Powered by Deep Web Technologies
Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

latitutde tilt irradiance | OpenEI  

Open Energy Info (EERE)

latitutde tilt irradiance latitutde tilt irradiance Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude for Bangladesh. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Source NREL Date Released April 12th, 2005 (9 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords atmospheric water vapor GEF GIS latitutde tilt irradiance NREL solar SWERA TILT UNEP Data text/csv icon Download Data (csv, 35.5 KiB) application/zip icon Download Shapefile (zip, 26.7 KiB) Quality Metrics

2

direct normal irradiance | OpenEI  

Open Energy Info (EERE)

normal irradiance normal irradiance Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal and tilted flat-plates, and 2-axis tracking concentrating collectors. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to solar collectors. Source NREL Date Released July 31st, 2006 (8 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords direct normal irradiance DNI GEF GHI GIS global horizontal irradiance insolation latitutde tilt irradiance NASA NREL South America SWERA TILT UNEP Data application/zip icon Download Shapefile and Cell Maps (zip, 13.9 MiB) text/csv icon Download Data (csv, 3.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

3

Estimation of 5-min solar global irradiation on tilted planes by ANN method in Bouzareah, Algeria  

E-Print Network (OSTI)

], three main reasons make it impossible to develop a simple model for converting horizontal global solar surface The solar radiation arriving on a tilted collector has, most of the time, a beam component (nilEstimation of 5-min solar global irradiation on tilted planes by ANN method in Bouzareah, Algeria K

Paris-Sud XI, Université de

4

Solar: monthly and annual average latitude tilt irradiance GIS data at  

Open Energy Info (EERE)

irradiance GIS data at irradiance GIS data at one-degree resolution of the World from NASA/SSE Dataset Summary Description (Abstract): Latitude Tilt Irradiance NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Jan 2008)22-year Monthly & Annual Average (July 1983 - June 2005) Parameter: Latitude Tilt Radiation (kWh/m^2/day) Internet: http://eosweb.larc.nasa.gov/sse/ Note 1: SSE Methodology & Accuracy sections online Note 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region are -90 to -89 (south) and -180 to -179 (west). The last region, 89/180, is bounded by 89 to 90 (north) and 179 to 180 (east). The mid-point of the region is +0.5 added to the the Lat/Lon value. These data are regional averages; not point data.

5

A free real-time hourly tilted solar irradiation data Website for Europe  

E-Print Network (OSTI)

The engineering of solar power applications, such as photovoltaic energy (PV) or thermal solar energy requires the knowledge of the solar resource available for the solar energy system. This solar resource is generally obtained from datasets, and is either measured by ground-stations, through the use of pyranometers, or by satellites. The solar irradiation data are generally not free, and their cost can be high, in particular if high temporal resolution is required, such as hourly data. In this work, we present an alternative method to provide free hourly global solar tilted irradiation data for the whole European territory through a web platform. The method that we have developed generates solar irradiation data from a combination of clear-sky simulations and weather conditions data. The results are publicly available for free through Soweda, a Web interface. To our knowledge, this is the first time that hourly solar irradiance data are made available online, in real-time, and for free, to the public. The ac...

Leloux, Jonathan; Gonzalez-Bonilla, Loreto

2014-01-01T23:59:59.000Z

6

Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth's surface for cloudless atmospheres  

SciTech Connect

A new, simple model for calculating clear-sky direct and diffuse spectral irradiance on horizontal and tilted surfaces is presented. The model is based on previously reported simple algorithms and on comparisons with rigorous radiative transfer calculations and limited outdoor measurements. Equations for direct normal irradiance are outlined; and include: Raleigh scattering; aerosol scattering and absorption; water vapor absorption; and ozone and uniformly mixed gas absorption. Inputs to the model include solar zenith angle, collector tilt angle, atmospheric turbidity, amount of ozone and precipitable water vapor, surface pressure, and ground albedo. The model calculates terrestrial spectra from 0.3 to 4.0 ..mu..m with approximately 10 nm resolution. A major goal of this work is to provide researchers with the capability to calculate spectral irradiance for different atmospheric conditions and different collector geometries using microcomputers. A listing of the computer program is provided.

Bird, R.; Riordan, C.

1984-12-01T23:59:59.000Z

7

TILT | OpenEI  

Open Energy Info (EERE)

TILT TILT Dataset Summary Description Developed by NREL and the U.S. Trade and Development Agency, this geographic toolkit that allows users to relate the renewable energy resource (solar and wind) data to other geographic data, such as land use, protected areas, elevation, etc. The GsT was completely redesigned and re-released in November 2010 to provide a more modern, easier-to-use interface with considerably faster analytical querying capabilities. The revised version of the Geospatial Toolkit for Turkey is available using the following link: http://www.nrel.gov/international/downloads/gst_turkey.exe Source GeoModel Date Released March 31st, 2009 (5 years ago) Date Updated July 06th, 2012 (2 years ago) Keywords DNI GeoModel GHI GIS GsT NREL solar SWERA TILT

8

latitude tilt | OpenEI  

Open Energy Info (EERE)

latitude tilt latitude tilt Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude for Nepal. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Source U.S. National Renewable Energy Laboratory (NREL) Date Released April 12th, 2005 (9 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords atmospheric water vapor GIS latitude tilt Nepal NREL solar SWERA TILT UNEP Data application/zip icon Download Shapefile (zip, 25.6 KiB) text/csv icon Download Data (csv, 36.2 KiB)

9

irradiance | OpenEI  

Open Energy Info (EERE)

irradiance irradiance Dataset Summary Description (Abstract): Latitude Tilt Irradiance NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Jan 2008)22-year Monthly & Annual Average (July 1983 - June 2005) Parameter: Latitude Tilt Radiation (kWh/m^2/day) Internet: http://eosweb.larc.nasa.gov/sse/ Note 1: SSE Methodology & Accuracy sections online Source U.S. National Aeronautics and Space Administration (NASA), Surface meteorology and Solar Energy (SSE) Date Released March 31st, 2009 (5 years ago) Date Updated April 01st, 2009 (5 years ago) Keywords GIS global irradiance latitude mapping NASA renewable energy solar solar PV SWERA TILT UNEP Data text/csv icon Latitude Tilt Radiation (kWh/m^2/day) (csv, 11.8 MiB) application/zip icon Download Shapefile (zip, 5 MiB)

10

Radiation Incident on Tilted Collectors  

Science Journals Connector (OSTI)

For solar energy system design purposes, observations of solar radiation on a horizontal surface must be converted to values on a tilted energy collector. An empirical conversion relationship, introduced by Liu and Jordan (1960) and based on ...

P. J. Robinson

1981-12-01T23:59:59.000Z

11

Africa | OpenEI  

Open Energy Info (EERE)

Africa Africa Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal and tilted flat-plates, and 2-axis tracking concentrating collectors. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to solar collectors. Source U.S. National Renewable Energy Laboratory (NREL) Date Released July 31st, 2011 (3 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords Africa direct normal irradiance DNI GEF GHI GIS global horizontal irradiance latitutde tilt irradiance NASA NREL solar SWERA TILT UNEP Data application/zip icon Download Shapefile and Images (zip, 19.3 MiB) text/csv icon Download Data (csv, 3.4 MiB) Quality Metrics Level of Review Some Review

12

BEAM TILTED CORRELATIONS Frank Vignola  

E-Print Network (OSTI)

from tilted solar radiance. This model will then be used to estimate the performance of a photovoltaic. INTRODUCTION The number and variety of grid-tied photovoltaic (PV) systems being installed is stimulating, wind speed, and other meteorological variables and weather conditions. With the variety of solar cell

Oregon, University of

13

Large optics inspection, tilting, and washing stand  

DOE Patents (OSTI)

A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

Ayers, Marion Jay (Brentwood, CA); Ayers, Shannon Lee (Brentwood, CA)

2010-08-24T23:59:59.000Z

14

Tilt display demonstration: a display surface with multi-axis tilt & actuation  

Science Journals Connector (OSTI)

This demonstration accompanies a full paper accepted into MobileHCI '12 [1]. We demonstrate a new type of actuatable display, called a Tilt Display, that provides visual feedback combined with multi-axis tilting and vertical actuation. Its ability to ... Keywords: actuated displays, nonplanar surface interaction, physical actuation, tilt displays

Jason Alexander; Andrés Lucero; Sriram Subramanian

2012-09-01T23:59:59.000Z

15

Tilt displays: designing display surfaces with multi-axis tilting and actuation  

Science Journals Connector (OSTI)

We present a new type of actuatable display, called Tilt Displays, that provide visual feedback combined with multi-axis tilting and vertical actuation. Their ability to physically mutate provides users with an additional information channel that facilitates ... Keywords: actuated displays, non-planar surface interaction, physical actuation, tilt displays

Jason Alexander; Andrés Lucero; Sriram Subramanian

2012-09-01T23:59:59.000Z

16

GEF. latitude tilt | OpenEI  

Open Energy Info (EERE)

GEF. latitude tilt GEF. latitude tilt Dataset Summary Description (Abstract): Latitude tilted solar radiation in kWh/m2/day for 1 year organized into cells with 40km x 40km (Purpose): To provide a set of consistent, reliable, verifiable, and accessible global data sets for international and in-country investors and other stakeholders Source INPE (National Institute for Spatial Research) and LABSOLAR (Laboratory of Solar Energy/Federal University of Santa Catarina) - Brazil Date Released August 08th, 2009 (5 years ago) Date Updated August 08th, 2009 (5 years ago) Keywords Brazil GEF. latitude tilt INPE LABSOLAR solar SWERA TILT UNEP Data application/zip icon Download Shapefile (zip, 706.1 KiB) text/csv icon Download Data (csv, 999.1 KiB) Quality Metrics Level of Review Some Review

17

Limitations in solar module azimuth and tilt angles in building integrated photovoltaics at low latitude tropical sites in Brazil  

Science Journals Connector (OSTI)

Abstract Photovoltaic (PV) generation depends directly on the amount of radiation received by solar modules at a given temperature, and annual irradiation varies according to site location and PV array position. In this paper, the limitations and the solar irradiation levels received by building surfaces in different positions (with azimuth and tilt angle variation) in capital cities in Brazil are shown, making use of the Brazilian global horizontal solar irradiation data provided by the SWERA (Solar and Wind Energy Resource Assessment) project. These data were processed to generate figures on the irradiation at various PV module orientations and slopes for each city, which show the relative radiation levels received on specific azimuth and tilt angles in relation to the ideal position. Results were validated using four real and operating PV systems. In general, variations in azimuth or slope did not cause large annual irradiation losses up to around 20° tilt angles. This shows to PV system planners that under these fairly flexible conditions it is possible to install PV on any orientation, keeping high levels of annual irradiation, and that limitations in orientation and tilt can be relatively low. It also allows a quick analysis of PV retrofit in building-applied photovoltaics (BAPV), when seeking the best building surfaces to incorporate PV.

Ísis Portolan dos Santos; Ricardo Rüther

2014-01-01T23:59:59.000Z

18

Experimental control of the spheromak tilting instability  

Science Journals Connector (OSTI)

The magnetohydrodynamic (MHD) tilting instability of the spheromak configuration has been experimentally investigated by recording the time evolution of the magnetic field with small magnetic probes. Passive coil systems such as the figure?eight and saddle coils have been proven experimentally effective against this instability.

C. Munson; A. Janos; F. Wysocki; M. Yamada

1985-01-01T23:59:59.000Z

19

Stabilization of the spheromak tilt instability  

Science Journals Connector (OSTI)

A stability criterion for the tilt mode of a spheromak?ion ring hybrid configuration has been developed for the case where the ring current is small compared to the spheromak azimuthal current. It is shown that the stability is related to the distortion of the spheromak separatrix.

C. Litwin; R. N. Sudan; A. D. Turnbull

1984-01-01T23:59:59.000Z

20

Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series  

SciTech Connect

In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller missing wedge artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

Dahmen, Tim [German Research Center for Artificial Intelligence (DFKI), Germany] [German Research Center for Artificial Intelligence (DFKI), Germany; Baudoin, Jean-Pierre G [ORNL] [ORNL; Lupini, Andrew R [ORNL] [ORNL; Kubel, Christian [Karlsruhe Institute of Technology, Leopoldshafen, Germany] [Karlsruhe Institute of Technology, Leopoldshafen, Germany; Slusallek, Phillip [German Research Center for Artificial Intelligence (DFKI), Germany] [German Research Center for Artificial Intelligence (DFKI), Germany; De Jonge, Niels [ORNL] [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Spheromak tilting instability in cylindrical geometry  

Science Journals Connector (OSTI)

The internal tilting instability in a force?free spheromak plasma in cylindrical geometry is examined. It is found that this instability originally found in spherical geometry also occurs in cylindrical geometry. The analysis proceeds by first demonstrating that if no mode rational surface is present in the plasma a necessary and sufficient condition for ideal magnetohydrodynamic instability is that there exist a solution to ?×B m = ? m B m where B m ?exp(i m?) with ? m tilting mode is unstable for these parameters. All modes with m?1 are shown to be stable.

John M. Finn; Wallace M. Manheimer; Edward Ott

1981-01-01T23:59:59.000Z

22

Tilting instability of a cylindrical spheromak  

Science Journals Connector (OSTI)

The stability of a low?beta spheromak with a perfectly conducting cylindrical boundary of length L and radius R is analyzed in terms of force?free fields with J = ?B(? = const). The axisymmetric equilibrium is found unstable to tilting when the elongation L/R is larger than about 1.67. Numerical solutions of the time?dependent ideal magnetohydrodynamic equations confirm this result.

A. Bondeson; G. Marklin; Z. G. An; H. H. Chen; Y. C. Lee; C. S. Liu

1981-01-01T23:59:59.000Z

23

Stabilizing windings for tilting and shifting modes  

DOE Patents (OSTI)

This invention relates to passive conducting loops for stabilizing a plasma ring against unstable tilting and/or shifting modes. To this end, for example, plasma ring in a spheromak is stabilized by a set of four figure-8 shaped loops having one pair on one side of the plasma and one pair on the other side with each pair comprising two loops whose axes are transverse to each other.

Jardin, Stephen C. (Princeton, NJ); Christensen, Uffe R. (Princeton, NJ)

1984-01-01T23:59:59.000Z

24

Building Energy Software Tools Directory: oTilt  

NLE Websites -- All DOE Office Websites (Extended Search)

oTilt oTilt tool_otilt oTilt is an online tool for quickly determining the optimum tilt angles for solar collectors. Site can be located in an integrated Google map, searching it using keywords (e.g. Central Park, New York) or by directly entering latitude and longitude. oTilt determines the optimum monthly, seasonal, half-yearly and fixed tilt angles for solar collectors at selected site location along with respective energy collection during these spans. Results are presented in the form of a table. Screen Shots Keywords solar radiations, radiations on tilted surface, optimum tilt angle, optimum pitch angle, collector slope Validation/Testing Methodology and validation of results is given on website Expertise Required No special expertise needed. Users More than 100.

25

Analytical investigation of collector optimum tilt angle at low latitude  

Science Journals Connector (OSTI)

An analytical investigation on the optimum tilt angle for solar collectors at low latitude a case study of Universiti Teknologi PETRONAS (UTP) 4.39°N and 100.98°E Malaysia is presented in this work. The study employed Hay Davies Klucher and Reindl (HDKR) anisotropic sky model to evaluate the available hourly solar radiation on inclined surface using the location metrological data. The tilt angles considered were 0° to 30° in step of 3° with the inclusion of the location latitude angle. The study employed the ratio of global solar radiation on tilted surface to the global solar radiation on horizontal surface in the decision of the optimum tilt. The system equations were converted to MATLAB codes to solve for the optimum tilt angles. The results show that the optimum tilt varies monthly but gave zero degree for south facing collector for the months of April to August; thus the investigation also considered north facing orientation for the months of April to September. The optimum annual tilt angle for the location using the tilt to horizontal radiation ratio was found to be equal to the location latitude angle. Using the conventional average of the monthly optimum tilt angles the annual optimum tilt angle was found to be 9.75° for south facing collector. Considering seasonal optimum tilt angle for the location using the tilt to horizontal radiation ratio 18° facing south was found to be the optimum tilt angle for rainy season (September to March) and 15° facing north for dry season (April to August). Employing the average of monthly optimum tilt method the seasonal optimum tilt angle was found to be 17° for rainy season and 12° facing north dry season. The effect of dust on the collector was considered with reference to literature and the annual tilt angle of 15° facing south was recommended for the location in the case of large solar collector that cannot be monthly or seasonally adjusted.

Ogboo Chikere Aja; Hussain H. Al-Kayiem; Zainal Ambri Abdul Karim

2013-01-01T23:59:59.000Z

26

Geometric Model of a Narrow Tilting CAR using Robotics formalism  

E-Print Network (OSTI)

- structured multibody system composed of n bodies (links) where the chassis is the mobile base and the wheels tilting car "Lumeneo Smera" [4] through the analysis of its tilting mechanism. To model a complex system. Robotic representation of a multibody system The car can be seen as a mobile robot which is a tree

Boyer, Edmond

27

Three-Dimensional Simulation of Spheromak Creation and Tilting Disruption  

Science Journals Connector (OSTI)

Spheromak dynamics is studied for a zero-? plasma by a three-dimensional magneto-hydrodynamics simulation code. The growth rate of the tilting instability is found to be of the order of 10?A (Alfvén transit time) and, more interestingly, once tilt occurs, the spheromak field reconnects three dimensionally with the vertical field, thus leading to a disruptive deformation of the spheromak.

Tetsuya Sato and Takaya Hayashi

1983-01-03T23:59:59.000Z

28

File:NREL-asia-tilt.pdf | Open Energy Information  

Open Energy Info (EERE)

asia-tilt.pdf asia-tilt.pdf Jump to: navigation, search File File history File usage Selected Asian Countries - Annual Tilted at Latitude Solar Radiation (PDF) Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 3.05 MB, MIME type: application/pdf) Title Selected Asian Countries - Annual Tilted at Latitude Solar Radiation (PDF) Description Selected Asian Countries - Annual Tilted at Latitude Solar Radiation (PDF) Sources National Renewable Energy Laboratory Authors Donna Heimiller Related Technologies Solar, Solar-PV, Solar-40km Creation Date 2006-07-13 Extent International Countries Bhutan, China, Nepal, Mongolia, India, North Korea, South Korea, Vietnam, Laos, Thailand, Cambodia, Philippines, Bangladesh UN Region Southern Asia, Eastern Asia, South-Eastern Asia

29

Optimum tilt angle and orientation for solar collectors in Syria  

Science Journals Connector (OSTI)

One of the important parameters that affect the performance of a solar collector is its tilt angle with the horizon. This is because of the variation of tilt angle changes the amount of solar radiation reaching the collector surface. A mathematical model was used for estimating the solar radiation on a tilted surface, and to determine the optimum tilt angle and orientation (surface azimuth angle) for the solar collector in the main Syrian zones, on a daily basis, as well as for a specific period. The optimum angle was computed by searching for the values for which the radiation on the collector surface is a maximum for a particular day or a specific period. The results reveal that changing the tilt angle 12 times in a year (i.e. using the monthly optimum tilt angle) maintains approximately the total amount of solar radiation near the maximum value that is found by changing the tilt angle daily to its optimum value. This achieves a yearly gain in solar radiation of approximately 30% more than the case of a solar collector fixed on a horizontal surface.

Kamal Skeiker

2009-01-01T23:59:59.000Z

30

The Properties of the Tilts of Bipolar Solar Regions  

E-Print Network (OSTI)

We investigate various properties associated with the tilt of isolated magnetic bipoles in magnetograms taken at the solar surface. We show that bipoles can be divided into two groups which have tilts of opposite signs, and reveal similar properties with respect to bipole area, flux and bipolar moment. Detailed comparison of these physical quantities shows that the dividing point between the two types of bipoles corresponds to a bipole area of about 300 millionths of the solar hemisphere (MHS). The time-latitude distribution of small bipoles differs substantially from that for large bipoles. Such behaviour in terms of dynamo theory may indicate that small and large bipoles trace different components of the solar magnetic field. The other possible viewpoint is that the difference in tilt data for small and large bipoles is connected with spectral helicity separation, which results in opposite tilts for small and large bipoles. We note that the data available do not provide convincing reasons to prefer either i...

Illarionov, E; Sokoloff, D

2014-01-01T23:59:59.000Z

31

Position vs. Velocity Control for Tilt-Based Interaction Robert J. Teather*  

E-Print Network (OSTI)

like a steering wheel, and "marble maze" games where tilting rolls a ball to simulate gravity. Although's subjective impression of the system. 2 RELATED WORK 2.1 Tilt-Based Interaction Tilt control has long been

MacKenzie, Scott

32

File:NREL-africa-tilt.pdf | Open Energy Information  

Open Energy Info (EERE)

tilt.pdf tilt.pdf Jump to: navigation, search File File history File usage Africa - Annual Flat Plate Tilted at Latitude (PDF) Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 5.69 MB, MIME type: application/pdf) Title Africa - Annual Flat Plate Tilted at Latitude (PDF) Description Africa - Annual Flat Plate Tilted at Latitude (PDF) Sources National Renewable Energy Laboratory Authors Donna Heimiller Related Technologies Solar, Solar-PV, Solar-40km Creation Date 2005-01-11 Extent Continent Countries Africa UN Region File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:34, 14 December 2010 Thumbnail for version as of 15:34, 14 December 2010 1,650 × 1,275 (5.69 MB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

33

Laser Guide Star Adaptive Optics without Tip-tilt  

E-Print Network (OSTI)

Adaptive optics (AO) systems allow a telescope to reach its diffraction limit at near infrared wavelengths. But to achieve this, a bright natural guide star (NGS) is needed for the wavefront sensing, severely limiting the fraction of the sky over which AO can be used. To some extent this can be overcome with a laser guide star (LGS). While the laser can be pointed anywhere in the sky, one still needs to have a natural star, albeit fainter, reasonably close to correct the image motion (tip-tilt) to which laser guide stars are insensitive. There are in fact many astronomical targets without suitable tip-tilt stars, but for which the enhanced resolution obtained with the Laser Guide Star Facility (LGSF) would still be very beneficial. This article explores what adaptive optics performance one might expect if one dispenses with the tip-tilt star, and in what situations this mode of observing might be needed.

R. Davies; S. Rabien; C. Lidman; M. Le Louarn; M. Kasper; N. M. Forster Schreiber; V. Roccatagliata; N. Ageorges; P. Amico; C. Dumas; F. Mannucci

2008-01-24T23:59:59.000Z

34

Spheromak tilt stabilization with an energetic particle component  

Science Journals Connector (OSTI)

The tilt and shift stability of a spheromak plasma in the presence of a large orbit ion?ring component is determined by evaluating the magnetic interaction of the plasma with the ion ring and the external coils. Neither the ion?ring toroidal current nor the ring inverse aspect ratio is required to be small. The influence of conducting walls is considered to be negligible as is appropriate for compression experiments. The plasma tilt and shift stability has been evaluated for a comprehensive set of numerically generated self?consistent hybrid spheromak/ion?ring equilibria. Stable equilibria are found over a considerable range of the parameters. The tilt stabilization of the plasma typically requires that more than about 25% of the total toroidal current be carried by the ion ring.

C. Mehanian; R. V. E. Lovelace

1988-01-01T23:59:59.000Z

35

Reverse time migration in tilted transversely isotropic media  

SciTech Connect

This paper presents a reverse time migration (RTM) method for the migration of shot records in tilted transversely isotropic (TTI) media. It is based on the tilted TI acoustic wave equation that was derived from the dispersion relation. The RTM is a full depth migration allowing for velocity to vary laterally as well as vertically and has no dip limitations. The wave equation is solved by a tenth-order finite difference scheme. Using 2D numerical models, we demonstrate that ignoring the tilt angle will introduce both lateral and vertical shifts in imaging. The shifts can be larger than 0.5 wavelength in the vertical direction and 1.5 wavelength in the lateral direction.

Zhang, Linbing; Rector III, James W.; Hoversten, G. Michael

2004-07-01T23:59:59.000Z

36

Iris tilting and RF steering in the SLAC Linac  

SciTech Connect

For some time now, the sources of RF transverse beam steering in the SLAC Linac have been a mystery. The previously known sources, coupler asymmetries and survey misalignment, have predicted deflections which are frequently much smaller than the observed deflections. A new source of RF steering has been discovered: the tilting of accelerator irises. Measurements of iris tilting in a forty foot accelerator girder are compared with measurements of RF beam deflections and are found to be strongly correlated. 4 refs., 6 figs., 3 tabs.

Seeman, J.T.

1985-05-02T23:59:59.000Z

37

Numerical study of natural convection in fully open tilted cavities  

SciTech Connect

A numerical simulation of two-dimensional laminar natural convection in a fully open tilted square cavity with an isothermally heated back wall is conducted. The remaining two walls of the cavity are adiabatic. Steady-state solutions are presented for Grashof numbers between 10{sup 2} and 10{sup 5} and for tilt angles ranging from {minus}60{degree} to 90{degree} (where 90{degree} represents a cavity with the opening facing down). The fluid properties are assumed to be constant except for the density variation with temperature that gives rise to the buoyancy forces, which is treated by the Boussinesq approximation. The fluid concerned is air with Prandtl number fixed at 0.71. The governing equations are expressed in a normalized primitive variables formulation. Numerical predictions of the velocity and temperature fields are obtained using the finite-volume-based power law (SIMPLER: Semi-Implicit Method for Pressure-Linked Equations Revised) algorithm. For a vertical open cavity ({alpha} = 0{degree}), the algorithm generated results that were in good agreement with those previously published. Flow patterns and isotherms are shown in order to give a better understanding of the heat transfer and flow mechanisms inside the cavity. Effects of the controlling parameters-Grashof number and tilt angle-on the heat transfer (average Nusselt number) are presented and analyzed. The results also revealed that the open-cavity Nusselt number approaches the flat-plate solution when either Grashof number or tilt angle increases. In addition, a correlation of the Nusselt number in terms of the Grashof number and tilt angle is developed and presented; a comparison is made with available data from other literature.

Elsayed, M.M.; Al-Najem, N.M.; El-Refaee, M.M.; Noor, A.A.

1999-09-01T23:59:59.000Z

38

EIS-0039: Motor Gasoline Deregulation and the Gasoline Tilt  

Energy.gov (U.S. Department of Energy (DOE))

The Economic Regulatory Administration developed this EIS to evaluate the environmental impacts, including social and economic impacts, that may result from either of two proposed regulatory changes: (1) the exemption of motor gasoline from the Department of Energy's Mandatory Petroleum Price and Allocation Regulations, and (2) the adoption of the gasoline tilt, a proposed regulation that would allow refiners to recover an additional amount of their total increased costs on gasoline.

39

Splay and tilt energy of bipolar lipid membranes  

E-Print Network (OSTI)

Archaea organisms are able to survive in extremely aggressive environment. It is thought that such resistance, at least, in part is sustained by unique properties of archaea membrane. The membrane consists of so called bolalipids, which has two polar heads joined by two hydrocarbon chains. Thus bolalipids can exist in two conformations: i) polar heads are located at different sides of bolalipid layer, so called, O-shape; ii) polar heads are located at the same side of the layer, so called, U-shape. Both polar heads and chains are chemically different from those for conventional lipids. In the present study we develop basis for theory of elasticity of bolalipid membranes. Deformations of splay, tilt and Gaussian curvature are considered. We show that energetic contributions of tilt deformation from two surfaces of bolalipid layer are additive, as well as Gaussian curvature, while splay deformations yield a cross-term. The presence of U-shapes is taken into account in terms of the layer spontaneous curvature. Estimation of tilt modulus and possible experiments allowing to measure splay moduli are described.

Timur R. Galimzyanov; Peter I. Kuzmin; Peter Pohl; Sergey A. Akimov

2014-12-28T23:59:59.000Z

40

POTATO - a program for generating perovskite structures distorted by tilting of rigid octahedra  

Science Journals Connector (OSTI)

A program that, given the tilt system, tilt angles and octahedral bond distances, will calculate the ideal crystal structure for AMO3 and A2MM'O6 perovskites distorted by octahedral tilting is presented. See the Journal of Applied Crystallography Software List 1997.

Woodward, P.M.

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Electronic properties of graphite in tilted magnetic fields  

SciTech Connect

The minimal nearest-neighbor tight-binding model with the Peierls substitution is employed to describe the electronic structure of Bernal-stacked graphite subject to tilted magnetic fields. We show that while the presence of the in-plane component of the magnetic field has a negligible effect on the Landau level structure at the K point of the graphite Brillouin zone, at the H point it leads to the experimentally observable splitting of Landau levels which grows approximately linearly with the in-plane field intensity.

Goncharuk, Nataliya A.; Smr?ka, Ludvík [Institute of Physics, Academy of Science of the Czech Republic, v. v. i., Cukrovarnická 10, 162 53 Praha 6 (Czech Republic)

2014-05-15T23:59:59.000Z

42

Microelectromechanical apparatus for elevating and tilting a platform  

DOE Patents (OSTI)

A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

Miller, Samuel Lee (Albuquerque, NM); McWhorter, Paul Jackson (Albuquerque, NM); Rodgers, Murray Steven (Albuquerque, NM); Sniegowski, Jeffry J. (Edgewood, NM); Barnes, Stephen M. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

43

Safer Food with Irradiation  

E-Print Network (OSTI)

This publication answers questions about food irradiation and how it helps prevent foodborne illnesses. Included are explanations of how irradiation works and its benefits. Irradiation is a safe method of preserving food quality and ensuring its...

Thompson, Britta; Vestal, Andy; Van Laanen, Peggy

2003-01-21T23:59:59.000Z

44

Precision tip-tilt-piston actuator that provides exact constraint  

DOE Patents (OSTI)

A precision device which can precisely actuate three degrees of freedom of an optic mount, commonly referred to as tip, tilt, and piston. The device consists of three identical flexure mechanisms, an optic mount to be supported and positioned, a structure that supports the flexure mechanisms, and three commercially available linear actuators. The advantages of the precision device is in the arrangement of the constraints offered by the flexure mechanism and not in the particular design of the flexure mechanisms, as other types of mechanisms could be substituted. Each flexure mechanism constrains two degrees of freedom in the plane of the mechanisms and one direction is actuated. All other degrees of freedom are free to move within the range of flexure mechanisms. Typically, three flexure mechanisms are equally spaced in angle about to optic mount and arranged so that each actuated degree of freedom is perpendicular to the plane formed by the optic mount. This arrangement exactly constrains the optic mount and allows arbitrary actuated movement of the plane within the range of the flexure mechanisms. Each flexure mechanism provides a mechanical advantage, typically on the order of 5:1, between the commercially available actuator and the functional point on the optic mount. This improves resolution by the same ratio and stiffness by the square of the ratio.

Hale, Layton C. (Livermore, CA)

1999-01-01T23:59:59.000Z

45

The role of tilted heating in the evolution of the MJO Cara-Lyn Lappen1  

E-Print Network (OSTI)

The role of tilted heating in the evolution of the MJO Cara-Lyn Lappen1 and Courtney Schumacher2 1 the role of tilted heating in the evolution of the MJO. It is believed that the inability of many general heating distributions. Given the MJO's importance in tropical climate, we need to better understand what

46

Latitude Based Model for Tilt Angle Optimization for Solar Collectors in the Mediterranean Region  

Science Journals Connector (OSTI)

Abstract This paper inspects the different parameters that intervene in the determination of the optimal tilt angle for maximum solar energy collection. It proposes a method for calculating the optimal tilt angle based upon the values of the daily global solar radiation on a horizontal surface. A computer program using the mathematical model to calculate the solar radiation incident on an inclined surface as a function of the tilt angle is implemented. Four years data of daily global solar radiation on a horizontal surface in 35 sites in different countries of the Mediterranean region is used. The program assumes a due south orientation of the collectors and it determines the optimal tilt angle for maximum solar radiation collection for sites in the Mediterranean region. A regression analysis using the results of the computer simulation is conducted to develop a latitude based tilt angle optimization mathematical model for maximum solar radiation collection for the sites. We tested both a linear and a quadratic model (of the form ax2+bx) for representing the relationship between the annual optimal tilt angle and the site's latitude. The quadratic model is better; it provides very high prediction accuracy. 99.87% of the variation in the annual optimal tilt angle is explained by the variability in site's latitude with an average residual angle of only 0.96° for all 35 sites studied. It also gives an average percentage decrease in the annual solar radiation of only 0.016% when compared with actual optimal tilt angles.

Hassane Darhmaoui; Driss Lahjouji

2013-01-01T23:59:59.000Z

47

Head tilt during driving DANIEL C. ZIKOVITZ and LAURENCE R. HARRIS *  

E-Print Network (OSTI)

Head tilt during driving DANIEL C. ZIKOVITZ ² and LAURENCE R. HARRIS² * Departments of ² Biology and Psychology, York University, Toronto, Ontario M3J 1P3, Canada Keywords: Driving behaviour; Head tilt; Vision with the visually-available estimate of the curvature of the road (r 2 = 0.86) but not with the centripetal force (r

Harris, Laurence R.

48

Self-Optimization of Antenna Tilt and Pilot Power for Dedicated Channels  

E-Print Network (OSTI)

Self-Optimization of Antenna Tilt and Pilot Power for Dedicated Channels Abstract-- In Radio Access Networks (RAN), fixed configurations result in poor network efficiency. This sub- optimal performance present a framework for a self-optimizing RAN, which adapts Antenna Tilt and Pilot Power according

Paris-Sud XI, Université de

49

The Tilt of the Leading Edge of Mesoscale Tropical Convective Lines  

Science Journals Connector (OSTI)

The tilt with height of the leading edge of seven mesoscale convective lines in GATE is determined by two independent methods. When averaged over time and along the line axis, the tilt is found to he surprisingly shallow, between 20 and 35 ...

M. A. LeMone; G. M. Barnes; E. J. Szoke; E. J. Zipser

1984-03-01T23:59:59.000Z

50

File:NREL-afg-10km-tilt.pdf | Open Energy Information  

Open Energy Info (EERE)

tilt.pdf tilt.pdf Jump to: navigation, search File File history File usage Afghanistan - Annual Flat Plate Tilted at Latitude Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 468 KB, MIME type: application/pdf) Title Afghanistan - Annual Flat Plate Tilted at Latitude Description Afghanistan - Annual Flat Plate Tilted at Latitude Sources National Renewable Energy Laboratory Authors Donna Heimiller Related Technologies Solar, Solar-PV, Solar-10km Creation Date 2007-06-01 Extent International Countries Afghanistan UN Region Southern Asia File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:30, 14 December 2010 Thumbnail for version as of 15:30, 14 December 2010 1,650 × 1,275 (468 KB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

51

The optimum tilt angle for flat-plate solar collectors in Iran  

Science Journals Connector (OSTI)

This paper aims at determining the optimum tilt angle for south facing flat-plate solar collectors in Iran. Solar radiation on a horizontal surface was estimated by applying an empirical method and employing meteorological data from 80 selected cities. A mathematical model was used for estimating the solar radiation at different tilt angles. Daily monthly seasonally bi-annually and yearly optimum tilt angles and solar radiations were determined for 80 selected cities. Recommendations were made on the optimum tilt angle adjustment for different places in the country in order to benefit the best solar radiation available. The averaged benefits of annual solar radiation for 80 cities were 21.3% for daily 21% for monthly 19.6% for seasonal 19.3% for bi-annual and 13.3% for yearly adjustments compared with the radiation on the horizontal collector. Based on these results adjusting tilt angles at least twice a year is recommended. Optimum tilt angles for cloudy sky cities with a low clearness index are lower than those for cities at the same latitude angle having a higher clearness index. In addition to latitude angle the climate conditions are also important for determining the optimum tilt angle.

Farzad Jafarkazemi; S. Ali Saadabadi; Hadi Pasdarshahri

2012-01-01T23:59:59.000Z

52

Design and development of a 329-segment tip-tilt piston mirror array for space-based adaptive optics  

E-Print Network (OSTI)

Design and development of a 329-segment tip-tilt piston mirror array for space-based adaptive. It consists of 329-hexagonal segments on a 600 m pitch, each with tip/tilt and piston degrees of freedom

53

Surface damage on 6H–SiC by highly-charged Xeq+ ions irradiation  

Science Journals Connector (OSTI)

Abstract Surface damage on 6H–SiC irradiated by highly-charged Xeq+ (q = 18, 26) ions to different fluences in two geometries was studied by means of AFM, Raman scattering spectroscopy and FTIR spectrometry. The FTIR spectra analysis shows that for Xe26+ ions irradiation at normal incidence, a deep reflection dip appears at about 930 cm?1. Moreover, the reflectance on top of reststrahlen band decreases as the ion fluence increases, and the reflectance at tilted incidence is larger than that at normal incidence. The Raman scattering spectra reveal that for Xe26+ ions at normal incidence, surface reconstruction occurs and amorphous stoichiometric SiC and Si–Si and C–C bonds are generated and original Si–C vibrational mode disappears. And the intensity of scattering peaks decreases with increasing dose. The AFM measurement shows that the surface swells after irradiation. With increasing ion fluence, the step height between the irradiated and the unirradiated region increases for Xe18+ ions irradiation; while for Xe26+ ions irradiation, the step height first increases and then decreases with increasing ion fluence. Moreover, the step height at normal incidence is higher than that at tilted incidence by the irradiation with Xe18+ to the same ion fluence. A good agreement between the results from the three methods is found.

L.Q. Zhang; C.H. Zhang; L.H. Han; C.L. Xu; J.J. Li; Y.T. Yang; Y. Song; J. Gou; J.Y. Li; Y.Z. Ma

2014-01-01T23:59:59.000Z

54

Proto-CIRCUS Tilted-Coil Tokamak-Torsatron Hybrid: Design and Construction  

E-Print Network (OSTI)

We present the field-line modeling, design and construction of a prototype circular-coil tokamak-torsatron hybrid called Proto-CIRCUS. The device has a major radius R = 16 cm and minor radius a tokamak, but they are tilted. This, combined with induced or driven plasma current, is expected to generate rotational transform, as seen in field-line tracing and equilibrium calculations. The device is expected to operate at lower plasma current than a tokamak of comparable size and magnetic field, which might have interesting implications for disruptions and steady-state operation. Additionally, the toroidal magnetic ripple is less pronounced than in an equivalent tokamak in which the coils are not tilted. The tilted coils are interlocked, resulting in a relatively low aspect ratio, and can be moved, both radially and in tilt angle, between discharges. This capability will be exploited for detailed comparisons between calculations and field-line mapping me...

Clark, A W; Hammond, K C; Kornbluth, Y; Spong, D A; Sweeney, R; Volpe, F A

2014-01-01T23:59:59.000Z

55

Tilt-up concrete panels : an investigation of flexural stresses and punching shear during lifting  

E-Print Network (OSTI)

Tilt-up construction is becoming more popular in the United States due to its ease of construction, reliability, and relatively low construction and maintenance costs. In its most typical form, a concrete panel is cast on ...

Bono, Matthew P. (Matthew Paul)

2011-01-01T23:59:59.000Z

56

Stacking-velocity inversion with borehole constraints for tilted TI media Xiaoxiang Wang1  

E-Print Network (OSTI)

- ing an accurate anisotropic velocity model remains a challenging problem. For TI models, transverse isotropy with a tilted symmetry axis TTI is an ap- propriate model for dipping shale layers near

Tsvankin, Ilya

57

A Novel Computational Model for Tilting Pad Journal Bearings with Soft Pivot Stiffnesses  

E-Print Network (OSTI)

A novel tilting pad journal bearing model including pivot flexibility as well as temporal fluid inertia effects on the thin film fluid flow aims to accurately predict the bearing forced performance. The predictive model also accounts for the thermal...

Tao, Yujiao 1988-

2012-12-10T23:59:59.000Z

58

Rotordynamic and thermal analyses of compliant flexure pivot tilting pad gas bearings  

E-Print Network (OSTI)

-free micro turbomachinery. The pad radial compliance was for accommodation of large rotor growth at high speeds. Parametric studies on pivot offset, preload, and tilting stiffness were performed using non-linear orbit simulations and coast-down simulations...

Sim, Kyu-Ho

2009-05-15T23:59:59.000Z

59

File:NREL-bhutan-10kmsolar-tilt.pdf | Open Energy Information  

Open Energy Info (EERE)

kmsolar-tilt.pdf kmsolar-tilt.pdf Jump to: navigation, search File File history File usage Bhutan - Annual - Flat PlateTilted at Latitude Solar Radiation Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 333 KB, MIME type: application/pdf) Title Bhutan - Annual - Flat PlateTilted at Latitude Solar Radiation Description Bhutan - Annual - Flat PlateTilted at Latitude Solar Radiation Sources National Renewable Energy Laboratory Authors Donna Heimiller Related Technologies Solar, Solar-PV, Solar-10km Creation Date 2009-03-03 Extent International Countries Bhutan UN Region Southern Asia File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:51, 14 December 2010 Thumbnail for version as of 15:51, 14 December 2010 1,650 × 1,275 (333 KB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

60

Solar: monthly latitude tilt GIS data at 40km resolution for Bangladesh  

Open Energy Info (EERE)

latitude tilt GIS data at 40km resolution for Bangladesh latitude tilt GIS data at 40km resolution for Bangladesh from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude for Bangladesh. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Solar: annual and seasonal average latitude tilt GIS data (contours) for  

Open Energy Info (EERE)

latitude tilt GIS data (contours) for latitude tilt GIS data (contours) for Brazil from INPE and LABSOLAR Dataset Summary Description (Abstract): Annual and seasonal mean of Latitude Tilt Solar Radiation in kWh/m2/day based on data from 1995 to 2002 (Purpose): To provide a set of consistent, reliable, verifiable, and accessible global data sets for international and in-country investors and other stakeholders (Supplemental Information): The cross-calibration process worked with data from 3 ground stations: CaicĂł (located in the Northeast of Brazil), FlorianĂłpolis (located in the South) and Balbina (located in Amazonia). These data have been used for validation and comparison of radiation transfer models operated in SWERA to estimate the incidence of solar radiation on the surface of the country from satellite images

62

Solar: monthly and annual latitude tilt horizontal GIS data at 40km  

Open Energy Info (EERE)

latitude tilt horizontal GIS data at 40km latitude tilt horizontal GIS data at 40km resolution for Nepal from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude for Nepal. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The

63

Experimental investigation of line-tying effects on the spheromak tilt mode  

Science Journals Connector (OSTI)

In the absence of close fitting walls or conducting elements, the spheromak plasma configuration is unstable to at least one global MHD mode (tilting or shifting). Previous theoretical work suggested that line-tying effects could play a role in slowing down these modes. Line-tying was investigated in the Proto S-1/C spheromak device by a direct measurement of the line-tying character of the perturbed current within a passive stabilizer. The ring model of tilting is extended to include line-tying stabilization by taking into account the plasma sheath resistance. Comparison with experimental results show good agreement between predicted and observed growth rates.

F.J. Wysocki

1987-01-01T23:59:59.000Z

64

Stabilizing Effect of Finite-Gyroradius Beam Particles on the Tilting Mode of Spheromaks  

Science Journals Connector (OSTI)

The equilibrium shape of a low-pressure spheromak plasma with a small component of toroidal current carried by finite-gyroradius particles is computed. The stabilizing influence of this current on the tilting mode is determined by employing an energy principle that includes gyroscopic and finite-gyroradius effects.

R. N. Sudan and P. K. Kaw

1981-08-24T23:59:59.000Z

65

Roughness of a tilted anharmonic string at depinning T. Goodman1  

E-Print Network (OSTI)

a string with a net average tilt, we demonstrate that the anhar- monic elastic energy crosses the model renormalization group calculation by Le Doussal and Wiese [8] argued that the quenched KPZ term can indeed with zero average and unit vari- ance, f is a uniform external driving force, and Eel is the elastic energy

Teitel, Stephen L.

66

Identification of Avalanche Precursors by Acoustic Probing in the Bulk of Tilted Granular Layers  

E-Print Network (OSTI)

Identification of Avalanche Precursors by Acoustic Probing in the Bulk of Tilted Granular Layers M simultaneously caracterize precursors on the free surface with an optical method and in the bulk with acoustic to probe rearrangements in the bulk of the granular material. A linear method can also be used provided

Paris-Sud XI, Université de

67

Friction in (im-)miscible polymer brush systems and the role of transverse polymer-tilting  

E-Print Network (OSTI)

Friction in (im-)miscible polymer brush systems and the role of transverse polymer-tilting Sissi de preferred solvent, leading to low friction and low wear rates. Here, we demonstrate, using molecular systems also show smaller friction than miscible systems, although the friction reduction is less than

Mueser, Martin

68

Application of the Cubed-Sphere Grid to Tilted Black-Hole Accretion Disks  

SciTech Connect

In recent work we presented the first results of global general relativistic magnetohydrodynamic (GRMHD) simulations of tilted (or misaligned) accretion disks around rotating black holes. The simulated tilted disks showed dramatic differences from comparable untilted disks, such as asymmetrical accretion onto the hole through opposing 'plunging streams' and global precession of the disk powered by a torque provided by the black hole. However, those simulations used a traditional spherical-polar grid that was purposefully underresolved along the pole, which prevented us from assessing the behavior of any jets that may have been associated with the tilted disks. To address this shortcoming we have added a block-structured 'cubed-sphere' grid option to the Cosmos++ GRMHD code, which will allow us to simultaneously resolve the disk and polar regions. Here we present our implementation of this grid and the results of a small suite of validation tests intended to demonstrate that the new grid performs as expected. The most important test in this work is a comparison of identical tilted disks, one evolved using our spherical-polar grid and the other with the cubed-sphere grid. We also demonstrate an interesting dependence of the early-time evolution of our disks on their orientation with respect to the grid alignment. This dependence arises from the differing treatment of current sheets within the disks, especially whether they are aligned with symmetry planes of the grid or not.

