Powered by Deep Web Technologies
Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Mercury Vapor At Lassen Volcanic National Park Area (Varekamp...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lassen Volcanic National Park Area (Varekamp & Buseck, 1983) Exploration...

2

Geothermometry At Lassen Volcanic National Park Area (Thompson...  

Open Energy Info (EERE)

Usefulness not indicated DOE-funding Unknown References J. Michael Thompson (1985) Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of Lassen Volcanic National Park...

3

Compound and Elemental Analysis At Lassen Volcanic National Park...  

Open Energy Info (EERE)

Usefulness not indicated DOE-funding Unknown References J. Michael Thompson (1985) Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of Lassen Volcanic National Park...

4

Seismicity And Fluid Geochemistry At Lassen Volcanic National Park,  

Open Energy Info (EERE)

Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two Circulation Cells In The Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two Circulation Cells In The Hydrothermal System Details Activities (7) Areas (2) Regions (0) Abstract: Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235-270°C) that boils to feed steam to the high-temperature

5

Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren,  

Open Energy Info (EERE)

Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Analyses of eight well samples taken consecutively during the flow test showed an inverse correlation between NH3 and Cl_ concentrations. The last sample taken had a pH of 8.35 and contained 2100 ppm Cl_ and 0.55 ppm NH3. Ratios of Na+/K+ and Na+/Cl_ remained nearly constant throughout the flow test. Cation geothermometers (with inherent uncertainties of at least

6

Lassen Volcanic National Park Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lassen Volcanic National Park Geothermal Area Lassen Volcanic National Park Geothermal Area (Redirected from Lassen Volcanic National Park Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lassen Volcanic National Park Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

7

Data Acquisition-Manipulation At Lassen Volcanic National Park Geothermal  

Open Energy Info (EERE)

Volcanic National Park Geothermal Volcanic National Park Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Lassen Volcanic National Park Geothermal Area (1982) Exploration Activity Details Location Lassen Volcanic National Park Geothermal Area Exploration Technique Data Acquisition-Manipulation Activity Date 1982 Usefulness useful DOE-funding Unknown Exploration Basis Develop parameters to identify geothermal region Notes Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related

8

Lassen Volcanic National Park Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lassen Volcanic National Park Geothermal Area Lassen Volcanic National Park Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lassen Volcanic National Park Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

9

Compound and Elemental Analysis At Lassen Volcanic National Park Area  

Open Energy Info (EERE)

Janik & Mclaren, 2010) Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Analyses of eight well samples taken consecutively during the flow test showed an inverse correlation between NH3 and Cl_ concentrations. The last sample taken had a pH of 8.35 and contained 2100 ppm Cl_ and 0.55 ppm NH3. Ratios of Na+/K+ and Na+/Cl_ remained nearly constant throughout the flow test. Cation geothermometers (with inherent uncertainties of at least

10

Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful DOE-funding Unknown References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two Circulation Cells In The Hydrothermal System Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Lassen_Volcanic_National_Park_Area_(Janik_%26_Mclaren,_2010)&oldid=425654"

11

Surface Gas Sampling At Lassen Volcanic National Park Area (Janik &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two

12

Flow Test At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) |  

Open Energy Info (EERE)

Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown Notes Water samples were collected during nitrogen-stimulated flow tests in 1978, but no information was provided on sampling conditions. The well was flowed again for the last time in 1982, but the flow test lasted only 1 h (Thompson, 1985). References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two

13

Isotopic Analysis At Lassen Volcanic National Park Area (Janik & Mclaren,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Both fluid and gas isotopic analysis. References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two

14

Surface Gas Sampling At Lassen Volcanic National Park Area (Janik &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) (Redirected from Water-Gas Samples At Lassen Volcanic National Park Area (Janik & Mclaren, 2010)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid

15

Static Temperature Survey At Lassen Volcanic National Park Area (Janik &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Static Temperature Survey At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes In 1978, the Walker "O" No. 1 well at Terminal Geyser was drilled to 1222 m, all in volcanic rocks (Beall, 1981). Temperature-log profiles made 10

16

Static Temperature Survey At Lassen Volcanic National Park Area...  

Open Energy Info (EERE)

in volcanic rocks (Beall, 1981). Temperature-log profiles made 10 months after drilling completion show an abrupt temperature rise at 183 m, a maximum temperature of 176 degrees...

17

Sandia National Laboratories: Sandia National Laboratories: Locations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Park District Joshua Tree National Park Lassen Volcanic National Park Sequoia & Kings Canyon National Parks Yosemite National Park Cave exploring Diablo Grotto Moaning...

18

Presented to Lassen National Forest 5/31/12 rangelandwatersheds.ucdavis.edu 1  

E-Print Network [OSTI]

­ associated aspen- meadow-conifer forest sites. Aspen with conifer cover. 0.0 0.5 1.0 1.5 2.0 2Presented to Lassen National Forest 5/31/12 Ken Tate, rangelandwatersheds.ucdavis.edu 1,700 stand acres. · Conifer

Tate, Kenneth

19

Geothermometry At Lassen Volcanic National Park Area (Janik ...  

Open Energy Info (EERE)

but are within the 220-240 degrees C range calculated using cation, sulfate-water isotope, and mixing model geothermometers (Muffler et al., 1982). References (Unknown)...

20

Compound and Elemental Analysis At Lassen Volcanic National Park...  

Open Energy Info (EERE)

but are within the 220-240 degrees C range calculated using cation, sulfate-water isotope, and mixing model geothermometers (Muffler et al., 1982). In Table 1,we include many...

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of Lassen  

Open Energy Info (EERE)

Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of Lassen Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of Lassen Volcanic National Park Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of Lassen Volcanic National Park Details Activities (2) Areas (1) Regions (0) Abstract: Meaningful applications of water geothermometry to thermal springs in and around Lassen Volcanic National Park (LVNP) are limited to Growler Hot Spring and Morgan Hot Springs. Most hot springs located within LVNP are low-chloride, acid-sulfate waters associated with nearby steam vents. This type of hot-spring activity is characteristically found above vapor-dominated hydrothermal systems. These acid-sulfate waters are not generally useful for liquid chemical geothermometry, however, because their

22

Fire and the persistence and decline of montane chaparral in mixed conifer forests in the southern Cascades, Lassen Volcanic National Park, CA.  

E-Print Network [OSTI]

??Stands of montane chaparral are an integral component of the mixed conifer forest in the Cascade Mountains of northern California. In this region, chaparral stands (more)

Airey, Catherine

2012-01-01T23:59:59.000Z

23

Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area  

SciTech Connect (OSTI)

In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

Hackett, W.R.; Smith, R.P.

1992-09-01T23:59:59.000Z

24

Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area  

SciTech Connect (OSTI)

In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

Hackett, W.R.; Smith, R.P.

1992-01-01T23:59:59.000Z

25

Lassen Municipal Utility District - PV Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Lassen Municipal Utility District - PV Rebate Program Lassen Municipal Utility District - PV Rebate Program Lassen Municipal Utility District - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $5,000 or 50% of system cost, whichever is less Commercial: $23,000 or 50% of system cost, whichever is less. Program Info State California Program Type Utility Rebate Program Rebate Amount Residential: $3.00/W-AC Commercial: $2.10/W-AC Provider Lassen Municipal Utility District Lassen Municipal Utility District (LMUD) is providing incentives for its customers to purchase solar electric photovoltaic (PV) systems. Rebate levels will decrease annually over the life of the program. Through June 30, 2014, rebates of $3.00 per watt-AC up to $5,000 are available for

26

Lassen Municipal Utility District | Open Energy Information  

Open Energy Info (EERE)

Municipal Utility District Municipal Utility District Jump to: navigation, search Name Lassen Municipal Utility District Place California Utility Id 10724 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agricultural Pumping Commercial Domestic Residential General Service (Non-Demand) Commercial General Service Metered Demand Commercial Industrial Industrial Outdoor Area Lighting 100W Lighting Outdoor Area Lighting 200W Lighting Standby Reactive Rate Commercial Average Rates

27

Lassen Municipal Utility District - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Lassen Municipal Utility District - Residential Energy Efficiency Lassen Municipal Utility District - Residential Energy Efficiency Rebate Program Lassen Municipal Utility District - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Windows: $500 Duct Insulation/Sealing: $500 Radiant Barrier: $1,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Refrigerator: $50 Freezer: $50 Clothes Washer: $35 Dishwasher: $35 Room AC: $75 Air Source Heat Pumps: $100 - $400 per ton Ground Source Heat Pump: $1,000 per ton Central A/C: $25 - $150 per ton Evaporative Cooled A/C: $175 per ton Evaporative Coolers: $75 - $200 per 1,000 sq. ft.

28

Feasibility study of geothermal heating, Modoc Lassen housing project  

SciTech Connect (OSTI)

This study evaluates the feasibility of using geothermal water for space and domestic water heating systems at the elderly housing project now ready for construction at the Modoc Lassen Indian Reservation. For the six units considered, the space heating load is four times the domestic water heating load. Since the geothermal water temperature is uncertain, two scenarios were evaluated. In the first, which assumes 160/sup 0/F supply temperature, the geothermal system is assumed to satisfy the entire space and domestic water heating loads. In the second, which assumes the supply temperature to be less than 120/sup 0/F at the wellhead only space heating is provided. The economics of the first scenario are quite favorable. The additional expenditure of $15,630 is projected to save $3522 annually at current energy costs, and the life cycle cost study projects a discounted rate of return on the investment of 44.4%. Surprisingly, the investment is even more favorable for the second scenario, due to the higher cost and lower resultant savings for the domestic water components. Forced air space heating from geothermal is recommended. Domestic water heating is recommended pending additional information on supply water temperature.

Not Available

1981-11-01T23:59:59.000Z

29

Case study of the Wendel-Amedee Exploration Drilling Project, Lassen County, California, User Coupled Confirmation Drilling Program  

SciTech Connect (OSTI)

The Wendel-Amedee KGRA is located in Honey Lake basin in Lassen County, California, on the boundary between the Modoc Plateau and the Basin and Range geologic provinces. A variety of geophysical surveys was performed over the project property. Geophysical data helped in establishing the regional structural framework, however, none of the geophysical data is sufficiently refined to be considered suitable for the purpose of siting an exploration drill hole. Drilling of reservoir confirmation well WEN-1 took place from August 1 to September 22, 1981. Pulse and long-term flow testing subjected the reservoir to a maximum flow of 680 gpm for 75 hours. At that rate, the well exhibited a productivity index of 21.6 gpm/psi; the reservoir transmissivity was 3.5 x 10/sup 6/ md-ft/cp. The maximum bottom-hole temperature recorded during testing was 251/sup 0/F. The conceptual model of the geothermal resource at Wendel Hot Springs calls on ground water, originating in the neighboring volcanic highlands, descending through jointed and otherwise permeable rocks into the granitic basement. Once in the basement, the fluid is heated as it continues its descent, and lateral movement as dictated by the hydrologic gradient. It then rises to the discharge point along transmissive faults. 45 refs., 28 figs., 3 tabs.

Zeisloft, J.; Sibbett, B.S.; Adams, M.C.

1984-09-01T23:59:59.000Z

30

Volcanic studies at Katmai  

SciTech Connect (OSTI)

The Continental Scientific Drilling Program (CSDP) is a national effort supported by the Department of Energy, the US Geological Survey, and the National Science Foundation. One of the projects proposed for the CSDP consists of drilling a series of holes in Katmai National Park in Alaska to give a third dimension to the model of the 1912 eruption of Novarupta, and to investigate the processes of explosive volcanism and hydrothermal transport of metals (Eichelberger et al., 1988). The proposal for research drilling at Katmai states that ``the size, youth, elevated temperature, and simplicity of the Novarupta vent make it a truly unique scientific target.`` The National Park Service (NPS), which has jurisdiction, is sympathetic to aims of the study. However, NPS wishes to know whether Katmai is indeed uniquely suited to the research, and has asked the Interagency Coordinating Group to support an independent assessment of this claim. NPS suggested the National Academy of Sciences as an appropriate organization to conduct the assessment. In response, the National Research Council -- the working arm of the Academy -- established, under the aegis of its US Geodynamics Committee, a panel whose specific charge states: ``The proposed investigation at Katmai has been extensively reviewed for scientific merit by the three sponsoring and participating agencies. Thus, the scientific merit of the proposed drilling at Katmai is not at issue. The panel will review the proposal for scientific drilling at Katmai and prepare a short report addressing the specific question of the degree to which it is essential that the drilling be conducted at Katmai as opposed to volcanic areas elsewhere in the world.``

Not Available

1989-12-31T23:59:59.000Z

31

High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone...  

Open Energy Info (EERE)

Caldera Geothermal Region Retrieved from "http:en.openei.orgwindex.php?titleHigh-ResolutionAeromagneticMappingOfVolcanicTerrain,YellowstoneNationalPark&oldid...

32

High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone  

Open Energy Info (EERE)

High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone National Park Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone National Park Details Activities (1) Areas (1) Regions (0) Abstract: High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic

33

Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure...  

Open Energy Info (EERE)

Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The Valley Of Ten Thousand Smokes, Katmai National Park, Alaska Jump to: navigation, search OpenEI...

34

Modeling volcanic ash dispersal  

ScienceCinema (OSTI)

Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

None

2011-10-06T23:59:59.000Z

35

Latitudinal gradients of coniferous tree species, vegetation, and climate in the Sierran-Cascade axis of Northern California  

Science Journals Connector (OSTI)

Latitudinal gradients of tree species composition along the Sierran/Cascade axis in northern California were explored by comparing forests of Lassen Volcanic and Yosemite National Parks, USA. A calibration pro...

Albert J. Parker

1994-12-01T23:59:59.000Z

36

Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of...  

Open Energy Info (EERE)

Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of Lassen Volcanic National Park Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

37

Jordan Creek Quadrangle Volcanics Ecoregion  

E-Print Network [OSTI]

Jordan Creek Quadrangle Volcanics Ecoregion 10m30m 0-3 3-6 6-20 20-40 40-65 65-110 >110 No Data Percent Slope Jordan Creek Quadrangle Volcanics Ecoregion Coastal Lowlands Ecoregion Volcanics Ecoregion VINEMAPLE GREENLEAF GLENBROOK KELLY BUTTE PITTSBURGH TOLEDO NORTH JORDAN CREEK SUNSET SPRING WARNICKE CREEK

38

Property:VolcanicAge | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:VolcanicAge Jump to: navigation, search Property Name VolcanicAge Property Type String Description Describes the time of the most recent volcanism by epoch, era, or period per available data. Subproperties This property has the following 7 subproperties: E East Mesa Geothermal Area G Geysers Geothermal Area L Lightning Dock Geothermal Area R Raft River Geothermal Area Roosevelt Hot Springs Geothermal Area S Salton Sea Geothermal Area Soda Lake Geothermal Area Pages using the property "VolcanicAge" Showing 19 pages using this property. A Amedee Geothermal Area + No volcanism + B Beowawe Hot Springs Geothermal Area + no volcanism + Blue Mountain Geothermal Area + no volcanism + Brady Hot Springs Geothermal Area + No volcanism +

39

DETECTING VOLCANISM ON EXTRASOLAR PLANETS  

SciTech Connect (OSTI)

The search for extrasolar rocky planets has already found the first transiting rocky super-Earth, Corot 7b, with a surface temperature that allows for magma oceans. Here, we investigate whether we could distinguish rocky planets with recent major volcanism by remote observation. We develop a model for volcanic eruptions on an Earth-like exoplanet based on the present-day Earth and derive the observable features in emergent and transmission spectra for multiple scenarios of gas distribution and cloud cover. We calculate the observation time needed to detect explosive volcanism on exoplanets in primary as well as secondary eclipse and discuss the likelihood of observing volcanism on transiting Earth-sized to super-Earth-sized exoplanets. We find that sulfur dioxide from large explosive eruptions does present a spectral signal that is remotely detectable especially for secondary eclipse measurements around the closest stars and ground-based telescopes, and report the frequency and magnitude of the expected signatures. The transit probability of a planet in the habitable zone decreases with distance from the host star, making small, nearby host stars the best targets.

Kaltenegger, L.; Sasselov, D. D. [Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Henning, W. G., E-mail: lkaltene@cfa.harvard.ed [Harvard University, EPS, 20 Oxford Street, Cambridge, MA 02138 (United States)

2010-11-15T23:59:59.000Z

40

then UC is for you! UC San Diego  

E-Print Network [OSTI]

UC Santa Cruz UC Santa Barbara UCLA UC Irvine UC Davis Eureka Redwood National Park Lassen Volcanic Francisco MILES KM UC Davis 71 114 UC Berkeley 12 19 UC Merced 135 217 UC Santa Cruz 74 119 UC Santa Barbara of California with new technology, innovative approaches and energy-saving sustainable practices. UC SAN DIEg

California at Santa Cruz, University of

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Spatial distribution of eruptive centers about the Idaho National Laboratory  

E-Print Network [OSTI]

volcanic hazard assessment. The Idaho National Laboratory (INL) comprises several nuclear facilities, in- cluding the oldest power reactor in the world (see Chapman et al., Chapter 1, this volume). The INL of volcanism in the central ESRP at and near the INL is important due to the presence of nuclear reactors

Wetmore, Paul H.

42

Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure And  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The Valley Of Ten Thousand Smokes, Katmai National Park, Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The Valley Of Ten Thousand Smokes, Katmai National Park, Alaska Details Activities (2) Areas (1) Regions (0) Abstract: A reconnaissance survey of Hg° was designed to model the 1912 Novarupta vent structure and delineate zones of near-surface high heat

43

TESTING MODELS FOR BASALTIC VOLCANISM: IMPLICATIONS FOR YUCCA MOUNTAIN, NEVADA  

E-Print Network [OSTI]

TESTING MODELS FOR BASALTIC VOLCANISM: IMPLICATIONS FOR YUCCA MOUNTAIN, NEVADA Eugene Smith 1 The determination of volcanic risk to the proposed high- level nuclear waste repository at Yucca Mountain requires, then volcanism in the future may not be a significant threat to Yucca Mountain. On the other hand, if melting

Conrad, Clint

44

The Utilisation of Volcanic Steam in Italy  

Science Journals Connector (OSTI)

... exploitation of natural resources; and the welkin is still ringing with cries of increase production,back to the land, and keep the home-fires burning. Examples ... definite and successful effort been made in this direction, namely, by utilising the natural steam which emerges from the earth in volcanic districts. The jets of ...

