering of electron beam from residual gas ions and components of the storage ring. The safety shutter consists of a radiation absorber actuated inside a rectangular ultra high vacuum chamber by pneumatic actuator. A water-cooled copper block is mounted before the absorber block to protect it from the incident heat load due to synchrotron radiation. The top flanges of the chamber are made with rectangular knife edge sealing which is found to be better than wire seal at higher temperature. The physics aspect of safety shutter is designed using simulation code Electron Gamma Shower EGS-4 code.

Raghuvanshi, V. K.; Dhamgaye, V.; Kumar, A.; Deb, S. K. [Indus Synchrotron Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India)

2010-06-23T23:59:59.000Z

353

Shielded coherent synchrotron radiation and its possible effect in the next linear collider  

SciTech Connect

Shielded coherent synchrotron radiation is discussed in two cases: (1) a beam following a curved path in a plane midway between two parallel, perfectly conducting plates, and (2) a beam circulating in a toroidal chamber with resistive walls. Wake fields and the radiated energy are computed with parameters for the high-energy bunch compressor of the Next Linear Collider. 5 refs., 4 figs., 1 tab.

Warnock, R.L.

1991-05-01T23:59:59.000Z

354

Structures of FeII spin-crossover complexes from synchrotron powder-diffraction data  

Science Journals Connector (OSTI)

Using synchrotron powder-diffraction data and direct-space search techniques, crystal structures have been obtained at room temperature and 90 K for the compounds [Fe(teeX)6](BF4)2 (teeX is haloethyltetrazole, and X = I and Br), which both show a gradual, complete high-spin-to-low-spin transition according to molar magnetic susceptibility and 57Fe Mssbauer spectroscopy.

Dova, E.

2004-09-15T23:59:59.000Z

355

Lowering the Light Speed Isotropy Limit: European Synchrotron Radiation Facility Measurements  

E-Print Network (OSTI)

The measurement of the Compton edge of the scattered electrons in GRAAL facility in European Synchrotron Radiation Facility (ESRF) in Grenoble with respect to the Cosmic Microwave Background dipole reveals up to 10 sigma variations larger than the statistical errors. We now show that the variations are not due to the frequency variations of the accelerator. The nature of Compton edge variations remains unclear, thus outlining the imperative of dedicated studies of light speed anisotropy.

V. G. Gurzadyan; J. -P. Bocquet; A. Kashin; A. Margarian; O. Bartalini; V. Bellini; M. Castoldi; A. D'Angelo; J. -P. Didelez; R. Di Salvo; A. Fantini; G. Gervino; F. Ghio; B. Girolami; A. Giusa; M. Guidal; E. Hourany; S. Knyazyan; V. Kouznetsov; R. Kunne; A. Lapik; P. Levi Sandri; A. Lleres; S. Mehrabyan; D. Moricciani; V. Nedorezov; C. Perrin; D. Rebreyend; G. Russo; N. Rudnev; C. Schaerf; M. -L. Sperduto; M. -C. Sutera; A. Turinge

2007-01-05T23:59:59.000Z

356

Prompt GeV emission in the synchrotron self-Compton model for Gamma-Ray Bursts  

E-Print Network (OSTI)

The detection in 10 bursts of an optical counterpart emission (i.e. during the prompt GRB phase) that is 10-10000 brighter than the extrapolation of the burst spectrum to optical frequencies suggests a synchrotron self-Compton origin for the GRB emission, synchrotron producing the optical counterpart emission. In this model, the second upscattering of the burst photons yields a prompt GeV-TeV emission, whose brightness depends strongly on an unknown quantity, the peak energy of the primary synchrotron spectrum. Measurements of the optical, gamma-ray, and GeV prompt fluxes can be used to test the synchrotron self-Compton model for GRBs and to determine directly the total radiative output of GRBs. For a set of 29 GRBs with optical counterpart detections, we find that the expected GeV photon flux should correlate with the fluence of the sub-MeV emission and should anticorrelate with the brightness of the optical counterpart, the strength of these correlations decreasing for an increasing width of the synchrotron peak energy distribution. The detection of a GeV prompt emission consistent with the extrapolation of the burst spectrum to higher energies would rule out the synchrotron self-Compton model if the sub-MeV burst emission were very bright and the (intrinsic) optical counterpart were very dim.

A. Panaitescu

2008-11-07T23:59:59.000Z

357

The Application of Synchrotron Techniques to the Study of Lithium-ion Batteries  

SciTech Connect

This paper gives a brief review of the application of synchrotron X-ray techniques to the study of lithium-ion battery materials. The two main techniques are X-ray absorption spectroscopy (XAS) and high-resolution X-ray diffraction (XRD). Examples are given for in situ XAS and XRD studies of lithium-ion battery cathodes during cycling. This includes time-resolved methods. The paper also discusses the application of soft X-ray XAS to do ex situ studies on battery cathodes. By applying two signal detection methods, it is possible to probe the surface and the bulk of cathode materials simultaneously. Another example is the use of time-resolved XRD studies of the decomposition of reactions of charged cathodes at elevated temperatures. Measurements were done both in the dry state and in the presence of electrolyte. Brief reports are also given on two new synchrotron techniques. One is inelastic X-ray scattering, and the other is synchrotron X-ray reflectometry studies of the surface electrode interface (SEI) on highly oriented single crystal lithium battery cathode surfaces.

McBreen, J.

2009-07-01T23:59:59.000Z

358

Shining New Light on Protein Structure and Function thru Synchrotron Radiation Circular Dichroism (SRCD) Spectroscopy  

SciTech Connect

Circular dichroism (CD) spectroscopy has been employed for more than 50 years for the study of the structure and dynamics of proteins. It is now a workhorse of structural biology, finding applications in the determination of protein secondary structures, monitoring and deciphering protein folding, examining macromolecular interactions, and defining and quantitating protein-ligand binding. For the most part, CD studies have used laboratory-based instruments to measure electronic transitions in the far (190-250 nm), near ultraviolet (UV) (250-300 nm) and visible (> 400 nm) wavelength ranges, which have enabled studies of polypeptide backbones, aromatic amino acids and colored chromophores, respectively. Additional transitions exist at lower wavelengths in the vacuum ultraviolet (VUV) region (<190 nm); however, these transitions tend to be inaccessible to conventional CD instruments, due to the low intensity of their Xenon arc lamp light sources at wavelengths below190 nm. In 1980, the first synchrotron-based CD instruments were constructed, which took advantage of the high photon flux available from synchrotron light sources at these wavelengths. However, the technique of synchrotron radiation circular dichroism (SRCD) did not really take off until enabling studies had been done to show that additional data were obtainable for proteins in the VUV region, that these data were readily accessible with modern beamlines, and most importantly, that new applications of these data existed in structural molecular biology.

Wallace,B.

2005-01-01T23:59:59.000Z

359

Tune modulation due to synchrotron oscillations and chromaticity, and the dynamic aperture  

SciTech Connect

A tracking study was done of the effects of a tune modulations, due to synchrotron oscillations and the tune dependence on momentum (chromaticity), on the dynamic aperture. The studies were done using several RHIC lattices and tracking runs of about 1 {times} 10{sup 6} turns. The dynamic aperture was found to decrease roughly linearly with the amplitude of the tune modulation. Lower order non-linear resonances, like the 1/3 and 1/4 resonance are not crossed because of the tune modulation. Three different cases were studied, corresponding to RHIC lattices with different {beta}*, and with different synchrotron oscillation amplitudes. In each case, the tune modulation amplitude was varied by changing the chromaticity. In each case, roughly the same result, was found. The result found here for the effect of a tune modulation due to chromaticity may be compared with the result found for the effect of a tune modulation due to a gradient ripple in the quadrupoles. The effect of a tune modulation due to a gradient ripple appears to be about 4 times stronger than the effect of a tune modulation due to chromaticity and synchrotron oscillations.

Parzen, G.

1995-05-01T23:59:59.000Z

360

First National Technology Center  

Energy.gov (U.S. Department of Energy (DOE))

Speaker presentation prepared by Dennis Hughes, a lead property manager with First National Buildings Inc.

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Cognitive Informatics, Pacific Northwest National Laboratory | National  

National Nuclear Security Administration (NNSA)

Cognitive Informatics, Pacific Northwest National Laboratory | National Cognitive Informatics, Pacific Northwest National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Frank Greitzer Cognitive Informatics, Pacific Northwest National Laboratory Frank Greitzer Frank Greitzer Role: Cognitive Informatics, Pacific Northwest National Laboratory

362

Lawrence Livermore National Laboratory | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Home > About Us > Our Operations > Acquisition and Project Management > M & O Support Department > Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory DE-AC52-07NA27344 Operated by Lawrence Livermore National Security, LLC BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Unofficial) LLNL Sec A (SF33) (pdf, 91KB) See Modifications Section under Conformed Contract Link LLNS Conformed Contract (weblink) LLNL Sec B-H (pdf, 306KB) LLNL Sec I pdf 687KB LLNL Sec J Appx A (pdf, 67KB) LLNL Sec J Appx B (pdf, 191KB) LLNL Sec J Appx C (pdf, 11KB) LLNL Sec J Appx D (pdf, 18KB)

363

In Situ Synchrotron X-ray Spectroscopy of Lanthanum Manganite Solid Oxide Fuel Cell Electrodes  

E-Print Network (OSTI)

Division, Argonne National Laboratory, Argonne, Illinois 60439, USA b Department of Nuclear Science and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA We investigated the underlying

Yildiz, Bilge

364

Argonne National Laboratory | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne National Laboratory Fighting friction Graphene offers dramatic improvement over conventional mechanical lubricants Read More Forecasting supply Researchers use real-world...

365

Sandia National Laboratories: National Security Missions: Internationa...  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Security casks We reduce proliferation and terrorism threats to U.S. national security through global technical engagement. Enhance security of vulnerable nuclear weapons...

366

Sandia National Laboratories: Jawaharlal Nehru Solar National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Jawaharlal Nehru Solar National Solar Energy Mission Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power,...

367

Sandia National Laboratories: National Rotor Testbed  

NLE Websites -- All DOE Office Websites (Extended Search)

National Rotor Testbed (NRT) includes research to quantify the degree to which the blade design load distribution influences the rotor near- and mid-wake velocity deficits and...

368

Sandia National Laboratories: National Security Missions: Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Technology National labs provide the science and technology to maintain and certify the nuclear stockpile in the absence of full-scale weapons testing. The facilities and...

369

Sandia National Laboratories: National Rotor Testbed Functional...  

NLE Websites -- All DOE Office Websites (Extended Search)

"Definition of the National Rotor Testbed: An Aeroelastically Relevant Research-Scale Wind Turbine Rotor." Approximately 60 researchers from various institutions and countries...

370

Sandia National Laboratories: Idaho National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho National Laboratory Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks On February 26, 2013, in Biofuels,...

371

Sandia National Laboratories: Computational Modeling & Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

have been named distinguished papers for the 34th International Symposium on Combustion held from July 29-August 3, 2012, in Warsaw, Poland. "Synchrotron photoionization...

