National Library of Energy BETA

Sample records for layers uncoated acrylic

  1. Uncoated microcantilevers as chemical sensors

    DOE Patents [OSTI]

    Thundat, Thomas G.

    2001-01-01

    A method and device are provided for chemical sensing using cantilevers that do not use chemically deposited, chemically specific layers. This novel device utilizes the adsorption-induced variation in the surfaces states on a cantilever. The methodology involves exciting charge carriers into or out of the surface states with photons having increasing discrete levels of energy. The excitation energy is provided as discrete levels of photon energy by scanning the wavelength of an exciting source that is illuminating the cantilever surface. When the charge carriers are excited into or out of the surface states, the cantilever bending changes due to changes in surface stress. The amount of cantilever bending with respect to an identical cantilever as a function of excitation energy is used to determine the energy levels associated with adsorbates.

  2. Radiopurity measurement of acrylic for DEAP-3600

    SciTech Connect (OSTI)

    Nantais, C. M.; Boulay, M. G.; Cleveland, B. T.

    2013-08-08

    The spherical acrylic vessel that contains the liquid argon target is the most critical detector component in the DEAP-3600 dark matter experiment. Alpha decays near the inner surface of the acrylic vessel are one of the main sources of background in the detector. A fraction of the alpha energy, or the recoiling nucleus from the alpha decay, could misreconstruct in the fiducial volume and result in a false candidate dark matter event. Acrylic has low levels of inherent contamination from {sup 238}U and {sup 232}Th. Another background of particular concern is diffusion of {sup 222}Rn during manufacturing, leading to {sup 210}Pb contamination. The maximum acceptable concentrations in the DEAP-3600 acrylic vessel are ppt levels of {sup 238}U and {sup 232}Th equivalent, and 10{sup −8} ppt {sup 210}Pb. The impurities in the bulk acrylic will be measured by vaporizing a large quantity of acrylic and counting the concentrated residue with ultra-low background HPGe detectors and a low background alpha spectrometer. An overview of the acrylic assay technique is presented.

  3. Palladium (II) catalyized polymerization of norbornene and acrylates

    DOE Patents [OSTI]

    Sen, Ayusman; Kacker, Smita; Hennis, April; Polley, Jennifer D.

    2000-08-29

    Homopolymers or copolymers of acrylates, homopolymers or copolymers of norbornenes, and copolymers of acrylates with norbornenes, may be prepared by contacting acrylate and/or norbornene monomer reactant under polymerization conditions and in the presence of a solvent with a catalyst system consisting essentially of a Pd(II) dimer component having the formula: [(L)Pd(R)(X)].sub.2, where L is a monodentate phosphorus or nitrogen ligand, X is an anionic group, and R is an alkyl or aryl group.

  4. Palladium (Ii) Catalyzed Polymerization Of Norbornene And Acrylates

    DOE Patents [OSTI]

    Sen, Ayusman; Kacker, Smita; Hennis, April; Polley, Jennifer D.

    2001-10-09

    Homopolymers or copolymers of acrylates, homopolymers or copolymers of norbornenes, and copolymers of acrylates with norbornenes, may be prepared by contacting acrylate and/or norbornene monomer reactant under polymerization conditions and in the presence of a solvent with a catalyst system consisting essentially of a Pd(II) dimer component having the formula: where L is a monodentate phosphorus or nitrogen ligand, X is an anionic group, and R is an alkyl or aryl group.

  5. Electrochemical characterization of aminated acrylic conducting polymer

    SciTech Connect (OSTI)

    Rashid, Norma Mohammad; Heng, Lee Yook; Ling, Tan Ling

    2015-09-25

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study.

  6. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate

    SciTech Connect (OSTI)

    Binder, Thomas; Erpelding, Michael; Schmid, Josef; Chin, Andrew; Sammons, Rhea; Rockafellow, Erin

    2015-04-10

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. The purpose of Archer Daniels Midlands Integrated Biorefinery (IBR) was to demonstrate a modified acetosolv process on corn stover. It would show the fractionation of crop residue to distinct fractions of cellulose, hemicellulose, and lignin. The cellulose and hemicellulose fractions would be further converted to ethanol as the primary product and a fraction of the sugars would be catalytically converted to acrylic acid, with butyl acrylate the final product. These primary steps have been demonstrated.

  7. Methods for the synthesis of deuterated acrylate salts

    DOE Patents [OSTI]

    Yang, Jun; Bonnesen, Peter V.; Hong, Kunlun

    2014-09-09

    A method for synthesizing a deuterated acrylate of the Formula (1), the method comprising: (i) deuterating a propiolate compound of Formula (2) to a methyne-deuterated propiolate compound of Formula (3) in the presence of a base and D.sub.2O: and (ii) reductively deuterating the methyne-deuterated propiolate compound of Formula (3) in a reaction solvent in the presence of deuterium gas and a palladium-containing catalyst to afford the deuterated acrylate of the Formula (1). The resulting deuterated acrylate compounds, derivatives thereof, and polymers derived therefrom are also described.

  8. Conversion of Lignocellulosic Biomass to Ethanol Butyl Acrylate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate March 25, 2015 Principal Investigator Thomas P. Binder ARCHER DANIELS MIDLAND COMPANY 2 Where does ADM fit with the IBR? * Ensuring a supply of technology for future growth is a priority for ADM Research * Corn stover utilization may enable continued growth in starch supply while starting a new industry around a currently underutilized material James R Randall Research Center Decatur, IL ARCHER DANIELS MIDLAND COMPANY 3 Quad

  9. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    SciTech Connect (OSTI)

    Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd

    2014-02-12

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  10. Control of contamination of radon-daughters in the DEAP-3600 acrylic vessel

    SciTech Connect (OSTI)

    Jillings, Chris; Collaboration: DEAP Collaboration; and others

    2013-08-08

    DEAP-3600 is a 3600kg single-phase liquid-argon dark matter detector under construction at SNOLAB with a sensitivity of 10{sup ?46}cm{sup 2} for a 100 GeV WIMP. The argon is held an an acrylic vessel coated with wavelength-shifting 1,1,4,4-tetraphenyl-1,3-butadiene (TPB). Acrylic was chosen because it is optically transparent at the shifted wavelength of 420 nm; an effective neutron shield; and physically strong. With perfect cleaning of the acrylic surface before data taking the irreducible background is that from bulk {sup 210}Pb activity that is near the surface. To achieve a background rate of 0.01 events in the 1000-kg fiducial volume per year of exposure, the allowed limit of Pb-210 in the bulk acrylic is 31 mBq/tonne (= 1.2 10{sup ?20}g/g). We discuss how pure acrylic was procured and manufactured into a complete vessel paying particular attention to exposure to radon during all processes. In particular field work at the acrylic panel manufacturer, RPT Asia, and acrylic monomer supplier, Thai MMA Co. Ltd, in Thailand is described. The increased diffusion of radon during annealing the acrylic at 90C as well as techniques to mitigate against this are described.

  11. Side-Chain Liquid Crystalline Poly(meth)acrylates with Bent-Core Mesogens

    SciTech Connect (OSTI)

    Chen,X.; Tenneti, K.; Li, C.; Bai, Y.; Wan, X.; Fan, X.; Zhou, Q.; Rong, L.; Hsiao, B.

    2007-01-01

    We report the design, synthesis, and characterization of side-chain liquid crystalline (LC) poly(meth)acrylates with end-on bent-core liquid crystalline (BCLC) mesogens. Both conventional free radical polymerization and atom transfer radical polymerization have been used to synthesize these liquid crystalline polymers (LCP). The resulting polymers exhibit thermotropic LC behavior. Differential scanning calorimetry, thermopolarized light microscopy, wide-angle X-ray diffraction, and small-angle X-ray scattering were used to characterize the LC structure of both monomers and polymers. The electro-optic (EO) measurement was carried out by applying a triangular wave and measuring the LC EO response. SmCP (Smectic C indicates the LC molecules are tilted with respect to the layer normal; P denotes polar ordering) phases were observed for both monomers and polymers. In LC monomers, typical antiferroelectric switching was observed. In the ground state, SmCP{sub A} (A denotes antiferroelectric) was observed which switched to SmCP{sub F} (F denotes ferroelectric) upon applying an electric field. In the corresponding LCP, a unique bilayer structure was observed, which is different from the reported BCLC bilayer SmCG (G denotes generated) phase. Most of the LCPs did not switch upon applying electric field while weak AF switching was observed in a low molecular weight poly{l_brace}3'-[4-(4-n-dodecyloxybenzoyloxy)benzoyloxy]-4-(12-acryloyloxydodecyloxy)benzoyloxybiphenyl{r_brace} sample.

  12. Synthesis of acrylates. Quarterly progress report, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    1995-09-05

    The objective of this research is to develop a condensation/oxidation route for the synthesis of acrylates/methacrylates from coal-derived synthesis gas. This quarter work continued on the development of catalysts for propionate synthesis.

  13. Chemical Fixation of CO{sub 2} to Acrylates Using Low-Valent Molybdenum Sources

    SciTech Connect (OSTI)

    Bernskoetter, Wesley

    2013-09-30

    The kinetic, mechanistic, and reactivity experiments to access the viability and possible reaction design of coupling of carbon dioxide and ethylene at a zerovalent molybdenum for the production of acrylates are described. A general model of the reaction mechanism has been outlined, including assessment of the rate limiting step in the reaction. Kinetic and computational data have valuated the influence of a range of tridentate ligand platforms on the rate of coupling. An in situ reduction and acrylate formation activity screen protocol has also been developed to aid in the technology development of this process. Portions of descriptions of the research products presented here have also been adapted with permission from journal publications.

  14. Synthesis of silica coated zinc oxidepoly(ethylene-co-acrylic acid) matrix and its UV shielding evaluation

    SciTech Connect (OSTI)

    Ramasamy, Mohankandhasamy; Kim, Yu Jun; Gao, Haiyan; Yi, Dong Kee; An, Jeong Ho

    2014-03-01

    Graphical abstract: - Highlights: Well layer thickness controlled silica shell was made on ZnO nanoparticles. PEAA, an interfacial agent is used to make nanocompositepolymer matrix by twin-screw extruder. Si-ZnO/PEAA matrix is highly stable and UV protective as compared to ZnO/PEAA matrix. Nanoparticle embedded polymer matrix is suggested to make UV shielding fabrics with Nylon4. - Abstract: Silica coated zinc oxide nanoparticles (Si-ZnO NPs) (7 nm thick) were synthesized successfully and melt blended with poly(ethylene-co-acrylic acid) (PEAA resin) to improving ultraviolet (UV) shielding of zinc oxide nanoparticles (ZnO NPs). The photostability of both the ZnO NPs and Si-ZnO NPs were analyzed by the difference in photoluminescence (PL) and by methylene blue (MB) degradation. Photo-degradation studies confirmed that Si-ZnO NPs are highly photostable compared to ZnO NPs. The melt blended matrices were characterized by field emission scanning electron microscopy interfaced with energy dispersive X-ray spectroscopy (FE-SEM-EDX). The UV shielding property was analyzed from the transmittance spectra of UVvisible (UVvis) spectroscopy. The results confirmed fine dispersion of thick Si-ZnO NPs in the entire resin matrix. Moreover, the Si-ZnO/PEAA showed about 97% UV shielding properties than the ZnO/PEAA.

  15. Metabolism of acrylate to {beta}-hydroxypropionate and its role in dimethylsulfoniopropionate lyase induction by a salt marsh sediment bacterium, Alcaligenes faecalis M3A

    SciTech Connect (OSTI)

    Ansede, J.H.; Pellechia, P.J.; Yoch, D.C.

    1999-11-01

    Dimethylsulfoniopropionate (DMSP) is degraded to dimethylsulfide (DMS) and acrylate by the enzyme DMSP lyase. DMS or acrylate can serve as a carbon source for both free-living and endophytic bacteria in the marine environment. In this study, the authors report on the mechanism of DMSP-acrylate metabolism by Alcaligenes faecalis M3A. Suspensions of citrate-grown cells expressed a low level of DMSP lyase activity that could be induced to much higher levels in the presence of DMSP, acrylate, and its metabolic product, {beta}-hydroxypropionate. DMSP was degraded outside the cell, resulting in an extracellular accumulation of acrylate, which in suspensions of citrate-grown cells was then metabolized at a low endogenous rate. The inducible nature of acrylate metabolism was evidenced by both an increase in the rate of its degradation over time and the ability of acrylate-grown cells to metabolize this molecule at about an eight times higher rate than citrate-grown cells. Therefore, acrylate induces both its production (from DMSP) and its degradation by an acrylase enzyme. {sup 1}H and {sup 13}C nuclear magnetic resonance analyses were used to identify the products resulting from [1-{sup 13}C]acrylate metabolism. The results indicated that A.faecalis first metabolized acrylate to {beta}-hydroxypropionate outside the cell, which was followed by its intracellular accumulation and subsequent induction of DMSP lyase activity. In summary, the mechanism of DMSP degradation to acrylate and the subsequent degradation of acrylate to {beta}-hydroxypropionate in the aerobic {beta}-Proteobacterium A.faecalis has been described.

  16. Improved oxidation resistance of organic/inorganic composite atomic layer deposition coated cellulose nanocrystal aerogels

    SciTech Connect (OSTI)

    Smith, Sean W.; Matthews, David J.; Conley, John F., E-mail: jconley@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, 1148 Kelley Engineering Center, Oregon State University, Corvallis, Oregon 97331 (United States); Buesch, Christian; Simonsen, John [Department of Wood Science and Engineering, Oregon State University, 119 Richardson Hall, Corvallis, Oregon 97331 (United States)

    2014-07-01

    Cellulose nanocrystal (CNC) aerogels are coated with thin conformal layers of Al{sub 2}O{sub 3} using atomic layer deposition to form hybrid organic/inorganic nanocomposites. Electron probe microanalysis and scanning electron microscopy analysis indicated the Al{sub 2}O{sub 3} penetrated more than 1500??m into the aerogel for extended precursor pulse and exposure/purge times. The measured profile of coated fiber radius versus depth from the aerogel surface agrees well with simulations of precursor penetration depth in modeled aerogel structures. Thermogravimetric analysis shows that Al{sub 2}O{sub 3} coated CNC aerogel nanocomposites do not show significant thermal degradation below 295?C as compared with 175?C for uncoated CNC aerogels, an improvement of over 100?C.

  17. Biorenewable tough blends of polylactide and acrylated epoxidized soybean oil compatibilized by a polylactide star polymer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mauck, Sheli C.; Wang, Shu; Ding, Wenyue; Rohde, Brian J.; Fortune, C. Karen; Yang, Guozhen; Robertson, Megan L.; Ahn, Suk -Kyun

    2016-02-26

    Polylactide (PLA), a commercially available thermoplastic derived from plant sugars, finds applications in consumer products, disposable packaging, and textiles, among others. The widespread application of this material is limited by its brittleness, as evidenced by low tensile elongation at break, impact strength, and fracture toughness. Herein, a multifunctional vegetable oil, acrylated epoxidized soybean oil (AESO), was investigated as a biodegradable, renewable additive to improve the toughness of PLA. AESO was found to be a highly reactive oil, providing a dispersed phase with tunable properties in which the acrylate groups underwent cross-linking at the elevated temperatures required for processing the blends.more » Additionally, the presence of hydroxyl groups on AESO provided two routes for compatibilization of PLA/AESO blends: (1) reactive compatibilization through the transesterification of AESO and PLA and (2) synthesis of a PLA star polymer with an AESO core. The morphological, thermal, and mechanical behaviors of PLA/oil blends were investigated, in which the dispersed oil phase consisted of AESO, soybean oil (SYBO), or a 50/50 mixture of AESO/SYBO. The oil additives were found to toughen the PLA matrix, with significant enhancements in the elongation at break and tensile toughness values, while maintaining the glass transition temperature of neat PLA. Specifically, the blend containing PLA, AESO, SYBO, and the PLA star polymer was found to exhibit a uniform oil droplet size distribution with small average droplet size and interparticle distance, resulting in the greatest enhancements of PLA tensile properties with no observable plasticization.« less

  18. Midtemperature solar systems test facility predictions for thermal performance based on test data. Toltec two-axis tracking solar collector with 3M acrylic polyester film reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-06-01

    Thermal performance predictions based on test data are presented for the Toltec solar collector, with acrylic film reflector surface, for three output temperatures at five cities in the United States.

  19. Synthesis of acrylates. [Quarterly report], January 1, 1996--March 31, 1996

    SciTech Connect (OSTI)

    1996-04-20

    The objective is to develop an oxidation/condensation route for synthesis of acrylates/methacrylates from syngas. The investigators are also studying the dehydrogenation-condensation routes, based on its merits proven by studies at NCSU/RTI. The thermodynamics of dehydrogenaton-condensation route show its feasibility, and it is likely that the fluid will be more stable under reducing conditions. Accomplishments for the past quarter are discussed for the following tasks: proprionate synthesis; condensation catalysis; and slurry reactor studies. Some of the highlights are: Eastman has developed an improved catalyst system for the Mo-catalyzed carbonization of ethylene which accelerates the process by 1.5-3 fold. Bechtel has developed the preliminary cost estimates for a conceptual process design to produce proprionic anhydrite via ethylene carbonylation; RTI has continued to further discern the acid-base properties of the two best catalysts (V-Si-Pt 1:10:2.8 and 10% Ta/NALCO 1034-A) for condensation of proprionic anhydride and formaldehyde to give the maximum yield of methacrylic acid.