1924-01-12T23:59:59.000Z

45

Volcanic ash impacts on critical infrastructure  

Science Journals Connector (OSTI)

Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. Critical infrastructure includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layers resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water supply managers include: monitoring turbidity levels in raw water intakes, and if necessary increasing chlorination to compensate for higher turbidity; managing water demand; and communicating monitoring results with the public to allay fears of contamination. Ash can cause major damage to wastewater disposal systems. Ash deposited onto impervious surfaces such as roads and car parks is very easily washed into storm drains, where it can form intractable masses and lead to long-term flooding problems. It can also enter wastewater treatment plants (WWTPs), both through sewer lines and by direct fallout. Damage to modern \\{WWTPs\\} can run into millions of dollars. Ash falls reduce visibility creating hazards for ground transportation. Dry ash is also readily remobilised by vehicle traffic and wind, and dry and wet ash deposits will reduce traction on paved surfaces, including airport runways. Ash cleanup from road and airports is commonly necessary, but the large volumes make it logistically challenging. Vehicles are vulnerable to ash; it will clog filters and brake systems and abrade moving parts within engines. Lastly, modern telecommunications networks appear to be relatively resilient to volcanic ash fall. Signal attenuation and interference during ash falls has not been reported in eruptions over the past 20years, with the exception of interference from ash plume-generated lightning. However, some telecommunications equipment is vulnerable to airborne ash, in particular heating, ventilation and air-conditioning (HVAC) systems which may become blocked from ash ingestion leading to overheating. This summary of volcanic ash impacts on critical infrastructure provides insight into the relative vulnerability of infrastructure under a range of different ashfall scenarios. Identifying and quantifying these impacts is an essential step in building resilience within these critical systems. We have attempted to consider interdependencies between sectors in a holistic way using systems thinking. As modern society becomes increasingly complex and interdependent this

Thomas M. Wilson; Carol Stewart; Victoria Sword-Daniels; Graham S. Leonard; David M. Johnston; Jim W. Cole; Johnny Wardman; Grant Wilson; Scott T. Barnard

2012-01-01T23:59:59.000Z

46

Jasper Seamount: Seven million years of volcanism  

SciTech Connect (OSTI)

Jasper Seamount is a young, mid-sized (690 km{sup 3}) oceanic intraplate volcano located about 500 km west-southwest of San Diego, California. Reliable {sup 40}Ar/{sup 39}Ar age data were obtained for several milligram-sized samples of 4 to 10 Ma plagioclase by using a defocused laser beam to clean the samples before fusion. Gee and Staudigel suggested that Jasper Seamount consists of a transitional to tholeiitic shield volcano formed by flank transitional series lavas, overlain by flank alkalic series lavas and summit alkalic series lavas. Twenty-nine individual {sup 40}Ar/{sup 39}Ar laser fusion analyses on nine samples confirm the stratigraphy: 10.3-10.0 Ma for the flank transitonal series, 8.7-7.5 Ma for the flank alkalic series, and 4.8-4.1 Ma for the summit alkalic series. The alkalinity of the lavas clearly increases with time, and there appear to be 1 to 3 m.y. hiatuses between each series. The age data are consistent with the complex magnetic anomaly of Jasper; however the dominant reversed polarity inferred from the anomaly suggests that most of the seamount formed at ca. 11 Ma, prior to the onset of Chron C5N. The duration of volcanism of Jasper Seamount is slightly longer than the duration of volcanism at Hawaiian volcanoes, suggesting that individual age data from seamounts may constrain the age of a seamount only to within about 7 m.y. unless the stage of volcanism can be unambiguously determined. Extrapolating from the results of our study, similar precision in age determinations should be possible on 50 mg of 1 Ma plagioclase from mid-ocean ridge basalt, opening new possibilities in the geochronology of young, low-potassium volcanic rocks.

Pringle, M.S. (Geological Survey, Menlo Park, California (USA)); Staudigel, H.; Gee, J. (Scripps Institution of Oceanography, LaJolla, California (USA))

1991-04-01T23:59:59.000Z

47

Temporal Relations of Volcanism and Hydrothermal Systems in Two...  

Open Energy Info (EERE)

with current hot-spring activity and the youngest pulses of volcanism. > Oxygen-isotope data from illitesmectite clays in the Cochiti district are zonally distributed and...

48

A Miocene Island-Arc Volcanic Seamount- The Takashibiyama Formation...  

Open Energy Info (EERE)

Island-Arc Volcanic Seamount- The Takashibiyama Formation, Shimane Peninsula, Sw Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A...

49

Basaltic volcanic episodes of the Yucca Mountain region  

SciTech Connect (OSTI)

The purpose of this paper is to summarize briefly the distribution and geologic characteristics of basaltic volcanism in the Yucca Mountain region during the last 10--12 Ma. This interval largely postdates the major period of silicic volcanism and coincides with and postdates the timing of major extensional faulting in the region. Field and geochronologic data for the basaltic rocks define two distinct episodes. The patterns in the volume and spatial distribution of these basaltic volcanic episodes in the central and southern part of the SNVF are used as a basis for forecasting potential future volcanic activity in vicinity of Yucca Mountain. 33 refs., 2 figs.

Crowe, B.M.

1990-03-01T23:59:59.000Z

50

E-Print Network 3.0 - active volcanic features Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

enormous Jurassic--Cretaceous volcanic activity, CretaceousJurassicPermian andesite Permian metasediment... of Mesozoic volcanic rocks in the Songliao basin, NE China PU-JUN...

51

An energy appraisal of volcanic and hydrothermal phenomena (on the example of Kamchatka)  

Science Journals Connector (OSTI)

Such areas of active volcanicity may be regarded as positive geothermic anomalies on a planetary scale. This conclusion ... magmatism (volcanism), metamorphism and other energy capacious processes in various ...

B. G. Polak

1967-01-01T23:59:59.000Z

52

E-Print Network 3.0 - altered volcanic ash Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: when hot ash flows enter the sea. Volcanic activity was practically absent on Gran Canaria between 9... expected the Slump scarp Subaerial volcanics Sealevel Distal...

53

Multiple Ruptures For Long Valley Microearthquakes- A Link To Volcanic  

Open Energy Info (EERE)

Multiple Ruptures For Long Valley Microearthquakes- A Link To Volcanic Multiple Ruptures For Long Valley Microearthquakes- A Link To Volcanic Tremor(Question) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Multiple Ruptures For Long Valley Microearthquakes- A Link To Volcanic Tremor(Question) Details Activities (1) Areas (1) Regions (0) Abstract: Despite several episodes of ground deformation and intense seismic activity starting in 1978, the Long Valley, California, volcanic area has not produced clearly recognized volcanic tremor. Instead, a variety of atypical microearthquakes have been recorded during these episodes, including events dominated by low-frequency (long-period) or mixed high and low-frequency (hybrid) signals. During a 1997 episode, a number of unusual microearthquakes occurred within a temporary 40-station

54

Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism  

Open Energy Info (EERE)

Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism in Northwestern Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism in Northwestern Nevada Abstract Some of the earliest volcanic rocks attributed to the Yellowstone hotspot erupted from the McDermitt caldera and related volcanic centers in northwestern Nevada at 17-15 Ma. At that time, extensional faulting was ongoing to the south in central Nevada, leading some to suggest that the nascent hotspot caused or facilitated middle Miocene Basin and Range extension. Regional geologic relationships indicate that the total magnitude of extension in northwestern Nevada is low compared to the amount

55

A Distinction Technique Between Volcanic And Tectonic Depression Structures  

Open Energy Info (EERE)

Distinction Technique Between Volcanic And Tectonic Depression Structures Distinction Technique Between Volcanic And Tectonic Depression Structures Based On The Restoration Modeling Of Gravity Anomaly- A Case Study Of The Hohi Volcanic Zone, Central Kyushu, Japan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Distinction Technique Between Volcanic And Tectonic Depression Structures Based On The Restoration Modeling Of Gravity Anomaly- A Case Study Of The Hohi Volcanic Zone, Central Kyushu, Japan Details Activities (0) Areas (0) Regions (0) Abstract: In this study, we propose a numerical modeling technique which restores the gravity anomaly of tectonic origin and identifies the gravity low of caldera origin. The identification is performed just by comparing the restored gravity anomalies with the observed gravity anomalies, thus we

56

Overview Of Electromagnetic Methods Applied In Active Volcanic Areas Of  

Open Energy Info (EERE)

Of Electromagnetic Methods Applied In Active Volcanic Areas Of Of Electromagnetic Methods Applied In Active Volcanic Areas Of Western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Overview Of Electromagnetic Methods Applied In Active Volcanic Areas Of Western United States Details Activities (7) Areas (2) Regions (0) Abstract: A better understanding of active volcanic areas in the United States through electromagnetic geophysical studies received foundation from the many surveys done for geothermal exploration in the 1970's. Investigations by governmental, industrial, and academic agencies include (but are not limited to) mapping of the Cascades. Long Valley/Mono area, the Jemez volcanic field, Yellowstone Park, and an area in Colorado. For one example - Mt. Konocti in the Mayacamas Mountains, California - gravity,

57

Type B: Andesitic Volcanic Resource | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Type B: Andesitic Volcanic Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Type B: Andesitic Volcanic Resource Dictionary.png Type B: Andesitic Volcanic Resource: No definition has been provided for this term. Add a Definition Brophy Occurrence Models This classification scheme was developed by Brophy, as reported in Updating the Classification of Geothermal Resources.[1] Type A: Magma-heated, Dry Steam Resource Type B: Andesitic Volcanic Resource Type C: Caldera Resource Type D: Sedimentary-hosted, Volcanic-related Resource Type E: Extensional Tectonic, Fault-Controlled Resource

58

Blind Geothermal System Exploration in Active Volcanic Environments;  

Open Energy Info (EERE)

System Exploration in Active Volcanic Environments; System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawaii and Maui Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawai'i and Maui Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The project will perform a suite of stepped geophysical and geochemical surveys and syntheses at both a known, active volcanic system at Puna, Hawai'i and a blind geothermal system in Maui, Hawai'i. Established geophysical and geochemical techniques for geothermal exploration including gravity, major cations/anions and gas analysis will be combined with atypical implementations of additional geophysics (aeromagnetics) and geochemistry (CO2 flux, 14C measurements, helium isotopes and imaging spectroscopy). Importantly, the combination of detailed CO2 flux, 14C measurements and helium isotopes will provide the ability to directly map geothermal fluid upflow as expressed at the surface. Advantageously, the similar though active volcanic and hydrothermal systems on the east flanks of Kilauea have historically been the subject of both proposed geophysical surveys and some geochemistry; the Puna Geothermal Field (Puna) (operated by Puna Geothermal Venture [PGV], an Ormat subsidiary) will be used as a standard by which to compare both geophysical and geochemical results.

59

Geothermal Literature Review At San Francisco Volcanic Field Area (Morgan,  

Open Energy Info (EERE)

Morgan, Morgan, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At San Francisco Volcanic Field Area (Morgan, Et Al., 2003) Exploration Activity Details Location San Francisco Volcanic Field Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown References Paul Morgan, Wendell Duffield, John Sass, Tracey Felger (2003) Searching For An Electrical-Grade Geothermal Resource In Northern Arizona To Help Geopower The West Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_San_Francisco_Volcanic_Field_Area_(Morgan,_Et_Al.,_2003)&oldid=510822" Category: Exploration Activities What links here

60

An Expert System For The Tectonic Characterization Of Ancient Volcanic  

Open Energy Info (EERE)

System For The Tectonic Characterization Of Ancient Volcanic System For The Tectonic Characterization Of Ancient Volcanic Rocks Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Expert System For The Tectonic Characterization Of Ancient Volcanic Rocks Details Activities (0) Areas (0) Regions (0) Abstract: The expert system approach enables geochemical evidence to be integrated with geological, petrological and mineralogical evidence in identifying the eruptive setting of ancient volcanic rocks. This paper explains the development of ESCORT, an Expert System for Characterization of Rock Types. ESCORT uses as its knowledge base a set of dispersion matrices derived from a geochemical data bank of some 8000 immobile element analyses, together with tables of magma-type membership probabilities based

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Data Acquisition-Manipulation At San Francisco Volcanic Field Area  

Open Energy Info (EERE)

At San Francisco Volcanic Field Area At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Exploration Activity Details Location San Francisco Volcanic Field Area Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration data, geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify potential drilling targets and sites. Further work may occur in 2004 or 2005. References

62

Late Cenozoic volcanism, geochronology, and structure of the Coso Range,  

Open Energy Info (EERE)

Late Cenozoic volcanism, geochronology, and structure of the Coso Range, Late Cenozoic volcanism, geochronology, and structure of the Coso Range, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Late Cenozoic volcanism, geochronology, and structure of the Coso Range, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: The Coso Range lies at the west edge of the Great Basin, adjacent to the southern part of the Sierra Nevada. A basement complex of pre-Cenozoic plutonic and metamorphic rocks is partly buried by approx.35 km^3 of late Cenozoic volcanic rocks that were erupted during two periods, as defined by K-Ar dating: (1) 4.0--2.5 m.y., approx.31 km^3 of basalt, rhyodacite, dacite, andesite, and rhyolite, in descending order of abundance, and (2) < or =1.1 m.y., nearly equal amounts of basalt and

63

A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity- Fuego  

Open Energy Info (EERE)

Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity- Fuego Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity- Fuego And Mount St Helens Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity- Fuego And Mount St Helens Details Activities (0) Areas (0) Regions (0) Abstract: The large amount of scientific data collected on the Mount St. Helens eruption has resulted in significant changes in thinking about the atmospheric hazards caused by explosive volcanic activity. The hazard posed by fine silicate ash with long residence time in the atmosphere is probably much less serious than previously thought. The Mount St. Helens eruption released much fine ash in the upper atmosphere. These silicates were removed very rapidly due to a process of particle aggregation (Sorem, 1982;

64

A Miocene Island-Arc Volcanic Seamount- The Takashibiyama Formation,  

Open Energy Info (EERE)

Island-Arc Volcanic Seamount- The Takashibiyama Formation, Island-Arc Volcanic Seamount- The Takashibiyama Formation, Shimane Peninsula, Sw Japan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Miocene Island-Arc Volcanic Seamount- The Takashibiyama Formation, Shimane Peninsula, Sw Japan Details Activities (0) Areas (0) Regions (0) Abstract: The Miocene volcanic complex of the Takashibiyama Formation consists largely of subalkali, subaqueous basalt to andesite lavas and andesite to dacite subaqueous volcaniclastic flow deposits. Most of subaqueous lavas are moderately to intensely brecciated with rugged rough surfaces and ramp structures similar to subaerial block lava. Volcaniclastic flow deposits commonly include basalt to andesite lava fragments and/or pyroclastic materials, and are similar in internal

65

Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic  

Open Energy Info (EERE)

Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Field From Seismic Tomographic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Field From Seismic Tomographic Imaging Details Activities (1) Areas (1) Regions (0) Abstract: The 3-D P-wave velocity and P- to S-wave velocity ratio structure of the Yellowstone volcanic field, Wyoming, has been determined from local earthquake tomography using new data from the permanent Yellowstone seismic network. We selected 3374 local earthquakes between 1995 and 2001 to invert for the 3-D P-wave velocity (Vp) and P-wave to S-wave velocity ratio (Vp/Vs) structure. Vp anomalies of small size (15_15 km) are reliably

66

San Juan Volcanic Field Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

San Juan Volcanic Field Geothermal Area San Juan Volcanic Field Geothermal Area (Redirected from San Juan Volcanic Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: San Juan Volcanic Field Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

67

Volcanism in the western San Juan Mountains, Colorado  

Science Journals Connector (OSTI)

Three major cycles of volcanism during the Miocene and Pliocene formed a layered succession of calc-alkaline eruptive materials in the western San Juan Mountains nearly 1.5 miles thick and having a volume grea...

R. G. Luedke; W. S. Burbank

1966-01-01T23:59:59.000Z

68

The Palaeomagnetism of the Antrim Plateau Volcanics of Northern Australia  

Science Journals Connector (OSTI)

......just south of the Australian Bight from the Upper Carboniferous...1969. North Australian Plateau Volcanics...the Bonaparte Gulf Basin, Bur. Miner. Resour...palaeomagnetism of the Great Dyke of Southern...part of the Wiso Basin, Northern Territory......

M. W. McElbinny; G. R. Luck

1970-08-01T23:59:59.000Z

69

Applications of the VLF Induction Method For Studying Some Volcanic  

Open Energy Info (EERE)

the VLF Induction Method For Studying Some Volcanic the VLF Induction Method For Studying Some Volcanic Processes of Kilauea Volcano, Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Applications Of The Vlf Induction Method For Studying Some Volcanic Processes Of Kilauea Volcano, Hawaii Details Activities (1) Areas (1) Regions (0) Abstract: The very low-frequency (VLF) induction method has found exceptional utility in studying various volcanic processes of Kilauea volcano, Hawaii because: (1) significant anomalies result exclusively from ionically conductive magma or still-hot intrusions (> 800°C) and the attendant electrolytically conductive hot groundwater; (2) basalt flows forming the bulk of Kilauea have very high resistivities at shallow depths that result in low geologic noise levels and relatively deep depths of

70

A Distinction Technique Between Volcanic And Tectonic Depression...  

Open Energy Info (EERE)

Modeling Of Gravity Anomaly- A Case Study Of The Hohi Volcanic Zone, Central Kyushu, Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A...

71

San Juan Volcanic Field Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

San Juan Volcanic Field Geothermal Area San Juan Volcanic Field Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: San Juan Volcanic Field Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

72

San Francisco Volcanic Field Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

San Francisco Volcanic Field Geothermal Area San Francisco Volcanic Field Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: San Francisco Volcanic Field Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Arizona Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

73

Palaeomagnetism and Potassium-Argon Ages of Volcanic Rocks of Ngorongoro Caldera, Tanzania  

Science Journals Connector (OSTI)

......Volcanic Rocks of Ngorongoro Caldera, Tanzania* * Publication authorized by the Director...south-west wall of Ngorongoro caldera, Tanzania. The lowest three lavas are normally...Volcanic Rocks of Ngorongoro Caldera, Tanzania* C. S. Gromme, T. A. Reilly, A......