372

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES  

E-Print Network (OSTI)

River Inter-Tribal Fish Commission, the National Research Council's Board on Environmental Studies Board (ISAB) and Independent Scientific Review Panel (ISRP). To help evaluate potential nominees, Dr. David Policansky of the National Research Council's Board on Environmental Studies and Toxicology sought

373

Nonproliferation and National Security Multimedia - Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation and National Security Nonproliferation and National Security > Multimedia Multimedia Nuclear Systems Analysis Engineering Analysis Nonproliferation and National Security Detection & Diagnostic Systems Engineering Development & Applications Argonne's Nuclear Science & Technology Legacy Other Multimedia Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Bookmark and Share Nonproliferation and National Security: Multimedia Related Resources Nonproliferation and National Security Vulnerability Assessment Team (VAT) Click on the "Date" header to sort the videos/podcasts in chronological order (ascending or descending). You may also search for a specific keyword; click on the reset button refresh to remove the keyword filter and show again all the Videos/Podcasts.

374

Sandia National Laboratories | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Sandia National Laboratories Sandia National Laboratories Home > About Us > Our Operations > Acquisition and Project Management > M & O Support Department > Sandia National Laboratories Sandia National Laboratories Sandia National Laboratories DE-AC04-94AL85000 Operated by Sandia Corporation a Subsidiary of Lockheed Martin Corporation Contract Updated to Modification 515 dated 09/09/2013 View previous Sandia Contract and Mods (M081-A201). BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Updated to Mod 515 dated 09/09/2013) (Unofficial) SNL M202 Section A (Supersedes Basic and all Mods) (pdf, 397KB) SNL M216 (9/15/04) (pdf, 439KB) SNL M202 SecA (Supersedes Basic and all Mods) (pdf, 397KB) SNL Sec B-H (doc, 314KB) SNL M218

375

Description and procedures for synchrotron radiation, small molecule, single crystal crystallography of plutonium complexes at ALS beamline 11.3.1  

E-Print Network (OSTI)

Description and Procedures for Synchrotron Radiation, Smallof RWA 1117. The RWA 1117 procedure for mounting radioactiveRadioactive Crystal Mounting Procedure: Equipment: Glove Box

Gorden, A.E.V.; Raymond, K.N.; Shuh, D.K.

2008-01-01T23:59:59.000Z

376

Dots, Clumps, and Filaments: The Intermittent Images of Synchrotron Emission in Random Magnetic Fields of Young Supernova Remnants  

Science Journals Connector (OSTI)

Nonthermal X-ray emission in some supernova remnants originates from synchrotron radiation of ultrarelativistic particles in turbulent magnetic fields. We address the effect of a random magnetic field on synchrotron emission images and spectra. A random magnetic field is simulated to construct synchrotron emission maps of a source with a steady distribution of ultrarelativistic electrons. Nonsteady localized structures (dots, clumps, and filaments), in which the magnetic field reaches exceptionally high values, typically arise in the random field sample. These magnetic field concentrations dominate the synchrotron emission (integrated along the line of sight) from the highest energy electrons in the cutoff regime of the distribution, resulting in an evolving, intermittent, clumpy appearance. The simulated structures resemble those observed in X-ray images of some young supernova remnants. The lifetime of X-ray clumps can be short enough to be consistent with that observed even in the case of a steady particle distribution. The efficiency of synchrotron radiation from the cutoff regime in the electron spectrum is strongly enhanced in a turbulent field compared to emission from a uniform field of the same magnitude.

Andrei M. Bykov; Yury A. Uvarov; Donald C. Ellison

2008-01-01T23:59:59.000Z

377

Tune modulation due to synchrotron oscillations and chromaticity, and the dynamic aperture  

SciTech Connect

A tracking study was done of the effects of a tune modulation, due to synchrotron oscillations and the tune dependence on momentum (chromaticity), on the dynamic aperture. The studies were done using several RHIC lattices and tracking runs of about 1 {times} 10{sup 6} turns. The dynamic aperture was found to decrease roughly linearly with the amplitude of the tune modulation and may be represented by A = A{sub o}(l--10 {Delta}{nu}) where A{sub o} is the dynamic aperture for {Delta}{nu} = 0, and {Delta}{nu} is the tune modulation amplitude. In Eq. (1), the range of {Delta}{nu} is such that lower order non-linear resonances, like the 1/3 and 1/4 resonance axe not crossed because of the tune modulation. Three different cases were studied, corresponding to RHIC lattices with different {beta}*, and with different synchrotron oscillation amplitudes. In each case, the tune modulation amplitude was varied by changing the chromaticity. In each case, roughly the same result, Eq. (1), was found. The result found here for the effect of a tune modulation due to chromaticity may be compared with the result found for the effect of a tune modulation due to a gradient ripple in the quadrupoles, which was A = A{sub o}(l--42 {Delta}{nu}). The effect of a {Delta}{nu} due to a gradient ripple appears to be about 4 times stronger than the effect of a {Delta}{nu} due to chromaticity and synchrotron oscillations.

Parzen, G.

1994-03-01T23:59:59.000Z

378

SANDIA NATIONAL LABORATORIES  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts on Sandia and the Nation Impacts on Sandia and the Nation 2 SANDIA NATIONAL LABORATORIES 3 LDRD Impacts on Sandia and the Nation For further information, contact: Wendy R. Cieslak Senior Manager, Science, Technology, and Engineering Strategic Initiatives wrciesl@sandia.gov (505) 844-8633 or Henry R. Westrich LDRD Program Manager hrwestr@sandia.gov 505-844-9092 LDRD Impacts on Sandia and the Nation ABOUT THE COVER: Images from some of the case studies in this brochure: a near-UV light- emitting diode (LED), a cell membrane, a NISAC model, synthetic aperture radar (SAR) image of Washington, D.C. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT 4 SANDIA NATIONAL LABORATORIES 5 LDRD Impacts on Sandia and the Nation Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) Program:

379

Argonne National Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

Argonne is a multidisciplinary science and engineering research center, where dream teams of world-class researchers work alongside experts from industry, academia and other government laboratories to address vital national challenges in clean energy, environment, technology and national security.

380

Sandia National Laboratories: Photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

Microelectronic Photovoltaics On June 13, 2012, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar Sandia National Laboratories semiconductor engineer...

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy and national values  

Science Journals Connector (OSTI)

Energy and national values ... The article also scrutinizes recent technical developments in coal, nuclear energy, and solar energy. ...

MICHAEL HEYLIN

1991-06-17T23:59:59.000Z

382

Sandia National Laboratories: photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Infrastructure Security National Solar Thermal Test Facility NSTTF photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar...

383

National Hydropower Map  

Energy.gov (U.S. Department of Energy (DOE))

High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

384

Experimental Study of Coherent Synchrotron Radiation in the Emittance Exchange Line at the A0-Photoinjector  

SciTech Connect

Next generation accelerators will require a high current, low emittance beam with a low energy spread. Such accelerators will employ advanced beam conditioning systems such as emittance exchangers to manipulate high brightness beams. One of the goals of the Fermilab A0 photoinjector is to investigate the transverse to longitudinal emittance exchange principle. Coherent synchrotron radiation could limit high current operation of the emittance exchanger. In this paper, we report on the preliminary experimental and simulation study of the coherent synchroton radiation (CSR) in the emittance exchange line at the A0 photoinjector.

Thangaraj, Jayakar C. T.; Thurman-Keup, R.; Johnson, A.; Lumpkin, A. H.; Edwards, H.; Ruan, J.; Santucci, J.; Sun, Y. E.; Church, M. [Fermi National Accelerator Labaratory, Batavia, IL, 60510 (United States); Piot, P. [Fermi National Accelerator Labaratory, Batavia, IL, 60510 (United States); Department of Physics, DeKalb, IL, 60115 (United States)

2010-11-04T23:59:59.000Z

385

Electric field detection of coherent synchrotron radiation in a storage ring generated using laser bunch slicing  

SciTech Connect

The electric field of coherent synchrotron radiation (CSR) generated by laser bunch slicing in a storage ring has been detected by an electro-optic sampling method. The gate pulses for sampling are sent through a large-mode-area photonic-crystal fiber. The observed electric field profile of the CSR is in good agreement with the spectrum of the CSR observed using Fourier transform far-infrared spectrometry, indicating good phase stability in the CSR. The longitudinal density profiles of electrons modulated by laser pulses were evaluated from the electric field profile.

Katayama, I. [Interdisciplinary Research Center, Yokohama National University, Yokohama 240-8501 (Japan); Shimosato, H.; Bito, M.; Furusawa, K. [Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); Adachi, M.; Zen, H.; Kimura, S.; Katoh, M. [UVSOR, Institute of Molecular Science, Okazaki 444-8585 (Japan); School of Physical Sciences, Graduate Universities for Advanced Studies (SOKENDAI), Okazaki 444-8585 (Japan); Shimada, M. [High Energy Accelerator Research Organization, KEK, Tsukuba 305-0801 (Japan); Yamamoto, N.; Hosaka, M. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Ashida, M. [Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); PRESTO, JST (Japan)

2012-03-12T23:59:59.000Z

386

rac-6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxamide from synchrotron data  

SciTech Connect

The crystal structure of the title water-soluble analogue of vitamin E, trolox amide, C{sub 14}H{sub 19}NO{sub 3}, solved and refined against synchrotron diffraction data, contains two molecules in the asymmetric unit. In both molecules, the heterocyclic ring is in a half-chair conformation. The crystal packing features a herring-bone pattern generated by N-H...O hydrogen bonds between the hydroxy and amide groups. O-H...O hydrogen bonds also occur.

Brzezinski, Krzysztof; Dauter, Zbigniew; Baj, Aneta; Walejko, Piotr; Witkowski, Stanislaw (Bialystok); (NCI)

2012-05-29T23:59:59.000Z

387

SYNCH: A program for design and analysis of synchrotrons and beamlines -- user`s guide  

SciTech Connect

SYNCH is a computer program for use in the design and analysis of synchrotrons, storage rings, and beamlines. It has a large repertoire of commands that can be accessed in a flexible way. The input statements and the results of the calculations they invoke are saved in an internal database so that this information may be shared by other statements. SYNCH is the first accelerator program to organize its input in the form of a language. The statements, which resemble sentences, provide a natural way of describing lattices and invoking relevant calculations. The organization of the program is modular, so that it has been possible to expand its capabilities progressively.

Garren, A.A.; Kenney, A.S.; Courant, E.D.; Russell, A.D.; Syphers, M.J.

1993-12-31T23:59:59.000Z

388

A portable molecular beam epitaxy system for in situ x-ray investigations at synchrotron beamlines  

SciTech Connect

A portable synchrotron molecular beam epitaxy (MBE) system is designed and applied for in situ investigations. The growth chamber is equipped with all the standard MBE components such as effusion cells with shutters, main shutter, cooling shroud, manipulator, reflection high energy electron diffraction setup, and pressure gauges. The characteristic feature of the system is the beryllium windows which are used for in situ x-ray measurements. An UHV sample transfer case allows in vacuo transfer of samples prepared elsewhere. We describe the system design and demonstrate its performance by investigating the annealing process of buried InGaAs self-organized quantum dots.