  20. Photonic layered media

    DOE Patents [OSTI]

    Fleming, James G.; Lin, Shawn-Yu

    2002-01-01

    A new class of structured dielectric media which exhibit significant photonic bandstructure has been invented. The new structures, called photonic layered media, are easy to fabricate using existing layer-by-layer growth techniques, and offer the ability to significantly extend our practical ability to tailor the properties of such optical materials.

  1. A Pilot Study of Uterine Artery Embolization with Tris-Acryl Gelatin Microspheres in Guinea Pigs

    SciTech Connect (OSTI)

    Zhuang Wenquan; Tan Guosheng; Guo Wenbo, E-mail: patrickguo2008@163.com [The First Affiliated Hospital of Sun Yat-sen University, Department of Interventional Radiology (China); Yang Jianyong [The First Affiliated Hospital of Sun Yat-sen University, Department of Radiology (China)

    2012-06-15

    Objective: This study was designed to establish guinea pigs as an animal model for uterine artery embolization (UAE) with tris-acryl gelatin microspheres (TAGM). Methods: Twenty-five female adult guinea pigs were randomly divided into two groups, including a uterine artery casting mould group (n = 10) and a UAE group (n = 15). Pelvic angiography and vascular casting mould were performed in the first group. The anatomical characters of the pelvic cavity in guinea pigs were described. In the second group, the technical feasibility of performing UAE with TAGM in guinea pigs was investigated. The histopathological slides of the uterus of guinea pigs after UAE were examined to inspect the outcomes of UAE. Results: The uterine artery springs from the internal iliac artery, ascends tortuously along the cervix, and gives off vertically 8-10 branches to the cervix uteri and uterine horns. The diameters of the trunk of the uterine artery and its first branch were 0.32 {+-} 0.027 mm and 0.14 {+-} 0.01 mm, respectively. For UAE animals, the dosages of 40-120 and 100-300 {mu}m TAGM were 0.033 {+-} 0.003 ml and 0.015 {+-} 0.002 ml, respectively. On histopathological slides, embosphere particles were found in the first branches of the uterine artery, the subserous arteries, and the intramural arteries. Inflammatory reactions in the uterus were common in guinea pigs after UAE. Local or dispersed areas of necrosis in uterus also were observed in a few guinea pigs. Conclusions: Guinea pigs are an appropriate and feasible model for UAE with TAGM.

  2. Scintillator reflective layer coextrusion

    DOE Patents [OSTI]

    Yun, Jae-Chul; Para, Adam

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  3. All-acrylic multigraft copolymers: Effect of side chain molecular weight and volume fraction on mechanical behavior

    SciTech Connect (OSTI)

    Goodwin, Andrew; Wang, Weiyu; Kang, Nam -Goo; Wang, Yangyang; Hong, Kunlun; Mays, Jimmy

    2015-08-21

    We present in this paper the synthesis of poly(n-butyl acrylate)-g-poly(methyl methacrylate) (PnBA-g-PMMA) multigraft copolymers via a grafting-through (macromonomer) approach. The synthesis was performed using two controlled polymerization techniques. The PMMA macromonomer was obtained by high-vacuum anionic polymerization followed by the copolymerization of n-butyl acrylate and PMMA macromonomer using reversible addition–fragmentation chain transfer (RAFT) polymerization to yield the desired all-acrylic multigraft structures. The PnBA-g-PMMA multigraft structures exhibit randomly spaced branch points with various PMMA contents, ranging from 15 to 40 vol %, allowing an investigation into how physical properties vary with differences in the number of branch points and molecular weight of grafted side chains. The determination of molecular weight and polydispersity indices of both the PMMA macromonomer and the graft copolymers was carried out using size exclusion chromatography with triple detection, and the structural characteristics of both the macromonomer and PnBA-g-PMMA graft materials were characterized by 1H and 13C NMR. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed for monitoring the macromonomer synthesis. Thermal characteristics of the materials were analyzed using differential scanning calorimetry and thermogravimetric analysis. The mechanical performance of the graft materials was characterized by rheology and dynamic mechanical analysis, revealing that samples with PMMA content of 25–40 vol % exhibit superior elastomeric properties as compared to materials containing short PMMA side chains or <25 vol % PMMA. In conclusion, atomic force microscopy showed a varying degree of microphase separation between the glassy and rubbery components that is strongly dependent on PMMA side chain molecular weight.

  4. All-acrylic multigraft copolymers: Effect of side chain molecular weight and volume fraction on mechanical behavior

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Goodwin, Andrew; Wang, Weiyu; Kang, Nam -Goo; Wang, Yangyang; Hong, Kunlun; Mays, Jimmy

    2015-08-21

    We present in this paper the synthesis of poly(n-butyl acrylate)-g-poly(methyl methacrylate) (PnBA-g-PMMA) multigraft copolymers via a grafting-through (macromonomer) approach. The synthesis was performed using two controlled polymerization techniques. The PMMA macromonomer was obtained by high-vacuum anionic polymerization followed by the copolymerization of n-butyl acrylate and PMMA macromonomer using reversible addition–fragmentation chain transfer (RAFT) polymerization to yield the desired all-acrylic multigraft structures. The PnBA-g-PMMA multigraft structures exhibit randomly spaced branch points with various PMMA contents, ranging from 15 to 40 vol %, allowing an investigation into how physical properties vary with differences in the number of branch points and molecular weightmore » of grafted side chains. The determination of molecular weight and polydispersity indices of both the PMMA macromonomer and the graft copolymers was carried out using size exclusion chromatography with triple detection, and the structural characteristics of both the macromonomer and PnBA-g-PMMA graft materials were characterized by 1H and 13C NMR. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed for monitoring the macromonomer synthesis. Thermal characteristics of the materials were analyzed using differential scanning calorimetry and thermogravimetric analysis. The mechanical performance of the graft materials was characterized by rheology and dynamic mechanical analysis, revealing that samples with PMMA content of 25–40 vol % exhibit superior elastomeric properties as compared to materials containing short PMMA side chains or <25 vol % PMMA. In conclusion, atomic force microscopy showed a varying degree of microphase separation between the glassy and rubbery components that is strongly dependent on PMMA side chain molecular weight.« less

  5. Layered plasma polymer composite membranes

    DOE Patents [OSTI]

    Babcock, W.C.

    1994-10-11

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  6. Layered plasma polymer composite membranes

    DOE Patents [OSTI]

    Babcock, Walter C.

    1994-01-01

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is .gtoreq.2 and is the number of selective layers.

  7. In-Situ Transmission Electron Microscopy Probing of Native Oxide and Artificial Layers on Silicon Nanoparticles for Lithium Ion Batteries

    SciTech Connect (OSTI)

    He, Yang; Piper, Daniela M.; Gu, Meng; Travis, Jonathan J.; George, Steven M.; Lee, Se-Hee; Genc, Arda; Pullan, Lee; Liu, Jun; Mao, Scott X.; Zhang, Jiguang; Ban, Chunmei; Wang, Chong M.

    2014-11-25

    Surface modification of silicon nanoparticle via molecular layer deposition (MLD) has been recently proved to be an effective way for dramatically enhancing the cyclic performance in lithium ion batteries. However, the fundamental mechanism as how this thin layer of coating function is not known, which is even complicated by the inevitable presence of native oxide of several nanometers on the silicon nanoparticle. Using in-situ TEM, we probed in detail the structural and chemical evolution of both uncoated and coated silicon particles upon cyclic lithiation/delithation. We discovered that upon initial lithiation, the native oxide layer converts to crystalline Li2O islands, which essentially increases the impedance on the particle, resulting in ineffective lithiation/delithiation, and therefore low coulombic efficiency. In contrast, the alucone MLD coated particles show extremely fast, thorough and highly reversible lithiation behaviors, which are clarified to be associated with the mechanical flexibility and fast Li+/e- conductivity of the alucone coating. Surprisingly, the alucone MLD coating process chemically changes the silicon surface, essentially removing the native oxide layer and therefore mitigates side reaction and detrimental effects of the native oxide. This study provides a vivid picture of how the MLD coating works to enhance the coulombic efficiency and preserve capacity and clarifies the role of the native oxide on silicon nanoparticles during cyclic lithiation and delithiation. More broadly, this work also demonstrated that the effect of the subtle chemical modification of the surface during the coating process may be of equal importance as the coating layer itself.

  8. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, T.W.

    1994-09-06

    A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

  9. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, Terry W.

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  10. Multiple layer insulation cover

    DOE Patents [OSTI]

    Farrell, James J.; Donohoe, Anthony J.

    1981-11-03

    A multiple layer insulation cover for preventing heat loss in, for example, a greenhouse, is disclosed. The cover is comprised of spaced layers of thin foil covered fabric separated from each other by air spaces. The spacing is accomplished by the inflation of spaced air bladders which are integrally formed in the cover and to which the layers of the cover are secured. The bladders are inflated after the cover has been deployed in its intended use to separate the layers of the foil material. The sizes of the material layers are selected to compensate for sagging across the width of the cover so that the desired spacing is uniformly maintained when the cover has been deployed. The bladders are deflated as the cover is stored thereby expediting the storage process and reducing the amount of storage space required.

  11. A new coordination mode of (E)-3-(3-hydroxyl-phenyl)-acrylic acid in copper complex: Crystal structure and magnetic properties

    SciTech Connect (OSTI)

    Jin, Xin; Zhou, Pei; Zheng, Chunying; Li, Hui

    2015-05-15

    A copper complex ([Cu(py){sub 2}(L){sub 2}]·2CH{sub 3}OH){sub n} (HL=(E)-3-(3-hydroxyl-phenyl)-acrylic acid) (1) with acrylic acid ligand was synthesized and structurally analyzed by IR, elemental analysis, TGA and the single-crystal X-ray diffraction methods. It is the first time to find that phenolic hydroxyl of L coordinates to Cu(II). Complex 1 exhibits 1D chain by a double-bridge of ligands, and the 3D supramolecular framework in complex 1 is constructed by π–π stacking interactions and van der Waals Contacts among the 1D chains. The magnetic properties of complex 1 have been studied. - Graphical abstract: A copper complex based on (E)-3-(3-hydroxyl-phenyl)-acrylic acid in a novel coordinated way was synthesized and a ferromagnetic exchange interactions between neighboring Cu(II) ions has be achieved. - Highlights: • A new copper complex with acrylic acid ligand was synthesized and analyzed. • We find the phenolic hydroxyl of MCA ligand coordinates to metal ion firstly. • A ferromagnetic exchange interactions between Cu(II) ions has been achieved.

  12. Compliant layer chucking surface

    DOE Patents [OSTI]

    Blaedel, Kenneth L.; Spence, Paul A.; Thompson, Samuel L.

    2004-12-28

    A method and apparatus are described wherein a thin layer of complaint material is deposited on the surface of a chuck to mitigate the deformation that an entrapped particle might cause in the part, such as a mask or a wafer, that is clamped to the chuck. The harder particle will embed into the softer layer as the clamping pressure is applied. The material composing the thin layer could be a metal or a polymer for vacuum or electrostatic chucks. It may be deposited in various patterns to affect an interrupted surface, such as that of a "pin" chuck, thereby reducing the probability of entrapping a particle.

  13. Boundary Layer Structure:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary Layer Structure: a comparison between methods and sites Thiago Biscaro Suzane de Sá Jae-In Song Shaoyue "Emily" Qiu Mentors: Virendra Ghate and Ewan O'Connor July 24 2015 1 st ever ARM Summer Training Outline * IntroducQon * Methodology * Results - SGP - MAO - Comparison between the 2 sites * Conclusions INTRODUCTION Focus: esQmates of PBL height Boundary Layer: "The boUom layer of the troposphere that is in contact with the surface of the earth." (AMS, Glossary of

  14. Structured luminescence conversion layer

    DOE Patents [OSTI]

    Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

    2012-12-11

    An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

  15. Segregation of mass at the periphery of N -isopropylacrylamide-co-acrylic-acid microgels at high temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hyatt, John S.; Do, Changwoo; Hu, Xiaobo; Choi, Hong Sung; Kim, Jin Woong; Lyon, L. Andrew; Fernandez-Nieves, Alberto

    2015-09-29

    Here, we investigate poly(N-isopropylacrylamide) (pNIPAM) microgels randomly copolymerized with large mol % of protonated acrylic acid (AAc), finding that above the lower critical solution temperature the presence of the acid strongly disrupts pNIPAM's collapse, leading to unexpected new behavior at high temperatures. We see a dramatic increase in the ratio between the radius of gyration and the hydrodynamic radius above the theoretical value for homogeneous spheres, and a corresponding increase of the network length scale, which we attribute to the presence of a heterogeneous polymer distribution that forms due to frustration of pNIPAM's coil-to-globule transition by the AAc. Finally, wemore » analyze this phenomenon using a Debye-Bueche-like scattering contribution as opposed to the Lorentzian term often used, interpreting the results in terms of mass segregation at the particle periphery.« less

  16. Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene

    SciTech Connect (OSTI)

    Jaber-Ansari, Laila; Puntambekar, Kanan P.; Kim, Soo; Aykol, Muratahan; Luo, Langli; Wu, Jinsong; Myers, Benjamin D.; Iddir, Hakim; Russell, John T.; Saldana, Spencer J.; Kumar, Rajan; Thackeray, Michael M.; Curtiss, Larry A.; Dravid, Vinayak P.; Wolverton, Christopher M.; Hersam, Mark C.

    2015-06-24

    Spinel-structured LiMn 2 O 4 (LMO) is a desirable cathode material for Li-ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single-layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene-coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X-ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmission electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single-layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn 3+ at the LMO electrode surface, promoting an oxidation state change to Mn 4+ , which suppresses dissolution.

  17. ATOMIC LAYER DEPOSITION OF TITANIUM OXIDE THIN FILMS ONNANOPOROUS ALUMINA TEMPLATES FOR MEDICAL APPLICATIONS

    SciTech Connect (OSTI)

    Brigmon, R.

    2009-05-05

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of the nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Both the 20 nm and 100 nm titanium oxide-coated nanoporous alumina membranes did not exhibit statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. In addition, 20 nm pore size titanium oxide-coated nanoporous alumina membranes exposed to ultraviolet light demonstrated activity against Escherichia coli and Staphylococcus aureus bacteria. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.

  18. Layered electrode for electrochemical cells

    DOE Patents [OSTI]

    Swathirajan, Swathy; Mikhail, Youssef M.

    2001-01-01

    There is provided an electrode structure comprising a current collector sheet and first and second layers of electrode material. Together, the layers improve catalyst utilization and water management.

  19. Layered semiconductor neutron detectors

    DOE Patents [OSTI]

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  20. CNEEC - Atomic Layer Deposition Tutorial by Stacey Bent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Layer Deposition

  1. Develop Roll-to-Roll Manufacturing Process of ZrO2 Nanocrystals/Acrylic Nanocomposites for High Refractive Index Applications

    SciTech Connect (OSTI)

    Joshi, Pooran C.; Compton, Brett G.; Li, Jianlin; Jellison, Jr, Gerald Earle; Duty, Chad E; Chen, Zhiyun

    2015-04-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) was to develop and evaluate ZrO2/acrylic nanocomposite coatings for integrated optoelectronic applications. The formulations engineered to be compatible with roll-to-roll process were evaluated in terms of optical and dielectric properties. The uniform distribution of the ZrO2 nanocrystals in the polymer matrix resulted in highly tunable refractive index and dielectric response suitable for advanced photonic and electronic device applications.

  2. Layered seal for turbomachinery

    DOE Patents [OSTI]

    Sarawate, Neelesh Nandkumar; Morgan, Victor John; Weber, David Wayne

    2015-11-20

    The present application provides seal assemblies for reducing leakages between adjacent components of turbomachinery. The seal assemblies may include outer shims, and at least a portion of the outer shims may be substantially impervious. At least one of the outer shims may be configured for sealing engagement with seal slots of the adjacent components. The seal assemblies may also include at least one of an inner shim and a filler layer positioned between the outer shims. The at least one inner shim may be substantially solid and the at least one filler layer may be relatively porous. The seal assemblies may be sufficiently flexible to account for misalignment between the adjacent components, sufficiently stiff to meet assembly requirements, and sufficiently robust to operating meet requirements associated with turbomachinery.

  3. Buried oxide layer in silicon

    DOE Patents [OSTI]

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  4. Metal deposition using seed layers

    DOE Patents [OSTI]

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  5. Activation Layer Stabilization of High Polarization Photocathodes in Sub-Optimal RF Gun Environments

    SciTech Connect (OSTI)

    Gregory A. Mulhollan

    2010-11-16

    with respect to time and power to moderate plasma damage to the photo-generating layer. Auger electron spectroscopy was used to analyze the composition and thickness of the emitter layers. AFM studies showed conformal growth on the GaAs substrates. Measurements at SLAC on the photoemitted electrons from high polarization substrates coated with amorphous silicon germanium indicated an ~10% relative drop in spin-polarization at the wavelength corresponding to the maximum spin-polarization when compared to the uncoated material,

  6. Templated, layered manganese phosphate

    DOE Patents [OSTI]

    Thoma, Steven G.; Bonhomme, Francois R.

    2004-08-17

    A new crystalline maganese phosphate composition having an empirical formula: O). The compound was determined to crystallize in the trigonal space group P-3c1 with a=8.8706(4) .ANG., c=26.1580(2) .ANG., and V (volume)=1783 .ANG..sup.3. The structure consists of sheets of corner sharing Mn(II)O.sub.4 and PO.sub.4 tetrahedra with layers of (H.sub.3 NCH.sub.2 CH.sub.2).sub.3 N and water molecules in-between. The pronated (H.sub.3 NCH.sub.2 CH.sub.2).sub.3 N molecules provide charge balancing for the inorganic sheets. A network of hydrogen bonds between water molecules and the inorganic sheets holds the structure together.