C. S. Gromm; T. A. Reilly; A. E. Mussett; R. L. Hay

1971-01-01T23:59:59.000Z

74

Geochronology of Gran Canaria, Canary Islands: Age of shield building volcanism and other magmatic phases  

Science Journals Connector (OSTI)

Forty-six new K-Ar age determinations are presented on whole rock samples and mineral separates from volcanic and subvolcanic rocks of Gran Canaria. The main subaerial shield building basaltic volcanism...3 was c...

I. McDougall; H. -U. Schmincke

1976-01-01T23:59:59.000Z

75

Stratigraphic Units at Ft. Niobrara National Wildlife Refuge  

E-Print Network [OSTI]

Stratigraphic Units at Ft. Niobrara National Wildlife Refuge Mrs. Flynn's Earth Science Class this formation are wind-blown volcanic ash. The climate may have been more arid than during the time Hills (continued) These were deposited by the wind. The climate was similar to the present day climate

Frank, Tracy D.

76

The Palaeomagnetism of Late Cenozoic Volcanic Rocks from Kenya and Tanzania  

Science Journals Connector (OSTI)

......Cenozoic Volcanic Rocks from Kenya and Tanzania T. A. Reilly P. K. S. Raja A. E...from the volcanic province of northern Tanzania, Nature Phys. Sci., 229, 19-20...Cenozoic Volcanic Rocks from Kenya and Tanzania T .A. Reilly Geological Survey of Ireland......

T. A. Reilly; P. K. S. Raja; A. E. Mussett; A. Brock

1976-06-01T23:59:59.000Z

77

The Palaeomagnetism of Late Cenozoic Volcanic Rocks from Kenya and Tanzania  

Science Journals Connector (OSTI)

......Cenozoic Volcanic Rocks from Kenya and Tanzania T. A. Reilly P. K. S. Raja A. E...from the volcanic province of northern Tanzania, Nature Phys. Sci., 229, 19-20...Cenozoic Volcanic Rocks from Kenya and Tanzania T. A. Reilly Geological Survey of Ireland......

T. A. Reilly; P. K. S. Raja; A. E. Mussett; A. Brock

1958-12-01T23:59:59.000Z

78

Volcanism of the Kenya Rift Valley [and Discussion  

Science Journals Connector (OSTI)

...research-article Volcanism of the Kenya Rift Valley [and Discussion] B. C. King G. R...Robson R. B. McConnell The Kenya rift valley is a sector of the rift system of eastern...distances of 200 km or more both to the west and east and is broadly centred on the...

1972-01-01T23:59:59.000Z

79

Hydroacoustic detection of volcanic ocean-island earthquakes  

Science Journals Connector (OSTI)

......The finite difference grid is 7 110 km with a mesh...significant seismic monitoring infrastructure to new onsets of volcanism...regional monitoring infrastructure. Acknowledgments...Acoustic Modelling on a Grid of Vertically Varying...Talandier J.,1998. Hybrid numerical modelling......

George Helffrich; Sandra I. N. Heleno; Bruno Faria; Joo F. B. D. Fonseca

2006-12-01T23:59:59.000Z

80

Account of a New Volcanic Island in the Pacific Ocean  

Science Journals Connector (OSTI)

1 January 1886 research-article Account of a New Volcanic Island in the Pacific Ocean Wilfred Rowell The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. www.jstor.org

1886-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Visualizing the Aftermath of Volcanic Eruptions Tobias Gunther  

E-Print Network [OSTI]

of Magdeburg ABSTRACT Volcanic eruptions are not only hazardous in the vicinity of a vol- cano, but also affect to reconstruct and assess the movement of ash clouds. In particular, we shed light on the Gr´imsv¨otn, Puyehue or temperature. Combining individual satellite data into one visual- ization also allows to locate and judge

82

Type D: Sedimentary-hosted, Volcanic-related Resource | Open Energy  

Open Energy Info (EERE)

D: Sedimentary-hosted, Volcanic-related Resource D: Sedimentary-hosted, Volcanic-related Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Type D: Sedimentary-hosted, Volcanic-related Resource Dictionary.png Type D: Sedimentary-hosted, Volcanic-related Resource: No definition has been provided for this term. Add a Definition Brophy Occurrence Models This classification scheme was developed by Brophy, as reported in Updating the Classification of Geothermal Resources. Type A: Magma-heated, Dry Steam Resource Type B: Andesitic Volcanic Resource Type C: Caldera Resource Type D: Sedimentary-hosted, Volcanic-related Resource Type E: Extensional Tectonic, Fault-Controlled Resource Type F: Oceanic-ridge, Basaltic Resource Sedimentary-hosted volcanic-related resources are special in that the

83

Predicting and validating the tracking of a Volcanic Ash Cloud during the 2006 Eruption of Mt. Augustine Volcano  

SciTech Connect (OSTI)

On 11 January 2006, Mount Augustine volcano in southern Alaska began erupting after 20-year repose. The Anchorage Forecast Office of the National Weather Service (NWS) issued an advisory on 28 January for Kodiak City. On 31 January, Alaska Airlines cancelled all flights to and from Anchorage after multiple advisories from the NWS for Anchorage and the surrounding region. The Alaska Volcano Observatory (AVO) had reported the onset of the continuous eruption. AVO monitors the approximately 100 active volcanoes in the Northern Pacific. Ash clouds from these volcanoes can cause serious damage to an aircraft and pose a serious threat to the local communities, and to transcontinental air traffic throughout the Arctic and sub-Arctic region. Within AVO, a dispersion model has been developed to track the dispersion of volcanic ash clouds. The model, Puff, was used operational by AVO during the Augustine eruptive period. Here, we examine the dispersion of a volcanic ash cloud from Mount Augustine across Alaska from 29 January through the 2 February 2006. We present the synoptic meteorology, the Puff predictions, and measurements from aerosol samplers, laser radar (or lidar) systems, and satellites. UAF aerosol samplers revealed the presence of volcanic aerosols at the surface at sites where Puff predicted the ash clouds movement. Remote sensing satellite data showed the development of the ash cloud in close proximity to the volcano and a sulfur-dioxide cloud further from the volcano consistent with the Puff predictions. Lidars showed the presence of volcanic aerosol with consistent characteristics aloft over Alaska and were capable of detecting the aerosol, even in the presence of scattered clouds and where the cloud is too thin/disperse to be detected by remote sensing satellite data. The lidar measurements revealed the different trajectories of ash consistent with the Puff predictions. Dispersion models provide a forecast of volcanic ash cloud movement that might be undetectable by any other means but are still a significant hazard. Validation is the key to assessing the accuracy of any future predictions. The study highlights the use of multiple and complementary observations used in detecting the trajectory ash cloud, both at the surface and aloft within the atmosphere.

Webley, Peter W.; Atkinson, D.; Collins, Richard L.; Dean, K.; Fochesatto, J.; Sassen, Kenneth; Cahill, Catherine F.; Prata, A.; Flynn, Connor J.; Mizutani, K.

2008-11-01T23:59:59.000Z

84

National Uranium Resource Evaluation, Tonopah quadrangle, Nevada  

SciTech Connect (OSTI)

The Tonopah Quadrangle, Nevada, was evaluated using National Uranium Resource Evaluation criteria to identify and delineate areas favorable for uranium deposits. Investigations included reconnaissance and detailed surface geologic and radiometric studies, geochemical sampling and evaluation, analysis and ground-truth followup of aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data, and subsurface data evaluation. The results of these investigations indicate environments favorable for hydroallogenic uranium deposits in Miocene lacustrine sediments of the Big Smoky Valley west of Tonopah. The northern portion of the Toquima granitic pluton is favorable for authigenic uranium deposits. Environments considered unfavorable for uranium deposits include Quaternary sediments; intermediate and mafic volcanic and metavolcanic rocks; Mesozoic, Paleozoic, and Precambrian sedimentary and metasedimentary rocks; those plutonic rocks not included within favorable areas; and those felsic volcanic rocks not within the Northumberland and Mount Jefferson calderas.

Hurley, B W; Parker, D P

1982-04-01T23:59:59.000Z

85

Geologic factors controlling patterns of small-volume basaltic volcanism: Application to a volcanic hazards assessment  

E-Print Network [OSTI]

hazards assessment at Yucca Mountain, Nevada Charles B. Connor,1 John A. Stamatakos,1 David A. Ferrill,1 are often required for facilities, such as nuclear power plants and high-level radioactive waste ­105 years [e.g., Krauskopf, 1988; U.S. Nuclear Waste Technical Review Board, 1994; U.S. National

Connor, Charles

86

A Pliocene Shoaling Basaltic Seamount- Ba Volcanic Group At Rakiraki, Fiji  

Open Energy Info (EERE)

Pliocene Shoaling Basaltic Seamount- Ba Volcanic Group At Rakiraki, Fiji Pliocene Shoaling Basaltic Seamount- Ba Volcanic Group At Rakiraki, Fiji Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Pliocene Shoaling Basaltic Seamount- Ba Volcanic Group At Rakiraki, Fiji Details Activities (0) Areas (0) Regions (0) Abstract: At Rakiraki in northeastern Viti Levu, the Pliocene Ba Volcanic Group comprises gently dipping, pyroxene-phyric basaltic lavas, including pillow lava, and texturally diverse volcanic breccia interbedded with conglomerate and sandstone. Three main facies associations have been identified: (1) The primary volcanic facies association includes massive basalt (flows and sills), pillow lava and related in-situ breccia (pillow-fragment breccia, autobreccia, in-situ hyaloclastite, peperite).

87

A Physical Model For The Origin Of Volcanism Of The Tyrrhenian Margin- The  

Open Energy Info (EERE)

Model For The Origin Of Volcanism Of The Tyrrhenian Margin- The Model For The Origin Of Volcanism Of The Tyrrhenian Margin- The Case Of Neapolitan Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Physical Model For The Origin Of Volcanism Of The Tyrrhenian Margin- The Case Of Neapolitan Area Details Activities (0) Areas (0) Regions (0) Abstract: The onset of volcanism in the Neapolitan area and the tensile tectonics of the Tyrrhenian margin of the Apennine chain have been related to the opening of the Tyrrhenian Basin, which may have resulted in horizontal asthenosphere flows giving rise, in turn, to crustal distension, local mantle upwellings and ensuing volcanism. Geological and structural data were taken into consideration: the existence of a shallow crust-mantle discontinuity in the Neapolitan area, the onset of volcanism in a

88

Volcanic, erosional, tectonic, and biogenic peaks on Guyot Summit Plains in the Louisville Seamount Chain  

E-Print Network [OSTI]

Vol. 23, p. 125-138. Sinton, J.M. 2009. Volcanic Islands. inAustral-Cook Islands [Sinton, 2009]. While these features

Ebuna, Daniel R.

2011-01-01T23:59:59.000Z

89

Political and scientific uncertainties in volcanic risk management: The yellow alert in Quito in October 1998  

Science Journals Connector (OSTI)

Volcanic risk management involves volcanologists, civil authorities and the ... 1998. It describes the scientific context, the political announcement and the decision-making process that...

Pascale Metzger; Robert D'Ercole; Alexis Sierra

90

GIS methods applied to the degradation of monogenetic volcanic fields: A case study of the Holocene volcanism of Gran Canaria (Canary Islands, Spain)  

Science Journals Connector (OSTI)

Modeling of volcanic morphometry provides reliable measurements of parameters that assist in the determination of volcanic landform degradation. Variations of the original morphology enable the understanding of patterns affecting erosion and their development, facilitating the assessment of associated hazards. A total of 24 volcanic Holocene eruptions were identified in the island of Gran Canaria (Canary Islands, Spain). 87% of these eruptions occurred in a wet environment while the rest happened in a dry environment. 45% of Holocene eruptions are located along short barrancos (S-type, less than 10km in length), 20% along large barrancos (L-type, 1017km in length) and 35% along extra-large barrancos (XL-type, more than 17km in length). The erosional history of Holocene volcanic edifices is in the first stage of degradation, with a geomorphic signature characterized by a fresh, young cone with a sharp profile and a pristine lava flow. After intensive field work, a careful palaeo-geomorphological reconstruction of the 24 Holocene eruptions of Gran Canaria was conducted in order to obtain the Digital Terrain Models (DTMs) of the pre- and post-eruption terrains. From the difference between these DTMs, the degradation volume and the incision rate were obtained. The denudation of volcanic cones and lava flows is relatively independent both their geographical location and the climatic environment. However, local factors, such as pre-eruption topography and ravine type, have the greatest influence on the erosion of Holocene volcanic materials in Gran Canaria. Although age is a key factor to help understand the morphological evolution of monogenetic volcanic fields, the Gran Canaria Holocene volcanism presented in this paper demonstrates that local and regional factors may determine the lack of correlation between morphometric parameters and age. Consequently, the degree of transformation of the volcanic edifices evolves, in many cases, independently of their age.

A. Rodriguez-Gonzalez; J.L. Fernandez-Turiel; F.J. Perez-Torrado; M. Aulinas; J.C. Carracedo; D. Gimeno; H. Guillou; R. Paris

2011-01-01T23:59:59.000Z

91

Thyroid cancer incidence in relation to volcanic activity  

SciTech Connect (OSTI)

Environmental or genetic factors are sought to explain the high incidence of thyroid cancer in Iceland. At present, it is impossible to cite any environmental factor, particularly one related to the volcanic activity in the country, which could explain the high incidence of thyroid cancer in Iceland. However, the thyroid gland in Icelanders is very small due to the high intake of iodine from seafood. It is, therefore, easier for physicians to find thyroid tumors. Furthermore, genetic factors are very likely to be of great importance in the small, isolated island of Iceland.

Arnbjoernsson, E.A.; Arnbjoernsson, A.O.; Olafsson, A.

1986-01-01T23:59:59.000Z

92

Analysis and correlation of volcanic ash in marine sediments from the Peru Margin, Ocean Drilling Program Leg 201: explosive volcanic cycles of the north-central Andes  

E-Print Network [OSTI]

A detailed investigation of cores from three Peru Margin sites drilled during Ocean Drilling Program (ODP) Leg 201 has been conducted to determine the occurrence of volcanic ash layers and ash accumulations within marine sediments along the Peru...

Hart, Shirley Dawn

2007-04-25T23:59:59.000Z

93

There May Be More Than One Way To Make a Volcanic Lake a Killer  

Science Journals Connector (OSTI)

...lacustrine environment Lake Nyos limnology Tanzania toxic materials volcanism West Africa...small lake nestled in a volcanic crater in Tanzania. Drawn to the spot from 8 kilometers...of the monsoon season that re-duces solar heating. "It seems like quite a coincidence...

RICHARD A. KERR

1986-09-19T23:59:59.000Z

94

Globally synchronous ice core volcanic tracers and abrupt cooling during the last glacial period  

E-Print Network [OSTI]

Globally synchronous ice core volcanic tracers and abrupt cooling during the last glacial period R (2006), Globally synchronous ice core volcanic tracers and abrupt cooling during the last glacial period histories from ice coring of Greenland and Antarctica over the period 2 to 45 ka, using SO4 anomalies

Price, P. Buford

95

Ensemble Forecasting of Volcanic Sulfur Emissions in Hawai'i Andre Pattantyus and Steven Businger  

E-Print Network [OSTI]

of Hawai'i. The probabilistic forecast products show uncertainty in pollutant concentrations of pollution known as "vog" after volcanic smog. Prevailing northeast trade winds in Hawaii advectEnsemble Forecasting of Volcanic Sulfur Emissions in Hawai'i Andre Pattantyus and Steven Businger

Businger, Steven

96

Submeter bathymetric mapping of volcanic and hydrothermal features on the East Pacific Rise crest at 9500  

E-Print Network [OSTI]

of bathymetric changes associated with active volcanic, hydrothermal and tectonic processes. Components: 15Submeter bathymetric mapping of volcanic and hydrothermal features on the East Pacific Rise crest to produce submeter resolution bathymetric maps of five hydrothermal vent areas at the East Pacific Rise (EPR

Whitcomb, Louis L.

97

Explosive volcanic eruptions IV. The control of magma properties and conduit geometry on eruption column behaviour  

Science Journals Connector (OSTI)

......vents in the Sabaloka Couldron, Sudan, Geol. Mag., 108, 159-176...Volcanic eruption clouds and the thermal power output of explosive eruptions...vents in the Sabaloka Couldron, Sudan, Ceol. Mag., 108,159-176...Volcanic eruption clouds and the thermal power output of explosive eruptions......

Lionel Wilson; R. Stephen J. Sparks; George P. L. Walker

1980-10-01T23:59:59.000Z

98

How will melting of ice affect volcanic hazards in the twenty-first century?  

Science Journals Connector (OSTI)

...in press), as well as the processes...subglacial eruptions or geothermal activity (e.g...include volcanic/geothermal, glacier-permafrost...as Citlaltepetl, Mexico (lahars; Hubbard...that volcanic and geothermal activity is hastening...at Popocatepetl, Mexico, from 1994 to 2001...

2010-01-01T23:59:59.000Z

99

A Morphometric Analysis Of The Submarine Volcanic Ridge South-East Of Pico  

Open Energy Info (EERE)

Morphometric Analysis Of The Submarine Volcanic Ridge South-East Of Pico Morphometric Analysis Of The Submarine Volcanic Ridge South-East Of Pico Island, Azores Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Morphometric Analysis Of The Submarine Volcanic Ridge South-East Of Pico Island, Azores Details Activities (0) Areas (0) Regions (0) Abstract: A region of crustal extension, the Azores Plateau contains excellent examples of submarine volcanic edifices constructed over a wide range of ocean depths along the Pico Ridge. Using bathymetric data and Towed Ocean Bottom Instrument (TOBI) side-scan sonar imagery, we measured the dimensions (diameter, height, slopes), shape, and texture of these volcanic edifices to further understanding of the geometric development of a submarine ridge. Our analysis and interpretation of the measurement and

100

Melt zones beneath five volcanic complexes in California: an assessment of  

Open Energy Info (EERE)

Melt zones beneath five volcanic complexes in California: an assessment of Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Details Activities (5) Areas (5) Regions (0) Abstract: Recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. The areas studied were: (1) Salton Trough, (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent volcanic activity and published indications of crustal melt zones. 23 figs.