Fragile, P C; Lindner, C C; Anninos, P; Salmonson, J D

2008-09-24T23:59:59.000Z

69

Evaluation of solar energy resources by establishing empirical models for diffuse solar radiation on tilted surface and analysis for optimum tilt angle for a prospective location in southern region of Sindh, Pakistan  

Science Journals Connector (OSTI)

Abstract Diffuse solar radiation data is very important and is required for solar energy system implementations. The main purpose of the present study is to evaluate solar energy resources by establishing diffuse solar radiation models and obtaining optimum tilt angle fora prospective location is southern region of Sindh, Pakistan. Due to the unavailability of measured diffuse solar radiation data, nine new models, based on available data from local agency and values obtain from existing models, to predict diffuse solar radiation on tilted surface has been established. The best model was chosen based on test results from statistical indicators. The optimum tilt angle for monthly, seasonally, half-yearly and yearly adjustment was determined. The optimum tilt angle varies from 0° in May, June and July to 49° in December. The yearly optimum tilt angle was found as 23°, which is close to latitude of investigated location (25°07?N). The monthly average total, beam and diffuse solar radiations were calculated for optimum and vertical tilted surfaces and were compared with those obtain for horizontal surfaces. The half-yearly adjustment of optimum tilt angle is recommended for the investigated location because very small difference in annual solar energy gains in comparison with monthly or seasonal adjustment. The total annual energy for completer year and for four seasons of the year was calculated and found that maximum total annual energy is obtained at optimum tilt angle.

Shahnawaz Farhan Khahro; Kavita Tabbassum; Shahnawaz Talpur; Mohammad Bux Alvi; Xiaozhong Liao; Lei Dong

2015-01-01T23:59:59.000Z

70

Irradiation Creep in Graphite  

SciTech Connect

An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

Ubic, Rick; Butt, Darryl; Windes, William

2014-03-13T23:59:59.000Z

71

Molecular Simulation of Fracture Dynamics of Symmetric Tilt Grain Boundaries in Graphene  

E-Print Network (OSTI)

Atomistic simulations were utilized to obtain microscopic information of the elongation process in graphene sheets consisting of various embedded symmetric tilt grain boundaries (GBs). In contrast to pristine graphene, these GBs fractured in an extraordinary pattern under transverse uniaxial elongation in all but the largest misorientation angle case, which exhibited intermittent crack propagation and formed many stringy residual connections after quasi mechanical failure. The strings known as monoatomic carbon chains (MACCs), whose importance was recently highlighted, gradually extended to a maximum of a few nanometers as the elongation proceeded. These features, which critically affect the tensile stress and the shape of stress-strain curve, were observed in both armchair and zigzag-oriented symmetric tilt GBs. However, there exist remarkable differences in the population density and the achievable length of MACCs appearing after quasi mechanical failure which were higher in the zigzag-oriented GBs. In addi...

Jhon, Young In; Smith, Robert; Jhon, Myung S

2012-01-01T23:59:59.000Z

72

Inversion of azimuthally dependent NMO velocity in transversely isotropic media with a tilted axis of symmetry  

SciTech Connect

Just as the transversely isotropic model with a vertical symmetry axis (VTI media) is typical for describing horizontally layered sediments, transverse isotropy with a tilted symmetry axis (TTI) describes dipping TI layers (such as tilted shale beds near salt domes) or crack systems. P-wave kinematic signatures in TTI media are controlled by the velocity V{sub PO} in the symmetry direction, Thomsen's anisotropic coefficients {xi} and {delta}, and the orientation (tilt {nu} and azimuth {beta}) of the symmetry axis. Here, the authors show that all five parameters can be obtained from azimuthally varying P-wave NMO velocities measured for two reflectors with different dips and/or azimuths (one of the reflectors can be horizontal). The shear-wave velocity V{sub SO} in the symmetry direction, which has negligible influence on P-wave kinematic signatures, can be found only from the moveout of shear waves. Using the exact NMO equation, the authors examine the propagation of errors in observed moveout velocities into estimated values of the anisotropic parameters and establish the necessary conditions for a stable inversion procedure. Since the azimuthal variation of the NMO velocity is elliptical, each reflection event provides them with up to three constraints on the model parameters. Generally, the five parameters responsible for P-wave velocity can be obtained from two P-wave ellipses, but the feasibility of the moveout inversion strongly depends on the tilt {nu}. While most of the analysis is carried out for a single layer, the authors also extend the inversion algorithm to vertically heterogeneous TTI media above a dipping reflector using the generalized Dix equation. A synthetic example for a strongly anisotropic, stratified TTI medium demonstrates a high accuracy of the inversion.

Grechka, V.; Tsvankin, I.

2000-02-01T23:59:59.000Z

73

Existence of the Wigner function with correct marginal distributions along tilted lines on a lattice  

E-Print Network (OSTI)

In order to determine the Wigner function uniquely, we introduce a new condition which ensures that the Wigner function has correct marginal distributions along tilted lines. For a system in $N$ dimensional Hilbert space, whose "phase space" is a lattice with $N^2$ sites, we get different results depending on whether $N$ is odd or even. Under the new condition, the Wigner function is determined if $N$ is an odd number, but it does not exist if $N$ is even.

Minoru Horibe; Akiyoshi Takami; Takaaki Hashimoto; Akihisa Hayashi

2001-08-10T23:59:59.000Z

74

South America Latitude Tilted SR Solar Model from INPE and LABSOLAR |  

Open Energy Info (EERE)

Latitude Tilted SR Solar Model from INPE and LABSOLAR Latitude Tilted SR Solar Model from INPE and LABSOLAR Dataset Summary Description (Abstract): Mean values of Latitude Tilted Solar Radiation in kWh/m2/day for 40km cells for 1 year (month, season, year) based on data from 1995 to 2005 (Purpose): To provide a set of consistent, reliable, verifiable, and accessible global data sets for international and in-country investors and other stakeholders (Supplemental Information): The BRASIL-SR model (developed by INPE - National Institute for Space Research) and the ARCVIEW software were used to produce the dataset and SHAPE files.The assessment of reliability levels of the BRASIL-SR model were performed through the evaluation of the deviations shown by the estimated values for solar radiation flux vis-Ă -vis the values measured at the surface (ground truth). This evaluation was done in two phases. The first phase consisted in an inter-comparison between the core radiation transfer models adopted by the SWERA Project to map the solar energy in the various countries participating in the project. The HELIOSAT model took part in this phase like benchmark due to its employment to map solar energy resources in countries from European Union. In the second phase, the solar flux estimates provided by the BRASIL-SR model were compared with measured values acquired at several solarimetric stations spread along the Brazilian territory. The BRASIL-SR model is not validated for areas covered by snow.

75

Design and construction of a novel quad tilt-wing UAV E. Cetinsoy, S. Dikyar, C. Hancer, K.T. Oner, E. Sirimoglu, M. Unel  

E-Print Network (OSTI)

Design and construction of a novel quad tilt-wing UAV E. Cetinsoy, S. Dikyar, C. Hancer, K.T. Oner 12 March 2012 Available online xxxx Keywords: UAV Quad tilt-wing Aerodynamic design Carbon composite VehIcle). SUAVI is an electric powered quad tilt-wing UAV that is capable of vertical takeoff

Ă?Â?nel, Mustafa

76

Investigation of failed fuel detection and location using a flux tilting method in a fast breeder reactor  

SciTech Connect

Detection and location of failed fuel in a liquid-metal fast breeder reactor (LMFBR) are very important both for safety and availability. When a fuel failure is detected, it is desirable to identify the failed subassembly quickly to reduce plant shutdown time. The flux tilting method is expected to effectively identify the defective subassembly. The feasibility of the flux tilting method is investigated for an LMFBR with a 100-MW (electric) homogeneous core. A numerical simulation is performed to estimate the viability of the flux tilting method, and a combination of the flux tilting method and the sipping method is found to be very effective in identifying the failed subassembly. In this paper a functional scheme for a computer-aided failed fuel detection and location system is discussed as part of a future on-line support system.

Hamada, M.; Uehara, K.; Muramatsu, K. (Japan Atomic Power Co., 1-6-1 Otemachi, Chiyoda-ku, Tokyo 100 (JP)); Kamei, T.; Tamaoki, T.; Yamaoka, M.; Sonada, Y.; Sano, Y. (Toshiba Corp., Nuclear Engineering Lab., 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210 (JP))

1992-04-01T23:59:59.000Z

77

Measured and Predicted Rotor-Pad Transfer Functions for a Rocker-Pivot Tilting-Pad Journal Bearing  

E-Print Network (OSTI)

Many researchers have compared predicted stiffness and damping coefficients for tilting-pad journal bearings (TPJBs) to measurements. Most have found that direct damping is consistently overpredicted. The thrust of this research is to explain...

Wilkes, Jason Christopher

2012-02-14T23:59:59.000Z

78

Real-time vibration measurement by a spatial phase-shifting technique with a tilted holographic interferogram  

Science Journals Connector (OSTI)

Real-time vibration measurement by a tilted holographic interferogram is presented that utilizes the real-time digital fringe processor of a video signal. Three intensity data sampled...

Nakadate, Suezou; Isshiki, Masaki

1997-01-01T23:59:59.000Z

79

Entanglement, avoided crossings, and quantum chaos in an Ising model with a tilted magnetic field  

SciTech Connect

We study a one-dimensional Ising model with a magnetic field and show that tilting the field induces a transition to quantum chaos. We explore the stationary states of this Hamiltonian to show the intimate connection between entanglement and avoided crossings. In general, entanglement gets exchanged between the states undergoing an avoided crossing with an overall enhancement of multipartite entanglement at the closest point of approach, simultaneously accompanied by diminishing two-body entanglement as measured by concurrence. We find that both for stationary as well as nonstationary states, nonintegrability leads to a destruction of two-body correlations and distributes entanglement more globally.

Karthik, J.; Sharma, Auditya; Lakshminarayan, Arul [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

2007-02-15T23:59:59.000Z

80

FLASH seminar -14/01/08 Eduard Prat, DESY Beam tilt studies at FLASH  

E-Print Network (OSTI)

generated different vertical bumps at BPM9ACC1. For each bump we measured: -Dispersion from ACC1 -Beam tilt.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 V1GUN (23-10-07) #BPM Orbitresponse[mm/mrad] 1mrad model 0 2 4 6 8 10 12 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 V3GUN (23-10-07) #BPM Orbitresponse[mm/mrad] 1mrad model 0 2 4 6

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

An experimental investigation of a tilt rotor aircraft wake in ground effect  

E-Print Network (OSTI)

: Sktlld dS t' 1, "~Et 18, 6 (1975), pp. 51-673. Hunt, J. C. R. , Poulton, E. C. , and Mumford, J. C. , "The Effects of Wldppl:Sd't*l Bd tldt lt*p*' t, "~Bi1di Environment, 11 (1976), pp. 15-28. 50 VITA gichael Louis Frey III was born January 4, 1957...EXPERIMENTAL INVESTIGATION OF A TILT ROTOR AIRCRAFT WAKE IN GROUND EFFECT A Thesis by MICHAEL LOUIS FREY III Submi. tted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER...

Frey, Michael Louis

1982-01-01T23:59:59.000Z

82

Solar heat gain coefficient of complex fenestrations with a venetian blind for differing slat tilt angles  

SciTech Connect

Measured bidirectional transmittances and reflectances of a buff-colored venetian blind together with a layer calculation scheme developed in previous publications are utilized to produce directional-hemispherical properties for the venetian blind layer and solar heat gain coefficients for the blind in combination with clear double glazing. Results are presented for three blind slat tilt angles and for the blind mounted either interior to the double glazing or between the glass panes. Implications of the results for solar heat gain calculations are discussed in the context of sun positions for St. Louis, MO.

Klems, J.H.; Warner, J.L.

1996-08-01T23:59:59.000Z

83

Heliostat tilt and azimuth angle charts and the heliostat orientation protractor  

SciTech Connect

This paper reports that using cartesian heliostat field coordinates analytical expressions were derived for the heliostat tilt angle s, and heliostat azimuth angle {gamma} (clockwise from south). These expressions are dependent on the field cartesian coordinates of the center of the heliostat and the solar zenith and azimuth angles (clockwise from south), {theta}{sub z} and {Psi}, respectively. Here, cylindrical coordinates are conveniently used to derive the expressions for the heliostat angles s and {gamma}. The expression of {gamma}is used to construct the so-called heliostat orientation protractor. The protractor is a useful tool to determine the instantaneous heliostat azimuth angle as will be illustrated.

Elsayed, M.M.; Al-Rabghi, O.M. (Thermal Energy Dept., King Abdulaziz Univ., Jeddah 21413 (SA))

1992-02-01T23:59:59.000Z

84

Irradiation Stability of Carbon Nanotubes  

E-Print Network (OSTI)

Ion irradiation of carbon nanotubes is a tool that can be used to achieve modification of the structure. Irradiation stability of carbon nanotubes was studied by ion and electron bombardment of the samples. Different ion species at various energies...

Aitkaliyeva, Assel

2010-01-14T23:59:59.000Z

85

Numerical study of tilt stability of prolate field-reversed configurations  

SciTech Connect

Global stability of the Field-Reversed Configuration (FRC) has been investigated numerically using both 3D MHD and hybrid (fluid electron and delta f particle ion) simulations. The stabilizing effects of velocity shear and large ion orbits on the n = 1 internal tilt mode in the prolate FRCs have been studied. Sheared rotation is found to reduce the growth rate, however a large rotation rate with Mach number of M greater than or approximately equal to 1 is required in order for significant reduction in the instability growth rate to occur. Kinetic effects associated with large thermal ion orbits have been studied for different kinetic equilibria. These simulations show that there is a reduction in the tilt mode growth rate due to finite ion Larmor radius (FLR) effects, but complete linear stability has not been found, even when the thermal ion gyroradius is comparable to the distance between the field null and the separatrix. The instability existing beyond the FLR theory threshold could be due to the resonant interaction of the wave with ions whose Doppler shifted frequency matches the betatron frequency.

E. V. Belova; S. C. Jardin; H. Ji, M. Yamada; R. Kulsrud

2000-06-21T23:59:59.000Z

86

Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study  

Science Journals Connector (OSTI)

The purpose of this article is to determine the tilt angle and azimuth for a photovoltaic panel in Ontario (Canada) at which revenue is maximised. Measured and modelled solar radiation data, simulated photovoltaic panel performance, hourly electricity market data and details regarding pricing regimes from 2003 to 2008 are used to study two different locations. In all instances, the desired tilt angle is slightly less than latitude (depending upon the particular pricing regime, between 36° and 38° for Ottawa, which is at a latitude of 45°N, and between 32° and 35° for Toronto, which is at a latitude of 44°N), and the desired azimuth is close to due south (depending upon the particular pricing regime, between 4° west of due south and 6° east of due south for Ottawa, and between 1° west of due south and 2° east of due south for Toronto). In conclusion, the importance of solar electricity – particularly valuable because of when it is produced and where it can be produced – is highlighted, as are future priorities for research.

Ian H. Rowlands; Briana Paige Kemery; Ian Beausoleil-Morrison

2011-01-01T23:59:59.000Z

87

Gamma Irradiation | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Gamma Irradiation Gamma Irradiation Gamma Irradiation Facility Gamma irradiation chamber Gamma irradiation chamber. The HFIR Gamma Irradiation Facility is an experimental facility designed to irradiate materials with gamma radiation from spent fuel elements. The facility chamber is stainless steel and is made of 0.065-thick tubing to maximize the internal dimensions of the chamber. This allows for the largest samples possible that can still fit inside the cadmium post of the spent fuel loading station positions. The interior chamber is approximately 3.75 inches inside diameter and accommodates samples up to 25 inches long. There are two configurations for the chamber assembly, with the only difference being the plugs. The uninstrumented configuration has a top plug that is used for installation of the samples, to support the inert gas

88

Solar: monthly and annual average latitude tilt GIS data at 40km resolution  

Open Energy Info (EERE)

Ghana from NREL Ghana from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude for Ghana. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to

89

Brazil Latitude Tilted Solar Radiation Model (40km) from INPE and LABSOLAR  

Open Energy Info (EERE)

40km) from INPE and LABSOLAR 40km) from INPE and LABSOLAR Dataset Summary Description (Abstract): Latitude tilted solar radiation in kWh/m2/day for 1 year organized into cells with 40km x 40km (Purpose): To provide a set of consistent, reliable, verifiable, and accessible global data sets for international and in-country investors and other stakeholders (Supplemental Information): The BRASIL-SR model and the SPRING software (both developed by INPE - National Institute for Space Research) were used to produce the dataset and SHAPE files.The assessment of reliability levels of the BRASIL-SR model were performed through the evaluation of the deviations shown by the estimated values for solar radiation flux vis-Ă -vis the values measured at the surface (ground truth). This evaluation was done in two phases. The first phase

90

Solar: monthly and annual average latitude tilt GIS data at 40km resolution  

Open Energy Info (EERE)

Mexico, Central America, and the Caribbean Islands from NREL Mexico, Central America, and the Caribbean Islands from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude, for Mexico, Central America, and the Caribbean Islands. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The

91

Tilt and shift mode stability in a spheromak with a flux core  

Science Journals Connector (OSTI)

The stability of spheromak equilibria with a flux core or reversal coil is studied by means of an ideal magnetohydrodynamic (MHD) code. Results depend critically upon whether the flux hole region (the current free area just inside the separatrix) is treated as a perfectly conducting plasma or as a vacuum. This indicates that the tilt and shift modes persist as resistive instabilities if they are stable in ideal MHD. Specifically for nonoptimally shaped equilibria the flux core must nearly touch the current channel if the flux hole is a vacuum whereas the core may be slightly outside the separatrix if the flux hole has conducting plasma. A larger margin exists for optimally shaped equilibria.

John M. Finn

1984-01-01T23:59:59.000Z

92

Rotordynamic coefficients for a load-between-pad, flexible-pivot tilting pad bearing at high loads  

E-Print Network (OSTI)

The dynamic and static performance of a flexure-pivot tilting pad bearing is presented at a load between pad configuration for various load and speed combinations. A similar work performed on the same bearing at lower loads ranging from 0-1 MPa (0...

Hensley, John Eric

2006-10-30T23:59:59.000Z

93

Atomic structure of the {sigma}5 (210)/[001] symmetric tilt grain boundary in yttrium aluminum garnet  

SciTech Connect

The {Sigma}5(210)/[100] symmetric tilt grain boundary in YAG was produced by UHV diffusion bonding precisely oriented single crystals. The boundary has been characterized by HREM along two different directions, parallel and perpendicular to the tilt axis. Models of the atomic structure of the boundary were formed following the Coincident Site Lattice scheme. The resulting models are equivalent to twins formed at the atomic scale. The high resolution images show no rigid crystal translations away from the perfect mirror reflection relation. Comparison of the simulated images using the atomic model as input with the experimental images identifies the plane of mirror symmetry. The atomic model is shown to be in good agreement with the experimental images when viewed parallel to tilt axis, but disagrees with the images perpendicular to tilt axis. Agreement between simulated and experimental images can be improved by changing the composition of the grain boundary with respect to the bulk. To reach a more certain conclusion on the structure of the grain boundary will require additional theoretical calculations.

Campbell, G.H.; King, W.E.

1996-06-24T23:59:59.000Z

94

First Flight Tests for a Quadrotor UAV with Tilting Propellers Markus Ryll, Heinrich H. Bulthoff, and Paolo Robuffo Giordano  

E-Print Network (OSTI)

First Flight Tests for a Quadrotor UAV with Tilting Propellers Markus Ryll, Heinrich H. B¨ulthoff, and Paolo Robuffo Giordano Abstract-- In this work we present a novel concept of a quadrotor UAV show the capabilities of this new UAV concept. I. INTRODUCTION Common UAVs (Unmanned Aerial Vehicles

Paris-Sud XI, Université de

95

6I).-TIEE TENCII RECORUITlENDED P O R CULTIIVATION I N SWEDEN. ]By FIEIY TILtYICLQRI.  

E-Print Network (OSTI)

6I).-TIEE TENCII RECORUITlENDED P O R CULTIIVATION I N SWEDEN. ]By FIEIY TILtYICLQRI. In Sweden \\vu pounds]. I n Sweden, when 'in suitable waters, like thoso in the northern part of the province of Snitlland, it reaches e weight of 6: or more pounds. I do not lrxiow how fast it grows in Sweden in a free

96

FlIGHT PATH FOLLOWING GUIDANCE FOR UNMANNED AIR VEHICLES WITH PAN-TILT CAMERA FOR TARGET OBSERVATION  

E-Print Network (OSTI)

Autonomous Vehicle (UAV) is equipped with a nose-mounted camera capable of pan and tilt rotation is affected by wind. Furthermore, the relative position of the sun can lead to glare and image overexposure. While the effect of wind can be improved by commanding a sideslip angle, image overexposure is avoided

Washington at Seattle, University of

97

Cone-beam mammo-computed tomography from data along two tilting arcs Hengyong Yu,b  

E-Print Network (OSTI)

Cone-beam mammo-computed tomography from data along two tilting arcs Kai Zeng,a Hengyong Yu . To address this problem, x-ray tomosynthesis and cone-beam computed tomography CT are two compelling from a limited num- ber of projections.4 Since its introduction in 1972, the area of tomosynthesis has

Virginia Tech

98

Solar: monthly and annual average latitude tilt GIS data at 40km resolution  

Open Energy Info (EERE)

China from NREL China from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude for China. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. Existing ground measurement stations

99

Magnetic particles confined in a modulated channel: structural transitions tunable by tilting a magnetic field  

E-Print Network (OSTI)

The ground state of colloidal magnetic particles in a modulated channel are investigated as function of the tilt angle of an applied magnetic field. The particles are confined by a parabolic potential in the transversal direction while in the axial direction a periodic substrate potential is present. By using Monte Carlo (MC) simulations, we construct a phase diagram for the different crystal structures as a function of the magnetic field orientation, strength of the modulated potential and the commensurability factor of the system. Interestingly, we found first and second order phase transitions between different crystal structures, which can be manipulated by the orientation of the external magnetic field. A re-entrant behavior is found between two- and four-chain configurations, with continuous second order transitions. Novel configurations are found consisting of frozen in solitons. By changing the orientation and/or strength of the magnetic field and/or the strength and the spatial frequency of the periodic substrate potential, the system transits through different phases.

J. E. Galván-Moya; D. Lucena; W. P. Ferreira; F. M. Peeters

2014-01-03T23:59:59.000Z

100

Test Problem: Tilted Rayleigh-Taylor for 2-D Mixing Studies  

SciTech Connect

The 'tilted-rig' test problem originates from a series of experiments (Smeeton & Youngs, 1987, Youngs, 1989) performed at AWE in the late 1980's, that followed from the 'rocket-rig' experiments (Burrows et al., 1984; Read & Youngs, 1983), and exploratory experiments performed at Imperial College (Andrews, 1986; Andrews and Spalding, 1990). A schematic of the experiment is shown in Figure 1, and comprises a tank filled with light fluid above heavy, and then 'tilted' on one side of the apparatus, thus causing an 'angled interface' to the acceleration history due to rockets. Details of the configuration given in the next chapter include: fluids, dimensions, and other necessary details to simulate the experiment. Figure 2 shows results from two experiments, Case 110 (which is the source for this test problem) that has an Atwood number of 0.5, and Case 115 (a secondary source described in Appendix B), with Atwood of 0.9 Inspection of the photograph in Figure 2 (the main experimental diagnostic) for Case 110. reveals two main areas for mix development; 1) a large-scale overturning motion that produces a rising plume (spike) on the left, and falling plume (bubble) on the right, that are almost symmetric; and 2) a Rayleigh-Taylor driven mixing central mixing region that has a large-scale rotation associated with the rising and falling plumes, and also experiences lateral strain due to stretching of the interface by the plumes, and shear across the interface due to upper fluid moving downward and to the right, and lower fluid moving upward and to the left. Case 115 is similar but differs by a much larger Atwood of 0.9 that drives a strong asymmetry between a left side heavy spike penetration and a right side light bubble penetration. Case 110 is chosen as the source for the present test problem as the fluids have low surface tension (unlike Case 115) due the addition of a surfactant, the asymmetry small (no need to have fine grids for the spike), and there is extensive reasonable quality photographic data. The photographs in Figure 2 also reveal the appearance of a boundary layer at the left and right walls; this boundary layer has not been included in the test problem as preliminary calculations suggested it had a negligible effect on plume penetration and RT mixing. The significance of this test problem is that, unlike planar RT experiments such as the Rocket-Rig (Youngs, 1984), Linear Electric Motor - LEM (Dimonte, 1990), or the Water Tunnel (Andrews, 1992), the Tilted-Rig is a unique two-dimensional RT mixing experiment that has experimental data and now (in this TP) Direct Numerical Simulation data from Livescu and Wei. The availability of DNS data for the tilted-rig has made this TP viable as it provides detailed results for comparison purposes. The purpose of the test problem is to provide 3D simulation results, validated by comparison with experiment, which can be used for the development and validation of 2D RANS models. When such models are applied to 2D flows, various physics issues are raised such as double counting, combined buoyancy and shear, and 2-D strain, which have not yet been adequately addressed. The current objective of the test problem is to compare key results, which are needed for RANS model validation, obtained from high-Reynolds number DNS, high-resolution ILES or LES with explicit sub-grid-scale models. The experiment is incompressible and so is directly suitable for algorithms that are designed for incompressible flows (e.g. pressure correction algorithms with multi-grid); however, we have extended the TP so that compressible algorithms, run at low Mach number, may also be used if careful consideration is given to initial pressure fields. Thus, this TP serves as a useful tool for incompressible and compressible simulation codes, and mathematical models. In the remainder of this TP we provide a detailed specification; the next section provides the underlying assumptions for the TP, fluids, geometry details, boundary conditions (and alternative set-ups), initial conditions, and acceleration history (an

Andrews, Malcolm J. [Los Alamos National Laboratory; Livescu, Daniel [Los Alamos National Laboratory; Youngs, David L. [AWE

2012-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Recording and interpretation/analysis of tilt signals with five ASKANIA borehole tiltmeters at the KTB  

Science Journals Connector (OSTI)

In June 2003 a large scale injection experiment started at the Continental Deep Drilling site (KTB) in Germany. A tiltmeter array was installed which consisted of five high resolution borehole tiltmeters of the ASKANIA type also equipped with three dimensional seismometers. For the next 11 months 86 000 m 3 were injected into the KTB pilot borehole 4000 m deep. The average injection rate was approximately 200 l ? min . The research objective was to observe and to analyzedeformation caused by the injection into the upper crust at the kilometer range. A new data acquisition system was developed by Geo-Research Center Potsdam (GFZ) to master the expected huge amount of seismic and tilt data. Furthermore it was necessary to develop a new preprocessing software called PREANALYSE for long-period time series. This software includes different useful functions such as step and spike correction interpolation filtering and spectral analysis. This worldwide unique installation offers the excellent opportunity of the separation of signals due to injection and due to environment by correlation of the data of the five stations with the ground water table and meteorological data.

André Gebauer; Thomas Jahr; Gerhard Jentzsch

2007-01-01T23:59:59.000Z

102

Brazil Latitude Tilted Solar Radiation Model (10km) from INPE and LABSOLAR  

Open Energy Info (EERE)

10km) from INPE and LABSOLAR 10km) from INPE and LABSOLAR Dataset Summary Description (Abstract): Latitude tilted solar radiation in kWh/m2/day for 1 year organized into cells with 10km x 10km (Purpose): The BRASIL-SR model and the SPRING software (both developed by INPE -National Institute for Space Research) were used to produce the dataset and SHAPE files (Supplemental Information): The assessment of reliability levels of the BRASIL-SR model were performed through the evaluation of the deviations shown by the estimated values for solar radiation flux vis-Ă -vis the values measured at the surface (ground truth). This evaluation was done in two phases. The first phase consisted in an inter-comparison between the core radiation transfer models adopted by the SWERA Project to map the solar energy in the various countries participating in the project. The HELIOSAT model took part in this phase like benchmark due to its employment to map solar energy resources incountries from European Union. In the second phase, the solar flux estimates providedby the BRASIL-SR model were compared with measured values acquired at several solarimetric stations spread along the Brazilian territory

103

Low temperature irradiation tests on  

E-Print Network (OSTI)

discharge machining in KEK Keep defects by cold-work Size: 1mmx1mmx70mm Voltage taps with 45mm spacing 4 irradiated) Wire EDM Irradiation sample · 5N aluminum + Cu, Mg with 10 % cold work · RRR=450 ·1.35m@RT, 3 @10

McDonald, Kirk

104

Definition: Irradiance | Open Energy Information  

Open Energy Info (EERE)

Irradiance Irradiance Jump to: navigation, search Dictionary.png Irradiance The direct, diffuse, and reflected solar radiation that strikes a surface. Usually expressed in kilowatts per square meter. Irradiance multiplied by time equals insolation.[1] View on Wikipedia Wikipedia Definition Irradiance is the power of electromagnetic radiation per unit area incident on a surface. Radiant emittance or radiant exitance is the power per unit area radiated by a surface. The SI units for all of these quantities are watts per square meter (W/m), while the cgs units are ergs per square centimeter per second (erg·cm·s, often used in astronomy). These quantities are sometimes called intensity, but this usage leads to confusion with radiant intensity, which has different units. All of these

105

Effects of head-up tilt on mean arterial pressure, heart rate, and regional cardiac output distribution in aging rats  

E-Print Network (OSTI)

Approved by: Chair of Committee, Michael Delp Committee Members, Robert Armstrong Judy Muller-Delp Janet r Head of Department, Steve M. Dorman December 2005 Major Subject: Kinesiology iii ABSTRACT Effects of Head-up Tilt... Armstrong, and Dr. Janet Parker for their patience, guidance, and support thoughout the course of this research. vi TABLE OF CONTENTS Page ABSTRACT????????????????????????.. iii ACKNOWLEDGEMENTS??????????????????.. v TABLE OF CONTENTS...

Ramsey, Michael Wiechmann

2006-04-12T23:59:59.000Z

106

Static characteristics and rotordynamic coefficients of a four-pad tilting-pad journal bearing with ball-in-socket pivots in load-between-pad configuration  

E-Print Network (OSTI)

Static characteristics and rotordynamic coefficients were experimentally determined for a four-pad tilting-pad journal bearing with ball-in-socket pivots in loadbetween- pad configuration. A frequency-independent [M]-[C]-[K] model fit...

Harris, Joel Mark

2009-05-15T23:59:59.000Z

107

Theoretical considerations of static and dynamic characteristics of air foil thrust bearing with tilt and slip flow  

Science Journals Connector (OSTI)

The thrust pad of the rotor is used to sustain the axial force generated due to the pressure difference between the compressor and turbine sides of turbomachinery such as gas turbines, compressors, and turbochargers. Furthermore, this thrust pad has a role to maintain and determines the attitude of the rotor. In a real system, it also helps reinforce the stiffness and damping of the journal bearing. This study was performed for the purpose of analyzing the characteristics of the air foil thrust bearing. The model for the air foil thrust bearing used in this study is composed of two parts: one is an inclined plane, which plays a role in increasing the load carrying capacity using the physical wedge effect, and the other is a flat plane. This study mainly consists of three parts. First, the static characteristics were obtained over the region of the thin air film using the finite-difference method (FDM) and the bump foil characteristics using the finite-element method (FEM). Second, the analysis of the dynamic characteristics was conducted by perturbation method. For more exact calculation, the rarefaction gas coefficients perturbed about the pressure and film thickness were taken into consideration. At last, the static and dynamic characteristics of the tilting condition of the thrust pad were obtained. Furthermore, the load carrying capacity and torque were calculated for both tilting and nontilting conditions. From this study, several results were presented: (1) the stiffness and damping of the bump foil under the condition of the various bump parameters, (2) the load carrying capacity and bearing torque at the tilting state, (3) the bearing performance for various bearing parameters, and (4) the effects considering the rarefaction gas coefficients.

Dong-Jin Park; Chang-Ho Kim; Gun-Hee Jang; Yong-Bok Lee

2008-01-01T23:59:59.000Z

108

Tilting for perfusion: Head-up position during cardiopulmonary resuscitation improves brain flow in a porcine model of cardiac arrest  

Science Journals Connector (OSTI)

AbstractIntroduction Cerebral perfusion is compromised during cardiopulmonary resuscitation (CPR). We hypothesized that beneficial effects of gravity on the venous circulation during CPR performed in the head-up tilt (HUT) position would improve cerebral perfusion compared with supine or head-down tilt (HDT). Methods Twenty-two pigs were sedated, intubated, anesthetized, paralyzed and placed on a tilt table. After 6 min of untreated ventricular fibrillation (VF) CPR was performed on 14 pigs for 3 min with an automated CPR device called LUCAS (L) plus an impedance threshold device (ITD), followed by 5 min of L-CPR + ITD at 0° supine, 5 min at 30° HUT, and then 5 min at 30° HDT. Microspheres were used to measure organ blood flow in 8 pigs. L-CPR + ITD was performed on 8 additional pigs at 0°, 20°, 30°, 40°, and 50° HUT. Results Coronary perfusion pressure was 19 ± 2 mmHg at 0° vs. 30 ± 3 at 30° HUT (p Brain–blood flow was 0.19 ± 0.04 ml min?1 g?1 at 0° vs. 0.27 ± 0.04 at 30° HUT (p = 0.01) and 0.14 ± 0.06 at 30° HDT (p = 0.16). Heart blood flow was not significantly different between interventions. With 0, 10, 20, 30, 40 and 50° HUT, ICP values were 21 ± 2, 16 ± 2, 10 ± 2, 5 ± 2, 0 ± 2, ?5 ± 2 respectively, (p brain flow whereas HUT significantly lowered ICP and improved cerebral perfusion. Further studies are warranted to explore this new resuscitation concept.

Guillaume Debaty; Sang Do Shin; Anja Metzger; Taeyun Kim; Hyun Ho Ryu; Jennifer Rees; Scott McKnite; Timothy Matsuura; Michael Lick; Demetris Yannopoulos; Keith Lurie

2014-01-01T23:59:59.000Z

109

Low energy electron irradiation of an apple  

E-Print Network (OSTI)

The viability of pathogenic organisms on the surface of fresh fruits and vegetables can be significantly reduced by low energy electron beam irradiation. The most difficult technical challenge for surface irradiation of fruits and vegetable...

Brescia, Giovanni Batista

2002-01-01T23:59:59.000Z

110

Load Tilt and Body Tilt at Bidston  

Science Journals Connector (OSTI)

......to Tidal Load,Memoirs of the Imperial Marine Observatory, 1, No. 1, 1922 June...that the possibilities of error due to wear in the cone and cup should be made known...1932 September. Memoirs of the Imperial Marine Observatory, I, No. I, 1922June. the......

A. T. Doodson; R. H. Corkan

1934-05-01T23:59:59.000Z

111

3, 895959, 2006 Irradiance and  

E-Print Network (OSTI)

and corals. However, the contribution of benthic communities to the primary production of the global coastal energy source fueling marine primary prBGD 3, 895­959, 2006 Irradiance and primary production in the coastal ocean J.-P. Gattuso et al

Paris-Sud XI, Université de

112

Irradiation-induced phenomena in carbon  

E-Print Network (OSTI)

Chapter 1 Irradiation-induced phenomena in carbon nanotubes To appear in "Chemistry of Carbon@acclab.helsinki.fi 1 #12;2CHAPTER 1. IRRADIATION-INDUCED PHENOMENA IN CARBON NANOTUBES #12;Contents 1 Irradiation-induced phenomena in carbon nanotubes 1 1.1 Introduction

Krasheninnikov, Arkady V.

113

Transition from Irradiation-Induced Amorphization to Crystallization...  

NLE Websites -- All DOE Office Websites (Extended Search)

from Irradiation-Induced Amorphization to Crystallization in Nanocrystalline Silicon Carbide. Transition from Irradiation-Induced Amorphization to Crystallization in...

114

Study of the interaction of solutes with ?5 (013) tilt grain boundaries in iron using density-functional theory  

SciTech Connect

Substitutional alloying elements significantly affect the recrystallization and austenite-ferrite phase transformation rates in steels. The atomistic mechanisms of their interaction with the interfaces are still largely unexplored. Using density functional theory, we determine the segregation energies between commonly used alloying elements and the ?5 (013) tilt grain boundary in bcc iron. We find a strong solute-grain boundary interaction for Nb, Mo, and Ti that is consistent with experimental observations of the effects of these alloying elements on delaying recrystallization and the austenite-to-ferrite transformation in low-carbon steels. In addition, we compute the solute-solute interactions as a function of solute pair distance in the grain boundary, which suggest co-segregation for these large solutes at intermediate distances in striking contrast to the bulk.

Jin, Hao; Militzer, Matthias [Centre for Metallurgical Process Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada); Elfimov, Ilya [Quantum Matter Institute, The University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada)

2014-03-07T23:59:59.000Z

115

A self-consistent regime of generation of terahertz radiation by an optical pulse with a tilted intensity front  

SciTech Connect

We derived a self-consistent system of nonlinear wave equations describing the terahertz generation in dielectric uniaxial crystals by optical pulsed radiation with a tilted wavefront. The numerical analysis of the system of equations showed that the generation of a broadband one-period terahertz signal is accompanied by a red shift of the carrier frequency of the optical pulse, the magnitude of the shift being proportional to the pulse intensity. The generation efficiency with respect to energy reached a maximum at a certain distance of propagation in the crystal, after which the efficiency decreased. A satisfactory agreement was obtained between theoretical calculations and experimental data of other investigations. (generation of terahertz radiation)

Bugai, A N; Sazonov, S V; Shashkov, Andrei Yu

2012-11-30T23:59:59.000Z

116

An isoviscous, isothermal model investigating the influence of hydrostatic recesses on a spring-supported tilting pad thrust bearing  

Science Journals Connector (OSTI)

Tilting-pad hydrodynamic thrust bearings are used in hydroelectric power stations around the world, reliably supporting turbines weighing hundreds of tonnes, over decades of service. Newer designs incorporate hydrostatic recesses machined into the sector-shaped pads.With the aid of external oil pressurisation at low rotational speeds, oil film thickness is increased, thereby reducing friction and wear to the benefit of service life and reliability. It follows that older generating plants, lacking such assistance, stand to benefit from being retrofitted with hydrostatic lubrication systems. The design process is not trivial however – the need to increase the groove area to permit spontaneous lifting of the turbine under hydrostatic operation conflicts with the need to preserve performance of the original plane pad design. A haphazardly designed recess can change the pressure distribution of the oil film in such a way as to tilt the pad away from its optimum position. This may lead to reduced oil film thickness and increased temperature, which is concomitant with reduced mechanical efficiency and increased risk of damage to the bearing surfaces. It is therefore, inadvisable to ignore the presence of grooves in simulations. In this work, a numerical study of a sector-shaped pad is undertaken to understand how recess size and shape can affect the performance of a typical bearing. An isoviscous, isothermal model has been used in this instance because the operating conditions of the turbine in question were shown not to be severe enough to warrant the computational expense of a fully coupled thermoelastic hydrodynamic model.

Dennis V. De Pellegrin; Douglas J. Hargreaves

2012-01-01T23:59:59.000Z

117

RERTR-13 Irradiation Summary Report  

SciTech Connect

The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-13 was designed to assess performance of different types of neutron absorbers that can be potentially used as burnable poisons in the low enriched uranium-molybdenum based dispersion and monolithic fuels.1 The following report summarizes the life of the RERTR-13 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

D. M. Perez; M. A. Lillo; G. S. Chang; D. M. Wachs; G. A. Roth; N. E. Woolstenhulme

2012-09-01T23:59:59.000Z

118

RERTR-6 Irradiation Summary Report  

SciTech Connect

The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-6 was designed to evaluate several modified fuel designs that were proposed to address the possibility of breakaway swelling due to porosity within the (U. Mo) Al interaction product observed in the full-size plate tests performed in Russia and France1. The following report summarizes the life of the RERTR-6 experiment through end of irradiation, including as-run neutronic analyses, thermal analyses and hydraulic testing results.

D. M. Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

2011-12-01T23:59:59.000Z

119

Definition: Direct normal irradiance | Open Energy Information  

Open Energy Info (EERE)

normal irradiance normal irradiance (Redirected from Definition:DNI) Jump to: navigation, search Dictionary.png Direct normal irradiance the amount of solar radiation received per unit area by a surface perpendicular (normal) to the rays that come in a straight line from the direction of the sun at its current position in the sky.[1] Also Known As DNI Related Terms Solar radiation, Irradiance, Concentrating solar power, Global horizontal irradiance References ↑ http://www.3tier.com/en/support/glossary/#dni Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Direct_normal_irradiance&oldid=423379" Category: Definitions What links here Related changes Special pages Printable version Permanent link

120

Sandia National Laboratories: Research: Facilities: Gamma Irradiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Gamma Irradiation Facility Gamma Irradiation Facility Photo of Gamma Irradiation Facility The Gamma Irradiation Facility (GIF) provides high-fidelity simulation of nuclear radiation environments for materials and component testing. The low-dose irradiation facility also offers an environment for long-duration testing of materials and electronic components. Such testing may take place over a number of months or even years. Research and other activities The single-structure GIF can house a wide variety of gamma irradiation experiments with various test configurations and at different dose and dose rate levels. Radiation fields at the GIF are produced by high-intensity gamma-ray sources. To induce ionizing radiation effects and damage in test objects, the objects are subjected to high-energy photons from gamma-source

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Irradiation preservation of seafood: Literature review  

SciTech Connect

The application of gamma-irradiation for extending the shelf life of seafood has been of interest for many years. This report reviews a number of studies on seafood irradiation conducted over the past several years. Topics covered include seafood irradiation techniques and dosages, species applicability and differences, the effects of packaging on seafood preservation, and changes in organoleptic acceptability as a result of irradiation. Particular attention is given to radiation effects (likely and unlikely) of concern to the public. These include the potential for generation of toxic chemical products, botulinum toxin production, and other health concerns. No scientifically defensible evidence of any kind was found for any harmful effect of irradiation of seafoods at the doses being considered (less than 300 krad), and all indications are that irradiation is an acceptable and needed additional tool for seafood preservation. 49 refs., 14 figs., 14 tabs.

Molton, P.M.

1987-10-01T23:59:59.000Z

122

EPR Investigation of Irradiated Curry Powder  

SciTech Connect

Gamma-ray irradiated curry powder, a well priced oriental spice was investigated in order to establish the ability of EPR to detect the presence and time stability of free irradiation free-radicals. Accordingly, curry powder aliquots were irradiated with gradually increasing absorbed doses up to 11.3 kGy. The EPR spectra of all irradiated samples show the presence of al last two different species of free radicals, whose concentration increased monotonously with the absorbed doses. A 100 deg. C isothermal annealing of irradiated samples has shown a differential reduction of amplitude of various components of the initial spectra, but even after 3.6 h of thermal treatment, the remaining amplitude represents no less then 30% of the initial ones. The same peculiarities have been noticed after more than one year storage at room temperature, all of them being very useful in establishing the existence of any previous irradiation treatment.

Duliu, O. G.; Ali, S. I. [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125 Bucharest (Romania); Georgescu, R. [National Institute for Physics and Nuclear Engineering-Horia Hulubei, P.O. Box MG-6, 077125 Bucharest (Romania)

2007-04-23T23:59:59.000Z

123

Safety Assurance for ATR Irradiations  

SciTech Connect

The Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL) is the world’s premiere test reactor for performing high fluence, large volume, irradiation test programs. The ATR has many capabilities and a wide variety of tests are performed in this truly one of a kind reactor, including isotope production, simple self-contained static capsule experiments, instrumented/controlled experiments, and loop testing under pressurized water conditions. Along with the five pressurized water loops, ATR may also have gas (temperature controlled) lead experiments, fuel boosted fast flux experiments, and static sealed capsules all in the core at the same time. In addition, any or all of these tests may contain fuel or moderating materials that can affect reactivity levels in the ATR core. Therefore the safety analyses required to ensure safe operation of each experiment as well as the reactor itself are complex. Each test has to be evaluated against stringent reactor control safety criteria, as well as the effects it could have on adjacent tests and the reactor as well as the consequences of those effects. The safety analyses of each experiment are summarized in a document entitled the Experiment Safety Assurance Package (ESAP). The ESAP references and employs the results of the reactor physics, thermal, hydraulic, stress, seismic, vibration, and all other analyses necessary to ensure the experiment can be irradiated safely in the ATR. The requirements for reactivity worth, chemistry compatibilities, pressure limitations, material issues, etc. are all specified in the Technical Safety Requirements and the Upgraded Final Safety Analysis Report (UFSAR) for the ATR. This paper discusses the ESAP process, types of analyses, types of safety requirements and the approvals necessary to ensure an experiment can be safely irradiated in the ATR.

S. Blaine Grover

2006-10-01T23:59:59.000Z

124

Fracture of irradiated zircaloy-2  

Science Journals Connector (OSTI)

This paper summarizes the results of a series of investigations to evaluate the fracture behavior of Zircaloy-2 as influenced by BWR and PWR conditions. The results show that the response of the fracture toughness of Zircaloy-2 to various combinations of cold work, hydrogen content and neutron fluence in hot pressurized water is characterized by embrittlement to a point where saturation in the fracture toughness is attained. Further in-reactor exposure beyond this saturation point appears to have no effect on toughness although other mechanical properties such as flow stress continue to change. In addition, anisotropy in the toughness of rolled plate material, evident in the unirradiated condition, is retained during in-reactor exposure and after increases in hydrogen content. Several processes are thought to be contributing to the toughness of Zircaloy-2 during irradiation. The reduction in toughness at low exposures must result from defect interactions with the deformation modes and the formation of the brittle hydride phase. However, the occurrence of saturation is not explained by these mechanisms in view of data on other mechanical properties and corrosion rates. It is suggested that the difference in the conditions for initiation of slip and twinning would indicate that the twinning component of deformation is not reduced by irradiation damage as much as the slip component. Saturation is, therefore, interprétable on the basis that twinning plays a major role in the crack tip plastic zone after irradiation. Additional study of the importance of twinning in determining the toughness of Zircaloy-2 was attempted by examining the relationship between texture and the anisotropy in fracture toughness. A correlation is shown to exist between the crack tip shear stresses resolved on the 1121 twin system and the toughness anisotropy.

R.G. Hoagland; R.G. Rowe

1969-01-01T23:59:59.000Z

125

Phytoplankton photosynthetic response to solar ultraviolet irradiance ...  