  7. Processes for multi-layer devices utilizing layer transfer

    DOE Patents [OSTI]

    Nielson, Gregory N; Sanchez, Carlos Anthony; Tauke-Pedretti, Anna; Kim, Bongsang; Cederberg, Jeffrey; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2015-02-03

    A method includes forming a release layer over a donor substrate. A plurality of devices made of a first semiconductor material are formed over the release layer. A first dielectric layer is formed over the plurality of devices such that all exposed surfaces of the plurality of devices are covered by the first dielectric layer. The plurality of devices are chemically attached to a receiving device made of a second semiconductor material different than the first semiconductor material, the receiving device having a receiving substrate attached to a surface of the receiving device opposite the plurality of devices. The release layer is etched to release the donor substrate from the plurality of devices. A second dielectric layer is applied over the plurality of devices and the receiving device to mechanically attach the plurality of devices to the receiving device.

  8. Oxygen-reducing catalyst layer

    DOE Patents [OSTI]

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; Yang, Ruizhi; Easton, E. Bradley; Dahn, Jeffrey R.; O'Neill, David G.

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  9. Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mohanty, Debasish; Dahlberg, Kevin; King, David M.; David, Lamuel A.; Sefat, Athena S.; Wood, David L.; Daniel, Claus; Dhar, Subhash; Mahajan, Vishal; Lee, Myongjai; et al

    2016-05-26

    The energy density of current lithium-ion batteries (LIBs) based on layered LiMO2 cathodes (M=Ni, Mn, Co: NMC; M=Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO2) and alumina (Al2O3) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al2O3 coating improved the NMC cyclingmore » performance by 40% and the NCA cycling performance by 34% at 1C/₋1C with respectively 4.35V and 4.4V UCV in 2Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al2O3 coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. Lastly, EIS confirmed that Al2O3-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. In conclusion, the ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs.« less

  10. Layer-by-Layer Assembly of Enzymes on Carbon Nanotubes

    SciTech Connect (OSTI)

    Wang, Jun; Liu, Guodong; Lin, Yuehe

    2008-06-01

    The use of Layer-by-layer techniques for immobilizing several types of enzymes, e.g. glucose oxidase (GOx), horse radish oxidases(HRP), and choline oxidase(CHO) on carbon nanotubes and their applications for biosenseing are presented. The enzyme is immobilized on the negatively charged CNT surface by alternatively assembling a cationic polydiallyldimethyl-ammonium chloride (PDDA) layer and a enzyme layer. The sandwich-like layer structure (PDDA/enzyme/PDDA/CNT) formed by electrostatic assembling provides a favorable microenvironment to keep the bioactivity of enzyme and to prevent enzyme molecule leakage. The morphologies and electrocatalytic acitivity of the resulted enzyme film were characterized using TEM and electrochemical techniques, respectively. It was found that these enzyme-based biosensors are very sensitive, selective for detection of biomolecules, e.g. glucose, choline.

  11. Extending framework based on the linear coordination polymers: Alternative chains containing lanthanum ion and acrylic acid ligand

    SciTech Connect (OSTI)

    Li Hui . E-mail: lihui@bit.edu.cn; Guo Ming; Tian Hong; He Feiyue; Lee, G.-H.; Peng, S.-M.

    2006-11-15

    One-dimensional alternative chains of two lanthanum complexes: [La(L{sup 1}){sub 3}(CH{sub 3}OH)(H{sub 2}O){sub 2}].5H{sub 2}O (L{sup 1}=anion of {alpha}-cyano-4-hydroxycinnamic acid ) 1 and [La(L{sup 2}){sub 3}(H{sub 2}O){sub 2}].3H{sub 2}O (L{sup 2}=anion of trans-3-(4-methyl-benzoyl)-acrylic acid) 2 were synthesized and structurally characterized by single-crystal X-ray diffraction, element analysis, IR and thermogravimetric analysis. The crystal structure data are as follows for 1: C{sub 31}H{sub 36}LaN{sub 3}O{sub 17}, triclinic, P-1, a=9.8279(4)A, b=11.8278(5)A, c=17.8730(7)A, {alpha}=72.7960(10){sup o}, {beta}=83.3820(10){sup o}, {gamma}=67.1650(10)-bar , Z=2, R{sub 1}=0.0377, wR{sub 2}=0.0746; for 2: C{sub 33}H{sub 37}LaO{sub 14}, triclinic, P-1, a=8.7174(5)A, b=9.9377(5)A, c=21.153(2)A, {alpha}=81.145(2){sup o}, {beta}=87.591(2){sup o}, {gamma}=67.345(5){sup o}, Z=2, R{sub 1}=0.0869, wR{sub 2}=0.220. 1 is a rare example of the alternative chain constructed by syn-syn and anti-syn coordination mode of carboxylato ligand arranged along the chain alternatively. La(III) ions in 2 are linked by two {eta}{sup 3}-O bridges and four bridges (two {eta}{sup 2}-O and two {eta}{sup 3}-O) alternatively. Both of the linear coordination polymers grow into two- and three-dimensional networks by packing through extending hydrogen-bond network directed by ligands.

  12. Leakage pathway layer for solar cell

    SciTech Connect (OSTI)

    Luan, Andy; Smith, David; Cousins, Peter; Sun, Sheng

    2015-12-01

    Leakage pathway layers for solar cells and methods of forming leakage pathway layers for solar cells are described.

  13. Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation

    SciTech Connect (OSTI)

    Salih, A. M.; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md. Zin Wan

    2014-02-12

    Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 , while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA.

  14. D0 layer 0 innermost layer of silicon microstrip tracker

    SciTech Connect (OSTI)

    Hanagaki, K.; /Fermilab

    2006-01-01

    A new inner layer silicon strip detector has been built and will be installed in the existing silicon microstrip tracker in D0. They report on the motivation, design, and performance of this new detector.

  15. Fabrication of Emissible Metallic Layer-by-Layer Photonic Crystals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    polymer is coated on the first polymer. A substrate or a multi-layer polymer structure is placed on the filled mold and the resulting structure is exposed to UV light (i.e., is UV...

  16. Boundary Layer Cloud Turbulence Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary Layer Cloud Turbulence Characteristics Virendra Ghate Bruce Albrecht Parameter Observational Readiness (/10) Modeling Need (/10) Cloud Boundaries 9 9 Cloud Fraction Variance Skewness Up/Downdraft coverage Dominant Freq. signal Dissipation rate ??? Observation-Modeling Interface

  17. Intermetallic Layers in Soldered Joints

    Energy Science and Technology Software Center (OSTI)

    1998-12-10

    ILAG solves the one-dimensional partial differential equations describing the multiphase, multicomponent, solid-state diffusion-controlled growth of intermetallic layers in soldered joints. This software provides an analysis capability for materials researchers to examine intermetallic growth mechanisms in a wide variety of defense and commercial applications involving both traditional and advanced materials. ILAG calculates the interface positions of the layers, as well as the spatial distribution of constituent mass fractions, and outputs the results at user-prescribed simulation times.

  18. Segregation of mass at the periphery of N -isopropylacrylamide-co-acrylic-acid microgels at high temperatures

    SciTech Connect (OSTI)

    Hyatt, John S.; Do, Changwoo; Hu, Xiaobo; Choi, Hong Sung; Kim, Jin Woong; Lyon, L. Andrew; Fernandez-Nieves, Alberto

    2015-09-29

    Here, we investigate poly(N-isopropylacrylamide) (pNIPAM) microgels randomly copolymerized with large mol % of protonated acrylic acid (AAc), finding that above the lower critical solution temperature the presence of the acid strongly disrupts pNIPAM's collapse, leading to unexpected new behavior at high temperatures. We see a dramatic increase in the ratio between the radius of gyration and the hydrodynamic radius above the theoretical value for homogeneous spheres, and a corresponding increase of the network length scale, which we attribute to the presence of a heterogeneous polymer distribution that forms due to frustration of pNIPAM's coil-to-globule transition by the AAc. Finally, we analyze this phenomenon using a Debye-Bueche-like scattering contribution as opposed to the Lorentzian term often used, interpreting the results in terms of mass segregation at the particle periphery.

  19. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming

    2010-02-23

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  20. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming; Liao, Xianbo; Du, Wenhui

    2011-10-04

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  1. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming; Liao, Xianbo; Du, Wenhui

    2011-02-01

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  2. Doped LZO buffer layers for laminated conductors

    DOE Patents [OSTI]

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2010-03-23

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  3. Lubricant-infused nanoparticulate coatings assembled by layer...

    Office of Scientific and Technical Information (OSTI)

    Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition Title: Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition ...

  4. Organic photovoltaic cells utilizing ultrathin sensitizing layer

    DOE Patents [OSTI]

    Rand, Barry P.; Forrest, Stephen R.

    2011-05-24

    A photosensitive device includes a series of organic photoactive layers disposed between two electrodes. Each layer in the series is in direct contact with a next layer in the series. The series is arranged to form at least one donor-acceptor heterojunction, and includes a first organic photoactive layer comprising a first host material serving as a donor, a thin second organic photoactive layer comprising a second host material disposed between the first and a third organic photoactive layer, and the third organic photoactive layer comprising a third host material serving as an acceptor. The first, second, and third host materials are different. The thin second layer serves as an acceptor relative to the first layer or as a donor relative to the third layer.

  5. Buffer layer for thin film structures

    DOE Patents [OSTI]

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2006-10-31

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  6. Buffer layer for thin film structures

    DOE Patents [OSTI]

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2010-06-15

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  7. Chemical solution seed layer for rabits tapes

    DOE Patents [OSTI]

    Goyal, Amit; Paranthaman, Mariappan; Wee, Sung-Hun

    2014-06-10

    A method for making a superconducting article includes the steps of providing a biaxially textured substrate. A seed layer is then deposited. The seed layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different rare earth or transition metal cations. A superconductor layer is grown epitaxially such that the superconductor layer is supported by the seed layer.

  8. Optimized capping layers for EUV multilayers

    DOE Patents [OSTI]

    Bajt, Sasa; Folta, James A.; Spiller, Eberhard A.

    2004-08-24

    A new capping multilayer structure for EUV-reflective Mo/Si multilayers consists of two layers: A top layer that protects the multilayer structure from the environment and a bottom layer that acts as a diffusion barrier between the top layer and the structure beneath. One embodiment combines a first layer of Ru with a second layer of B.sub.4 C. Another embodiment combines a first layer of Ru with a second layer of Mo. These embodiments have the additional advantage that the reflectivity is also enhanced. Ru has the best oxidation resistance of all materials investigated so far. B.sub.4 C is an excellent barrier against silicide formation while the silicide layer formed at the Si boundary is well controlled.

  9. Inkjet Deposition of Layer-by-Layer Assembled Films

    SciTech Connect (OSTI)

    Andres, C. M.; Kotov, Nicholas A.

    2010-09-23

    Layer-by-layer assembly (LBL) can create advanced composites with exceptional properties unavailable by other means, but the laborious deposition process and multiple dipping cycles hamper their utilization in microtechnologies and electronics. Multiple rinse steps provide both structural control and thermodynamic stability to LBL multilayers, but they significantly limit their practical applications and contribute significantly to the processing time and waste. Here we demonstrate that by employing inkjet technology one can deliver the necessary quantities of LBL components required for film buildup without excess, eliminating the need for repetitive rinsing steps. This feature differentiates this approach from all other recognized LBL modalities. Using a model system of negatively charged gold nanoparticles and positively charged poly(diallyldimethylammonium) chloride, the material stability, nanoscale control over thickness, and particle coverage offered by the inkjet LBL technique are shown to be equal or better than the case of multilayers made with traditional dipping cycles. The opportunity for fast deposition of complex metallic patterns using a simple inkjet printer is also shown. The additive nature of LBL deposition based on the formation of insoluble nanoparticle-polyelectrolyte complexes of various compositions provides an excellent opportunity for versatile, multicomponent, and noncontact patterning for the simple production of stratified patterns that are much needed in advanced devices.

  10. ARM - Measurement - Planetary boundary layer height

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsPlanetary boundary layer height ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Planetary boundary layer height Top of the planetary boundary layer; also known as depth or height of the mixing layer. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  11. Biaxially textured metal substrate with palladium layer

    DOE Patents [OSTI]

    Robbins, William B.

    2002-12-31

    Described is an article comprising a biaxially textured metal substrate and a layer of palladium deposited on at least one major surface of the metal substrate; wherein the palladium layer has desired in-plane and out-of-plane crystallographic orientations, which allow subsequent layers that are applied on the article to also have the desired orientations.

  12. Dense, layered membranes for hydrogen separation

    DOE Patents [OSTI]

    Roark, Shane E.; MacKay, Richard; Mundschau, Michael V.

    2006-02-21

    This invention provides hydrogen-permeable membranes for separation of hydrogen from hydrogen-containing gases. The membranes are multi-layer having a central hydrogen-permeable layer with one or more catalyst layers, barrier layers, and/or protective layers. The invention also relates to membrane reactors employing the hydrogen-permeable membranes of the invention and to methods for separation of hydrogen from a hydrogen-containing gas using the membranes and reactors. The reactors of this invention can be combined with additional reactor systems for direct use of the separated hydrogen.

  13. Solar cell with silicon oxynitride dielectric layer

    SciTech Connect (OSTI)

    Shepherd, Michael; Smith, David D

    2015-04-28

    Solar cells with silicon oxynitride dielectric layers and methods of forming silicon oxynitride dielectric layers for solar cell fabrication are described. For example, an emitter region of a solar cell includes a portion of a substrate having a back surface opposite a light receiving surface. A silicon oxynitride (SiO.sub.xN.sub.y, 0layer is disposed on the back surface of the portion of the substrate. A semiconductor layer is disposed on the silicon oxynitride dielectric layer.

  14. Multi Layer Contaminant Migration Model

    Energy Science and Technology Software Center (OSTI)

    1999-07-28

    This computer software augments and enhances certain calculation included in the previously copyrighted Vadose Zone Contaminant Migration Model. The computational method used in this model recognizes the heterogenous nature of the soils and attempts to account for the variability by using four separate layers to simulate the flow of water through the vadose zone. Therefore, the pore-water velocity calculated by the code will be different than the previous model because it accounts for a widermore » variety of soil properties encountered in the vadose zone. This model also performs an additional screening step than in the previous model. In this model the higher value of two different types of Soil Screening Levels are compared to soil concentrations of contaminants. If the contaminant concentration exceeds the highest of two SSLs, then that contaminant is listed. This is consistent with USEPA's Soil Screening Guidance.« less

  15. Nanomanufacturing : nano-structured materials made layer-by-layer.

    SciTech Connect (OSTI)

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto; Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

    2011-10-01

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

  16. Superconductive articles including cerium oxide layer

    DOE Patents [OSTI]

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  17. Manganese containing layer for magnetic recording media

    DOE Patents [OSTI]

    Lambeth, David N.; Lee, Li-Lien; Laughlin, David E.

    1999-01-01

    The present invention provides for a magnetic recording media incorporating Mn-containing layers between a substrate and a magnetic layer to provide media having increased coercivity and lower noise. The Mn-containing layer can be incorporated in a rotating, translating or stationary recording media to operate in conjunction with magnetic transducing heads for recording and reading of magnetic data, as well as other applications. The magnetic recording medium of the invention preferably includes a Co or Co alloy film magnetic layer, and Mn-containing layer, preferably comprised of VMn, TiMn, MnZn, CrMnMo, CrMnW, CrMnV, and CrMnTi, and most preferably a CrMn alloy, disposed between the substrate and the magnetic layer to promote an epitaxial crystalline structure in the magnetic layer. The medium can further include seed layers, preferably polycrystalline MgO for longitudinal media, underlayers, and intermediate layers. Underlayers and intermediate layers are comprised of materials having either an A2 structure or a B2-ordered crystalline structure disposed between the seed layer and the magnetic layer. Materials having an A2 structure are preferably Cr or Cr alloys, such as CrV, CrMo, CrW and CrTi. Materials having a B2-ordered structure having a lattice constant that is substantially comparable to that of Cr, such as those preferably selected from the group consisting of NiAl, AILCo, FeAl, FeTi, CoFe, CoTi, CoHf, CoZr, NiTi, CuBe, CuZn, A-LMn, AlRe, AgMg, and Al.sub.2 FeMn.sub.2, and is most preferably FeAl or NiAl.

  18. Solar collector with blackened layer facing insulation

    SciTech Connect (OSTI)

    Brugger, R.

    1981-05-12

    A solar collector has a surface turned toward the sun and forms a heat exchange cell which has at least one wall composed of sheet aluminum. A tramsmitting layer of such a wall or the absorption layer thereof is a black layer of aluminum oxide containing Ag or Sn and formed unitarily on the aluminum sheet, e.g. By a chemical or electrochemical process.

  19. Size distributions of boundary-layer clouds

    SciTech Connect (OSTI)

    Stull, R.; Berg, L.; Modzelewski, H.

    1996-04-01

    Scattered fair-weather clouds are triggered by thermals rising from the surface layer. Not all surface layer air is buoyant enough to rise. Also, each thermal has different humidities and temperatures, resulting in interthermal variability of their lifting condensation levels (LCL). For each air parcel in the surface layer, it`s virtual potential temperature and it`s LCL height can be computed.