Slobodskyy, T. [Institute for Synchrotron Radiation, Karlsruhe Institute of Technology - 76344 Eggenstein-Leopoldshafen (Germany); Institut fuer Angewandte Physik und Zentrum fuer Mikrostrukturforschung, Jungiusstrasse 11, D-20355 Hamburg (Germany); Schroth, P.; Grigoriev, D.; Minkevich, A. A.; Baumbach, T. [Institute for Synchrotron Radiation, Karlsruhe Institute of Technology - 76344 Eggenstein-Leopoldshafen (Germany); Hu, D. Z.; Schaadt, D. M. [Institute for Applied Physics/DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Institute for Energy Research and Physical Technologies, Technical University Clausthal, Am Stollen 19B, 38640 Goslar (Germany)

2012-10-15T23:59:59.000Z

389

Engineer, Sandia National Laboratories | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Sandra Begay-Campbell Sandra Begay-Campbell Engineer, Sandia National Laboratories Sandra Begay-Campbell Sandra Begay-Campbell Role: Engineer, Sandia National Laboratories Award: Ely S. Parker Award Profile: Sandra Begay-Campbell, a Sandia National Laboratories engineer and a member of the Navajo Nation, was selected for the prestigious Ely S. Parker Award by the American Indian Science and Engineering Society at an honors banquet Oct. 31 in Portland, Ore. Begay-Campbell, who has worked at Sandia for 17 years and is a principal member of the technical staff, received the Lifetime Achievement Award, AISES's highest honor, which recognizes American Indians who have "made significant long-term contributions in the sciences, mathematics, engineering, technology, health, or related fields."

390

Leadership | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Message from the Director Board of Governors Organization Chart Argonne Distinguished Fellows Emeritus Scientists & Engineers History Discoveries Prime Contract Contact Us Leadership Argonne integrates world-class science, engineering, and user facilities to deliver innovative research and technologies. We create new knowledge that addresses the scientific and societal needs of our nation. Eric D. Isaacs Eric D. Isaacs, Director, Argonne National Laboratory Director, Argonne National Laboratory Argonne National Laboratory Eric D. Isaacs, a prominent University of Chicago physicist, is President of UChicago Argonne, LLC, and Director of Argonne National Laboratory. Mark Peters Mark Peters, Deputy Lab Director for Programs Deputy Laboratory Director for Programs

391

SIMULATIONS OF PARTICLE ACCELERATION BEYOND THE CLASSICAL SYNCHROTRON BURNOFF LIMIT IN MAGNETIC RECONNECTION: AN EXPLANATION OF THE CRAB FLARES  

SciTech Connect

It is generally accepted that astrophysical sources cannot emit synchrotron radiation above 160 MeV in their rest frame. This limit is given by the balance between the accelerating electric force and the radiation reaction force acting on the electrons. The discovery of synchrotron gamma-ray flares in the Crab Nebula, well above this limit, challenges this classical picture of particle acceleration. To overcome this limit, particles must accelerate in a region of high electric field and low magnetic field. This is possible only with a non-ideal magnetohydrodynamic process, like magnetic reconnection. We present the first numerical evidence of particle acceleration beyond the synchrotron burnoff limit, using a set of two-dimensional particle-in-cell simulations of ultra-relativistic pair plasma reconnection. We use a new code, Zeltron, that includes self-consistently the radiation reaction force in the equation of motion of the particles. We demonstrate that the most energetic particles move back and forth across the reconnection layer, following relativistic Speiser orbits. These particles then radiate >160 MeV synchrotron radiation rapidly, within a fraction of a full gyration, after they exit the layer. Our analysis shows that the high-energy synchrotron flux is highly variable in time because of the strong anisotropy and inhomogeneity of the energetic particles. We discover a robust positive correlation between the flux and the cut-off energy of the emitted radiation, mimicking the effect of relativistic Doppler amplification. A strong guide field quenches the emission of >160 MeV synchrotron radiation. Our results are consistent with the observed properties of the Crab flares, supporting the reconnection scenario.

Cerutti, B.; Werner, G. R.; Uzdensky, D. A. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Begelman, M. C., E-mail: benoit.cerutti@colorado.edu, E-mail: greg.werner@colorado.edu, E-mail: uzdensky@colorado.edu, E-mail: mitch@jila.colorado.edu [JILA, University of Colorado and National Institute of Standards and Technology, UCB 440, Boulder, CO 80309-0440 (United States)

2013-06-20T23:59:59.000Z

392

National Transmission Grid Study  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Study Grid Study U.S. Department of Energy The Honorable Spencer Abraham Secretary of Energy May 2002 ii National Transmission Grid Study National Transmission Grid Study i ii National Transmission Grid Study National Transmission Grid Study iii How This Study Was Conducted The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE's Policy Office Electricity Modeling System (POEMS). DOE's analysis, presented in Section 2, confirms the central role of the nation's transmission

393

Argonne National Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Argonne National Laboratory Activity Reports 2012 Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility, July 2012 Review Reports 2011 Review of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Readiness Assessment (Implementation Verification Review Sections), November 2011 Nuclear Safety Enforcement Regulatory Assistance Review of UChicago Argonne, LLC at the Argonne National Laboratory, October 3, 2011 Activity Reports 2011 Orientation Visit to the Argonne National Laboratory, August 2011 Review Reports 2005 Independent Oversight Inspection of Environment, Safety and Health Programs at Argonne National Laboratory, Summary Report, Vol. 1, May, 2005 Independent Oversight Inspection of Environment, Safety, and Health Programs at the Argonne National Laboratory, Technical Appendices, Volume II, May 2005

394

Sulfur in the Timbers of Henry VIII's Warship Mary Rose: Synchrotrons  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur in the Timbers of Henry Sulfur in the Timbers of Henry VIII's Warship Mary Rose: Synchrotrons Illuminate Conservation Concerns Magnus Sandström,1 Farideh Jalilehvand,2 Emiliana Damian,1 Yvonne Fors,1 Ulrik Gelius,3 Mark Jones,4 and Murielle Salomé5 1Structural Chemistry, Stockholm University, Sweden 2Department of Chemistry, University of Calgary, Alberta, Canada 3Department of Physics, Uppsala University, Sweden 4The Mary Rose Trust, HM Naval Base, Portsmouth, UK 5European Synchrotron Radiation Facility (ESRF), Grenoble, France Figure 1.The starboard side of the Mary Rose (about ½ of the hull, ~280 tons oak timbers) is since 1994 being sprayed with an aqueous solution of PEG 200. Figure 2. Sulfur K-edge XANES spectrum of Mary Rose oak core surface (0-3 mm). Standard spectra used for model fitting: 1 (solution), 1' (solid) disulfides R-SS-R (cystine with peaks at 2472.7 and 2474.4 eV); 45%; 2: Thiols R-SH (cysteine, 2473.6 eV) 23%; 3: Elemental sulfur (S8 in xylene 2473.0 eV) 10%; 4: Sulfoxide R(SO)R' (methionine sulfoxide, 2476.4 eV) 5%; 5: Sulfonate R-SO3- (methyl sulfonate, 2481.2 eV) 10%; 6: Sulfate SO42- (sodium sulfate, 2482.6 eV) 7%.

395

A compact design for a magnetic synchrotron to store beams of hydrogen atoms  

E-Print Network (OSTI)

We present a design for an atomic synchrotron consisting of 40 hybrid magnetic hexapole lenses arranged in a circle. We show that for realistic parameters, hydrogen atoms with a velocity up to 600 m/s can be stored in a 1-meter diameter ring, which implies that the atoms can be injected in the ring directly from a pulsed supersonic beam source. This ring can be used to study collisions between stored hydrogen atoms and molecular beams of many different atoms and molecules. The advantage of using a synchrotron is two-fold: (i) the collision partners move in the same direction as the stored atoms, resulting in a small relative velocity and thus a low collision energy, and (ii) by storing atoms for many round-trips, the sensitivity to collisions is enhanced by a factor of 100-1000. In the proposed ring, the cross-sections for collisions between hydrogen, the most abundant atom in the universe, with any atom or molecule that can be put in a beam, including He, H$_2$, CO, ammonia and OH can be measured at energies...

van der Poel, Aernout P P; Softley, Timothy P; Bethlem, Hendrick L

2015-01-01T23:59:59.000Z

396

Atomic and Molecular Photoelectron and Auger Electron SpectroscopyStudies Using Synchrotron Radiation  

SciTech Connect

Electron spectroscopy, combined with synchrotron radiation, was used to measure the angular distributions of photoelectrons and Auger electrons from atoms and molecules as functions of photon energy. The branching ratios and partial cross sections were a 130 measured in certain cases. By comparison with theoretical calculations, the experimental results are interpreted in terms of the characteristic electronic structure and ionization dynamics of the atomic or molecular sample. The time structure of the synchrotron radiation source was used to record time-of-flight (TOF) spectra o f the ejected electrons. The ''a double-angle-TOF'' method for the measurement of photoelectron angular distributions is discussed. This technique offers the advantages of increased electron collect ion efficiency and the elimination of certain systematic errors. Several results were obtained for Xe using photon energies in the range hv {approx_equal} 60-190 eV, where excitation and ionization of the inner-subshell 4d electrons dominates. The 4d asymmetry parameter {beta} exhibits strong oscillations with energy, in agreement with several theoretical calculations. As predicted, the 5p asymmetry parameter was observed to deviate strongly from that calculated using the independent-electron model, due to intershell correlation with the 4d electrons.

Southworth, Stephen H.

1982-01-01T23:59:59.000Z

397

Lattice for a 1. 1-GeV 500. mu. A fast-cycling proton synchrotron  

SciTech Connect

A very-high-intensity proton synchrotron lattice has been designed for a spallation neutron-source system. The synchrotron is to accelerate a beam of 6.25 x 10/sup 13/ protons from 200 MeV to 1100 MeV in 15 msec. One of the important concerns for high-intensity, high-rep-rate (50 pulses/sec) machines is stability of the beam. Considerations of the transverse space-charge limits and the transverse-stability criterion favor a high-tune machine over a low-tune machine of the same circumference. For these reasons, we made the tune as high as possible by making the cell length as short as possible. The lattice proposed here consists of four sectors, and each sector is made up by three FODO normal cells, four dispersion suppressor cells, and four matching and straight section cells. Then the total of 44 cells with approximately 90/sup 0//cell phase advance would make the natural tune of the machine to be near 11.

Cho, Y.

1983-01-01T23:59:59.000Z

398

Accelerated Synchrotron X-ray Diffraction Data Analysis on a Heterogeneous High Performance Computing System  

Science Journals Connector (OSTI)

The analysis of synchrotron X-ray Diffraction (XRD) data has been used by scientists and engineers to understand and predict properties of materials. However, the large volume of XRD image data and the intensive computations involved in the data analysis makes it hard for researchers to quickly reach any conclusions about the images from an experiment when using conventional XRD data analysis software. Synchrotron time is valuable and delays in XRD data analysis can impact decisions about subsequent experiments or about materials that they are investigating. In order to improve the data analysis performance, ideally to achieve near real time data analysis during an XRD experiment, we designed and implemented software for accelerated XRD data analysis. The software has been developed for a heterogeneous high performance computing (HPC) system, comprised of IBM PowerXCell 8i processors and Intel quad-core Xeon processors. This paper describes the software and reports on the improved performance. The results indicate that it is possible for XRD data to be analyzed at the rate it is being produced.