Science Journals Connector (OSTI)

Phytoplankton photosynthetic response to solar ultraviolet irradiance in the Ross Sea Polynya: Development and evaluation of a time-dependent model with ...

126

ARM - Measurement - Shortwave narrowband direct normal irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement : Shortwave narrowband direct normal irradiance The rate at which radiant energy in narrow bands of wavelengths shorter than approximately 4mum, that comes directly...

127

Sodium and potassium levels in the serum of acutely irradiated and non-irradiated rats  

E-Print Network (OSTI)

SODIUM AND POTASSIUM LEVELS IN THE SERUM OF ACUTELY IRRADIATED AND NON-IRRADIATED RATS A Thesis By DAVID PRESTON SHEPHERD Submitted to the Graduate College of the Texas ARM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1967 Major Subject: Zoology SODIUM AND POTASSIUM LEVELS IN THE SERUM OF ACUTELY IRRADIATED AND NON-IRRADIATED RATS A Thesis By DAVID PRESTON SHEPHERD Approved as to style and content by: (Chairman of Committee) (Head...

Shepherd, David Preston

2012-06-07T23:59:59.000Z

128

Measurements Versus Predictions for the Static and Dynamic Characteristics of a Four-pad Rocker-pivot, Tilting-pad Journal Bearing  

E-Print Network (OSTI)

Measured and predicted static and dynamic characteristics are provided for a four-pad, rocker-pivot, tilting-pad journal bearing in the load-on-pad and load-between-pad orientations. The bearing has the following characteristics: 4 pads, .57 pad...

Tschoepe, David 1987-

2012-08-16T23:59:59.000Z

129

Abstract--We propose a compact tip-reflection fiber-optic vibration sensing system that uses a lateral-offset tilted fiber  

E-Print Network (OSTI)

a lateral-offset tilted fiber grating (TFBG) as sensor head and a vertical-cavity surface-emitting laser the coupling of light from the forward propagating core mode to backward propagating cladding modes and reduces cladding mode resonances appear. Since the response of core mode to external perturbations (temperature

Wai, Ping-kong Alexander

130

Measured and predicted rotordynamic coefficients and static performance of a rocker-pivot, tilt pad bearing in load-on-pad and load-between-pad configurations  

E-Print Network (OSTI)

This thesis presents the static and dynamic performance data for a 5 pad tilting pad bearing in both the load-on-pad (LOP) and the load-between-pad (LBP) configurations over a variety of different loads and speeds. The bearing tested was an Orion...

Carter, Clint Ryan

2009-06-02T23:59:59.000Z

131

Nuclear Engineering Division Irradiated Materials Laboratory  

E-Print Network (OSTI)

Nuclear Engineering Division Irradiated Materials Laboratory The Irradiated Materials Laboratory (IML) in Argonne's Nuclear Engineering Division is used to conduct research on the behavior. #12;C O N TA C T > Dr. Michael C. Billone | 630-252-7146 | billone@anl.gov | Nuclear Engineering

Kemner, Ken

132

Irradiation Performance - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Testing > Materials Testing > Irradiation Performance Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Irradiated Materials Overview Light Water Reactor Materials Other Current Activities Future Directions Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Irradiation Performance Bookmark and Share The activities of the Irradiation Performance Section (IPS) are aimed at determining and assessing normal-operation and accident behavior of neutron-irradiated material throughout the life cycle of the materials. The conditions of interest are normal in-reactor operation, design-basis accidents, intermediate storage in pools and dry casks, and ultimate

133

Tilt Meters Being Installed  

Science Journals Connector (OSTI)

...excep- tion the fundamental requirement that...interior- wall of boiler-room. This...the buildings safe for operation and providing...amperes for normal operation. A Laon tube...0.1, the fundamental REPORTS AND PAPERS...

134

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities...

135

Irradiation-induced defect clustering and amorphization in silicon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation-induced defect clustering and amorphization in silicon carbide. Irradiation-induced defect clustering and amorphization in silicon carbide. Abstract: Previous computer...

136

Center for Materials at Irradiation and Mechanical Extremes:...  

NLE Websites -- All DOE Office Websites (Extended Search)

EFRC Research Teams Irradiation Extremes and Mechanical Extremes are the two thrusts of CMIME. Currently, each thrust has two research teams. The Irradiation Extremes Thrust teams...

137

Lattice Distortions and Oxygen Vacancies Produced in Au+-Irradiated...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lattice Distortions and Oxygen Vacancies Produced in Au+-Irradiated Nanocrystalline Cubic Zirconia. Lattice Distortions and Oxygen Vacancies Produced in Au+-Irradiated...

138

RERTR-7 Irradiation Summary Report  

SciTech Connect

The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-7A, was designed to test several modified fuel designs to target fission densities representative of a peak low enriched uranium (LEU) burnup in excess of 90% U-235 at peak experiment power sufficient to generate a peak surface heat flux of approximately 300 W/cm2. The RERTR-7B experiment was designed as a high power test of 'second generation' dispersion fuels at peak experiment power sufficient to generate a surface heat flux on the order of 230 W/cm2.1 The following report summarizes the life of the RERTR-7A and RERTR-7B experiments through end of irradiation, including as-run neutronic analyses, thermal analyses and hydraulic testing results.

D. M. Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

2011-12-01T23:59:59.000Z

139

AGR-1 Irradiation Experiment Test Plan  

SciTech Connect

This document presents the current state of planning for the AGR-1 irradiation experiment, the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment will be irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). The test will contain six independently controlled and monitored capsules. Each capsule will contain a single type, or variant, of the AGR coated fuel. The irradiation is planned for about 700 effective full power days (approximately 2.4 calendar years) with a time-averaged, volume-average temperature of approximately 1050 °C. Average fuel burnup, for the entire test, will be greater than 17.7 % FIMA, and the fuel will experience fast neutron fluences between 2.4 and 4.5 x 1025 n/m2 (E>0.18 MeV).

John T. Maki

2009-10-01T23:59:59.000Z

140

Measuring Degradation Rates Without Irradiance Data  

SciTech Connect

A method to report PV system degradation rates without using irradiance data is demonstrated. First, a set of relative degradation rates are determined by comparing daily AC final yields from a group of PV systems relative to the average final yield of all the PV systems. Then, the difference between relative and absolute degradation rates is found from a statistical analysis. This approach is verified by comparing to methods that utilize irradiance data. This approach is significant because PV systems are often deployed without irradiance sensors, so the analysis method described here may enable measurements of degradation using data that were previously thought to be unsuitable for degradation studies.

Pulver, S.; Cormode, D.; Cronin, A.; Jordan, D.; Kurtz, S.; Smith, R.

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

RERTR-12 Insertion 2 Irradiation Summary Report  

SciTech Connect

The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-12 was designed to provide comprehensive information on the performance of uranium-molybdenum (U-Mo) based monolithic fuels for research reactor applications.1 RERTR-12 insertion 2 includes the capsules irradiated during the last three irradiation cycles. These capsules include Z, Y1, Y2 and Y3 type capsules. The following report summarizes the life of the RERTR-12 insertion 2 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

D. M. Perez; G. S. Chang; D. M. Wachs; G. A. Roth; N. E. Woolstenhulme

2012-09-01T23:59:59.000Z

142

global horizontal irradiance | OpenEI  

Open Energy Info (EERE)

horizontal irradiance horizontal irradiance Dataset Summary Description (Abstract): Global Horizontal IrradianceNASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Jan 2008)22-year Monthly & Annual Average (July 1983 - June 2005) Parameter: Insolation Incident On A Horizontal Surface (kWh/m^2/day) Internet: http://eosweb.larc.nasa.gov/sse/ Note 1: SSE Methodology & Accuracy sections online Note 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; Source U.S. National Aeronautics and Space Administration (NASA), Surface meteorology and Solar Energy (SSE) Date Released March 31st, 2009 (5 years ago) Date Updated April 01st, 2009 (5 years ago) Keywords GHI GIS global horizontal irradiance NASA solar

143

Prediction of Irradiation Spectrum Effects in Pyrochlores  

Science Journals Connector (OSTI)

The formation energy of cation antisites in pyrochlores (A2B2O7) has been correlated with the susceptibility to amorphize under irradiation, and thus, density functional theory calculations of antisite energetics...

B. P. Uberuaga; C. Jiang; C. R. Stanek; K. E. Sickafus; C. Scott; R. Smith

2014-12-01T23:59:59.000Z

144

ARM - Measurement - Shortwave broadband diffuse downwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

diffuse downwelling irradiance diffuse downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband diffuse downwelling irradiance All of the solar radiation, across the wavelength range of 0.4 and 4 {mu}m, coming directly from the sky except for solar radiation coming directly from the sun and the circumsolar irradiance within approximately three degrees of the sun. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments

145

Leaching of Irradiated Candu UO2 Fuel  

Science Journals Connector (OSTI)

An assessment of the concept to dispose of spent, irradiated nuclear fuel in an underground repository requires information on the rates of radionuclide leaching from the fuel matrix and of fuel matrix dissolu...

T. T. Vandergraaf; L. H. Johnson…

1980-01-01T23:59:59.000Z

146

Gamma irradiation effects in W films  

SciTech Connect

Using the van Der Pauw methodology, the surface resistivity of irradiated tungsten films deposited on Silicon substrate was measured. The films were exposed to {gamma} radiation using a isotopic {sup 60}Co source in three irradiation stages attaining 40.35 kGy in total dose. The obtained results for superficial resistivity display a time annealing features and their values are proportional to the total dose.

Claro, Luiz H. [Instituto de Estudos Avancados - IEAv, Rod. dos Tamoios, km 5,5, CEP: 12228-840, Sao Jose dos Campos, SP (Brazil) and Faculdade de Tecnologia Sao Francisco - FATESF, Av. Siqueira Campos, 1174, CEP: 12207-000, Jacarei (Brazil); Santos, Ingrid A. [Instituto de Estudos Avancados - IEAv, Rod. dos Tamoios, km 5,5, CEP: 12228-840, Sao Jose dos Campos, SP (Brazil); Silva, Cassia F. [Faculdade de Tecnologia Sao Francisco - FATESF, Av. Siqueira Campos, 1174, CEP: 12207-000, Jacarei, SP (Brazil)

2013-05-06T23:59:59.000Z

147

Evaluation of irradiation effects on concrete structure  

SciTech Connect

In assessing the soundness of irradiated concrete of nuclear power plants operated for more than 30 years, reference levels are employed: 1x10{sup 20} n/cm{sup 2} for fast neutrons and 2x10{sup 10} rad (2x10{sup 5} kGy) for gamma rays. Concrete structures are regarded as sound when the estimated irradiance levels after 60 years of operation are less than the reference levels. The reference levels were obtained from a paper by Hilsdorf. It was found, however, that the test conditions in which data were obtained by the researchers referred in that paper are very different from the irradiation and heat conditions usually found in a Light Water Reactor (LWR), and therefore aren't appropriate for assessing the soundness of irradiated concrete of an LWR. This paper investigates the interactions between radiation and concrete and presents the results of gamma ray irradiation tests on cement paste samples in order to provide a better understanding of the irradiation effects on concrete. (authors)

Kontani, O.; Ishizawa, A. [Kajima Corporation, Nuclear Power Dept., 6-5-11 Akasaka, Minato-ku, Tokyo, 107-8348 (Japan); Maruyama, I. [Nagoya Univ., Graduate School of Environmental Studies, Furocho, Chikusa-ku, Nagoya , 464-8603 (Japan); Takizawa, M.; Sato, O. [Mitsubishi Research Inst. Inc., Science and Safety Policy Research Div., Nuclear Energy Systems Group, 2-10-3 Nagatacho, Chiyoda-ku, Tokyo 100-8141 (Japan)

2012-07-01T23:59:59.000Z

148

Center for Materials at Irradiation and Mechanical Extremes:...  

NLE Websites -- All DOE Office Websites (Extended Search)

This movie shows our molecular dynamics simulation of a collision cascade near an asymmetric 11 tilt grain boundary in copper over a time of 380 ps. The grain boundary is at the...

149

Investigation into the failure cause of a double-acting, leading-edge-groove, tilting-pad thrust bearing. Final report, Feb-Aug 90  

SciTech Connect

This report describes the results of bench tests simulating operation and failure of a thrust bearing used in a gas turbine engine compressor development test rig. The bearing was a double acting, tilting pad with offset pivot, leading edge groove configuration using an AMS 4928 titanium collar and C18200 copper-chrome alloy pads with a No. 2 babbitt face. The bench tests successfully simulated the bearing failure and demonstrated a materials incompatibility. This was supported by visual examination, scanning electron microscopy and X-ray energy spectroscopy. A comparison of the bench test results to the compressor rig bearing failure is provided to support the report conclusions.

Peterson, B.K.

1990-10-01T23:59:59.000Z

150

Experimental frequency-dependent rotordynamic coefficients for a load-on-pad, high-speed, flexible-pivot tilting-pad bearing  

E-Print Network (OSTI)

others. Fig. 1 depicts a schematic of a conventional TP bearing with four pads and the basic geometric characteristics. R+Cp R+Cb R omega beta chi Bottom Pad Detail Geometric Definitions: Pad Preload=1-Cb/Cp Pad Offset=betachi Pad Leading edge... maximum rotordynamic stability [1]. TP bearings differ from fixed geometry journal bearings in that the pads are able to tilt freely about a pivot. The pivot configuration can be spherical, as illustrated in Fig. 1, rocker type, among others...

Rodriguez Colmenares, Luis Emigdio

2004-09-30T23:59:59.000Z

151

ARM - Measurement - Shortwave narrowband total upwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

upwelling irradiance upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MFR : Multifilter Radiometer Field Campaign Instruments RAD-AIR : Airborne Radiometers

152

ARM - Measurement - Longwave broadband downwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

downwelling irradiance downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave broadband downwelling irradiance The total diffuse and direct radiant energy, at wavelengths longer than approximately 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments BSRN : Baseline Solar Radiation Network BRS : Broadband Radiometer Station CO2FLX : Carbon Dioxide Flux Measurement Systems

153

ARM - Measurement - Shortwave narrowband total downwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

downwelling irradiance downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MFRSR : Multifilter Rotating Shadowband Radiometer NFOV : Narrow Field of View Zenith Radiometer

154

ARM - Measurement - Shortwave narrowband direct downwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

downwelling irradiance downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband direct downwelling irradiance The direct unscattered radiant energy from the Sun, in a narrow band of wavelengths shorter than approximately 4 {mu}m, passing through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments SOAR : Shipboard Oceanographic and Atmospheric Radiation

155

ARM - Measurement - Net broadband total irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsNet broadband total irradiance govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments EBBR : Energy Balance Bowen Ratio Station SEBS : Surface Energy Balance System External Instruments ECMWF : European Centre for Medium Range Weather Forecasts Model

156

ARM - Measurement - Shortwave narrowband diffuse upwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

upwelling irradiance upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband diffuse upwelling irradiance The rate at which radiant energy in narrow bands of wavelengths shorter than approximately 4 {mu}m, that has been scattered in the atmosphere at least once, passes through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MFR : Multifilter Radiometer

157

Irradiated Fuels Examination Laboratory (IFEL) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiated Fuels Examination Laboratory Irradiated Fuels Examination Laboratory May 30, 2013 The Irradiated Fuels Examination Laboratory (IFEL) was initially designed and constructed to permit the safe handling of increasing levels of radiation in the chemical, physical, and metallurgical examination of nuclear reactor fuel elements and reactor parts. The IFEL was constructed in 1963 and is a two-story brick building with a partial basement. The front or northern-most section is a single-story office area. The two story area to the immediate rear houses the cell complex, the operating areas, and other supporting activities. The office area is isolated from the main part of the building, so the office area can be excluded from the secondary containment zone. The facility has a gross floor area of about 27,000 ft2.

158

ARM - Measurement - Longwave narrowband upwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

narrowband upwelling irradiance narrowband upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave narrowband upwelling irradiance The total radiant energy, in a narrow band of wavelengths longer than approximately 4 {mu}m, passing through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments OTTER : Twin Otter UAV-EGRETT : UAV-Egrett Value-Added Products LBTM-MINNIS : Minnis Cloud Products Using LBTM Algorithm (Process)

159

ARM - Measurement - Shortwave spectral diffuse downwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

diffuse downwelling irradiance diffuse downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave spectral diffuse downwelling irradiance The rate at which spectrally resolved radiant energy at wavelengths shorter than approximately 4 {mu}m, that has been scattered in the atmosphere at least once, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments RSS : Rotating Shadowband Spectroradiometer

160

Ultraviolet Germicidal Irradiation for Preventing Infectious Disease  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultraviolet Germicidal Irradiation for Preventing Infectious Disease Ultraviolet Germicidal Irradiation for Preventing Infectious Disease Transmission Speaker(s): Peng Xu Date: February 19, 2002 - 12:00pm Location: Bldg. 90 The transmission of tuberculosis (TB) and other infectious diseases in health-care buildings has been a recognized hazard for decades. Ultraviolet germicidal irradiation (UVGI) of upper room air is used as an engineering control method to prevent the spread of airborne infectious disease. Under full-scale conditions, the efficacy of UVGI for inactivating airborne bacterial spores and active cells was evaluated. A test room fitted with a modern UVGI system was used to conduct bio-aerosol inactivation experiments. UVGI efficacy can be affected by environmental factors such as relative humidity (RH), and air mixing

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ARM - Measurement - Shortwave broadband total downwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

downwelling irradiance downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths between 0.4 and 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AMC : Ameriflux Measurement Component BSRN : Baseline Solar Radiation Network

162

ARM - Measurement - Shortwave broadband direct normal irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

normal irradiance normal irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband direct normal irradiance The rate at which radiant energy in broad bands of wavelengths shorter than approximately 4{mu}m, that comes directly from the Sun without being scattered or absorbed in the atmosphere, passes through a unit area perpendicular to the direction from the Sun. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments

163

Irradiation creep of vanadium-base alloys.  

SciTech Connect

A study of irradiation creep in vanadium-base alloys is underway with experiments in the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) in the US. Test specimens are thin-wall sealed tubes with internal pressure loading. The results from the initial ATR irradiation at low temperature (200-300 C) to a neutron damage level of 4.7 dpa show creep rates ranging from {approx}0 to 1.2 x 10{sup {minus}5}/dpa/MPa for a 500-kg heat of V-4Cr-4Ti alloy. These rates were generally lower than reported from a previous experiment in BR-10. Because both the attained neutron damage levels and the creep strains were low in the present study, however, these creep rates should be regarded as only preliminary. Substantially more testing is required before a data base on irradiation creep of vanadium alloys can be developed and used with confidence.

Tsai, H.; Matsui, H.; Billone, M. C.; Strain, R. V.; Smith, D. L.

1998-05-18T23:59:59.000Z

164

Gamma irradiation of the prenatal mouse dentition  

E-Print Network (OSTI)

as the dental lamina to the stage of the deposition of enamel and dentin. The purpose of this study was to determine the effect of a continuous stress of gamma irradiation on the structure of the odontogenic cells, the relative size and rate of development... development. In 1927, Leist (9) made a study of the effect of X-rays on teeth, which was brought about by the following rase. A worker in a Roentgen tube factory was exposed daily to a considerable dose of X-irradiation. Sometime later he began to show...

Kerley, Michael Auston

1969-01-01T23:59:59.000Z

165

Photodegradation of Estrone in Solar Irradiation  

Science Journals Connector (OSTI)

Photodegradation of Estrone in Solar Irradiation ... Department of Chemical and Biochemical Engineering, University of Western Ontario, Thompson Engineering Building, London, Ontario N6A 5B9, Canada ... Photodegradation was carried out using a solar simulator (Model: SS1KW, Sciencetech, ON, Canada) with 1000 W xenon arc lamp and air mass filter (AM filter) AM1.5G, which produces identical simulated 1 SUN irradiance of 100 mW cm?2 at full power that matches the global solar spectrum (class A standards as per JIS-C-8912 and the ASTM) at sea level and zenith angle 37° (see the Supporting Information, Figure SF1). ...

Rajib Roy Chowdhury; Paul Charpentier; Madhumita B. Ray

2010-03-26T23:59:59.000Z

166

Fructolysis in the semen of continuously irradiated and non-irradiated goats  

E-Print Network (OSTI)

Abbott showed that the androgenic activity of the testis is far more resistant to x- ray irradiation than is the germinal epi- 1 thelium. When Abbott administered 5, 000 and 10, OOOR to rats, he found no decrease in the sex accessory organ weights nor.... Another point which supports the data that the damaged spermatogonia give rise to subnormal sperm is 23 the studies done with in vitro sperm that have been irradiated. Man 15 stated that irradiation of whole, fresh semen has little or no effect...

Ziller, Henry Hubert

1966-01-01T23:59:59.000Z

167

Understanding the Irradiation Behavior of Zirconium Carbide  

SciTech Connect

Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC- based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response (ZrC) by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation-induced microstructures mapped spatially and temporally, microstructural evolution during post-irradiation annealing, and atomistic modeling of defect formation and transport energetics will provide new, critical understanding about property changes in ZrC. The behavior of materials under irradiation is determined by the balance between damage production, defect clustering, and lattice response. In order to predict those effects at high temperatures so targeted testing can be expanded and extrapolated beyond the known database, it is necessary to determine the defect energetics and mobilities as these control damage accumulation and annealing. In particular, low-temperature irradiations are invaluable for determining the regions of defect mobility. Computer simulation techniques are particularly useful for identifying basic defect properties, especially if closely coupled with a well-constructed and complete experimental database. The close coupling of calculation and experiment in this project will provide mutual benchmarking and allow us to glean a deeper understanding of the irradiation response of ZrC, which can then be applied to the prediction of its behavior in reactor conditions.

Motta, Arthur; Sridharan, Kumar; Morgan, Dane; Szlufarska, Izabela

2013-10-11T23:59:59.000Z

168

The Effect of Magnetic Field Tilt and Divergence on the Mass Flux and Flow Speed in a Line-Driven Stellar Wind  

E-Print Network (OSTI)

We carry out an extended analytic study of how the tilt and faster-than-radial expansion from a magnetic field affect the mass flux and flow speed of a line-driven stellar wind. A key motivation is to reconcile results of numerical MHD simulations with previous analyses that had predicted non-spherical expansion would lead to a strong speed enhancement. By including finite-disk correction effects, a dynamically more consistent form for the non-spherical expansion, and a moderate value of the line-driving power index $\\alpha$, we infer more modest speed enhancements that are in good quantitative agreement with MHD simulations, and also are more consistent with observational results. Our analysis also explains simulation results that show the latitudinal variation of the surface mass flux scales with the square of the cosine of the local tilt angle between the magnetic field and the radial direction. Finally, we present a perturbation analysis of the effects of a finite gas pressure on the wind mass loss rate and flow speed in both spherical and magnetic wind models, showing that these scale with the ratio of the sound speed to surface escape speed, $a/v_{esc}$, and are typically 10-20% compared to an idealized, zero-gas-pressure model.

Stan Owocki; Asif ud-Doula

2003-10-07T23:59:59.000Z

169

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Irradiation is known to have a significant impact on the properties and performance of Zircaloy cladding and structural materials (material degradation processes, e.g., effects of hydriding). This UFD study examines the behavior and performance of unirradiated cladding and actual irradiated cladding through testing and simulation. Three capsules containing hydrogen-charged Zircaloy-4 cladding material have been placed in the High Flux Isotope Reactor (HFIR). Irradiation of the capsules was conducted for post-irradiation examination (PIE) metallography. Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of

170

E-Print Network 3.0 - accelerated hyperfractionated irradiation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Group Collection: Physics 79 Irradiation of Nd-Fe-B Permanent Magnets with APS Bending Magnet X-rays and 60 Summary: of 260 Mrad was used to irradiate Nd-Fe-B sample magnets with...

171

Magnetization and susceptibility of ion irradiated granular magnetite...  

NLE Websites -- All DOE Office Websites (Extended Search)

irradiation to a fluence of 1.0E16 ionscm2 near room temperature. The film underwent a phase transition to ferromagnetism after the irradiation. X-ray diffraction study shows that...

172

Irradiation Stability of Carbon Nanotubes and Related Materials  

E-Print Network (OSTI)

defect annealing at elevated irradiation temperatures, which delays the formation of amorphous regions. Investigation of nanotube stability after various processing techniques and irradiation indicated that radiation response of CNTs in a composite...

Aitkaliyeva, Assel 1985-

2012-09-28T23:59:59.000Z

173

Response of Strontium Titanate to Ion and Electron Irradiation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Strontium Titanate to Ion and Electron Irradiation. Response of Strontium Titanate to Ion and Electron Irradiation. Abstract: Response of strontium titanate (SrTiO3) to ion and...

174

-ray Irradiation Enhanced Boron-10 Compound Accumulation in Murine Tumors  

Science Journals Connector (OSTI)

......gamma-ray Irradiation Enhanced Boron-10 Compound Accumulation in Murine Tumors...effects of gamma-ray irradiation on boron-10 compound accumulation in a murine...sodium) administration. Then, the boron-10 concentrations in tumor and normal......

Yong Liu; Kenji Nagata; Shin-ichiro Masunaga; Minoru Suzuki; Genro Kashino; Yuko Kinashi; Hiroki Tanaka; Yoshinori Sakurai; Akira Maruhashi; Koji Ono

2009-11-01T23:59:59.000Z

175

Implementation Plan for the Irradiated Materials Characterization Laboratory (IMCL)  

SciTech Connect

This document contains details regarding the planned implementation of the Irradiated Materials Characterization Laboratory at the INL.

Not Listed

2013-04-01T23:59:59.000Z

176

Irradiation Processing Department monthly report, June 1962  

SciTech Connect

This document details activities of the Irradiation Processing Department during the month of June, 1962. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; and NPR Project.

Not Available

1992-07-13T23:59:59.000Z

177

Sucrose synthesis in gamma irradiated sweet potato  

SciTech Connect

Effect of ..cap alpha..-irradiation carbohydrate metabolism was examined to elucidate mechanism of sucrose accumulation in sweet potato (SP). Enzymes examined were: ..beta..-amylase, phosphorylase, phosphoglucomutase, phosphoglucose isomerase, sucrose phosphate synthetase and sucrose synthetase. Irradiated SP (Red Jewell) sucrose was synthesized to yield 10.7% after 4 d PI. Activities of sugar synthesizing enzymes in irradiated SP were enhanced to different degrees using 100-200 Krad and 3 d PI at 24/sup 0/C. Phosphorylase and phosphoglucomutases specific activities reached 2.4 and 1.8 folds, respectively compared to control SP. ..beta..-amylase, phosphoglucose isomerase, sucrose synthetase and sucrose phosphate synthetase were also affected to yield 1.2, 1.3, 1.3 and 1.2 folds, respectively compared to controls. It is believed that amylase hydrolyzed starch to glucose which is converted to fructose by phosphoglucose isomerase. Sucrose is then formed by sucrose phosphate synthetase and/or sucrose synthetase leading to its accumulation. The irradiated SP was used for alcohol fermentation leading to 500 gal. of 200 proof ethanol/acre (from 500-600 bushels tuber/acre).

Ailouni, S.; Hamdy, M.K.; Toledo, R.T.

1987-01-01T23:59:59.000Z

178

Continuous wave laser irradiation of explosives  

SciTech Connect

Quantitative measurements of the levels of continuous wave (CW) laser light that can be safely applied to bare explosives during contact operations were obtained at 532 nm, 785 nm, and 1550 nm wavelengths. A thermal camera was used to record the temperature of explosive pressed pellets and single crystals while they were irradiated using a measured laser power and laser spot size. A visible light image of the sample surface was obtained before and after the laser irradiation. Laser irradiation thresholds were obtained for the onset of any visible change to the explosive sample and for the onset of any visible chemical reaction. Deflagration to detonation transitions were not observed using any of these CW laser wavelengths on single crystals or pressed pellets in the unconfined geometry tested. Except for the photochemistry of DAAF, TATB and PBX 9502, all reactions appeared to be thermal using a 532 nm wavelength laser. For a 1550 nm wavelength laser, no photochemistry was evident, but the laser power thresholds for thermal damage in some of the materials were significantly lower than for the 532 nm laser wavelength. No reactions were observed in any of the studied explosives using the available 300 mW laser at 785 nm wavelength. Tables of laser irradiance damage and reaction thresholds are presented for pressed pellets of PBX9501, PBX9502, Composition B, HMX, TATB, RDX, DAAF, PETN, and TNT and single crystals of RDX, HMX, and PETN for each of the laser wavelengths.

McGrane, Shawn D.; Moore, David S.

2010-12-01T23:59:59.000Z

179

Effects of hadron irradiation on scintillating fibers  

SciTech Connect

Trackers based on scintillating-fiber technology are being considered by the Solenoidal Detector Collaboration at SSC and the D[phi] collaboration at Fermilab. An important issue is the effect of the radiation existing in the detector cores on fiber properties. Most studies of radiation damage in scintillators have irradiated small bulk samples rather than fibers, and have used X-rays, [sup 60]Co gammas, or electron beams, often at accelerated rates. The authors have irradiated some 600 fibers in the Fermilab Tevatron C[phi] area, thereby obtaining a hadronic irradiation at realistic rates. Four-meter-long samples of ten Bicron polystyrene-based fiber types, maintained in air, dry nitrogen, argon, and vacuum atmospheres within stainless-steel tubes, were irradiated for seven weeks at various distances from the accelerator beam pipes. Maximum doses, measured by thermoluminescence detectors, were about 80 Krad. Fiber properties, particularly light yield and attenuation length, have been measured over a one-year period. A description of the work together with the results is presented. At the doses achieved, corresponding to a few years of actual fiber-tracking detector operation, little degradation is observed. In addition, recovery after several days' exposure to air has been noted. Properties of unirradiated samples kept in darkness show no changes after one year.

Atac, M. (Univ. of California, Los Angeles, CA (United States) Fermi National Accelerator Lab., Batavia, IL (United States)); Buchanan, C.; Chrisman, D.; Cline, D.; Kolonko, J.; Kubic, J.; Park, J. (Univ. of California, Los Angeles, CA (United States)); Baumbaugh, A.; Binkley, M.; Bross, A.D.; Finley, D.; Elias, J.; Foster, G.W.; Kephart, R.; Kephart, R.; Kim, C.; Park, H.; Pla-Dalmau, A.; Rivetta, C.; Tkaczyk, S.; Wagner, R. (Fermi National Accelerator Lab., Batavia, IL (United States)); Chung, M.; Goldberg, H.; Jeskik, R.; Margulies, S.; Mendez, H.; Solomon, J.; Vaca, F. (Univ. of Illinois, Chicago, IL (United States)); Kelley, C. (Massachusetts College of Pharmacy and Allied Health Sciences, Boston, MA (United States)); Baumbaugh, B.; Bishop, J.; Biswas, N.; Cason, N.; Jacques, J.; Kehoe, R.; Kelly, M.; Kenney, V.; LoSecco, J.; Ruchti, R.; Shephard, W.; Warchol, J.; Wayne, M.; Marchant, J.; Mountain, R.J. (Univ. of Notre Dame, IN (United States)); Davis, D.; Vandergriff, D. (O

1993-08-01T23:59:59.000Z

180

SIPS: Solar Irradiance Prediction System Stefan Achleitner  

E-Print Network (OSTI)

-scaling capacities of renewable energy sources such as wind and solar. However, variability and uncertainty in powerSIPS: Solar Irradiance Prediction System Stefan Achleitner Computer Science and Engineering Liu and Alberto E. Cerpa Electrical Engineering and Computer Science University of California, Merced

Cerpa, Alberto E.

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Sun and Climate Solar Irradiance  

E-Print Network (OSTI)

The Sun and Climate #12;Solar Irradiance The Solar Constant f = 1.4 x 106 erg/cm2/s. Over is higher when the Sun is more magnetically active. ·The Sun was magnetically active, and the climate the Sun Drive Climate? #12;The Temperature's Rising #12;Sunspots and CO2 What is Cause and What is Effect

Walter, Frederick M.

182

Total Solar Irradiance Satellite Composites and their  

E-Print Network (OSTI)

Chapter 12 Total Solar Irradiance Satellite Composites and their Phenomenological Effect on Climate. Phenomenological solar signature on climate 310 9. Conclusion 312 1. INTRODUCTION A contiguoustotal solar from each other, in particular about whether the TSI minimum during solar Cycles 22e23 (1995

Scafetta, Nicola

183

Irradiation Embritlement in Alloy HT-­9  

SciTech Connect

HT-9 steel is a candidate structural and cladding material for high temperature lead-bismuth cooled fast reactors. In typical advanced fast reactor designs fuel elements will be irradiated for an extended period of time, reaching up to 5-7 years. Significant displacement damage accumulation in the steel is expected (> 200 dpa) when exposed to dpa-rates of 20-30 dpa{sub Fe}/y and high fast flux (E > 0.1 MeV) {approx}4 x 10{sup 15} n/cm{sup 2}s. Core temperatures could reach 400-560 C, with coolant temperatures at the inlet as low as 250 C, depending on the reactor design. Mechanical behavior in the presence of an intense fast flux and high dose is a concern. In particular, low temperature operation could be limited by irradiation embrittlement. Creep and corrosion effects in liquid metal coolants could set a limit to the upper operating temperature. In this report, we focus on the low temperature operating window limit and describe HT-9 embrittlement experimental findings reported in the literature that could provide supporting information to facilitate the consideration of a Code Case on irradiation effects for this class of steels in fast reactor environments. HT-9 has an extensive database available on irradiation performance, which makes it the best choice as a possible near-term candidate for clad, and ducts in future fast reactors. Still, as it is shown in this report, embrittlement data for very low irradiation temperatures (< 200 C) and very high radiation exposure (> 150 dpa) is scarce. Experimental findings indicate a saturation of DBTT shifts as a function of dose, which could allow for long lifetime cladding operation. However, a strong increase in DBTT shift with decreasing irradiation temperature could compromise operation at low service temperatures. Development of a deep understanding of the physics involved in the radiation damage mechanisms, together with multiscale computer simulation models of irradiation embrittlement will provide the basis to derive trendlines and quantitative engineering predictions.

Serrano De Caro, Magdalena [Los Alamos National Laboratory

2012-08-27T23:59:59.000Z

184

Total solar irradiance during the Holocene F. Steinhilber,1  

E-Print Network (OSTI)

Total solar irradiance during the Holocene F. Steinhilber,1 J. Beer,1 and C. Fro¨hlich2 Received 20 solar irradiance covering 9300 years is presented, which covers almost the entire Holocene. This reconstruction is based on a recently observationally derived relationship between total solar irradiance

Wehrli, Bernhard

185

Characterization of Anti-Irradiation-Denatured Ovalbumin Monoclonal Antibodies. Immunochemical and Structural Analysis of Irradiation-Denatured Ovalbumin  

Science Journals Connector (OSTI)

Five monoclonal antibodies (OVA-01, -02, -03, -04, -06) produced against irradiated ovalbumin were investigated in relation to the conformational change in the ovalbumin molecule induced by irradiation with Cobalt-60 ?-rays. Four antibodies (OVA-01, -02, -...

Tetsuya Masuda; Sakiyo-Yamaoka Koseki; Kyoden Yasumoto; Naofumi Kitabatake

2000-06-02T23:59:59.000Z

186

Sensitivity of ultrasonic nonlinearity to irradiated, annealed, and re-irradiated microstructure changes in RPV steels  

SciTech Connect

The planned life extension of nuclear reactors throughout the US and abroad will cause reactor vessel and internals materials to be exposed to more neutron irradiation than was originally intended. A nondestructive evaluation (NDE) method to monitor radiation damage would enable safe and cost-effective continued operation of nuclear reactors. Radiation damage in reactor pressure vessel (RPV) steels causes microstructural changes that leave the material in an embrittled state. Nonlinear ultrasound is an NDE technique quantified by the measurable acoustic nonlinearity parameter, which is sensitive to microstructural changes in metallic materials such as dislocations, precipitates and their combinations. Recent research has demonstrated the sensitivity of the acoustic nonlinearity parameter to increasing neutron fluence in representative RPV steels. The current work considers nonlinear ultrasonic experiments conducted on similar RPV steel samples that had a combination of irradiation, annealing, re-irradiation, and/or re-annealing to a total neutron fluence of 0.5 5 1019 n/cm2 (E > 1 MeV) at an irradiation temperature of 290 C. The acoustic nonlinearity parameter generally increased with increasing neutron fluence, and consistently decreased from the irradiated to the annealed state over different levels of neutron fluence. Results of the measured acoustic nonlinearity parameter are compared with those from previous measurements on other RPV steel samples. This comprehensive set of results illustrates the dependence of the measured acoustic nonlinearity parameter on neutron fluence, material composition, irradiation temperature and annealing.

Matlack, Katie [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Kim, J-Y. [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Wall, J.J. [Electric Power Research Institute (EPRI)] [Electric Power Research Institute (EPRI); Jacobs, L.J. [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Sokolov, Mikhail A [ORNL] [ORNL

2014-01-01T23:59:59.000Z

187

Compression and acceleration of electron bunches to high energies in the interference field of intense laser pulses with tilted amplitude fronts: concept and modelling  

SciTech Connect

A new concept of accelerating electrons by laser radiation is proposed, namely, direct acceleration by a laser field under the conditions of interference of several relativistic-intensity laser pulses with amplitude fronts tilted by the angle 45 Degree-Sign with respect to the phase fronts. Due to such interference the traps moving with the speed of light arise that capture the electrons, produced in the process of ionisation of low-density gas by the same laser radiation. The modelling on the basis of solving the relativistic Newton equation with the appropriate Lorenz force shows that these traps, moving in space, successively collect electrons from the target, compress the resulting electron ensemble in all directions up to the dimensions smaller than the wavelength of the laser radiation and accelerate it up to the energies of the order of a few GeV per electron. (extreme light fields and their applications)

Korobkin, V V; Romanovsky, Mikhail Yu; Trofimov, V A; Shiryaev, O B [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

2013-03-31T23:59:59.000Z

188

Tilting of the CuO6 octahedra in La1.83-xEu0.17SrxCuO4 as seen by Eu151 Mössbauer spectroscopy  

Science Journals Connector (OSTI)

Eu151 Mössbauer studies of La1.83-xEu0.17SrxCuO4 for 0<~x<~0.26 exhibit a quadrupole interaction at the Eu site whose magnitude eQVzz strongly depends on both the Sr content x and the temperature T. For a fixed temperature, a linear relationship is obtained between the quadrupole interaction and the averaged CuO6 octahedra tilting angle determined from diffraction studies. The unusually large temperature dependence of eQVzz strongly indicates a temperature dependence of the local structure. In contrast to recent studies of the local structure La2CuO4-type superconductors by means of x-ray-absorption and neutron-scattering techniques, our data give strong evidence that the local octahedra tilting in La1.83-xEu0.17SrxCuO4 corresponds well to the average tilting obtained by diffraction techniques.

C. Friedrich; B. Büchner; M. M. Abd-Elmeguid; H. Micklitz

1996-07-01T23:59:59.000Z

189

Parameterization of daily solar irradiance variability  

Science Journals Connector (OSTI)

The effects of solar systems operation can be compared only under very similar weather conditions. Diagnostics of the solar systems requires unequivocal determination of solar irradiation. Development of a method for precise identification of solar radiation day time profile is needed, as the methods used so far in the cloud cover determination are not satisfactory. The paper presents two optional methods, developed by the authors, for identification of the solar radiation profile. Advantages and disadvantages of the methods are also specified.

D. Czekalski; A. Chochowski; P. Obstawski

2012-01-01T23:59:59.000Z

190

CACI: The Cesium-137 Agricultural Commodities Irradiator  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the [sup 137]Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. This Volume, VI, provides the CACI final design features regarding shielding, mechanical and electrical.

Not Available

1986-12-19T23:59:59.000Z

191

CACI: The Cesium-137 Agricultural Commodities Irradiator  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the [sup 137]Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. The CACI final design is described in eight volumes. This Volume V, describes plans, criteria, and requirements.

Not Available

1986-12-19T23:59:59.000Z

192

CACI: The Cesium-137 Agricultural Commodities Irradiator  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the [sup 137]Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. This Volume, IV, provides specifications as developed for the CACI final design.

Not Available

1986-12-01T23:59:59.000Z

193

CACI: The Cesium-137 Agricultural Commodities Irradiator  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the 137 Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. The CACI final design is described in eight volumes. This volume, Volume VII, describes Safety Analysis, Thermal Analysis, and Thermal Testing.

Not Available

1986-12-19T23:59:59.000Z

194

CACI: The Cesium-137 Agricultural Commodities Irradiator  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the 137 Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. The CACI final design is described in eight volumes. This volume Volume III, describes the Shielding Window.

Not Available

1986-12-19T23:59:59.000Z

195

Irradiation response and stability of nanoporous materials  

SciTech Connect

Nanoporous materials consist of a regular organic or inorganic framework supporting a regular, porous structure. Pores are by definition roughly in the nanometre range, that is between 0.2 nm and 100 nm. Nanoporous materials can be subdivided into 3 categories (IUPAC): (1) Microporous materials - 0.2-2 nm; (2) Mesoporous materials - 2-50 nm; and (3) Macroporous materials - 50-1000 nm. np-Au foams were successfully synthesized by de-alloying process. np-Au foams remain porous structure after Ne ion irradiation to 1 dpa. Stacking Fault Tetrahedra (SFTs) were observed in RT irradiated np-Au foams under the highest and intermediate fluxes, but not under the lowest flux. SFTs were not observed in LNT irradiated np-Au foams under all fluxes. The vacancy diffusivity in Au at RT is high enough so that the vacancies have enough time to agglomerate and then collapse to form SFTs. The high ion flux creates more damage per unit time; vacancies don't have enough time to diffuse or recombine. As a result, SFTs were formed at high ion fluxes.

Fu, Engang [Los Alamos National Laboratory; Wang, Yongqiang [Los Alamos National Laboratory; Serrano De Caro, Magdalena [Los Alamos National Laboratory; Caro, Jose A. [Los Alamos National Laboratory; Zepeda-Ruiz, L [Lawrence Livermore national Laboratory; Bringa, E. [CONICET, Universidad de Cuyo, Argentina; Nastasi, Mike [University of Nebraska, Lincoln, NE; Baldwin, Jon K. [Los Alamos National Laboratory

2012-08-28T23:59:59.000Z

196

Beam Solar Irradiation Assessment for Sonora, Mexico  

Science Journals Connector (OSTI)

Abstract Located in north western Mexico, the State of Sonora has an excellent quality solar resource, with the highest solar irradiation levels in the country. In less than 1% of its vast arid territory, it receives enough solar power to satisfy the energy demand of the entire country. In spite of its huge solar potential, there has been little work on the measurement of solar radiation in this area. At a few locations, global solar radiation has been measured for some years. Also there have been some works reporting evaluation of solar irradiation based on empirical models or satellite images. Because of the very small amount of precipitation on most of its territory, Sonora is ideal for the implementation of concentrated solar power (CSP). Beam solar radiation data is necessary for the sizing and assessment of CSP plants. Unfortunately, very little information is available on this solar radiation component for Sonora. The present work reports on the results of recent measurements of beam and solar global radiation for the area of the city of Hermosillo, in the center of the state. The obtained results are compared with other available information obtained by indirect methods, such as satellite based or empirical climate data based models. The yearly available energy as well as the utilizable energy for certain irradiance levels is evaluated.

C.A. Arancibia-Bulnes; R. Peón-Anaya; D. Riveros-Rosas; J.J. Quińones; R.E. Cabanillas; C.A. Estrada

2014-01-01T23:59:59.000Z

197

EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS  

SciTech Connect

Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retained their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Polymeric materials become damaged by exposure over time to ionizing radiation. Despite the limited lifetime, polymers have unique engineering material properties and polymers continue to be used in tritium handling systems. In tritium handling systems, polymers are employed mainly in joining applications such as valve sealing surfaces (eg. Stem tips, valve packing, and O-rings). Because of the continued need to employ polymers in tritium systems, over the past several years, programs at the Savannah River National Laboratory have been studying the effect of tritium on various polymers of interest. In these studies, samples of materials of interest to the SRS Tritium Facilities (ultra-high molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, Teflon{reg_sign}), Vespel{reg_sign} polyimide, and the elastomer ethylene propylene diene monomer (EPDM)) have been exposed in closed containers to tritium gas initially at 1 atmosphere pressure. These studies have demonstrated the degradation of properties when exposed to tritium gas. Also, the radiolytic production of significant amounts of hydrogen has been observed for UHMW-PE and EPDM. The study documented in this report exposes two similar formulations of EPDM elastomer to gamma irradiation in a closed container backfilled with deuterium. Deuterium is chemically identical to protium and tritium, but allows the identification of protium that is radiolytically produced from the samples. The goal of this program is to compare and contrast the response of EPDM exposure to two different types of ionizing radiation in a similar chemical environment.

Clark, E.

2011-09-22T23:59:59.000Z

198

The spectral irradiance traceability chain at PTB  

SciTech Connect

Spectral irradiance is a fundamental radiometric unit. Its application to measurement results requires qualified traceability to basic units of the international system of units (Systeme international d'unites, SI). The Physikalisch-Technische Bundesanstalt (PTB) is amongst other national metrological institutes (NMIs) responsible for the realization, maintenance and dissemination of various radiometric and photometric units based on and traceable to national standards. The unit of spectral irradiance is realized and represented by a blackbody-radiator as the national primary standard of the PTB. Based on Planck's radiation law, the irradiance is calculated and realized for any wavelength taking into account the exact knowledge of the radiation temperature and the geometrical parameters. Using a double-monochromator-based spectroradiometer system, secondary standard lamps can be calibrated by direct comparison to the blackbody-radiator (substitution method). These secondary standard lamps are then used at the PTB to calibrate standard lamps of customers. The customers themselves use these so-called transfer standards to calibrate their working standard lamps. These working standards are then used to calibrate own spectroradiometers or sources. This rather complex calibration chain is a common procedural method that for the customers generally leads to satisfying measurement results on site. Nevertheless, the standard lamps in use have to fulfill highest requirements concerning stability and reproducibility. Only this allows achieving comparably low transfer measurement uncertainties, which occur at each calibration step. Thus, the PTB is constantly investigating the improvement and further development of transfer standards and measurement methods for various spectral regions. The realization and dissemination of the spectral irradiance using the blackbody-radiator at the PTB is accomplished with worldwide approved minimized measurement uncertainties confirmed by international intercomparisons among NMIs. Ultimately, the spectral irradiance can be realized with expanded measurement uncertainties of far less than 1 % over a wide spectral range. Thus, for customers with high demands on low measurement uncertainties, it is possible to calibrate their working standards directly against the blackbody-radiator, taking into account the higher necessary effort. In special cases it is possible to calibrate the customer's spectroradiometric facilities directly in front of the blackbody-radiator. In the context of the European Metrology Research Project Traceability for surface spectral solar ultraviolet radiation, the traceability chain will be improved and adapted.