  20. Method to fabricate layered material compositions

    DOE Patents [OSTI]

    Fleming, James G.; Lin, Shawn-Yu

    2002-01-01

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  1. Method to fabricate layered material compositions

    DOE Patents [OSTI]

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  2. Multi-layer seal for electrochemical devices

    DOE Patents [OSTI]

    Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA

    2010-09-14

    Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.

  3. Multi-layer seal for electrochemical devices

    DOE Patents [OSTI]

    Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-16

    Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.

  4. Enhanced Densification of SDC Barrier Layers

    SciTech Connect (OSTI)

    Hardy, John S.; Templeton, Jared W.; Lu, Zigui; Stevenson, Jeffry W.

    2011-09-12

    This technical report explores the Enhanced Densification of SCD Barrier Layers A samaria-doped ceria (SDC) barrier layer separates the lanthanum strontium cobalt ferrite (LSCF) cathode from the yttria-stabilized zirconia (YSZ) electrolyte in a solid oxide fuel cell (SOFC) to prevent the formation of electrically resistive interfacial SrZrO{sub 3} layers that arise from the reaction of Sr from the LSCF with Zr from the YSZ. However, the sintering temperature of this SDC layer must be limited to {approx}1200 C to avoid extensive interdiffusion between SDC and YSZ to form a resistive CeO{sub 2}-ZrO{sub 2} solid solution. Therefore, the conventional SDC layer is often porous and therefore not as impervious to Sr-diffusion as would be desired. In the pursuit of improved SOFC performance, efforts have been directed toward increasing the density of the SDC barrier layer without increasing the sintering temperature. The density of the SDC barrier layer can be greatly increased through small amounts of Cu-doping of the SDC powder together with increased solids loading and use of an appropriate binder system in the screen print ink. However, the resulting performance of cells with these barrier layers did not exhibit the expected increase in accordance with that achieved with the prototypical PLD SDC layer. It was determined by XRD that increased sinterability of the SDC also results in increased interdiffusivity between the SDC and YSZ, resulting in formation of a highly resistive solid solution.

  5. Sodium-layer laser guide stars

    SciTech Connect (OSTI)

    Friedman, H.W.

    1993-08-03

    The requirements and design of a laser system to generate a sodium- layer beacon is presented. Early results of photometry and wavefront sensing are given.

  6. Organic photovoltaic cells utilizing ultrathin sensitizing layer

    DOE Patents [OSTI]

    Forrest, Stephen R.; Yang, Fan; Rand, Barry P.

    2011-09-06

    A photosensitive device includes a plurality of organic photoconductive materials disposed in a stack between a first electrode and a second electrode, including a first continuous layer of donor host material, a second continuous layer of acceptor host material, and at least one other organic photoconductive material disposed as a plurality of discontinuous islands between the first continuous layer and the second continuous layer. Each of these other photoconductive materials has an absorption spectra different from the donor host material and the acceptor host material. Preferably, each of the discontinuous islands consists essentially of a crystallite of the respective organic photoconductive material, and more preferably, the crystallites are nanocrystals.

  7. Modeling the summertime Arctic cloudy boundary layer

    SciTech Connect (OSTI)

    Curry, J.A.; Pinto, J.O.; McInnes, K.L.

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  8. Cyclone separator having boundary layer turbulence control

    DOE Patents [OSTI]

    Krishna, Coimbatore R.; Milau, Julius S.

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  9. Atomic Layer Deposition | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Layer Deposition New nanophase thin film materials with properties tailored to specifically meet the needs of industry New software simulates ALD over multiple length scale, saving industry time and money on developing specialized tools PDF icon Atomic_Layer_Deposition

  10. Epitaxial growth of silicon for layer transfer

    DOE Patents [OSTI]

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  11. Instability limits for spontaneous double layer formation

    SciTech Connect (OSTI)

    Carr, J. Jr.; Department of Physics, Texas Lutheran University, Seguin, Texas 78155 ; Galante, M. E.; McCarren, D.; Scime, E. E.; Sears, S.; VanDervort, R. W.; Magee, R. M.; TriAlpha Energy, Inc., Foothill Ranch, California 92610 ; Reynolds, E.

    2013-11-15

    We present time-resolved measurements that demonstrate that large amplitude electrostatic instabilities appear in pulsed, expanding helicon plasmas at the same time as particularly strong double layers appear in the expansion region. A significant cross-correlation between the electrostatic fluctuations and fluctuations in the number of ions accelerated by the double layer electric field is observed. No correlation is observed between the electrostatic fluctuations and ions that have not passed through the double layer. These measurements confirm that the simultaneous appearance of the electrostatic fluctuations and the double layer is not simple coincidence. In fact, the accelerated ion population is responsible for the growth of the instability. The double layer strength, and therefore, the velocity of the accelerated ions, is limited by the appearance of the electrostatic instability.

  12. Thermoelectric material including conformal oxide layers and method of making the same using atomic layer deposition

    DOE Patents [OSTI]

    Cho, Jung Young; Ahn, Dongjoon; Salvador, James R.; Meisner, Gregory P.

    2016-06-07

    A thermoelectric material includes a substrate particle and a plurality of conformal oxide layers formed on the substrate particle. The plurality of conformal oxide layers has a total oxide layer thickness ranging from about 2 nm to about 20 nm. The thermoelectric material excludes oxide nanoparticles. A method of making the thermoelectric material is also disclosed herein.

  13. Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer

    DOE Patents [OSTI]

    Carlson, David E.

    1980-01-01

    Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.

  14. Method for forming a barrier layer

    DOE Patents [OSTI]

    Weihs, Timothy P. (Baltimore, MD); Barbee, Jr., Troy W. (Palo Alto, CA)

    2002-01-01

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

  15. Superconductive articles including cerium oxide layer

    DOE Patents [OSTI]

    Wu, X.D.; Muenchausen, R.E.

    1993-11-16

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.

  16. Strained layer Fabry-Perot device

    DOE Patents [OSTI]

    Brennan, Thomas M.; Fritz, Ian J.; Hammons, Burrell E.

    1994-01-01

    An asymmetric Fabry-Perot reflectance modulator (AFPM) consists of an active region between top and bottom mirrors, the bottom mirror being affixed to a substrate by a buffer layer. The active region comprises a strained-layer region having a bandgap and thickness chosen for resonance at the Fabry-Perot frequency. The mirrors are lattice matched to the active region, and the buffer layer is lattice matched to the mirror at the interface. The device operates at wavelengths of commercially available semiconductor lasers.

  17. Cermet layer for amorphous silicon solar cells

    DOE Patents [OSTI]

    Hanak, Joseph J.

    1979-01-01

    A transparent high work function metal cermet forms a Schottky barrier in a Schottky barrier amorphous silicon solar cell and adheres well to the P+ layer in a PIN amorphous silicon solar cell.

  18. Cryogenic target system for hydrogen layering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Parham, T.; Kozioziemski, B.; Atkinson, D.; Baisden, P.; Bertolini, L.; Boehm, K; Chernov, A.; Coffee, K.; Coffield, F.; Dylla-Spears, R.; et al

    2015-11-24

    Here, a cryogenic target positioning system was designed and installed on the National Ignition Facility (NIF) target chamber. This instrument incorporates the ability to fill, form, and characterize the NIF targets with hydrogen isotopes needed for ignition experiments inside the NIF target bay then transport and position them in the target chamber. This effort brought to fruition years of research in growing and metrologizing high-quality hydrogen fuel layers and landed it in an especially demanding operations environment in the NIF facility. D-T (deuterium-tritium) layers for NIF ignition experiments have extremely tight specifications and must be grown in a very highlymore » constrained environment: a NIF ignition target inside a cryogenic target positioner inside the NIF target bay. Exquisite control of temperature, pressure, contaminant level, and thermal uniformity are necessary throughout seed formation and layer growth to create an essentially-groove-free single crystal layer.« less

  19. Counting molecular-beam grown graphene layers

    SciTech Connect (OSTI)

    Plaut, Annette S.; Wurstbauer, Ulrich; Pinczuk, Aron; Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 ; Garcia, Jorge M.; Pfeiffer, Loren N.

    2013-06-17

    We have used the ratio of the integrated intensity of graphene's Raman G peak to that of the silicon substrate's first-order optical phonon peak, accurately to determine the number of graphene layers across our molecular-beam (MB) grown graphene films. We find that these results agree well both, with those from our own exfoliated single and few-layer graphene flakes, and with the results of Koh et al.[ACS Nano 5, 269 (2011)]. We hence distinguish regions of single-, bi-, tri-, four-layer, etc., graphene, consecutively, as we scan coarsely across our MB-grown graphene. This is the first, but crucial, step to being able to grow, by such molecular-beam-techniques, a specified number of large-area graphene layers, to order.

  20. Multi-layer waste containment barrier

    DOE Patents [OSTI]

    Smith, Ann Marie; Gardner, Bradley M.; Nickelson, David F.

    1999-01-01

    An apparatus for constructing an underground containment barrier for containing an in-situ portion of earth. The apparatus includes an excavating device for simultaneously (i) excavating earthen material from beside the in-situ portion of earth without removing the in-situ portion and thereby forming an open side trench defined by opposing earthen sidewalls, and (ii) excavating earthen material from beneath the in-situ portion of earth without removing the in-situ portion and thereby forming a generally horizontal underground trench beneath the in-situ portion defined by opposing earthen sidewalls. The apparatus further includes a barrier-forming device attached to the excavating device for simultaneously forming a side barrier within the open trench and a generally horizontal, multi-layer barrier within the generally horizontal trench. The multi-layer barrier includes at least a first layer and a second layer.

  1. Layered solid sorbents for carbon dioxide capture

    DOE Patents [OSTI]

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  2. Optical devices featuring nonpolar textured semiconductor layers

    DOE Patents [OSTI]

    Moustakas, Theodore D; Moldawer, Adam; Bhattacharyya, Anirban; Abell, Joshua

    2013-11-26

    A semiconductor emitter, or precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.

  3. Optical devices featuring textured semiconductor layers

    DOE Patents [OSTI]

    Moustakas, Theodore D.; Cabalu, Jasper S.

    2011-10-11

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  4. Optical devices featuring textured semiconductor layers

    DOE Patents [OSTI]

    Moustakas, Theodore D.; Cabalu, Jasper S.

    2012-08-07

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  5. Method of depositing epitaxial layers on a substrate

    SciTech Connect (OSTI)

    Goyal, Amit

    2003-12-30

    An epitaxial article and method for forming the same includes a substrate having a textured surface, and an electrochemically deposited substantially single orientation epitaxial layer disposed on and in contact with the textured surface. The epitaxial article can include an electromagnetically active layer and an epitaxial buffer layer. The electromagnetically active layer and epitaxial buffer layer can also be deposited electrochemically.

  6. Selective layer disordering in III-nitrides with a capping layer

    DOE Patents [OSTI]

    Wierer, Jr., Jonathan J.; Allerman, Andrew A.

    2016-06-14

    Selective layer disordering in a doped III-nitride superlattice can be achieved by depositing a dielectric capping layer on a portion of the surface of the superlattice and annealing the superlattice to induce disorder of the layer interfaces under the uncapped portion and suppress disorder of the interfaces under the capped portion. The method can be used to create devices, such as optical waveguides, light-emitting diodes, photodetectors, solar cells, modulators, laser, and amplifiers.

  7. Characterization of CZTSSe photovoltaic device with an atomic layer-deposited passivation layer

    SciTech Connect (OSTI)

    Wu, Wei Cao, Yanyan; Caspar, Jonathan V.; Guo, Qijie; Johnson, Lynda K.; Mclean, Robert S.; Malajovich, Irina; Choudhury, Kaushik Roy

    2014-07-28

    We describe a CZTSSe (Cu{sub 2}ZnSn(S{sub 1−x},Se{sub x}){sub 4}) photovoltaic (PV) device with an ALD (atomic layer deposition) coated buffer dielectric layer for CZTSSe surface passivation. An ALD buffer layer, such as TiO{sub 2}, can be applied in order to reduce the interface recombination and improve the device's open-circuit voltage. Detailed characterization data including current-voltage, admittance spectroscopy, and capacitance profiling are presented in order to compare the performance of PV devices with and without the ALD layer.

  8. Organic light emitting device having multiple separate emissive layers

    DOE Patents [OSTI]

    Forrest, Stephen R. (Ann Arbor, MI)

    2012-03-27

    An organic light emitting device having multiple separate emissive layers is provided. Each emissive layer may define an exciton formation region, allowing exciton formation to occur across the entire emissive region. By aligning the energy levels of each emissive layer with the adjacent emissive layers, exciton formation in each layer may be improved. Devices incorporating multiple emissive layers with multiple exciton formation regions may exhibit improved performance, including internal quantum efficiencies of up to 100%.

  9. Boundary Layer Cloudiness Parameterizations Using ARM Observations

    SciTech Connect (OSTI)

    Bruce Albrecht

    2004-09-15

    This study used DOE ARM data and facilities to: (1) study macroscopic properties of continental stratus clouds at SGP and the factors controlling these properties, (2) develop a scientific basis for understanding the processes responsible for the formation of boundary layer clouds using ARM observations in conjunction with simple parametric models and LES, and (3) evaluate cumulus cloud characteristics retrieved from the MMCR operating at TWP-Nauru. In addition we have used high resolution 94 GHz observations of boundary layer clouds and precipitation to: (1) develop techniques for using high temporal resolution Doppler velocities to study large-eddy circulations and turbulence in boundary layer clouds and estimate the limitations of using current and past MMCR data for boundary layer cloud studies, (2) evaluate the capability and limitations of the current MMCR data for estimating reflectivity, vertical velocities, and spectral under low- signal-to-noise conditions associated with weak no n-precipitating clouds, (3) develop possible sampling modes for the new MMCR processors to allow for adequate sampling of boundary layer clouds, and (4) retrieve updraft and downdraft structures under precipitating conditions.

  10. Membrane catalyst layer for fuel cells

    DOE Patents [OSTI]

    Wilson, Mahlon S.

    1993-01-01

    A gas reaction fuel cell incorporates a thin catalyst layer between a solid polymer electrolyte (SPE) membrane and a porous electrode backing. The catalyst layer is preferably less than about 10 .mu.m in thickness with a carbon supported platinum catalyst loading less than about 0.35 mgPt/cm.sup.2. The film is formed as an ink that is spread and cured on a film release blank. The cured film is then transferred to the SPE membrane and hot pressed into the surface to form a catalyst layer having a controlled thickness and catalyst distribution. Alternatively, the catalyst layer is formed by applying a Na.sup.+ form of a perfluorosulfonate ionomer directly to the membrane, drying the film at a high temperature, and then converting the film back to the protonated form of the ionomer. The layer has adequate gas permeability so that cell performance is not affected and has a density and particle distribution effective to optimize proton access to the catalyst and electronic continuity for electron flow from the half-cell reaction occurring at the catalyst.

  11. Inorganic dual-layer microporous supported membranes

    DOE Patents [OSTI]

    Brinker, C. Jeffrey; Tsai, Chung-Yi; Lu, Yungfeng

    2003-03-25

    The present invention provides for a dual-layer inorganic microporous membrane capable of molecular sieving, and methods for production of the membranes. The inorganic microporous supported membrane includes a porous substrate which supports a first inorganic porous membrane having an average pore size of less than about 25 .ANG. and a second inorganic porous membrane coating the first inorganic membrane having an average pore size of less than about 6 .ANG.. The dual-layered membrane is produced by contacting the porous substrate with a surfactant-template polymeric sol, resulting in a surfactant sol coated membrane support. The surfactant sol coated membrane support is dried, producing a surfactant-templated polymer-coated substrate which is calcined to produce an intermediate layer surfactant-templated membrane. The intermediate layer surfactant-templated membrane is then contacted with a second polymeric sol producing a polymeric sol coated substrate which is dried producing an inorganic polymeric coated substrate. The inorganic polymeric coated substrate is then calcined producing an inorganic dual-layered microporous supported membrane in accordance with the present invention.

  12. Solvothermal Thin Film Deposition of Electron Blocking Layers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solvothermal Thin Film Deposition of Electron Blocking Layers Home > Research > ANSER Research Highlights > Solvothermal Thin Film Deposition of Electron Blocking Layers...

  13. Spatial atomic layer deposition on flexible substrates using...

    Office of Scientific and Technical Information (OSTI)

    Spatial atomic layer deposition on flexible substrates using a modular rotating cylinder reactor Citation Details In-Document Search Title: Spatial atomic layer deposition on...

  14. Analysis of thomsen parameters for finely layered VTI media ...

    Office of Scientific and Technical Information (OSTI)

    Conference: Analysis of thomsen parameters for finely layered VTI media Citation Details In-Document Search Title: Analysis of thomsen parameters for finely layered VTI media ...

  15. Controlled Covalent Modification of Epitaxial Single Layer Graphene...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Controlled Covalent Modification of Epitaxial Single Layer Graphene on ... Title: Controlled Covalent Modification of Epitaxial Single Layer Graphene on 6H-SiC ...

  16. ARM - Field Campaign - Lower Atmospheric Boundary Layer Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Campaigns 2013 Lower Atmospheric Boundary Layer Experiment 2013.05.28, Turner, SGP ... Lead Scientist : David Turner For data sets, see below. Abstract Boundary layer turbulence ...

  17. Thermopower Enhancement by Fractional Layer Control in 2D Oxide...

    Office of Scientific and Technical Information (OSTI)

    Thermopower Enhancement by Fractional Layer Control in 2D Oxide Superlattices Citation Details In-Document Search Title: Thermopower Enhancement by Fractional Layer Control in 2D ...