J Qin; M A Bauer

2010-01-01T23:59:59.000Z

399

Radio Synchrotron Emission from Secondary Leptons in the Vicinity of Sgr A*  

E-Print Network (OSTI)

A point-like source of ~TeV gamma-rays has recently been seen towards the Galactic center by HESS and other air Cerenkov telescopes. In recent work (Ballantyne et al. 2007), we demonstrated that these gamma-rays can be attributed to high-energy protons that (i) are accelerated close to the event horizon of the central black hole, Sgr A*, (ii) diffuse out to ~pc scales, and (iii) finally interact to produce gamma-rays. The same hadronic collision processes will necessarily lead to the creation of electrons and positrons. Here we calculate the synchrotron emissivity of these secondary leptons in the same magnetic field configuration through which the initiating protons have been propagated in our model. We compare this emission with the observed ~GHz radio spectrum of the inner few pc region which we have assembled from archival data and new measurements we have made with the Australia Telescope Compact Array. We find that our model predicts secondary synchrotron emission with a steep slope consistent with the observations but with an overall normalization that is too large by a factor of ~ 2. If we further constrain our theoretical gamma-ray curve to obey the implicit EGRET upper limit on emission from this region we predict radio emission that is consistent with observations, i.e., the hadronic model of gamma ray emission can, simultaneously and without fine-tuning, also explain essentially all the diffuse radio emission detected from the inner few pc of the Galaxy.

Roland M. Crocker; David Jones; David R. Ballantyne; Fulvio Melia

2007-08-07T23:59:59.000Z

400

Photostimulated phosphor based image plate detection system for HRVUV beamline at Indus-1 synchrotron radiation source  

E-Print Network (OSTI)

A high resolution vacuum ultraviolet (HRVUV) beamline based on a 6.65 meter off-plane Eagle spectrometer is in operation at the Indus-1 synchrotron radiation source, RRCAT, Indore, India. To facilitate position sensitive detection and fast spectral recording, a new BaFBr:Eu2+ phosphor based image plate (IP) detection system interchangeable with the existing photomultiplier (PMT) scanning system has been installed on this beamline. VUV photoabsorption studies on Xe, O2, N2O and SO2 are carried out to evaluate the performance of the IP detection system. An FWHM of ~ 0.5 {\\AA} is achieved for the Xe atomic line at 1469.6 {\\AA}. Reproducibility of spectra is found to be within the experimental resolution. Compared to the PMT scanning system, the IP shows several advantages in terms of sensitivity, recording time and S/N ratio, which are highlighted in the paper. This is the first report of incorporation of an IP detection system in a VUV beamline using synchrotron radiation. Commissioning of the new detection sys...

Haris, K; Shastri, Aparna; K., Sunanda; K., Babita; Rao, S V N Bhaskara; Ahmad, Shabbir; Tauheed, A

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Synchrotron Radiation Circular Dichroism (SRCD) Spectroscopy - An Enhanced Method for Examining Protein Conformations and Protein Interactions  

SciTech Connect

CD (circular dichroism) spectroscopy is a well-established technique in structural biology. SRCD (synchrotron radiation circular dichroism) spectroscopy extends the utility and applications of conventional CD spectroscopy (using laboratory-based instruments) because the high flux of a synchrotron enables collection of data at lower wavelengths (resulting in higher information content), detection of spectra with higher signal-to-noise levels and measurements in the presence of absorbing components (buffers, salts, lipids and detergents). SRCD spectroscopy can provide important static and dynamic structural information on proteins in solution, including secondary structures of intact proteins and their domains, protein stability, the differences between wild-type and mutant proteins, the identification of natively disordered regions in proteins, and the dynamic processes of protein folding and membrane insertion and the kinetics of enzyme reactions. It has also been used to effectively study protein interactions, including protein-protein complex formation involving either induced-fit or rigid-body mechanisms, and protein-lipid complexes. A new web-based bioinformatics resource, the Protein Circular Dichroism Data Bank (PCDDB), has been created which enables archiving, access and analyses of CD and SRCD spectra and supporting metadata, now making this information publicly available. To summarize, the developing method of SRCD spectroscopy has the potential for playing an important role in new types of studies of protein conformations and their complexes.

B Wallace; R Janes

2011-12-31T23:59:59.000Z

402

Application of Partially coherent Wavefront Propagation Calculations for Design of Coherence-Preserving Synchrotron Radiation Beamlines  

SciTech Connect

Ultra-low emittance third-generation synchrotron radiation (SR) sources, such as NSLS-II and MAX-IV, will offer excellent opportunities for further development of experimental techniques exploiting X-ray coherence. However, even in these new SR sources, the radiation produced by relativistic electrons (in undulators, wigglers and bending magnets) will remain only partially coherent in the X-ray spectral range. 'Extraction' of 'coherent portion' of the radiation flux and its transport to sample without loss of coherence must be performed by dedicated SR beamlines, optimized for particular types of experiments. Detailed quantitative prediction of partially coherent X-ray beam properties at propagation through optical elements, which is required for the optimization of such beamlines, can only be obtained from accurate and efficient physical-optics based numerical simulations. Examples of such simulations, made for NSLS-II beamlines, using 'Synchrotron Radiation Workshop' (SRW) computer code, are presented. Special attention is paid to the numerical analysis of the basic properties of partially coherent undulator radiation beam and its distinctions from the Gaussian beam. Performance characteristics of importance for particular beamlines, such as radiation spot size and flux at sample vs size of secondary source aperture for high-resolution microscopy beamlines, are predicted by the simulations.

O Chubar; Y Chu; K Kaznatcheev; h Yan

2011-12-31T23:59:59.000Z

403

Synchrotron and inverse-Compton emissions from pairs formed in GRB afterglows (analytical treatment)  

E-Print Network (OSTI)

We calculate the synchrotron and inverse-Compton emissions from pairs formed in GRB afterglows from high-energy photons (above 100 MeV), assuming a power-law photon spectrum C_nu ~ nu^{-2} and considering only the pairs generated from primary high-energy photons. The essential properties of these pairs (number, minimal energy, cooling energy, distribution with energy) and of their emission (peak flux, spectral breaks, spectral slope) are set by the observables GeV fluence Phi (t) = Ft and spectrum, and by the Lorentz factor Gamma and magnetic field B of the source of high-energy photons, at observer-time t. Optical and X-ray pseudo--light-curves F_nu (Gamma) are calculated for given B; proper synchrotron self-Compton light-curves are calculated by setting the dynamics Gamma(t) of the high-energy photons source to be that of a decelerating, relativistic shock. It is found that the emission from pairs can accommodate the flux and decays of the optical flashes measured during the prompt (GRB) phase and of the fa...

Panaitescu, A

2014-01-01T23:59:59.000Z

404

Perturbative theory of grazing-incidence diffuse nuclear resonant scattering of synchrotron radiation  

SciTech Connect

Theoretical description of off-specular grazing-incidence nuclear resonant scattering of synchrotron radiation (synchrotron Moessbauer reflectometry, SMR) is presented. The recently developed SMR, similar to polarized neutron reflectometry (PNR), is an analytical tool for the determination of isotopic and magnetic structure of thin films and multilayers. It combines the sensitivity of Moessbauer spectroscopy to hyperfine interactions and the depth selectivity of x-ray reflectometry. Specular reflection provides information on the depth profile, while off-specular scattering on the lateral structure of scattering layers. Off-specular SMR and PNR intensity formulas of a rather general multilayer with different domains, based on a distorted incident-wave approximation (DIWA), are presented. The distorted-wave Born approximation results are given in an appendix. Physical and numerical implications, of using DIWA are explained. The temporal character of SMR imposes specific differences between SMR and PNR. In order to reveal the limits of DIWA and to compare the two analytical methods, two-dimensional diffuse SMR and PNR maps of an antiferromagnetic multilayer are calculated and critically compared. Experimental ''{omega}-2{theta}'' SMR map of a periodic [Fe/Cr]{sub 20} multilayer is presented and compared with simulations by the present theory.

Deak, L.; Bottyan, L.; Nagy, D. L. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Spiering, H. [Institut fuer Anorganische und Analytische Chemie, Johannes Gutenberg Universitaet Mainz, Staudinger Weg 9, D-55099 Mainz (Germany); Khaidukov, Yu. N. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation); Yoda, Y. [SPring-8 JASRI, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198 (Japan)

2007-12-01T23:59:59.000Z

405

Polarized Mid-Infrared Synchrotron Emission in the Core of Cygnus A  

E-Print Network (OSTI)

We present high-angular (~0.4") resolution mid-infrared (MIR) polarimetric observations in the 8.7 ${\\mu}$m and 11.6 ${\\mu}$m filters of Cygnus A using CanariCam on the 10.4-m Gran Telescopio CANARIAS. A highly polarized nucleus is observed with a degree of polarization of 11${\\pm}$3% and 12${\\pm}$3% and position angle of polarization of 27${\\pm}$8 degrees and 35${\\pm}$8 degrees in a 0.38" (~380 pc) aperture for each filter. The observed rising of the polarized flux density with increasing wavelength is consistent with synchrotron radiation from the pc-scale jet close to the core of Cygnus A. Based on our polarization model, the synchrotron emission from the pc-scale jet is estimated to be 14% and 17% of the total flux density in the 8.7 ${\\mu}$m and 11.6 ${\\mu}$m filters, respectively. A blackbody component with a characteristic temperature of 220 K accounts for >75% of the observed MIR total flux density. The blackbody emission arises from a combination of (1) dust emission in the torus; and (2) diffuse dus...

Lopez-Rodriguez, E; Tadhunter, C; Mason, R; Perlman, E; Alonso-Herrero, A; Almeida, C Ramos; Ichikawa, K; Levenson, N A; Rodr?guez-Espinosa, J M; Alvarez, C A; Ram?rez, E A; Telesco, C M

2014-01-01T23:59:59.000Z

406

Summary of a workshop on high heat load X-ray optics held at argonne national laboratory  

Science Journals Connector (OSTI)

A workshop on High Heat Load X-Ray Optics was held at Argonne National Laboratory on August 35, 1989. The workshop was co-sponsored by the Advanced Photon Source and the European Synchrotron Radiation Facility and served as a satellite conference to SR189. The object of this workshop was to discuss recent advances in the art of cooling X-ray optics subject to high heat loads from synchrotron beams. The cooling of the first optical element in the intense photon beams that will be produced in the next generation of synchrotron sources is recognized as one of the major challenges that must be faced before one will be able to use these very intense beams. Considerable advances have been made in this art during the last few years, but much work remains to be done before the heating problem can be said to be completely solved. Special emphasis was placed on recent cooling experiments and detailed finite-element and finite-difference calculations comparing experiment with theory and extending theory to optimize performance. Copies of the Proceedings can be obtained from B. Meyer, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA.

Robert K. Smither

1990-01-01T23:59:59.000Z

407

Vacuum performance of the Synchroton Radiation Research Center 1.3 GeV synchrotron light source  

Science Journals Connector (OSTI)

The operation of the Synchrotron Radiation Research Center 1.3 GeV synchrotron light source vacuum system shows good features of quick beam self?cleaning low carbonaceous gas desorption and less dust. The phenomenon of the photon induced desorption (PID) has been studied. Recently a set of new vacuum chambers for wiggler were installed and the commissioning of the storage ring was restarted. The pressure rise and the PID coefficients during the beam running both in the straight and bending chambers were compared. The performance of the overall vacuum system is to be described.