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Modeling-Computer Simulations At San Juan Volcanic Field Area (Clarkson &  

Open Energy Info (EERE)

Modeling-Computer Simulations At San Juan Volcanic Field Area (Clarkson & Modeling-Computer Simulations At San Juan Volcanic Field Area (Clarkson & Reiter, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At San Juan Volcanic Field Area (Clarkson & Reiter, 1987) Exploration Activity Details Location San Juan Volcanic Field Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes In this study we combine thermal maturation models, based on the level of maturation of the Fruitland Formation coals, and time-dependet temperature models, based on heat-flow data in the San Juan region, to further investigate both the thermal history of the region and the nature of the influence of the San Juan volcanic field thermal source on the thermal

102

Isotopic Analysis At San Juan Volcanic Field Area (Larson & Jr, 1986) |  

Open Energy Info (EERE)

Isotopic Analysis At San Juan Volcanic Field Area (Larson & Jr, 1986) Isotopic Analysis At San Juan Volcanic Field Area (Larson & Jr, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At San Juan Volcanic Field Area (Larson & Jr, 1986) Exploration Activity Details Location San Juan Volcanic Field Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown Notes Oxygen isotopes. References Peter B. Larson, Hugh P. Taylor Jr (1986) An Oxygen Isotope Study Of Hydrothermal Alteration In The Lake City Caldera, San Juan Mountains, Colorado Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_San_Juan_Volcanic_Field_Area_(Larson_%26_Jr,_1986)&oldid=687474" Categories: Exploration Activities

103

National Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

because NIF provides the only process for scientists to gain access to and examine thermonuclear burn. These experiments will also help the nation maintain the skills of nuclear...

104

COLLOQUIUM: Volcanism, Impacts and Mass Extinctions: Causes and Effects |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

February 13, 2013, 4:15pm to 5:30pm February 13, 2013, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Volcanism, Impacts and Mass Extinctions: Causes and Effects Professor Gerta Keller Princeton University Presentation: WC13FEB2014_GKeller.pptx The nature and causes of mass extinctions in the geological past have remained topics of intense scientific debate for the past three decades. Central to this debate is the question of whether one, or several large bolide impacts, the eruption of large igneous provinces (LIP) or a combination of the two were the primary mechanisms driving the environmental changes that are universally regarded as the proximate causes for four of the five major Phanerozoic extinction events. Recent years have seen a revolution in our understanding of interplanetary

105

Characterization of Io's volcanic activity by infrared polarimetry  

SciTech Connect (OSTI)

The thermal emission from Io's volcanic hot spots is linearly polarized.Infrared measurements at 4.76 micrometers show disk-integrated polarization as large as 1.6 percent. The degree and position angle of linear polarization vary with Io's rotation in a manner characteristic of emission from a small number of hot spots. A model incorporating three hot spots best fits the data. The largest of these hot spots lies to the northeast of Loki Patera, as mapped from Voyager, and the other spot on the trailing hemisphere is near Ra Patera. The hot spot on the leading hemisphere corresponds to no named feature on the Voyager maps. The value determined for the index of refraction of the emitting surface is a lower bound; it is similar to that of terrestrial basalts and is somewhat less than that of sulfur. 25 references.

Goguen, J.D.; Sinton, W.M.

1985-10-01T23:59:59.000Z

106

Rock Sampling At San Francisco Volcanic Field Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

San Francisco Volcanic Field Area (Warpinski, Et Al., San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Exploration Activity Details Location San Francisco Volcanic Field Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration data, geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify potential drilling targets and sites. Further work may occur in 2004 or 2005. References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J.

107

Alteration Patterns In Volcanic Rocks Within An East-West Traverse Through  

Open Energy Info (EERE)

Patterns In Volcanic Rocks Within An East-West Traverse Through Patterns In Volcanic Rocks Within An East-West Traverse Through Central Nicaragua Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Alteration Patterns In Volcanic Rocks Within An East-West Traverse Through Central Nicaragua Details Activities (0) Areas (0) Regions (0) Abstract: The volcanic rocks investigated in a cross-section between the Pacific and Atlantic coasts of Nicaragua - with the exception of Recent and some Pleistocene lavas - are incipiently to strongly altered. Alteration patterns on different scales can be discerned in the Tertiary sequences: (i) a regional burial diagenesis or very low-grade burial metamorphism at the low-temperature end of the zeolite facies (mordenite subfacies) with an inferred thermal gradient of < 50°C/km, grading into (ii) a geothermal

108

Formation of Mud-Volcanic Fluids in Taman (Russia) and Kakhetia (Georgia): Evidence from Boron Isotopes  

Science Journals Connector (OSTI)

Temperatures of the formation of mud-volcanic waters are determined based on concentrations of some temperature-dependent components (NaLi, MgLi). Estimates obtained for the Taman and Kakhetia regions are si...

V. Yu. Lavrushin; A. Kopf; A. Deyhle; M. I. Stepanets

2003-03-01T23:59:59.000Z

109

Deccan volcanism, the KT mass extinction and dinosaurs 709 J. Biosci. 34(5), November 2009  

E-Print Network [OSTI]

, 1988; Courtillot 1999). Over the past decade continental flood basalts (CFB) have been correlated be the general cause of mass extinctions. But acceptance of CFB volcanism as the likely catastrophe that led

Keller, Gerta

110

Mantle dynamics beneath the Pacific Northwest and the generation of voluminous back-arc volcanism  

E-Print Network [OSTI]

The Pacific Northwest (PNW) has a complex tectonic history and over the past ~17 Ma has played host to several major episodes of intraplate volcanism. These events include the Steens/Columbia River flood basalts (CRB) and ...

Long, Maureen D.

111

Center for Volcanic and Tectonic Studies: 1992--1993 annual report  

SciTech Connect (OSTI)

The annual report of the Center for Volcanic Studies (CVTS) contains a series of papers, reprints and a Master of Science thesis that review the progress made by the CVTS between October 1, 1992 and February 1, 1994. During this period CVTS staff focused on several topics that have direct relevance to volcanic hazards related to the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. These topics include: (1) polygenetic/polycyclic volcanism in Crater Flat, Nevada; (2) the role of the mantle during crustal extension; (3) the detailed geology of Crater Flat, Nevada; (4) Pliocene volcanoes in the Reveille Range, south-central Nevada; (5) estimating the probability of disruption of the proposed repository by volcanic eruptions. This topic is being studied by Dr. C.H. Ho at UNLV. The report contains copies of these individual papers as they were presented in various conference proceedings.

NONE

1994-12-31T23:59:59.000Z

112

Models for Volcanic Processes in Long Valley California: Testing by Continental Drilling  

Science Journals Connector (OSTI)

The occurrence of a local magnitude ML...= 5. 8 earthquake on the Wheeler Crest fault on 4 October 1978 (Fig. 1) signaled the onset of significant seismic activity in the Long Valley, California, volcanic region.

John B. Rundle

1985-01-01T23:59:59.000Z

113

Quaternary Science Reviews 26 (2007) 15291546 Glacial and volcanic history of Icelandic table mountains from  

E-Print Network [OSTI]

2007 Elsevier Ltd. All rights reserved. 1. Introduction Table mountains, also widely known as tuyas of these distinctive landforms in the Tuya Butte volcanic field in northwestern British Columbia were described

Licciardi, Joseph M.

114

Red Mountain is one of several hundred cinder cones within a swath of volcanic  

E-Print Network [OSTI]

time to expose their internal features. Although human quarrying creates frequently changing glimpses into a few of the cones in the volcanic field, quarries generally are unsafe for tourists and public access

Torgersen, Christian

115

Some Aspects Of Exploration In Non-Volcanic Areas | Open Energy Information  

Open Energy Info (EERE)

Some Aspects Of Exploration In Non-Volcanic Areas Some Aspects Of Exploration In Non-Volcanic Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Some Aspects Of Exploration In Non-Volcanic Areas Details Activities (5) Areas (1) Regions (0) Abstract: Geothermal exploration in non-volcanic areas must above all rely on geophysical techniques to identify the reservoir, as it is unable to resort to volcanological methodologies. A brief description is therefore given of the contribution that can be obtained from certain types of geophysical prospectings. Author(s): Raffaello Nannini Published: Geothermics, 1986 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Aerial Photography (Nannini, 1986) Aeromagnetic Survey (Nannini, 1986) Ground Gravity Survey (Nannini, 1986)

116

Petrology of clinopyroxene-amphibole inclusions from the roque nublo volcanics, gran canaria, canary islands  

Science Journals Connector (OSTI)

Inclusions consisting of clinopyroxene, amphibole, Fe-Ti oxides and apatitc are abundant in the Roque Nublo volcanics, a unit of Late Tertiary age that is widespread on Gran Canaria Island. The unit includes alka...

T. Frisch; H. U. Schmincke

1969-01-01T23:59:59.000Z

117

Factors Affecting Radiation Dose from a Hypothetical Extrusive Volcanic Event at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

This paper describes the factors that could affect doses to the reasonably maximally exposed individual (RMEI) as a result of a hypothetical extrusive igneous event at Yucca Mountain. Based on available information, there is no evidence that most of the spent fuel in waste packages intersected by a volcanic conduit would be reduced to fine-grained material and subsequently erupted as volcanic ash. (authors)

Weiner, R. [U. S. NRC Advisory Committee on Nuclear Waste and Materials, Rockville, MD (United States); Coleman, N. [U.S. Nuclear Regulatory Commission, Rockville, MD (United States)

2008-07-01T23:59:59.000Z

118

Growth, destruction and facies architecture of effusive and explosive volcanics in the Miocene Shama basin, southwest of Saudi Arabia: Subaqueoussubaerial volcanism in a lacustrine setting  

Science Journals Connector (OSTI)

Abstract The Harrat Shama Volcanic Basin (HSVB) is a part of a small, well-exposed intra-continental extensional basin that formed during the opening of the Red Sea, containing 5km of Miocene bimodal volcanics and volcaniclastic rocks. The Shama basin accumulated a thick fluvio-lacustrine fill in which two distinct volcanic sequences and their deposits can overlap with each other. In addition, complete facies architectures of the Shama volcanics have been recognized providing a complex mixed siliciclastic and volcaniclastic basin infill in the respective basin where volcanism took place. The lower sequence is composed of hyaloclastites, zeolite-bearing bedded tuffs, and bedded accretionary-lapilli-tuffs and an upper sequence, is made up of pumiceous lapilli-tuffs and peperitic breccias capped by basaltic lava flows. The former is interpreted to have been dominated by discrete, phreatomagmatic fall deposits, which are attributed to an overall high eruption rate in a lacustrine setting, followed by a dominantly subaerial pumiceous lapilli tuff deposits and volcaniclastic sediments sited in the upper part of the basin with paleosols and/or fluvial deposits in between the two sequences. These deposits could be related to polygenetic volcanoes and tectonic structures, such as faults and rift-zones. These two sequences display a complex succession of effusive and explosive volcanisms and their reworked deposits, with abundant evidences of magmawater interaction such as peperites for non-explosive magmawater interaction with the lacustrine water-saturated sediment and standing water body in a lake environment. The difference eruption dynamics and fragmentation mechanisms between the two sequences reflect progressive environmental changes from subaqueous or watery to subaerial or dry. Fluvial erosion and deposition completed the evolution of the emergent marginal part of the Shama basin. The Shama basin then experienced volcano growth and degradation that formed the two sequences; NW-SE-trending basement faulting triggered multiple flank collapses and volcanic debris avalanches, and voluminous pumiceous lapilli-tuff eruptions produced a caldera (upper sequence). Lacustrine conditions persisted during the destruction and post-destruction stages of the volcano's evolution, as evidenced by magmawater interactions. Shama basin is a small-volume volcano, similar to tuff rings; however, its magma compositions, complex eruption styles, and inter-eruptive breaks suggest, that it closely resembles a volcanic architecture commonly associated with large, composite volcanoes. The main cause of such complex eruptive behavior resides in the stratigraphic, structural, and hydrogeological characteristics of the substrate above which the volcanoes were emplaced, rather than on the compositional characteristics of the erupting magma, which do not show significant variation among the different deposits.

A. Abdel Motelib; E.A. Khalaf; H. Al-Marzouki

2014-01-01T23:59:59.000Z

119

Geologic evolution of the Jemez Mountains and their potential for future volcanic activity  

SciTech Connect (OSTI)

Geophysical and geochemical data and the geologic history of the Rio Grande rift and the vicinity of the Jemez Mountains are summarized to determine the probability of future volcanic activity in the Los Alamos, New Mexico area. The apparent cyclic nature of volcanism in the Jemez Mountains may be related to intermittent thermal inputs into the volcanic system beneath the region. The Jemez lineament, an alignment of late Cenozoic volcanic centers that crosses the rift near Los Alamos, has played an important role in the volcanic evolution of the Jemez Mountains. Geophysical data suggest that there is no active shallow magma body beneath the Valles caldera, though magma probably exists at about 15 km beneath this portion of the rift. The rate of volcanism in the Jemez Mountains during the last 10 million years has been 5 x 10/sup -9//km/sup 2//y. Lava or ash flows overriding Laboratory radioactive waste disposal sites would have little potential to release radionuclides to the environment. The probability of a new volcano intruding close enough to a radioactive waste disposal site to effect radionuclide release is 2 x 10/sup -7//y.

Burton, B.W.

1982-01-01T23:59:59.000Z

120

Oak Ridge National Laboratory National Security Programs  

E-Print Network [OSTI]

Oak Ridge National Laboratory National Security Programs Dr. Michael A. Kuliasha, Chief Scientist National Security Technologies Oak Ridge National Laboratory #12;2 OAK RIDGE NATIONAL LABORATORY U. S Security Challenges #12;3 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY How Will Our Enemies

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Revised age for Midway volcano, Hawaiian volcanic chain  

Science Journals Connector (OSTI)

New conventional K-Ar,40Ar/39Ar, and petrochemical data on alkalic basalt pebbles from the basalt conglomerate overlying tholeiitic flows in the Midway drill hole show that Midway evolved past the tholeiitic shield-building stage and erupted lavas of the alkalic suite27.0 0.6m.y. ago. The data also show that previously published conventional K-Ar ages on altered samples of tholeiite are too young by about 9 m.y. These results remove a significant anomaly in the age-distance relationships of the Hawaiian chain and obviate the need for large changes in either the rate of rotation of the Pacific plate about the Hawaiian pole or the motion of the plate relative to the Hawaiian hot spot since the time of formation of the Hawaiian-Emperor bend. All of the age data along the Hawaiian chain are now reasonably consistent with an average rate of volcanic propagation of 8.0 cm/yr and with 0.83/m.y. of angular rotation about the Hawaiian pole.

G. Brent Dalrymple; David A. Clague; Marvin A. Lanphere

1977-01-01T23:59:59.000Z

122

Lassen County, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

389°, -120.7120023° 389°, -120.7120023° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5394389,"lon":-120.7120023,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Honey Lake Geothermal Project, Lassen County, California. Final technical report  

SciTech Connect (OSTI)

This report discusses the drilling, completion, and testing of deep well WEN-2 for a hybrid electric power project which will use the area's moderate temperature geothermal fluids and locally procured wood fuel. The project is located within the Wendel-Amedee Known Geothermal Resource Area. (ACR)

Not Available

1984-11-01T23:59:59.000Z

124

National System Templates: Building Sustainable National Inventory  

Open Energy Info (EERE)

National System Templates: Building Sustainable National Inventory National System Templates: Building Sustainable National Inventory Management Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National System Templates: Building Sustainable National Inventory Management Systems Agency/Company /Organization: United States Environmental Protection Agency, United States Agency for International Development Sector: Energy, Land Focus Area: Non-renewable Energy, Forestry, Agriculture Topics: GHG inventory Resource Type: Guide/manual, Training materials Website: www.epa.gov/climatechange/emissions/ghginventorycapacitybuilding/templ National System Templates: Building Sustainable National Inventory Management Systems Screenshot References: National System Templates: Building Sustainable National Inventory Management Systems[1]

125

Effects of Volcanism on Climate Paul Withers The effects of subaerial volcanism extend far from their source. Long-distance effects  

E-Print Network [OSTI]

at ground level. Mafic volcanic gases can be roughly described as 80% H2O, 10% CO2, 5% SO2, and traces, 1980), El Chichon (Mexico, 1982), Mt. Hudson (Chile, 1991), and Mt. Pinatubo (Philippines, 1991 of the eruption column, having been transported less than 1000 km for any eruptions in the Holocene, or past 8000

Withers, Paul

126

National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Homesteading on the Pajarito Plateau Homesteading on the Pajarito Plateau topic of inaugural lecture at Los Alamos National Laboratory January 4, 2013 Lecture series begins yearlong commemoration of 70th anniversary LOS ALAMOS, NEW MEXICO, Jan. 3, 2013-In commemoration of its 70th anniversary, Los Alamos National Laboratory kicks off a yearlong lecture series on Wednesday, Jan. 9, at 5:30 p.m. with a presentation about homesteading on the Pajarito Plateau at the Bradbury Science Museum, 1350 Central Avenue, Los Alamos. - 2 - The inaugural lecture is based on a book by local writers Dorothy Hoard, Judy Machen and Ellen McGehee about the area's settlement between 1887 and 1942. On hikes across the Pajarito Plateau, Hoard envisioned the Los Alamos area before modern roads and bridges made transportation much easier. The trails she walked

127

Uranium mineralization in fluorine-enriched volcanic rocks  

SciTech Connect (OSTI)

Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).

Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.

1980-09-01T23:59:59.000Z

128

NATIONAL NEWS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March 5, 2010 National News......................................................................3 Schumer Proposal to Halt ARRA Funds for Renewable Projects Would Cause Immediate Job Loss in U.S., DOE Officials Tell Congress .................................................................................................................................. 3 Geothermal Energy Holds Strong Presence at Renewable Energy World Conference; Applications with Oil and Gas Coproduction Gain Attention .......................................................................................................................... 4 House Subcommittee on Energy and Mineral Resources Hold Legislative Hearing on the Geothermal Production and Expansion Act, HR 3709 ..............................................................................................................