  18. Application of Analytical Heat Transfer Models of Multi-layered...

    Office of Scientific and Technical Information (OSTI)

    multi-layered cylindrical solution to simulate the temperature response of a deep geologic radioactive waste repository with multi-layered natural and engineered...

  19. Thermal Multi-layer Coating Analysis | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Multi-layer Coating Analysis Key to Argonne's thermal multi-layer analysis method is the numerical algorithm used for automated analysis of thermal imaging data for...

  20. Facile oxygen intercalation between full layer graphene and Ru...

    Office of Scientific and Technical Information (OSTI)

    Facile oxygen intercalation between full layer graphene and Ru(0001) under ambient ... Title: Facile oxygen intercalation between full layer graphene and Ru(0001) under ambient ...

  1. Graphene-silicon layered structures on single-crystalline Ir...

    Office of Scientific and Technical Information (OSTI)

    Accepted Manuscript: Graphene-silicon layered structures on single-crystalline Ir(111) thin films Prev Next Title: Graphene-silicon layered structures on single-crystalline...

  2. A dual mass flux framework for boundary layer convection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A dual mass flux framework for boundary layer convection Neggers, Roel European Centre for Medium-range Weather Forecasts (ECMWF) Category: Modeling A new convective boundary layer...

  3. Buffer layer for thin film structures (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate ...

  4. Atomic Layer Deposition of Metal Sulfide Materials | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Layer Deposition of Metal Sulfide Materials Title Atomic Layer Deposition of Metal Sulfide Materials Publication Type Journal Article Year of Publication 2015 Authors...

  5. Process for depositing Cr-bearing layer

    DOE Patents [OSTI]

    Ellis, T.W.; Lograsso, T.A.; Eshelman, M.A.

    1995-05-09

    A method of applying a Cr-bearing layer to a substrate, comprises introducing an organometallic compound, in vapor or solid powder form entrained in a carrier gas to a plasma of an inductively coupled plasma torch or device to thermally decompose the organometallic compound and contacting the plasma and the substrate to be coated so as to deposit the Cr-bearing layer on the substrate. A metallic Cr, Cr alloy or Cr compound such as chromium oxide, nitride and carbide can be provided on the substrate. Typically, the organometallic compound is introduced to an inductively coupled plasma torch that is disposed in ambient air so to thermally decompose the organometallic compound in the plasma. The plasma is directed at the substrate to deposit the Cr-bearing layer or coating on the substrate. 7 figs.

  6. Growth of oxide exchange bias layers

    DOE Patents [OSTI]

    Chaiken, A.; Michel, R.P.

    1998-07-21

    An oxide (NiO, CoO, NiCoO) antiferromagnetic exchange bias layer produced by ion beam sputtering of an oxide target in pure argon (Ar) sputtering gas, with no oxygen gas introduced into the system. Antiferromagnetic oxide layers are used, for example, in magnetoresistive readback heads to shift the hysteresis loops of ferromagnetic films away from the zero field axis. For example, NiO exchange bias layers have been fabricated using ion beam sputtering of an NiO target using Ar ions, with the substrate temperature at 200 C, the ion beam voltage at 1000V and the beam current at 20 mA, with a deposition rate of about 0.2 {angstrom}/sec. The resulting NiO film was amorphous. 4 figs.

  7. Process for depositing Cr-bearing layer

    DOE Patents [OSTI]

    Ellis, Timothy W.; Lograsso, Thomas A.; Eshelman, Mark A.

    1995-05-09

    A method of applying a Cr-bearing layer to a substrate, comprises introducing an organometallic compound, in vapor or solid powder form entrained in a carrier gas to a plasma of an inductively coupled plasma torch or device to thermally decompose the organometallic compound and contacting the plasma and the substrate to be coated so as to deposit the Cr-bearing layer on the substrate. A metallic Cr, Cr alloy or Cr compound such as chromium oxide, nitride and carbide can be provided on the substrate. Typically, the organometallic compound is introduced to an inductively coupled plasma torch that is disposed in ambient air so to thermally decompose the organometallic compound in the plasma. The plasma is directed at the substrate to deposit the Cr-bearing layer or coating on the substrate.

  8. Growth of oxide exchange bias layers

    DOE Patents [OSTI]

    Chaiken, Alison; Michel, Richard P.

    1998-01-01

    An oxide (NiO, CoO, NiCoO) antiferromagnetic exchange bias layer produced by ion beam sputtering of an oxide target in pure argon (Ar) sputtering gas, with no oxygen gas introduced into the system. Antiferromagnetic oxide layers are used, for example, in magnetoresistive readback heads to shift the hysteresis loops of ferromagnetic films away from the zero field axis. For example, NiO exchange bia layers have been fabricated using ion beam sputtering of an NiO target using Ar ions, with the substrate temperature at 200.degree. C., the ion beam voltage at 1000V and the beam current at 20 mA, with a deposition rate of about 0.2 .ANG./sec. The resulting NiO film was amorphous.

  9. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    SciTech Connect (OSTI)

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie; Lee, Rebekah; Cole, Chris

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  10. Excess Oxygen Defects in Layered Cuprates

    DOE R&D Accomplishments [OSTI]

    Lightfoot, P.; Pei, S. Y.; Jorgensen, J. D.; Manthiram, A.; Tang, X. X.; Goodenough, J. B.

    1990-09-01

    Neutron powder diffraction has been used to study the oxygen defect chemistry of two non-superconducting layered cuprates, La{sub 1. 25}Dy{sub 0.75}Cu{sub 3.75}F{sub 0.5}, having a T{sup {asterisk}}- related structure, and La{sub 1.85}Sr{sub 1.15}Cu{sub 2}O{sub 6.25}, having a structure related to that of the newly discovered double-layer superconductor La{sub 2-x}Sr{sub x}CaCu{sub 2}O{sub 6}. The role played by oxygen defects in determining the superconducting properties of layered cuprates is discussed.

  11. Buffer layers on metal alloy substrates for superconducting tapes

    DOE Patents [OSTI]

    Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.

    2004-10-05

    An article including a substrate, at least one intermediate layer upon the surface of the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the at least one intermediate layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected I.sub.c 's of over 200 Amperes across a sample 1 cm wide.

  12. Photovoltaic cell with thin CS layer

    DOE Patents [OSTI]

    Jordan, John F.; Albright, Scot P.

    1994-01-18

    An improved photovoltaic panel and method of forming a photovoltaic panel are disclosed for producing a high efficiency CdS/CdTe photovoltaic cell. The photovoltaic panel of the present invention is initially formed with a substantially thick Cds layer, and the effective thickness of the CdS layer is substantially reduced during regrowth to both form larger diameter CdTe crystals and substantially reduce the effective thickness of the C This invention was made with Government support under Subcontract No. ZL-7-06031-3 awarded by the Department of Energy. The Government has certain rights in this invention.

  13. Fusion Utility in the Knudsen Layer

    SciTech Connect (OSTI)

    Davidovits, Seth; Fisch, Nathaniel J.

    2014-08-01

    In inertial confi nement fusion, the loss of fast ions from the edge of the fusing hot-spot region reduces the reactivity below its Maxwellian value. The loss of fast ions may be pronounced because of the long mean free paths of fast ions, compared to those of thermal ions. We introduce a fusion utility function to demonstrate essential features of this Knudsen layer e ffect, in both magnetized and unmagnetized cases. The fusion utility concept is also used to evaluate restoring the reactivity in the Knudsen layer by manipulating fast ions in phase space using waves.

  14. ARM - Field Campaign - Boundary Layer Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsBoundary Layer Cloud IOP Campaign Links Campaign Images ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Boundary Layer Cloud IOP 2005.07.11 - 2005.08.07 Lead Scientist : William Shaw For data sets, see below. Abstract Investigators from Pacific Northwest National Laboratory, in collaboration with scientists from a number of other institutions, carried out a month of intensive measurements at

  15. Fusion utility in the Knudsen layer

    SciTech Connect (OSTI)

    Davidovits, Seth; Fisch, Nathaniel J.

    2014-09-15

    In inertial confinement fusion, the loss of fast ions from the edge of the fusing hot-spot region reduces the reactivity below its Maxwellian value. The loss of fast ions may be pronounced because of the long mean free paths of fast ions, compared with those of thermal ions. We introduce a fusion utility function to demonstrate essential features of this Knudsen layer effect, in both magnetized and unmagnetized cases. The fusion utility concept is also used to evaluate the restoring reactivity in the Knudsen layer by manipulating fast ions in phase space using waves.

  16. Planetary Boundary Layer from AERI and MPL

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sawyer, Virginia

    2014-02-13

    The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.

  17. Double layer capacitor prospects look good

    SciTech Connect (OSTI)

    1995-07-01

    The Fourth International Seminar in Double Layer Capacitors and similar energy devices has been sponsored again by Dr. S.P. Wolsky and Dr. Nikola Marincic. The seminar was held in December 1994, at Deerfield Beach, FL. This report provides a brief description of information on supercapacitors.

  18. Nano-soldering to single atomic layer

    DOE Patents [OSTI]

    Girit, Caglar O.; Zettl, Alexander K.

    2011-10-11

    A simple technique to solder submicron sized, ohmic contacts to nanostructures has been disclosed. The technique has several advantages over standard electron beam lithography methods, which are complex, costly, and can contaminate samples. To demonstrate the soldering technique graphene, a single atomic layer of carbon, has been contacted, and low- and high-field electronic transport properties have been measured.

  19. Thick diffusion limit boundary layer test problems

    SciTech Connect (OSTI)

    Bailey, T. S.; Warsa, J. S.; Chang, J. H.; Adams, M. L.

    2013-07-01

    We develop two simple test problems that quantify the behavior of computational transport solutions in the presence of boundary layers that are not resolved by the spatial grid. In particular we study the quantitative effects of 'contamination' terms that, according to previous asymptotic analyses, may have a detrimental effect on the solutions obtained by both discontinuous finite element (DFEM) and characteristic-method (CM) spatial discretizations, at least for boundary layers caused by azimuthally asymmetric incident intensities. Few numerical results have illustrated the effects of this contamination, and none have quantified it to our knowledge. Our test problems use leading-order analytic solutions that should be equal to zero in the problem interior, which means the observed interior solution is the error introduced by the contamination terms. Results from DFEM solutions demonstrate that the contamination terms can cause error propagation into the problem interior for both orthogonal and non-orthogonal grids, and that this error is much worse for non-orthogonal grids. This behavior is consistent with the predictions of previous analyses. We conclude that these boundary layer test problems and their variants are useful tools for the study of errors that are introduced by unresolved boundary layers in diffusive transport problems. (authors)

  20. Buffer layers on biaxially textured metal substrates

    DOE Patents [OSTI]

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2001-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  1. Atomic layer deposition of nanoporous biomaterials.

    SciTech Connect (OSTI)

    Narayan, R. J.; Adiga, S. P.; Pellin, M. J.; Curtiss, L. A.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N. A.; Brigmon, R. L.; Elam, J. W.; Univ. of North Carolina; North Carolina State Univ.; Eastman Kodak Co.; North Dakota State Univ.; SRL

    2010-03-01

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials. Nanoporous alumina, also known as anodic aluminum oxide (AAO), is a nanomaterial that exhibits several unusual properties, including high pore densities, straight pores, small pore sizes, and uniform pore sizes. In 1953, Keller et al. showed that anodizing aluminum in acid electrolytes results in a thick layer of nearly cylindrical pores, which are arranged in a close-packed hexagonal cell structure. More recently, Matsuda & Fukuda demonstrated preparation of highly ordered platinum and gold nanohole arrays using a replication process. In this study, a negative structure of nanoporous alumina was initially fabricated and a positive structure of a nanoporous metal was subsequently fabricated. Over the past fifteen years, nanoporous alumina membranes have been used as templates for growth of a variety of nanostructured materials, including nanotubes, nanowires, nanorods, and nanoporous membranes.

  2. Quantum Security for the Physical Layer

    SciTech Connect (OSTI)

    Humble, Travis S

    2013-01-01

    The physical layer describes how communication signals are encoded and transmitted across a channel. Physical security often requires either restricting access to the channel or performing periodic manual inspections. In this tutorial, we describe how the field of quantum communication offers new techniques for securing the physical layer. We describe the use of quantum seals as a unique way to test the integrity and authenticity of a communication channel and to provide security for the physical layer. We present the theoretical and physical underpinnings of quantum seals including the quantum optical encoding used at the transmitter and the test for non-locality used at the receiver. We describe how the envisioned quantum physical sublayer senses tampering and how coordination with higher protocol layers allow quantum seals to influence secure routing or tailor data management methods. We conclude by discussing challenges in the development of quantum seals, the overlap with existing quantum key distribution cryptographic services, and the relevance of a quantum physical sublayer to the future of communication security.

  3. Layered method of electrode for solid oxide electrochemical cells

    SciTech Connect (OSTI)

    Jensen, R.R.

    1991-07-30

    This patent describes a fuel electrode. It comprises a first layer comprising substantially stabilized zirconia; a second layer, in intimate contact with the first layer, comprising a mixture of stabilized zirconia and metal powder selected from the group consisting of nickel, palladium, platinum and cobalt; and a third layer comprising substantially metal powder selected from the group consisting of nickel, palladium, platinum and cobalt.

  4. Double layer field shaping systems for toroidal plasmas

    DOE Patents [OSTI]

    Ohyabu, Nobuyoshi

    1982-01-01

    Methods and apparatus for plasma generation, confinement and control such as Tokamak plasma systems are described having a two layer field shaping coil system comprising an inner coil layer close to the plasma and an outer coil layer to minimize the current in the inner coil layer.

  5. Pd/Ni-WO3 anodic double layer gasochromic device

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland; Liu, Ping

    2004-04-20

    An anodic double layer gasochromic sensor structure for optical detection of hydrogen in improved response time and with improved optical absorption real time constants, comprising: a glass substrate; a tungsten-doped nickel oxide layer coated on the glass substrate; and a palladium layer coated on the tungsten-doped nickel oxide layer.

  6. Back contact buffer layer for thin-film solar cells

    DOE Patents [OSTI]

    Compaan, Alvin D.; Plotnikov, Victor V.

    2014-09-09

    A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.

  7. Thin film solar cell including a spatially modulated intrinsic layer

    SciTech Connect (OSTI)

    Guha, Subhendu; Yang, Chi-Chung; Ovshinsky, Stanford R.

    1989-03-28

    One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

  8. Conductive layer for biaxially oriented semiconductor film growth

    DOE Patents [OSTI]

    Findikoglu, Alp T.; Matias, Vladimir

    2007-10-30

    A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.

  9. Elastodynamic behavior of the three dimensional layer-by-layer metamaterial structure

    SciTech Connect (OSTI)

    Aravantinos-Zafiris, N.; Sigalas, M. M.; Economou, E. N.

    2014-10-07

    In this work, we numerically investigate for the first time the elastodynamic behavior of a three dimensional layer-by-layer rod structure, which is easy to fabricate and has already proved to be very efficient as a photonic crystal. The Finite Difference Time Domain method was used for the numerical calculations. For the rods, several materials were examined and the effects of all the geometric parameters of the structure were also numerically investigated. Additionally, two modifications of the structure were included in our calculations. The results obtained here (for certain geometric parameters), exhibiting a high ratio of longitudinal over transverse sound velocity and therefore a close approach to ideal pentamode behavior over a frequency range, clearly show that the layer-by-layer rod structure, besides being an efficient photonic crystal, is a very serious contender as an elastodynamic metamaterial.

  10. Method of adhesion between an oxide layer and a metal layer

    DOE Patents [OSTI]

    Jennison, Dwight R.; Bogicevic, Alexander; Kelber, Jeffry A.; Chambers, Scott A.

    2004-09-14

    A method of controlling the wetting characteristics and increasing the adhesion between a metal and an oxide layer. By introducing a negatively-charged species to the surface of an oxide layer, layer-by-layer growth of metal deposited onto the oxide surface is promoted, increasing the adhesion strength of the metal-oxide interface. The negatively-charged species can either be deposited onto the oxide surface or a compound can be deposited that dissociates on, or reacts with, the surface to form the negatively-charged species. The deposited metal adatoms can thereby bond laterally to the negatively-charged species as well as vertically to the oxide surface as well as react with the negatively charged species, be oxidized, and incorporated on or into the surface of the oxide.

  11. Interface engineering in epitaxial growth of layered oxides via a conducting layer insertion

    SciTech Connect (OSTI)

    Yun, Yu; Meng, Dechao; Wang, Jianlin; Ma, Chao; Zhai, Xiaofang; Huang, Haoliang; Fu, Zhengping; Peng, Ranran; Brown, Gail J.; and others

    2015-07-06

    There is a long-standing challenge in the fabrication of layered oxide epitaxial films due to their thermodynamic phase-instability and the large stacking layer number. Recently, the demand for high-quality thin films is strongly pushed by their promising room-temperature multiferroic properties. Here, we find that by inserting a conducting and lattice matched LaNiO{sub 3} buffer layer, high quality m = 5 Bi{sub 6}FeCoTi{sub 3}O{sub 18} epitaxial films can be fabricated using the laser molecular beam epitaxy, in which the atomic-scale sharp interface between the film and the metallic buffer layer explains the enhanced quality. The magnetic and ferroelectric properties of the high quality Bi{sub 6}FeCoTi{sub 3}O{sub 18} films are studied. This study demonstrates that insertion of the conducting layer is a powerful method in achieving high quality layered oxide thin films, which opens the door to further understand the underline physics and to develop new devices.

  12. Semiconductor tunnel junction with enhancement layer

    DOE Patents [OSTI]

    Klem, John F.; Zolper, John C.

    1997-01-01

    The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling.