G. Y. Hsiung; J. R. Huang; J. G. Shyy; D. J. Wang; J. R. Chen; Y. C. Liu

1996-01-01T23:59:59.000Z

408

Organic Particles Kevin Wilson Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA  

NLE Websites -- All DOE Office Websites (Extended Search)

for Studying the Chemical Transformations of for Studying the Chemical Transformations of Organic Particles Kevin Wilson Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Molecular weight growth and decomposition chemistries play important roles in the transformation of particles from soot formation to atmospheric aerosol oxidation. Understanding these complex reaction pathways requires novel methods of analyzing particle phase hydrocarbons. We are developing a suite of synchrotron-based tools to provide better insights into the molecular composition, isomer distribution, and elemental composition of complex hydrocarbon mixtures, aimed at developing simple yet realistic descriptions of molecular weight growth and decomposition that occur during a heterogeneous reaction.

409

Sandia National Laboratories | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Kevin Eklund Kevin Eklund Sandia National Laboratories Kevin Eklund Kevin Eklund Role: Sandia National Laboratories Profile: Two individuals and nine teams received the NNSA Defense Programs Awards of Excellence at ceremonies this year at Sandia National Laboratories in New Mexico and California. The NNSA Defense Programs Awards of Excellence were created in the early 1980s to give special recognition to those at the laboratories and plants directly associated with the stockpile modernization program. Today, the awards honor exceptional contributions to the stewardship and management of the stockpile. Kevin Eklund is recognized for outstanding technical leadership of Sandia's responsibilities in successfully achieving the B61 ALT 357 Life Extension Program (LEP). Kevin led the majority of the qualification testing for the

410

Researcher, Lawrence Livermore National Laboratory | National Nuclear  

National Nuclear Security Administration (NNSA)

Bruce Macintosh Bruce Macintosh Researcher, Lawrence Livermore National Laboratory Bruce Macintosh Bruce Macintosh Role: Researcher, Lawrence Livermore National Laboratory Award: AAAS Newcomb Cleveland Prize Profile: A Lawrence Livermore National Laboratory researcher's paper published in November 2008 is co-winner of this year's American Association for the Advancement of Science (AAAS) Newcomb Cleveland Prize. The Paper is one of two outstanding papers published in Science from June 1, 2008 through May 31, 2009. Bruce Macintosh of the Physics and Life Science Directorate was one of the lead authors of the paper titled, "Direct Imaging of Multiple Planets orbiting the Star HR 8799," which appeared in the Nov. 28, 2008 edition of Science. Christian Marois, a former LLNL postdoc now at NRC Herzberg

411

National Energy Policy  

NLE Websites -- All DOE Office Websites (Extended Search)

National Energy Policy National Energy Policy Reliable, Affordable, and Environmentally Sound Energy for America's Future Report of the National Energy Policy Development Group "The National Energy Policy released today by President Bush marks an historic first step to addressing long-neglected energy challenges. Given our growing economy and rising standard of living we are faced with an energy crisis. The President's National Energy Plan balances America's supply needs through technology, diversity of supply and conservation and paves the way for America's energy future." -- Secretary of Energy, Spencer Abraham Complete Report of the National Energy Policy Development Group [PDF-2500KB] By individual chapter: Foreword [PDF-224KB] Overview [PDF-142KB] Chapter 1 - Taking Stock [PDF-1070KB]

412

National Security Science Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

National Security Science » National Security Science » NSS Archive National Security Science magazine Latest Issue:April 2013 All Issues » submit National Security Science Archive Using its broad and unique scientific and engineering capabilities, the Laboratory solves a diverse set of challenges to national and global security and the weapons programs. National Security Science magazine showcases the breadth and depth of the Laboratory's scientific and technical work to policy makers, the general public, academia, and scientific and technical experts. past issues cover Issue 2 2012 interactive | web | pdf past issues cover Issue 1 2012 interactive | web | pdf past issues cover Issue 3 2011 web | pdf past issues cover Issue 2 2011 web | pdf past issues cover Issue 1 2011 web | pdf past issues cover

413

National Nuclear Security Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Nuclear Security Administration Finding of No Significant Impact for the Construction and Operation of a New Office Building and Related Structures within TA-3 at Los Alamos National Laboratory, Los Alamos, New Mexico U. S. Department of Energy National Nuclear Security Administration Los Alamos Area Office 528 35th Street Los Alamos, N M 8 7 5 4 4 DEPARTMENT OF ENERGY. NATIONAL NUCLEAR SECUIRTY ADMINISTRATION FINDING OF NO SIGNIFICANT INIPACT Construction and Operation of a New Office Building and Related Structures withinTA-3 at Los Alarnos National Laboratory, Los Alamos. New Mexico FINAL ENVIRONMENTAL ASSESSMENT: The Environmental Assessment (EA) for Construction and Operation of a New Office Building and Related Structures within TA-3 at L os Alamos National Laboratory, Los Alamos, New Mexico (DOE/EA- 7 375)

414

National Nuclear Security Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AI~W~~l AI~W~~l 11Vl'~~4 National Nuclear Security Administration Department of Energy National Nuclear Security Administration Nevada Site Office P.O. Box 98518 Las Vegas, NV 89193-8518 JAN! 8 2013 Gregory H. Woods, General Counsel, DOE/HQ (GC-1) FORS NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE (NNSA/NSO) NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) ANNUAL SUMMARY In accordance with DOE Order 451.1B, National Environmental Policy Act Compliance Program, NNSA/NSO is submitting the enclosed Annual NEP A Planning Summary. The document provides a brief description of ongoing and planned NEP A actions for calendar year 2013. This summary provides information for completion of the Site- Wide Environmental Impact Statement for the Nevada National Security Site and Off-Site Locations in the State of Nevada.

415

National Nuclear Security Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Nuclear Security Administration National Nuclear Security Administration Ofice of Secure Transportation mKlK= Box RQMM= ^luquerqueI= kj= UTNUR= ;JAN 03 213 MEMORANDUM FOR GREGORY eK= WOODS GENERAL COUNSEL DEPARTMENT OF ENERGY FROM: SUBJECT: JEFFREY P. HARREL ASSIST ANT DEPU FOR SECURE 2013 ANNUAL PLANNING SUMMARY In response to your memorandum of December TI= 2012, the following information is provided for the National Nuclear Security Administration Ofice of Secure

416

NewsListings  

NLE Websites -- All DOE Office Websites (Extended Search)

NewsListings NewsListings Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES LCLS : Linac Coherent Light Source An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar LCLS Lasers Expand Lasers LCLS Quick Launch Home About LCLS Expand About LCLS LCLS News Expand LCLS News User Resources Expand User Resources Instruments Expand Instruments Proposals Publications Expand Publications Schedules Machine Status Machine FAQs Safety Organization Expand Organization Directories Expand Directories Staff Resources Contact Us All Site Content Department of Energy Page Content News X-ray Laser Maps Important Drug Target Thursday, December 19, 2013 LCLS News Researchers have used one of the brightest X-ray sources on the planet to map the 3-D structure of an important cellular gatekeeper known as a G protein-coupled receptor, or GPCR, in a more natural state than possible before. The new technique is a major advance in exploring GPCRs, a vast, hard-to-study family of proteins that plays a key role in human health and is targeted by an estimated 40 percent of modern medicines.

417

National Nanotechnology Initiative  

Office of Science (SC) Website

National National Nanotechnology Initiative (NNI) Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Nanomaterials ES&H Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » Research National Nanotechnology Initiative (NNI)

418

A National Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

National Resource National Resource for Industry Manufacturing DeMonstration facility As the nation's premier research laboratory, Oak Ridge National Laboratory is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. These industries call upon ORNL's expertise in materials synthesis, characterization, and process technology to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing processes and materials targeting products of the future. The Department of Energy's first Manufacturing Demonstration Facility (MDF), established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy and

419

National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

i. i. Message from the Administrator President Obama has reshaped our national security priorities making enterprise infrastructure modernization with integrated Information Technology (IT) capabilities a key strategic initiative. Our IT infrastructure must ensure that our workforce can access appropriate information in a secure, reliable, and cost-effective manner. Effective information sharing throughout the government enhances the national security of the United States (US). For the National Nuclear Security Administration (NNSA), effective information sharing helps strengthen our nuclear security mission; builds collaborative networks within NNSA as well as with the Department of Energy (DOE), Department of Defense (DoD), and other national security

420

Sandia National Laboratories: TCES  

NLE Websites -- All DOE Office Websites (Extended Search)

TCES Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Sandia National Laboratories: NSTTF  

NLE Websites -- All DOE Office Websites (Extended Search)

NSTTF Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

422

Procurement | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Video "Doing business with Argonne and Fermi national labs" - Aug. 21, 2013 Procurement Argonne spends approximately 300,000,000 annually through procurements to a diverse group...

423

Procurement | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Procurement More than 150 attend second joint Argonne-Fermilab small business fairSeptember 2, 2014 On Thursday, Aug. 28, Illinois' two national laboratories - Argonne and Fermi...

424

News | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

News Argonne Laboratory Director Peter Littlewood (left) talks with a small business owner during the second annual "Doing Business with Argonne and Fermi National Laboratories"...

425

Materials | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

today New high-tech materials are the key to breakthroughs in biology, the environment, nuclear energy, transportation and national security. Argonne continues to make...

426

National RES Las Vegas  

Energy.gov (U.S. Department of Energy (DOE))

RES Las Vegas is another multifaceted event from The National Center which will feature unparalleled access to respected tribal leaders, members of congress, federal agency representatives, state...

427

National Laboratory Liaisons  

Energy.gov (U.S. Department of Energy (DOE))

The following U.S. Department of Energy national laboratory liaisons serve as primary contacts for the Federal Energy Management Program.

428

National Geothermal Student Competition  

Energy.gov (U.S. Department of Energy (DOE))

The EnergyDepartment's National Geothermal Student Competition (GSC) seeks students interested in building and showcasing scientific research, communication and leadership skills to convey the...

429

Sandia National Laboratories: Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

430

Sandia National Laboratories: PWR  

NLE Websites -- All DOE Office Websites (Extended Search)

PWR Pratt Whitney Rocketdyne Testing On December 19, 2012, in Concentrating Solar Power, EC, Energy, Facilities, National Solar Thermal Test Facility, News, News & Events,...

431

Sandia National Laboratories: Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

432

Sandia National Laboratories: Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

433

National Cybersecurity Awareness Month  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Cybersecurity Awareness Month (NCSAM) October 2013 Every October, the Department of Energy joins the Department of Homeland Security (DHS) and others across the country...

434

Sandia National Laboratories: Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

EnergyBiomass Biomass Sandia spearheads research into energy alternatives that will help the nation reduce its dependence on fossil fuels and to combat the effects of climate...

435

Sandia National Laboratories: Climate  

NLE Websites -- All DOE Office Websites (Extended Search)

Geoscience, Climate and Consequence Effect at Sandia National Laboratories presented on "Hydraulic Fracturing: Role of Government-Sponsored R&D." Marianne's presentation was part...

436

Sandia National Laboratories: Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Geoscience, Climate and Consequence Effect at Sandia National Laboratories presented on "Hydraulic Fracturing: Role of Government-Sponsored R&D." Marianne's presentation was part...

437

National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

University of California Extend Management Contracts For Defense Labs The Department of Energy (DOE), the National Nuclear Security Administration (NNSA) and the University of...

438

Sandia National Laboratories: solar  

NLE Websites -- All DOE Office Websites (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

439

Sandia National Laboratories: MSTL  

NLE Websites -- All DOE Office Websites (Extended Search)

Thanks to their significant collaboration, AREVA's solar team and Sandia's ... Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in...