Sperfeld, P.; Pape, S.; Nevas, S. [Physikalisch-Technische Bundesanstalt, Bundesallee 10, 381160 Braunschweig (Germany)

2013-05-10T23:59:59.000Z

199

Effects of damage rate on irradiation hardening and post-irradiation annealing characteristics of carbon steel  

SciTech Connect

Irradiation embrittlement in a low dose region was studied for an aluminum-killed carbon steel from the point of dose rate effects. The dose rate as low as {approximately}5 {times} 10{sup 8} n/cm{sup 2}/s (E > 1 MeV) caused a Charpy transition temperature shift of more than 30 C after irradiation to {approximately}10{sup 17} n/cm{sup 2} (E > 1 MeV) at 240 C, while a similar amount of Charpy shift was observed after {approximately}10{sup 18} n/cm{sup 2} (E > 1 MeV) at higher dose rate ({approximately}7 {times} 10{sup 11} n/cm{sup 2}/s). The effect of dose rate was obvious in the annealing response on hardness. The recovery characteristic indicated that more stable defects were produced in the material irradiated at a lower dose rate.

Suzuki, Masahide; Idei, Yoshio; Kizaki, Minoru; Onizawa, Kunio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

1999-10-01T23:59:59.000Z

200

Development of microstructure and irradiation hardening of Zircaloy during low dose neutron irradiation at nominally 358 C  

SciTech Connect

Wrought Zircaloy-2 and Zircaloy-4 were neutron irradiated at nominally 358 C in the high flux isotope reactor (HFIR) at relatively low neutron fluences between 5.8 1022 and 2.9 1025 n/m2 (E > 1 MeV). The irradiation hardening and change in microstructure were characterized following irradiation using tensile testing and examinations of microstructure using Analytical Electron Microscopy (AEM). Small increments of dose (0.0058, 0.11, 0.55, 1.08, and 2.93 1025 n/m2) were used in the range where the saturation of irradiation hardening is typically observed so that the role of microstructure evolution and hai loop formation on irradiation hardening could be correlated. An incubation dose between 5.8 1023 and 1.1 1024 n/m2 was needed for loop nucleation to occur that resulted in irradiation hardening. Increases in yield strength were consistent with previous results in this temperature regime, and as expected less irradiation hardening and lower hai loop number density values than those generally reported in literature for irradiations at 260 326 C were observed. Unlike previous lower temperature data, there is evidence in this study that the irradiation hardening can decrease with dose over certain ranges of fluence. Irradiation induced voids were observed in very low numbers in the Zircaloy-2 materials at the highest fluence.

Cockeram, Brian V [Bechtel-Bettis, Inc.; Smith, Richard W [Bechtel-Bettis, Inc.; Leonard, Keith J [ORNL; Byun, Thak Sang [ORNL; Snead, Lance Lewis [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NANOSTRUCTURE PATTERNING UNDER ENERGETIC PARTICLE BEAM IRRADIATION  

SciTech Connect

Energetic ion bombardment can lead to the development of complex and diverse nanostructures on or beneath the material surface through induced self-organization processes. These self-organized structures have received particular interest recently as promising candidates as simple, inexpensive, and large area patterns, whose optical, electronic and magnetic properties are different from those in the bulk materials [1-5]. Compared to the low mass efficiency production rate of lithographic methods, these self-organized approaches display new routes for the fabrication of nanostructures over large areas in a short processing time at the nanoscale, beyond the limits of lithography [1,4]. Although it is believed that surface nanostructure formation is based on the morphological instability of the sputtered surface, driven by a kinetic balance between roughening and smoothing actions [6,7], the fundamental mechanisms and experimental conditions for the formation of these nanostructures has still not been well established, the formation of the 3-D naopatterns beneath the irradiated surface especially needs more exploration. During the last funding period, we have focused our efforts on irradiation-induced nanostructures in a broad range of materials. These structures have been studied primarily through in situ electron microscopy during electron or ion irradiation. In particular, we have performed studies on 3-D void/bubble lattices (in metals and CaF2), embedded sponge-like porous structure with uniform nanofibers in irradiated semiconductors (Ge, GaSb, and InSb), 2-D highly ordered pattern of nanodroplets (on the surface of GaAs), hexagonally ordered nanoholes (on the surface of Ge), and 1-D highly ordered ripple and periodic arrays (of Cu nanoparticles) [3,8-11]. The amazing common feature in those nanopatterns is the uniformity of the size of nanoelements (nanoripples, nanodots, nanovoids or nanofibers) and the distance separating them. Our research focuses on the understanding of fundamental scientific basis for the irradiation-induced self-organization processes. The fundamental physical mechanisms underlying ordered pattern formation, which include defect production and migration, ion sputtering, redeposition, viscous flow and diffusion, are investigated through a combination of modeling and in situ and ex-situ observations [3,9,11]. In addition, these nanostructured materials exhibit considerable improvement of optical properties [9,12,13]. For example, patterned Ge with a hexagonally ordered, honeycomb-like structure of nanoscale holes possesses a high surface area and a considerably blue-shifted energy gap [9], and oxidation of ordered Ga droplets shows noticeable enhancement of optical transmission [12]. This research has addressed nanopattern formation in a variety of materials under ion bombardment and provided a fundamental understanding of the dynamic mechanisms involved. In addition, have also stared to systematically investigate pattern formation under ion irradiation for more systems with varied experimental conditions and computation, including the collaboration with Dr. Veena Tikare of Sandia National Laboratory with a hybrid computation method at the ending this grant. A more detailed relationship between nanostructure formation and experimental conditions will be revealed with our continued efforts.

Wang, Lumin [Regents of the University of Michigan; Lu, Wei [Regents of the University of Michigan

2013-01-31T23:59:59.000Z

202

A Simplified Shuttle Irradiation Facility for ATR  

SciTech Connect

During the past fifteen years there has been a steady increase in the demand for radioisotopes in nuclear medicine and a corresponding decline in the number of reactors within the U.S. capable of producing them. The Advanced Test Reactor (ATR) is the largest operating test reactor in the U.S., but its isotope production capabilities have been limited by the lack of an installed isotope shuttle irradiation system. A concept for a simple “low cost” shuttle irradiation facility for ATR has been developed. Costs were reduced (in comparison to previous ATR designs) by using a shielded trough of water installed in an occupiable cubicle as a shielding and contamination control barrier for the send and receive station. This shielding concept also allows all control valves to be operated by hand and thus the need for an automatic control system was eliminated. It was determined that 4 – 5 ft of water would be adequate to shield the isotopes of interest while shuttles are transferred to a small carrier. An additional feature of the current design is a non-isolatable by-pass line, which provides a minimum coolant flow to the test region regardless of which control valves are opened or closed. This by-pass line allows the shuttle facility to be operated without bringing reactor coolant water into the cubicle except for send and receive operations. The irradiation position selected for this concept is a 1.5 inch “B” hole (B-11). This position provides neutron fluxes of approximately: 1.6 x 1014 (<0.5 eV) and 4.0 x 1013 (>0.8 MeV) n/cm2*sec.

Palmer, Alma Joseph; Laflin, S. T.

1999-09-01T23:59:59.000Z

203

Modification of Defect Structures in Graphene by Electron Irradiation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modification of Defect Structures in Graphene by Electron Irradiation: Ab Initio Molecular Dynamics Simulations. Modification of Defect Structures in Graphene by Electron...

204

Irradiation Effects on Human Cortical Bone Fracture Behavior  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic...

205

Featured Projects: Center for Materials at Irradiation and Mechanical...  

NLE Websites -- All DOE Office Websites (Extended Search)

About CMIME The Center for Materials at Irradiation and Mechanical Extremes (CMIME) is a Department of Energy (DOE) Energy Frontier Research Center (EFRC) designed to understand,...

206

Center for Materials at Irradiation and Mechanical Extremes:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Materials at Irradiation and Mechanical Extremes A BES Energy Frontier Research Center Home Teams Partners Others Participants Summer School Contacts Project Office...

207

Light emission from water irradiated with high energy electrons.  

E-Print Network (OSTI)

??Luminescence has been observed from water Irradiated with an intense pulse of high energy electrons. The angular dependence, electron energy dependence, visible spectrum, lifetime and… (more)

Shaede, Eric Albert

2012-01-01T23:59:59.000Z

208

Comparison of Diffuse Shortwave Irradiance Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

Diffuse Shortwave Diffuse Shortwave Irradiance Measurements J. J. Michalsky and J. Schlemmer Atmospheric Sciences Research Center State University of New York Albany, New York B. C. Bush, S. Leitner, D. Marsden, and F. P. J. Valero Scripps Institution of Oceanography University of California, San Diego La Jolla, California R. Dolce and A. Los Kipp & Zonen, Inc. Bohemia, New York and Delft The Netherlands E. G. Dutton Climate Monitoring and Diagnostics Laboratory National Oceanic and Atmospheric Administration Boulder, Colorado M. P. Haeffelin Virginia Polytechnic Institute and State University Blackburg, Virginia G. Major Budapest University of Economic Sciences and Public Administration Budapest, Hungry J. Hickey The Eppley Laboratory, Inc. Newport, Rhode Island

209

Irradiated test fuel shipment plan for the LWR MOX fuel irradiation test project  

SciTech Connect

This document outlines the responsibilities of DOE, DOE contractors, the commercial carrier, and other organizations participating in a shipping campaign of irradiated test specimen capsules containing mixed-oxide (MOX) fuel from the Idaho National Engineering and Environmental Laboratory (INEEL) to the Oak Ridge National Laboratory (ORNL). The shipments described here will be conducted according to applicable regulations of the US Department of Transportation (DOT), US Nuclear Regulatory Commission (NRC), and all applicable DOE Orders. This Irradiated Test Fuel Shipment Plan for the LWR MOX Fuel Irradiation Test Project addresses the shipments of a small number of irradiated test specimen capsules and has been reviewed and agreed to by INEEL and ORNL (as participants in the shipment campaign). Minor refinements to data entries in this plan, such as actual shipment dates, exact quantities and characteristics of materials to be shipped, and final approved shipment routing, will be communicated between the shipper, receiver, and carrier, as needed, using faxes, e-mail, official shipping papers, or other backup documents (e.g., shipment safety evaluations). Any major changes in responsibilities or data beyond refinements of dates and quantities of material will be prepared as additional revisions to this document and will undergo a full review and approval cycle.

Shappert, L.B.; Dickerson, L.S.; Ludwig, S.B.

1998-10-16T23:59:59.000Z

210

Irradiation-induced effects of proton irradiation on zirconium carbides with different stoichiometries  

SciTech Connect

Zirconium carbide (ZrC) is being considered for utilization in deep burn TRISO fuel particles for hightemperature, gas-cooled reactors. Zirconium carbide has a cubic B1 type crystal structure along with a very high melting point (3420 ?C), exceptional hardness and good thermal and electrical conductivities. Understanding the ZrC irradiation response is crucial for establishing ZrC as an alternative component in TRISO fuel. Until now, very few studies on irradiation effects on ZrC have been released and fundamental aspects of defect evolution and kinetics are not well understood although some atomistic simulations and phenomenological studies have been performed. This work was carried out to understand the damage evolution in float-zone refined ZrC with different stoichiometries. Proton irradiations at 800 ?C up to doses of 3 dpa were performed on ZrCx (where x ranges from 0.9 to 1.2) to investigate the damage evolution. The irradiation-induced defects, such as density of dislocation loops, at different stoichiometries and doses which were characterized by transmission electron microscopy (TEM) is presented and discussed.

Y. Huang; B.R. Maier; T.R. Allen

2014-10-01T23:59:59.000Z

211

Dissolution of ordered precipitates under ion irradiation  

SciTech Connect

The stability of the ordered {gamma}{prime} precipitates under 300-keV Ni{sup +} irradiation was investigated between room temperature and 623 K. The two competing mechanisms of destabilization by cascade producing irradiation, i.e. disordering and dissolution of the {gamma}{prime} precipitates in Nimonic PE16 alloy, has been studied separately by electron microscopy and field-ion microscopy with atom probe. At high temperatures, the precipitates are stable. At intermediate temperatures, the precipitates dissolve by ballistic mixing into the matrix, but the interface is restored by the radiation-enhanced atomic jumps. The order in the precipitates remains stable. At low temperatures, the precipitates are dissolved by atomic mixing. The dissolution proceeds in a diffusional manner with a diffusion coefficient normalized by the displacement rate D/K = 0.75 nm{sup 2}dpa{sup {minus}1}. The precipitates become disordered by a fluence of 0.1 dpa, whereas precipitate dissolution needs much higher fluences.

Camus, E.; Bourdeau, F.; Abromeit, C.; Wanderka, N.; Wollenberger, H. [Hahn-Meitner-Institut Berlin GmbH (Germany)

1995-09-01T23:59:59.000Z

212

Phase transformations in neutron-irradiated Zircaloys  

SciTech Connect

Microstructural evolution in Zircaloy-2 and -4 spent-fuel cladding specimens after approx.3 years of irradiation in commercial power reactors has been investigated by TEM and HVEM. Two kinds of precipitates induced by the fast-neutron irradiation in the reactors have been identified, i.e., Zr/sub 3/O and cubic-ZrO/sub 2/ particles approximately 2 to 10 nm in size. By means of a weak-beam dark-field ''2-1/2D-microscopy'' technique, the bulk nature of the precipitates and the surficial nature of artifact oxide and hydride phases could be discerned. The Zr(Fe/sub x/,Cr/sub 1-x/)/sub 2/ and Zr/sub 2/(Fe/sub x/,Ni/sub 1-x/) intermetallic precipitates normally present in the as-fabricated material virtually dissolved in the spent-fuel cladding specimens after a fast-neutron fluence of approx.4 x 10/sup 21/ ncm/sup -2/ in the power reactors. The observed radiation-induced phase transformations are compared with predictions based on the currently available understanding of the alloy characteristics. 29 refs.

Chung, H.M.

1986-04-01T23:59:59.000Z

213

A Simplified Shuttle Irradiation Facility for ATR  

SciTech Connect

During the past fifteen years there has been a steady increase in the demand for radioisotopes in nuclear medicine and a corresponding decline in the number of reactors within the U.S. capable of producing them. The Advanced Test Reactor (ATR) is the largest operating test reactor in the U.S., but its isotope production capabilities have been limited by the lack of an installed isotope shuttle irradiation system. A concept for a simple "low cost" shuttle irradiation facility for ATR has been developed. Cost were reduced (in comparison to previous ATR designs) by using a shielded trough of water installed in an occupiable cubicle as a shielding and contamination control barrier for the send and receive station. This shielding concept also allows all control valves to be operated by hand and thus the need for an automatic control system was eliminated. It was determined that 4-5 ft of water would be adequate to shield the isotopes of interest while shuttles are transferred to a small carrier. An additional feature of the current design is a non-isolatable by-pass line, which provides a minimum coolant flow to the test region regardless of which control valves are opened or closed. This by-pass line allows the shuttle facility to be operated without bringing reactor coolant water into the cubicle except for send and receive operations.

A. J. Palmer; S. T. Laflin

1999-08-01T23:59:59.000Z

214

LWRS ATR Irradiation Testing Readiness Status  

SciTech Connect

The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics

Kristine Barrett

2012-09-01T23:59:59.000Z

215

Postharvest irradiation treatment effect on grapefruit functional components and their role in prevention of colon cancer  

E-Print Network (OSTI)

and irradiation significantly (P ? 0.05) affected the bioactive compounds in grapefruit, however, the effect of storage was prominent. The third study examined the influence of irradiation and freeze drying on bioactive compounds of grapefruit. Irradiation...

Vanamala, Jairam Krishna Prasad

2005-11-01T23:59:59.000Z

216

Effect of Steam Sterilization and Gamma Irradiation of Peat on Quality of Rhizobium Inoculants  

Science Journals Connector (OSTI)

...and Industrial Microbiology Effect of Steam Sterilization and Gamma Irradiation of...Inoculants for M. sativa manufactured with steam-sterilized peat were similar in quality...higher gamma irradiation dosage. Effect of steam sterilization and gamma irradiation of...

Barend W. Strijdom; Henri Jansen van Rensburg

1981-06-01T23:59:59.000Z

217

Irradiation effects in high-density polyethylene Jussi Polvia  

E-Print Network (OSTI)

Irradiation effects in high-density polyethylene Jussi Polvia , Kai Nordlunda a simulations, we have studied the irradiation effects in high density polyethylene. We determined the threshold energy for creating defects in the polyethylene lattice as a function of the incident angle. We found

Nordlund, Kai

218

Assessment of Initial Test Conditions for Experiments to Assess Irradiation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of Initial Test Conditions for Experiments to Assess Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today's nuclear power reactor fleet and affects critical structural components within the reactor core. The effects of increased exposure to irradiation, stress, and/or coolant can substantially increase susceptibility to stress-corrosion cracking of austenitic steels in high-temperature water environments. Despite 30 years of experience, the underlying mechanisms of Irradiation Assisted Stress Corrosion Cracking (IASCC) are unknown. Extended service conditions will increase the exposure

219

Researchers Devise New Stress Test for Irradiated Materials | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Researchers Devise New Stress Test for Irradiated Materials Researchers Devise New Stress Test for Irradiated Materials Researchers Devise New Stress Test for Irradiated Materials July 20, 2011 - 3:58pm Addthis Scientists conducted compression tests of copper specimens irradiated with high-energy protons, designed to model how damage from radiation affects the mechanical properties of copper. By using a specialized in situ mechanical testing device in a transmission electron microscope at the National Center for Electron Microscopy, the team could examine — with nanoscale resolution — the localized nature of this deformation. | Courtesy of Lawrence Berkeley National Laboratory Scientists conducted compression tests of copper specimens irradiated with high-energy protons, designed to model how damage from radiation affects

220

Researchers Devise New Stress Test for Irradiated Materials | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Researchers Devise New Stress Test for Irradiated Materials Researchers Devise New Stress Test for Irradiated Materials Researchers Devise New Stress Test for Irradiated Materials July 20, 2011 - 3:58pm Addthis Scientists conducted compression tests of copper specimens irradiated with high-energy protons, designed to model how damage from radiation affects the mechanical properties of copper. By using a specialized in situ mechanical testing device in a transmission electron microscope at the National Center for Electron Microscopy, the team could examine — with nanoscale resolution — the localized nature of this deformation. | Courtesy of Lawrence Berkeley National Laboratory Scientists conducted compression tests of copper specimens irradiated with high-energy protons, designed to model how damage from radiation affects

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Prediction and Visualization of Temperature Histories in Optically-Irradiated Cryogenic Tissues  

E-Print Network (OSTI)

in Optically-Irradiated Cryogenic Tissues A Dissertationin Optically-Irradiated Cryogenic Tissues by Adam B. Sladeregions of tissue from cryogenic damage through gentle laser

Slade, Adam Broadbent

2014-01-01T23:59:59.000Z

222

Controlled doping of graphene using ultraviolet irradiation  

SciTech Connect

The electronic properties of graphene are tunable via doping, making it attractive in low dimensional organic electronics. Common methods of doping graphene, however, adversely affect charge mobility and degrade device performance. We demonstrate a facile shadow mask technique of defining electrodes on graphene grown by chemical vapor deposition (CVD) thereby eliminating the use of detrimental chemicals needed in the corresponding lithographic process. Further, we report on the controlled, effective, and reversible doping of graphene via ultraviolet (UV) irradiation with minimal impact on charge mobility. The change in charge concentration saturates at {approx}2 Multiplication-Sign 10{sup 12} cm{sup -2} and the quantum yield is {approx}10{sup -5} e/photon upon initial UV exposure. This simple and controlled strategy opens the possibility of doping wafer-size CVD graphene for diverse applications.

Luo Zhengtang [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Pinto, Nicholas J.; Davila, Yarely [Department of Physics and Electronics, University of Puerto Rico at Humacao, Humacao, 00792 (Puerto Rico); Charlie Johnson, A. T. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 (United States)

2012-06-18T23:59:59.000Z

223

Design for a fusion materials irradiation facility  

SciTech Connect

A fusion materials irradiation facility is required for the timely and cost-effective development of economical fusion power. Our conceptual machine provides sufficient neutron fluence for accelerated lifetime material tests in a time span of 1--2 y while producing less than 1 MW of fusion power. Neutral deuterium beams at 150 keV are injected into the center of a high-density warm tritium plasma housed in a 12-m-long cylindrical vessel. Superconducting magnets hold the plasma, which transfers the power to each end of the solenoid. The stainless steel end sections absorb the beam power and are externally cooled by high-pressure water to maintain the plasma-side wall temperature below 740 K. A service loop separates tritium from deuterium in the plasma effluent. Tritium is reinjected at each end. 9 refs., 2 figs., 2 tabs.

Walter, C.E.; Coensgen, F.H.

1988-09-02T23:59:59.000Z

224

Optimization parameter design for proton irradiation accelerator  

E-Print Network (OSTI)

The proton irradiation accelerator is widely founded for industry application, and should be designed as compact, reliable, and easy operate. A 10 MeV proton beam is designed to be injected into the slow circulation ring with the repetition rate of 0.5 Hz for accumulation and acceleration, and then the beam with the energy of 300MeV will be slowly extracted by third order resonance method. For getting a higher intensity and more uniform beam, the height of the injection bump is carefully optimised during the injection period. Besides, in order to make the extracted beam with a more uniform distribution, a RF Knock-out method is adopted, and the RF kicker's amplitude is well optimised.

An, Yu-Wen; Wang, Sheng; Xu, Shou-Yan

2014-01-01T23:59:59.000Z

225

Optimization parameter design for proton irradiation accelerator  

E-Print Network (OSTI)

The proton irradiation accelerator is widely founded for industry application, and should be designed as compact, reliable, and easy operate. A 10 MeV proton beam is designed to be injected into the slow circulation ring with the repetition rate of 0.5 Hz for accumulation and acceleration, and then the beam with the energy of 300MeV will be slowly extracted by third order resonance method. For getting a higher intensity and more uniform beam, the height of the injection bump is carefully optimised during the injection period. Besides, in order to make the extracted beam with a more uniform distribution, a RF Knock-out method is adopted, and the RF kicker's amplitude is well optimised.

Yu-Wen An; Hong-Fei Ji; Sheng Wang; Shou-Yan Xu

2014-11-20T23:59:59.000Z

226

AGC-3 Irradiation Data Qualification Final Report  

SciTech Connect

The Graphite Technology Development Program will run a series of six experiments to quantify the effects of irradiation on nuclear grade graphite. The third experiment, Advanced Graphite Creep 3 (AGC 3), began with Advanced Test Reactor (ATR) Cycle 152B on November 27, 2012, and ended with ATR Cycle 155B on April 23, 2014. This report documents qualification of AGC 3 experiment irradiation monitoring data for use by the Very High Temperature Reactor (VHTR) Technology Development Office (TDO) Program for research and development activities required to design and license the first VHTR nuclear plant. Qualified data meet the requirements for data collection and use as described in the experiment planning and quality assurance documents. Failed data do not meet the requirements. Trend data may not meet the requirements, but may still provide some useable information. All thermocouples (TCs) functioned throughout the AGC 3 experiment. There was one interval between December 18, 2012, and December 20, 2012, where 10 NULL values were reported for various TCs. These NULL values were deleted from the Nuclear Data Management and Analysis System database. All temperature data are Qualified for use by the VHTR TDO Program. Argon, helium, and total gas flow data were within expected ranges and are Qualified for use by the VHTR TDO Program. Total gas flow was approximately 50 sccm through the AGC 3 experiment capsule. Helium gas flow was briefly increased to 100 sccm during ATR shutdowns. At the start of the AGC 3 experiment, moisture in the outflow gas line was stuck at a constant value of 335.6174 ppmv for the first cycle (Cycle 152B). When the AGC 3 experiment capsule was reinstalled in ATR for Cycle 154B, a new moisture filter was installed. Moisture data from Cycle 152B are Failed. All moisture data from the final three cycles (Cycles 154B, 155A, and 155B) are Qualified for use by the VHTR TDO Program.

Laurence Hull

2014-08-01T23:59:59.000Z

227

Gamma irradiation effects on the biodegradation of lignin  

E-Print Network (OSTI)

parts: biological utilization of irradiated Calcium Lignosulphonate (CLS) and irradiation effects on the composition of CLS. The CLS used in this study was a commercially available lignin compound which is produced by flash evaporation of spent... 4/ X / 2. 0 3. 0 4. 0 5. 0 6. 0 7. 0 Wavelength in microns 8. 0 9. 0 28 CHAPTER VI RESULTS AND CONCLUSIONS A commercia I CLS was irradiated in a dry state to various total dose levels of Co-60 gamma rays. The effects on the structure...

Krysinski, Thomas Leon

1966-01-01T23:59:59.000Z

228

Electron Beam Irradiation for Improving Safety of Fruits and Vegetables  

E-Print Network (OSTI)

. An alternative may be irradiation which is emerging as a promising tool to enhance safety and extend shelf life of fresh and fresh cut produce. Gamma rays have been the most extensively studied form of irradiation and have been successfully applied to spices..., tubers, grains and meat products for the space program. However, consumer reluctance has limited its application over a broad range of food stuffs. As a result, alternate irradiation technologies such as e-beam and X-rays are attracting attention...

Adavi, Megha Sarthak

2012-07-16T23:59:59.000Z

229

Tuning the work function of graphene by ultraviolet irradiation  

SciTech Connect

Graphene layers grown by chemical vapor deposition were, respectively, irradiated for 0, 20, 40, and 60 min by an ultraviolet light source in order to experimentally study the change in the work function of graphene. The dependences of the work function and carrier concentration upon ultraviolet irradiation have been found. It is shown that ultraviolet irradiation may lead to oxygen desorption, thus reducing the hole density and work function of graphene. Based on the well-known expression for the Fermi energy of Dirac fermions, the Fermi velocity of graphene was extracted to be about 5.2 Multiplication-Sign 10{sup 5} m/s.

Lin, Yow-Jon; Zeng, Jian-Jhou [Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan (China)] [Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan (China)

2013-05-06T23:59:59.000Z

230

Indoor and Outdoor Spectroradiometer Intercomparison for Spectral Irradiance Measurement  

SciTech Connect

This report details the global spectral irradiance intercomparison using spectroradiometers that was organized by the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. The intercomparison was performed both indoors and outdoors on September 17, 2013. Five laboratories participated in the intercomparison using 10 spectroradiometers, and a coordinated measurement setup and a common platform were employed to compare spectral irradiances under both indoor and outdoor conditions. The intercomparison aimed to understand the performance of the different spectroradiometers and to share knowledge in making spectral irradiance measurements. This intercomparison was the first of its kind in the United States.

Habte, A.; Andreas, A.; Ottoson, L.; Gueymard, C.; Fedor, G.; Fowler, S.; Peterson, J.; Naranen, R.; Kobashi, T.; Akiyama, A.; Takagi, S.

2014-05-01T23:59:59.000Z

231

LANGEVIN DYNAMICS OF THE TWO STAGE MELTING TRANSITION OF VORTEX MATTER IN Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} IN THE PRESENCE OF STRAIGHT AND OF TILTED COLUMNAR DEFECTS  

SciTech Connect

In this paper we use London Langevin molecular dynamics simulations to investigate the vortex matter melting transition in the highly anisotropic high-temperature superconductor material Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}#14; in the presence of low concentration of columnar defects (CDs). We reproduce with further details our previous results obtained by using Multilevel Monte Carlo simulations that showed that the melting of the nanocrystalline vortex matter occurs in two stages: a first stage melting into nanoliquid vortex matter and a second stage delocalization transition into a homogeneous liquid. Furthermore, we report on new dynamical measurements in the presence of a current that identifies clearly the irreversibility line and the second stage delocalization transition. In addition to CDs aligned along the c-axis we also simulate the case of tilted CDs which are aligned at an angle with respect to the applied magnetic field. Results for CDs tilted by 45{degree} with respect to c-axis show that the locations of the melting and delocalization transitions are not affected by the tilt when the ratio of flux lines to CDs remains constant. On the other hand we argue that some dynamical properties and in particular the position of the irreversibility line should be affected.

GOLDSCHMIDT, YADIN Y.; LIU, Jin-Tao

2007-08-07T23:59:59.000Z

232

Pyrolytic carbon free-radical evolution and irradiation damage of polyimide under low-energy proton irradiation  

SciTech Connect

Ionization and displacement effects are basic phenomena in damage processes of materials under space-particle irradiation. In this paper, the damage behaviors were investigated on the polyimide under proton irradiation using electron paramagnetic resonance (EPR) spectra analysis and optical absorbance valuation. The results indicate that the proton irradiation induces the formation of pyrolytic carbon free-radical with a g value of 2.0025, and the population of free radicals increases with the irradiation fluence. The most important finding is that the irradiation-induced free-radical population increases linearly with the displacement damage dose, as does the optical degradation, whereas the ionization effect alone, during the irradiation, cannot induce the formation of pyrolytic carbon free radical. Furthermore, during the post storage, after irradiation, the free-radical population decreases following a sum of an exponential and a linear mode with the storage time. It is interesting that, during the post storage, the recovery of the degraded optical absorbance of the polyimide follows a similar mode to that of free radicals, and the characteristic time constant changes with the wavelength of the optical spectra.

Sun Chengyue; Wu Yiyong; Xiao Jingdong; Li Ruifeng; Yang Dezhuang; He Shiyu [National Key Lab in Materials Behaviors and Evaluation Technology in Space Environments, Harbin Institute of Technology, Harbin 150001 (China)

2011-12-15T23:59:59.000Z

233

AGC-2 Irradiation Data Qualification Final Report  

SciTech Connect

The Graphite Technology Development Program will run a series of six experiments to quantify the effects of irradiation on nuclear grade graphite. The second Advanced Graphite Creep (AGC) experiment (AGC-2) began with Advanced Test Reactor (ATR) Cycle 149A on April 12, 2011, and ended with ATR Cycle 151B on May 5, 2012. The purpose of this report is to qualify AGC-2 irradiation monitoring data following INL Management and Control Procedure 2691, Data Qualification. Data that are Qualified meet the requirements for data collection and use as described in the experiment planning and quality assurance documents. Data that do not meet the requirements are Failed. Some data may not quite meet the requirements, but may still provide some useable information. These data are labeled as Trend. No Trend data were identified for the AGC-2 experiment. All thermocouples functioned throughout the AGC-2 experiment. There was one instance where spurious signals or instrument power interruption resulted in a recorded temperature value being well outside physical reality. This value was identified and labeled as Failed data. All other temperature data are Qualified. All helium and argon gas flow data are within expected ranges. Total gas flow was approximately 50 sccm through the capsule. Helium gas flow was briefly increased to 100 sccm during reactor shutdown. All gas flow data are Qualified. At the start of the experiment, moisture in the outflow gas line increased to 200 ppmv then declined to less than 10 ppmv over a period of 5 days. This increase in moisture coincides with the initial heating of the experiment and drying of the system. Moisture slightly exceeded 10 ppmv three other times during the experiment. While these moisture values exceed the 10 ppmv threshold value, the reported measurements are considered accurate and to reflect moisture conditions in the capsule. All moisture data are Qualified. Graphite creep specimens are subjected to one of three loads, 393 lbf, 491 lbf, or 589 lbf. Loads were consistently within 5% of the specified values throughout the experiment. Stack displacement increased consistently throughout the experiment with total displacement ranging from 1 to 1.5 inches. No anomalous values were identified. During reactor outages, a set of pneumatic rams are used to raise the stacks of graphite creep specimens to ensure the specimens have not become stuck within the test train. This stack raising was performed after all cycles when the capsule was in the reactor. All stacks were raised successfully after each cycle. The load and displacement data are Qualified

Laurence C. Hull

2012-07-01T23:59:59.000Z

234

Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty  

E-Print Network (OSTI)

Solar irradiance data . . . . . . . . . . . . .Accuracy . . . . . . . . . . . . . . . . . Solar Resourcev Uncertainty In Solar Resource: Forecasting

Marquez, Ricardo

2012-01-01T23:59:59.000Z

235

Simulation of Electron Beam Irradiation of a Skin Tissue Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Beam Irradiation of a Skin Tissue Model Electron Beam Irradiation of a Skin Tissue Model John Miller 1 , Seema Varma 1 , William Chrisler 2 , Xihai Wang 2 and Marianne Sowa 2 1 Washington State University Tri-Cities, Richland, WA 2 Pacific Northwest National Laboratory, Richland, WA Monte Carlo simulations of electrons stopping in liquid water are being used to model electron- beam irradiation of the full-thickness (FT) EpiDerm TM skin model (MatTek, Ashland, VA). This 3D tissue model has a fully developed basement membrane separating an epidermal layer of keratinocytes from a dermal layer of fibroblasts embedded in collagen. The simulations have shown the feasibility of exposing the epidermal layer to low linear-energy-transfer (LET) radiation in the presence of a non-irradiated dermal layer (Miller et al. 2011). The variable-

236

Simulation of Electron Beam Irradiation of a Skin Tissue Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation of Electron Beam Irradiation of a Skin Tissue Model Simulation of Electron Beam Irradiation of a Skin Tissue Model John Miller Washington State University Tri-Cities Abstract Monte Carlo simulations of electrons stopping in liquid water are being used to model electronbeam irradiation of the full-thickness (FT) EpiDermTM skin model (MatTek, Ashland, VA). This 3D tissue model has a fully developed basement membrane separating an epidermal layer of keratinocytes from a dermal layer of fibroblasts embedded in collagen. The simulations have shown the feasibility of exposing the epidermal layer to low linear-energy-transfer (LET) radiation in the presence of a non-irradiated dermal layer (Miller et al. 2011). The variableenergy electron microbeam at PNNL (Sowa et al. 2005) was used as a model of device characteristics and

237

Radioadaptation in Neural Stem Cells Exposed to Low Dose Irradiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioadaptation in Neural Stem Cells Exposed to Low Dose Irradiation Radioadaptation in Neural Stem Cells Exposed to Low Dose Irradiation Charles Limoli University of California, Irvine Abstract In the CNS, irradiation of multipotent neural stem and precursor cells has been shown to cause a persistent oxidative stress that impacts radiosensitivity, mitochondrial function, and cell fate. The nature, magnitude and duration of reactive species dictates whether these radiation-induced changes are harmful or beneficial to a variety of in vitro and in vivo endpoints of viability and function. We have shown that acute low dose irradiation (2-10 cGy) can elicit significant increases in reactive oxygen (ROS) and nitrogen (RNS) species over several days post-exposure. These changes can be attenuated when the dose is protracted over several weeks using a 57Co flood source having a surface dose rate of

238

Inactivation of ebola virus with Co(60) irradiation  

SciTech Connect

Ebola virus was inactivated in a log-linear relationship to Co(60) gamma-irradiation dosage with 1.0 log10 pfu/ml reduction in viral titer after 8 min exposure 23,000.

Lupton, H.W.

1980-09-08T23:59:59.000Z

239

Review of Dynamic Recovery Effects on Ion Irradiation Damage...  

NLE Websites -- All DOE Office Websites (Extended Search)

6H–SiC, ionization processes are less dominant. Citation: Weber WJ, Y Zhang, and LM Wang.2012."Review of Dynamic Recovery Effects on Ion Irradiation Damage in...

240

Materials for cold neutron sources: Cryogenic and irradiation effects  

SciTech Connect

Materials for the construction of cold neutron sources must satisfy a range of demands. The cryogenic temperature and irradiation create a severe environment. Candidate materials are identified and existing cold sources are briefly surveyed to determine which materials may be used. Aluminum- and magnesium-based alloys are the preferred materials. Existing data for the effects of cryogenic temperature and near-ambient irradiation on the mechanical properties of these alloys are briefly reviewed, and the very limited information on the effects of cryogenic irradiation are outlined. Generating mechanical property data under cold source operating conditions is a daunting prospect. It is clear that the cold source material will be degraded by neutron irradiation, and so the cold source must be designed as a brittle vessel. The continued effective operation of many different cold sources at a number of reactors makes it clear that this can be accomplished. 46 refs., 8 figs., 2 tab.

Alexander, D.J.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Systematic dental management in head and neck irradiation  

SciTech Connect

Preservation of teeth has been possible in 528 head and neck patients treated with irradiation at Centre Georges Leclerc, University of Dijon, by careful adherence to precise dental care. Careful initial dental evaluation with appropriate x rays, restoration of oral hygiene, atraumatic extraction technique where indicated, and institution of a program of topical fluoridation has resulted in an overall incidence of less than 3% post-irradiation dental decay and 2% osteoradionecrosis. In a small group of 22 patient who required extraction post-irradiation, precise, strict technique resulted in successful extraction in all but one patient who subsequently developed osteonecrosis. Soft-based dental prostheses were well tolerated in nearly 90% of patients. Adherence to the described principles of dental care will virtually eliminate post-irradiation decay and osteoradionecrosis.

Horiot, J.C. (Centre Georges Leclerc, Dijon, France); Bone, M.C.; Ibrahim, E.

1981-08-01T23:59:59.000Z

242

The Complex Irradiation Facility at DLR-Bremen  

E-Print Network (OSTI)

All material exposed to interplanetary space conditions are subject to degradation processes. For obvious reasons there is a great interest to study these processes for materials that are used in satellite construction. However, also the influence of particle and electromagnetic radiation on the weathering of extraterrestrial rocks and on organic and biological tissues is the research topic of various scientific disciplines. To strengthen the comprehensive and systematic investigation of degradation processes a new laboratory, the complex irradiation facility (CIF), has been designed, set up, tested, and put into operation at the DLR-Institute of Space Systems in Bremen (Germany). The CIF allows the simultaneous irradiation with three light sources and with a dual beam irradiation system for the bombardment of materials with electrons and protons having energies up to 100 keV. It is eminently suitable to perform a large variety of irradiation procedures that are similar to those which appear at different dist...

Renger, Thomas; Witzke, Andreas; Geppert, Ulrich

2014-01-01T23:59:59.000Z

243

Localized Deformation and Fracture in Neutron Irradiated Zircaloy-2  

Science Journals Connector (OSTI)

A detailed examination of the deformation bands and the fracture surface morphologies was made with neutron irradiated Zircaloy-2 sheet that had been prepared with similar compositions and microstructures, but...

H. S. Rosenbaum; G. F. Rieger; D. Lee

1974-08-01T23:59:59.000Z

244

Sandis irradiator for dried sewage solids. Final safety analysis report  

SciTech Connect

Analyses of the hazards associated with the operation of the Sandia irradiator for dried sewage solids, as well as methods and design considerations to minimize these hazards, are presented in accordance with DOE directives.

Morris, M.

1980-07-01T23:59:59.000Z

245

Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts associated with the U.S. Department of Energy proposed action to conduct a lead test assembly program to confirm the viability of using a commercial light water reactor to produce tritium. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 22, 1997 EA-1210: Finding of No Significant Impact Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington July 22, 1997 EA-1210: Final Environmental Assessment

246

Microstructural and Mechanical Property Changes in Ion Irradiated Tunsgten  

E-Print Network (OSTI)

on the sustainability of tungsten as a plasma facing material (PFM). During operation, PFM must withstand harsh conditions with combined effects from high temperature, mechanical stress, irradiation, transmutation, and the production of hydrogen (H) and helium (He...

General, Michael

2013-04-08T23:59:59.000Z

247

Irradiation Assisted Grain Boundary Segregation in Steels  

SciTech Connect

The understanding of radiation-induced grain boundary segregation (RIS) has considerably improved over the past decade. New models have been introduced and much effort has been devoted to obtaining comprehensive information on segregation from the literature. Analytical techniques have also improved so that chemical analysis of layers 1 nm thick is almost routine. This invited paper will review the major methods used currently for RIS prediction: namely, Rate Theory, Inverse Kirkendall, and Solute Drag approaches. A summary is made of the available data on phosphorus RIS in reactor pressure vessel (RPV) steels. This will be discussed in the light of the predictions of the various models in an effort to show which models are the most reliable and easy to use for forecasting P segregation behaviour in steels. A consequence of RIS in RPV steels is a radiation induced shift in the ductile to brittle transition temperature (DBTT). It will be shown how it is possible to relate radiation-induced P segregation levels to DBTT shift. Examples of this exercise will be given for RPV steels and for ferritic steels being considered for first wall fusion applications. Cr RIS in high alloy stainless steels and associated irradiation-assisted stress corrosion cracking (IASCC) will be briefly discussed. (authors)

Lu, Zheng; Faulkner, Roy G. [IPTME, Loughborough University, Loughborough, Leics (United Kingdom)

2008-07-01T23:59:59.000Z

248

Irradiation Effects on Human Cortical Bone Fracture Behavior  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation Effects on Human Irradiation Effects on Human Cortical Bone Fracture Behavior Irradiation Effects on Human Cortical Bone Fracture Behavior Print Wednesday, 28 July 2010 00:00 Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in bone. However, the role that irradiation plays in these high-exposure experiments, and how it affects the properties of bone tissue, are not yet fully understood. A team of researchers led by Robert O. Ritchie at the Lawrence Berkeley National Laboratory and the University of California, Berkeley used synchrotron radiation micro-tomography at Advanced Light Source Beamline 8.3.2 to investigate changes in crack path and toughening mechanisms in human cortical bone with increased exposure to radiation, finding that exposure to high levels of irradiation can lead to drastic losses in strength, ductility, and toughness.

249

USE OF SILICON CARBIDE MONITORS IN ATR IRRADIATION TESTING  

SciTech Connect

In April 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) a National Scientific User Facility (NSUF) to advance US leadership in nuclear science and technology. By attracting new users from universities, laboratories, and industry, the ATR will support basic and applied nuclear research and development and help address the nation's energy security needs. In support of this new program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced temperature sensors for irradiation testing. Although most efforts emphasize sensors capable of providing real-time data, selected tasks have been completed to enhance sensors provided in irradiation locations where instrumentation leads cannot be included, such as drop-in capsule and Hydraulic Shuttle Irradiation System (HSIS) or 'rabbit' locations. For example, silicon carbide (SiC) monitors are now available to detect peak irradiation temperatures between 200°C and 800°C. Using a resistance measurement approach, specialized equipment installed at INL's High Temperature Test Laboratory (HTTL) and specialized procedures were developed to ensure that accurate peak irradiation temperature measurements are inferred from SiC monitors irradiated at the ATR. Comparison examinations were completed by INL to demonstrate this capability, and several programs currently rely on SiC monitors for peak temperature detection. This paper discusses the use of SiC monitors at the ATR, the process used to evaluate them at the HTTL, and presents representative measurements taken using SiC monitors.

K. L. Davis; B. Chase; T. Unruh; D. Knudson; J. L. Rempe

2012-07-01T23:59:59.000Z

250

TGF-? signaling plays an important role in resisting ?-irradiation  

SciTech Connect

Transforming growth factor-?1 (TGF-?1) regulates various biological processes, including differentiation, bone remodeling and angiogenesis, and is particularly important as a regulator of homeostasis and cell growth in normal tissue. Interestingly, some studies have reported that TGF-?1 induces apoptosis through induction of specific genes, whereas others suggest that TGF-?1 inhibits apoptosis and facilitates cell survival. Resolving these discrepancies, which may reflect differences in cellular context, is an important research priority. Here, using the parental mink lung epithelial cell line, Mv1Lu, and its derivatives, R1B and DR26, lacking TGF-? receptors, we investigated the involvement of TGF-? signaling in the effects of ?-irradiation. We found that canonical TGF-? signaling played an important role in protecting cells from ?-irradiation. Introduction of functional TGF-? receptors or constitutively active Smads into R1B and DR26 cell lines reduced DNA fragmentation, Caspase-3 cleavage and ?-H2AX foci formation in ?-irradiated cells. Notably, we also found that de novo protein synthesis was required for the radio-resistant effects of TGF-?1. Our data thus indicate that TGF-?1 protected against ?-irradiation, decreasing DNA damage and reducing apoptosis, and thereby enhanced cell survival. - Highlights: ? TGF-?1 pretreatment inhibits ?-irradiation-induced apoptosis. ? TGF-? signaling reduces ?-irradiation-induced ?-H2AX foci formation. ? de novo protein synthesis is necessary for TGF-?1-induced radio-resistance.

An, You Sun; Kim, Mi-Ra [Division of Radiation Effects, Korea Institute of Radiation and Medical Sciences, Seoul (Korea, Republic of); Lee, Seung-Sook [Laboratory of Experimental Pathology, Korea Institute of Radiation and Medical Sciences, Seoul (Korea, Republic of); Lee, Yun-Sil [College of Pharmacy and Division of Life Science and Pharmaceuticals, Ewha Womans University, Seoul (Korea, Republic of); Chung, Eunkyung [Department of Genetic Engineering, College of Life Science, Kyung-Hee University, Yongin, Gyeonggi-do (Korea, Republic of); Song, Jie-Young [Division of Radiation Cancer Research, Korea Institute of Radiation and Medical Sciences, Seoul (Korea, Republic of); Lee, Jeeyong, E-mail: jeeyongl@gmail.com [Division of Radiation Effects, Korea Institute of Radiation and Medical Sciences, Seoul (Korea, Republic of); Yi, Jae Youn, E-mail: yjy_71@kcch.re.kr [Division of Radiation Effects, Korea Institute of Radiation and Medical Sciences, Seoul (Korea, Republic of)

2013-02-15T23:59:59.000Z

251

A stable isotope dual-labelling approach to detect multiple insemination in un-irradiated and irradiated Anopheles arabiensis mosquitoes  

Science Journals Connector (OSTI)

The effect of irradiation on the incidence of multiple insemination in a laboratory strain of Anopheles arabiensis is described. Multiple insemination was studied by labelling semen with different stable isotopes. Image: Spermatozoa inside the testes of An. arabiensis.