  13. Biomimetic processing of oriented crystalline ceramic layers

    SciTech Connect (OSTI)

    Cesarano, J.; Shelnutt, J.A.

    1997-10-01

    The aim of this project was to develop the capabilities for Sandia to fabricate self assembled Langmuir-Blodgett (LB) films of various materials and to exploit their two-dimensional crystalline structure to promote the growth of oriented thin films of inorganic materials at room temperature. This includes the design and synthesis of Langmuir-active (amphiphilic) organic molecules with end groups offering high nucleation potential for various ceramics. A longer range goal is that of understanding the underlying principles, making it feasible to use the techniques presented in this report to fabricate unique oriented films of various materials for electronic, sensor, and membrane applications. Therefore, whenever possible, work completed in this report was completed with the intention of addressing the fundamental phenomena underlying the growth of crystalline, inorganic films on template layers of highly organized organic molecules. This problem was inspired by biological processes, which often produce exquisitely engineered structures via templated growth on polymeric layers. Seashells, for example, exhibit great toughness owing to their fine brick-and-mortar structure that results from templated growth of calcium carbonate on top of layers of ordered organic proteins. A key goal in this work, therefore, is to demonstrate a positive correlation between the order and orientation of the template layer and that of the crystalline ceramic material grown upon it. The work completed was comprised of several parallel efforts that encompassed the entire spectrum of biomimetic growth from solution. Studies were completed on seashells and the mechanisms of growth for calcium carbonate. Studies were completed on the characterization of LB films and the capability developed for the in-house fabrication of these films. Standard films of fatty acids were studied as well as novel polypeptides and porphyrins that were synthesized.

  14. Semiconductor tunnel junction with enhancement layer

    DOE Patents [OSTI]

    Klem, J.F.; Zolper, J.C.

    1997-10-21

    The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling. 5 figs.

  15. Layered Atom Arrangements in Complex Materials

    SciTech Connect (OSTI)

    K.E. Sikafus; R.W.Grimes; S.M.Corish; A.R. Cleave; M.Tang; C.R.Stanek; B.P. Uberuaga; J.A.Valdez

    2005-04-15

    In this report, we develop an atom layer stacking model to describe systematically the crystal structures of complex materials. To illustrate the concepts, we consider a sequence of oxide compounds in which the metal cations progress in oxidation state from monovalent (M{sup 1+}) to tetravalent (M{sup 4+}). We use concepts relating to geometric subdivisions of a triangular atom net to describe the layered atom patterns in these compounds (concepts originally proposed by Shuichi Iida). We demonstrate that as a function of increasing oxidation state (from M{sup 1+} to M{sup 4+}), the layer stacking motifs used to generate each successive structure (specifically, motifs along a 3 symmetry axis), progress through the following sequence: MMO, MO, M{sub r}O, MO{sub r/s}O{sub u/v}, MOO (where M and O represent fully dense triangular atom nets and r/s and u/v are fractions used to describe partially filled triangular atom nets). We also develop complete crystallographic descriptions for the compounds in our oxidation sequence using trigonal space group R{bar 3}.

  16. SUPERSONIC SHEAR INSTABILITIES IN ASTROPHYSICAL BOUNDARY LAYERS

    SciTech Connect (OSTI)

    Belyaev, Mikhail A.; Rafikov, Roman R., E-mail: rrr@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States)

    2012-06-20

    Disk accretion onto weakly magnetized astrophysical objects often proceeds via a boundary layer (BL) that forms near the object's surface, in which the rotation speed of the accreted gas changes rapidly. Here, we study the initial stages of formation for such a BL around a white dwarf or a young star by examining the hydrodynamical shear instabilities that may initiate mixing and momentum transport between the two fluids of different densities moving supersonically with respect to each other. We find that an initially laminar BL is unstable to two different kinds of instabilities. One is an instability of a supersonic vortex sheet (implying a discontinuous initial profile of the angular speed of the gas) in the presence of gravity, which we find to have a growth rate of order (but less than) the orbital frequency. The other is a sonic instability of a finite width, supersonic shear layer, which is similar to the Papaloizou-Pringle instability. It has a growth rate proportional to the shear inside the transition layer, which is of order the orbital frequency times the ratio of stellar radius to the BL thickness. For a BL that is thin compared to the radius of the star, the shear rate is much larger than the orbital frequency. Thus, we conclude that sonic instabilities play a dominant role in the initial stages of nonmagnetic BL formation and give rise to very fast mixing between disk gas and stellar fluid in the supersonic regime.

  17. Organic electronic devices with multiple solution-processed layers

    DOE Patents [OSTI]

    Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.

    2015-08-04

    A method of fabricating a tandem organic photosensitive device involves depositing a first layer of an organic electron donor type material film by solution-processing of the organic electron donor type material dissolved in a first solvent; depositing a first layer of an organic electron acceptor type material over the first layer of the organic electron donor type material film by a dry deposition process; depositing a conductive layer over the interim stack by a dry deposition process; depositing a second layer of the organic electron donor type material over the conductive layer by solution-processing of the organic electron donor type material dissolved in a second solvent, wherein the organic electron acceptor type material and the conductive layer are insoluble in the second solvent; depositing a second layer of an organic electron acceptor type material over the second layer of the organic electron donor type material film by a dry deposition process, resulting in a stack.

  18. Multi-layer carbon-based coatings for field emission

    DOE Patents [OSTI]

    Sullivan, John P.; Friedmann, Thomas A.

    1998-01-01

    A multi-layer resistive carbon film field emitter device for cold cathode field emission applications. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced.

  19. Multi-layer carbon-based coatings for field emission

    DOE Patents [OSTI]

    Sullivan, J.P.; Friedmann, T.A.

    1998-10-13

    A multi-layer resistive carbon film field emitter device for cold cathode field emission applications is disclosed. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. 8 figs.

  20. Analysis of the Younger Dryas Impact Layer

    SciTech Connect (OSTI)

    Firestone, Richard B.; West, Allen; Revay, Zsolt; Hagstrum, Jonathon T,; Belgya, Thomas; Hee, Shane S. Que; Smith, Alan R.

    2010-02-27

    We have uncovered a thin layer of magnetic grains and microspherules, carbon spherules, and glass-like carbon at nine sites across North America, a site in Belgium, and throughout the rims of 16 Carolina Bays. It is consistent with the ejecta layer from an impact event and has been dated to 12.9 ka BP coinciding with the onset of Younger Dryas (YD) cooling and widespread megafaunal extinctions in North America. At many locations the impact layer is directly below a black mat marking the sudden disappearance of the megafauna and Clovis people. The distribution pattern of the Younger Dryas boundary (YDB) ejecta layer is consistent with an impact near the Great Lakes that deposited terrestrial-like ejecta near the impact site and unusual, titanium-rich projectile-like ejecta further away. High water content associated with the ejecta, up to 28 at. percent hydrogen (H), suggests the impact occurred over the Laurentide Ice Sheet. YDB microspherules and magnetic grains are highly enriched in TiO{sub 2}. Magnetic grains from several sites are enriched in iridium (Ir), up to 117 ppb. The TiO{sub 2}/FeO, K/Th, TiO{sub 2}/Zr, Al{sub 2}O{sub 3}/FeO+MgO, CaO/Al{sub 2}O{sub 3}, REE/ chondrite, FeO/MnO ratios and SiO{sub 2}, Na{sub 2}O, K{sub 2}O, Cr{sub 2}O{sub 3}, Ni, Co, U, Th and other trace element abundances are inconsistent with all terrestrial and extraterrestrial (ET) sources except for KREEP, a lunar igneous rock rich in potassium (K), rare-earth elements (REE), phosphorus (P), and other incompatible elements including U and Th. Normal Fe, Ti, and {sup 238}U/{sup 235}U isotopic abundances were found in the magnetic grains, but {sup 234}U was enriched over equilibrium values by 50 percent in Murray Springs and by 130 percent in Belgium. 40K abundance is enriched by up to 100 percent in YDB sediments and Clovis chert artifacts. Highly vesicular carbon spherules containing nanodiamonds, glass-like carbon, charcoal and soot found in large quantities in the YDB layer are

  1. High thermal conductivity lossy dielectric using a multi layer configuration

    DOE Patents [OSTI]

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2003-01-01

    Systems and methods are described for loss dielectrics. A loss dielectric includes at least one high dielectric loss layer and at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. A method of manufacturing a loss dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. The systems and methods provide advantages because the loss dielectrics are less costly and more environmentally friendly than the available alternatives.

  2. Method of transferring a thin crystalline semiconductor layer

    DOE Patents [OSTI]

    Nastasi, Michael A.; Shao, Lin; Theodore, N. David

    2006-12-26

    A method for transferring a thin semiconductor layer from one substrate to another substrate involves depositing a thin epitaxial monocrystalline semiconductor layer on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the thin semiconductor layer is bonded to a second substrate and the thin layer is separated away at the interface, which results in transferring the thin epitaxial semiconductor layer from one substrate to the other substrate.

  3. Buffer layers on metal alloy substrates for superconducting tapes

    DOE Patents [OSTI]

    Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.

    2004-06-29

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected IC's of over 200 Amperes across a sample 1 cm wide.

  4. MultiLayer solid electrolyte for lithium thin film batteries...

    Office of Scientific and Technical Information (OSTI)

    Patent: MultiLayer solid electrolyte for lithium thin film batteries Citation Details In-Document Search Title: MultiLayer solid electrolyte for lithium thin film batteries A ...

  5. Method of depositing buffer layers on biaxially textured metal...

    Office of Scientific and Technical Information (OSTI)

    eu; gd; tb; tm; resup1subx; resup2sub1-xsub2; osub3; buffer; layer; deposited; sol-gel; metal-organic; decomposition; laminate; article; layer; ybco; resup1subx; ...

  6. Solvothermal Thin Film Deposition of Electron Blocking Layers | ANSER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center | Argonne-Northwestern National Laboratory Solvothermal Thin Film Deposition of Electron Blocking Layers Home > Research > ANSER Research Highlights > Solvothermal Thin Film Deposition of Electron Blocking Layers

  7. Bursting frequency prediction in turbulent boundary layers

    SciTech Connect (OSTI)

    LIOU,WILLIAM W.; FANG,YICHUNG

    2000-02-01

    The frequencies of the bursting events associated with the streamwise coherent structures of spatially developing incompressible turbulent boundary layers were predicted using global numerical solution of the Orr-Sommerfeld and the vertical vorticity equations of hydrodynamic stability problems. The structures were modeled as wavelike disturbances associated with the turbulent mean flow. The global method developed here involves the use of second and fourth order accurate finite difference formula for the differential equations as well as the boundary conditions. An automated prediction tool, BURFIT, was developed. The predicted resonance frequencies were found to agree very well with previous results using a local shooting technique and measured data.

  8. Layered zeolite materials and methods related thereto

    DOE Patents [OSTI]

    Tsapatsis, Michael; Maheshwari, Sudeep; Bates, Frank S; Koros, William J

    2013-08-06

    A novel oxide material (MIN-I) comprising YO.sub.2; and X.sub.2O.sub.3, wherein Y is a tetravalent element and X is a trivalent element, wherein X/Y=O or Y/X=30 to 100 is provided. Surprisingly, MIN-I can be reversibly deswollen. MIN-I can further be combined with a polymer to produce a nanocomposite, depolymerized to produce predominantly fully exfoliated layers (MIN-2), and pillared to produce a pillared oxide material (MIN-3), analogous to MCM-36. The materials are useful in a wide range of applications, such as catalysts, thin films, membranes, and coatings.

  9. Ruthenium / aerogel nanocomposits via Atomic Layer Deposition

    SciTech Connect (OSTI)

    Biener, J; Baumann, T F; Wang, Y; Nelson, E J; Kucheyev, S O; Hamza, A V; Kemell, M; Ritala, M; Leskela, M

    2006-08-28

    We present a general approach to prepare metal/aerogel nanocomposites via template directed atomic layer deposition (ALD). In particular, we used a Ru ALD process consisting of alternating exposures to bis(cyclopentadienyl)ruthenium (RuCp{sub 2}) and air at 350 C to deposit metallic Ru nanoparticles on the internal surfaces of carbon and silica aerogels. The process does not affect the morphology of the aerogel template and offers excellent control over metal loading by simply adjusting the number of ALD cycles. We also discuss the limitations of our ALD approach, and suggest ways to overcome these.

  10. Engineering Glass Passivation Layers -Model Results

    SciTech Connect (OSTI)

    Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.; Lepry, William C.

    2011-08-08

    The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting that the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan

  11. Counting graphene layers with very slow electrons

    SciTech Connect (OSTI)

    Frank, Lud?k; Mikmekov, Elika; Mllerov, Ilona; Lejeune, Michal

    2015-01-05

    The study aimed at collection of data regarding the transmissivity of freestanding graphene for electrons across their full energy scale down to the lowest energies. Here, we show that the electron transmissivity of graphene drops with the decreasing energy of the electrons and remains below 10% for energies below 30?eV, and that the slow electron transmissivity value is suitable for reliable determination of the number of graphene layers. Moreover, electrons incident below 50?eV release adsorbed hydrocarbon molecules and effectively clean graphene in contrast to faster electrons that decompose these molecules and create carbonaceous contamination.

  12. Buffer layers and articles for electronic devices

    DOE Patents [OSTI]

    Paranthaman, Mariappan P.; Aytug, Tolga; Christen, David K.; Feenstra, Roeland; Goyal, Amit

    2004-07-20

    Materials for depositing buffer layers on biaxially textured and untextured metallic and metal oxide substrates for use in the manufacture of superconducting and other electronic articles comprise RMnO.sub.3, R.sub.1-x A.sub.x MnO.sub.3, and combinations thereof; wherein R includes an element selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y, and A includes an element selected from the group consisting of Be, Mg, Ca, Sr, Ba, and Ra.

  13. Current-voltage characteristics of layer-by-layer self-assembled colloidal thin films

    SciTech Connect (OSTI)

    Jafri, S. H. M.; Dutta, J.; Sweatman, D.; Sharma, A. B.

    2006-09-25

    Self-organized construction of advanced materials and devices has been carried out starting with tailor-made colloidal nanoparticles as building blocks. Multilayer thin films of gold nanoparticles stabilized by glutamates and zinc sulfide nanoparticles capped with chitosan were self-organized by a modified polyelectrolyte deposition process. Resistive current-voltage characteristic was observed in devices (less than 50 layers). The conduction onset in thicker devices (>50 layers) was found to be at applied voltages of {approx}1.6, {approx}1.94, and {approx}2.79 V for 75, 100, and 150 layer structures, respectively. Devices exhibit similar behavior in forward and reverse biases and the electrical characteristics were repeatable.

  14. Underpotential deposition-mediated layer-by-layer growth of thin films

    DOE Patents [OSTI]

    Wang, Jia Xu; Adzic, Radoslav R.

    2015-05-19

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.

  15. Layered method of electrode for solid oxide electrochemical cells

    DOE Patents [OSTI]

    Jensen, Russell R. (Murrysville, PA)

    1991-07-30

    A process for fabricating a fuel electrode comprising: slurry dipping to form layers which are structurally graded from all or mostly all stabilized zirconia at a first layer, to an outer most layer of substantially all metal powder, such an nickel. Higher performaance fuel electrodes may be achieved if sinter active stabilized zirconia doped for electronic conductivity is used.

  16. Thin layer chromatography residue applicator sampler

    DOE Patents [OSTI]

    Nunes, Peter J.; Kelly, Fredrick R.; Haas, Jeffrey S.; Andresen, Brian D.

    2007-07-24

    A thin layer chromatograph residue applicator sampler. The residue applicator sampler provides for rapid analysis of samples containing high explosives, chemical warfare, and other analyses of interest under field conditions. This satisfied the need for a field-deployable, small, hand-held, all-in-one device for efficient sampling, sample dissolution, and sample application to an analytical technique. The residue applicator sampler includes a sampling sponge that is resistant to most chemicals and is fastened via a plastic handle in a hermetically sealed tube containing a known amount of solvent. Upon use, the wetted sponge is removed from the sealed tube and used as a swiping device across an environmental sample. The sponge is then replaced in the hermetically sealed tube where the sample remains contained and dissolved in the solvent. A small pipette tip is removably contained in the hermetically sealed tube. The sponge is removed and placed into the pipette tip where a squeezing-out of the dissolved sample from the sponge into the pipette tip results in a droplet captured in a vial for later instrumental analysis, or applied directly to a thin layer chromatography plate for immediate analysis.

  17. Electron holography of devices with epitaxial layers

    SciTech Connect (OSTI)

    Gribelyuk, M. A. Ontalus, V.; Baumann, F. H.; Zhu, Z.; Holt, J. R.

    2014-11-07

    Applicability of electron holography to deep submicron Si devices with epitaxial layers is limited due to lack of the mean inner potential data and effects of the sample tilt. The mean inner potential V{sub 0}?=?12.75?V of the intrinsic epitaxial SiGe was measured by electron holography in devices with Ge content C{sub Ge}?=?18%. Nanobeam electron diffraction analysis performed on the same device structure showed that SiGe is strain-free in [220] direction. Our results showed good correlation with simulations of the mean inner potential of the strain-free SiGe using density function theory. A new method is proposed in this paper to correct electron holography data for the overlap of potentials of Si and the epitaxial layer, which is caused by the sample tilt. The method was applied to the analysis of the dopant diffusion in p-Field-effect Transistor devices with the identical gate length L?=?30?nm, which had alternative SiGe geometry in the source and drain regions and was subjected to different thermal processing. Results have helped to understand electrical data acquired from the same devices in terms of dopant diffusion.