129

Jurassic arc volcanism on Crimea (Ukraine): Implications for the paleo-subduction zone configuration of the Black Sea region  

E-Print Network [OSTI]

Jurassic arc volcanism on Crimea (Ukraine): Implications for the paleo-subduction zone margin. Crimea (Ukraine), a peninsula in the northern Black Sea, represents the northernmost region

Utrecht, Universiteit

130

National System Templates: Building Sustainable National Inventory...  

Open Energy Info (EERE)

Templates: Building Sustainable National Inventory Management Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National System Templates: Building Sustainable...

131

Sandia National Laboratories: Japanese National Institute of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Japanese National Institute of Advanced Industrial Science and Technology Sandia-California Partners with Japanese National Institute of Advanced Industrial Science and Technology...

132

Groundbreaking at National Ignition Facility | National Nuclear...  

National Nuclear Security Administration (NNSA)

Ignition Facility May 29, 1997 Groundbreaking at National Ignition Facility Livermore, CA Secretary Pena participates in the ground breaking ceremony for the National Ignition...

133

Helium Isotopes In Geothermal And Volcanic Gases Of The Western United  

Open Energy Info (EERE)

Helium Isotopes In Geothermal And Volcanic Gases Of The Western United Helium Isotopes In Geothermal And Volcanic Gases Of The Western United States, I, Regional Variability And Magmatic Origin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Helium Isotopes In Geothermal And Volcanic Gases Of The Western United States, I, Regional Variability And Magmatic Origin Details Activities (1) Areas (1) Regions (0) Abstract: Helium isotope ratios in gases of thirty hot springs and geothermal wells and of five natural gas wells in the western United States show no relationship to regional conductive heat flow, but do show a correlation with magma-based thermal activity and reservoir fluid temperature (or total convective heat discharge). Gases from high-T (> 200°C) reservoirs have 3He/4He > 2 _ the atmospheric value, with high He

134

Rock Sampling At San Juan Volcanic Field Area (Larson & Jr, 1986) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock Sampling At San Juan Volcanic Field Area (Larson & Jr, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At San Juan Volcanic Field Area (Larson & Jr, 1986) Exploration Activity Details Location San Juan Volcanic Field Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes More than 300 samples were collected from within and adjacent to the Lake City caldera. All specimens consist of single hand samples, approximately 1 kg in size. Care was taken to avoid oxidized or weathered rocks. Twenty

135

Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico |  

Open Energy Info (EERE)

Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Details Activities (2) Areas (1) Regions (0) Abstract: Large, young calderas possess immense geothermal potential due to the size of shallow magma bodies that underlie them. Through the example of the Valles and Toledo calderas, New Mexico, and older, more deeply eroded and exposed calderas, it is possible to reconstruct a general view of geothermal environments associated with such magmatic systems. Although a zone of anomalous heat flow extends well beyond caldera margins, high- to moderate-temperature hydrothermal systems appear to be restricted to zones

136

High-Resolution Aeromagnetic Survey Map of Part of the Southwest Nevada Volcanic Field  

SciTech Connect (OSTI)

A high-resolution aeromagnetic survey was recently flown to collect data for geologic investigations in the Southwest Nevada Volcanic Field. This survey represents a marked improvement over previous (1999) surveys. The survey includes over 860 km{sup 2} covered by nearly 16,000 km of flightline with 60-m spacing and an instrument altitude of 30 m above the ground surface. Features of interest visible in the dataset include magnetic banding in the volcanic tuffs that form the faulted terrain and sharp delineation of Quaternary basalt cinder cones and lava flows. This 1:100,000-scale map includes a shaded-relief map base and a semi-transparent overlay of the aeromagnetic data, with inset maps illustrating (1) comparisons of detail between the 1999 and 2004 datasets, (2) polarity reversal banding in the volcanic tuff ridges, (3) details of the morphology of Quaternary basalt centers enhanced by aeromagnetic data, and (4) use of GIS in planning the survey.

G. Keating; R. Prueitt; A. Cogbill

2004-06-21T23:59:59.000Z

137

Active System For Monitoring Volcanic Activity- A Case Study Of The  

Open Energy Info (EERE)

System For Monitoring Volcanic Activity- A Case Study Of The System For Monitoring Volcanic Activity- A Case Study Of The Izu-Oshima Volcano, Central Japan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Active System For Monitoring Volcanic Activity- A Case Study Of The Izu-Oshima Volcano, Central Japan Details Activities (0) Areas (0) Regions (0) Abstract: A system is proposed for the monitoring of changes in the underground structure of an active volcano over time by applying a transient electromagnetic method. The monitoring system is named ACTIVE, which stands for Array of Controlled Transient-electromagnetics for Imaging Volcano Edifice. The system consists of a transmitter dipole used to generate a controlled transient electromagnetic (EM) field and an array of receivers used to measure the vertical component of the transient magnetic

138

Ground Magnetics At San Francisco Volcanic Field Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

Warpinski, Et Al., Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Exploration Activity Details Location San Francisco Volcanic Field Area Exploration Technique Ground Magnetics Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration data, geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify potential drilling targets and sites. Further work may occur in 2004 or 2005. References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J.

139

Explosive basaltic volcanism of the Chikurachki Volcano (Kurile arc, Russia): Insights on pre-eruptive magmatic conditions  

E-Print Network [OSTI]

Explosive basaltic volcanism of the Chikurachki Volcano (Kurile arc, Russia): Insights on pre-Sakhalinsk, Russia d Institute of Volcanic Geology and Geochemistry, 683006 Petropavlovsk-Kamchatsky, Russia e Vernadsky Institute of Geochemistry and Analytical Chemistry, 117975 Moscow, Russia Received 13 December

Belousov, Alexander

140

Exploring links between physical and probabilistic models of volcanic eruptions: The Soufrie`re Hills Volcano, Montserrat  

E-Print Network [OSTI]

] Probabilistic methods play an increasingly important role in volcanic hazards forecasts. Here we show stiffening and gas exsolution, and depressurization due to development of permeability and gas escape. Our experience with the Soufrie`re Hills Volcano eruption sequence suggests that volcanic eruption forecasts

Connor, Charles

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Evidence for explosive silicic volcanism on the Moon from the extended distribution of thorium near the Compton-Belkovich Volcanic Complex  

E-Print Network [OSTI]

We reconstruct the abundance of thorium near the Compton-Belkovich Volcanic Complex on the Moon, using data from the Lunar Prospector Gamma Ray Spectrometer. We enhance the resolution via a pixon image reconstruction technique, and find that the thorium is distributed over a larger (40 km $\\times$ 75 km) area than the (25 km $\\times$ 35 km) high albedo region normally associated with Compton-Belkovich. Our reconstructions show that inside this region, the thorium concentration is 15 - 33 ppm. We also find additional thorium, spread up to 300 km eastward of the complex at $\\sim$2 ppm. The thorium must have been deposited during the formation of the volcanic complex, because subsequent lateral transport mechanisms, such as small impacts, are unable to move sufficient material. The morphology of the feature is consistent with pyroclastic dispersal and we conclude that the present distribution of thorium was likely created by the explosive eruption of silicic magma.

Wilson, J T; Massey, R J; Elphic, R C; Jolliff, B L; Lawrence, D J; Llewellin, E W; McElwaine, J N; Teodoro, L F A

2014-01-01T23:59:59.000Z

142

Lawrence Livermore National Laboratory  

Broader source: Energy.gov [DOE]

Lawrence Livermore National Laboratorys (LLNL) primary mission is research and development in support of national security.

143

Sandia National Laboratories  

Broader source: Energy.gov [DOE]

Sandia National Laboratories' (SNL) primary mission is to provide scientific and technology support to national security programs.

144

Application of magnetic amplitude inversion in exploration for natural gas in volcanics Yaoguo Li, Center for Gravity, Electrical, and Magnetic Studies, Colorado School of Mines  

E-Print Network [OSTI]

Application of magnetic amplitude inversion in exploration for natural gas in volcanics Yaoguo Li basins and have strong remanent magnetization. The appli- cation arises in exploration of natural gas identify the volcanic units at large depths. INTRODUCTION Exploration for natural gas hosted in volcanics

145

RADIOGRAPHIC IMAGING BELOW A VOLCANIC CRATER FLOOR WITH COSMIC-RAY MUONS  

E-Print Network [OSTI]

horizontally-arriving cosmic ray muon with energy of 1 TeV can penetrate 2.6 km of water. Thus, cosmic-ray muon that uncertainty on the shape and amplitude of the energy spectrum of the muon source is within a few percentRADIOGRAPHIC IMAGING BELOW A VOLCANIC CRATER FLOOR WITH COSMIC-RAY MUONS HIROYUKI K.M. TANAKA

Aoki, Yosuke

146

Did the Toba volcanic eruption of $74 ka B.P. produce widespread glaciation?  

E-Print Network [OSTI]

that the Toba volcanic eruption, approximately 74 ka B.P., was responsible for the extended cooling period and ice sheet advance immediately following it, but previous climate model simulations, using 100 times a maximum global cooling of 10 K and ModelE runs produced 8­17 K of cooling within the first years

Robock, Alan

147

Resuspension of Relic Volcanic Ash and Dust from Katmai: Still an Aviation Hazard  

Science Journals Connector (OSTI)

Northwest winds were strong enough to continuously resuspend relic volcanic ash from the Katmai volcano cluster and the Valley of Ten Thousand Smokes on 2021 September 2003. The ash cloud reached over 1600 m and extended over 230 km into the ...

David Hadley; Gary L. Hufford; James J. Simpson

2004-10-01T23:59:59.000Z

148

Steam Explosions, Earthquakes, and Volcanic Eruptions--What's in Yellowstone's Future?  

E-Print Network [OSTI]

Steam Explosions, Earthquakes, and Volcanic Eruptions-- What's in Yellowstone's Future? U. In the background, steam vigorously rises from the hot Each year, millions of visitors come to admire the hot, such as geysers. Steam and hot water carry huge quantities of thermal en- ergy to the surface from the magma cham

Torgersen, Christian

149

RESEARCH ARTICLE Apparent downwind depletion of volcanic SO2 flux--lessons  

E-Print Network [OSTI]

. Volcano monitoring . FLYSPEC Introduction Volcanic gas emissions play an important role indicate that dry deposition of sulfur from the plume and conversion of SO2 to sulfate aerosols within 5km downwind, and is responsible for the apparent loss of SO2. Due to the importance of SO2 emission

Williams-Jones, Glyn

150

Modeling the Formation of Advanced Argillic Lithocaps: Volcanic Vapor Condensation Above Porphyry Intrusions  

Science Journals Connector (OSTI)

...predominance boundaries for aqueous S species were converted to RH, using equation 15.6 of Giggenbach (1997): RH = 2.65-12776/T - 1/2 log f O2 , for T in Kelvin. All redox data for volcanic (dark blue) and plutonic (light blue) rocks are based...

Jeffrey W. Hedenquist; Yuri A. Taran

151

Journal of Geodynamics Offshore Oligo-Miocene volcanic fields within the Corsica-Liguria Basin  

E-Print Network [OSTI]

1 Journal of Geodynamics Offshore Oligo-Miocene volcanic fields within the Corsica-Liguria Basin Mediterranean) have been affected by a geochemically diverse igneous activity, offshore and onshore, since to our initial project. Key-Words: Mediterranean, Ligurian margins and Basin, Offshore Corsica, Miocene

Paris-Sud XI, Université de

152

Constraining Transient Climate Sensitivity Using Coupled Climate Model Simulations of Volcanic Eruptions  

Science Journals Connector (OSTI)

Coupled climate model simulations of volcanic eruptions and abrupt changes in CO2 concentration are compared in multiple realizations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). The change in global-mean ...

Timothy M. Merlis; Isaac M. Held; Georgiy L. Stenchikov; Fanrong Zeng; Larry W. Horowitz

2014-10-01T23:59:59.000Z

153

New ice core evidence for a volcanic cause of the A.D. 536 dust veil  

E-Print Network [OSTI]

New ice core evidence for a volcanic cause of the A.D. 536 dust veil L. B. Larsen,1 B. M. Vinther,1. [1] New and well-dated evidence of sulphate deposits in Greenland and Antarctic ice cores indicate a substantial and extensive atmospheric acidic dust veil at A.D. 533­534 ± 2 years. This was likely produced

Nicolussi, Kurt

154

Geochemistry of volcanic rocks from the Geysers geothermal area, California Coast Ranges  

E-Print Network [OSTI]

source of geothermal energy, is ulti- 0024-4937/$ - see front matter D 2005 Published by Elsevier BGeochemistry of volcanic rocks from the Geysers geothermal area, California Coast Ranges Axel K Potsdam, Germany c Philippine Geothermal, Inc., Makati, Philippines Received 1 May 2004; accepted 25 May

155

Evaporation of Lava and its Condensation from the Vapour Phase in Terrestrial and Lunar Volcanism  

Science Journals Connector (OSTI)

... appearance to the clouds of white steam from erupting geysers and from heated pools in geothermal areas. The resemblance between the steam clouds and the volcanic clouds is so pronounced ... is little doubt that they are formed by a similar mechanism. It appears that the hot lava has a high enough vapour pressure for appreciable quantities of it to evaporate. ...

BERNARD VONNEGUT; ROBERT K. MCCONNELL; RONALD V. ALLEN

1966-01-29T23:59:59.000Z

156

Using hydraulic equivalences to discriminate transport processes1 of volcanic flows1  

E-Print Network [OSTI]

Mexico, to distinguish the various modes of transport at play in their genesis. Using the concept11, 1987). Despite the ubiquity of25 such deposits, we only have a crude understanding of their genesis Toluca Volcano, Mexico (Fig. 1).34 HYDRAULIC EQUIVALENCES35 Models of volcanic flows invoke several

Boyer, Edmond

157

Automated volcanic eruption detection using MODIS Robert Wright *, Luke Flynn, Harold Garbeil, Andrew Harris, Eric Pilger  

E-Print Network [OSTI]

Automated volcanic eruption detection using MODIS Robert Wright *, Luke Flynn, Harold Garbeil, Harris, & Wright, 2001). Initial research was concerned with the use of high-spatial-, low.g. Flynn Mouginis-Mark, & Horton, 1994; Wright, Flynn, & Harris, 2001), lava domes (e.g. Oppenheimer

Wright, Robert

158

Previous Sandia National Laboratories | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Previous Sandia National Laboratories | National Nuclear Security Previous Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Previous Sandia National Laboratories Home > About Us > Our Operations > Acquisition and Project Management > M & O Support Department > Sandia National Laboratories > Previous Sandia

159

Saturated Zone Plumes in Volcanic Rock: Implications for Yucca Mountain  

SciTech Connect (OSTI)

This paper presents a literature survey of the occurrences of radionuclide plumes in saturated, fractured rocks. Three sites, Idaho National laboratory, Hanford, and Oak Ridge are discussed in detail. Results of a modeling study are also presented showing that the length to width ratio of a plume starting within the repository footprint at the Yucca Mountain Project site, decreases from about 20:1 for the base case to about 4:1 for a higher value of transverse dispersivity, indicating enhanced lateral spreading of the plume. Due to the definition of regulatory requirements, this lateral spreading does not directly impact breakthrough curves at the 18 km compliance boundary, however it increases the potential that a plume will encounter reducing conditions, thus significantly retarding the transport of sorbing radionuclides.

S. Kelkar; R. Roback; B. Robinson; G. Srinivasan; C. Jones; P. Reimus

2006-02-14T23:59:59.000Z

160

Sandia National Laboratories: National Security Missions: Defense...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cybersecurity Delivering experience & expertise Training the next generation of cyber defenders Cybersecurity computing Defending national security Applying science and engineering...

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Argonne's National Security Information Systems National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Security National Security Information Systems National Security The NSIS team has worked with various government agencies and programs over the past 15 years to create customized technological solutions that meet specific needs, while also fulfilling national security objectives, improving efficiency and reducing costs. Applying a broad range of expertise and experience, the Argonne team develops both unclassified and classified information technology (IT) systems for national security and nonproliferation programs, with a focus on security operations, international treaty implementation, export control and law enforcement support. Some examples of NSIS-developed systems include:  Electronic Facility Clearance (e-FCL) System for the U.S. Department of Defense (DOD)

162

National Science Bowl Finals  

ScienceCinema (OSTI)

National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

None

2010-09-01T23:59:59.000Z

163

Sandia National Laboratories: Photovoltaics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

164

Sandia National Laboratories: PV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

165

Sandia National Laboratories: Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

166

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

167

Sandia National Laboratories: ACEC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ACEC Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar...

168

Chemist, Sandia National Laboratories | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Chemist, Sandia National Laboratories | National Nuclear Security Chemist, Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Jerilyn Timlin Chemist, Sandia National Laboratories Jerilyn Timlin Jerilyn Timlin Role: Chemist, Sandia National Laboratories Award: National Institutes of Health (NIH) New Innovator Award

169

Instability of Oceanic Volcanic Edifices: Examples of Sector Collapse, Debris Avalanches, and Debris Flows from Gran Canaria (Canary Islands)  

Science Journals Connector (OSTI)

We review different types of mass transfer (landslides, debris avalanches, debris flows, turbidites) generated throughout the evolution of a long-lived volcanic island (Gran Canaria) from its emergence at ca. 16 ...

Hans-Ulrich Schmincke; Mari Sumita

2014-01-01T23:59:59.000Z

170

Geotechnical Features of the Volcanic Rocks Related to the Arteara Rock Avalanche in Gran Canaria (Canary Islands, Spain)  

Science Journals Connector (OSTI)

The Arteara rock avalanche is developed in the Fataga Group which is related to the first volcanic stage in the Gran Canaria Island (8.613.3 Ma)....

Martn Jess Rodrguez-Peces; Jorge Yepes Temio

2013-01-01T23:59:59.000Z

171

Mapping of volcanic apron and the upper crust between Gran Canaria and Tenerife (Canary Islands) with seismic reflection profiling  

Science Journals Connector (OSTI)

During the Volcanic Island Clastic Apron Project (VICAP), south of the Canary Islands, a total of 700 line-km multichannel seismic profiles were acquired. Two prominent reflectors (A and C) were observed alter...