Michelle EH Helinski; Rebecca C Hood; Bart GJ Knols

2008-04-10T23:59:59.000Z

252

Detection of Irradiated Ingredients Included in Low Quantity in Non-irradiated Food Matrix. 2. ESR Analysis of Mechanically Recovered Poultry Meat and TL Analysis of Spices  

Science Journals Connector (OSTI)

Protocols EN 1786 and EN 1788 for the detection of irradiated food by electron spin resonance spectroscopy (ESR) and thermoluminescence (TL) were not conceived for the detection of irradiated ingredients included in low concentration in nonirradiated ...

Eric Marchioni; Péter Horvatovich; Helčne Charon; Florent Kuntz

2005-04-16T23:59:59.000Z

253

Comparison of /sup 32/P therapy and sequential hemibody irradiation (HBI) for bony metastases as methods of whole body irradiation  

SciTech Connect

We report a retrospective study of 15 patients with prostate carcinoma and diffuse bone metastases treated with sodium /sup 32/P for palliation of pain at Downstate Medical Center and Kings County Hospital from 1973 to 1978. The response rates, duration of response, and toxicities are compared with those of other series of patients treated with /sup 32/P and with sequential hemibody irradiation. The response rates and duration of response are similar with both modalities ranging from 58 to 95% with a duration of 3.3 to 6 months with /sup 32/P and from 75 to 86% with a median duration of 5.5 months with hemibody irradiation. There are significant differences in the patterns of response and in the toxicities of the two treatment methods. Both methods cause significant bone marrow depression. Acute radiation syndrome, radiation pneumonitis, and alopecia are seen with sequential hemibody irradiation and not with /sup 32/P, but their incidence can be reduced by careful treatment planning. Hemibody irradiation can provide pain relief within 24 to 48 h, while /sup 32/P may produce an initial exacerbation of pain. Lower hemibody irradiation alone is less toxic than either upper hemibody irradiation or /sup 32/P treatment.

Aziz, H.; Choi, K.; Sohn, C.; Yaes, R.; Rotman, M.

1986-06-01T23:59:59.000Z

254

Pulsed laser irradiation of metal multilayers.  

SciTech Connect

Vapor-deposited, exothermic metal-metal multilayer foils are an ideal class of materials for detailed investigations of pulsed laser-ignited chemical reactions. Created in a pristine vacuum environment by sputter deposition, these high purity materials have well-defined reactant layer thicknesses between 1 and 1000 nm, minimal void density and intimate contact between layers. Provided that layer thicknesses are made small, some reactive metal-metal multilayer foils can be ignited at a point by laser irradiation and exhibit subsequent high-temperature, self-propagating synthesis. With this presentation, we describe the pulsed laser-induced ignition characteristics of a single multilayer system (equiatomic Al/Pt) that exhibits self-propagating synthesis. We show that the thresholds for ignition are dependent on (i) multilayer design and (ii) laser pulse duration. With regard to multilayer design effects on ignition, there is a large range of multilayer periodicity over which ignition threshold decreases as layer thicknesses are made small. We attribute this trend of decreased ignition threshold to reduced mass transport diffusion lengths required for rapid exothermic mixing. With regard to pulse duration effects, we have determined how ignition threshold of a single Al/Pt multilayer varies with pulse duration from 10{sup -2} to {approx} 10{sup -13} sec (wavelength and spot size are held constant). A higher laser fluence is required for ignition when using a single laser pulse {approx} 100 fs or 1 ps compared with nanosecond or microsecond exposure, and we attribute this, in part, to the effects of reactive material being ablated when using the shorter pulse durations. To further understand these trends and other pulsed laser-based processes, our discussion concludes with an analysis of the heat-affected depths in multilayers as a function of pulse duration.

Adams, David Price; McDonald, Joel Patrick

2010-11-01T23:59:59.000Z

255

EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS (REVISION 1)  

SciTech Connect

Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retained their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Revision 1 adds a comparison with results of a study of tritium exposed EPDM. The amount of gas produced by the gamma irradiation was found to be equivalent to about 280 days exposure to initially pure tritium gas at one atmosphere. The glass transition temperature of the tritium exposed EPDM rose about 10 ?C. over 280 days, while no glass transition temperature change was observed for gamma irradiated EPDM. This means that gamma irradiation in deuterium cannot be used as a surrogate for tritium exposure.

Clark, E.

2013-09-13T23:59:59.000Z

256

AGR-2 IRRADIATION TEST FINAL AS-RUN REPORT  

SciTech Connect

This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test contained six independently controlled and monitored capsules. Each U.S. capsule contained 12 compacts of either UCO or UO2 AGR coated fuel. No fuel particles failed during the AGR-2 irradiation. Final burnup values on a per compact basis ranged from 7.26 to 13.15% FIMA (fissions per initial heavy-metal atom) for UCO fuel, and 9.01 to 10.69% FIMA for UO2 fuel, while fast fluence values ranged from 1.94 to 3.47´1025 n/m2 (E >0.18 MeV) for UCO fuel, and from 3.05 to 3.53´1025 n/m2 (E >0.18 MeV) for UO2 fuel. Time-average volume-average (TAVA) temperatures on a capsule basis at the end of irradiation ranged from 987°C in Capsule 6 to 1296°C in Capsule 2 for UCO, and from 996 to 1062°C in UO2-fueled Capsule 3. By the end of the irradiation, all of the installed thermocouples (TCs) had failed. Fission product release-to-birth (R/B) ratios were quite low. In the UCO capsules, R/B values during the first three cycles were below 10-6 with the exception of the hotter Capsule 2, in which the R/Bs reached 2´10-6. In the UO2 capsule (Capsule 3), the R/B values during the first three cycles were below 10-7. R/B values for all following cycles are not reliable due to gas flow and cross talk issues.

Collin Blaise

2014-07-01T23:59:59.000Z

257

Irradiation Effects on Human Cortical Bone Fracture Behavior  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation Effects on Human Cortical Bone Fracture Behavior Print Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in bone. However, the role that irradiation plays in these high-exposure experiments, and how it affects the properties of bone tissue, are not yet fully understood. A team of researchers led by Robert O. Ritchie at the Lawrence Berkeley National Laboratory and the University of California, Berkeley used synchrotron radiation micro-tomography at Advanced Light Source Beamline 8.3.2 to investigate changes in crack path and toughening mechanisms in human cortical bone with increased exposure to radiation, finding that exposure to high levels of irradiation can lead to drastic losses in strength, ductility, and toughness.

258

Irradiation Effects on Human Cortical Bone Fracture Behavior  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation Effects on Human Cortical Bone Fracture Behavior Print Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in bone. However, the role that irradiation plays in these high-exposure experiments, and how it affects the properties of bone tissue, are not yet fully understood. A team of researchers led by Robert O. Ritchie at the Lawrence Berkeley National Laboratory and the University of California, Berkeley used synchrotron radiation micro-tomography at Advanced Light Source Beamline 8.3.2 to investigate changes in crack path and toughening mechanisms in human cortical bone with increased exposure to radiation, finding that exposure to high levels of irradiation can lead to drastic losses in strength, ductility, and toughness.

259

Irradiation Effects on Human Cortical Bone Fracture Behavior  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation Effects on Human Cortical Bone Fracture Behavior Print Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in bone. However, the role that irradiation plays in these high-exposure experiments, and how it affects the properties of bone tissue, are not yet fully understood. A team of researchers led by Robert O. Ritchie at the Lawrence Berkeley National Laboratory and the University of California, Berkeley used synchrotron radiation micro-tomography at Advanced Light Source Beamline 8.3.2 to investigate changes in crack path and toughening mechanisms in human cortical bone with increased exposure to radiation, finding that exposure to high levels of irradiation can lead to drastic losses in strength, ductility, and toughness.

260

Irradiation Effects on Human Cortical Bone Fracture Behavior  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation Effects on Human Cortical Bone Fracture Behavior Print Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in bone. However, the role that irradiation plays in these high-exposure experiments, and how it affects the properties of bone tissue, are not yet fully understood. A team of researchers led by Robert O. Ritchie at the Lawrence Berkeley National Laboratory and the University of California, Berkeley used synchrotron radiation micro-tomography at Advanced Light Source Beamline 8.3.2 to investigate changes in crack path and toughening mechanisms in human cortical bone with increased exposure to radiation, finding that exposure to high levels of irradiation can lead to drastic losses in strength, ductility, and toughness.

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Irradiation-induced composition patterns in binary solid solutions  

SciTech Connect

A theoretical/computational model for the irradiation-driven compositional instabilities in binary solid solutions has been developed. The model is suitable for investigating the behavior of structural alloys and metallic nuclear fuels in a reactor environment as well as the response of alloy thin films to ion beam irradiation. The model is based on a set of reaction-diffusion equations for the dynamics of vacancies, interstitials, and lattice atoms under irradiation. The dynamics of these species includes the stochastic generation of defects by collision cascades as well as the defect reactions and diffusion. The atomic fluxes in this model are derived based on the transitions of lattice defects. The set of reaction-diffusion equations are stiff, hence a stiffly stable method, also known as the Gear method, has been used to numerically approximate the equations. For the Cu-Au alloy in the solid solution regime, the model results demonstrate the formation of compositional patterns under high-temperature particle irradiation, with Fourier space properties (Fourier spectrum, average wavelength, and wavevector) depending on the cascade damage characteristics, average composition, and irradiation temperature.

Dubey, Santosh; El-Azab, Anter [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47906 (United States)] [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47906 (United States)

2013-09-28T23:59:59.000Z

262

Consequences of low dose irradiation in the CNS  

NLE Websites -- All DOE Office Websites (Extended Search)

Consequences of low dose irradiation in the CNS Consequences of low dose irradiation in the CNS Bertrand Tseng University of California Abstract Radiation-induced oxidative stress can impact the physiologic function of multipotent neural stem and precursor cells by activating redox-sensitive signaling cascades that can alter radiosensitivity, mitochondrial function, and cell fate. Many of these signaling pathways depend on the nature, magnitude and duration of the specific reactive species involved, features that dictate in large part whether radiation-induced changes are harmful or beneficial to the organism. We have shown that acute low dose irradiation (2-20 cGy) can elicit significant increases in reactive oxygen (ROS) and nitrogen (RNS) species over several days to weeks. These redox changes can

263

Low Dose Radiation Research Program: The Progeny of Irradiated Mammary  

NLE Websites -- All DOE Office Websites (Extended Search)

Progeny of Irradiated Mammary Epithelial Cells Exhibit a Phenotype Progeny of Irradiated Mammary Epithelial Cells Exhibit a Phenotype Characteristic of Malignancy Mary H. Barcellos-Hoff, R.L. Henshall-Powell, M.J. Bissell, and B. Parvin Lawrence Berkeley National Laboratory, Life Sciences Division We have proposed that the ability of radiation to induce altered microenvironments affects the frequency and features of neoplastic progression. Thus, we have sought to characterize the irradiated microenvironment and determine how these events contribute to mammary carcinogenesis. By using imaging bioinformatics to analyze mouse and human models of breast cancer we have now examined cell adhesion molecules (CAMs) critical for tissue-specific organization and function. We found that 1) radiation-induced microenvironments can contribute to neoplastic potential

264

An Instrument Design Concept for Measuring Solar Diffuse Irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

An Instrument Design Concept for Measuring Solar Diffuse Irradiance An Instrument Design Concept for Measuring Solar Diffuse Irradiance Rutledge, Charles NASA Langley Research Center Schuster, Greg NASA Langley Research Center Category: Instruments Recent effort towards the development of a diffuse horizontal solar irradiance standard group [Michalsky et.al. 2005] using well calibrated pyranometers suggested that inter-instrument differences in cosine response characteristics may be problematic. They showed a calibration method using overcast skies (an approximately uniform radiance distribution) produced superior diffuse radiometer performance when compared to a calibration method using clear skies (which have a radiance distribution systematically varying from horizon to the near vicinity of the sun). The proposed instrument offers a significantly different basic design compared to

265

Irradiated Materials Examination and Testing Facility (IMET) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiated Materials Examination and Testing Facility Irradiated Materials Examination and Testing Facility May 30, 2013 The Irradiated Material Examination and Testing (IMET) Facility was designed and built as a hot cell facility. It is a two-story block and brick structure with a two-story high bay that houses six heavily shielded cells and an array of sixty shielded storage wells. It includes the Specimen Prep Lab (SPL) with its associated laboratory hood and glove boxes, an Operating Area, where the control and monitoring instruments supporting the in-cell test equipment are staged, a utility corridor, a hot equipment storage area, a tank vault room, office space, a trucking area with access to the high bay, and an outside steel building for storage. The tests and examinations are conducted in six examination "hot" cells

266

CACI: Cesium-137 Agricultural Commodities Irradiator: Final design report  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the 137 Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of Irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site.

Subbaraman, G.; Conners, C.C.

1986-12-19T23:59:59.000Z

267

[Grain boundary and interface kinetics during ion irradiation  

SciTech Connect

Proposed here is renewed support of a research program focused on interface motion and phase transformation during ion irradiation, with emphasis on elemental semiconductors. Broadly speaking, the aims of this program are to explore defect kinetics in amorphous and crystalline semiconductors, and to relate defect dynamics to interface motion and phase transformations. Over the last three years, we initiated a program under DOE support to explore crystallization and amorphization of elemental semiconductors under irradiation. This research has enabled new insights about the nature of defects in amorphous semiconductors and about microstructural evolution in the early stages of crystallization. In addition, we have demonstrated almost arbitrary control over the relative rates of crystal nucleation and crystal growth in silicon. As a result, the impinged grain microstructure of thin (100 nm) polycrystalline films crystallized under irradiation can be controlled with grain sizes ranging from a few nanometers to several micrometers, which may have interesting technological implications.

Atwater, H.A.

1991-12-31T23:59:59.000Z

268

(Grain boundary and interface kinetics during ion irradiation)  

SciTech Connect

Proposed here is renewed support of a research program focused on interface motion and phase transformation during ion irradiation, with emphasis on elemental semiconductors. Broadly speaking, the aims of this program are to explore defect kinetics in amorphous and crystalline semiconductors, and to relate defect dynamics to interface motion and phase transformations. Over the last three years, we initiated a program under DOE support to explore crystallization and amorphization of elemental semiconductors under irradiation. This research has enabled new insights about the nature of defects in amorphous semiconductors and about microstructural evolution in the early stages of crystallization. In addition, we have demonstrated almost arbitrary control over the relative rates of crystal nucleation and crystal growth in silicon. As a result, the impinged grain microstructure of thin (100 nm) polycrystalline films crystallized under irradiation can be controlled with grain sizes ranging from a few nanometers to several micrometers, which may have interesting technological implications.

Atwater, H.A.

1991-01-01T23:59:59.000Z

269

AGR-1 Irradiation Test Final As-Run Report  

SciTech Connect

This document presents the as-run analysis of the AGR-1 irradiation experiment. AGR-1 is the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the US Department of Energy (DOE) as part of the Next-Generation Nuclear Plant (NGNP) project. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment was irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) for a total duration of 620 effective full power days of irradiation. Irradiation began on December 24, 2006 and ended on November 6, 2009 spanning 13 ATR cycles and approximately three calendar years. The test contained six independently controlled and monitored capsules. Each capsule contained 12 compacts of a single type, or variant, of the AGR coated fuel. No fuel particles failed during the AGR-1 irradiation. Final burnup values on a per compact basis ranged from 11.5 to 19.6 %FIMA, while fast fluence values ranged from 2.21 to 4.39 ?1025 n/m2 (E >0.18 MeV). We’ll say something here about temperatures once thermal recalc is done. Thermocouples performed well, failing at a lower rate than expected. At the end of the irradiation, nine of the originally-planned 19 TCs were considered functional. Fission product release-to-birth (R/B) ratios were quite low. In most capsules, R/B values at the end of the irradiation were at or below 10-7 with only one capsule significantly exceeding this value. A maximum R/B of around 2?10-7 was reached at the end of the irradiation in Capsule 5. Several shakedown issues were encountered and resolved during the first three cycles. These include the repair of minor gas line leaks; repair of faulty gas line valves; the need to position moisture monitors in regions of low radiation fields for proper functioning; the enforcement of proper on-line data storage and backup, the need to monitor thermocouple performance, correcting for detector spectral gain shift, and a change in the mass flow rate range of the neon flow controllers.

Blaise P. Collin

2012-06-01T23:59:59.000Z

270

Irradiation behavior of miniature experimental uranium silicide fuel plates  

SciTech Connect

Uranium silicides, because of their relatively high uranium density, were selected as candidate dispersion fuels for the higher fuel densities required in the Reduced Enrichment Research and Test Reactor (RERTR) Program. Irradiation experience with this type of fuel, however, was limited to relatively modest fission densities in the bulk from, on the order of 7 x 10/sup 20/ cm/sup -3/, far short of the approximately 20 x 10/sup 20/ cm/sup -3/ goal established for the RERTR program. The purpose of the irradiation experiments on silicide fuels on the ORR, therefore, was to investigate the intrinsic irradiation behavior of uranium silicide as a dispersion fuel. Of particular interest was the interaction between the silicide particles and the aluminum matrix, the swelling behavior of the silicide particles, and the maximum volume fraction of silicide particles that could be contained in the aluminum matrix.

Hofman, G.L.; Neimark, L.A.; Mattas, R.F.

1983-01-01T23:59:59.000Z

271

Radiation Damage Study in Natural Zircon Using Neutrons Irradiation  

SciTech Connect

Changes of atomic displacements in crystalline structure of natural zircon (ZrSiO{sub 4}) can be studied by using neutron irradiation on the surface of zircon and compared the data from XRD measurements before and after irradiation. The results of neutron irradiation on natural zircon using Pneumatic Transfer System (PTS) at PUSPATI TRIGA Research Reactor in the Malaysian Nuclear Agency are discussed in this work. The reactor produces maximum thermal power output of 1 MWatt and the neutron flux of up to 1x10{sup 13} ncm{sup -2}s{sup -1}. From serial decay processes of uranium and thorium radionuclides in zircon crystalline structure, the emission of alpha particles can produce damage in terms of atomic displacements in zircon. Hence, zircon has been extensively studied as a possible candidate for immobilization of fission products and actinides.

Lwin, Maung Tin Moe; Amin, Yusoff Mohd.; Kassim, Hasan Abu [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mohamed, Abdul Aziz [Materials Technology Group, Industrial Technology Division, Malaysian Nuclear Agency Bangi, 43000 Kajang, Selangor Darul Ehsan (Malaysia); Karim, Julia Abdul [Reactor Physics Section, Nuclear Power Division, Malaysian Nuclear Agency Bangi, 43000 Kajang, Selangor Darul Ehsan (Malaysia)

2011-03-30T23:59:59.000Z

272

Neutron and gamma irradiation damage to organic materials.  

SciTech Connect

This document discusses open literature reports which investigate the damage effects of neutron and gamma irradiation on polymers and/or epoxies - damage refers to reduced physical chemical, and electrical properties. Based on the literature, correlations are made for an SNL developed epoxy (Epon 828-1031/DDS) with an expected total fast-neutron fluence of {approx}10{sup 12} n/cm{sup 2} and a {gamma} dosage of {approx}500 Gy received over {approx}30 years at < 200 C. In short, there are no gamma and neutron irradiation concerns for Epon 828-1031/DDS. To enhance the fidelity of our hypotheses, in regards to radiation damage, we propose future work consisting of simultaneous thermal/irradiation (neutron and gamma) experiments that will help elucidate any damage concerns at these specified environmental conditions.

White, Gregory Von, II; Bernstein, Robert

2012-04-01T23:59:59.000Z

273

Irradiation hardening in unalloyed and ODS molybdenum during low dose neutron irradiation at 300 and 600?C  

SciTech Connect

Unalloyed molybdenum and oxide dispersion strengthened (ODS) molybdenum were irradiated at 300 C and 600 C in HFIR to neutron fluences of 0.2, 2.1, and 24.3 x 10{sup 24} n/m{sup 2} (E > 0.1 MeV). The size and number density of voids and loops as well as the measured irradiation hardening and electrical resistivity were found to increase sub-linearly with fluence. This supports the idea that the formation of the extended defects that produce irradiation hardening in molybdenum is the result of a nucleation and growth process rather than the formation of sessile defects directly from the displacement damage cascades. This conclusion is further supported by molecular dynamics (MD) simulations of cascade damage. The unalloyed molybdenum had a low impurity interstitial content with less irradiation hardening and lower change in electrical resistivity than is observed for ODS Mo. This result suggests that high-purity can result in slightly improved resistance to irradiation embrittlement in molybdenum at low fluences.

Snead, Lance Lewis [ORNL; Byun, Thak Sang [ORNL; Leonard, Keith J [ORNL; Smith, Richard W [Bechtel-Bettis, Inc.; Cockeram, Brian V [Bechtel-Bettis, Inc.

2008-01-01T23:59:59.000Z

274

Physiological Interaction of Heart and Lung in Thoracic Irradiation  

SciTech Connect

Introduction: The risk of early radiation-induced lung toxicity (RILT) limits the dose and efficacy of radiation therapy of thoracic tumors. In addition to lung dose, coirradiation of the heart is a known risk factor in the development RILT. The aim of this study was to identify the underlying physiology of the interaction between lung and heart in thoracic irradiation. Methods and Materials: Rat hearts, lungs, or both were irradiated to 20 Gy using high-precision proton beams. Cardiopulmonary performance was assessed using breathing rate measurements and F{sup 18}-fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG-PET) scans biweekly and left- and right-sided cardiac hemodynamic measurements and histopathology analysis at 8 weeks postirradiation. Results: Two to 12 weeks after heart irradiation, a pronounced defect in the uptake of {sup 18}F-FDG in the left ventricle (LV) was observed. At 8 weeks postirradiation, this coincided with LV perivascular fibrosis, an increase in LV end-diastolic pressure, and pulmonary edema in the shielded lungs. Lung irradiation alone not only increased pulmonary artery pressure and perivascular edema but also induced an increased LV relaxation time. Combined irradiation of lung and heart induced pronounced increases in LV end-diastolic pressure and relaxation time, in addition to an increase in right ventricle end-diastolic pressure, indicative of biventricular diastolic dysfunction. Moreover, enhanced pulmonary edema, inflammation and fibrosis were also observed. Conclusions: Both lung and heart irradiation cause cardiac and pulmonary toxicity via different mechanisms. Thus, when combined, the loss of cardiopulmonary performance is intensified further, explaining the deleterious effects of heart and lung coirradiation. Our findings show for the first time the physiological mechanism underlying the development of a multiorgan complication, RILT. Reduction of dose to either of these organs offers new opportunities to improve radiation therapy treatment of thoracic tumors, potentially facilitating increased treatment doses and tumor control.

Ghobadi, Ghazaleh; Veen, Sonja van der [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands) [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Bartelds, Beatrijs [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)] [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Boer, Rudolf A. de [Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)] [Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Dickinson, Michael G. [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)] [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Jong, Johan R. de [Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)] [Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Faber, Hette; Niemantsverdriet, Maarten [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands) [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Brandenburg, Sytze [Kernfysisch Versneller Instituut, University of Groningen, Groningen (Netherlands)] [Kernfysisch Versneller Instituut, University of Groningen, Groningen (Netherlands); Berger, Rolf M.F. [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)] [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)] [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Coppes, Robert P. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands) [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Luijk, Peter van, E-mail: p.van.luijk@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

2012-12-01T23:59:59.000Z

275

The effects of gamma irradiation on Serratia marcescens  

E-Print Network (OSTI)

that there was little difference in the five strains. This suggests that growth rates do not alter the survival curves. The effects of irradiation on pigmentation ability were studied using the wild type, nims, and the more-resistant R-25. Pyrex tubes, 16 x 150 mm...). 5. D. L. Dewey, The X-ray sensitivity of Serratia marcescens. Radiation Res. 19, 64-87 (1963). 6. D. L. Dewey, Effect of irradiation on the ability of Pseudonrtnas to synthesize two inducible enzymes. Radiation Res. 21, 367-75 (1964). 7. F...

Bartlett, William Thomas

1969-01-01T23:59:59.000Z

276

Structural and luminescent properties of electron-irradiated silicon  

SciTech Connect

Structural defects induced by electron irradiation of p-Cz-Si wafers were identified. The influence of the annealing conditions in a chlorine-containing atmosphere on the structural and luminescent properties of the samples was examined. Light-emitting diodes based on electron-irradiated and high-temperature-annealed wafers were fabricated by a vapour-phase epitaxy technique and their luminescence properties were studied. A high-intensity dislocation-related D1 line was observed at 1.6 ?m in the room-temperature electroluminescence spectrum.

Sobolev, N. A.; Loshachenko, A. S. [Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia and Fok Institute of Physics, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Aruev, P. N.; Kalyadin, A. E.; Shek, E. I.; Zabrodskiy, V. V. [Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Shtel'makh, K. F. [Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia and St. Petersburg State Technical University, 195251 St. Petersburg (Russian Federation); Vdovin, V. I. [Rzhanov Institute of Semiconductor Physics, 630090 Novosibirsk (Russian Federation); Xiang, Luelue; Yang, Deren [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, 310027 Hangzhou (China)

2014-02-21T23:59:59.000Z

277

Properties of solar gravity mode signals in total irradiance observations  

SciTech Connect

Further evidence has been found that a significant fraction of the gravity mode power density in the total irradiance observations appears in sidebands of classified eigenfrequencies. These sidebands whose amplitudes vary from year to year are interpreted as harmonics of the rotational frequencies of the nonuniform solar surface. These findings are for non axisymmetric modes and corroborate the findings of Kroll, Hill and Chen for axisymmetric modes. It is demonstrated the the generation of the sidebands lifts the usual restriction on the parity of the eigenfunctions for modes detectable in total irradiance observations. 14 refs.

Kroll, R.J.; Chen, J.; Hill, H.A.

1988-01-01T23:59:59.000Z

278

Detection of ?-Irradiated Sesame Seeds before and after Roasting by Analyzing Photostimulated Luminescence, Thermoluminescence, and Electron Spin Resonance  

Science Journals Connector (OSTI)

Sesame seeds were irradiated using a 60Co irradiator (0?4 kGy) and then roasted (220 °C for 10 min). To identify the irradiation treatment, physical detection methods like photostimulated luminescence (PSL), thermoluminescence (TL), and electron spin ...

Jeongeun Lee; Tusneem Kausar; Byeong-Keun Kim; Joong-Ho Kwon

2008-07-26T23:59:59.000Z

279

U.S. consumers' acceptance and willingness to buy irradiated food  

E-Print Network (OSTI)

in their decisions regarding irradiated foods. Education programs seem to have positive effects on shaping consumer opinion about irradiation, which can improve the safety of food products. Thus, the results of this study provide useful information required...

Poghosyan, Arsen Vahagn

2002-01-01T23:59:59.000Z

280

Radiosensitization Strategies for Enhanced E-beam Irradiation Treatment of Fresh Produce  

E-Print Network (OSTI)

necessary to develop treatments that will reduce their prevalence and numbers on fresh produce. Irradiation is a penetrating nonthermal treatment that effectively eliminates bacteria. Irradiated baby spinach leaves up to 1.0 kGy showed negligible (P>0...

Gomes, Carmen

2011-08-08T23:59:59.000Z

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Conjugated linoleic acid reduces lipid oxidation in irradiated, cooked ground beef patties  

E-Print Network (OSTI)

This study was conducted to examine the antioxidative effect of conjugated linoleic acid (CLA) in irradiated, cooked ground beef patties. The hypothesis was that CLA would be retained during irradiation and would reduce lipid oxidation...

Chae, Sung Hee

2007-09-17T23:59:59.000Z

282

Electron Irradiation Induced Changes of the Electrical Transport Properties of Graphene  

E-Print Network (OSTI)

. In addition, the effect of electron irradiation on a PMMA (Poly Methyl Methacrylate)/Graphene bilayer was studied. We observed a deterioration of the electrical transport properties of a graphene FET. Prior to electron irradiation, we observed that the PMMA...

Woo, Sung Oh

2014-08-06T23:59:59.000Z

283

Trial Production of Examination Gloves from Irradiated Natural Rubber Latex on a Factory Scale  

Science Journals Connector (OSTI)

TRIAL PRODUCTION OF EXAMINATION GLOVES FROM IRRADIATED NATURAL RUBBER LATEX IN FACTORY SCALE: The production of irradiated latex by gamma rays from60...Co at 20 kGy dose in the presence of 1 phr (part hundred rat...

Marga Utama

1994-01-01T23:59:59.000Z

284

E-Print Network 3.0 - alleviates irradiation-induced brain Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

irradiation-induced brain Search Powered by Explorit Topic List Advanced Search Sample search results for: alleviates irradiation-induced brain Page: << < 1 2 3 4 5 > >> 1 ORIGINAL...

285

E-Print Network 3.0 - absorbed fraction internal irradiation...  

NLE Websites -- All DOE Office Websites (Extended Search)

. It gives a simple expression relating the sol fraction Fp to the irradiation dose. As shown in hal-00539984... (cf. table 2). Irradiation at 80C Swelling ratio and...

286

Pyrolysis of Municipal Solid Waste for Syngas Production by Microwave Irradiation  

Science Journals Connector (OSTI)

In the present study, we discuss the application of microwave-irradiated pyrolysis of municipal solid waste (MSW) for total recovery of useful gases and energy. The MSW pyrolysis under microwave irradiation hi...

Vidyadhar V. Gedam; Iyyaswami Regupathi

2012-03-01T23:59:59.000Z

287

Response of nanostructured ferritic alloys to high-dose heavy ion irradiation  

SciTech Connect

A latest-generation aberration-corrected scanning/transmission electron microscope (STEM) is used to study heavy-ion-irradiated nanostructured ferritic alloys (NFAs). Results are presented for STEM X-ray mapping of NFA 14YWT irradiated with 10 MeV Pt to 16 or 160 dpa at -100°C and 750°C, as well as pre-irradiation reference material. Irradiation at -100°C results in ballistic destruction of the beneficial microstructural features present in the pre-irradiated reference material, such as Ti-Y-O nanoclusters (NCs) and grain boundary (GB) segregation. Irradiation at 750°C retains these beneficial features, but indicates some coarsening of the NCs, diffusion of Al to the NCs, and a reduction of the Cr-W GB segregation (or solute excess) content. Ion irradiation combined with the latest-generation STEM hardware allows for rapid screening of fusion candidate materials and improved understanding of irradiation-induced microstructural changes in NFAs.

Parish, Chad M.; White, Ryan M.; LeBeau, James M.; Miller, Michael K.

2014-02-01T23:59:59.000Z

288

A Fiber Optic Spectrometry System for Measuring Irradiance Distributions in Sea Ice Environments  

Science Journals Connector (OSTI)

A fiber optic–based spectrometry system was developed to enable automated, long-term measurements of spectral irradiance in sea ice environments. This system utilizes a single spectrometer module that measures the irradiance transmitted by ...

Hangzhou Wang; Ying Chen; Hong Song; Samuel R. Laney

2014-12-01T23:59:59.000Z

289

Mutation Research 568 (2004) 4148 Detection of chromosomal instability in -irradiated  

E-Print Network (OSTI)

in the progeny at subsequent generations (genomic instability) and in non-irradiated neighbors of irradiated the link between the radiation-induced phenomena of genomic instability and the bystander effect. © 2004

290

E-Print Network 3.0 - argon ion irradiation Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

mathmatiques Collection: Mathematics 3 Straightening Suspended Single Walled Carbon Nanotubes by Ion Irradiation Summary: Straightening Suspended Single Walled Carbon Nanotubes...

291

Electron spin resonance study of proton-irradiation-induced defects in graphite  

SciTech Connect

Electron spin resonance measurements of proton-irradiated graphite have revealed detailed nature of proton-irradiation-induced defects. Our results indicate that proton-irradiation creates confined defect regions of a metallic island surrounded by an insulating magnetic region which ''isolates'' the metallic island inside from the metallic graphite background outside. We have thus come up with a picture of phase separation in proton-irradiated graphite comprising three regions of distinct electrical and magnetic properties.

Won Lee, Kyu; Kweon, H.; Kweon, J. J.; Lee, Cheol Eui [Department of Physics and Institute for Nano Science, Korea University, Seoul 136-713 (Korea, Republic of)

2010-02-15T23:59:59.000Z

292

RIS-M-2599 DETERMINATION OF FISSION PRODUCTS IN IRRADIATED FUEL BY X-RAY  

E-Print Network (OSTI)

irradiation examinations (PIE) provide data on both i n t e - gral and local levels of release. Volumetric

293

Mossbauer Spectroscopic Study of Gamma Irradiation on the Structural Properties of Hematite, Magnetite and Limonite Concrete for Nuclear Reactor Shielding  

Science Journals Connector (OSTI)

This work investigate the effect of gamma irradiation on a heavy type of concrete, constructed for nuclear reactor shield. The effect of gamma irradiation was...

N.A. Eissa; M.S.I. Kany; A.S. Mohamed; A.A. Sallam; M.H. El Fouly

294

Identification of peptides that bind to irradiated pancreatic tumor cells  

SciTech Connect

Purpose: Peptides targeting tumor vascular cells or tumor cells themselves have the potential to be used as vectors for delivering either DNA in gene therapy or antitumor agents in chemotherapy. We wished to determine if peptides identified by phage display could be used to target irradiated pancreatic cancer cells. Methods and Materials: Irradiated Capan-2 cells were incubated with 5 x 10{sup 12} plaque-forming units of a phage display library. Internalized phage were recovered and absorbed against unirradiated cells. After five such cycles of enrichment, the recovered phage were subjected to DNA sequencing analysis and synthetic peptides made. The binding of both phage and synthetic peptides was evaluated by fluorescence staining and flow cytometry in vitro and in vivo. Results: We identified one 12-mer peptide (PA1) that binds to irradiated Capan-2 pancreatic adenocarcinoma cells but not to unirradiated cells. The binding of peptide was significant after 48 h incubation with cells. In vivo experiments with Capan-2 xenografts in nude mice demonstrated that these small peptides are able to penetrate tumor tissue after intravenous injections and bind specifically to irradiated tumor cells. Conclusion: These data suggest that peptides can be identified that target tumors with radiation-induced cell markers and may be clinically useful.

Huang Canhui [Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Liu, Xiang Y. [Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Rehemtulla, Alnawaz [Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States)]. E-mail: tsl@med.umich.edu

2005-08-01T23:59:59.000Z

295

SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS  

E-Print Network (OSTI)

SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS Detlev Heinemann Oldenburg.girodo@uni-oldenburg.de ABSTRACT Solar energy is expected to contribute major shares of the future global energy supply. Due to its and solar energy conversion processes has to account for this behaviour in respective operating strategies

Heinemann, Detlev

296

Development of a chemical dosimeter for electron beam food irradiation  

E-Print Network (OSTI)

uniform irradiation treatment on apple-phantoms (a complex shaped target) and GAFCHROMIC® HD-810 films using electron beams from (1) a 2 MeV Van de Graaff (VDG) accelerator, (2) a 10 MeV Linear Accelerator (LINAC), and (3) X-rays from a 5 MeV LINAC...

Rivadeneira, Ramiro Geovanny

2006-08-16T23:59:59.000Z

297

Expansion of LiF under Neutron Irradiation  

Science Journals Connector (OSTI)

The strain gauge method is applied to the relative linear expansion of LiF under neutron irradiation. The result is (9.9±0.3)×10-5 per 1015 thermal neutrons. An estimate of the number of displacements is in adequate agreement with theory.

D. Binder and W. J. Sturm

1957-07-01T23:59:59.000Z

298

Physiological Responses of Acropora cervicornis to Increased Solar Irradiance  

E-Print Network (OSTI)

Physiological Responses of Acropora cervicornis to Increased Solar Irradiance Juan L. Torres*1 structure can be greatly debilitated due to a reduction in the photosynthetic capacity of their symbionts organic materials (7). In the tropics, penetration of UVR is also enhanced due to a low solar zenith angle

Gilbes, Fernando

299

Reduction in Ductility of Austenitic Stainless Steel after Irradiation  

Science Journals Connector (OSTI)

... We have irradiated 20 per cent chromium, 25 per cent nickel : niobium stabilized steel foils with a-particles and lithium ions respectively and determined the relative effect on the ductility ... 0-008 Tensile specimens with a parallel gauge length of 0 75 in. were die stamped from 0 001-in. thick strip and annealed at 750 C for 15 min ...

P. R. B. HIGGINS; A. C. ROBERTS

1965-06-19T23:59:59.000Z

300

Irradiation test of electrical insulation materials performed at  

E-Print Network (OSTI)

as possible · The insulation material penetration by the beam should be as large as possible #12;Beam energy required for the sample irradiation Depth of bean penetration in water for various beam energy value H20. Wronka, Soltan Inst. #12;Dose rate in function of distance form the accelerator gun for 6 MeV structure 6

McDonald, Kirk

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

RETHINKING SATELLITE BASED SOLAR IRRADIANCE MODELLING R. W. Mueller  

E-Print Network (OSTI)

. Solar irra- diance schemes provide these data using weather satellites such as METEOSAT and MSGRETHINKING SATELLITE BASED SOLAR IRRADIANCE MODELLING R. W. Mueller , K.F. Dagestad ¡ , R transfer models (RTM) using the information of atmospheric parameters retrieved from the MSG satellite

Heinemann, Detlev

302

Vacuum aperture isolator for retroreflection from laser-irradiated target  

DOE Patents (OSTI)

The disclosure is directed to a vacuum aperture isolator for retroreflection of a laser-irradiated target. Within a vacuum chamber are disposed a beam focusing element, a disc having an aperture and a recollimating element. The edge of the focused beam impinges on the edge of the aperture to produce a plasma which refracts any retroreflected light from the laser's target.

Benjamin, Robert F. (Los Alamos, NM); Mitchell, Kenneth B. (Los Alamos, NM)

1980-01-01T23:59:59.000Z

303

2nd High-Power Targetry Workshop MATERIAL IRRADIATION STUDIES  

E-Print Network (OSTI)

2nd High-Power Targetry Workshop MATERIAL IRRADIATION STUDIES FOR HIGH-INTENSITY PROTON BEAM thing: 4 MW on what spot size? #12;2nd High-Power Targetry Workshop Is there hope? Several "smart" materials or new composites may be able to meet some of the desired requirements: - new graphite grades

McDonald, Kirk

304

Thermoelastic Generation of Ultrasound by Line-Focused Laser Irradiation  

E-Print Network (OSTI)

Thermoelastic Generation of Ultrasound by Line-Focused Laser Irradiation Irene Arias and Jan D 60208, USA Abstract A two-dimensional theoretical model for the field generated in the thermoelas- tic for the model. Some representative results are presented to illustrate the generated field and provide insight

Huerta, Antonio

305

Dose characterization of the rad source 2400 x-ray irradiator  

E-Print Network (OSTI)

The RS 2400 irradiator has been looked to as a replacement for discontinued gamma irradiators. The RS 2400 has a cylindrical, rather than point, x-ray source, which yields higher dose rates. The irradiator unit allows the user to set the current...

Wagner, Jennifer Ann Koop

2009-05-15T23:59:59.000Z

306

Assessing the potential and limitations of heavy oil upgrading by electron beam irradiation  

E-Print Network (OSTI)

and effect of different solvents on the viscosity of irradiated crude oil by comparing selected physical properties of irradiated samples to a non-irradiated control group; � Investigate effect of e-beam radiation on the yields of light fractions...

Zhussupov, Daniyar

2007-04-25T23:59:59.000Z

307

Total Solar Irradiance Calibration Transfer Experiment/TIM Frequently Asked Questions  

E-Print Network (OSTI)

TCTE Total Solar Irradiance Calibration Transfer Experiment/TIM Frequently Asked Questions What is the purpose of the TCTE mission? The Total Solar Irradiance Calibration Transfer Experiment (TCTE to monitor changes in solar irradiance at the top of the Earth's atmosphere. TCTE will launch as one of five

Mojzsis, Stephen J.

308

Irradiation and annealing of p-type silicon carbide  

SciTech Connect

The development of the technology of semiconductor devices based on silicon carbide and the beginning of their industrial manufacture have made increasingly topical studies of the radiation hardness of this material on the one hand and of the proton irradiation to form high-receptivity regions on the other hand. This paper reports on a study of the carrier removal rate (V{sub d}) in p-6H-SiC under irradiation with 8 MeV protons and of the conductivity restoration in radiation- compensated epitaxial layers of various p-type silicon carbide polytypes. V{sub d} was determined by analysis of capacitance-voltage characteristics and from results of Hall effect measurements. It was found that the complete compensation of samples with the initial value of Na - Nd ? 1.5 × 10{sup 18} cm{sup ?3} occurs at an irradiation dose of ?1.1 × 10{sup 16} cm{sup ?2}. It is shown that specific features of the sublimation layer SiC (compared to CVD layers) are clearly manifested upon the gamma and electron irradiation and are hardly noticeable under the proton and neutron irradiation. It was also found that the radiation-induced compensation of SiC is retained after its annealing at ?1000°C. The conductivity is almost completely restored at T ? 1200°C. This character of annealing of the radiation compensation is independent of a silicon carbide polytype and the starting doping level of the epitaxial layer. The complete annealing temperatures considerably exceed the working temperatures of SiC-based devices. It is shown that the radiation compensation is a promising method in the technology of high-temperature devices based on SiC.

Lebedev, Alexander A.; Bogdanova, Elena V.; Grigor'eva, Maria V.; Lebedev, Sergey P. [A.F. Ioffe Physical-Technical Institute, St. Petersburg, 194021 (Russian Federation); Kozlovski, Vitaly V. [St. Petersburg State Polytechnic University, St. Petersburg, 195251 (Russian Federation)

2014-02-21T23:59:59.000Z

309

Microscopic analysis of irradiated AGR-1 coated particle fuel compacts  

SciTech Connect

The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak compact-average burnup of 19.5% FIMA with no in-pile failures observed out of 3 x 105 total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Six compacts have been examined, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose from 36 to 79 individual particles near midplane on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer–IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, 981 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in 23% of the particles, and these fractures often resulted in unconstrained kernel protrusion into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer–IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only four classified particles, all in conjunction with IPyC–SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures and IPyC–SiC debonds.

Scott A. Ploger; Paul A. Demkowicz; John D. Hunn; Jay S. Kehn

2014-05-01T23:59:59.000Z

310

Detection of toxic factors after gamma-irradiation in vitro and in vivo  

E-Print Network (OSTI)

its effects in the living organism. Thus, ths irradiation of pure chemlcai compounds was usecl as a first step in order to understand the stf??cts oi' irradiation in vivo. Studies of Daniel and Park (5, 6) showed that toxic factors wnlcn cause... source of gamma-irradiation. The doss rats in this study vaa constant TGG r/minute. The dose rate vas calibrated by a sliver aotixated phosphate glass dosimetry. Different, levels of irradiation vers achiewsd by expoairg the samples to ths irradiation...

Shihabi, Zakariya Kamel

1965-01-01T23:59:59.000Z

311

Microstructure and mechanical behavior of neutron irradiated ultrafine grained ferritic steel  

SciTech Connect

Neutron irradiation effects on ultra-fine grain (UFG) low carbon steel prepared by equal channel angular pressing (ECAP) has been examined. Counterpart samples with conventional grain (CG) sizes have been irradiated alongside with the UFG ones for comparison. Samples were irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to 1.24 dpa. Atom probe tomography revealed manganese, silicon-enriched clusters in both ECAP and CG steel after neutron irradiation. X-ray quantitative analysis showed that dislocation density in CG increased after irradiation. However, no significant change was observed in UFG steel revealing better radiation tolerance.

Ahmad Alsabbagh; Apu Sarkar; Brandon Miller; Jatuporn Burns; Leah Squires; Douglas Porter; James I. Cole; K. L. Murty

2014-10-01T23:59:59.000Z

312

Fusion neutron irradiation of Ni(Si) alloys at high temperature  

SciTech Connect

Two Ni-4% Si alloys, with different cold work levels, are irradiated with 14 MeV fusion neutrons at 623 K, and their Curie temperatures are monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2 MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14 MeV fusion neutrons is only 6 to 7% of that for an identical alloy irradiated by 2 MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6 to 7% for the fusion neutron irradiated sample. 17 refs., 4 figs., 1 tab.

Huang, J.S.; Guinan, M.W.; Hahn, P.A.

1987-09-01T23:59:59.000Z

313

Thermal Stability Enhancement of Polyethylene Separators by Gamma-ray Irradiation for Lithium Ion Batteries  

Science Journals Connector (OSTI)

The thermal stability of polyethylene (PE) separators irradiated by 50, 100, and 150 kGy dose gamma-rays is investigated when they are exposed to high-temperature environments. The gamma-ray irradiated separators have much lower Gurley numbers and higher ionic conductivity than a non-irradiated separator after storage at 100 and 120 °C. These results indicate that the thermal stability of PE separators can be drastically improved by gamma-ray irradiation. Even after storage at 120 °C for 1 h, the gamma-ray irradiated separator is maintaining its own structure. A cell assembled with a gamma-ray irradiated separator exhibits better rate-capability and cyclic performance than a pristine PE separator. The positive effects of gamma-ray irradiation are examined in detail with the purpose of improving battery performance.

Ki Jae Kim; Min-Sik Park; Hansu Kim; Young-Jun Kim

2012-01-01T23:59:59.000Z

314

Ductility loss of ion-irradiated zircaloy-2 in iodine. [55 MeV alpha particles  

SciTech Connect

An ion bombardment simulation technique for neutron irradiation was applied to 'thick' materials to study the effect of radiation damage on the ductility change in Zircaloy-2 in an iodine environment. Specimens were prepared from actual cladding tubes and, prior to the irradiation, they were heat-treated in vacuo at 450, 580, and 700/degree/C for 2 h. Irradiation was performed by 52-MeV alpha particles up to the 0.32 displacements per atom (dpa) at 340/degree/C. Ductility loss begins to appear after 0.03 dpa irradiation, both in iodine and argon gas environments. The iodine presence resulted in ductility reduction, compared with the argon result in all irradiation dose ranges examined. The stress applied during irradiation caused ductility loss to commence at lower dosage than in the case of stress-free irradiation. These results are discussed in relation to the existing stress corrosion cracking models.