  18. Method of forming buried oxide layers in silicon

    DOE Patents [OSTI]

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  19. Conductive and robust nitride buffer layers on biaxially textured substrates

    DOE Patents [OSTI]

    Sankar, Sambasivan; Goyal, Amit; Barnett, Scott A.; Kim, Ilwon; Kroeger, Donald M.

    2004-08-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metal and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layers. In some embodiments the article further comprises electromagnetic devices which may be super conducting properties.

  20. Conductive and robust nitride buffer layers on biaxially textured substrates

    DOE Patents [OSTI]

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  1. Buffer layers for REBCO films for use in superconducting devices

    DOE Patents [OSTI]

    Goyal, Amit; Wee, Sung-Hun

    2014-06-10

    A superconducting article includes a substrate having a biaxially textured surface. A biaxially textured buffer layer, which can be a cap layer, is supported by the substrate. The buffer layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different transition metal cations. A biaxially textured superconductor layer is deposited so as to be supported by the buffer layer. A method of making a superconducting article is also disclosed.

  2. Design of step composition gradient thin film transistor channel layers grown by atomic layer deposition

    SciTech Connect (OSTI)

    Ahn, Cheol Hyoun; Hee Kim, So; Gu Yun, Myeong; Koun Cho, Hyung

    2014-12-01

    In this study, we proposed the artificially designed channel structure in oxide thin-film transistors (TFTs) called a “step-composition gradient channel.” We demonstrated Al step-composition gradient Al-Zn-O (AZO) channel structures consisting of three AZO layers with different Al contents. The effects of stacking sequence in the step-composition gradient channel on performance and electrical stability of bottom-gate TFT devices were investigated with two channels of inverse stacking order (ascending/descending step-composition). The TFT with ascending step-composition channel structure (5 → 10 → 14 at. % Al composition) showed relatively negative threshold voltage (−3.7 V) and good instability characteristics with a reduced threshold voltage shift (Δ 1.4 V), which was related to the alignment of the conduction band off-set within the channel layer depending on the Al contents. Finally, the reduced Al composition in the initial layer of ascending step-composition channel resulted in the best field effect mobility of 4.5 cm{sup 2}/V s. We presented a unique active layer of the “step-composition gradient channel” in the oxide TFTs and explained the mechanism of adequate channel design.

  3. Redox Active Layer-by-Layer Structures containing MnO2 Nanoparticles

    SciTech Connect (OSTI)

    Bazito, Fernanda; O'Brien, Robert; Buttry, Daniel A.

    2005-02-01

    Nanoscale materials provide unique properties that will enable new technologies and enhance older ones. One area of intense activity in which nanoscale materials are being used is in the development of new functional materials for battery applications. This effort promises superior materials with properties that circumvent many of the problems associated with traditional battery materials. Previously we have worked on several approaches for using nanoscale materials for application as cathode materials in rechargeable Li batteries. Our recent work has focused on synthesizing MnO2 nanoparticles and using these in layer-by-layer (LbL) structures to probe the redox properties of the nanoparticles. We show that the aqueous colloidal nanoparticles produced by butanol reduction of tetramethylammonium permanganate can be trapped in thin films using a layer-by-layer deposition approach, and that these films are both redox active and exhibit kinetically facile electrochemical responses. We show cyclic voltammetry of MnO2 colloidal nanoparticles entrapped in a LbL thin film at an ITO electrode surface using poly(diallyldimethylammonium chloride) (PDDA). CV experiments demonstrate that Li+ insertion accompanies Mn(IV) reduction in LiClO4 supporting electrolytes, and that reduction is hindered in supporting electrolytes containing only tetrabutylammonium cations. We also show that electron propagation through multilayer films is facile, suggesting that electrons percolate through the films via electron exchange between nanoparticles.

  4. Layer-by-layer and intrinsic analysis of molecular and thermodynamic properties across soft interfaces

    SciTech Connect (OSTI)

    Sega, Marcello; Jedlovszky, Pál

    2015-09-21

    Interfaces are ubiquitous objects, whose thermodynamic behavior we only recently started to understand at the microscopic detail. Here, we borrow concepts from the techniques of surface identification and intrinsic analysis, to provide a complementary point of view on the density, stress, energy, and free energy distribution across liquid (“soft”) interfaces by analyzing the respective contributions coming from successive layers.

  5. Organic photovoltaic cell incorporating electron conducting exciton blocking layers

    SciTech Connect (OSTI)

    Forrest, Stephen R.; Lassiter, Brian E.

    2014-08-26

    The present disclosure relates to photosensitive optoelectronic devices including a compound blocking layer located between an acceptor material and a cathode, the compound blocking layer including: at least one electron conducting material, and at least one wide-gap electron conducting exciton blocking layer. For example, 3,4,9,10 perylenetetracarboxylic bisbenzimidazole (PTCBI) and 1,4,5,8-napthalene-tetracarboxylic-dianhydride (NTCDA) function as electron conducting and exciton blocking layers when interposed between the acceptor layer and cathode. Both materials serve as efficient electron conductors, leading to a fill factor as high as 0.70. By using an NTCDA/PTCBI compound blocking layer structure increased power conversion efficiency is achieved, compared to an analogous device using a conventional blocking layers shown to conduct electrons via damage-induced midgap states.

  6. Combining multi-layered bitmap files using network specific hardware

    DOE Patents [OSTI]

    DuBois, David H.; DuBois, Andrew J.; Davenport, Carolyn Connor

    2012-02-28

    Images and video can be produced by compositing or alpha blending a group of image layers or video layers. Increasing resolution or the number of layers results in increased computational demands. As such, the available computational resources limit the images and videos that can be produced. A computational architecture in which the image layers are packetized and streamed through processors can be easily scaled so to handle many image layers and high resolutions. The image layers are packetized to produce packet streams. The packets in the streams are received, placed in queues, and processed. For alpha blending, ingress queues receive the packetized image layers which are then z sorted and sent to egress queues. The egress queue packets are alpha blended to produce an output image or video.

  7. Carbides composite surface layers produced by (PTA)

    SciTech Connect (OSTI)

    Tajoure, Meloud; Tajouri, Ali E-mail: dr.mokhtarphd@yahoo.com; Abuzriba, Mokhtar E-mail: dr.mokhtarphd@yahoo.com; Akreem, Mosbah

    2013-12-16

    The plasma transferred arc technique was applied to deposit a composite layer of nickel base with tungsten carbide in powder form on to surface of low alloy steel 18G2A type according to polish standard. Results showed that, plasma transferred arc hard facing process was successfully conducted by using Deloro alloy 22 plus tungsten carbide powders. Maximum hardness of 1489 HV and minimum dilution of 8.4 % were achieved by using an arc current of 60 A. However, when the current was further increased to 120 A and the dilution increases with current increase while the hardness decreases. Microstructure of the nickel base deposit with tungsten carbide features uniform distribution of reinforcement particles with regular grain shape half - dissolved in the matrix.

  8. Cleaning graphene with a titanium sacrificial layer

    SciTech Connect (OSTI)

    Joiner, C. A. Roy, T.; Hesabi, Z. R.; Vogel, E. M.; Chakrabarti, B.

    2014-06-02

    Graphene is a promising material for future electronic applications and chemical vapor deposition of graphene on copper is a promising method for synthesizing graphene on the wafer scale. The processing of such graphene films into electronic devices introduces a variety of contaminants which can be difficult to remove. An approach to cleaning residues from the graphene channel is presented in which a thin layer of titanium is deposited via thermal e-beam evaporation and immediately removed. This procedure does not damage the graphene as evidenced by Raman spectroscopy, greatly enhances the electrical performance of the fabricated graphene field effect transistors, and completely removes the chemical residues from the surface of the graphene channel as evidenced by x-ray photoelectron spectroscopy.

  9. Hand portable thin-layer chromatography system

    DOE Patents [OSTI]

    Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.

    2000-01-01

    A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.

  10. Layered electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Johnson, Christopher S.; Thackeray, Michael M.; Vaughey, John T.; Kahaian, Arthur J.; Kim, Jeom-Soo

    2008-04-15

    Lithium metal oxide compounds of nominal formula Li.sub.2MO.sub.2, in which M represents two or more positively charged metal ions, selected predominantly and preferably from the first row of transition metals are disclosed herein. The Li.sub.2MO.sub.2 compounds have a layered-type structure, which can be used as positive electrodes for lithium electrochemical cells, or as a precursor for the in-situ electrochemical fabrication of LiMO.sub.2 electrodes. The Li.sub.2MO.sub.2 compounds of the invention may have additional functions in lithium cells, for example, as end-of-discharge indicators, or as negative electrodes for lithium cells.

  11. Hydrogen Diffusion through Multiple Packaging Layers

    SciTech Connect (OSTI)

    McAllister, J.; Mohiuddin, A.

    2010-05-05

    For this scenario, hydrogen is generated in a container that is eventually stored within a drum or some type of long range storage container. When preparing for long-term storage, the hydrogen container (HC) is placed in a plastic bag (PB1). The PB1 is then placed inside an inner drum (ID). The ID is placed inside a plastic bag (PB2) which is then placed within an outer drum (OD). One or more ODs are then storage is a large container (LC). Filtered vents or vent holes are located on all the container barriers to prevent pressurization and allow gases to flow in and out of the HC. The LC is vented to the atmosphere with four vent paths for this example. The source of hydrogen generation for this study is not important. Any source that generates hydrogen in elemental form (i.e., H{sub 2}) is a candidate for the purposes of this generic evaluation. The released hydrogen accumulates inside the waste packaging. Depending on the permeability of the packaging layers, some of the accumulated hydrogen may diffuse out of the packaging layers and into the space surrounding the drums. Since the drums are confined in the LC, the hydrogen accumulates in the LC as it did inside the drums if venting of the LC does not occur. If accumulation in the LC is allowed without venting, the confinement is eventually breached or the hydrogen is consumed by reaction with other chemical species. One possible reaction is combustion with oxygen. Such a reaction can be explosive, and from this possibility arises the safety concern.

  12. Reducing interface recombination for Cu(In,Ga)Se{sub 2} by atomic layer deposited buffer layers

    SciTech Connect (OSTI)

    Hultqvist, Adam; Bent, Stacey F.; Li, Jian V.; Kuciauskas, Darius; Dippo, Patricia; Contreras, Miguel A.; Levi, Dean H.

    2015-07-20

    Partial CuInGaSe{sub 2} (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnO{sub x} buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystalline II–VI systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.

  13. Rare earth zirconium oxide buffer layers on metal substrates

    DOE Patents [OSTI]

    Williams, Robert K.; Paranthaman, Mariappan; Chirayil, Thomas G.; Lee, Dominic F.; Goyal, Amit; Feenstra, Roeland

    2001-01-01

    A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  14. Optoelectronic device with nanoparticle embedded hole injection/transport layer

    DOE Patents [OSTI]

    Wang, Qingwu; Li, Wenguang; Jiang, Hua

    2012-01-03

    An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

  15. ARM - Field Campaign - LASIC: Layered Atlantic Smoke Interactions with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds govCampaignsLASIC: Layered Atlantic Smoke Interactions with Clouds Campaign Links Science Plan Backgrounder Baseline Instruments and Data Plots Total Carbon Column Observing Network (TCCON) Ascension Island Site TCCON Ascension Data News & Press ARM Data Discovery Browse Data Related Campaigns LASIC: Layered Atlantic Smoke Interactions with Clouds - Cloud Radar at St. Helena 2017.08.01, Zuidema, AMF LASIC: Layered Atlantic Smoke Interactions with Clouds - Supplemental Measurements

  16. Experimentally excellent beaming in a two-layer dielectric structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tasolamprou, Anna C.; Zhang, Lei; Kafesaki, Maria; Koschny, Thomas; Soukoulis, Costas M.

    2014-09-15

    We demonstrate both experimentally and theoretically that a two-layer dielectric structure can provide collimation and enhanced transmission of a Gaussian beam passing through it. This is due to formation of surface localized states along the layered structure and the coupling of these states to outgoing propagating waves. As a result, a system of multiple cascading two-layers can sustain the beaming for large propagation distances.

  17. Encapsulation methods and dielectric layers for organic electrical devices

    DOE Patents [OSTI]

    Blum, Yigal D; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijan

    2013-07-02

    The disclosure provides methods and materials suitable for use as encapsulation barriers and dielectric layers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device with a dielectric layer comprising alternating layers of a silicon-containing bonding material and a ceramic material. The methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  18. Dual ion beam assisted deposition of biaxially textured template layers

    DOE Patents [OSTI]

    Groves, James R.; Arendt, Paul N.; Hammond, Robert H.

    2005-05-31

    The present invention is directed towards a process and apparatus for epitaxial deposition of a material, e.g., a layer of MgO, onto a substrate such as a flexible metal substrate, using dual ion beams for the ion beam assisted deposition whereby thick layers can be deposited without degradation of the desired properties by the material. The ability to deposit thicker layers without loss of properties provides a significantly broader deposition window for the process.

  19. Corrosion protected, multi-layer fuel cell interface

    DOE Patents [OSTI]

    Feigenbaum, Haim; Pudick, Sheldon; Wang, Chiu L.

    1986-01-01

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. The multi-layer configuration for the interface comprises a non-cupreous metal-coated metallic element to which is film-bonded a conductive layer by hot pressing a resin therebetween. The multi-layer arrangement provides bridging electrical contact.

  20. Methods for making thin layers of crystalline materials

    DOE Patents [OSTI]

    Lagally, Max G; Paskiewicz, Deborah M; Tanto, Boy

    2013-07-23

    Methods for making growth templates for the epitaxial growth of compound semiconductors and other materials are provided. The growth templates are thin layers of single-crystalline materials that are themselves grown epitaxially on a substrate that includes a thin layer of sacrificial material. The thin layer of sacrificial material, which creates a coherent strain in the single-crystalline material as it is grown thereon, includes one or more suspended sections and one or more supported sections.

  1. Indium Oxide Thin Films by Atomic Layer Deposition Using Trimethylindium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Ozone | Argonne National Laboratory Indium Oxide Thin Films by Atomic Layer Deposition Using Trimethylindium and Ozone Title Indium Oxide Thin Films by Atomic Layer Deposition Using Trimethylindium and Ozone Publication Type Journal Article Year of Publication 2016 Authors Mane, AU, Allen, AJ, Kanjolia, RK, Elam, JW Journal Journal of Physical Chemistry C Volume 120 Start Page 9874 Issue 18 Pagination 10 Date Published 04182016 Abstract We investigated the atomic layer deposition (ALD)

  2. Coronal electron confinement by double layers

    SciTech Connect (OSTI)

    Li, T. C.; Drake, J. F.; Swisdak, M.

    2013-12-01

    In observations of flare-heated electrons in the solar corona, a longstanding problem is the unexplained prolonged lifetime of the electrons compared to their transit time across the source. This suggests confinement. Recent particle-in-cell (PIC) simulations, which explored the transport of pre-accelerated hot electrons through ambient cold plasma, showed that the formation of a highly localized electrostatic potential drop, in the form of a double layer (DL), significantly inhibited the transport of hot electrons. The effectiveness of confinement by a DL is linked to the strength of the DL as defined by its potential drop. In this work, we investigate the scaling of the DL strength with the hot electron temperature by PIC simulations and find a linear scaling. We demonstrate that the strength is limited by the formation of parallel shocks. Based on this, we analytically determine the maximum DL strength, and also find a linear scaling with the hot electron temperature. The DL strength obtained from the analytic calculation is comparable to that from the simulations. At the maximum strength, the DL is capable of confining a significant fraction of hot electrons in the source.

  3. Melanin as an active layer in biosensors

    SciTech Connect (OSTI)

    Piacenti da Silva, Marina Congiu, Mirko Oliveira Graeff, Carlos Frederico de; Fernandes, Jssica Colnaghi Biziak de Figueiredo, Natlia Mulato, Marcelo

    2014-03-15

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12. EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine.

  4. Electroless Atomic Layer Deposition: A Scalable Approach to Surface...

    Office of Scientific and Technical Information (OSTI)

    Title: Electroless Atomic Layer Deposition: A Scalable Approach to Surface Modified Metal Powders. Abstract not provided. Authors: Cappillino, Patrick ; Robinson, David ; El Gabaly ...

  5. Method for depositing layers of high quality semiconductor material

    DOE Patents [OSTI]

    Guha, Subhendu; Yang, Chi C.

    2001-08-14

    Plasma deposition of substantially amorphous semiconductor materials is carried out under a set of deposition parameters which are selected so that the process operates near the amorphous/microcrystalline threshold. This threshold varies as a function of the thickness of the depositing semiconductor layer; and, deposition parameters, such as diluent gas concentrations, must be adjusted as a function of layer thickness. Also, this threshold varies as a function of the composition of the depositing layer, and in those instances where the layer composition is profiled throughout its thickness, deposition parameters must be adjusted accordingly so as to maintain the amorphous/microcrystalline threshold.

  6. Observation of Ordered Structures in Counterion Layers near Wet...

    Office of Scientific and Technical Information (OSTI)

    Title: Observation of Ordered Structures in Counterion Layers near Wet Charged Surfaces: A Potential Mechanism for Charge Inversion Authors: Miller, Mitchell ; Chu, Miaoqi ; Lin, ...

  7. Nano-sized structured layered positive electrode materials to...

    Office of Scientific and Technical Information (OSTI)

    positive electrode materials to enable high energy density and high rate capability lithium batteries Title: Nano-sized structured layered positive electrode materials to ...