440

Sandia National Laboratories: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

This public benchmark represents analysis ... A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sandia National Laboratories: NRT  

NLE Websites -- All DOE Office Websites (Extended Search)

National Rotor Testbed (NRT) includes research to quantify the degree to which the blade design load distribution influences the rotor near- and mid-wake velocity deficits and...

442

National Day of Remembrance  

SciTech Connect

Ames Laboratory observed the National Day of Remembrance for weapons workers from the Cold War era with a ceremony held Oct. 27, 2009 at the Ames Public Library.

None

2010-01-01T23:59:59.000Z

443

Idaho National Laboratory Newsroom  

NLE Websites -- All DOE Office Websites (Extended Search)

list of common INL acronyms and abbreviations. Page Contact Information: Nicole Stricker (208) 526-5955 Email Contact Feature Story Counting the ways Idaho National...

444

National Laboratory Photovoltaics Research  

Energy.gov (U.S. Department of Energy (DOE))

DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

445

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2010; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" "...

446

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" "...

447

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" "...

448

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2002; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" "...

449

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit:...

450

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

0.5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy...

451

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit:...

452

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy...

453

National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

the Earth's Surface. The second virtual classroom to the student was presented by Tommy Smith from Lawrence Livermore National Laboratory on various sources of energy, its use and...

454

Discoveries | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

nation's pressing scientific and technological challenges. Robert Fischetti and Janet Smith developed the first micro X-ray beam for structural biology at Argonne's Advanced...

455

National Day of Remembrance  

ScienceCinema (OSTI)

Ames Laboratory observed the National Day of Remembrance for weapons workers from the Cold War era with a ceremony held Oct. 27, 2009 at the Ames Public Library.

None

2013-03-01T23:59:59.000Z

456

National Hydrogen Learning Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC v8 National Renewable Energy Laboratory 2 Innovation for...

457

Sandia National Laboratories: Photovoltaics  

NLE Websites -- All DOE Office Websites (Extended Search)

device technology, and advanced PV systems analysis. Learn More Grid Integration The Grid Integration Program at Sandia National Laboratories addresses technical barriers to...

458

A comparative study of X-ray tomographic microscopy on shales at different synchrotron facilities: ALS, APS and SLS  

Science Journals Connector (OSTI)

The 3D microstructure of shales is important to assess elastic anisotropic characteristics. In this study, microporosity and mineral components in two shale samples were investigated with X-ray tomographic microscopy at three synchrotron facilities: ALS, APS and SLS, and excellent agreement was observed.

Kanitpanyacharoen, W.

2012-11-22T23:59:59.000Z

459

Analysis of the Ce 3d-4d4d Auger spectrum with the use of synchrotron radiation  

Science Journals Connector (OSTI)

We report 3d-4d4d Auger spectra of Ce metal with the use of synchrotron radiation to excite the initial core hole. By sweeping the excitation energy through the 3d?4f threshold, it has been possible to excite different initial states selectively, enabling us to analyze the complex spectrum in terms of different contributions arising from various decay channels.

D. D. Sarma; C. Carbone; R. Cimino; P. Sen; W. Gudat; W. Eberhardt

1993-03-01T23:59:59.000Z

460

Present and Future Optics Challenges at CHESS and for Proposed Energy Recovery Linac Source of Synchrotron Radiation  

E-Print Network (OSTI)

Present and Future Optics Challenges at CHESS and for Proposed Energy Recovery Linac Source-ray optics, energy-recovery linac, high brilliance 1. INTRODUCTION As one of the pioneer synchrotron in the area of high heat load and high x-ray flux optics [1-5] since the high critical-energy wigglers

Shen, Qun

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Studies of protein structure in solution and protein folding using synchrotron small-angle x-ray scattering  

SciTech Connect

Synchrotron small angle x-ray scattering (SAXS) has been applied to the structural study of several biological systems, including the nitrogenase complex, the heat shock cognate protein (hsc70), and lysozyme folding. The structural information revealed from the SAXS experiments is complementary to information obtained by other physical and biochemical methods, and adds to our knowledge and understanding of these systems.

Chen, Lingling

1996-04-01T23:59:59.000Z

462

Production of a keV X-Ray Beam from Synchrotron Radiation in Relativistic Laser-Plasma Interaction  

E-Print Network (OSTI)

Production of a keV X-Ray Beam from Synchrotron Radiation in Relativistic Laser-Plasma Interaction demonstrate that a beam of x-ray radiation can be generated by simply focusing a single high- intensity laser spectral range) [6]. Laser-driven K x-ray sources [7­9] radiate subnanometer wavelength radiation

Umstadter, Donald

463

A synchrotron X-ray study of competing undulation and electrostatic interlayer interactions in fluid multimembrane lyotropic phases  

E-Print Network (OSTI)

arise from attrac- tive electrodynamic van der Waals and, normally repulsive electrostatic forces [2307 A synchrotron X-ray study of competing undulation and electrostatic interlayer interactions of competing electrostatic and undulation forces in two multimembrane systems in the lamellar L03B1 phase

Boyer, Edmond

464

Contribution of synchrotron radiation to small-angle X-ray scattering studies in hard condensed matter  

Science Journals Connector (OSTI)

Synchrotron radiation, by virtue of its special beam characteristics, has revived interest in small-angle X-ray scattering for hard condensed matter and materials science. New techniques have been developed and new scientific themes tackled, ranging from metallurgy to nanotechnology.

Simon, J.-P.

2007-01-20T23:59:59.000Z

465

National Park Service- Yellowstone National Park, Wyoming  

Energy.gov (U.S. Department of Energy (DOE))

Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are currently being used by the Yellowstone Association Institute for ecology classes.

466

Structural Studies of Al:ZnO Powders and Thin Films | Stanford Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural Studies of Al:ZnO Powders and Thin Films Structural Studies of Al:ZnO Powders and Thin Films Monday, June 18, 2012 - 2:00pm SSRL Main Conference Room 137-322 Dr. Bridget Ingham, Associate Investigator, MacDiarmid Institute for Advanced Materials & Nanotechnology Al-doped ZnO (Al:ZnO) is a promising transparent conducting oxide. We have used complementary synchrotron and laboratory techniques to study the incorporation of Al within the ZnO lattice, and measure its effect on the crystallinity of thin films prepared by sol-gel techniques, with an aim to understand how these properties affect the film conductivity. I will present recent results from Al:ZnO powders and thin films, prepared with varying Al concentrations and calcination temperatures. Solid state 27Al NMR and ex situ X-ray diffraction (XRD) were performed on Al:ZnO

467

Thermal reactions of disilane on Si(100) studied by synchrotron-radiation photoemission  

Science Journals Connector (OSTI)

H-terminated Si(100) surfaces were formed by saturation exposure of Si(100) to disilane at room temperature. Annealing these surfaces to progressively higher temperatures resulted in hydrogen desorption. This process, of basic importance to the growth of Si by atomic layer epitaxy using disilane, was studied by synchrotron-radiation photoemission. The Si 2p core-level line shape, the position of the Fermi level within the band gap, the work function, and the ionization potential were measured as a function of annealing temperature. These results revealed two steps in the thermal reaction preceding the recovery of the clean surface. The dihydride radicals on the surface are converted to monohydride radicals at 500610 K, and the monohydride radicals decompose at 700800 K.

D.-S. Lin; T. Miller; T.-C. Chiang; R. Tsu; J. E. Greene

1993-10-15T23:59:59.000Z

468

Thermal reactions of disilane on Si(100) studied by synchrotron-radiation photoemission  

SciTech Connect

H-terminated Si(100) surfaces were formed by saturation exposure of Si(100) to disilane at room temperature. Annealing these surfaces to progressively higher temperatures resulted in hydrogen desorption. This process, of basic importance to the growth of Si by atomic layer epitaxy using disilane, was studied by synchrotron-radiation photoemission. The Si 2[ital p] core-level line shape, the position of the Fermi level within the band gap, the work function, and the ionization potential were measured as a function of annealing temperature. These results revealed two steps in the thermal reaction preceding the recovery of the clean surface. The dihydride radicals on the surface are converted to monohydride radicals at 500--610 K, and the monohydride radicals decompose at 700--800 K.

Lin, D.; Miller, T.; Chiang, T. (Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080 (United States)); Tsu, R.; Greene, J.E. (Department of Materials Science and Engineering, Coordinated Science Laboratory, and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, Illinois 61801-3080 (United States))

1993-10-15T23:59:59.000Z

469

Synchrotron radiation imaging is a powerful tool to image brain microvasculature  

SciTech Connect

Synchrotron radiation (SR) imaging is a powerful experimental tool for micrometer-scale imaging of microcirculation in vivo. This review discusses recent methodological advances and findings from morphological investigations of cerebral vascular networks during several neurovascular pathologies. In particular, it describes recent developments in SR microangiography for real-time assessment of the brain microvasculature under various pathological conditions in small animal models. It also covers studies that employed SR-based phase-contrast imaging to acquire 3D brain images and provide detailed maps of brain vasculature. In addition, a brief introduction of SR technology and current limitations of SR sources are described in this review. In the near future, SR imaging could transform into a common and informative imaging modality to resolve subtle details of cerebrovascular function.

Zhang, Mengqi; Sun, Danni; Xie, Yuanyuan; Xia, Jian; Long, Hongyu; Hu, Kai; Xiao, Bo, E-mail: csuxiaobo123456@163.com [Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China)] [Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Peng, Guanyun [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)] [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

2014-03-15T23:59:59.000Z

470

Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation  

SciTech Connect

We demonstrate the coupling of a scattering near-field scanning optical microscope combined with a Fourier transform infrared spectrometer. The set-up operates using either the near-field thermal emission from the sample itself, which is proportional to the electromagnetic local density of states, or with an external infrared synchrotron source, which is broadband and highly brilliant. We perform imaging and spectroscopy measurements with sub-wavelength spatial resolution in the mid-infrared range on surfaces made of silicon carbide and gold and demonstrate the capabilities of the two configurations for super-resolved near-field mid-infrared hyperspectral imaging and that the simple use of a properly chosen bandpass filter on the detector allows one to image the spatial distribution of materials with sub-wavelength resolution by studying the contrast in the near-field images.

Peragut, Florian; De Wilde, Yannick, E-mail: yannick.dewilde@espci.fr [ESPCI ParisTech, PSL Research University, CNRS, Institut Langevin, 1 rue Jussieu, F-75005, Paris (France); Brubach, Jean-Blaise; Roy, Pascale [Socit Civile Synchrotron SOLEIL, L'Orme des Merisiers, St-Aubin BP48, 91192 Gif-sur-Yvette Cedex (France)

2014-06-23T23:59:59.000Z

471

Synchrotron studies of narrow band materials. Progress report, July 1, 1991--June 30, 1992  

SciTech Connect

Since last year, we have had three 3-week blocks of beamtime, in April and November 1991 and February 1992, on the Ames/Montana beamline at the Wisconsin Synchrotron Radiation Center (SRC). These runs continued our program on high temperature superconductors, heavy Fermion and related uranium and rare earth materials, and started some work on transition metal oxides. We have also had beamtime at the Brookhaven NSLS, 5 days of beamtime on the Dragon monochromator, beamline U4B, studying resonant photoemission of transition metal oxides using photon energies around the transition metal 2p edges. Data from past runs has been analyzed, and in some cases combined with photoemission and bremsstrahlung isochromat spectroscopy (BIS) data taken in the home U-M lab. 1 fig.