A. Geisslinger; H. B. Hirschleber; M. Schnaubelt; J. J. Daobeitia

1996-01-01T23:59:59.000Z

172

The channel between Gran Canaria and Tenerife: constructive processes and destructive events during the evolution of volcanic islands  

Science Journals Connector (OSTI)

Seismic, sidescan sonar, bathymetric multibeam and ODP (Ocean Drilling Program) data obtained in the submarine channel between the volcanic islands of Gran Canaria and Tenerife allow to identify constructive feat...

Sebastian Krastel; Hans-Ulrich Schmincke

2002-08-01T23:59:59.000Z

173

A Preparation Zone For Volcanic Explosions Beneath Naka-Dake Crater, Aso  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » A Preparation Zone For Volcanic Explosions Beneath Naka-Dake Crater, Aso Volcano, As Inferred From Magnetotelluric Surveys Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Preparation Zone For Volcanic Explosions Beneath Naka-Dake Crater, Aso Volcano, As Inferred From Magnetotelluric Surveys Details Activities (0) Areas (0) Regions (0) Abstract: The 1st crater of Naka-dake, Aso volcano, is one of the most active craters in Japan, and known to have a characteristic cycle of activity that consists of the formation of a crater lake, drying-up of the

174

Ground Gravity Survey At San Francisco Volcanic Field Area (Warpinski, Et  

Open Energy Info (EERE)

4) 4) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Exploration Activity Details Location San Francisco Volcanic Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration data, geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify potential drilling targets and sites. Further work may occur in 2004 or 2005. References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects

175

Field Mapping At San Francisco Volcanic Field Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

4) 4) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Exploration Activity Details Location San Francisco Volcanic Field Area Exploration Technique Field Mapping Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration data, geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify potential drilling targets and sites. Further work may occur in 2004 or 2005. References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects

176

Weathering and genesis of volcanic ash-influenced vertisols and vertic-like soils of El Salvador  

E-Print Network [OSTI]

weathered Vertisol. Many studies have been done on the clay mineralogy of volcanic ash-derived soils. These soils have considerable amounts of amorphous materials in the clay fraction resulting in properties different from other mineral soils. Literature... on the mineralogy of Vertisols derived from or influenced by pyroclastic deposits, however, remain sparse. The mineralogical composition of volcanic ash depends on the conditions existing at the time of eruptions, the stage of soil 13 formation, the thickness...

Yerima, Bernard Palmer Kfuban

1983-01-01T23:59:59.000Z

177

The Lathrop Wells volcanic center: Status of field and geochronology studies  

SciTech Connect (OSTI)

The purpose of this paper is to describe the status of field and geochronology studies of the Lathrop Wells volcanic center. Our perspective is that it is critical to assess all possible methods for obtaining cross-checking data to resolve chronology and field problems. It is equally important to consider application of the range of chronology methods available in Quaternary geologic research. Such an approach seeks to increase the confidence in data interpretations through obtaining convergence among separate isotopic, radiogenic, and age-correlated methods. Finally, the assumptions, strengths, and weaknesses of each dating method need to be carefully described to facilitate an impartial evaluation of results. The paper is divided into two parts. The first part describes the status of continuing field studies for the volcanic center for this area south of Yucca Mountain, Nevada. The second part presents an overview of the preliminary results of ongoing chronology studies and their constraints on the age and stratigraphy of the Lathrop Wells volcanic center. Along with the chronology data, the assumptions, strengths, and limitations of each methods are discussed.

Crowe, B.; Morley, R. [Los Alamos National Laboratory, Las Vegas, NV (United States); Wells, S. [California Univ., Riverside, CA (United States); Geissman, J.; McDonald, E.; McFadden, L.; Perry, F. [New Mexico Univ., Albuquerque, NM (United States); Murrell, M.; Poths, J. [Los Alamos National Lab., NM (United States); Forman, S. [Ohio State Univ., Columbus, OH (United States)

1992-03-01T23:59:59.000Z

178

Comparative analysis of core drilling and rotary drilling in volcanic terrane  

SciTech Connect (OSTI)

Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr. (ed.)

1987-04-01T23:59:59.000Z

179

First National Technology Center  

Broader source: Energy.gov [DOE]

Speaker presentation prepared by Dennis Hughes, a lead property manager with First National Buildings Inc.

180

Recent News from the National Labs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

11, 2012 11, 2012 Breakthrough: MFiX: Building Industry-Scale Machines in a Virtual World This powerful virtual modeling software is making huge strides in energy efficiency in coal gasification processes, and also predicting volcanic eruptions. July 6, 2012 More than 200 Fermilab researchers and staffers crowded into an auditorium at 2 a.m. EDT July 4 and waited for the latest announcement regarding the Higgs boson. When CERN Director-General Rolf-Dieter Heuer said the words - "I think we have it" - the Fermilab crowd erupted into applause. Fermi National Accelerator Laboratory and Brookhaven National Laboratory are the host laboratories for the U.S. contingents of the Large Hadron Collider (LHC) experiments that found the Higgs boson-like particle. They and researchers from Argonne National Laboratory, Lawrence Berkeley National Laboratory and SLAC National Accelerator Laboratory are among the 1,700 scientists, engineers, technicians and graduate students from the United States that helped design, build and operate the LHC accelerator and particle detectors, and analyze the data from the collisions. Read the story: The Last Piece of the Puzzle: Celebrating the Higgs Boson | Photo courtesy of Fermilab

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cognitive Informatics, Pacific Northwest National Laboratory | National  

National Nuclear Security Administration (NNSA)

Cognitive Informatics, Pacific Northwest National Laboratory | National Cognitive Informatics, Pacific Northwest National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Frank Greitzer Cognitive Informatics, Pacific Northwest National Laboratory Frank Greitzer Frank Greitzer Role: Cognitive Informatics, Pacific Northwest National Laboratory

182

Lawrence Livermore National Laboratory | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Home > About Us > Our Operations > Acquisition and Project Management > M & O Support Department > Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory DE-AC52-07NA27344 Operated by Lawrence Livermore National Security, LLC BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Unofficial) LLNL Sec A (SF33) (pdf, 91KB) See Modifications Section under Conformed Contract Link LLNS Conformed Contract (weblink) LLNL Sec B-H (pdf, 306KB) LLNL Sec I pdf 687KB LLNL Sec J Appx A (pdf, 67KB) LLNL Sec J Appx B (pdf, 191KB) LLNL Sec J Appx C (pdf, 11KB) LLNL Sec J Appx D (pdf, 18KB)

183

Argonne National Laboratory | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne National Laboratory Fighting friction Graphene offers dramatic improvement over conventional mechanical lubricants Read More Forecasting supply Researchers use real-world...

184

Sandia National Laboratories: National Security Missions: Internationa...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Global Security casks We reduce proliferation and terrorism threats to U.S. national security through global technical engagement. Enhance security of vulnerable nuclear weapons...

185

Sandia National Laboratories: Jawaharlal Nehru Solar National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jawaharlal Nehru Solar National Solar Energy Mission Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power,...

186

Sandia National Laboratories: National Rotor Testbed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Rotor Testbed (NRT) includes research to quantify the degree to which the blade design load distribution influences the rotor near- and mid-wake velocity deficits and...

187

Sandia National Laboratories: National Security Missions: Nuclear...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Technology National labs provide the science and technology to maintain and certify the nuclear stockpile in the absence of full-scale weapons testing. The facilities and...

188

Sandia National Laboratories: National Rotor Testbed Functional...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

"Definition of the National Rotor Testbed: An Aeroelastically Relevant Research-Scale Wind Turbine Rotor." Approximately 60 researchers from various institutions and countries...

189

Sandia National Laboratories: Idaho National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Idaho National Laboratory Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks On February 26, 2013, in Biofuels,...

190

Fluvial dissection, isostatic uplift, and geomorphological evolution of volcanic islands (Gran Canaria, Canary Islands, Spain)  

Science Journals Connector (OSTI)

Digital analysis of torrential gullies (barrancos) deeply incised into the volcanic Island of Gran Canaria (Canary Islands) allows us to extract the longitudinal profiles and pre-incision surfaces for individual basins, from which morphometric parameters (length, elevation, area, slope) have been calculated. Other derived parameters, such as ridgeline profiles, maximum incision values, volume removed by fluvial erosion, geophysical relief and isostatic uplift, have also been computed. Based on K/Ar ages for the island, well-constrained incision-uplift rates have been calculated by means of the combination of different methodological approaches commonly used in orogens and large mountain ranges. The geomorphological and morphometric analyses reveal that the island is clearly divided into four environmental quadrants determined by the combination of a couple of key-factors: the age of the volcanic surfaces and the climatic conditions. These factors determine a young sector covered with Plio-Quaternary platform-forming lavas (finished at 1.91.5Ma) evolving under contrasting wet (NE) to dry (SE) climates, and an older sector, conserving the residual surfaces of the Miocene shield building (14.58.7Ma) at the ridgelines, also subjected to wet (NW) and dry (SW) climates. Incision is related to the age zonation of the island. Maximum incisions (Gran Canaria. Additional sources of uplift, such as gravitational unloading, lithospheric flexure induced by adjacent islands, and/or volcanic underplating, are required. The theoretical onset of lithospheric bulging beneath Gran Canaria, as exerted by Tenerife, promoted a broad westwards tilting of the former from 3.83.5Ma ago. This overall tilting accelerated fluvial incision, erosional unloading, and, therefore, the sustained differential uplift on the Eastern slope of the island over its last erosional stage. Considering mean uplift rates for the East and West sectors, Eastern values (0.024mm/yr) are double than those in the West (0.011mm/yr), supporting the role of lithospheric flexure of adjacent islands as an additional source of uplift. Complex feedback between fluvial unloading, differential uplift, orographic effect, lithospheric flexure, and volcanic underplating, seems to control the geomorphological development of hot-spot volcanic islands, after the gravitational collapse of stratovolcanos during their rejuvenation stage.

Inmaculada Menndez; Pablo G. Silva; Moises Martn-Betancor; Francisco Jos Prez-Torrado; Herv Guillou; S. Scaillet

2008-01-01T23:59:59.000Z

191

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES  

E-Print Network [OSTI]

River Inter-Tribal Fish Commission, the National Research Council's Board on Environmental Studies Board (ISAB) and Independent Scientific Review Panel (ISRP). To help evaluate potential nominees, Dr. David Policansky of the National Research Council's Board on Environmental Studies and Toxicology sought

192

Du volcan au sdiment: la dynamique du talus volcanoclastique sous-marin de Gran Canaria, canaries (Atlantique oriental, Leg ODP 157)  

Science Journals Connector (OSTI)

Four sites have been drilled in the submarine volcaniclastic apron of the volcanic island of Gran Canaria during the ODP Leg 157. The volcaniclastic submarine apron reflects the volcanological evolution of the island. The main volcanic phases are recorded in the sedimentation by an important contemporaneous clastic influx on the apron. However, periods of volcanic quiescence are characterized by very weak sedimentation rates. Consequently, it is possible to establish a volcanostratigraphy from the sedimentary record of the apron.

Jean-Luc Schneider; Martine Grard; Hans-Ulrich Schmincke; Philip P.E. Weaver; John Firth; Jesus Baraza; James F. Bristow; Charlotte Brunner; Steven N. Carey; Bernard Coakley; Michael Fuller; Thomas Funck; Patrick Goldstrand; Bernhart Herr; Julie Hood; Richard Howe; Ian Jarvis; Susana Lebreiro; Sten Lindblom; Holger Lykke-Andersen; Rosanna Maniscalco; Guy Rothwell; Joanne Sblendorio-Levy; Mari Sumita; Hidetsugu Taniguchi; Penny Tu; Paul Wallace

1997-01-01T23:59:59.000Z

193

Nonproliferation and National Security Multimedia - Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nonproliferation and National Security Nonproliferation and National Security > Multimedia Multimedia Nuclear Systems Analysis Engineering Analysis Nonproliferation and National Security Detection & Diagnostic Systems Engineering Development & Applications Argonne's Nuclear Science & Technology Legacy Other Multimedia Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Bookmark and Share Nonproliferation and National Security: Multimedia Related Resources Nonproliferation and National Security Vulnerability Assessment Team (VAT) Click on the "Date" header to sort the videos/podcasts in chronological order (ascending or descending). You may also search for a specific keyword; click on the reset button refresh to remove the keyword filter and show again all the Videos/Podcasts.

194

Sandia National Laboratories | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Sandia National Laboratories Sandia National Laboratories Home > About Us > Our Operations > Acquisition and Project Management > M & O Support Department > Sandia National Laboratories Sandia National Laboratories Sandia National Laboratories DE-AC04-94AL85000 Operated by Sandia Corporation a Subsidiary of Lockheed Martin Corporation Contract Updated to Modification 515 dated 09/09/2013 View previous Sandia Contract and Mods (M081-A201). BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Updated to Mod 515 dated 09/09/2013) (Unofficial) SNL M202 Section A (Supersedes Basic and all Mods) (pdf, 397KB) SNL M216 (9/15/04) (pdf, 439KB) SNL M202 SecA (Supersedes Basic and all Mods) (pdf, 397KB) SNL Sec B-H (doc, 314KB) SNL M218

195

Origin and formation of neck in a basin landform: Examples from the Camargo volcanic field, Chihuahua (Mxico)  

Science Journals Connector (OSTI)

The term neck in a basin (NIB) landform is proposed for volcanic structures characterized by nearly circular to elliptical open basins, located near the headwater of small streams or drainages, which contain small volcanic necks and/or erosion remnants of one (or more) cinder cones. NIB landforms are typically 400-1000m in diameter and 30-100m deep and are invariably surrounded by steep walls cut into one or more basaltic lava flows. NIB landforms lack evidence for a primary volcanogenic origin through either collapse or youthful eruptive activity. In the Pliocene portion (4 2Ma) of the Plio-Quaternary Camargo volcanic field of Chihuahua (Mxico), they are relatively numerous and are best developed at the margins of a gently sloping (3-5) basaltic lava plateau and near major fault scarps. Mature NIB landforms have ring-like circular drainage patterns and central elevations marked by small volcanic necks and associated radial dikes intruded into basaltic scoria-fall and /or agglutinate deposits. We interpret NIB landforms to be erosional in origin. They develop where a cinder cone is surrounded by one or more sheet-like lava flows from one or more separate subsequent vents. Once eruptive activity ceases at the younger volcano(es), fluvial erosion gradually produces a ring-like drainage pattern along the contact between the lava and the older cinder cone. As a response to a marked contrast in resistance to erosion between lava flows and unconsolidated or poorly lithified pyroclastic deposits, the older cinder cone is preferentially eroded. In this manner, a ring-shaped, steep sided erosional basin, preformed by the scoria cone, is produced; eventually fluvial erosion exposes the central neck and dikes. The volume, relief, and age of the volcanic field are key factors in the formation and preservation of a NIB landform. They form in volcanic fields where lava emissions are sufficiently vigorous to engulf earlier cinder cones. Relief and associated high rates of fluvial erosion play an important role in NIB development, as demonstrated by their locations in the Camargo volcanic field. Fully developed NIB landforms are not found in Quaternary volcanic fields, probably because erosion has not had sufficient time to generate their characteristics features. NIB landforms are also absent in Miocene fields, because erosion has proceeded too far, and thus has completely removed any NIB landform that may once have existed. The Camargo volcanic field is the only major area of Pliocene intraplate eruptive activity in northern Mxico, and the only place where NIB landforms are relatively abundant.

Jos Jorge Aranda-Gmez; Todd B. Housh; James F. Luhr; Cristina Noyola-Medrano; Marco Antonio Rojas-Beltrn

2010-01-01T23:59:59.000Z

196

SANDIA NATIONAL LABORATORIES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impacts on Sandia and the Nation Impacts on Sandia and the Nation 2 SANDIA NATIONAL LABORATORIES 3 LDRD Impacts on Sandia and the Nation For further information, contact: Wendy R. Cieslak Senior Manager, Science, Technology, and Engineering Strategic Initiatives wrciesl@sandia.gov (505) 844-8633 or Henry R. Westrich LDRD Program Manager hrwestr@sandia.gov 505-844-9092 LDRD Impacts on Sandia and the Nation ABOUT THE COVER: Images from some of the case studies in this brochure: a near-UV light- emitting diode (LED), a cell membrane, a NISAC model, synthetic aperture radar (SAR) image of Washington, D.C. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT 4 SANDIA NATIONAL LABORATORIES 5 LDRD Impacts on Sandia and the Nation Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) Program:

197

Argonne National Laboratory  

Broader source: Energy.gov [DOE]

Argonne is a multidisciplinary science and engineering research center, where dream teams of world-class researchers work alongside experts from industry, academia and other government laboratories to address vital national challenges in clean energy, environment, technology and national security.

198

Sandia National Laboratories: Photovoltaic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microelectronic Photovoltaics On June 13, 2012, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar Sandia National Laboratories semiconductor engineer...

199

Energy and national values  

Science Journals Connector (OSTI)

Energy and national values ... The article also scrutinizes recent technical developments in coal, nuclear energy, and solar energy. ...

MICHAEL HEYLIN

1991-06-17T23:59:59.000Z

200

Sandia National Laboratories: photovoltaic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure Infrastructure Security National Solar Thermal Test Facility NSTTF photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar...

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

National Hydropower Map  

Broader source: Energy.gov [DOE]

High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

202

TECTONIC VERSUS VOLCANIC ORIGIN OF THE SUMMIT DEPRESSION AT MEDICINE LAKE VOLCANO, CALIFORNIA  

SciTech Connect (OSTI)

Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and Range extension. Interaction of dextral shear, Basin and Range extension, and the zone of crustal weakness expressed as the Mount Shasta-Medicine Lake volcanic highland controlled the location and initiation of Medicine Lake Volcano at about 500 ka.

Mark Leon Gwynn

2010-05-01T23:59:59.000Z

203

Tectonic versus volcanic origin of the summit depression at Medicine Lake Volcano, California  

SciTech Connect (OSTI)

Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and Range extension. Interaction of dextral shear, Basin and Range extension, and the zone of crustal weakness expressed as the Mount Shasta-Medicine Lake volcanic highland controlled the location and initiation of Medicine Lake Volcano at about 500 ka.