  8. Simulations of Cyclic Voltammetry for Electric Double Layers...

    Office of Scientific and Technical Information (OSTI)

    Simulations of Cyclic Voltammetry for Electric Double Layers in Asymmetric Electrolytes: A Generalized Modified PoissonNernstPlanck Model Citation Details In-Document Search...

  9. "Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: "Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites" Citation Details In-Document Search Title: "Lidar Investigations ...

  10. Low cost fuel cell diffusion layer configured for optimized anode...

    Office of Scientific and Technical Information (OSTI)

    for optimized anode water management Citation Details In-Document Search Title: Low cost fuel cell diffusion layer configured for optimized anode water management A fuel cell ...

  11. Atomic Layer Deposition and in Situ Characterization of Ultraclean...

    Office of Scientific and Technical Information (OSTI)

    Hydroxide Citation Details In-Document Search Title: Atomic Layer Deposition and in Situ Characterization of Ultraclean Lithium Oxide and Lithium Hydroxide Authors: Kozen,...

  12. ARM - Field Campaign - 2013 Lower Atmospheric Boundary Layer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lower Atmospheric Boundary Layer Experiment 2012.09.17, Turner, SGP Comments? We would ... Lead Scientist : David Turner For data sets, see below. Abstract Instruments were deployed ...

  13. Aqueous proton transfer across single-layer graphene (Journal...

    Office of Scientific and Technical Information (OSTI)

    Proton transfer across single-layer graphene proceeds with large computed energy barriers and is thought to be unfavourable at room temperature unless nanoscale holes or dopants ...

  14. Permafrost and organic layer interactions over a climate gradient...

    Office of Scientific and Technical Information (OSTI)

    in permafrost occurrence (PF) and organic layer thickness (OLT) in more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships...

  15. Method of depositing buffer layers on biaxially textured metal substrates

    DOE Patents [OSTI]

    Beach, David B.; Morrell, Jonathan S.; Paranthaman, Mariappan; Chirayil, Thomas; Specht, Eliot D.; Goyal, Amit

    2002-08-27

    A laminate article comprises a substrate and a biaxially textured (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer over the substrate, wherein 0layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  16. Atomic Layer Deposition for Stabilization of Amorphous Silicon...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Nanostructured Metal Oxide Anodes Atomic Layer Deposition for Stabilization of Silicon Anodes Development of Industrially Viable Battery Electrode ...

  17. ARM - PI Product - Planetary Boundary Layer from AERI and MPL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsPlanetary Boundary Layer from AERI and MPL ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Planetary Boundary Layer from AERI and MPL The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of

  18. Layered Electrodes for Lithium Cells and Batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrodes for Lithium Cells and Batteries Technology available for licensing: Layered lithium metal oxide compounds for ultra-high-capacity, rechargeable cathodes Lowers cost to ...

  19. Process for synthesis of a layered oxide cathode composition

    DOE Patents [OSTI]

    Petrovic, Ivan; Thurston, Anthony; Sheargold, Stephen

    2015-03-31

    A method for preparing a layered oxide cathode using a two step calcination procedure, wherein the first step includes pre-calcination utilizing a rotary calciner.

  20. Atomic layer engineering for chemically sharp oxide heterointerfaces...

    Office of Scientific and Technical Information (OSTI)

    Title: Atomic layer engineering for chemically sharp oxide heterointerfaces Authors: Choi, Woo Seok 1 ; Rouleau, Christopher M 1 ; Seo, Sung Seok A 1 ; Eres, Gyula 1 ; Lee, ...

  1. Planetary Boundary Layer from AERI and MPL (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Because radiative heating and cooling of the surface strongly affect the PBL top height, ... thus improve model parameterizations and our understanding of boundary-layer processes. ...

  2. Scientist finds new way to predict heat layer troublemaker |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientist finds new way to predict heat layer troublemaker By John Greenwald August 27, ... But heat inevitably flows through the system and becomes separated, or scraped off, from ...

  3. Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals

    DOE Patents [OSTI]

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-03-26

    A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.

  4. Evaluate Si Layers: Cooperative Research and Development Final Report, CRADA Number CRD-07-255

    SciTech Connect (OSTI)

    Teplin, C.

    2013-04-01

    Evaluate Si layers based on heteroepitaxial Si growth on RABITS textured metal substrates coated with textured buffer layers.

  5. Method of fabricating a solar cell with a tunnel dielectric layer

    SciTech Connect (OSTI)

    Dennis, Tim; Harrington, Scott; Manning, Jane; Smith, David D.; Waldhauer, Ann

    2015-08-18

    Method of fabricating solar cells with tunnel dielectric layers are described. Solar cells with tunnel dielectric layers are also described.

  6. Method of fabricating a solar cell with a tunnel dielectric layer

    DOE Patents [OSTI]

    Dennis, Tim; Harrington, Scott; Manning, Jane; Smith, David D; Waldhauer, Ann

    2014-04-29

    Methods of fabricating solar cells with tunnel dielectric layers are described. Solar cells with tunnel dielectric layers are also described.

  7. Method of fabricating a solar cell with a tunnel dielectric layer

    DOE Patents [OSTI]

    Dennis, Tim; Harrington, Scott; Manning, Jane; Smith, David; Waldhauer, Ann

    2012-12-18

    Methods of fabricating solar cells with tunnel dielectric layers are described. Solar cells with tunnel dielectric layers are also described.

  8. The effect of the hole injection layer on the performance of single layer organic light-emitting diodes

    SciTech Connect (OSTI)

    Wenjin, Zeng; Ran, Bi; Hongmei, Zhang E-mail: iamwhuang@njupt.edu.cn; Wei, Huang E-mail: iamwhuang@njupt.edu.cn

    2014-12-14

    Efficient single-layer organic light-emitting diodes (OLEDs) were reported based on a green fluorescent dye 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7tetramethyl-1H,5H,11H-(1) benzopyropyrano (6,7-8-I,j)quinolizin-11-one (C545T). Herein, poly(3,4-ethylenedioxy thiophene) poly(styrene sulfonate) were, respectively, applied as the injection layer for comparison. The hole transport properties of the emission layer with different hole injection materials are well investigated via current-voltage measurement. It was clearly found that the hole injection layers (HILs) play an important role in the adjustment of the electron/hole injection to attain transport balance of charge carriers in the single emission layer of OLEDs with electron-transporting host. The layer of tris-(8-hydroxyquinoline) aluminum played a dual role of host and electron-transporting materials within the emission layer. Therefore, appropriate selection of hole injection layer is a key factor to achieve high efficiency OLEDs with single emission layer.

  9. Long-Life Self-Renewing Solar Reflector Stack

    DOE Patents [OSTI]

    Butler, Barry Lynn

    1997-07-08

    A long-life solar reflector includes a solar collector substrate and a base layer bonded to a solar collector substrate. The first layer includes a first reflective layer and a first acrylic or transparent polymer layer covering the first reflective layer to prevent exposure of the first reflective layer. The reflector also includes at least one upper layer removably bonded to the first acrylic or transparent polymer layer of the base layer. The upper layer includes a second reflective layer and a second acrylic or transparent polymer layer covering the second reflective layer to prevent exposure of the second reflective layer. The upper layer may be removed from the base reflective layer to expose the base layer, thereby lengthening the useful life of the solar reflector. A method of manufacturing a solar reflector includes the steps of bonding a base layer to a solar collector substrate, wherein the base reflective layer includes a first reflective layer and a first transparent polymer or acrylic layer covering the first reflective layer; and removably bonding a first upper layer to the first transparent polymer or acrylic layer of the base layer. The first upper layer includes a second reflective layer and a second transparent polymer or acrylic layer covering the second reflective layer to prevent exposure of the second reflective layer.

  10. Multi-layer laminate structure and manufacturing method

    DOE Patents [OSTI]

    Keenihan, James R.; Cleereman, Robert J.; Eurich, Gerald; Graham, Andrew T.; Langmaid, Joe A.

    2013-01-29

    The present invention is premised upon a multi-layer laminate structure and method of manufacture, more particularly to a method of constructing the multi-layer laminate structure utilizing a laminate frame and at least one energy activated flowable polymer.

  11. Superlattice doped layers for amorphous silicon photovoltaic cells

    DOE Patents [OSTI]

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  12. Photovoltaic device comprising compositionally graded intrinsic photoactive layer

    DOE Patents [OSTI]

    Hoffbauer, Mark A; Williamson, Todd L

    2013-04-30

    Photovoltaic devices and methods of making photovoltaic devices comprising at least one compositionally graded photoactive layer, said method comprising providing a substrate; growing onto the substrate a uniform intrinsic photoactive layer having one surface disposed upon the substrate and an opposing second surface, said intrinsic photoactive layer consisting essentially of In.sub.1-xA.sub.xN,; wherein: i. 0.ltoreq.x.ltoreq.1; ii. A is gallium, aluminum, or combinations thereof; and iii. x is at least 0 on one surface of the intrinsic photoactive layer and is compositionally graded throughout the layer to reach a value of 1 or less on the opposing second surface of the layer; wherein said intrinsic photoactive layer is isothermally grown by means of energetic neutral atom beam lithography and epitaxy at a temperature of 600.degree. C. or less using neutral nitrogen atoms having a kinetic energy of from about 1.0 eV to about 5.0 eV, and wherein the intrinsic photoactive layer is grown at a rate of from about 5 nm/min to about 100 nm/min.

  13. Integrated circuit with dissipative layer for photogenerated carriers

    DOE Patents [OSTI]

    Myers, D.R.

    1988-04-20

    The sensitivity of an integrated circuit to single-event upsets is decreased by providing a dissipative layer of silicon nitride between a silicon substrate and the active device. Free carriers generated in the substrate are dissipated by the layer before they can build up charge on the active device. 1 fig.

  14. Current isolating epitaxial buffer layers for high voltage photodiode array

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Cooper, Gregory A.

    2002-01-01

    An array of photodiodes in series on a common semi-insulating substrate has a non-conductive buffer layer between the photodiodes and the semi-insulating substrate. The buffer layer reduces current injection leakage between the photodiodes of the array and allows optical energy to be converted to high voltage electrical energy.

  15. Multi-layer laminate structure and manufacturing method

    SciTech Connect (OSTI)

    Keenihan, James R.; Cleereman, Robert J.; Eurich, Gerald; Graham, Andrew T.; Langmaid, Joe A.

    2012-04-24

    The present invention is premised upon a multi-layer laminate structure and method of manufacture, more particularly to a method of constructing the multi-layer laminate structure utilizing a laminate frame and at least one energy activated flowable polymer.

  16. Electroluminescent apparatus having a structured luminescence conversion layer

    DOE Patents [OSTI]

    Krummacher, Benjamin Claus

    2008-09-02

    An apparatus such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer disposed on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains color-changing and non-color-changing regions arranged in a particular pattern.

  17. Organic photosensitive optoelectronic device having a phenanthroline exciton blocking layer

    DOE Patents [OSTI]

    Thompson, Mark E.; Li, Jian; Forrest, Stephen; Rand, Barry

    2011-02-22

    An organic photosensitive optoelectronic device, having an anode, a cathode, and an organic blocking layer between the anode and the cathode is described, wherein the blocking layer comprises a phenanthroline derivative, and at least partially blocks at least one of excitons, electrons, and holes.

  18. Mitigation of substrate defects in reticles using multilayer buffer layers

    DOE Patents [OSTI]

    Mirkarimi, Paul B.; Bajt, Sasa; Stearns, Daniel G.

    2001-01-01

    A multilayer film is used as a buffer layer to minimize the size of defects on a reticle substrate prior to deposition of a reflective coating on the substrate. The multilayer buffer layer deposited intermediate the reticle substrate and the reflective coating produces a smoothing of small particles and other defects on the reticle substrate. The reduction in defect size is controlled by surface relaxation during the buffer layer growth process and by the degree of intermixing and volume contraction of the materials at the multilayer interfaces. The buffer layers are deposited at near-normal incidence via a low particulate ion beam sputtering process. The growth surface of the buffer layer may also be heated by a secondary ion source to increase the degree of intermixing and improve the mitigation of defects.

  19. MultiLayer solid electrolyte for lithium thin film batteries

    DOE Patents [OSTI]

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  20. Solder for oxide layer-building metals and alloys

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-09-15

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel is disclosed. The composition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than approximately 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300 C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  1. Solder for oxide layer-building metals and alloys

    DOE Patents [OSTI]

    Kronberg, James W.

    1992-01-01

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel. The comosition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than aproximatley 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300.degree. C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  2. Lubricant-Infused Nanoparticulate Coatings Assembled by Layer-by-Layer Deposition

    SciTech Connect (OSTI)

    Sunny, S; Vogel, N; Howell, C; Vu, TL; Aizenberg, J

    2014-09-01

    Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repellency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface structures that are further surface-functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more LbL cycles introduce sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid interface that repels water, low-surface-tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparticles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. The LbL process is conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non-fouling materials.

  3. Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition

    SciTech Connect (OSTI)

    Sunny, Steffi; Vogel, Nicolas; Howell, Caitlin; Vu, Thy L.; Aizenberg, Joanna

    2014-09-01

    Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repellency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface structures that are further surface-functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more LbL cycles introduce sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid interface that repels water, low-surface-tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparticles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. As a result, the LbL process is conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non-fouling materials.

  4. Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sunny, Steffi; Vogel, Nicolas; Howell, Caitlin; Vu, Thy L.; Aizenberg, Joanna

    2014-09-01

    Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repellency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface structures that are further surface-functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more LbL cycles introducemore » sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid interface that repels water, low-surface-tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparticles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. As a result, the LbL process is conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non-fouling materials.« less

  5. Thermodynamic properties and ideal-gas enthalpies of formation for butyl vinyl ether, 1,2-dimethoxyethane, methyl glycolate, bicyclo[2.2.1]hept-2-ene, 5-vinylbicyclo[2.2.1]hept-2-ene, trans-azobenzene, butyl acrylate, di-tert-butyl ether, and hexane-1,6-diol

    SciTech Connect (OSTI)

    Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.; Smith, N.K.

    1996-11-01

    Ideal-gas enthalpies of formation of butyl vinyl ether, 1,2-dimethoxyethane, methyl glycolate, bicyclo-[2.2.1]hept-2-ene, 5-vinylbicyclo[2.2.1]hept-2-ene, trans-azobenzene, butyl acrylate, di-tert-butyl ether, and hexane-1,6-diol are reported. Enthalpies of fusion were determined for bicyclo[2.2.1]hept-2-ene and trans-azobenzene. Two-phase (solid + vapor) or (liquid + vapor) heat capacities were determined from 300 K to the critical region or earlier decomposition temperature for each compound studied. Liquid-phase densities along the saturation line were measured for bicyclo[2.2.1]hept-2-ene. For butyl vinyl ether and 1,2-dimethoxyethane, critical temperatures and critical densities were determined from the dsc results and corresponding critical pressures derived from the fitting procedures. Fitting procedures were used to derive critical temperatures, critical pressures, and critical densities for bicyclo[2.2.1]hept-2-ene, 5-vinylbicyclo[2.2.1]hept-2-ene, trans-azobenzene, butyl acrylate, and di-tert-butyl ether. Group-additivity parameters or ring-correction terms useful in the application of the Benson group-contribution correlations were derived.

  6. Methods for improved growth of group III nitride buffer layers

    DOE Patents [OSTI]

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  7. Ocean Barrier Layers Effect on Tropical Cyclone Intensification

    SciTech Connect (OSTI)

    Balaguru, Karthik; Chang, P.; Saravanan, R.; Leung, Lai-Yung R.; Xu, Zhao; Li, M.; Hsieh, J.

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are 'quasi-permanent' features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  8. NMR of thin layers using a meanderline surface coil

    DOE Patents [OSTI]

    Cowgill, Donald F.

    2001-01-01

    A miniature meanderline sensor coil which extends the capabilities of nuclear magnetic resonance (NMR) to provide analysis of thin planar samples and surface layer geometries. The sensor coil allows standard NMR techniques to be used to examine thin planar (or curved) layers, extending NMRs utility to many problems of modern interest. This technique can be used to examine contact layers, non-destructively depth profile into films, or image multiple layers in a 3-dimensional sense. It lends itself to high resolution NMR techniques of magic angle spinning and thus can be used to examine the bonding and electronic structure in layered materials or to observe the chemistry associated with aging coatings. Coupling this sensor coil technology with an arrangement of small magnets will produce a penetrator probe for remote in-situ chemical analysis of groundwater or contaminant sediments. Alternatively, the sensor coil can be further miniaturized to provide sub-micron depth resolution within thin films or to orthoscopically examine living tissue. This thin-layer NMR technique using a stationary meanderline coil in a series-resonant circuit has been demonstrated and it has been determined that the flat meanderline geometry has about he same detection sensitivity as a solenoidal coil, but is specifically tailored to examine planar material layers, while avoiding signals from the bulk.

  9. ARM - Field Campaign - Stable Boundary Layer Education (StaBLE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsStable Boundary Layer Education (StaBLE) Campaign Links Final Campaign Summary ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Stable Boundary Layer Education (StaBLE) 2011.10.01 - 2014.05.31 Lead Scientist : David Turner For data sets, see below. Abstract The properties and processing in the nocturnal stable boundary layer are not well understood, which makes it difficult to represent

  10. USE OF ATOMIC LAYER DEPOSITION OF FUNCTIONALIZATION OF NANOPOROUS BIOMATERIALS

    SciTech Connect (OSTI)

    Brigmon, R.; Narayan, R.; Adiga, S.; Pellin, M.; Curtiss, L.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N.; Elam, J.

    2010-02-08

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.