Shimada, M.; Terasawa, M.; Yamamoto, S.; Kamei, H.; Koizumi, K.

1981-01-01T23:59:59.000Z

315

Environmental Assessment LEAD TEST ASSEMBLY IRRADIATION AND ANALYSIS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 10 Environmental Assessment LEAD TEST ASSEMBLY IRRADIATION AND ANALYSIS WATTS BAR NUCLEAR PLANT, TENNESSEE AND HANFORD SITE, RICHLAND, WASHINGTON U. S. DEPARTMENT OF ENERGY RICHLAND OPERATIONS OFFICE COOPERATING AGENCY: TENNESSEE VALLEY AUTHORITY July 1997 ~~~~ Portions o f this dorunrat may be iIlegiile in electronic image products. Images are produced from the best available original doaxnenL DOE/EA-12 10 Environmental Assessment LEAD TEST ASSEMBLY IRRADIATION AND ANALYSIS WATTS BAR NUCLEAR PLANT, TENNESSEE AND HANFORD SITE, RICHLAND, WASHINGTON U. S. DEPARTMENT OF ENERGY RICHLAND OPERATIONS OFFICE COOPERATING AGENCY: TENNESSEE VALLEY AUTHORITY July 1997 U.S. Department of Energy ALARA ANL-W BWR CFR CEDE CEQ Ci CLWR DOE DOT EA EDE EFPD EIS FFTF

316

Results of the Second Diffuse Horizontal Irradiance IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Results of the Second Diffuse Horizontal Irradiance IOP Results of the Second Diffuse Horizontal Irradiance IOP J. J. Michalsky Air Resources Laboratory National Oceanic and Atmospheric Administration Boulder, Colorado R. Dolce and A. Los Kipp & Zonen, Inc. Bohemia, New York E. G. Dutton and D. A. Nelson Climate Monitoring and Diagnostics Laboratory, National Oceanic and Atmospheric Administration Boulder, Colorado M. P. Haeffelin Ecole Polytechnique/ Laboratorie de Meteorologie Dynamique Palaiseau Cedex, France W. Q. Jeffries Yankee Environmental System, Inc. Turners Falls, Massachusetts T. L. Stoffel and I. Reda National Renewable Energy Laboratory Golden, Colorado J. Hickey Eppley Laboratory Inc. Newport, Rhode Island D. Mathias Carter-Scott Design Victoria, Australia L. J. B. McArthur

317

Irradiation-Induced Stress Corrosion Cracking of Austenitic Stainless  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmentally Assisted Environmentally Assisted Cracking of Ni-Base Alloys Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fatigue Testing of Carbon Steels and Low-Alloy Steels Environmentally Assisted Cracking of Ni-Base Alloys Irradiation-Induced Stress Corrosion Cracking of Austenitic Stainless Steels Steam Generator Tube Integrity Program Air Oxidation Kinetics for Zr-based Alloys Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Light Water Reactors Bookmark and Share

318

Production of sodium-22 from proton irradiated aluminum  

DOE Patents (OSTI)

A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

Taylor, Wayne A. (Los Alamos, NM); Heaton, Richard C. (Los Alamos, NM); Jamriska, David J. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

319

Conceptual Design Report for the Irradiated Materials Characterization Laboratory (IMCL)  

SciTech Connect

This document describes the design at a conceptual level for the Irradiated Materials Characterization Laboratory (IMCL) to be located at the Materials and Fuels Complex (MFC) at the Idaho National Laboratory (INL). The IMCL is an 11,000-ft2, Hazard Category-2 nuclear facility that is designed for use as a state of the-art nuclear facility for the purpose of hands-on and remote handling, characterization, and examination of irradiated and nonirradiated nuclear material samples. The IMCL will accommodate a series of future, modular, and reconfigurable instrument enclosures or caves. To provide a bounding design basis envelope for the facility-provided space and infrastructure, an instrument enclosure or cave configuration was developed and is described in some detail. However, the future instrument enclosures may be modular, integral with the instrument, or reconfigurable to enable various characterization environments to be configured as changes in demand occur. They are not provided as part of the facility.

Stephanie Austad

2010-06-01T23:59:59.000Z

320

Mechanical properties of irradiated single-layer graphene  

SciTech Connect

The mechanical properties of irradiated single-layer graphene sheets are determined as a function of inserted vacancy concentration. We find that the vacancy-induced crystalline-to-amorphous transition is accompanied by a brittle-to-ductile transition in the failure response of irradiated graphene sheets for inserted vacancy concentrations of 8%-12%. While point defects and larger voids appreciably degrade the strength of pristine graphene, we find that even heavily damaged samples ({approx}20% vacancies) exhibit tensile strengths of {approx}30 GPa, in significant excess of those typical of engineering materials. Our results suggest that defect engineering of graphene is feasible without incurring a complete loss of its desirable mechanical properties.

Carpenter, Corinne; Maroudas, Dimitrios [Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003 (United States); Ramasubramaniam, Ashwin [Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003 (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Defect recovery in aluminum irradiated with protons at 20 K  

Science Journals Connector (OSTI)

Aluminum single crystals have been irradiated with 7.0-MeV protons at 20 K. The irradiation damage and its recovery are studied with positron-lifetime spectroscopy between 20 and 500 K. Stage-I recovery is observed at 40 K. At 240 K, loss of freely migrating vacancies is observed. Hydrogen in vacancies is found to stabilize the vacancies and prolong stage III to above 280 K, where the hydrogen bound to vacancies is released. Single and multiple occupancy of hydrogen atoms at monovacancies is put forward as the reason for the two recovery stages between 280 and 400 K. A binding energy of 0.53±0.03 eV is found for a hydrogen atom trapped at a monovacancy. The results are in excellent agreement with recent ion-beam-analysis results and also with theoretical estimates.

S. Linderoth; H. Rajainmäki; R. M. Nieminen

1987-04-15T23:59:59.000Z

322

TEM Examination of Advanced Alloys Irradiated in ATR  

SciTech Connect

Successful development of materials is critical to the deployment of advanced nuclear power systems. Irradiation studies of candidate materials play a vital role for better understanding materials performance under various irradiation environments of advanced system designs. In many cases, new classes of materials have to be investigated to meet the requirements of these advanced systems. For applications in the temperature range of 500 800şC which is relevant to the fast neutron spectrum burner reactors for the Global Nuclear Energy Partnership (GNEP) program, oxide dispersion strengthened (ODS) and ferritic martensitic steels (e.g., MA957 and others) are candidates for advanced cladding materials. In the low temperature regions of the core (<600şC), alloy 800H, HCM12A (also called T 122) and HT 9 have been considered.

Jian Gan, PhD

2007-09-01T23:59:59.000Z

323

PRODUCING SATELLITE-DERIVED IRRADIANCES IN COMPLEX ARID TERRAIN  

Open Energy Info (EERE)

ASES 2003, Austin TX and submitted for publication in Solar Energy ASES 2003, Austin TX and submitted for publication in Solar Energy PRODUCING SATELLITE-DERIVED IRRADIANCES IN COMPLEX ARID TERRAIN Richard Perez & Marek Kmiecik ASRC, the University at Albany 251 Fuller Rd. Albany, NY 12203 perez@asrc.cestm.albany.edu Pierre Ineichen, CUEPE, University of Geneva 7 Route de Drize 1227 Carouge, Switzerland Pierre.Ineichen@cuepe.unige.ch Marek Kmiecik, ASRC Kathleen Moore, IED 251 Fuller Rd. Albany, NY 12203 moore@iedat.com David Renne & Ray George NREL 1617 Cole Blvd. Golden, CO 80401 drenne / ray_george@nrel.nrel.gov ABSTRACT This paper describes a methodology to correct satellite- derived irradiances over complex terrain. The correction applies to satellite models using visible images from geostationary satellites. 1. DESCRIPTION OF CURRENT MODEL

324

Extending Shelf Life of Sliced Mushrooms (Agaricus bisporus) by using Vacuum Impregnation and Electron-beam Irradiation  

E-Print Network (OSTI)

. The best treatment was the combination of vacuum impregnation with irradiation according to the consumer studies....

Sevimli, Zeynep

2013-01-14T23:59:59.000Z

325

Structural and magnetic properties of irradiated SiC  

SciTech Connect

We present a comprehensive structural characterization of ferromagnetic SiC single crystals induced by Ne ion irradiation. The ferromagnetism has been confirmed by electron spin resonance, and possible transition metal impurities can be excluded to be the origin of the observed ferromagnetism. Using X-ray diffraction and Rutherford backscattering/channeling spectroscopy, we estimate the damage to the crystallinity of SiC, which mutually influences the ferromagnetism in SiC.

Wang, Yutian; Helm, Manfred [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, P.O. Box 510119, 01314 Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany); Chen, Xuliang; Yang, Zhaorong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Lin [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, P.O. Box 510119, 01314 Dresden (Germany); Department of Physics and Electronics, School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Shalimov, Artem; Prucnal, Slawomir; Munnik, Frans; Skorupa, Wolfgang; Zhou, Shengqiang, E-mail: s.zhou@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, P.O. Box 510119, 01314 Dresden (Germany); Tong, Wei [High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China)

2014-05-07T23:59:59.000Z

326

The Cesium-137 Agricultural Commodities Irradiator (CACI) final design report  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the 137 Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. Over 100 engineering drawings are included.

Not Available

1986-12-19T23:59:59.000Z

327

The Cesium-137 Agricultural Commodities Irradiator (CACI) final design report  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the 137 Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. Site characterization data and equipment engineering drawings are included.

Not Available

1986-12-19T23:59:59.000Z

328

Manipulation of the graphene surface potential by ion irradiation  

SciTech Connect

We show that the work function of exfoliated single layer graphene can be modified by irradiation with swift (E{sub kin}=92 MeV) heavy ions under glancing angles of incidence. Upon ion impact individual surface tracks are created in graphene on silicon carbide. Due to the very localized energy deposition characteristic for ions in this energy range, the surface area which is structurally altered is limited to Almost-Equal-To 0.01 {mu}m{sup 2} per track. Kelvin probe force microscopy reveals that those surface tracks consist of electronically modified material and that a few tracks suffice to shift the surface potential of the whole single layer flake by Almost-Equal-To 400 meV. Thus, the irradiation turns the initially n-doped graphene into p-doped graphene with a hole density of 8.5 Multiplication-Sign 10{sup 12} holes/cm{sup 2}. This doping effect persists even after heating the irradiated samples to 500 Degree-Sign C. Therefore, this charge transfer is not due to adsorbates but must instead be attributed to implanted atoms. The method presented here opens up a way to efficiently manipulate the charge carrier concentration of graphene.

Ochedowski, O.; Kleine Bussmann, B.; Schleberger, M. [Fakultaet fuer Physik and CeNIDE, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)] [Fakultaet fuer Physik and CeNIDE, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany); Ban d'Etat, B.; Lebius, H. [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France)] [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France)

2013-04-15T23:59:59.000Z

329

Cation disorder in high dose neutron irradiated spinel  

SciTech Connect

The crystal structures of MgAl{sub 2}O{sub 4} spinel single crystals irradiated to high neutron fluences (>5{center_dot}10{sup 26} n/m{sup 2} (E{sub n}>0.1 MeV)), were examined by neutron diffraction. Crystal structure refinement of the highest dose sample indicated that the average scattering strength of the tetrahedral crystal sites decreased by {approximately}20% while increasing by {approximately}8% on octahedral sites. Since the neutron scattering length for Mg is considerably larger than for Al, this result is consistent with site exchange between Mg{sup 2+} ions on tetrahedral sites and Al{sup 3+} ions on octahedral sites. Least squares refinements also indicated that in all irradiated samples, at least 35% of Mg{sup 2+} and Al{sup 3+} ions in the crystal experienced disordering replacements. This retained dpa on the cation sublattices is the largest retained damage ever measured in an irradiated spinel material.

Sickafus, K.E.; Larson, A.C.; Yu, N.; Nastasi, M. [Los Alamos National Lab., NM (United States); Hollenberg, G.W.; Garner, F.A. [Pacific Northwest Lab., Richland, WA (United States); Bradt, R.C. [Univ. of Nevada, Reno, NV (United States)

1994-06-01T23:59:59.000Z

330

Cation disorder in high-dose, neutron-irradiated spinel  

SciTech Connect

The objective of this effort is to determine whether MgAl{sub 2}O{sub 4} spinel is a suitable ceramic for fusion applications. Here, the crystal structures of MgAl{sub 2}O{sub 4} spinel single crystals irradiated to high neutron fluences [>5{center_dot}10{sup 26} n/m{sup 2} (E{sub n} > 0.1 MeV)] were examined by neutron diffraction. Crystal structure refinement of the highest dose sample indicated that the average scattering strength of the tetrahedral crystal sites decreased by {approximately} 20% while increasing by {approximately} 8% on octahedral sites. Since the neutron scattering length for Mg is considerably larger than for Al, this results is consistent with site exchange between Mg{sup 2+} ions on tetrahedral sites and Al{sup 3+} ions on octahedral sites. Least-squares refinements also indicated that, in all irradiated samples, at least 35% of Mg{sup 2+} and Al{sup 3+} ions in the crystal experienced disordering replacements. This retained dpa on the cation sublattices is the largest retained damage ever measured in an irradiated spinel material.

Sickafus, K.E.; Larson, A.C.; Yu, N.; Nastasi, M. [Los Alamos National Lab., NM (United States); Hollenberg, G.W.; Garner, F.A. [Pacific Northwest Lab., Richland, WA (United States); Bradt, R.C. [Univ. of Nevada, Reno, NV (United States)

1994-08-01T23:59:59.000Z

331

Microstructure of RERTR DU-Alloys Irradiated with Krypton Ions  

SciTech Connect

Fuel development for reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium fuels that can be employed to replace existing high enrichment uranium fuels currently used in many research and test reactors worldwide. Radiation stability of the interaction product formed at fuel-matrix interface has a strong impact on fuel performance. Three depleted uranium alloys are cast that consist of the following 5 phases of interest to be investigated: U(Si,Al)3, (U,Mo)(Si,Al)3, UMo2Al20, U6Mo4Al43 and UAl4. Irradiation of TEM disc samples with 500 keV Kr ions at 200?C to high doses up to ~100 dpa were conducted using an intermediate voltage electron microscope equipped with an ion accelerator. The irradiated microstructure of the 5 phases is characterized using transmission electron microscopy. The results will be presented and the implication of the observed irradiated microstructure on the fuel performance will be discussed.

J. Gan; D. Keiser; D. Wachs; B. Miller; T. Allen; M. Kirk; J. Rest

2009-11-01T23:59:59.000Z

332

IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL  

SciTech Connect

High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

M.K. Meyer; J. Gan; J.-F. Jue; D.D. Keiser; E. Perez; A. Robinson; D.M. Wachs; N. Woolstenhulme; G.L. Hofman; Y.-S. Kim

2014-04-01T23:59:59.000Z

333

Post-irradiation Examination Plan for ORNL and University of California Santa Barbara Assessment of UCSB ATR-2 Irradiation Experiment  

SciTech Connect

New and existing databases will be combined to support development of physically based models of transition temperature shifts (TTS) for high fluence-low flux (? < 10{sup 11}n/cm{sup 2}-s) conditions, beyond the existing surveillance database, to neutron fluences of at least 1×10{sup 20} n/cm{sup 2} (>1 MeV). All references to neutron flux and fluence in this report are for fast neutrons (>1 MeV). The reactor pressure vessel (RPV) task of the Light Water Reactor Sustainability (LWRS) Program is working with various organizations to obtain archival surveillance materials from commercial nuclear power plants to allow for comparisons of the irradiation-induced microstructural features from reactor surveillance materials with those from similar materials irradiated under high flux conditions in test reactors

Nanstad, R. K. [Materials Science and Technology Division, Oak Ridge National Laboratory; Yamamoto, T. [University of California Santa Barbara; Sokolov, M. A. [Materials Science and Technology Division, Oak Ridge National Laboratory

2014-01-25T23:59:59.000Z

334

Characterization of polymeric films subjected to lithium ion beam irradiation  

SciTech Connect

Two different polymeric materials that are candidate materials for use as binders for mixed uranium–plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H2O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C–O and C–C bonds, which furnish radical intermediates that react by radical recombination with Hradical dot and OHradical dot. Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp2 carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H2O or a H2O–methanol solution, and hence the bulk of the material could not be analyzed using electrospray. However a series of oligomers was leached from the bulk material that produced ion series in the ESI-MS analyses that were identified octylphenyl ethoxylate oligomers. Upon Li ion bombardment, these shifted to a lower average molecular weight, but more importantly showed the emergence of three new ion series that are being formed as a result of radiation damage. Surface analysis of the paraffinic polymers using SIMS produced spectra that were wholly dominated by hydrocarbon ion series, and no difference was observed between unirradiated and irradiated samples. The studies demonstrate that for the PEG-based polymers, direct evidence for radiolytic scission can be observed using ESI-MS, and suggests that both radiolytic pathways and efficiencies as a function of dose should be measurable by calibrating instrument response to the small oligomeric degradation products.

Gary S. Groenewold; W. Roger Cannon; Paul A. Lessing; Recep Avci; Muhammedin Deliorman; Mark Wolfenden; Doug W. Akers; J. Keith Jewell

2013-02-01T23:59:59.000Z

335

Cardiotoxic Effects of Tangential Breast Irradiation in Early Breast Cancer Patients: The Role of Irradiated Heart Volume  

SciTech Connect

Purpose: To assess the risk of cardiovascular disease (CVD) after postlumpectomy irradiation restricted to tangential fields. Methods and Materials: We assessed the incidence of CVD in 1601 patients with T1-2N0 breast cancer (BC) treated with breast tangentials in five different hospitals between 1980 and 1993. Patients treated with radiation fields other than breast tangentials and those treated with adjuvant chemotherapy were excluded. For patients with left-sided BC, maximum heart distance (MHD) was measured on the simulator films as a proxy for irradiated heart volume. Risk of CVD by laterality and MHD categories was evaluated by Cox proportional hazards regression analysis. Results: Follow-up was complete for 94% of the patients, and median follow-up was 16 years. The incidence of CVD overall was 14.1%, of ischemic heart disease 7.3%, and for other types of heart disease 9.2%, with a median time to event of 10 to 11 years. The incidence of CVD was 11.6% in patients with right-sided BC, compared with 16.0% in left-sided cases. The hazard ratio associated with left-sided vs. right-sided BC was 1.38 (95% confidence interval [CI], 1.05-1.81) for CVD overall, 1.35 (95% CI, 0.93-1.98) for ischemic heart disease , and 1.53 (95% CI, 1.09-2.15) for other heart disease, adjusted for age, diabetes, and history of CVD. The risk of CVD did not significantly increase with increasing MHD. Conclusions: Patients irradiated for left-sided BC with tangential fields have a higher incidence of CVD compared with those with right-sided cancer. However, the risk does not seem to increase with larger irradiated heart volumes.

Borger, Jacques H. [Maastricht Radiation Oncology Clinic, Maastricht (Netherlands)], E-mail: jacques.borger@maastro.nl; Hooning, Maartje J. [Department of Epidemiology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Ziekenhuis, Amsterdam (Netherlands); Boersma, Liesbeth J. [Maastricht Radiation Oncology Clinic, Maastricht (Netherlands); Snijders-Keilholz, Antonia [Department of Radiotherapy, Erasmus MC/Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Aleman, Berthe M.P. [Department of Radiotherapy, Netherlands Cancer Institute/Antoni van Leeuwenhoek Ziekenhuis, Amsterdam (Netherlands); Lintzen, Eelke [Maastricht Radiation Oncology Clinic, Maastricht (Netherlands); Brussel, Sara van [Department of Radiotherapy, Universiteitsziekenhuis, Leuven (Belgium); Toorn, Peter-Paul van der [Department of Radiotherapy, Catharina Ziekenhuis, Eindhoven (Netherlands); Alwhouhayb, Maitham [Maastricht Radiation Oncology Clinic, Maastricht (Netherlands); Leeuwen, Flora E. van [Department of Epidemiology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Ziekenhuis, Amsterdam (Netherlands)

2007-11-15T23:59:59.000Z

336

Deformation and Fracture Properties in Neutron Irradiated Pure Mo and Mo Alloys  

SciTech Connect

The effect of neutron irradiation on the mechanical properties of select molybdenum materials, pure low carbon arc-cast (LCAC) Mo, Mo-0.5% Ti-0.1% Zr (TZM) alloy, and oxide dispersion-strengthened (ODS) Mo alloy, was characterized by analyzing the temperature dependence of mechanical properties. This study assembles the tensile test and analysis data obtained through multiple series of irradiation and post-irradiation experiments. Tensile specimens in stress-relieved conditions with longitudinal (LSR) and transverse (TSR) directions were irradiated in high flux isotope reactor (HFIR) at temperatures ranging 270 to 1100oC to 0.6 -13.1 dpa. Also, the recrystallized LCAC Mo specimens in the longitudinal direction (LR) were also irradiated up to 0.28 dpa at ~80oC. Tensile tests were performed at temperatures ranging from -194 oC to 1400oC. Analysis results indicate that the irradiation at temperatures below 700oC increased strength significantly, up to 170%, while the increase of yield stress by irradiations at higher temperature was not significant. The plastic instability stress was strongly dependent on test temperature but was nearly independent of irradiation dose and temperature. The true fracture stress was dependent on test temperature to a lesser degree than was the yield stress and plastic instability stress. It was also slightly impacted by irradiation, depending on both irradiation and test temperatures. Brittle fracture often occurred in the LSR specimens tested at room temperature or lower after low temperature irradiation, while it was observed in many irradiated TSR specimens over the whole test temperature range. The ODS-LSR specimens showed the highest resistance to irradiation embrittlement due to relatively higher fracture stress. The critical temperature for shear failure (CTSF) was defined and evaluated for the materials, and the CTSF values were compared with the ductile to brittle transition temperatures (DBTT) based on ductility data.

Byun, Thak Sang [ORNL; Li, Meimei [ORNL; Cockeram, Brian V [Bechtel-Bettis, Inc.; Snead, Lance Lewis [ORNL

2008-01-01T23:59:59.000Z

337

Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor  

SciTech Connect

Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progress toward element testing will be reviewed.

Daniel M. Wachs; Richard G. Ambrosek; Gray Chang; Mitchell K. Meyer

2006-10-01T23:59:59.000Z

338

A New Operational Model for Satellite-Derived Irradiances: Description and  

Open Energy Info (EERE)

A New Operational Model for Satellite-Derived Irradiances: Description and A New Operational Model for Satellite-Derived Irradiances: Description and Validation Dataset Summary Description (Abstract): We present a new simple model capable of exploiting geostationary satellite visible images for the production of site/time specific global and direct irradiances The new model features new clear sky global and direct irradiance functions, a new cloud-index-to-irradiance index function, a new global-to-direct-irradiance conversion model. The model can also exploit operationally available snow cover resource data, while deriving local ground specular reflectance characteristics from the stream of incoming satellite data. Validation against 10 US locations representing a wide range of climatic environments indicates that model performance is

339

Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences  

SciTech Connect

The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 °C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. Microstructural observation and data analysis were performed.

Koyanagi, Takaaki [ORNL; Shimoda, Kazuya [Kyoto University, Japan; Kondo, Sosuke [Kyoto University, Japan; Hinoki, Tatsuya [Kyoto University, Japan; Ozawa, Kazumi [ORNL; Katoh, Yutai [ORNL

2014-01-01T23:59:59.000Z

340

Effectiveness of irradiation in killing pathogens. [Treatment of sewage sludge for land application  

SciTech Connect

United States Environmental Protection Agency regulations include gamma ray irradiation of sludge as an approved Process to Further Reduce Pathogens (PFRP) prior to land application. Research at Sandia National Laboratories on pathogen inactivation in sludge by gamma irradiation has demonstrated that the 1 Mrad PFRP dose is capable, by itself, of eliminating bacterial, fungal, and parasitic pathogens from sludge. Gamma irradiation of sludge in conjunction with the required Processes to Significantly Reduce Pathogens (PSRP) should also eliminate the viral hazard from wastewater sludges.

Yeager, J.G.; Ward, R.L.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

M/L{sub B} AND COLOR EVOLUTION FOR A DEEP SAMPLE OF M* CLUSTER GALAXIES AT z {approx} 1: THE FORMATION EPOCH AND THE TILT OF THE FUNDAMENTAL PLANE , ,  

SciTech Connect

We have measured velocity dispersions ({sigma}) for a sample of 36 galaxies with J < 21.2 or M{sub r} < -20.6 mag in MS 1054-03, a massive cluster of galaxies at z = 0.83. Our data are of uniformly high quality down to our selection limit, our 16 hr exposures typically yielding errors of only {delta}({sigma}) {approx} 10% for L* and fainter galaxies. By combining our measurements with data from the literature, we have 53 cluster galaxies with measured dispersions, and HST/ACS-derived sizes, colors and surface brightness. This sample is complete for the typical L* galaxy at z {approx} 1, unlike most previous z {approx} 1 cluster samples which are complete only for the massive cluster members (>10{sup 11} M{sub sun}). We find no evidence for a change in the tilt of the fundamental plane (FP). Nor do we find evidence for evolution in the slope of the color-{sigma} relation and M/L{sub B} -{sigma} relations; measuring evolution at a fixed {sigma} should minimize the impact of structural evolution found in other work. The M/L{sub B} at fixed {sigma} evolves by {Delta}log{sub 10} M/L{sub B} = -0.50 {+-} 0.03 between z = 0.83 and z = 0.02 or dlog{sub 10} M/L{sub B} = -0.60 {+-} 0.04 dz, and we find {Delta}(U - V){sub z} = -0.24 {+-} 0.02 mag at fixed {sigma} in the rest frame, matching the expected evolution in M/L{sub B} within 2.25 standard deviations. The implied formation redshift from both the color and M/L{sub B} evolution is z{sub *} = 2.0 {+-} 0.2 {+-} 0.3(sys), during the epoch in which the cosmic star formation activity peaked, with the systematic uncertainty showing the dependence of z{sub *} on the assumptions we make about the stellar populations. The lack of evolution in either the tilt of the FP or in the M/L-{sigma} and color-{sigma} relations imply that the formation epoch depends weakly on mass, ranging from z{sub *} = 2.3{sup +1.3}{sub -0.3} at {sigma} = 300 km s{sup -1} to z{sub *} = 1.7{sup +0.3}{sub -0.2} at {sigma} = 160 km s{sup -1} and implies that the initial mass function similarly varies slowly with galaxy mass.

Holden, B. P.; Illingworth, G. D. [UCO/Lick Observatories, University of California, Santa Cruz, CA 95065 (United States); Van der Wel, A. [Max-Planck Institute for Astronomy, Koenigstuhl 17, D-69117, Heidelberg (Germany); Kelson, D. D. [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States); Franx, M., E-mail: holden@ucolick.or, E-mail: gdi@ucolick.or, E-mail: vdwel@mpia.d, E-mail: kelson@obs.carnegiescience.ed, E-mail: franx@strw.leidenuniv.n [Sterrewacht Leiden, P.O. Box 9513, 2300 RA, Leiden (Netherlands)

2010-11-20T23:59:59.000Z

342

A Review of Irradiation Effects on Organic-Matrix Insulation  

SciTech Connect

This review assesses the data base on epoxy and polyimide matrix insulation to determine whether organic electric insulation systems can be used in the toroidal field (TF) magnets of next generation fusion devices such as ITER* and TPX*. Owing to the difficulties of testing insulation under fusion reactor conditions, there is a considerable mismatch between the ITER requirements and the data that are currently available. For example, nearly all of the high-dose (5 x 10{sup 7} to 10{sup 8} Gy) data obtained on epoxy and polyimide matrix insulation employed gamma irradiation, electron irradiation, or reactor irradiation with a fast neutron fluence far below 10{sup 23}/m{sup 2}, the fluence expected for the insulation at the TF magnets, as set forth in ITER conceptual design documents. Also, the neutron spectrum did not contain a very high energy (E {ge} 5 MeV) component. Such data underestimate the actual damage that would be obtained with the neutron fluence and spectrum expected at a TF magnet. Experiments on a polyimide (Kapton) indicate that gamma or electron doses or mixed gamma and neutron reactor doses would have to be downgraded by a factor of up to ten to simulate fusion neutron doses. Even when neutrons did constitute a significant portion of the total dose, B-containing E-glass reinforcement was often used; therefore, excess damage from the {sup 10}B + n {yields} {sup 7}Li + {alpha} reaction occurred near the glass-epoxy interface. This problem can easily be avoided by substituting B-free glass (R, S, or T types).

Simon, N.J.

1993-06-01T23:59:59.000Z

343

UNDERSTANDING TRENDS ASSOCIATED WITH CLOUDS IN IRRADIATED EXOPLANETS  

SciTech Connect

Unlike previously explored relationships between the properties of hot Jovian atmospheres, the geometric albedo and the incident stellar flux do not exhibit a clear correlation, as revealed by our re-analysis of Q0-Q14 Kepler data. If the albedo is primarily associated with the presence of clouds in these irradiated atmospheres, a holistic modeling approach needs to relate the following properties: the strength of stellar irradiation (and hence the strength and depth of atmospheric circulation), the geometric albedo (which controls both the fraction of starlight absorbed and the pressure level at which it is predominantly absorbed), and the properties of the embedded cloud particles (which determine the albedo). The anticipated diversity in cloud properties renders any correlation between the geometric albedo and the stellar flux weak and characterized by considerable scatter. In the limit of vertically uniform populations of scatterers and absorbers, we use an analytical model and scaling relations to relate the temperature-pressure profile of an irradiated atmosphere and the photon deposition layer and to estimate whether a cloud particle will be lofted by atmospheric circulation. We derive an analytical formula for computing the albedo spectrum in terms of the cloud properties, which we compare to the measured albedo spectrum of HD 189733b by Evans et al. Furthermore, we show that whether an optical phase curve is flat or sinusoidal depends on whether the particles are small or large as defined by the Knudsen number. This may be an explanation for why Kepler-7b exhibits evidence for the longitudinal variation in abundance of condensates, while Kepler-12b shows no evidence for the presence of condensates despite the incident stellar flux being similar for both exoplanets. We include an 'observer's cookbook' for deciphering various scenarios associated with the optical phase curve, the peak offset of the infrared phase curve, and the geometric albedo.

Heng, Kevin [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Demory, Brice-Olivier, E-mail: kevin.heng@csh.unibe.ch, E-mail: demory@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

2013-11-10T23:59:59.000Z

344

Low-energy D{sup +} and H{sup +} ion irradiation effects on highly oriented pyrolytic graphite  

SciTech Connect

We have investigated the low-energy (100 eV) D{sup +} and H{sup +} ion irradiation effects on the structural and chemical properties of highly oriented pyrolytic graphite (HOPG). Structural disorder due to the ion irradiation was identified by the Raman spectroscopy, the D{sup +} irradiation giving rise to greater structural disorder than the H{sup +} irradiation. Only sp{sup 2} bonding was identified in the X-ray photoemission spectroscopy of the D{sup +}-irradiated HOPG, indicating no change in the surface chemical structure. The H{sup +} irradiation, on the other hand, gave rise to sp{sup 3} bonding and ???{sup *} transition, the sp{sup 3} bonding increasing with increasing irradiation dose. It is thus shown that the chemical properties of the HOPG surface may be sensitively modified by the low-energy H{sup +} ion irradiation, but not by the low-energy D{sup +} ion irradiation.

Kue Park, Jun; Won Lee, Kyu; Hee Han, Jun; Jung Kweon, Jin; Kim, Dowan; Eui Lee, Cheol [Department of Physics and Institute for Nano Science, Korea University, Seoul 136-713 (Korea, Republic of)] [Department of Physics and Institute for Nano Science, Korea University, Seoul 136-713 (Korea, Republic of); Lim, Sun-Taek; Kim, Gon-Ho [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)] [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Noh, S. J.; Kim, H. S. [Department of Applied Physics, Dankook University, Yongin 448-701 (Korea, Republic of)] [Department of Applied Physics, Dankook University, Yongin 448-701 (Korea, Republic of)

2013-12-07T23:59:59.000Z

345

E-Print Network 3.0 - accelerated partial-breast irradiation...  

NLE Websites -- All DOE Office Websites (Extended Search)

materials irradiations Introduction First wall- and structural materials in a future fusion power... types of neutron sources have been analysed concluding that...

346

E-Print Network 3.0 - accelerator irradiation issledovaniya Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

materials irradiations Introduction First wall- and structural materials in a future fusion power... types of neutron sources have been analysed concluding that...

347

E-Print Network 3.0 - adt materials irradiated Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

on Superconducting Summary: to irradiate materials. Samples are set in an aluminum alloy capsule with aluminum foil and sent to a suitable... of the fission neutron...

348

E-Print Network 3.0 - au ion irradiation Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Josephson Junctions Summary: of the Au mask after the ion irradiation. Excellent Josephson junctions and Josephson junction arrays... removal of metal mask after ion...

349

E-Print Network 3.0 - accidental irradiation-induced aplasia...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Helsinki Collection: Materials Science 4 Making junctions between carbon nanotubes using an ion beam Summary: ; Ion-irradiation-induced defects; Defect annealing The...

350

E-Print Network 3.0 - atomic clusters irradiated Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

nanotubes encapsulating cobalt crystals Summary: to the shrinkage of the irradiated nanotubes due to atom sputtering 22 and defect migration 23... by a different mechanism...

351

Microsoft Word - ORNL-TM-2014-513 Status of SiC Joint Irradiation...  

NLE Websites -- All DOE Office Websites (Extended Search)

513 STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDESILICON CARBIDE JOINTS Yutai Katoh Takaaki Koyanagi Jim Kiggans Nesrin Cetiner Joel McDuffee September 2014...

352

Work function engineering of single layer graphene by irradiation-induced defects  

SciTech Connect

We report the tuning of electrical properties of single layer graphene by ?-beam irradiation. As the defect density increases upon irradiation, the surface potential of the graphene changes, as determined by Kelvin probe force microscopy and Raman spectroscopy studies. X-ray photoelectron spectroscopy studies indicate that the formation of C/O bonding is promoted as the dose of irradiation increases when at atmospheric conditions. Our results show that the surface potential of the graphene can be engineered by introducing atomic-scale defects via irradiation with high-energy particles.

Kim, Jong-Hun; Hwang, Jin Heui; Kwon, Sangku; Young Park, Jeong [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, and Graduate School of EEWS, KAIST, 373-1 Guseong Dong, Daejeon 305-701 (Korea, Republic of)] [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, and Graduate School of EEWS, KAIST, 373-1 Guseong Dong, Daejeon 305-701 (Korea, Republic of); Suh, Joonki; Tongay, Sefaattin [Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720 (United States)] [Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720 (United States); Hwang, C. C. [Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of)] [Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Wu, Junqiao [Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720 (United States) [Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720 (United States); Division of Materials Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

2013-10-21T23:59:59.000Z

353

E-Print Network 3.0 - advanced alloys irradiated Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

shifts due to irradiation... on a presentation made at the 15th European Conference of Fracture "Advanced Fracture ... Source: Ecole Polytechnique, Centre de mathmatiques...

354

Proton-irradiation-induced anomaly in the electrical conductivity of a hydrogen-bonded ferroelastic system  

SciTech Connect

An anomalous abrupt drop in the electrical conductivity has been observed at the ferroelastic phase transition of a proton-irradiated system of hydrogen-bonded TlH{sub 2}PO{sub 4}. As a result of the high-resolution {sup 31}P NMR chemical-shift measurements, distinct changes in the atomic displacements due to the irradiation were identified in the ferroelastic and paraelastic phases. Besides, {sup 1}H NMR spin-spin relaxation measurements revealed a change due to the irradiation in the proton dynamics at the ferroelastic phase transition, apparently accounting for the much-reduced electrical conductivity in the paraelastic phase of the irradiated system.

Kim, Se-Hun [Department of Physics and Institute for Nano Science, Korea University, Seoul 136-713 (Korea, Republic of); Faculty of Science Education, Jeju National University, Jeju 690-756 (Korea, Republic of); Lee, Kyu Won; Lee, Cheol Eui [Department of Physics and Institute for Nano Science, Korea University, Seoul 136-713 (Korea, Republic of); Lee, Kwang-Sei [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Gimhae 621-749, Gyeongnam (Korea, Republic of)

2009-11-01T23:59:59.000Z

355

E-Print Network 3.0 - acute gamma irradiation Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Upgraded D Detector D Collaboration Summary: is due to the bulk silicon properties, photodiode test structures from the same wafer were irradiated Source: Fermi National...

356

E-Print Network 3.0 - apres irradiation gamma Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Upgraded D Detector D Collaboration Summary: is due to the bulk silicon properties, photodiode test structures from the same wafer were irradiated Source: Fermi National...

357

E-Print Network 3.0 - acute uvb irradiation Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

irradiation S-W. Koo, S. ... Source: Nghiem, Paul - Cutaneous Biology Research Center, Massachusetts General Hospital Collection: Biology and Medicine 10 Application Note (A5)...

358

Irradiation-induced tailoring of the magnetism of CoFeB/MgO ultrathin films  

SciTech Connect

We study perpendicularly magnetized Ta/CoFeB/MgO films and investigate whether their irradiation with light ions can improve their properties by inducing a different crystallization dynamics. We report the magnetization, anisotropy, g-factor, and damping dependence upon irradiation fluence and discuss their evolutions with collisional mixing simulations and its expected consequence on magnetic properties. We show that after a short irradiation at 100 Degree-Sign C, the anisotropy increases close to the value obtained by conventional high temperature annealing. Higher irradiation-induced increase of anisotropy can be obtained but with a detrimental effect on the damping that can be understood from spin-orbit contributions.

Devolder, T.; Barisic, I.; Eimer, S.; Garcia, K.; Adam, J.-P. [Institut d'Electronique Fondamentale, CNRS, UMR 8622, Orsay (France) [Institut d'Electronique Fondamentale, CNRS, UMR 8622, Orsay (France); Univ. Paris-Sud, 91405 Orsay (France); Ockert, B. [Singulus Technology AG, Hanauer Landstrasse 103, 63796 Kahl am Main (Germany)] [Singulus Technology AG, Hanauer Landstrasse 103, 63796 Kahl am Main (Germany); Ravelosona, D. [Institut d'Electronique Fondamentale, CNRS, UMR 8622, Orsay (France) [Institut d'Electronique Fondamentale, CNRS, UMR 8622, Orsay (France); Univ. Paris-Sud, 91405 Orsay (France); Siltene Technologies, 86 rue de Paris, 9140 Orsay (France)

2013-05-28T23:59:59.000Z

359

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network (OSTI)

United States California Solar Initiative Coastally Trappedparticipants in the California Solar Initiative (CSI)on location. In California, solar irradiance forecasts near

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

360

A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting  

E-Print Network (OSTI)

is critical for coastal California solar forecasting.   affecting solar irradiance in southern California.   solar  photovoltaic generation (the southern California 

Mathiesen, Patrick; Collier, Craig; Kleissl, Jan

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

E-Print Network 3.0 - additive irradiation procedures Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

APPLIED FOR THE PERFORMANCE ASSESSMENT OF PV SYSTEMS Summary: that procedures to gain satellite-derived irradiance values may end up with maps showing annual erors in the...

362

E-Print Network 3.0 - atomic hydrogen irradiation Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: atomic hydrogen irradiation Page: << < 1 2 3 4 5 > >> 1 ORIGIN OF THE HYDROGEN INVOLVED IN IRON...

363

Variation in lattice parameters of 6H-SiC irradiated to extremely...  

NLE Websites -- All DOE Office Websites (Extended Search)

observed. The decrease in the a parameter may originate from the irradiation-induced vacancies and the possible formation of antisite defects that cause the lattice structure on...

364

Effects of Ga ion-beam irradiation on monolayer graphene  

SciTech Connect

The effects of Ga ion on the single layer graphene (SLG) have been studied by Raman spectroscopy (RS), SEM, and field-effect characterization. Under vacuum conditions, Ga ion-irradiation can induce disorders and cause red shift of 2D band of RS, rather than lattice damage in high quality SLG. The compressive strain induced by Ga ion decreases the crystalline size in SLG, which is responsible for the variation of Raman scattering and electrical properties. Nonlinear out-put characteristic and resistance increased are also found in the I-V measurement. The results have important implications during CVD graphene characterization and related device fabrication.

Wang, Quan; Mao, Wei; Zhang, Yanmin; Shao, Ying; Ren, Naifei [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China)] [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Ge, Daohan [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China) [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

2013-08-12T23:59:59.000Z

365

Discrepancies in Shortwave Diffuse Measured and Modeled Irradiances in Antarctica  

NLE Websites -- All DOE Office Websites (Extended Search)

Discrepancies in Shortwave Diffuse Measured and Discrepancies in Shortwave Diffuse Measured and Modeled Irradiances in Antarctica A. Payton, P. Ricchiazzi, and C. Gautier University of California Santa Barbara, California D. Lubin Scripps Scripps Institution of Oceanography La Jolla, California Introduction Measurements of clear-sky shortwave (SW) radiation at the surface show discrepancies between measurements and model simulations, but only for certain measurements across time and space. Most of the observations entail broadband measurements. A spectral and spatial analysis of the occurrence of this discrepancy may lend insight into the responsible processes. Langley calibrated multi-filter rotating shadowband radiometer (MFRSR) measurements collected at the Antarctic coastline reveal significant

366

Irradiation of Food — Helping to Ensure Food Safety  

Science Journals Connector (OSTI)

...products. Many people are unaware that radiation is used to sterilize or treat many of the products that they use in their own homes, such as baby-bottle nipples, personal-hygiene products, cosmetics, bandages, polymerized flooring materials, Teflon-coated skillets, and insulation on electrical wire... In this issue of the Journal, Osterholm and Norgan (pages 1898–1901) present a convincing argument that physicians and other health care professionals, as health advocates, should also be advocates for the irradiation of foods to prevent the transmission ...

Thayer D.W.

2004-04-29T23:59:59.000Z

367

Improving Thermal Model Prediction Through Statistical Analysis of Irradiation and Post-Irradiation Data from AGR Experiments  

SciTech Connect

As part of the Research and Development program for Next Generation High Temperature Reactors (HTR), a series of irradiation tests, designated as Advanced Gas-cooled Reactor (AGR), have been defined to support development and qualification of fuel design, fabrication process, and fuel performance under normal operation and accident conditions. The AGR tests employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule and instrumented with thermocouples (TC) embedded in graphite blocks enabling temperature control. The data representing the crucial test fuel conditions (e.g., temperature, neutron fast fluence, and burnup) while impossible to obtain from direct measurements are calculated by physics and thermal models. The irradiation and post-irradiation examination (PIE) experimental data are used in model calibration effort to reduce the inherent uncertainty of simulation results. This paper is focused on fuel temperature predicted by the ABAQUS code’s finite element-based thermal models. The work follows up on a previous study, in which several statistical analysis methods were adapted, implemented in the NGNP Data Management and Analysis System (NDMAS), and applied for improving qualification of AGR-1 thermocouple data. The present work exercises the idea that the abnormal trends of measured data observed from statistical analysis may be caused by either measuring instrument deterioration or physical mechanisms in capsules that may have shifted the system thermal response. As an example, the uneven reduction of the control gas gap in Capsule 5 revealed by the capsule metrology measurements in PIE helps justify the reduction in TC readings instead of TC drift. This in turn prompts modification of thermal model to better fit with experimental data, thus help increase confidence, and in other word reduce model uncertainties in thermal simulation results of the AGR-1 test.

Dr. Binh T. Pham; Grant L. Hawkes; Jeffrey J. Einerson

2012-10-01T23:59:59.000Z

368

Comment on “Tilting of the CuO6 octahedra in La1.83-xEu0.17SrxCuO4 as seen by 151Eu Mössbauer spectroscopy”  

Science Journals Connector (OSTI)

We discuss the different characteristic time scales of the x-ray absorption fine structure (XAFS), ?X, and Mössbauer spectroscopy (MS), ?MS, techniques for structural determination at small-length scales. We show that XAFS and MS can measure different local atomic arrangements in La1.83-xEu0.17SrxCuO4 provided the local structural units are dynamical. Combined knowledge from these complementary techniques is used to determine that the local tilts of the CuO6 octahedra do not vanish with temperature but are dynamic, with the oxygen atoms at the apex positions [O(2)] hopping among local minima of the energy’s surface. Evidence is found for a crossover between different time domains in which the hopping time, ?0, changes from ?0?MS. We conclude that the Mössbauer results [Phys. Rev. B 54, R800 (1996)], contrary to the authors’ conclusions, do not contradict our XAFS results [Phys. Rev. Lett. 76, 439 (1996)].

Daniel Haskel; Edward A. Stern; Hanan Shechter

1998-04-01T23:59:59.000Z

369

Janus Experiments: Data from Mouse Irradiation Experiments 1972 - 1989  

DOE Data Explorer (OSTI)

The Janus Experiments, carried out at Argonne National Laboratory from 1972 to 1989 and supported by grants from the US Department of Energy, investigated the effects of neutron and gamma radiation on mouse tissues primarily from B6CF1 mice. 49,000 mice were irradiated: Death records were recorded for 42,000 mice; gross pathologies were recorded for 39,000 mice; and paraffin embedded tissues were preserved for most mice. Mouse record details type and source of radiation [gamma, neutrons]; dose and dose rate [including life span irradiation]; type and presence/absence of radioprotector treatment; tissue/animal morphology and pathology. Protracted low dose rate treatments, short term higher dose rate treatments, variable dose rates with a same total dose, etc. in some cases in conjunction with radioprotectors, were administered. Normal tissues, tumors, metastases were preserved. Standard tissues saved were : lung, liver, spleen, kidney, heart, any with gross lesions (including mammary glands, Harderian gland with eye, adrenal gland, gut, ovaries or testes, brain and pituitary, bone). Data are searchable and specimens can be obtained by request.

370

Kr ion irradiation study of the depleted-uranium alloys.  