Mark Leon Gwynn

2010-05-01T23:59:59.000Z

204

Volcanic ash in feed coal and its influence on coal combustion products  

SciTech Connect (OSTI)

The US Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana Utility to determine the physical and chemical properties of feed coal and coal combustion products (CCPs) from a coal-fired power plant. The plant utilizes a low-sulfur (.23--.47 weight percent S) coal from the Powder River Basin, Wyoming. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis of feed coal samples identified two mineral suites. A primary suite (not authigenic) consisting of quartz (detrital and volcanic beta-form grains), biotite, and minor zircon and a secondary authigenic mineral suite containing calcite, alumino-phosphates (crandallite and gorceixite), kaolinite, quartz, anatase, barite, and pyrite. The authigenic minerals are attributed to air-fall and reworked volcanic ash that was deposited in peat-forming mires. The Powder River Basin feed coals contain higher amounts of Ba, Ca, Mg, Na, Sr, and P compared to other analyzed eastern coals. These elements are associated with alumino-phosphate, biotite, calcite, and clay minerals. The element associations are indicative of coal that incorporated volcanic ash during deposition. XRD analysis of CCPs revealed a predominance of glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals in the fly ash; and quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite in the bottom ash. Microprobe and SEM analysis of fly ash samples revealed quartz, zircon, monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, and rounded grains of wollastonite with periclase. The abundant Ca and Mg mineral phases in the fly ashes are related to the presence of carbonate, clay, and phosphate minerals in the feed coal. The Ca- and Mg-rich mineral phases in the CCPs can be attributed to volcanic minerals deposited in the peat-forming mire. Dissolution and alteration of these minerals occurred either in the peat-forming sate or during coalification/diagenesis contributing to the authigenic mineral suite. Additionally, detrital mineral input and epigenetic ground-water flow may have affected the geochemistry of the feed coal.

Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Brownfield, I.K.; Hower, J.C.; Stricker, G.D.; O'Connor, J.T.

2000-07-01T23:59:59.000Z

205

Engineer, Sandia National Laboratories | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Sandra Begay-Campbell Sandra Begay-Campbell Engineer, Sandia National Laboratories Sandra Begay-Campbell Sandra Begay-Campbell Role: Engineer, Sandia National Laboratories Award: Ely S. Parker Award Profile: Sandra Begay-Campbell, a Sandia National Laboratories engineer and a member of the Navajo Nation, was selected for the prestigious Ely S. Parker Award by the American Indian Science and Engineering Society at an honors banquet Oct. 31 in Portland, Ore. Begay-Campbell, who has worked at Sandia for 17 years and is a principal member of the technical staff, received the Lifetime Achievement Award, AISES's highest honor, which recognizes American Indians who have "made significant long-term contributions in the sciences, mathematics, engineering, technology, health, or related fields."

206

Leadership | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Message from the Director Board of Governors Organization Chart Argonne Distinguished Fellows Emeritus Scientists & Engineers History Discoveries Prime Contract Contact Us Leadership Argonne integrates world-class science, engineering, and user facilities to deliver innovative research and technologies. We create new knowledge that addresses the scientific and societal needs of our nation. Eric D. Isaacs Eric D. Isaacs, Director, Argonne National Laboratory Director, Argonne National Laboratory Argonne National Laboratory Eric D. Isaacs, a prominent University of Chicago physicist, is President of UChicago Argonne, LLC, and Director of Argonne National Laboratory. Mark Peters Mark Peters, Deputy Lab Director for Programs Deputy Laboratory Director for Programs

207

National Transmission Grid Study  

Broader source: Energy.gov (indexed) [DOE]

Grid Study Grid Study U.S. Department of Energy The Honorable Spencer Abraham Secretary of Energy May 2002 ii National Transmission Grid Study National Transmission Grid Study i ii National Transmission Grid Study National Transmission Grid Study iii How This Study Was Conducted The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE's Policy Office Electricity Modeling System (POEMS). DOE's analysis, presented in Section 2, confirms the central role of the nation's transmission

208

Argonne National Laboratory - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports Reports Argonne National Laboratory Activity Reports 2012 Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility, July 2012 Review Reports 2011 Review of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Readiness Assessment (Implementation Verification Review Sections), November 2011 Nuclear Safety Enforcement Regulatory Assistance Review of UChicago Argonne, LLC at the Argonne National Laboratory, October 3, 2011 Activity Reports 2011 Orientation Visit to the Argonne National Laboratory, August 2011 Review Reports 2005 Independent Oversight Inspection of Environment, Safety and Health Programs at Argonne National Laboratory, Summary Report, Vol. 1, May, 2005 Independent Oversight Inspection of Environment, Safety, and Health Programs at the Argonne National Laboratory, Technical Appendices, Volume II, May 2005

209

Detecting volcanic resurfacing of heavily cratered terrain: Flooding simulations on the Moon using Lunar Orbiter Laser Altimeter (LOLA) data  

Science Journals Connector (OSTI)

Abstract Early extrusive volcanism from mantle melting marks the transition from primary to secondary crust formation. Detection of secondary crust is often obscured by the high impact flux early in solar system history. To recognize the relationship between heavily cratered terrain and volcanic resurfacing, this study documents how volcanic resurfacing alters the impact cratering record and models the thickness, area, and volume of volcanic flood deposits. Lunar Orbiter Laser Altimeter (LOLA) data are used to analyze three different regions of the lunar highlands: the Hertzsprung basin; a farside heavily cratered region; and the central highlands. Lunar mare emplacement style is assumed to be similar to that of terrestrial flood basalts, involving large volumes of material extruded from dike-fed fissures over relatively short periods of time. Thus, each region was flooded at 0.5km elevation intervals to simulate such volcanic flooding and to assess areal patterns, thickness, volumes, and emplacement history. These simulations show three primary stages of volcanic flooding: (1) Initial flooding is largely confined to individual craters and deposits are thick and localized; (2) basalt flows breach crater rim crests and are emplaced laterally between larger craters as thin widespread deposits; and (3) lateral spreading decreases in response to regional topographic variations and the deposits thicken and bury intermediate-sized and larger craters. Application of these techniques to the South Pole-Aitken basin shows that emplacement of ?1?2km of cryptomaria can potentially explain the paucity of craters 2064km in diameter on the floor of the basin relative to the distribution in the surrounding highlands.

Jennifer L. Whitten; James W. Head III

2013-01-01T23:59:59.000Z

210

Sandia National Laboratories | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Kevin Eklund Kevin Eklund Sandia National Laboratories Kevin Eklund Kevin Eklund Role: Sandia National Laboratories Profile: Two individuals and nine teams received the NNSA Defense Programs Awards of Excellence at ceremonies this year at Sandia National Laboratories in New Mexico and California. The NNSA Defense Programs Awards of Excellence were created in the early 1980s to give special recognition to those at the laboratories and plants directly associated with the stockpile modernization program. Today, the awards honor exceptional contributions to the stewardship and management of the stockpile. Kevin Eklund is recognized for outstanding technical leadership of Sandia's responsibilities in successfully achieving the B61 ALT 357 Life Extension Program (LEP). Kevin led the majority of the qualification testing for the

211

Researcher, Lawrence Livermore National Laboratory | National Nuclear  

National Nuclear Security Administration (NNSA)

Bruce Macintosh Bruce Macintosh Researcher, Lawrence Livermore National Laboratory Bruce Macintosh Bruce Macintosh Role: Researcher, Lawrence Livermore National Laboratory Award: AAAS Newcomb Cleveland Prize Profile: A Lawrence Livermore National Laboratory researcher's paper published in November 2008 is co-winner of this year's American Association for the Advancement of Science (AAAS) Newcomb Cleveland Prize. The Paper is one of two outstanding papers published in Science from June 1, 2008 through May 31, 2009. Bruce Macintosh of the Physics and Life Science Directorate was one of the lead authors of the paper titled, "Direct Imaging of Multiple Planets orbiting the Star HR 8799," which appeared in the Nov. 28, 2008 edition of Science. Christian Marois, a former LLNL postdoc now at NRC Herzberg

212

National Energy Policy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Energy Policy National Energy Policy Reliable, Affordable, and Environmentally Sound Energy for America's Future Report of the National Energy Policy Development Group "The National Energy Policy released today by President Bush marks an historic first step to addressing long-neglected energy challenges. Given our growing economy and rising standard of living we are faced with an energy crisis. The President's National Energy Plan balances America's supply needs through technology, diversity of supply and conservation and paves the way for America's energy future." -- Secretary of Energy, Spencer Abraham Complete Report of the National Energy Policy Development Group [PDF-2500KB] By individual chapter: Foreword [PDF-224KB] Overview [PDF-142KB] Chapter 1 - Taking Stock [PDF-1070KB]

213

National Security Science Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Security Science » National Security Science » NSS Archive National Security Science magazine Latest Issue:April 2013 All Issues » submit National Security Science Archive Using its broad and unique scientific and engineering capabilities, the Laboratory solves a diverse set of challenges to national and global security and the weapons programs. National Security Science magazine showcases the breadth and depth of the Laboratory's scientific and technical work to policy makers, the general public, academia, and scientific and technical experts. past issues cover Issue 2 2012 interactive | web | pdf past issues cover Issue 1 2012 interactive | web | pdf past issues cover Issue 3 2011 web | pdf past issues cover Issue 2 2011 web | pdf past issues cover Issue 1 2011 web | pdf past issues cover

214

National Nuclear Security Administration  

Broader source: Energy.gov (indexed) [DOE]

National Nuclear Security Administration Finding of No Significant Impact for the Construction and Operation of a New Office Building and Related Structures within TA-3 at Los Alamos National Laboratory, Los Alamos, New Mexico U. S. Department of Energy National Nuclear Security Administration Los Alamos Area Office 528 35th Street Los Alamos, N M 8 7 5 4 4 DEPARTMENT OF ENERGY. NATIONAL NUCLEAR SECUIRTY ADMINISTRATION FINDING OF NO SIGNIFICANT INIPACT Construction and Operation of a New Office Building and Related Structures withinTA-3 at Los Alarnos National Laboratory, Los Alamos. New Mexico FINAL ENVIRONMENTAL ASSESSMENT: The Environmental Assessment (EA) for Construction and Operation of a New Office Building and Related Structures within TA-3 at L os Alamos National Laboratory, Los Alamos, New Mexico (DOE/EA- 7 375)

215

National Nuclear Security Administration  

Broader source: Energy.gov (indexed) [DOE]

AI~W~~l AI~W~~l 11Vl'~~4 National Nuclear Security Administration Department of Energy National Nuclear Security Administration Nevada Site Office P.O. Box 98518 Las Vegas, NV 89193-8518 JAN! 8 2013 Gregory H. Woods, General Counsel, DOE/HQ (GC-1) FORS NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE (NNSA/NSO) NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) ANNUAL SUMMARY In accordance with DOE Order 451.1B, National Environmental Policy Act Compliance Program, NNSA/NSO is submitting the enclosed Annual NEP A Planning Summary. The document provides a brief description of ongoing and planned NEP A actions for calendar year 2013. This summary provides information for completion of the Site- Wide Environmental Impact Statement for the Nevada National Security Site and Off-Site Locations in the State of Nevada.

216

National Nuclear Security Administration  

Broader source: Energy.gov (indexed) [DOE]

National Nuclear Security Administration National Nuclear Security Administration Ofice of Secure Transportation mKlK= Box RQMM= ^luquerqueI= kj= UTNUR= ;JAN 03 213 MEMORANDUM FOR GREGORY eK= WOODS GENERAL COUNSEL DEPARTMENT OF ENERGY FROM: SUBJECT: JEFFREY P. HARREL ASSIST ANT DEPU FOR SECURE 2013 ANNUAL PLANNING SUMMARY In response to your memorandum of December TI= 2012, the following information is provided for the National Nuclear Security Administration Ofice of Secure

217

Pesticides and amphibian declines in the Sierra Nevada Mountains, California  

E-Print Network [OSTI]

Pacific chorus frog (Pseudacris regilla) hatchlings were translocated and placed in cages in sites (~2,200 m elevation) located in Lassen, Yosemite, and Sequoia National Parks. DDE was found in 97% of Yosemite National Park samples, 84% in Sequoia...

Cowman, Deborah Fay

2007-04-25T23:59:59.000Z

218

National Nanotechnology Initiative  

Office of Science (SC) Website

National National Nanotechnology Initiative (NNI) Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Nanomaterials ES&H Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » Research National Nanotechnology Initiative (NNI)

219

A National Resource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Resource National Resource for Industry Manufacturing DeMonstration facility As the nation's premier research laboratory, Oak Ridge National Laboratory is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. These industries call upon ORNL's expertise in materials synthesis, characterization, and process technology to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing processes and materials targeting products of the future. The Department of Energy's first Manufacturing Demonstration Facility (MDF), established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy and

220

National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

i. i. Message from the Administrator President Obama has reshaped our national security priorities making enterprise infrastructure modernization with integrated Information Technology (IT) capabilities a key strategic initiative. Our IT infrastructure must ensure that our workforce can access appropriate information in a secure, reliable, and cost-effective manner. Effective information sharing throughout the government enhances the national security of the United States (US). For the National Nuclear Security Administration (NNSA), effective information sharing helps strengthen our nuclear security mission; builds collaborative networks within NNSA as well as with the Department of Energy (DOE), Department of Defense (DoD), and other national security

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Sandia National Laboratories: TCES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TCES Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

222

Sandia National Laboratories: NSTTF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NSTTF Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

223

Procurement | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Video "Doing business with Argonne and Fermi national labs" - Aug. 21, 2013 Procurement Argonne spends approximately 300,000,000 annually through procurements to a diverse group...

224

Procurement | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Procurement More than 150 attend second joint Argonne-Fermilab small business fairSeptember 2, 2014 On Thursday, Aug. 28, Illinois' two national laboratories - Argonne and Fermi...

225

News | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News Argonne Laboratory Director Peter Littlewood (left) talks with a small business owner during the second annual "Doing Business with Argonne and Fermi National Laboratories"...

226

Materials | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

today New high-tech materials are the key to breakthroughs in biology, the environment, nuclear energy, transportation and national security. Argonne continues to make...

227

National RES Las Vegas  

Broader source: Energy.gov [DOE]

RES Las Vegas is another multifaceted event from The National Center which will feature unparalleled access to respected tribal leaders, members of congress, federal agency representatives, state...

228

National Laboratory Liaisons  

Broader source: Energy.gov [DOE]

The following U.S. Department of Energy national laboratory liaisons serve as primary contacts for the Federal Energy Management Program.

229

National Geothermal Student Competition  

Broader source: Energy.gov [DOE]

The EnergyDepartment's National Geothermal Student Competition (GSC) seeks students interested in building and showcasing scientific research, communication and leadership skills to convey the...

230

Sandia National Laboratories: Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

231

Sandia National Laboratories: PWR  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PWR Pratt Whitney Rocketdyne Testing On December 19, 2012, in Concentrating Solar Power, EC, Energy, Facilities, National Solar Thermal Test Facility, News, News & Events,...

232

Sandia National Laboratories: Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

233

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

234

National Cybersecurity Awareness Month  

Broader source: Energy.gov (indexed) [DOE]

National Cybersecurity Awareness Month (NCSAM) October 2013 Every October, the Department of Energy joins the Department of Homeland Security (DHS) and others across the country...

235

Sandia National Laboratories: Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyBiomass Biomass Sandia spearheads research into energy alternatives that will help the nation reduce its dependence on fossil fuels and to combat the effects of climate...

236

Sandia National Laboratories: Climate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geoscience, Climate and Consequence Effect at Sandia National Laboratories presented on "Hydraulic Fracturing: Role of Government-Sponsored R&D." Marianne's presentation was part...

237

Sandia National Laboratories: Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geoscience, Climate and Consequence Effect at Sandia National Laboratories presented on "Hydraulic Fracturing: Role of Government-Sponsored R&D." Marianne's presentation was part...

238

National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

University of California Extend Management Contracts For Defense Labs The Department of Energy (DOE), the National Nuclear Security Administration (NNSA) and the University of...

239

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

240

Sandia National Laboratories: MSTL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thanks to their significant collaboration, AREVA's solar team and Sandia's ... Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in...

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sandia National Laboratories: Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This public benchmark represents analysis ... A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

242

Sandia National Laboratories: NRT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Rotor Testbed (NRT) includes research to quantify the degree to which the blade design load distribution influences the rotor near- and mid-wake velocity deficits and...

243

National Day of Remembrance  

SciTech Connect (OSTI)

Ames Laboratory observed the National Day of Remembrance for weapons workers from the Cold War era with a ceremony held Oct. 27, 2009 at the Ames Public Library.

None

2010-01-01T23:59:59.000Z

244

Idaho National Laboratory Newsroom  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

list of common INL acronyms and abbreviations. Page Contact Information: Nicole Stricker (208) 526-5955 Email Contact Feature Story Counting the ways Idaho National...

245

National Laboratory Photovoltaics Research  

Broader source: Energy.gov [DOE]

DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

246

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2010; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" "...

247

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" "...

248

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" "...

249

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2002; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" "...

250

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit:...

251

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

0.5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy...

252

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit:...

253

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy...

254

National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

the Earth's Surface. The second virtual classroom to the student was presented by Tommy Smith from Lawrence Livermore National Laboratory on various sources of energy, its use and...

255

Discoveries | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nation's pressing scientific and technological challenges. Robert Fischetti and Janet Smith developed the first micro X-ray beam for structural biology at Argonne's Advanced...

256

National Day of Remembrance  

ScienceCinema (OSTI)

Ames Laboratory observed the National Day of Remembrance for weapons workers from the Cold War era with a ceremony held Oct. 27, 2009 at the Ames Public Library.

None

2013-03-01T23:59:59.000Z

257

National Hydrogen Learning Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC v8 National Renewable Energy Laboratory 2 Innovation for...

258

Sandia National Laboratories: Photovoltaics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

device technology, and advanced PV systems analysis. Learn More Grid Integration The Grid Integration Program at Sandia National Laboratories addresses technical barriers to...