Not Available

1992-07-01T23:59:59.000Z

472

Instrumentation and Experimental Developments for the Beamlines at the Synchrotron SOLEIL  

SciTech Connect

This paper presents an overview of the instrumentation and experiments developed for the beamlines at Synchrotron SOLEIL in France. Currently fourteen beamlines are opened to users out of the twenty six scheduled. About half of the beamlines cover the soft x-rays region using spectroscopy and imagery techniques. The second half covers the hard x-rays field studying diffraction of matter. Some sample environments carried out for beamlines, for biology, chemistry and surface sciences are described. For the soft x-rays beamlines, carbon contamination of optics is a crucial issue. Different experiments are currently under study in order to reduce or even avoid this effect. Other studies relate to the improvement of metrological methods for beamline optics, to the reduction of vibrational effects for the microbeams and development of computer control for diffractometers. The various types of instruments and experiments will be presented both with an overview of the status of the beamlines in operation and under construction.

Prigent, P.; Bac, S.; Blanchandin, S.; Cauchon, G.; David, G.; Fernandez Varela, P.; Kubsky, S.; Picca, F. [Synchrotron SOLEIL, Division Experiences-L'Orme des merisiers-Saint-Aubin-BP 48-91192 GIF S/YVETTE Cedex (France)

2010-06-23T23:59:59.000Z

473

Time Resolved Detectors and Measurements for Accelerators and Beamlines at the Australian Synchrotron  

SciTech Connect

Time resolved experiments require precision timing equipment and careful configuration of the machine and the beamline. The Australian Synchrotron has a state of the art timing system that allows flexible, real-time control of the machine and beamline timing parameters to target specific electron bunches. Results from a proof-of-principle measurement with a pulsed laser and a streak camera on the optical diagnostic beamline will be presented. The timing system was also used to fast trigger the PILATUS detector on an x-ray beamline to measure the fill pattern dependent effects of the detector. PILATUS was able to coarsely measure the fill pattern in the storage ring which implies that fill pattern intensity variations need to be corrected for when using the detector in this mode.

Boland, M. J. [Australian Synchrotron, Clayton, Victoria 3168 (Australia); School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Rassool, R. P.; Peake, D. J.; Sobott, B. A.; Lee, V.; Schubert, A. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); LeBlanc, G. S.; Kirby, N. [Australian Synchrotron, Clayton, Victoria 3168 (Australia)

2010-06-23T23:59:59.000Z

474

Nanoscale chemical imaging using synchrotron x-ray enhanced scanning tunneling microscopy  

SciTech Connect

The combination of synchrotron radiation with scanning tunneling microscopy provides a promising new concept for chemical imaging of nanoscale structures. It employs detection of local x-ray absorption, which directly yields chemical, electronic, and magnetic sensitivity. The study of the tip current in the far field (800 nm tip/sample separation) shows that insulator-coated tips have to be considered in order to reduce the background from stray photoelectron. A picture of the different channels contributing to the x-ray enhanced STM process is proposed. If during electron tunneling the sample is illuminated with monochromatic x-rays, characteristic absorption will arise, and core electrons are excited, which might modulate the conventional tunnel current and facilitate chemical imaging at the nanoscale.

Rose, Volker; Freeland, John W. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

2010-06-23T23:59:59.000Z

475

Simple Tools for Characterization of Synchrotron Beam Flux, Energy Resolution and Stability  

SciTech Connect

Flux is a simple yet key indicator of overall beamline alignment. For many synchrotron measurements, the energy resolution and reproducibility are important characteristics as well. However, many beamlines do not have diffractometers capable of measuring the energy resolution in the experimental hutches. For absolute flux measurements, we have found that thickness calibrated Si photodiodes make very convenient, robust detectors capable of handling a wide flux range. For measuring the energy resolution, we have developed a simple, portable instrument analyzer applicable to any beamline with a scanning monochromator. This same instrument is capable of measuring the energy stability and reproducibility as well. We have used these to characterize many of the beamlines on the NSLS X-ray ring, and will present the methods and our experience to date to demonstrate their usefulness.

Dvorak, J.; Berman, L.; Hulbert, S.L.; Siddons, D.P.; Wallwork, K.

2009-09-27T23:59:59.000Z

476

A Far-infrared Undulator for Coherent Synchrotron Radiation and Free Electron Laser at Tohoku University  

SciTech Connect

In order to develop an intense far-infrared radiation source, a high quality electron beam has been studied at Tohoku University, Sendai. The bunch length of the beam expected is very much shorter than terahertz (THz) wavelength, so that coherent spontaneous emission of synchrotron radiation will be a promising high brilliant far-infrared source. An undulator consisting of permanent magnets has been designed in which optional free electron laser (FEL) will be operated in free space mode. Consequently the minimum gap of the undulator is decided to be 54 mm for 0.36 mm radiation to avoid diffraction loss, and then the period length of 10 cm is employed. The undulator may cover a wavelength range from 0.18 to 0.36 mm with the beam energy of 17 MeV. Property of coherent THz radiation from the undulator and possibility of novel pre-bunched THz FEL is discussed.

Hama, Hiroyuki; Hinode, Fujio; Kawai, Masayuki; Nanbu, Kenichi; Miyahara, Fusashi; Yasuda, Mafuyu [Laboratory of Nuclear Science, Tohoku University School of Science, 1-2-1 Mikamine, Taihaku-ku, Sendai 982-0826 (Japan)

2010-06-23T23:59:59.000Z

477

MICROANALYSIS OF NY/NJ HARBOR SEDIMENTS USING SYNCHROTRON X-RAY BEAMS.  

SciTech Connect

Sediments found in the New York/New Jersey Harbor are widely contaminated with organic and inorganic compounds of anthropogenic origin. As a result, the environmental health of the Harbor has deteriorated and the efficient operation of the Port compromised by difficulties in disposing of sediments resulting from maintenance and improvements of navigational channels. Knowledge of the properties of the sediments on a micro-scale is useful in understanding the transport of contaminants through the environment, for developing effective methods for sediment decontamination, and for subsequent beneficial use of the cleaned sediments. We have investigated several properties of these sediments using synchrotron radiation techniques. These include computed microtomography using absorption and fluorescence contrast mechanisms, x-ray microscopy, microbeam x-ray fluorescence, and Fourier Transform Infrared Spectroscopy (FTIR) for measurements of microstructure, distribution of metals on individual sediment particles, and chemical forms of the contaminants on a micrometer scale. Typical results obtained with these techniques are presented.

JONES,K.W.FENG,H.LANZIROTTI,A.MARINKOVIC,N.ET AL.

2003-12-31T23:59:59.000Z

478

Dynamic synchrotron X-ray imaging study of effective temperature in a vibrated granular medium  

E-Print Network (OSTI)

We present a dynamic synchrotron X-ray imaging study of the effective temperature $T_{eff}$ in a vibrated granular medium. By tracking the directed motion and the fluctuation dynamics of the tracers inside, we obtained $T_{eff}$ of the system using Einstein relation. We found that as the system unjams with increasing vibration intensities $\\Gamma$, the structural relaxation time $\\tau$ increases substantially which can be fitted by an Arrhenius law using $T_{eff}$. And the characteristic energy scale of structural relaxation yielded by the Arrhenius fitting is $E = 0.21 \\pm 0.02$ $pd^3$, where $p$ is the pressure and $d$ is the background particle diameter, which is consistent with those from hard sphere simulations in which the structural relaxation happens via the opening up of free volume against pressure.

Yixin Cao; Xiaodan Zhang; Binquan Kou; Xiangting Li; Xianghui Xiao; Kamel Fezzaa; Yujie Wang

2014-03-21T23:59:59.000Z

479

Development of soft X-ray polarized light beamline on Indus-2 synchrotron radiation source  

SciTech Connect

This article describes the development of a soft x-ray beamline on a bending magnet source of Indus-2 storage ring (2.5 GeV) and some preliminary results of x-ray absorption spectroscopy (XAS) measurements using the same. The beamline layout is based on a spherical grating monochromator. The beamline is able to accept synchrotron radiation from the bending magnet port BL-1 of the Indus-2 ring with a wide solid angle. The large horizontal and vertical angular acceptance contributes to high photon flux and selective polarization respectively. The complete beamline is tested for ultrahigh vacuum (UHV) ? 10{sup ?10} mbar. First absorption spectrum was obtained on HOPG graphite foil. Our performance test indicates that modest resolving power has been achieved with adequate photon flux to carry out various absorption experiments.

Phase, D. M., E-mail: mgupta@csr.res.in; Gupta, Mukul, E-mail: mgupta@csr.res.in; Potdar, S., E-mail: mgupta@csr.res.in; Behera, L., E-mail: mgupta@csr.res.in; Sah, R., E-mail: mgupta@csr.res.in; Gupta, Ajay, E-mail: mgupta@csr.res.in [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore, 452001 (India)

2014-04-24T23:59:59.000Z

480

The Vacuum System of a 3 BeV Proton Synchrotron  

Science Journals Connector (OSTI)

The main features of the 3 BeV proton synchrotron being constructed by Princeton University and the University of Pennsylvania are described and illustrated. The principal component of the vacuum system is the vacuum chamber in which the protons circulate during the acceleration cycle. The design of the chamber was partly determined by boundary conditions set by the experimental uses of the accelerator, by environmental factors such as high energy nuclear radiation and rapidly varying magnetic fields and by restrictive spatial conditions, as well as by the required operating pressure of 2 10-6 mm Hg. The unusual features of the resultant solution are detailed. The pumping system, consisting of twenty-four individual units, and the complement of instrumentation are presented. The control system, which permits remote operation and indication of most of the vacuum system components, is described. The manner in which the vacuum control system interlocks with other accelerator components is discussed.

L. SEIDLITZ; T. TANG; D.L. COLLINS; M. SZEKELY

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lcls national synchrotron" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

High-Speed X-ray Phase Imaging with Grating Interferometer and White Synchrotron Light  

SciTech Connect

Taking advantage of the fact that an X-ray Talbot interferometer functions with X-rays of a broad energy band width, high-speed X-ray phase imaging and tomography have been achieved by using white synchrotron light. An X-ray phase tomogram could be measured with a 0.25 s exposure. Furthermore, a series of X-ray phase tomograms, in other words, a four-dimensional X-ray phase tomogram, could be reconstructed with a tomogram frame rate of 25.5 fps. This achievement advances X-ray phase imaging/tomography from a technique for static imaging to one for dynamic imaging of weakly absorbing objects.