SciTech Connect

Fuel development for the reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium nuclear fuels that can be employed to replace existing high enrichment uranium fuels currently used in some research reactors throughout the world. For dispersion type fuels, radiation stability of the fuel-cladding interaction product has a strong impact on fuel performance. Three depleted-uranium alloys are cast for the radiation stability studies of the fuel-cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Al, Si){sub 3}, (U, Mo)(Al, Si){sub 3}, UMo{sub 2}Al{sub 20}, U{sub 6}Mo{sub 4}Al{sub 43} and UAl{sub 4}. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200 C to ion doses up to 2.5 x 10{sup 19} ions/m{sup 2} ({approx}10 dpa) with an Kr ion flux of 10{sup 16} ions/m{sup 2}/s ({approx}4.0 x 10{sup -3} dpa/s). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.

Gan, J.; Keiser, D. D.; Miller, B. D.; Kirk, M. A.; Rest, J.; Allen, T. R.; Wachs, D. M. (Materials Science Division); (INL); (Univ. of Wisconsin)

2010-12-01T23:59:59.000Z

371

Kr Ion Irradiation Study of the Depleted-Uranium Alloys  

SciTech Connect

Fuel development for the Reduced Enrichment Research and Test Reactor program is tasked with the development of new low-enriched uranium nuclear fuels that can be employed to replace existing highly enriched uranium fuels currently used in some research reactors throughout the world. For dispersion-type fuels, radiation stability of the fuel/cladding interaction product has a strong impact on fuel performance. Three depleted uranium alloys are cast for the radiation stability studies of the fuel/cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Si, Al)3, (U, Mo)(Si, Al)3, UMo2Al20, U6Mo4Al43, and UAl4. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200şC to ion doses up to 2.5 × 1015 ions/cm2 (~ 10 dpa) with an Kr ion flux of 1012 ions/cm2-sec (~ 4.0 × 10-3 dpa/sec). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.

J. Gan; D. Keiser; B. Miller; M. Kirk; J. Rest; T. Allen; D. Wachs

2010-12-01T23:59:59.000Z

372

Fracture and tensile properties of irradiated zircaloy-2 pressure tubes  

SciTech Connect

The mechanical properties of nuclear reactor components degrade as a result of long service exposure in high-temperature, irradiation, and corrosive environments. Fracture toughness and tensile testing are conducted on the pressure tubes of Zircaloy-2 to evaluate the effects of neutron fluence, hydrogen content, and temperature on the mechanical properties. Tensile tests are performed on the base metal, and fracture toughness tests are performed on both the base and weld metals. Neutron irradiation increases the strength, reduces ductility, and significantly degrades fracture toughness. The postirradiation fracture toughness increases substantially as the test temperature is increased from room temperature to 250 C. Hydrogen levels up to 250 ppm are found to have little or no effect on the postirradiation fracture toughness. Because of its anisotropic nature, Zircaloy-2 displays different fracture resistances, depending on crack orientation. In the base metal, the fracture toughness in the longitudinal orientation is higher than that for the circumferential orientation, and this difference is enhanced at higher temperatures. The weld exhibits lower toughness in the longitudinal direction.

Huang, F.H.; Mills, W.J. (Westinghouse Hanford Co., Richland, WA (United States))

1993-06-01T23:59:59.000Z

373

Ion irradiation damage in ilmenite under cryogenic conditions  

SciTech Connect

A natural single crystal of ilmenite was irradiated at 100 K with 200 keV Ar{sup 2+}. Rutherford backscattering spectroscopy and ion channeling with 2 MeV He{sup +} ions were used to monitor damage accumulation in the surface region of the implanted crystal. At an irradiation fluence of 1 {times} 10{sup 15} Ar{sup 2+} cm{sup {minus}2}, considerable near-surface He{sup +} ion dechanneling was observed, to the extent that ion yield from a portion of the aligned crystal spectrum reached the yield level of a random spectrum. This observation suggests that the near-surface region of the crystal was amorphized by the implantation. Cross-sectional transmission electron microscopy and electron diffraction on this sample confirmed the presence of a 150 mm thick amorphous layer. These results are compared to similar investigations on geikielite (MgTiO{sub 3}) and spinel (MgAl{sub 2}O{sub 4}) to explore factors that may influence radiation damage response in oxides.

Mitchell, J.N.; Yu, N.; Devanathan, R.; Sickafus, K.E.; Nastasi, M.A. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.; Nord, G.L. Jr. [Geological Survey, Reston, VA (United States)

1996-11-01T23:59:59.000Z

374

Global horizontal irradiance clear sky models : implementation and analysis.  

SciTech Connect

Clear sky models estimate the terrestrial solar radiation under a cloudless sky as a function of the solar elevation angle, site altitude, aerosol concentration, water vapor, and various atmospheric conditions. This report provides an overview of a number of global horizontal irradiance (GHI) clear sky models from very simple to complex. Validation of clear-sky models requires comparison of model results to measured irradiance during clear-sky periods. To facilitate validation, we present a new algorithm for automatically identifying clear-sky periods in a time series of GHI measurements. We evaluate the performance of selected clear-sky models using measured data from 30 different sites, totaling about 300 site-years of data. We analyze the variation of these errors across time and location. In terms of error averaged over all locations and times, we found that complex models that correctly account for all the atmospheric parameters are slightly more accurate than other models, but, primarily at low elevations, comparable accuracy can be obtained from some simpler models. However, simpler models often exhibit errors that vary with time of day and season, whereas the errors for complex models vary less over time.

Stein, Joshua S.; Hansen, Clifford W.; Reno, Matthew J.

2012-03-01T23:59:59.000Z

375

Test plan for the Parallex CANDU-MOX irradiation  

SciTech Connect

One of several options being considered by the United States and the Russian Federation for the disposition of excess plutonium from dismantled weapons is to convert it to mixed-oxide (MOX) fuel for use in Canadian uranium-deuterium (CANDU) reactors. This report describes an irradiation test demonstrating the feasibility of this concept with laboratory quantities of MOX fuel placed in the pressurized loops of the National Research Universal test reactor at the Atomic Energy of Canada, Ltd., Chalk River Laboratories. The objective of the Parallex (for parallel experiment) test is to simultaneously test laboratory-produced quantities of US and R.F. MOX fuel in a test reactor under heat generation rates representing those expected in the CANDU reactors. The MOX fuel will be produced with plutonium from disassembled weapons at the Los Alamos National Laboratory in the United States and at the Bochvar Institute in the Russian Federation. Thus, the test will serve to demonstrate the accomplishment of many parts of the disposition mission: disassembly of weapons, conversion of the plutonium to oxide, fabrication of MOX fuel, assembly of fuel elements and bundles, shipment to a reactor, irradiation, and finally, storage of the spent fuel elements awaiting eventual disposition in a geologic repository in Canada.

Copeland, G.L.

1997-06-01T23:59:59.000Z

376

Planetary magnetospheres: The double tilt of Uranus  

Science Journals Connector (OSTI)

... once per rotation. Hence periodic magnetic reconnection may allow the greater efficiency in removal of solar wind energy that is required to power magneto-sphere in circulation plus auroral and electroglow emissions ( ...

Fran Bagenal

1986-06-26T23:59:59.000Z

377

Study of Photostimulated- and Thermo-luminescence Characteristics for Detecting Irradiated Kiwifruit  

Science Journals Connector (OSTI)

Photostimulated luminescence (PSL) and thermo-luminescence (TL) analyses were conducted to detect irradiated kiwifruits. Samples were irradiated with Co-60 ?-rays at 0–2 kGy. The freeze-dried kiwifruit peel showed 309 photon counts (PCs) for nonirradiated ...

Deokjo Jo; Byeong-Keun Kim; Tusneem Kausar; Joong-Ho Kwon

2008-02-02T23:59:59.000Z

378

A Neural Network Model for the Tomographic Analysis of Irradiated Nuclear Fuel Rods  

SciTech Connect

A tomographic method based on a multilayer feed-forward artificial neural network is proposed for the reconstruction of gamma-radioactive fission product distribution in irradiated nuclear fuel rods. The quality of the method is investigated as compared to a conventional technique on experimental results concerning a Canada deuterium uranium reactor (CANDU)-type fuel rod irradiated in a TRIGA reactor.

Craciunescu, Teddy [National Institute of Nuclear Physics and Engineering (Romania)

2004-04-15T23:59:59.000Z

379

Antimicrobial packaging system for optimization of electron beam irradiation of fresh produce  

E-Print Network (OSTI)

This study evaluated the potential use of an antimicrobial packaging system in combination with electron beam irradiation to enhance quality of fresh produce. Irradiated romaine lettuce up to 3.2 kGy showed negligible (p > 0.05) changes in color...

Han, Jaejoon

2006-10-30T23:59:59.000Z

380

Stability of irradiation-induced point defects on walls of carbon nanotubes  

E-Print Network (OSTI)

Stability of irradiation-induced point defects on walls of carbon nanotubes A. V. Krasheninnikov #3 of atomic-scale irradiation- induced defects on walls of carbon nanotubes. Since atomic vacancies. Carbon nanotubes; C. Computational chemistry; Scanning tunneling microscopy; D. Defects; Electronic

Nordlund, Kai

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Ion-irradiation-induced welding of carbon nanotubes A. V. Krasheninnikov, K. Nordlund, and J. Keinonen  

E-Print Network (OSTI)

been suggested16 to use a low-energy 3 eV bombardment of crossed nanotubes with carbon ions to formIon-irradiation-induced welding of carbon nanotubes A. V. Krasheninnikov, K. Nordlund, and J, electron irradiation can be used to create molecular junctions between carbon nanotubes. Employing

Krasheninnikov, Arkady V.

382

Microstructural changes induced by low energy heavy ion irradiation in titanium silicon carbide  

E-Print Network (OSTI)

Microstructural changes induced by low energy heavy ion irradiation in titanium silicon carbide, and it was validated on irradiated silicon carbide. The swelling of Ti3SiC2 was estimated to 2.2 ±0 to these working conditions, non-oxide refractory ceramics are required as fuel cladding. Thus, carbides turn out

Boyer, Edmond

383

Irradiation research capabilities at HFIR (High Flux Isotope Reactor) and ANS (Advanced Neutron Source)  

SciTech Connect

A variety of materials irradiation facilities exist in the High Flux Isotope Reactor (HFIR) and are planned for the Advanced Neutron Source (ANS) reactor. In 1986 the HFIR Irradiation Facilities Improvement (HIFI) project began modifications to the HFIR which now permit the operation of two instrumented capsules in the target region and eight capsules of 46-mm OD in the RB region. Thus, it is now possible to perform instrumented irradiation experiments in the highest continuous flux of thermal neutrons available in the western world. The new RB facilities are now large enough to permit neutron spectral tailoring of experiments and the modified method of access to these facilities permit rotation of experiments thereby reducing fluence gradients in specimens. A summary of characteristics of irradiation facilities in HFIR is presented. The ANS is being designed to provide the highest thermal neutron flux for beam facilities in the world. Additional design goals include providing materials irradiation and transplutonium isotope production facilities as good, or better than, HFIR. The reference conceptual core design consists of two annular fuel elements positioned one above the other instead of concentrically as in the HFIR. A variety of materials irradiation facilities with unprecedented fluxes are being incorporated into the design of the ANS. These will include fast neutron irradiation facilities in the central hole of the upper fuel element, epithermal facilities surrounding the lower fuel element, and thermal facilities in the reflector tank. A summary of characteristics of irradiation facilities presently planned for the ANS is presented. 2 tabs.

Thoms, K.R.

1990-01-01T23:59:59.000Z

384

Trial Production of Condoms from Irradiated Natural Rubber Latex on a Factory Scale  

Science Journals Connector (OSTI)

TRIAL PRODUCTION OF CONDOM FROM IRRADIATED NATURAL RUBBER LATEX IN FACTORY SCALE: Irradiation of latex...60Co at 20 kGy in the presence of 1 phr (part hundred ratio of rubber) of normal bu til acrylate (nBA)...4....

Marga Utama

1994-01-01T23:59:59.000Z

385

Rapid degradation of CdSe/ZnS colloidal quantum dots exposed to gamma irradiation  

E-Print Network (OSTI)

on irradiation dose. CdSe/ZnS quantum dots show poor radiation hardness, and severely degrade after less than 20 of light sources to ionizing radiation, it is important to know the levels of irradiation that would de of applica- tions ranging from optoelectronic through photocatalytic to biomedical, including applications

New Mexico, University of

386

Release of Inorganic Phosphate from Irradiated Yeast: Radiation Biodosimetry and Evaluation of Radioprotective Compounds  

Science Journals Connector (OSTI)

...irradiated with ionizing radiation, inorganic...radiation dose and on the...somewhat limited range of the yeast...irradiated with ionizing radiation, inorganic...radiation dose and on the...somewhat limited range of the yeast...represent range ofvaluesfrom...but with dose plotted on...effect of ionizing radiation (27...

Hillel S. Levinson; Esther B. Garber

1967-03-01T23:59:59.000Z

387

Improved irradiances for use in ocean heating, primary production, and photo-oxidation calculations  

E-Print Network (OSTI)

computed by a radiative transfer code that can be used to convert above-surface values in either energy- plankton affect upper-ocean thermal structure via absorption of solar irradiance at visible wavelengthsImproved irradiances for use in ocean heating, primary production, and photo-oxidation calculations

Boss, Emmanuel S.

388

Long-lived Inflammatory Signaling in Irradiated Bone Marrow Is Genome Dependent  

Science Journals Connector (OSTI)

...reduction in colony-forming efficiency (CFE)]. In addition, the bone marrow of irradiated...humidified atmosphere of 5% CO2 in air (17). CFE was determined by the number of colonies...irradiated producer bone marrow cells and the CFE of CFU-A determined. The protocol is...

Sally A. Lorimore; Debayan Mukherjee; Joanne I. Robinson; Jennifer A. Chrystal; Eric G. Wright

2011-10-15T23:59:59.000Z

389

Production of High Resolution Irradiance Data for Central America and Cuba  

Open Energy Info (EERE)

Production of High Resolution Irradiance Data for Central America and Cuba Production of High Resolution Irradiance Data for Central America and Cuba Dataset Summary Description (Abstract): The main object of the SUNY task for SWERA is to prepare high resolution global irradiance (GHI) and direct irradiance (DNI) data sets for the countries of Cuba, El Salvador, Guatemala, Honduras and Nicaragua.Much of our initial effort focused on building up the satellite data tx_metadatatool, and in strengthening and validating the models capable of converting that data into ground surface irradiances. Three research articles, acknowledging all or partial funding from UNEP & SWERA have been published on this subject. (Purpose): SWERA documentation Source SUNY Albany Date Released July 31st, 2003 (11 years ago) Date Updated August 29th, 2003 (11 years ago)

390

Direct normal irradiance related definitions and applications: The circumsolar issue  

Science Journals Connector (OSTI)

Abstract The direct irradiance received on a plane normal to the sun, called direct normal irradiance (DNI), is of particular relevance to concentrated solar technologies, including concentrating solar thermal plants and concentrated photovoltaic systems. Following various standards from the International Organization for Standardization (ISO), the DNI definition is related to the irradiance from a small solid angle of the sky, centered on the position of the sun. Half-angle apertures of pyrheliometers measuring DNI have varied over time, up to ?10°. The current recommendation of the World Meteorological Organization (WMO) for this half-angle is 2.5°. Solar concentrating collectors have an angular acceptance function that can be significantly narrower, especially for technologies with high concentration ratios. The disagreement between the various interpretations of DNI, from the theoretical definition used in atmospheric physics and radiative transfer modeling to practical definitions corresponding to specific measurements or conversion technologies is significant, especially in the presence of cirrus clouds or large concentration of aerosols. Under such sky conditions, the circumsolar radiation—i.e. the diffuse radiation coming from the vicinity of the sun—contributes significantly to the DNI ground measurement, although some concentrating collectors cannot utilize the bulk of it. These issues have been identified in the EU-funded projects MACC-II (Monitoring Atmospheric Composition and Climate-Interim Implementation) and SFERA (Solar Facilities for the European Research Area), and have been discussed within a panel of international experts in the framework of the Solar Heating and Cooling (SHC) program of the International Energy Agency’s (IEA’s) Task 46 “Solar Resource Assessment and Forecasting”. In accordance with these discussions, the terms of reference related to DNI are specified here. The important role of circumsolar radiation is evidenced, and its potential contribution is evaluated for typical atmospheric conditions. For thorough analysis of performance of concentrating solar systems, it is recommended that, in addition to the conventional DNI related to 2.5° half-angle of today’s pyrheliometers, solar resource data sets also report the sunshape, the circumsolar contribution or the circumsolar ratio (CSR).

P. Blanc; B. Espinar; N. Geuder; C. Gueymard; R. Meyer; R. Pitz-Paal; B. Reinhardt; D. Renné; M. Sengupta; L. Wald; S. Wilbert

2014-01-01T23:59:59.000Z

391

Attachment of Salmonella on cantaloupe and effect of electron beam irradiation on quality and safety of sliced cantaloupe  

E-Print Network (OSTI)

effectively by irradiation but there was no significant effect on reduction of yeasts. Our results show that electron beam irradiation in combination with chemical sanitizers is effective in decontamination of fresh-cut produce. Electron microscopy images...

Palekar, Mangesh Prafull

2006-04-12T23:59:59.000Z

392

Effect of ?-Irradiation on Agaritine, ?-Glutaminyl-4-hydroxybenzene (GHB), Antioxidant Capacity, and Total Phenolic Content of Mushrooms (Agaricus bisporus)  

Science Journals Connector (OSTI)

Isolde Sommer †, Heidi Schwartz ‡, Sonja Solar *† and Gerhard Sontag ‡ ... Sample irradiation was performed using a Cobalt-60-?-ray irradiator type “Gammacell 220” (Nordion International, Inc., Kanata, Ontario, Canada) at a dose rate of 34 Gy/min. ...

Isolde Sommer; Heidi Schwartz; Sonja Solar; Gerhard Sontag

2009-06-08T23:59:59.000Z

393

Electron-Irradiation Damage-Rate Measurements in Aluminum  

Science Journals Connector (OSTI)

The resistivity increase upon electron irradiation near 8°K of aluminum was measured as a function of incident electron energy from 0.19 to 1.6 MeV. A value of the displacement threshold energy of 16 eV was determined by extrapolation of the damage-rate curve to zero damage production. A reasonable fit between the experimental and theoretical values of the displacement cross section was achieved with an effective threshold energy of 19 eV, a value of the Frenkel resistivity of (1.32×10-4 ohm cm)/(fractional concentration), and a unit step-displacement function. The tailing off in the damage rate near threshold that has been observed in Cu, Au, and Pt is apparently absent in Al.

H. H. Neely and Walter Bauer

1966-09-16T23:59:59.000Z

394

Zircaloy-4 cladding deformation during power reactor irradiation  

SciTech Connect

Axial elongation, circumferential creep, ovalization and ridging in Zircaloy fuel cladding were investigated for fuel irradiated in four modern PWR's. For fueled rods, only fluence and stress were found to influence elongation, while for nonfueled rods the texture was also important. Time and flux had weaker than linear influence on circumferential creep strain in nonfueled rods, while the influence of the stress was stronger than linear. The strain rate was almost athermal. The creep strain clearly increased with preirradiation yield strength. The creep rate decreased with an increase in the angle between the basal poles and the radial direction. Ovalization of fueled and nonfueled rods was observed. Clad ridging developed in fueled rods, usually in a time period between one and two reactor cycles and almost always after three cycles. 29 refs.

Franklin, D.G.

1982-01-01T23:59:59.000Z

395

Fracture behavior and microstructural characteristics of irradiated Zircaloy cladding  

SciTech Connect

Zircaloy cladding tube specimens from commercial power reactor fuel assemblies (burnup >22 MWd/kgU) have been deformed to fracture at 325/sup 0/C by either the internal gas-pressurization or the expanding-mandrel technique in a helium or argon environment containing no fission product species (e.g., I, Cs, or Cd). The fracture surfaces of 11 irradiated specimens fractured by internal gas pressurization were examined by scanning electron microscopy, and 7 specimens were found to contain various degrees of the pseudocleavage feature that is characteristic of pellet-cladding interaction failures. Out of 10 test specimens fractured by expanding-mandrel loading, 5 were found to contain regions of pseudocleavage on the fracture surfaces. The specimens exhibited ''X-marks'' on the outer surface and brittle incipient cracks distributed on the inner surface, which are also characteristic of pellet-cladding interaction failures.

Chung, H.M.; Yaggee, F.L.; Kassner, T.F.

1985-06-01T23:59:59.000Z

396

Metastable hydronium ions in UV-irradiated ice  

SciTech Connect

We show that the irradiation of UV light (10-11 eV) onto an ice film produces metastable hydronium (H{sub 3}O{sup +}) ions in the ice at low temperatures (53-140 K). Evidence of the presence of metastable hydronium ions was obtained by experiments involving adsorption of methylamine onto UV-irradiated ice films and hydrogen-deuterium (H/D) isotopic exchange reaction. The methylamine adsorption experiments showed that photogenerated H{sub 3}O{sup +} species transferred a proton to the methylamine arriving at the ice surface, thus producing the methyl ammonium ion, which was detected by low energy sputtering method. The H{sub 3}O{sup +} species induced the H/D exchange of water, which was monitored through the detection of water isotopomers on the surface by using the Cs{sup +} reactive ion scattering method. Thermal and temporal stabilities of H{sub 3}O{sup +} and its proton migration activity were examined. The lifetime of the hydronium ions in the amorphized ice was greater than 1 h at {approx}53 K and decreased to {approx}5 min at 140 K. Interestingly, a small portion of hydronium ions survived for an extraordinarily long time in the ice, even at 140 K. The average migration distance of protons released from H{sub 3}O{sup +} in the ice was estimated to be about two water molecules at {approx}54 K and about six molecules at 100 K. These results indicate that UV-generated hydronium ions can be efficiently stabilized in low-temperature ice. Such metastable hydronium ions may play a significant role in the acid-base chemistry of ice particles in interstellar clouds.

Moon, Eui-Seong; Kang, Heon [Department of Chemistry, Seoul National University, 1 Gwanak-ro, Seoul 151-747 (Korea, Republic of)

2012-11-28T23:59:59.000Z

397

Mechanism of Irradiation Assisted Cracking of Core Components in Light Water Reactors  

SciTech Connect

The overall goal of the project is to determine the mechanism of irradiation assisted stress corrosion cracking (IASCC). IASCC has been linked to hardening, microstructural and microchemical changes during irradiation. Unfortunately, all of these changes occur simultaneously and at similar rates during irradiation, making attribution of IASCC to any one of these features nearly impossible to determine. The strategy set forth in this project is to develop means to separate microstructural from microchemical changes to evaluate each separately for their effect on IASCC. In the first part, post irradiation annealing (PIA) treatments are used to anneal the irradiated microstructure, leaving only radiation induced segregation (RIS) for evaluation for its contribution to IASCC. The second part of the strategy is to use low temperature irradiation to produce a radiation damage dislocation loop microstructure without radiation induced segregation in order to evaluate the effect of the dislocation microstructure alone. A radiation annealing model was developed based on the elimination of dislocation loops by vacancy absorption. Results showed that there were indeed, time-temperature annealing combinations that leave the radiation induced segregation profile largely unaltered while the dislocation microstructure is significantly reduced. Proton irradiation of 304 stainless steel irradiated with 3.2 MeV protons to 1.0 or 2.5 dpa resulted in grain boundary depletion of chromium and enrichment of nickel and a radiation damaged microstructure. Post irradiation annealing at temperatures of 500 ? 600°C for times of up to 45 min. removed the dislocation microstructure to a greater degree with increasing temperatures, or times at temperature, while leaving the radiation induced segregation profile relatively unaltered. Constant extension rate tensile (CERT) experiments in 288°C water containing 2 ppm O2 and with a conductivity of 0.2 mS/cm and at a strain rate of 3 x 10-7 s-1 showed that the IASCC susceptibility, as measured by the crack length per unit strain, decreased with very short anneals and was almost completely removed by an anneal at 500°C for 45 min. This annealing treatment removed about 15% of the dislocation microstructure and the irradiation hardening, but did not affect the grain boundary chromium depletion or nickel segregation, nor did it affect the grain boundary content of other minor impurities. These results indicate that RIS is not the sole controlling feature of IASCC in irradiated stainless steels in normal water chemistry. The isolation of the irradiated microstructure was approached using low temperature irradiation or combinations of low and high temperature irradiations to achieve a stable, irradiated microstructure without RIS. Experiments were successful in achieving a high degree of irradiation hardening without any evidence of RIS of either major or minor elements. The low temperature irradiations to doses up to 0.3 dpa at T<75°C were also very successful in producing hardening to levels considerably above that for irradiations conducted under nominal conditions of 1 dpa at 360°C. However, the microstructure consisted of an extremely fine dispersion of defect clusters of sizes that are not resolvable by either transmission electron microscopy (TEM) or small angle x-ray scattering (SAXS). The microstructure was not stable at the 288°C IASCC test temperature and resulted in rapid reduction of hardening and presumably, annealing of the defect clusters at this temperature as well. Nevertheless, the annealing studies showed that treatments that resulted in significant decreases in the hardening produced small changes in the dislocation microstructure that were confined to the elimination of the finest of loops (~1 nm). These results substantiate the importance of the very fine defect microstructure in the IASCC process. The results of this program provide the first definitive evidence that RIS is not the sole controlling factor in the irradiation assisted stress corrosion cracking of austenitic stain

Gary S. Was; Michael Atzmon; Lumin Wang

2003-04-28T23:59:59.000Z

398

Assessment of Heliosat-4 surface solar irradiance derived on the basis of SEVIRI-APOLLO cloud products  

E-Print Network (OSTI)

surface downwelling solar irradiance (SSI). This method is composed by two parts: a clear-sky moduleAssessment of Heliosat-4 surface solar irradiance derived on the basis of SEVIRI-APOLLO cloud Aerospace Center (DLR), aims at estimating surface downwelling solar irradiance (SSI). It benefits from

Boyer, Edmond

399

Evaluation of irradiation facility options for fusion materials research and development  

Science Journals Connector (OSTI)

Successful development of fusion energy will require the design of high-performance structural materials that exhibit dimensional stability and good resistance to fusion neutron degradation of mechanical and physical properties. The high levels of gaseous (H, He) transmutation products associated with deuterium–tritium (D–T) fusion neutron transmutation reactions, along with displacement damage dose requirements up to 50–200 displacements per atom (dpa) for a fusion demonstration reactor (DEMO), pose an extraordinary challenge. One or more intense neutron source(s) are needed to address two complementary missions: (1) scientific investigations of radiation degradation phenomena and microstructural evolution under fusion-relevant irradiation conditions (to provide the foundation for designing improved radiation resistant materials), and (2) engineering database development for design and licensing of next-step fusion energy machines such as a fusion DEMO. A wide variety of irradiation facilities have been proposed to investigate materials science phenomena and to test and qualify materials for a DEMO reactor. Some of the key technical considerations for selecting the most appropriate fusion materials irradiation source are summarized. Currently available and proposed facilities include fission reactors (including isotopic and spectral tailoring techniques to modify the rate of H and He production per dpa), dual- and triple-ion accelerator irradiation facilities that enable greatly accelerated irradiation studies with fusion-relevant H and He production rates per dpa within microscopic volumes, D–Li stripping reaction and spallation neutron sources, and plasma-based sources. The advantages and limitations of the main proposed fusion materials irradiation facility options are reviewed. Evaluation parameters include irradiation volume, potential for performing accelerated irradiation studies, capital and operating costs, similarity of neutron irradiation spectrum to fusion reactor conditions, temperature and irradiation flux stability/control, ability to perform multiple-effect tests (e.g., irradiation in the presence of a flowing coolant, or in the presence of complex applied stress fields), and technical maturity/risk of the concept. Ultimately, it is anticipated that heavy utilization of ion beam and fission neutron irradiation facilities along with sophisticated materials models, in addition to a dedicated fusion-relevant neutron irradiation facility, will be necessary to provide a comprehensive and cost-effective understanding of anticipated materials evolution in a fusion DEMO and to therefore provide a timely and robust materials database.

Steven J. Zinkle; Anton Möslang

2013-01-01T23:59:59.000Z

400

STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS  

SciTech Connect

Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The potential application of ultra-nanocrystalline diamond films for heavy ion irradiation detection  

SciTech Connect

The potential of utilizing the ultra-nanocrystalline (UNCD) films for detecting the Au-ion irradiation was investigated. When the fluence for Au-ion irradiation is lower than the critical value (f{sub c}= 5.0 Multiplication-Sign 10{sup 12} ions/cm{sup 2}) the turn-on field for electron field emission (EFE) process of the UNCD films decreased systematically with the increase in fluence that is correlated with the increase in sp{sup 2}-bonded phase ({pi}{sup *}-band in EELS) due to the Au-ion irradiation. The EFE properties changed irregularly, when the fluence for Au-ion irradiation exceeds this critical value. The transmission electron microscopic microstructural examinations, in conjunction with EELS spectroscopic studies, reveal that the structural change preferentially occurred in the diamond-to-Si interface for the samples experienced over critical fluence of Au-ion irradiation, viz. the crystalline SiC phase was induced in the interfacial region and the thickness of the interface decreased. These observations implied that the UNCD films could be used as irradiation detectors when the fluence for Au-ion irradiation does not exceed such a critical value.

Chen, Huang-Chin [Department of Physics, Tamkang University, Tamsui, New-Taipei, Taiwan 251 (China); Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300 (China); Chen, Shih-Show [Department of Physics, Tamkang University, Tamsui, New-Taipei, Taiwan 251 (China); Department of Information Technology and Mobile Communication, Taipei College of Maritime Technology, Tamsui, New-Taipei, Taiwan 251 (China); Wang, Wei-Cheng; Lin, I-Nan; Chang, Ching-Lin [Department of Physics, Tamkang University, Tamsui, New-Taipei, Taiwan 251 (China); Lee, Chi-Young [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, 300 (China); Guo, Jinghua [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

2013-06-15T23:59:59.000Z

402

JOYO-1 Irradiation Test Campaign Technical Close-out, For Information  

SciTech Connect

The JOYO-1 irradiation testing was designed to screen the irradiation performance of candidate cladding, structural and reflector materials in support of space reactor development. The JOYO-1 designation refers to the first of four planned irradiation tests in the JOYO reactor. Limited irradiated material performance data for the candidate materials exists for the expected Prometheus-1 duration, fluences and temperatures. Materials of interest include fuel element cladding and core materials (refractory metal alloys and silicon carbide (Sic)), vessel and plant structural materials (refractory metal alloys and nickel-base superalloys), and control and reflector materials (BeO). Key issues to be evaluated were long term microstructure and material property stability. The JOYO-1 test campaign was initiated to irradiate a matrix of specimens at prototypical temperatures and fluences anticipated for the Prometheus-1 reactor [Reference (1)]. Enclosures 1 through 9 describe the specimen and temperature monitors/dosimetry fabrication efforts, capsule design, disposition of structural material irradiation rigs, and plans for post-irradiation examination. These enclosures provide a detailed overview of Naval Reactors Prime Contractor Team (NRPCT) progress in specific areas; however, efforts were in various states of completion at the termination of NRPCT involvement with and restructuring of Project Prometheus.

G. Borges

2006-01-31T23:59:59.000Z

403

Simulation of Self-Irradiation of High-Sodium Content Nuclear Waste Glasses  

SciTech Connect

Alkali-borosilicate glasses are widely used in nuclear industry as a matrix for immobilisation of hazardous radioactive wastes. Durability or corrosion resistance of these glasses is one of key parameters in waste storage and disposal safety. It is influenced by many factors such as composition of glass and surrounding media, temperature, time and so on. As these glasses contain radioactive elements most of their properties including corrosion resistance are also impacted by self-irradiation. The effect of external gamma-irradiation on the short-term (up to 27 days) dissolution of waste borosilicate glasses at moderate temperatures (30 deg. to 60 deg. C) was studied. The glasses studied were Magnox Waste glass used for immobilisation of HLW in UK, and K-26 glass used in Russia for ILW immobilisation. Glass samples were irradiated under {gamma}-source (Co-60) up to doses 1 and 11 MGy. Normalised rates of elemental release and activation energy of release were measured for Na, Li, Ca, Mg, B, Si and Mo before and after irradiation. Irradiation up to 1 MGy results in increase of leaching rate of almost all elements from both MW and K-26 with the exception of Na release from MW glass. Further irradiation up to a dose of 11 MGy leads to the decrease of elemental release rates to nearly initial value. Another effect of irradiation is increase of activation energies of elemental release. (authors)

Pankov, Alexey S.; Ojovan, Michael I. [Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD (United Kingdom); Batyukhnova, Olga G. [International Education Training Centre, SUE SIA 'Radon', The 7-th Rostovsky Lane 2/14, Moscow, 119121 (Russian Federation); Lee, William E. [Department of Materials, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ (United Kingdom)

2007-07-01T23:59:59.000Z

404

EVALUATION OF U10MO FUEL PLATE IRRADIATION BEHAVIOR VIA NUMERICAL AND EXPERIMENTAL BENCHMARKING  

SciTech Connect

This article analyzes dimensional changes due to irradiation of monolithic plate-type nuclear fuel and compares results with finite element analysis of the plates during fabrication and irradiation. Monolithic fuel plates tested in the Advanced Test Reactor (ATR) at Idaho National Lab (INL) are being used to benchmark proposed fuel performance for several high power research reactors. Post-irradiation metallographic images of plates sectioned at the midpoint were analyzed to determine dimensional changes of the fuel and the cladding response. A constitutive model of the fabrication process and irradiation behavior of the tested plates was developed using the general purpose commercial finite element analysis package, Abaqus. Using calculated burn-up profiles of irradiated plates to model the power distribution and including irradiation behaviors such as swelling and irradiation enhanced creep, model simulations allow analysis of plate parameters that are either impossible or infeasible in an experimental setting. The development and progression of fabrication induced stress concentrations at the plate edges was of primary interest, as these locations have a unique stress profile during irradiation. Additionally, comparison between 2D and 3D models was performed to optimize analysis methodology. In particular, the ability of 2D and 3D models account for out of plane stresses which result in 3-dimensional creep behavior that is a product of these components. Results show that assumptions made in 2D models for the out-of-plane stresses and strains cannot capture the 3-dimensional physics accurately and thus 2D approximations are not computationally accurate. Stress-strain fields are dependent on plate geometry and irradiation conditions, thus, if stress based criteria is used to predict plate behavior (as opposed to material impurities, fine micro-structural defects, or sharp power gradients), unique 3D finite element formulation for each plate is required.

Samuel J. Miller; Hakan Ozaltun

2012-11-01T23:59:59.000Z

405

Atomic configuration of irradiation-induced planar defects in 3C-SiC  

SciTech Connect

The atomic configuration of irradiation-induced planar defects in single crystal 3C-SiC at high irradiation temperatures was shown in this research. A spherical aberration corrected scanning transmission electron microscope provided images of individual silicon and carbon atoms by the annular bright-field (ABF) method. Two types of irradiation-induced planar defects were observed in the ABF images including the extrinsic stacking fault loop with two offset Si-C bilayers and the intrinsic stacking fault loop with one offset Si-C bilayer. The results are in good agreement with images simulated under identical conditions.

Lin, Y. R. [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); National Synchrotron Radiation Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Ho, C. Y. [Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Hsieh, C. Y.; Chang, M. T.; Lo, S. C. [Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Chen, F. R. [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Kai, J. J., E-mail: ceer0001@gmail.com [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China)

2014-03-24T23:59:59.000Z

406

Evaluation of irradiation facility options for fusion materials research and development  

SciTech Connect

Successful development of fusion energy will require the design of high-performance structural materials that exhibit dimensional stability and good resistance to fusion neutron degradation of mechanical and physical properties. The high levels of gaseous (H, He) transmutation products associated with deuterium-tritium (D-T) fusion neutron transmutation reactions, along with displacement damage dose requirements up to 50-200 displacements per atom (dpa) for a fusion demonstration reactor (DEMO), pose an extraordinary challenge. The intense neutron source(s) is needed to address two complimentary missions: 1) Scientific investigations of radiation degradation phenomena and microstructural evolution under fusion-relevant irradiation conditions (to provide the foundation for designing improved radiation resistant materials), and 2) Engineering database development for design and licensing of next-step fusion energy machines such as a fusion DEMO. A wide variety of irradiation facilities have been proposed to investigate materials science phenomena and to test and qualify materials for a DEMO reactor. Currently available and proposed facilities include fission reactors (including isotopic and spectral tailoring techniques to modify the rate of H and He production per dpa), dual- and triple-ion accelerator irradiation facilities that enable greatly accelerated irradiation studies with fusion-relevant H and He production rates per dpa within microscopic volumes, D-Li stripping reaction and spallation neutron sources, and plasma-based sources. The advantages and limitations of the main proposed fusion materials irradiation facility options are reviewed. Evaluation parameters include irradiation volume, potential for performing accelerated irradiation studies, capital and operating costs, similarity of neutron irradiation spectrum to fusion reactor conditions, temperature and irradiation flux stability/control, ability to perform multiple-effect tests (e.g., irradiation in the presence of a flowing coolant, or in the presence of complex applied stress fields), and technical maturity/risk of the concept. Ultimately, it is anticipated that heavy utilization of ion beam and fission neutron irradiation facilities along with sophisticated materials models, in addition to a dedicated fusion-relevant neutron irradiation facility, will be necessary to provide a comprehensive and cost-effective understanding of anticipated materials evolution in a fusion DEMO and to therefore provide a timely and robust materials database.

Zinkle, Steven J [ORNL] [ORNL; Möslang, Anton [Karlsruhe Institute of Technology, Karlsruhe, Germany] [Karlsruhe Institute of Technology, Karlsruhe, Germany

2013-01-01T23:59:59.000Z

407

Status of the NGNP Graphite Creep Experiments AGC-1 and AGC-2 Irradiated in the Advanced Test Reactor  

SciTech Connect

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six peripheral stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six peripheral stacks will have different compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during irradiation of the experiment. The first experiment, AGC-1, started its irradiation in September 2009, and the irradiation was completed in January 2011. The second experiment, AGC-2, started its irradiation in April 2011 and completed its irradiation in May 2012. This paper will briefly discuss the design of the experiment and control systems, and then present the irradiation results for each experiment to date.

Blaine Grover

2012-10-01T23:59:59.000Z

408

Modeling the effect of irradiation and post-irradiation annealing on grain boundary composition in austenitic Fe-Cr-Ni alloys.  

SciTech Connect

Many irradiation effects in Fe-Cr-Ni alloys such as radiation-induced segregation, radiation-enhanced diffusion, and void swelling are known to vary with bulk alloy composition. The development of microstructural and microchemical changes during irradiation and during post-irradiation annealing is determined by the rate of diffusion of point defects and alloying elements. To accurately predict the changes in grain boundary chemistry due to radiation-induced segregation and post-irradiation annealing, the composition dependence of diffusion parameters, such as the migration energy, must be known. A model has been developed which calculates migration diffusivity. The advantages of this calculational method are that a single set of input parameters can be used for a wide range of bulk alloy compositions, and the effects of local order can easily be incorporated into the calculations. A description of the model is presented, and model calculations are compared to segregation measurements from seven different iron-chromium-nickel alloys, irradiated with protons to doses from 0.1 to 3.0 dpa at temperatures between 200 C and 600 C. Results show that segregation trends can be modeled using a single set of input parameters with the difference between model calculation and measurement being less than 5 at%, but usually less than 2 at%. Additionally, model predictions are compared to grain boundary composition measurements of neutron irradiated 304 stainless steel following annealing. For the limited annealing data available, model calculations correctly predict the magnitude and time scale for recovery of the grain boundary composition.

Allen, T.; Busby, J. T.; Kenik, E. A.; Was, G. S.

1998-03-05T23:59:59.000Z

409

Post-Irradiation Fracture Toughness of Unalloyed Molybdenum, ODS molybdenum, and TZM molybdenum following irradiation at 244C to 507C  

SciTech Connect

Commercially available unalloyed molybdenum (Low Carbon Arc Cast (LCAC)), Oxide Dispersion Strengthened (ODS) molybdenum, and TZM molybdenum were neutron irradiated at temperatures of nominally 244 C, 407 C, and 509 C to neutron fluences between 1.0 to 4.6x1025 n/m2 (E>0.1 MeV). Post-irradiation fracture toughness testing was performed. All alloys exhibited a Ductile to Brittle Transition Temperature that was defined to occur at 30 4 MPa-m1/2. The highest post-irradiated fracture toughness values (26-107 MPa-m1/2) and lowest DBTT (100-150 C) was observed for ODS molybdenum in the L-T orientation. The finer grain size for ODS molybdenum results in fine laminates that improve the ductile laminate toughening. The results for ODS molybdenum are anisotropic with lower post-irradiated toughness values (20-30 MPa-m1/2) and higher DBTT (450-600 C) in the T-L orientation. The results for T-L ODS molybdenum are consistent or slightly better than those for LCAC molybdenum (21-71 MPa-m1/2 and 450-800 C DBTT). The fracture toughness values measured for LCAC and T-L ODS molybdenum at temperatures below the DBTT were determined to be 8-18 MPa-m1/2. Lower non-irradiated fracture toughness values were measured for TZM molybdenum that are attributed to the large carbide precipitates serving as preferential fracture initiation sites. The role of microstructure and grain size on post-irradiated fracture toughness was evaluated by comparing the results for LCAC molybdenum and ODS molybdenum.

Cockeram, Brian V [Bechtel-Bettis, Inc.; Byun, Thak Sang [ORNL; Leonard, Keith J [ORNL; Snead, Lance Lewis [ORNL

2013-01-01T23:59:59.000Z

410

Impact of ?-irradiation on antioxidant capacity of mango (Mangifera indica L.) wine from eight Indian cultivars and the protection of mango wine against DNA damage caused by irradiation  

Science Journals Connector (OSTI)

Abstract The present study aims to evaluate the effect of gamma-irradiation on the total phenolic content (TPC), total flavonoid content (TFC), antioxidant and radioprotective properties of the mango wine. ?-Irradiation resulted in an increase in TPC and TFC in a dose dependent manner and their concentrations were in the range of 226.8–555.3 mg/L and 68.6–165.1 mg/L, respectively, in 3 kGy irradiated wine samples. There was a significant increase in the concentration of certain polyphenolic compounds with the exception of ellagic acid, which was unaltered and a significant decrease in the ferulic and synapic acids as measured by HPLC. Treatment with ?-irradiation resulted in overall reduction in microbial loads; further, no microbe was detected with a dose of 3 kGy in all wine samples, indicating improvement in the quality of mango wine. The DPPH radical scavenging activity of mango wine varied from 97.14 (Sindhura) to 83.64% (Mulgoa) and the DMPD scavenging capacity varied from 95.27 (Banginapalli) to 77.8% (Mulgoa) at 100 ?L and 3 kGy dose. However, the FRAP activity of mango wine varied from 33.96 (Sindhura) to 27.38 mM/L (Mulgoa), and the NO scavenging capacity from 88.2 (Banginapalli) to 74.44% (Mulgoa) at 500 ?L and 3 kGy dose. These scavenging activities were significantly increased with the irradiation dose and also with concentration. Mango wine was also demonstrated to protect DNA against UV + H2O2 and ?-irradiation (500 Gy) induced DNA damage, confirming its protective actions in vitro and thus could be a valuable source of antioxidants.

Naresh Kondapalli; Varakumar Sadineni; Prasad Shekhar Variyar; Arun Sharma; Vijaya Sarathi Reddy Obulam

2014-01-01T23:59:59.000Z

411

Producing Satellite-Derived Irradiances in Complex Arid Terrain | OpenEI  

Open Energy Info (EERE)

Producing Satellite-Derived Irradiances in Complex Arid Terrain Producing Satellite-Derived Irradiances in Complex Arid Terrain Dataset Summary Description (Abstract): This paper describes a methodology to correct satellite-derived irradiances over complex terrain. The correction applies to satellite models using visible images from geostationary satellites. (Purpose): Solar model documentation Source SUNY Albany Date Released June 26th, 2003 (11 years ago) Date Updated August 29th, 2003 (11 years ago) Keywords methodology solar SWERA UNEP validation Data application/pdf icon Download Report (pdf, 690.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 1999 - 2002 License License Other or unspecified, see optional comment below Comment Please cite publication as follows: Perez, R., Ineichen, P., Moore, K., Kmiecik, M., Renné, D., and George, R. 2002.Producing Satellite-Derived Irradiances in Complex Arid Terrain. ASES 2003, Austin TX and submitted for publication in Solar Energy

412

Interactive Caustics Using Local Precomputed Irradiance Chris Wyman Charles Hansen Peter Shirley  

E-Print Network (OSTI)

School of Computing, The University of Utah Salt Lake City, Utah, USA Abstract Bright patterns of lightInteractive Caustics Using Local Precomputed Irradiance Chris Wyman Charles Hansen Peter Shirley

Wyman, Chris

413

Effect of Irradiation on DNA Synthetic Period of the Mitotic Cycle in Cells  

Science Journals Connector (OSTI)

Kinetics of DNA synthesis in mitotic cycle of mouse corneal epithelial cells after single ?-irradiation (4 Gy) at the end of S period was studied by the method of radioautography. Normally, S period of corneal...

I. P. Shabalkin; E. Yu. Grigor’eva…

2012-05-01T23:59:59.000Z

414

Identification of Irradiated Prawn (Penaeus monodon) Using Thermoluminescence and 2-Alkylcyclobutanone Analyses  

Science Journals Connector (OSTI)

Thermoluminescence (TL) and 2-alkylcyclobutanone (2-ACB) analyses were performed to identify irradiated prawns (Penaeus monodon). With the TL method, minerals were extracted from prawns using acid hydrolysis. The experimental results satisfied the ...

Susu Chen; Yuka Morita; Kimie Saito; Hiromi Kameya; Mitsutoshi Nakajima; Setsuko Todoriki

2010-12-07T23:59:59.000Z

415

Thermoluminescence and Electron Spin Resonance Investigations of Minerals for the Detection of Irradiated Foods  

Science Journals Connector (OSTI)

Thermoluminescence (TL) measurements are used to detect irradiated foods. They are performed by investigating the minerals that contaminate certain products. Pure quartz, feldspars, and mineral mixtures, which are to be expected in foods, were examined ...

Birgit Ziegelmann; Klaus W. Bögl; Georg. A. Schreiber

1998-10-07T23:59:59.000Z

416

Irradiation damage in multicomponent equimolar alloys and high entropy alloys (HEAs)  

Science Journals Connector (OSTI)

......and improve the safety and efficiency of nuclear reactors, development of new and advanced nuclear materials with superior resistance to irradiation damage is necessary. Recently, a new generation of structural materials, termed as multicomponent......

Takeshi Nagase; Philip D. Rack; Takeshi Egami

2014-11-01T23:59:59.000Z

417

Light distribution in the erythrocyte under laser irradiation: a finite-difference time-domain calculation  

Science Journals Connector (OSTI)

In medical applications of low power laser irradiations, safety is one of the most concerning problems since the light focused by the biological object itself may cause damage of...

Wang, Xiao-Qian; Yu, Ji-Tong; Wang, Pei-Nan; Chen, Ji-Yao

2008-01-01T23:59:59.000Z

418

Materials irradiation subpanel report to BESAC neutron sources and research panel  

SciTech Connect

The future success of the nuclear power option in the US (fission and fusion) depends critically on the continued existence of a healthy national materials-irradiation program. Consideration of the requirements for acceptable materials-irradiation systems in a new neutron source has led the subcommittee to identify an advanced steady-state reactor (ANS) as a better choice than a spallation neutron source. However, the subcommittee also hastens to point out that the ANS cannot stand alone as the nation`s sole high-flux mixed-spectrum neutron irradiation source in the next century. It must be incorporated in a broader program that includes other currently existing neutron irradiation facilities. Upgrading and continuing support for these facilities must be planned. In particular, serious consideration should be given to converting the HFIR into a dedicated materials test reactor, and long-term support for several university reactors should be established.

Birtcher, R.C. [Argonne National Lab., IL (United States); Goland, A.N. [Brookhaven National Lab., Upton, NY (United States); Lott, R. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center; Odette, G.R. [California Univ., Santa Barbara, CA (United States)

1992-09-10T23:59:59.000Z

419

Neutron or Photon Irradiation for Prostate Tumors: Enhancement of Cytokine Therapy in a Metastatic Tumor Model  

Science Journals Connector (OSTI)

...Therapeutics, Preclinical Pharmacology Neutron or Photon Irradiation for Prostate Tumors...preclinical tumor model. The effect of neutron radiation was compared with that of photon...growth was caused either by photons or neutrons, but neutrons were more effective than...

Gilda G. Hillman; Richard L. Maughan; David J. Grignon; Mark Yudelev; Johanna Rubio; Samuel Tekyi-Mensah; Andrey Layer; Mingxin Che; Jeffrey D. Forman

2001-01-01T23:59:59.000Z

420

Effect of electron beam irradiation and sugar content on kinetics of microbial survival  

E-Print Network (OSTI)

The killing effectiveness of electron beam irradiation has not been completely characterized. The type of microorganisms and the composition of food have a direct effect on the efficiency of this technology. The objectives of this study were...

Rodriguez Gonzalez, Oscar

2006-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Reducing lipid oxidation in irradiated ground beef patties by natural antioxidants  

E-Print Network (OSTI)

of the main effects and interactions were analyzed for significance at Peffective for retarding irradiation induced lipid oxidation during the storage as determined by TBARS values. BHA/BHT and rosemary extracts were...

Movileanu, Iulia

2003-01-01T23:59:59.000Z

422

Amorphization Processes in Au Ion Irradiated GaN at 150 - 300...  

NLE Websites -- All DOE Office Websites (Extended Search)

and small crystalline zones that are randomly oriented. Citation: Jiang W, WJ Weber, LM Wang, and K Sun.2004."Amorphization Processes in Au Ion Irradiated GaN at 150 - 300...

423

Etch-free Formation of Porous Silicon by High-energy Ion Irradiation...  

NLE Websites -- All DOE Office Websites (Extended Search)

these porous networks are discussed. Citation: Perez-Bergquist AG, FU Naab, Y Zhang, and LM Wang.2011."Etch-free Formation of Porous Silicon by High-energy Ion Irradiation."Nuclear...

424

Graphene oxide/poly(acrylic acid) hydrogel by ?-ray pre-irradiation on graphene oxide surface  

Science Journals Connector (OSTI)

Graphene oxide/poly(acrylic acid) (GO/PAA)...?...-ray pre-irradiation technique. The functional groups in graphene oxide were modified to peroxide in an...2 environment with ?...-ray radiation. Radical species fr...

Sungyoung Lee; Hoik Lee; Jae Hyun Sim; Daewon Sohn

2014-02-01T23:59:59.000Z

425

An experience of electron beam (EB) irradiated gemstones in Malaysian nuclear agency  

SciTech Connect

In Nuclear Malaysia, a study on gemstone irradiation using beta particle is conducted. The purpose of the study is to evaluate the gemstone colour enhancement by using different kind of precious and non-precious gemstones. By using irradiation technique, selected gemstones are exposed to highly ionizing radiation electron beam to knock off electrons to generate colour centres culminating in the introduction of deeper colours. The colour centres may be stable or unstable depending on the nature of colour centre produced. The colour change of irradiated stones were measured by HunterLab colour measurement. At 50 kGy, Topaz shows changes colour from colourless to golden. Meanwhile pearl shows changes from pale colour to grey. Kunzite and amethyst shows colour changes from colorless to green and pale colour to purple. Gamma survey meter measurement confirmed that irradiation treatment with 3 MeV electron beam machine does not render any activation that activate the gems to become radioactive.

Idris, Sarada, E-mail: sarada@nuclearmalaysia.gov.my; Hairaldin, Siti Zulaiha, E-mail: sarada@nuclearmalaysia.gov.my; Tajau, Rida, E-mail: sarada@nuclearmalaysia.gov.my; Karim, Jamilah, E-mail: sarada@nuclearmalaysia.gov.my; Jusoh, Suhaimi, E-mail: sarada@nuclearmalaysia.gov.my; Ghazali, Zulkafli, E-mail: sarada@nuclearmalaysia.gov.my [Malaysian Nuclear Agency, Bangi, Selangor (Malaysia); Ahmad, Shamshad [School of Chemicals and Material Engineering, NUST Islamabad (Pakistan)

2014-02-12T23:59:59.000Z

426

The effect of ?-irradiation on the structure and subsequent thermal decomposition of brucite  

Science Journals Connector (OSTI)

...?The effect of ?-irradiation on the structure, phase composition and kinetics of isothermal decomposition of natural textural brucite Mg(OH)2 has been investigated by Mn2+ electron paramagnetic resonance (EPR)...

A. P. Shpak; E. A. Kalinichenko; A. S. Lytovchenko…

2003-02-01T23:59:59.000Z

427

Irradiation behavior of SrTiO3 at temperatures close to the critical...  

NLE Websites -- All DOE Office Websites (Extended Search)

for amorphization. Abstract: Damage accumulation on both the Sr and Ti sublattices in strontium titanate (SrTiO3) has been investigated under 1.0 MeV Au+ irradiation at 360 and 400...

428

Microsoft Word - AGR-1_Irradiation-Test-Final-As-Run-Report_rev1...  

NLE Websites -- All DOE Office Websites (Extended Search)

8097 Revision 1 AGR-1 Irradiation Test Final As-Run Report June 2012 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government....

429

Transmission electron microscopy of oxide dispersion strengthened (ODS) molybdenum: effects of irradiation on material microstructure  

SciTech Connect

Oxide dispersion strengthened (ODS) molybdenum has been characterized using transmission electron microscopy (TEM) to determine the effects of irradiation on material microstructure. This work describes the results-to-date from TEM characterization of unirradiated and irradiated ODS molybdenum. The general microstructure of the unirradiated material consists of fine molybdenum grains (< 5 {micro}m average grain size) with numerous low angle boundaries and isolated dislocation networks. 'Ribbon'-like lanthanum oxides are aligned along the working direction of the product form and are frequently associated with grain boundaries, serving to inhibit grain boundary and dislocation movement. In addition to the 'ribbons', discrete lanthanum oxide particles have also been detected. After irradiation, the material is characterized by the presence of nonuniformly distributed large ({approx} 20 to 100 nm in diameter), multi-faceted voids, while the molybdenum grain size and oxide morphology appear to be unaffected by irradiation.

Baranwal, R. and Burke, M.G.

2003-03-03T23:59:59.000Z

430

Radiation damage of a glass-bonded zeolite waste form using ion irradiation.  

SciTech Connect

Glass-bonded zeolite is being considered as a candidate ceramic waste form for storing radioactive isotopes separated from spent nuclear fuel in the electrorefining process. To determine the stability of glass-bonded zeolite under irradiation, transmission electron microscope samples were irradiated using high energy helium, lead, and krypton. The major crystalline phase of the waste form, which retains alkaline and alkaline earth fission products, loses its long range order under both helium and krypton irradiation. The dose at which the long range crystalline structure is lost is about 0.4 dpa for helium and 0.1 dpa for krypton. Because the damage from lead is localized in such a small region of the sample, damage could not be recognized even at a peak damage of 50 dpa. Because the crystalline phase loses its long range structure due to irradiation, the effect on retention capacity needs to be further evaluated.

Allen, T. R.; Storey, B. G.

1997-12-05T23:59:59.000Z

431

The use of charge-pumping for characterizing irradiated power MOSFETs  

SciTech Connect

A charge-pumping technique is proposed for characterizing radiation-induced interface traps in vertical power MOSFETs. An original setup allowing measurements on these 3-contact devices is presented. The first experimental results before and after irradiation are discussed.

Prevost, G. [Thomson-CSF, Gennevilliers (France)] [Thomson-CSF, Gennevilliers (France); [Univ. de Montpellier II (France). Centre d`Electronique de Montpellier; Augier, P. [Thomson-CSF, Gennevilliers (France)] [Thomson-CSF, Gennevilliers (France); Palau, J.M. [Univ. de Montpellier II (France). Centre d`Electronique de Montpellier] [Univ. de Montpellier II (France). Centre d`Electronique de Montpellier

1996-06-01T23:59:59.000Z

432

Temporal stability of Y Ba Cu O nano Josephson junctions from ion irradiation  

E-Print Network (OSTI)

stability of Y-Ba-Cu-O nano Josephson junctions from ionion irradiation through a nano-scale implant mask fabricateda two-dimensional array,” Nano Letters, 9, pp. 3581-3585, [

Cybart, Shane A.

2014-01-01T23:59:59.000Z

433

Split-Dose BNCT Irradiations of Rat Oral Mucosa and Rat Brain Tumor Using BPA  

Science Journals Connector (OSTI)

Some BNCT patients irradiated with anterolateral beams have experienced mild, transient side effects in the oral mucosa, the ear mucosa and the parotid salivary gland. As the BPA-based BNCT clinical dose escalati...

Jeffrey A. Coderre; Gerard M. Morris; Ruimei Ma…

2001-01-01T23:59:59.000Z

434

Cytosolic phospholipase A2 regulates viability and function of irradiated vascular endothelial cells  

Science Journals Connector (OSTI)

...phospholipase A2 regulates viability and function of irradiated vascular endothelial cells Amanda Linkous Kyle Cuneo Thotala Dinesh Kumar Dennis Hallahan Eugenia Yazlovitskaya Vanderbilt University, Nashville, TN 98th AACR Annual Meeting-- Apr 14-18...

Amanda Linkous; Kyle Cuneo; Thotala Dinesh Kumar; Dennis Hallahan; and Eugenia Yazlovitskaya

2007-05-01T23:59:59.000Z

435

High Energetic Deuteron Ion Irradiation of Al Samples by Dense Plasma Focus Device  

Science Journals Connector (OSTI)

In this paper energetic ion beams of a 90 kJ filippov type plasma focus were utilized to irradiation aluminum samples. The...2, and D2+Kr2%. The phenomena of melting, micro cracks, evaporation, and sputtering of ...

M. Habibi; R. Amrollahi

2010-10-01T23:59:59.000Z

436

Study of Dense Nitrogen Plasma Irradiation of Aluminum Targets by APF Plasma Focus Device  

Science Journals Connector (OSTI)

The nitridation of Al surfaces is obtained by irradiating nitrogen ions from APF device. The Vickers Micro-Hardness values are improved approximately three times for the nitrided samples comparing to the non-n...

Mohammad Afrashteh; Morteza Habibi

2012-06-01T23:59:59.000Z

437

EPR Study of the Surface Characteristics of Nanostructured TiO2 under UV Irradiation  

E-Print Network (OSTI)

EPR Study of the Surface Characteristics of Nanostructured TiO2 under UV Irradiation Juan M of EPR spectroscopy. The samples of the H series present the smallest crystallite size and after

438

Design of central irradiation facilities for the MITR-II research reactor  

E-Print Network (OSTI)

Design analysis studies have been made for various in-core irradiation facility designs which are presently used, or proposed for future use in the MITR-II. The information obtained includes reactivity effects, core flux ...

Meagher, Paul Christopher

1976-01-01T23:59:59.000Z

439

Short-term irradiance variability: Preliminary estimation of station pair correlation as a function of distance  

E-Print Network (OSTI)

Review Short-term irradiance variability: Preliminary estimation of station pair correlation, 2010; SMUD, 2010; IEA, 2010). In a recently published article, Hoff and Perez (2010a,b) advanced

440

E-Print Network 3.0 - al metal irradiated Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Beams , H. Ludewig1 Summary: effects on CTE of super-Invar. Figure 3: "Gum Metal" material characterization in its non-irradiated state... driver. Ti-6Al-4V....

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

FY 2013 Summary Report: Post-Irradiation Examination of Zircaloy-4 Samples  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary Report: Post-Irradiation Examination of Zircaloy-4 Summary Report: Post-Irradiation Examination of Zircaloy-4 Samples in Target Capsules and Initiation of Bending Fatigue Testing for Used Nuclear Fuel Vibration Integrity Investigations FY 2013 Summary Report: Post-Irradiation Examination of Zircaloy-4 Samples in Target Capsules and Initiation of Bending Fatigue Testing for Used Nuclear Fuel Vibration Integrity Investigations The R&D objective for this work is to conduct the separate effects tests (SET) and small-scale tests that have been identified in the Used Nuclear Fuel Storage and Transportation Data Gap Prioritization (FCRD-USED-2012-000109). R&D activities conducted during fiscal year 2013 are provided and include information derived from: 1) irradiation of hydrogen-doped zircaloy cladding in High Flux Isotope Reactor (HFIR); 2)

442

Production of high Resoulution Irradiance Data for Central America and Cuba  

Open Energy Info (EERE)

DRAFT REPORT - JULY 2003 DRAFT REPORT - JULY 2003 Production of high Resolution Irradiance Data For Central America and Cuba Prepared by Richard Perez ASRC, the University at Albany (SUNY) For United Nations Environmental Program Solar Energy and Wind Resource Assessment (SWERA) Deliverable for July, 2003 The main objective of the SUNY task for SWERA is to prepare high resolution global irradiance (GHI) and direct irradiance (DNI) data sets for the countries of Cuba, El Salvador, Guatemala, Honduras and Nicaragua. Much of our initial effort focused on building up the satellite data archive, and in strengthening and validating the models capable of converting that data into ground surface irradiances. Three research articles, acknowledging all or partial funding

443

E-Print Network 3.0 - abdominal irradiation modulates Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Dunlop E.D., Albuisson M., Wald L, 2006. Online data and tools for estimation of solar electricity in Africa: the PVGIS approach. Proceedings from 21st Summary: irradiation (Wh...

444

Mechanical Strength, Swelling and Weight Loss of Inorganic Fusion Magnet Insulation Systems Following Reactor Irradiation  

Science Journals Connector (OSTI)

Superconducting fusion magnets require a high electrical and mechanical ... were irradiated at ambient temperature in the TRIGA reactor (Vienna, Austria) up to neutron fluences...21, 1022 and 5x1022 m?2...(E>0.1 ...

K. Humer; P. Rosenkranz; H. W. Weber…

2000-01-01T23:59:59.000Z

445

Total Solar Irradiance Variability and the Solar Activity Cycle  

E-Print Network (OSTI)

It is suggested that the solar variability is due to the perturbed nature of the solar core and this variability is provided by the variability of the solar neutrino flux from the solar neutrino detectors i.e., Homestake, Superkamiokande, SAGE and GALLEX-GNO. The solar neutrino flux in the standard solar model (SSM) was calculated on the assumption of L_nu (neutrino luminosity) = L_gamma (optical luminosity) which implies that if there is a change in optical luminosity then solar neutrino flux data will also be changed. An internal dynamo due to the cyclic variation of nuclear energy generation inside the core of the sun is responsible for the solar activity cycle was suggested and thus the internal magnetic field is also variable. Again the changes in the nuclear energy generation induce structural changes that result in variations of the global solar parameters i.e., luminosity, radius and temperatures etc. From the analysis of total solar irradiance (TSI) data during the year from 1970 to 2003 we have found five phases within the solar activity cycle. The first phase (I) starts before two years from the sunspot minimum. The second phase (II) starts at the time of sunspot minimum and phase (III) starts before 2/3 years from sunspot maximum whereas phase (IV) starts at sunspot maximum and fifth phase (V) starts at after 2-3 years from sunspot maximum.

Probhas Raychaudhuri

2006-05-06T23:59:59.000Z

446

Neutron Irradiation Tests of Pressure Transducers in Liquid Helium  

E-Print Network (OSTI)

The superconducting magnets of the future Large Hadron Collider (LHC) at CERN will operate in pressurised superfluid helium (1 bar, 1.9 K). About 500 pressure transducers will be placed in the liquid helium bath for monitoring the filling and the pressure transients after resistive transitions. Their precision must remain better than 100 mbar at pressures below 2 bar and better than 5% for higher pressures (up to 20 bar), with temperatures ranging from 1.8 K to 300 K. All the tested transducers are based on the same principle: the fluid or gas is separated from a sealed reference vacuum by an elastic membrane; its deformation indicates the pressure. The transducers will be exposed to high neutron fluence (2 kGy, 1014 n/cm2 per year) during the 20 years of machine operation. This irradiation may induce changes both on the membranes characteristics (leakage, modification of elasticity) and on gauges which measure their deformations. To investigate these effects and select the transducer to be used in the LHC, a...

Amand, J F; Casas-Cubillos, J; Thermeau, J P

1999-01-01T23:59:59.000Z

447

Automatic fault detection on BIPV systems without solar irradiation data  

E-Print Network (OSTI)

BIPV systems are small PV generation units spread out over the territory, and whose characteristics are very diverse. This makes difficult a cost-effective procedure for monitoring, fault detection, performance analyses, operation and maintenance. As a result, many problems affecting BIPV systems go undetected. In order to carry out effective automatic fault detection procedures, we need a performance indicator that is reliable and that can be applied on many PV systems at a very low cost. The existing approaches for analyzing the performance of PV systems are often based on the Performance Ratio (PR), whose accuracy depends on good solar irradiation data, which in turn can be very difficult to obtain or cost-prohibitive for the BIPV owner. We present an alternative fault detection procedure based on a performance indicator that can be constructed on the sole basis of the energy production data measured at the BIPV systems. This procedure does not require the input of operating conditions data, such as solar ...

Leloux, Jonathan; Luna, Alberto; Desportes, Adrien

2014-01-01T23:59:59.000Z

448

Fusion materials irradiations at MaRIE's fission fusion facility  

SciTech Connect

Los Alamos National Laboratory's proposed signature facility, MaRIE, will provide scientists and engineers with new capabilities for modeling, synthesizing, examining, and testing materials of the future that will enhance the USA's energy security and national security. In the area of fusion power, the development of new structural alloys with better tolerance to the harsh radiation environments expected in fusion reactors will lead to improved safety and lower operating costs. The Fission and Fusion Materials Facility (F{sup 3}), one of three pillars of the proposed MaRIE facility, will offer researchers unprecedented access to a neutron radiation environment so that the effects of radiation damage on materials can be measured in-situ, during irradiation. The calculated radiation damage conditions within the F{sup 3} match, in many respects, that of a fusion reactor first wall, making it well suited for testing fusion materials. Here we report in particular on two important characteristics of the radiation environment with relevancy to radiation damage: the primary knock-on atom spectrum and the impact of the pulse structure of the proton beam on temporal characteristics of the atomic displacement rate. With respect to both of these, analyses show the F{sup 3} has conditions that are consistent with those of a steady-state fusion reactor first wall.

Pitcher, Eric J [Los Alamos National Laboratory

2010-10-06T23:59:59.000Z

449

Performance Evaluation Of An Irradiation Facility Using An Electron Accelerator  

SciTech Connect

Irradiation parameters over a period of seven years have been evaluated for a radiation processing electron accelerator facility. The parameters monitored during this time were the electron beam energy, linearity of beam current, linearity of dose with the reciprocal value of the samples speed, and dose uniformity along the scanning area after a maintenance audit performed by the electron accelerator manufacturer. The electron energy was determined from the depth-dose curve by using a two piece aluminum wedge and measuring the practical range from the obtained curves. The linearity of dose with beam current, and reciprocal value of the speed and dose uniformity along the scanning area of the electron beam were determined by measuring the dose under different beam current and cart conveyor speed conditions using film dosimetry. The results of the experiments have shown that the energy in the range from 1 to 5 MeV has not changed by more than 15% from the High Voltage setting of the machine over the evaluation period, and dose linearity with beam current and cart conveyor speed has not changed. The dose uniformity along the scanning direction of the beam showed a dose uniformity of 90% or better for energies between 2 and 5 MeV, however for 1 MeV electrons this value was reduced to 80%. This parameter can be improved by changing the beam optics settings in the control console of the accelerator though.

Uribe, R. M.; Hullihen, K. [Kent State University, Kent, Ohio (United States); Filppi, E. [Case Western Reserve University, Cleveland OH (United States)

2011-06-01T23:59:59.000Z

450

Ultrafast x-ray diffraction of laser-irradiated crystals  

SciTech Connect

An apparatus has been developed for measuring time-dependent x-ray diffraction. X-ray pulses from an Advanced Light Source bend magnet are diffracted by a sagittally-focusing Si(111) crystal and then by a sample crystal, presently InSb(111). Laser pulses with 100 fs duration and a repetition rate of 1 KHz irradiate the sample inducing a phase transition. Two types of detectors are being employed: an x-ray streak camera and an avalanche photodiode. The streak camera is driven by a photoconductive switch and has a 2 ps temporal resolution determined by trigger jitter. The avalanche photodiode has high quantum efficiency and sufficient time resolution to detect single x-ray pulses in ALS two bunch or camshaft operation. A beamline is under construction dedicated for time resolved and micro-diffraction experiments. In the new beamline a toroidal mirror collects 3 mrad horizontally and makes a 1:1 image of the bend magnet source in the x-ray hutch. A laser induced phase transition has been observed in InSb occurring within 70 ps.

Heimann, P.A. [Lawrence Berkeley National Lab., CA (US). Advanced Light Source; Larsson, J. [Univ. of California, Berkeley, CA (US). Physics Dept.; Chang, Z. [Univ. of Michigan, Ann Arbor, MI (US). Center for Ultrafast Optical Science

1997-09-01T23:59:59.000Z

451

Calculation of damage function of Al2O3 in irradiation facilities for fusion reactor applications  

Science Journals Connector (OSTI)

A rigorous material testing program is essential for the development of the nuclear fusion world program. In particular, it is very important to predict the generation of the displacement damage in materials, because the irradiation intensity expected in fusion conditions is such that the performance of materials and components under these extreme conditions is unknown. To study the damage produced by neutrons in materials of interest for fusion, a specific computational methodology was developed. Neutron fluxes expected in different irradiation facilities (International Fusion Materials Irradiation Facility [IFMIF] and DEMO-HCLL) and in different irradiation spots were obtained with particles transport codes (McDeLicious, MCNP). The energy differential cross sections of primary knock-on atoms were calculated using the NJOY code. Resulting data were input into the Monte Carlo code MARLOWE to calculate the corresponding displacements (i.e., interstitials (I) and vacancies (V)). However, the number of Frenkel pairs created during irradiation strongly depends on the recombination radius between interstitials and vacancies. This parameter corresponds to the minimum distance below which instantaneous recombination occurs. Mainly, the influence of such parameter on the damage function in Al2O3 was assessed in this report. The displacements per atom values calculated as a function of the recombination radius considered are compared to experimental data to determine the most appropriate capture radius. In addition, the damage function and damage dose generated at different experimental irradiation facilities are compared with those expected in DEMO. The conclusion is that both IFMIF and TechnoFusión (future triple beam ion accelerator to emulate fusion neutron irradiation effects in materials) facilities are suited to perform relevant irradiation experiments for the design of DEMO.

F. Mota; C.J. Ortiz; R. Vila; N. Casal; A. García; A. Ibarra

2013-01-01T23:59:59.000Z

452

Validation of a Monte Carlo Based Depletion Methodology Using HFIR Post-Irradiation Measurements  

SciTech Connect

Post-irradiation uranium isotopic atomic densities within the core of the High Flux Isotope Reactor (HFIR) were calculated and compared to uranium mass spectrographic data measured in the late 1960s and early 70s [1]. This study was performed in order to validate a Monte Carlo based depletion methodology for calculating the burn-up dependent nuclide inventory, specifically the post-irradiation uranium

Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

2009-11-01T23:59:59.000Z

453

Deuterium Depth Profile in Neutron-Irradiated Tungsten Exposed to Plasma  

SciTech Connect

The effect of radiation damage has been mainly simulated using high-energy ion bombardment. The ions, however, are limited in range to only a few microns into the surface. Hence, some uncertainty remains about the increase of trapping at radiation damage produced by 14 MeV fusion neutrons, which penetrate much farther into the bulk material. With the Japan-US joint research project: Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), the tungsten samples (99.99 % pure from A.L.M.T., 6mm in diameter, 0.2mm in thickness) were irradiated to high flux neutrons at 50 C and to 0.025 dpa in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). Subsequently, the neutron-irradiated tungsten samples were exposed to a high-flux deuterium plasma (ion flux: 1021-1022 m-2s-1, ion fluence: 1025-1026 m-2) in the Tritium Plasma Experiment (TPE) at the Idaho National Laboratory (INL). First results of deuterium retention in neutron-irradiated tungsten exposed in TPE have been reported previously. This paper presents the latest results in our on-going work of deuterium depth profiling in neutron-irradiated tungsten via nuclear reaction analysis. The experimental data is compared with the result from non neutron-irradiated tungsten, and is analyzed with the Tritium Migration Analysis Program (TMAP) to elucidate the hydrogen isotope behavior such as retention and depth distribution in neutron-irradiated and non neutron-irradiated tungsten.

Masashi Shimada; G. Cao; Y. Hatano; T. Oda; Y. Oya; M. Hara; P. Calderoni

2011-05-01T23:59:59.000Z

454

The postnatal development of the sex organs in prenatally and early postnatally irradiated male albino rats  

E-Print Network (OSTI)

days of age and a sub- sequent regeneration between 105 and 185 days of age. Beaumont (1962) reported that in males receiving 100r X-rays on gestational day 17. 5, which corresponds very closely with day 18 irradiates in this study, it 41 appeared.... Bagg concludes, "the results so far indicate that gamma-ray irradiation is a physical agent adapted to the study of experimentally produced developmental arrests in mammalian embryos. " Hanson (1922) reported that male albino rats which were...

Ricks, Robert Clinton

1964-01-01T23:59:59.000Z

455

Correlation of Clinical and Dosimetric Factors With Adverse Pulmonary Outcomes in Children After Lung Irradiation  

SciTech Connect

Purpose: To identify the incidence and the risk factors for pulmonary toxicity in children treated for cancer with contemporary lung irradiation. Methods and Materials: We analyzed clinical features, radiographic findings, pulmonary function tests, and dosimetric parameters of children receiving irradiation to the lung fields over a 10-year period. Results: We identified 109 patients (75 male patients). The median age at irradiation was 13.8 years (range, 0.04-20.9 years). The median follow-up period was 3.4 years. The median prescribed radiation dose was 21 Gy (range, 0.4-64.8 Gy). Pulmonary toxic chemotherapy included bleomycin in 58.7% of patients and cyclophosphamide in 83.5%. The following pulmonary outcomes were identified and the 5-year cumulative incidence after irradiation was determined: pneumonitis, 6%; chronic cough, 10%; pneumonia, 35%; dyspnea, 11%; supplemental oxygen requirement, 2%; radiographic interstitial lung disease, 40%; and chest wall deformity, 12%. One patient died of progressive respiratory failure. Post-irradiation pulmonary function tests available from 44 patients showed evidence of obstructive lung disease (25%), restrictive disease (11%), hyperinflation (32%), and abnormal diffusion capacity (12%). Thoracic surgery, bleomycin, age, mean lung irradiation dose (MLD), maximum lung dose, prescribed dose, and dosimetric parameters between V{sub 22} (volume of lung exposed to a radiation dose ?22 Gy) and V{sub 30} (volume of lung exposed to a radiation dose ?30 Gy) were significant for the development of adverse pulmonary outcomes on univariate analysis. MLD, maximum lung dose, and V{sub dose} (percentage of volume of lung receiving the threshold dose or greater) were highly correlated. On multivariate analysis, MLD was the sole significant predictor of adverse pulmonary outcome (P=.01). Conclusions: Significant pulmonary dysfunction occurs in children receiving lung irradiation by contemporary techniques. MLD rather than prescribed dose should be used to perform risk stratification of patients receiving lung irradiation.

Venkatramani, Rajkumar, E-mail: rvenkatramani@chla.usc.edu [Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California (United States); Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California (United States); Kamath, Sunil [Department of Pulmonology, Children's Hospital Los Angeles, Los Angeles, California (United States); Wong, Kenneth [Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California (United States); Olch, Arthur J. [Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California (United States); Department of Radiation Oncology, University of Southern California, Los Angeles, California (United States); Malvar, Jemily [Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (United States); Sposto, Richard [Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California (United States); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (United States); Goodarzian, Fariba [Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California (United States); Freyer, David R. [Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California (United States); Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California (United States); Keens, Thomas G. [Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California (United States); Department of Pulmonology, Children's Hospital Los Angeles, Los Angeles, California (United States); and others

2013-08-01T23:59:59.000Z

456

Charge dynamics in KH{sub 2}PO{sub 4} systematically modified by proton irradiation  

SciTech Connect

Our systematic study employing high-resolution nuclear magnetic resonance measurements shows that the hydrogen bonds and proton transport in the KH{sub 2}PO{sub 4} (KDP) system may be tuned sensitively by proton irradiation. In particular, the hydrogen-bond length in KDP increased by a properly chosen dose of proton irradiation is shown to give rise to a minimum in the activation energy of proton hopping in the hydrogen-bond direction.

Kweon, Jin Jung; Lee, Kyu Won; Lee, Cheol Eui [Department of Physics and Institute for Nano Science, Korea University, Seoul 136-713 (Korea, Republic of); Lee, Kwang-Sei [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Gimhae 621-749 (Korea, Republic of); Oh, In-Hwan [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of)

2011-08-15T23:59:59.000Z

457

Heterogeneous catalytic wet peroxide oxidation of phenol over delaminated Fe–Ti-PILC employing microwave irradiation  

Science Journals Connector (OSTI)

Delaminated Fe-exchanged Ti-pillared interlayered montmorillonite (Fe–Ti-PILC) was prepared and its catalytic performance as heterogeneous catalyst in wet hydrogen peroxide oxidation of phenol employing microwave irradiation was firstly evaluated. The obtained results indicated that the application of the catalyst allows a comparatively high removal of COD and a total elimination of phenol under mild conditions, without obvious leaching of iron species. The introduction of microwave irradiation could greatly shorten the reaction time.

Jian Guo Mei; Shao Ming Yu; Jun Cheng

2004-01-01T23:59:59.000Z

458

Investigation of the effect of low energy ion beam irradiation on mono-layer graphene  

SciTech Connect

In this paper, the effect of low energy irradiation on mono-layer graphene was studied. Mono-layer graphene films were irradiated with B, N and F ions at different energy and fluence. X-ray photoelectron spectroscopy indicates that foreign ions implanted at ion energies below 35 eV could dope into the graphene lattice and form new chemical bonds with carbon atoms. The results of Raman measurement indicate that ion beam irradiation causes defects and disorder to the graphene crystal structure, and the level of defects increases with increasing of ion energy and fluence. Surface morphology images also prove that ion beam irradiation creates damages to graphene film. The experiment results suggest that low-energy irradiation with energies of about 30 eV and fluences up to 5·10{sup 14} cm{sup ?2} could realize small amount of doping, while introducing weak damage to graphene. Low energy ion beam irradiation, provides a promising approach for controlled doping of graphene.

Xu, Yijun [College of Physics science and technology, Soochow University, Suzhou215006 (China) [College of Physics science and technology, Soochow University, Suzhou215006 (China); II. Physikalisches Institut, Universität Göttingen, Friedrich- Hund- Platz 1, 37077 Göttingen (Germany); State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); Zhang, Kun; Brüsewitz, Christoph; Hofsäss, Hans Christian [II. Physikalisches Institut, Universität Göttingen, Friedrich- Hund- Platz 1, 37077 Göttingen (Germany)] [II. Physikalisches Institut, Universität Göttingen, Friedrich- Hund- Platz 1, 37077 Göttingen (Germany); Wu, Xuemei [College of Physics science and technology, Soochow University, Suzhou215006 (China) [College of Physics science and technology, Soochow University, Suzhou215006 (China); State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China)

2013-07-15T23:59:59.000Z

459

Lung Irradiation Increases Mortality After Influenza A Virus Challenge Occurring Late After Exposure  

SciTech Connect

Purpose: To address whether irradiation-induced changes in the lung environment alter responses to a viral challenge delivered late after exposure but before the appearance of late lung radiation injury. Methods and Materials: C57BL/6J mice received either lung alone or combined lung and whole-body irradiation (0-15 Gy). At 10 weeks after irradiation, animals were infected with 120 HAU influenza virus strain A/HKx31. Innate and adaptive immune cell recruitment was determined using flow cytometry. Cytokine and chemokine production and protein leakage into the lung after infection were assessed. Results: Prior irradiation led to a dose-dependent failure to regain body weight after infection and exacerbated mortality, but it did not affect virus-specific immune responses or virus clearance. Surviving irradiated animals displayed a persistent increase in total protein in bronchoalveolar lavage fluid and edema. Conclusions: Lung irradiation increased susceptibility to death after infection with influenza virus and impaired the ability to complete recovery. This altered response does not seem to be due to a radiation effect on the immune response, but it may possibly be an effect on epithelial repair.

Manning, Casey M. [Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York (United States)] [Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York (United States); Johnston, Carl J. [Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York (United States) [Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York (United States); Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (United States); Reed, Christina K. [Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (United States)] [Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (United States); Lawrence, B. Paige [Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York (United States) [Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York (United States); Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York (United States); Williams, Jacqueline P. [Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York (United States)] [Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York (United States); Finkelstein, Jacob N., E-mail: Jacob_Finkelstein@urmc.rochester.edu [Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York (United States); Department of Pediatrics, University of Rochester Medical Center, Rochester, New York (United States); Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York (United States)

2013-05-01T23:59:59.000Z

460

Displacement damage induce degradation of COTS array \\{CCDs\\} irradiated by neutron beams from a nuclear reactor  

Science Journals Connector (OSTI)

Abstract The experiments of displacement damage effects on COTS array charge coupled devices (CCDs) induced by neutron irradiation from a nuclear reactor are presented. The charge transfer inefficiency (CTI), saturation output signal voltage (VS), dynamic range (DR), dark signal, and camera imaging quality versus neutron fluence are investigated. The degradation mechanisms of the \\{CCDs\\} irradiated by reactor neutron beams are also analyzed. The CTI increase due to neutron displacement damage appears to be proportional to displacement damage dose. The experiments show that VS degradation induced by neutron irradiation is much less than that induced by gamma irradiation. The dark images from the \\{CCDs\\} irradiated by neutrons are given to investigate dark signal degradation. The degradation forms and mechanisms of the camera imaging quality are very different between the reactor neutron displacement damage and the gamma total ionization dose damage. The three samples were exposed by 1 MeV neutron-equivalent fluences of 1×1011, 5×1011, and 1×1012 n/cm2, respectively. A sample was exposed by 1 MeV neutron-equivalent fluences up to 2×1013 n/cm2, and the CCD is a functional failure after irradiation.

Wang Zujun; Chen Wei; Xiao Zhigang; Liu Minbo; Huang Shaoyan; He Baoping; Luo Tongding

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "latitutde tilt irradiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Post-irradiation Examination of the AGR-1 Experiment: Plans and Preliminary Results  

SciTech Connect

Abstract – The AGR-1 irradiation experiment contains seventy-two individual cylindrical fuel compacts (25 mm long x 12.5 mm diameter) each containing approximately 4100 TRISO-coated uranium oxycarbide fuel particles. The experiment accumulated 620 effective full power days in the Advanced Test Reactor at the Idaho National Laboratory with peak burnups exceeding 19% FIMA. An extensive post-irradiation examination campaign will be performed on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature accident testing. PIE experiments will include dimensional measurements of fuel and irradiated graphite, burnup measurements, assessment of fission metals release during irradiation, evaluation of coating integrity using the leach-burn-leach technique, microscopic examination of kernel and coating microstructures, and accident testing of the fuel in helium at temperatures up to 1800°C. Activities completed to date include opening of the irradiated capsules, measurement of fuel dimensions, and gamma spectrometry of selected fuel compacts.

Paul Demkowicz

2001-10-01T23:59:59.000Z

462

Lateral propagation of MeV electrons generated by femtosecond laser irradiation  

SciTech Connect

The propagation of MeV electrons generated by intense (approx =10{sup 20} W/cm{sup 2}) femtosecond laser irradiation, in the lateral direction perpendicular to the incident laser beam, was studied using targets consisting of irradiated metal wires and neighboring spectator wires embedded in electrically conductive (aluminum) or resistive (Teflon) substrates. The K shell spectra in the energy range 40-60 keV from wires of Gd, Dy, Hf, and W were recorded by a transmission crystal spectrometer. The spectra were produced by 1s electron ionization in the irradiated wire and by energetic electron propagation through the substrate material to the spectator wire of a different metal. The electron range and energy were determined from the relative K shell emissions from the irradiated and spectator wires separated by varying substrate lateral distances of up to 1 mm. It was found that electron propagation through Teflon was inhibited, compared to aluminum, implying a relatively weak return current and incomplete space-charge neutralization. The energetic electron propagation in the direction parallel to the electric field of the laser beam was larger than perpendicular to the electric field. Energetic electron production was lower when directly irradiating aluminum or Teflon compared to irradiating the heavy metal wires. These experiments are important for the determination of the energetic electron production mechanism and for understanding lateral electron propagation that can be detrimental to fast-ignition fusion and hard x-ray backlighter radiography.

Seely, J. F. [Space Science Division, Naval Research Laboratory, Washington DC 20375 (United States); Szabo, C. I. [Laboratoire Kastler Brossel, Ecole Normale Superieure, CNRS, Universite P. et M. Curie-Paris 6 Case 74, 4, Place Jussieu, 75252 Paris Cedex 05 (France); Audebert, P.; Brambrink, E.; Tabakhoff, E. [Laboratoire pour L'Utilisation des Lasers Intenses (LULI), Ecole Polytechnique, 91128 Palaiseau Cedex (France); Hudson, L. T. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

2010-02-15T23:59:59.000Z

463

In-situ Observation of Structural Damage in SiC Crystals Induced by Hydrogen Ion Irradiation and Successive Electron Irradiation  

Science Journals Connector (OSTI)

......large part of implanted hydrogen atoms had been released...Dodd RA: Effect of hydrogen on void production In nickel. J Nucl...crystals irradiated with hydrogen Ions. J Nucl Mater...targets. Nucl Instrum Methods 174: 257-269 (1980......

Kiichi Hojou; Shigemi Furuno; Kazuhiko Izui

1991-06-01T23:59:59.000Z

464

Figure 11 shows the reference irradiance spectrum proposed by Thuillier et al Figure 12 shows the Kitt Peak absolute irradiance spectrum smoothed using a 0.5  

E-Print Network (OSTI)

., Brault, J., and Testerman. L. 1984. Solar Flux Atlas from 296 to 1300nm. National Solar Observatory, Sunspot, New Mexico, 240 pp. Thuillier, G., Floyd, L., Woods, T.N., Cebula, R., Hilsenrath, E., Herse, M., and Labs, D. 2004. Solar irradiance reference spectra. in Solar Variability and its Effect on the Earth

Kurucz, Robert L.

465

Development of Irradiation hardening of Unalloyed and ODS molybdenum during neurtron irradiation to low doses at 300C and 600C  

SciTech Connect

Unalloyed molybdenum and Oxide Dispersion Strengthened (ODS) molybdenum were irradiated at 300 C and 600 C in the high flux isotope reactor (HFIR) to neutron fluences of 0.2, 2.1, and 24.3 x 10{sup 24} n/m{sup 2} (E > 0.1 MeV), producing damage levels of 0.01, 0.1 and 1.3 Mo-dpa. Hardness measurements, electrical resistivity measurements, tensile testing, and Transmission Electron Microscopy (TEM) were used to assess the defect structure. Irradiation hardening was evident even at a damage level of 0.01 dpa resulting in a significant increase in yield stress, decrease in ductility, and elevation of the Ductile-to-Brittle Transition Temperature (DBTT). The observed size and number density of voids and loops as well as the measured irradiation hardening and electrical resistivity were found to increase sub-linearly with fluence over the range of exposure investigated. This supports the idea that the formation of the extended defects that produce irradiation hardening in molybdenum are the result of a nucleation and growth process rather than the formation of sessile defects directly from the displacement damage cascades. The formation of sessile defect clusters in the displacement cascade would be expected to result in a linear fluence dependence for the number density of defects followed by saturation at fluences less than 1-dpa. This conclusion is supported by Molecular Dynamics (MD) simulations of cascade damage which do not reveal large clusters forming directly as a result of the short-term collapse of the cascade. The finer grain size for the unalloyed Mo and ODS Mo compared to Low Carbon Arc Cast molybdenum results in slightly less irradiation hardening and slightly lower DBTT values. The unalloyed molybdenum used in this work had a low impurity interstitial content that correlates with a slightly lower void size and void number density, less irradiation hardening and lower change in electrical resistivity in this fluence range than is observed for ODS Mo. Although the differences are relatively subtle, this result does suggest that high purity can result in slightly improved resistance to irradiation embrittlement in molybdenum at low fluences.

B. V. Cockeran, R. W. Smith, L.L. Snead

2007-11-21T23:59:59.000Z

466

Enhancement of SPHK1 in vitro by carbon ion irradiation in oral squamous cell carcinoma  

SciTech Connect

Purpose The purpose of this study was to assess the gene expression changes in oral squamous cell carcinoma (OSCC) cells after carbon ion irradiation. Methods and Materials Three OSCC cell lines (HSC2, Ca9-22, and HSC3) were irradiated with accelerated carbon ion beams or X-rays using three different doses. The cellular sensitivities were determined by clonogenic survival assay. To identify genes the expression of which is influenced by carbon ion irradiation in a dose-dependent manner, we performed Affymetrix GeneChip analysis with HG-U133 plus 2.0 arrays containing 54,675 probe sets. The identified genes were analyzed using the Ingenuity Pathway Analysis Tool to investigate the functional network and gene ontology. Changes in mRNA expression in the genes were assessed by real-time reverse transcriptase-polymerase chain reaction. Results We identified 98 genes with expression levels that were altered significantly at least twofold in each of the three carbon-irradiated OSCC cell lines at all dose points compared with nonirradiated control cells. Among these, SPHK1, the expression of which was significantly upregulated by carbon ion irradiation, was modulated little by X-rays. The function of SPHK1 related to cellular growth and proliferation had the highest p value (p = 9.25e-7 to 2.19e-2). Real-time reverse transcriptase-polymerase chain reaction analysis showed significantly elevated SPHK1 expression levels after carbon ion irradiation (p < 0.05), consistent with microarray data. Clonogenic survival assay indicated that carbon ion irradiation could induce cell death in Ca9-22 cells more effectively than X-rays. Conclusions Our findings suggest that SPHK1 helps to elucidate the molecular mechanisms and processes underlying the biologic response to carbon ion beams in OSCC.

Higo, Morihiro [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Chiba (Japan); Uzawa, Katsuhiro [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Chiba (Japan) and Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba (Japan)]. E-mail: uzawak@faculty.chiba-u.jp; Kawata, Tetsuya [Department of Radiology, Graduate School of Medicine, Chiba University, Chiba (Japan); Kato, Yoshikuni [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Chiba (Japan); Kouzu, Yukinao [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Chiba (Japan); Yamamoto, Nobuharu [Department of Oral and Maxillo-Facial Surgery, Tokyo Dental College, Chiba (Japan); Shibahara, Takahiko [Department of Oral and Maxillo-Facial Surgery, Tokyo Dental College, Chiba (Japan); Mizoe, Jun-etsu [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Ito, Hisao [Department of Radiology, Graduate School of Medicine, Chiba University, Chiba (Japan); Tsujii, Hirohiko [Center of Excellence (COE) Program in the 21st Century, Graduate School of Medicine, Chiba University, Chiba (Japan); Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Tanzawa, Hideki [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Chiba (Japan); Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba (Japan); Center of Excellence (COE) Program in the 21st Century, Graduate School of Medicine, Chiba University, Chiba (Japan)

2006-07-01T23:59:59.000Z

467

Fluorescence properties and electron paramagnetic resonance studies of {gamma}-irradiated Sm{sup 3+}-doped oxyfluoroborate glasses  

SciTech Connect

The permanent photoinduced valence manipulation of samarium doped oxyfluoroborate glasses as a function of {gamma}-ray irradiation has been investigated using a steady-state fluorescence and electron paramagnetic resonance techniques. An increase in SrF{sub 2} content in the glass led to the red shift of the peaks in as prepared glass, while in irradiated glasses this led to the decrease in defect formation as well as increase in photoreduction of Sm{sup 3+} to Sm{sup 2+} ion. The energy transfer mechanism of induced permanent photoreduction of Sm{s