Momose, Atsushi; Yashiro, Wataru; Huang, Shaohua; Kuwabara, Hiroaki; Kawabata, Katsuyuki [Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoka, Kashiwa, Chiba 277-8561 (Japan)

2010-06-23T23:59:59.000Z

482

The synchrotron boiler and the spectral states of black hole binaries  

E-Print Network (OSTI)

We study the effects of synchrotron self-absorption on the Comptonising electron distribution in the magnetised corona of accreting black holes. We solve the kinetic equations assuming that power is supplied to the coronal electrons through Coulomb collisions with a population of hot protons and/or through the injection of non-thermal energetic electrons by some unspecified acceleration process. We compute numerically the steady state particle distributions and escaping photon spectra. These numerical simulations confirm that synchrotron self-absorption, together with e-e Coulomb collisions, constitute an efficient thermalising mechanism for the coronal electrons. When compared to the data, they allow us to constrain the magnetic field and temperature of the hot protons in the corona independently of any dynamical accretion flow model or geometry. A preliminary comparison with the Low Hard State (LHS) spectrum of Cygnus X-1 indicates a magnetic field below equipartition with radiation, suggesting that the corona is not powered through magnetic field dissipation (as assumed in most accretion disc corona models). However, in the LHS of Cygnus X-1 and other sources, our results also point toward proton temperatures substantially lower than what predicted by the ADAF-like models. In contrast, in the High Soft State (HSS) both the proton temperature and magnetic field could be much higher. We also show that in both spectral states the magnetised corona could be powered essentially through acceleration of non-thermal particles. The main differences between the LHS and HSS coronal emission can then be understood as the consequence of the much stronger radiative cooling in the HSS caused by the soft thermal radiation coming from the geometrically thin accretion disc.

Julien Malzac; Renaud Belmont

2008-10-24T23:59:59.000Z

483

A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation  

SciTech Connect

HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

Doehrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Risch, Johannes F. H.; Mannweiler, Roman; Roth, Stephan V. [DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg (Germany); Bommel, Sebastian [DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg (Germany); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Brunner, Simon; Metwalli, Ezzeldin; Mueller-Buschbaum, Peter [Lehrstuhl fuer Funktionelle Materialien, Physik-Department, Technische Universitaet Muenchen, James-Franck-Str. 1, D-85748 Garching (Germany)

2013-04-15T23:59:59.000Z

484

Grazing-incidence antireflection films. IV. Application to Mssbauer filtering of synchrotron radiation  

Science Journals Connector (OSTI)

In principle, a very bright, monochromatic 1-A? signal with ? ???10-810-6 eV can be filtered from white synchrotron radiation by multiple reflection at grazing incidence from mirrors coated with grazing-incidence antireflection (GIAR) films in which either the films or substrate contain resonant Mssbauer nuclei. Typically, nonresonant reflectivities can be suppressed to 10-410-3 while maintaining resonant reflectivities of ?70%, with half-widths strongly broadened by enhancement to ?eff?20?. Effective filtering should be possible with two to four reflections, or alternatively, with one to two reflections plus time resolution.By using different combinations of films and substrates, the response can be tailored to give narrow resonance widths ???? and corresponding delayed scattering times to optimize time filtering, or at the other extreme, to produce broad-width filters with ? ???100? which would be ideal for a high-resolution x-ray source. In the time response there will be quantum beats at frequencies ?B due to the interference between the radiation emitted by different hyperfine oscillators, so the beat pattern is determined by the hyperfine splitting. Also, there are two interesting dynamical effectsfirst, due to the enchancement effect the coherent decay is speeded up relative to the natural lifetime for incoherent decay and internal conversion absorption; and secondly, there will be dynamical beats at frequencies ?B (superimposed on the quantum-beat spectrum) which is essentially an interference between the natural ringing of an oscillator at its resonsance frequency ?0 and the collective response which rings with a median frequency ?0+?B.Finally, there is also a multiple-reflection delay to the response, which should be a useful aid for time filtering. This paper develops the general theory for resonant filtering of synchrotron radiation using GIAR films, examining in particular the resulting frequency spectrum, the integrated response, and the time response for resonant Fe57 mirrors coated with ?/4 GIAR films.

J. P. Hannon; G. T. Trammell; M. Mueller; E. Gerdau; R. Rffer; H. Winkler

1985-11-15T23:59:59.000Z

485

The National Cancer Institute,  

E-Print Network (OSTI)

The National Cancer Institute, International Cancer Information Center Bldg. 82, Rm 123 Bethesda, MD 20892 The National Cancer Institute (NCI) is part of the Federal Government. NCI coordinates the government's cancer research program. It is the largest of the 17 biomedical research institutes and centers

486

Argonne National Laboratory  

Science Journals Connector (OSTI)

Argonne National Laboratory is the nation's senior atomic energy laboratory, and is operated by the University of Chicago under contract mth the U. S. Atomic Energy Commission. In addition to its broad program of basic research activities, it serves as a, ...

1957-04-08T23:59:59.000Z

487

National Energy Software Center  

SciTech Connect

A short introduction is given to the services of the National Energy Software Library at the Argonne National Laboratory. The objectives, history, and software collection of the center are presented. Information on ordering from the software collection of the library is also included. 4 refs., 3 tabs. (DWL)

Eyberger, L.R.

1986-01-01T23:59:59.000Z

488

National Laboratory Dorene Price  

E-Print Network (OSTI)

Brookhaven National Laboratory Dorene Price Office of Intellectual Property and Sponsored Research: price@bnl.gov ELECTROCHEMICAL ENHANCEMENT OF BIO-ETHANOL AND METABOLITE PRODUCTION Brookhaven National-ethanol fuel, as a beverage, or industries which by means of fermenting microbes commercially make ethanol

489

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

remembers former director Harold remembers former director Harold Agnew September 30, 2013 Manhattan Project pioneer was LANL director from 1970-1979 LOS ALAMOS, N.M., Sept. 30, 2013-Los Alamos National Laboratory Director Charlie McMillan today remembered Harold Agnew as a national treasure who transformed the Laboratory into what it is in the 21st century. "His contributions to the Laboratory made us the institution we are today," McMillan said. "It was his vision - decades ago - that recognized that national security science - 2 - brings value to a broad spectrum of breakthroughs. Los Alamos and the nation will be forever in Harold's debt." Agnew died at home on Sunday, Sept. 29, his family announced. He was the third director of Los Alamos National Laboratory, succeeding Robert

490

National Teacher Enhancement Project  

NLE Websites -- All DOE Office Websites (Extended Search)

funded by the National Science Foundation and the funded by the National Science Foundation and the U.S. Department of Energy Office of Science and offered at 10 DOE National Laboratories NTEP Projects Learning to Live in a Risky World Lewis and Clark in Washington The Seed Connection SIMply Prairie Home Energy Audit Weather Watchers Project Background . . . but where's the class? Doing Research - Publishing Results Created for the NTEP II Fermilab LInC program sponsored by Fermi National Accelerator Laboratory Education Office and Friends of Fermilab, and funded by United States Department of Energy, Illinois State Board of Education, North Central Regional Technology in Education Consortium which is operated by North Central Regional Educational Laboratory (NCREL), and the National Science Foundation. Web Maintainer: ed-webmaster@fnal.gov

491

National Security, Weapons Science  

NLE Websites -- All DOE Office Websites (Extended Search)

National Security, Weapons Science National Security, Weapons Science /science-innovation/_assets/images/icon-science.jpg National Security, Weapons Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) The Dual-Axis Radiographic Hydrodynamic Test Facility at LANL is part of the DOE's stockpile stewardship program. It uses two large X-ray machines to record three-dimensional interior images of materials. In most experiments, materials (including plutonium) undergo hydrodynamic shock to simulate the implosion process in nuclear bombs and/or the effects of severe hydrodynamic stress. The tests are described as "full-scale mockups

492

NREL: Foreign Nationals  

NLE Websites -- All DOE Office Websites (Extended Search)

Foreign Nationals Foreign Nationals At the National Renewable Energy Laboratory (NREL), collaboration is key to conducting scientific research at our institution in Golden, Colorado. Because an international scope is essential to our development program, we invite outstanding scholars from other countries to become an integral part of our organization through the Foreign National Assignment Program. This program enables people with new ideas and talents from around the world to contribute to research of mutual interest at the Laboratory while also contributing to the transfer of the technology resulting from that research. As a foreign national, you'll need information about immigration and the various types of visas. You can also find numerous helpful links to the State Department, U.S. Citizenship and Immigration Services, the Social

493

MOTORWEEK YELLOWSTONE NATIONAL PARK  

NLE Websites -- All DOE Office Websites (Extended Search)

MOTORWEEK MOTORWEEK YELLOWSTONE NATIONAL PARK JOHN DAVIS: Some of America's most precious treasures are our national parks. And the U.S. park service understands that keeping the parks pristine, while also allowing easy access by vacationers is a huge challenge. So, setting the pace on making the drive through the parks greener is not just a goal, it's a passion. JOHN DAVIS: The National Parks Service is entrusted with preserving and showcasing America's natural wonders and historical landmarks, maintaining 392 national parks covering million acres of land and water in all parts of the country, and plays host to more than 275 million visitors every year. No other place on earth has as much natural diversity and spectacular scenery in one accessible place than America's first national park, Yellowstone, so it's no surprise this

494

The Foundation for The Gator Nation The Gator Nation.  

E-Print Network (OSTI)

The Foundation for The Gator Nation Welcome to The Gator Nation. One employee at a time, our nation grows. #12;Welcome to The Gator Nation On behalf of the Office of Human Resource Services, welcome to the University of Florida (UF) and The Gator Nation. We are delighted with your decision to join one of the top

Pilyugin, Sergei S.

495

National Institutes of Health National Institute of Mental Health  

E-Print Network (OSTI)

National Institutes of Health National Institute of Mental Health Department of Health and HumanNational Institute of Mental Health Division of Intramural Research Programs http://intramural.nimh.nih.gov/ [NIMH of Fellowship Training] National Institutes of Health National Institute of Mental Health Department of Health

Baker, Chris I.

496

LCLS-scheduling-run_V_Ver9c.xlsx  

NLE Websites -- All DOE Office Websites (Extended Search)

Tue Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Day Com Com Com Com Com L421 Coffee Night L477 Robinson Gruebel (L304, run 4) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Thur Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Day L498 Yachandra L487 Sokoloswski-Tinten IH Bozek L447 Harmand Night IH Lemke L396 Scherz L396 Scherz L409 Boeglin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Day L399/433 Fromme/Neutze L467 Madsen Night Com Com Com L467 Mad L399/433 Fromme Com Com 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri

497

Microsoft Word - SSRL_LCLS_User_Shipping_Request_Form_hazmat...  

NLE Websites -- All DOE Office Websites (Extended Search)

Date: Where can you be reached if there are questions (cell phone?): Proposal and SpokespersonPI name:...

498

LCLS CDR Chapter 13 - Environment Safety and Health and QA  

NLE Websites -- All DOE Office Websites (Extended Search)

accelerator housing requires the mitigation of electrical hazards through either the lockout of power supplies or selective use of mechanical barriers, interlocked to further...

499

LCLS-scheduling-run_6_Ver4.xlsx  

NLE Websites -- All DOE Office Websites (Extended Search)

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon...

500

Sandia National Laboratories: Sandia National Laboratories: Missions:  

NLE Websites -- All DOE Office Websites (Extended Search)

Accomplishments Accomplishments About Defense Systems & Assessments Program Areas Accomplishments Archives Cybersecurity Missions Accomplishments Protecting the nation Sandia lasers test and calibrate sensors on U.S. satellites Sandia's scientists and engineers have a significant impact on national security and continually deliver results, including these noteworthy successes from fiscal year 2012: AHW Launch Advanced Hypersonic Weapon test flight Sandia conducted a highly successful first test flight of the Advanced Hypersonic Weapon (AHW) concept for the U.S. Army Space and Missile Defense Command. Designed to fly within the earth's atmosphere at hypersonic speed and long range, the first-of-its-kind glide vehicle launched from Sandia's Kauai Test Facility in Kauai, Hawaii, using a three-stage