259

ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA  

SciTech Connect (OSTI)

The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to the TSPA, which uses the ASHPLUME software described and used in this model report. Thus, ASHPLUME software inputs are inputs to this model report for ASHPLUME runs in this model report. However, ASHPLUME software inputs are outputs of this model report for ASHPLUME runs by TSPA.

C. Harrington

2004-10-25T23:59:59.000Z

260

NAME M/YEAR MASTERS THESES TITLES SCOPEL, ROBERT B Jun49 The Volcanic History of Jackson Hole, Wyoming  

E-Print Network [OSTI]

, Park County, Wyoming GOSSER, CHARLES F. Jun60 Petrography and Metamorphism of the Star Lake Area of the Keewatin Province, Ontario RUBEL, DANIEL N Apr59 Tertiary volcanic rocks of the Cooke city - pilot peak, Montana BRUEHL, DONALD H. Jun61 The Petrography and Structure of an area North of Cooke City, Montana #12

Baskaran, Mark

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Lithospheric response to volcanic loading by the Canary Islands: constraints from seismic reflection data in their flexural moat  

E-Print Network [OSTI]

Lithospheric response to volcanic loading by the Canary Islands: constraints from seismic reflection data in their flexural moat J. S. Collier1 and A. B. Watts2 1 Department of Earth Sciences suggesting they are the consequence of sediment loading at the Moroccan continental margin. Units III, IV

Watts, A. B. "Tony"

262

On the origin of graben and ridges within and near volcanically buried craters and basins in Mercury's northern plains  

E-Print Network [OSTI]

in Mercury's northern plains Andrew M. Freed,1 David M. Blair,1 Thomas R. Watters,2 Christian Klimczak,3 Paul volcanic plains taken by the MESSENGER spacecraft reveal a large number of buried impact craters and basins pooled lavas were thickest, and no graben are predicted within generally thinner plains outside of major

Zuber, Maria

263

Improving clay content measurement in oxidic and volcanic ash soils of Hawaii by increasing dispersant concentration and ultrasonic energy levels  

Science Journals Connector (OSTI)

Abstract Quantifying clay content is a fundamental step in predicting and managing soil behaviors such as nutrient and water retention. However, clay measurements are underestimated when using standard methods of dispersion in soils rich in oxides and volcanic ash-derived non-crystalline minerals. Increasing levels of the chemical dispersant and ultrasonic energy are two simple techniques found to increase dispersion and clay measurements in temperate soils, but their effects are less known for oxidic and volcanic ash soils. In this study we investigated the effects of increasing dispersion concentration and ultrasonic energy on clay measurements for a range of oxidic and volcanic ash soils from Hawaii. While doubling and tripling the standard sodium hexametaphosphate concentration of 0.441gL?1 did not increase estimates of clay content, increasing levels of ultrasonic energy up to 1600JmL?1 significantly increased measured clay content for all oxide and volcanic ash soils. The response to ultrasonication was dependent on soil carbon, oxide content, and surface charge, with more energy needed to disperse soils higher in carbon, oxides, and positive charge. Scanning electron microscopy revealed damage to the sand fraction in some soils when ultrasonicated, but the extent of this damage was viewed as negligible. Porous sand-sized particles resembling pumice grains were also observed in some soils, suggesting that conventional particle size analysis and clay interpretations may not adequately describe surface related behaviors.

Joshua H.S. Silva; Jonathan L. Deenik; Russell S. Yost; Gregory L. Bruland; Susan E. Crow

2015-01-01T23:59:59.000Z

264

Crustal structure of the rifted volcanic margins and uplifted plateau of Western Yemen from receiver function analysis  

Science Journals Connector (OSTI)

......Besse J. On causal links between flood basalts and continental breakup. Earth...Ebinger C.J., Baker J., eds. (2002) Boulder, CO. 1-14. Vol 362. Milkereit B...chrono-stratigraphy of pre- and syn-rift bimodal flood volcanism in Ethiopia and Yemen. Earth......

Abdulhakim Ahmed; Christel Tiberi; Sylvie Leroy; Graham W. Stuart; Derek Keir; Jamal Sholan; Khaled Khanbari; Ismael Al-Ganad; Clmence Basuyau

2013-01-01T23:59:59.000Z

265

International Polar Year (IPY) Student Traineeships: Investigation of the impact of western arctic volcanic eruption on weather and climate  

E-Print Network [OSTI]

if the eruptions are not very large. Four aspects of volcanic eruptions on local weather were explored: 1) heat of the four aspects has the greatest impact on local weather during an eruption. Evaluation with observational data was performed to assess whether routine Weather Research and Forecasting (WRF) model data can

Moelders, Nicole

266

ELSEVIER Palaeogeography, Palaeoclimatology, Palaeoecology 152 (1999) 283303 Sedimentary cycles and volcanic ash beds in the Lower Pliocene  

E-Print Network [OSTI]

Abstract A high-resolution cyclostratigraphy for the rhythmically bedded lignite­marl sequences volcanic ash beds. Detailed field reconnaissance in three open-pit lignite mines reveals three end-member sediment types: lignites, composed primarily of organic material; grey marls, a mixture of carbonate

Utrecht, Universiteit

267

Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia  

Science Journals Connector (OSTI)

...volume of the mapped deposit, as well as an estimation (by extrapolation to...history of El Chichon Volcano, Mexico . Geofis Int 48 ( 1 ): 97...volcanics as a heat sources of geothermal prospects fron eastern Lombok...includes counting uncertainty as well as the scatter of standards and...

Franck Lavigne; Jean-Philippe Degeai; Jean-Christophe Komorowski; Sbastien Guillet; Vincent Robert; Pierre Lahitte; Clive Oppenheimer; Markus Stoffel; Cline M. Vidal; Surono; Indyo Pratomo; Patrick Wassmer; Irka Hajdas; Danang Sri Hadmoko; Edouard de Belizal

2013-01-01T23:59:59.000Z

268

National Park Service- Yellowstone National Park, Wyoming  

Broader source: Energy.gov [DOE]

Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are currently being used by the Yellowstone Association Institute for ecology classes.

269

The National Cancer Institute,  

E-Print Network [OSTI]

The National Cancer Institute, International Cancer Information Center Bldg. 82, Rm 123 Bethesda, MD 20892 The National Cancer Institute (NCI) is part of the Federal Government. NCI coordinates the government's cancer research program. It is the largest of the 17 biomedical research institutes and centers

270

Argonne National Laboratory  

Science Journals Connector (OSTI)

Argonne National Laboratory is the nation's senior atomic energy laboratory, and is operated by the University of Chicago under contract mth the U. S. Atomic Energy Commission. In addition to its broad program of basic research activities, it serves as a, ...

1957-04-08T23:59:59.000Z

271

National Energy Software Center  

SciTech Connect (OSTI)

A short introduction is given to the services of the National Energy Software Library at the Argonne National Laboratory. The objectives, history, and software collection of the center are presented. Information on ordering from the software collection of the library is also included. 4 refs., 3 tabs. (DWL)

Eyberger, L.R.

1986-01-01T23:59:59.000Z

272

National Laboratory Dorene Price  

E-Print Network [OSTI]

Brookhaven National Laboratory Dorene Price Office of Intellectual Property and Sponsored Research: price@bnl.gov ELECTROCHEMICAL ENHANCEMENT OF BIO-ETHANOL AND METABOLITE PRODUCTION Brookhaven National-ethanol fuel, as a beverage, or industries which by means of fermenting microbes commercially make ethanol

273

Hydrochemical features of a geothermal test well iin a volcanic caldera, MT. Pinatubo, Phillipines  

SciTech Connect (OSTI)

Mt. Pinatubo is one of several recent-age volcanoes along the west Luzon volcanic arc. A fumarole near the suminit emits gases with magmatic characteristics. Several thermal springs on the east and west flanks yield various fluid typos, including neutral chloride and bicarbonate. Three wellbores probed the Mt. Pinatubo caldera from elevations of +1230 through -1600 mRSL. Trajectories may be described as: central, crossing a boundary wall from the inside, and skirting a wall [probably] on the inside. Brine discharges indicate severe evapo-concentration effects accompanied by other phenomena. Severity of evapo-concentration indicates low fluid mobility near the wellbores. Large variations for ratios of component concentrations were observed, indicating negligible natural circulation (mixing). Implications about fluid movements and heat transfer processes are explored. Three components of steam can be quantified and all are significant: separate entry, adiabatic boiling, and boiling by rock heat.

Michels, D.E.; Clemente, V.C.; Ramos, M.N.

1991-01-01T23:59:59.000Z

274

Long-term desorption behavior of uranium and neptunium in heterogeneous volcanic tuff materials /  

SciTech Connect (OSTI)

Uranium and neptunium desorption were studied in long-term laboratory experiments using four well-characterized volcanic tuff cores collected from southeast of Yucca Mountain, Nevada. The objectives of the experiments were to 1. Demonstrate a methodology aimed at characterizing distributions of sorption parameters (attributes of multiple sorption sites) that can be applied to moderately-sorbing species in heterogeneous systems to provide more realistic reactive transport parameters and a more realistic approach to modeling transport in heterogeneous systems. 2. Focus on uranium and neptunium because of their high solubility, relatively weak sorption, and high contributions to predicted dose in Yucca Mountain performance assessments. Also, uranium is a contaminant of concern at many DOE legacy sites and uranium mining sites.

Dean, Cynthia A.

2010-05-01T23:59:59.000Z

275

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

remembers former director Harold remembers former director Harold Agnew September 30, 2013 Manhattan Project pioneer was LANL director from 1970-1979 LOS ALAMOS, N.M., Sept. 30, 2013-Los Alamos National Laboratory Director Charlie McMillan today remembered Harold Agnew as a national treasure who transformed the Laboratory into what it is in the 21st century. "His contributions to the Laboratory made us the institution we are today," McMillan said. "It was his vision - decades ago - that recognized that national security science - 2 - brings value to a broad spectrum of breakthroughs. Los Alamos and the nation will be forever in Harold's debt." Agnew died at home on Sunday, Sept. 29, his family announced. He was the third director of Los Alamos National Laboratory, succeeding Robert

276

National Teacher Enhancement Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

funded by the National Science Foundation and the funded by the National Science Foundation and the U.S. Department of Energy Office of Science and offered at 10 DOE National Laboratories NTEP Projects Learning to Live in a Risky World Lewis and Clark in Washington The Seed Connection SIMply Prairie Home Energy Audit Weather Watchers Project Background . . . but where's the class? Doing Research - Publishing Results Created for the NTEP II Fermilab LInC program sponsored by Fermi National Accelerator Laboratory Education Office and Friends of Fermilab, and funded by United States Department of Energy, Illinois State Board of Education, North Central Regional Technology in Education Consortium which is operated by North Central Regional Educational Laboratory (NCREL), and the National Science Foundation. Web Maintainer: ed-webmaster@fnal.gov

277

National Security, Weapons Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Security, Weapons Science National Security, Weapons Science /science-innovation/_assets/images/icon-science.jpg National Security, Weapons Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) The Dual-Axis Radiographic Hydrodynamic Test Facility at LANL is part of the DOE's stockpile stewardship program. It uses two large X-ray machines to record three-dimensional interior images of materials. In most experiments, materials (including plutonium) undergo hydrodynamic shock to simulate the implosion process in nuclear bombs and/or the effects of severe hydrodynamic stress. The tests are described as "full-scale mockups

278

NREL: Foreign Nationals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Foreign Nationals Foreign Nationals At the National Renewable Energy Laboratory (NREL), collaboration is key to conducting scientific research at our institution in Golden, Colorado. Because an international scope is essential to our development program, we invite outstanding scholars from other countries to become an integral part of our organization through the Foreign National Assignment Program. This program enables people with new ideas and talents from around the world to contribute to research of mutual interest at the Laboratory while also contributing to the transfer of the technology resulting from that research. As a foreign national, you'll need information about immigration and the various types of visas. You can also find numerous helpful links to the State Department, U.S. Citizenship and Immigration Services, the Social

279

MOTORWEEK YELLOWSTONE NATIONAL PARK  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MOTORWEEK MOTORWEEK YELLOWSTONE NATIONAL PARK JOHN DAVIS: Some of America's most precious treasures are our national parks. And the U.S. park service understands that keeping the parks pristine, while also allowing easy access by vacationers is a huge challenge. So, setting the pace on making the drive through the parks greener is not just a goal, it's a passion. JOHN DAVIS: The National Parks Service is entrusted with preserving and showcasing America's natural wonders and historical landmarks, maintaining 392 national parks covering million acres of land and water in all parts of the country, and plays host to more than 275 million visitors every year. No other place on earth has as much natural diversity and spectacular scenery in one accessible place than America's first national park, Yellowstone, so it's no surprise this

280

The Foundation for The Gator Nation The Gator Nation.  

E-Print Network [OSTI]

The Foundation for The Gator Nation Welcome to The Gator Nation. One employee at a time, our nation grows. #12;Welcome to The Gator Nation On behalf of the Office of Human Resource Services, welcome to the University of Florida (UF) and The Gator Nation. We are delighted with your decision to join one of the top

Pilyugin, Sergei S.

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

National Institutes of Health National Institute of Mental Health  

E-Print Network [OSTI]

National Institutes of Health National Institute of Mental Health Department of Health and HumanNational Institute of Mental Health Division of Intramural Research Programs http://intramural.nimh.nih.gov/ [NIMH of Fellowship Training] National Institutes of Health National Institute of Mental Health Department of Health

Baker, Chris I.

282

Sandia National Laboratories: Sandia National Laboratories: Missions:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accomplishments Accomplishments About Defense Systems & Assessments Program Areas Accomplishments Archives Cybersecurity Missions Accomplishments Protecting the nation Sandia lasers test and calibrate sensors on U.S. satellites Sandia's scientists and engineers have a significant impact on national security and continually deliver results, including these noteworthy successes from fiscal year 2012: AHW Launch Advanced Hypersonic Weapon test flight Sandia conducted a highly successful first test flight of the Advanced Hypersonic Weapon (AHW) concept for the U.S. Army Space and Missile Defense Command. Designed to fly within the earth's atmosphere at hypersonic speed and long range, the first-of-its-kind glide vehicle launched from Sandia's Kauai Test Facility in Kauai, Hawaii, using a three-stage

283

The Cretaceous OkhotskChukotka Volcanic Belt (NE Russia): Geology, geochronology, magma output rates, and implications on the genesis of silicic \\{LIPs\\}  

Science Journals Connector (OSTI)

The Cretaceous OkhotskChukotka volcanic belt (OCVB) is a prominent subduction-related magmatic province, having the remarkably high proportion of silicic rocks (ca. 53% of the present-day crop area, and presumably over 70% of the total volcanic volume). Its estimated total extrusive volume ranges between 5.5נ105km3 (the most conservative estimate) and over 106km3. This article presents a brief outline of the geology of OCVB, yet poorly described in international scientific literature, and results of a geochronological study on the northern part of the volcanic belt. On the base of new and published UPb and 40Ar/39Ar age determinations, a new chronological model is proposed. Our study indicates that the activity of the volcanic belt was highly discontinuous and comprised at least five main episodes at 10698Ma, 9491Ma, 8987Ma, 85.584Ma, and 8279Ma. The new data allow a semi-quantitative estimate of the volcanic output rate for the observed part of the OCVB (area and volume approximately 105km2 and 2.5נ105km3, respectively). The average extrusion rate for the entire lifetime of the volcanic belt ranges between 1.6 and 3.6נ10?5km3yr?1km?1, depending on the assumed average thickness of the volcanic pile; the optimal value is 2.6נ10?5km3yr?1km?1. Despite imprecise, such estimates infer the time-averaged volcanic productivity of the OCVB is similar to that of silicic \\{LIPs\\} and most active recent subduction-related volcanic areas of the Earth. However, the most extensive volcanic flare-ups at 8987 and 85.5-84Ma had higher rates of over 9.0נ10?5km3yr?1km?1. The main volumetric, temporal and compositional parameters of the OCVB are similar to those of silicic LIPs. This gives ground for discussion about the geodynamic setting of the latters, because the widely accepted definition of a LIP implies a strictly intraplate environment. Considering the genesis of the OCVB and other large provinces of silicic volcanism, we propose that residual thermal energy preserved in the continental crust after a previous major magmatic event may have been one of major reasons for high proportion of felsic rocks in a volcanic pile. In this scenario, underplating of mantle-derived basalts causes fast and extensive melting of still hot continental crust and generation of voluminous silicic magmas.

P.L. Tikhomirov; E.A. Kalinina; T. Moriguti; A. Makishima; K. Kobayashi; I.Yu. Cherepanova; E. Nakamura

2012-01-01T23:59:59.000Z

284

National Clean Fuels Inc National Wind Solutions Inc | Open Energy  

Open Energy Info (EERE)

Clean Fuels Inc National Wind Solutions Inc Clean Fuels Inc National Wind Solutions Inc Jump to: navigation, search Name National Clean Fuels Inc (National Wind Solutions Inc) Place San Antonio, Texas Zip 78230 Product Texas-based consultancy that works with clean technology developers, or with public utilities in their strategic and procurement plans for alternative energy contracts. References National Clean Fuels Inc (National Wind Solutions Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. National Clean Fuels Inc (National Wind Solutions Inc) is a company located in San Antonio, Texas . References ↑ "National Clean Fuels Inc (National Wind Solutions Inc)" Retrieved from "http://en.openei.org/w/index.php?title=National_Clean_Fuels_Inc_National_Wind_Solutions_Inc&oldid=349061"

285

National Security Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NSS cover - april NSS cover - april Read the April 2013 issue: web | interactive| pdf Skip to Content Skip to Search Skip to Utility Navigation Skip to Top Navigation Skip to Content Navigation Los Alamos National Laboratory submit About | Mission | Business | Newsroom | Phonebook Los Alamos National Laboratory links to site home page Science & Innovation Collaboration Careers, Jobs Community, Environment Science & Innovation Home » Science & Engineering Capabilities Accelerators, Electrodynamics Bioscience, Biosecurity, Health Chemical Science Earth, Space Sciences Energy Engineering High Energy Density Plasmas, Fluids Information Science, Computing, Applied Math Materials Science National Security, Weapons Science Nuclear & Particle Physics, Astrophysics, Cosmology

286

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Visit to NSTTF On September 10, 2012, in Concentrating Solar Power, EC, National Solar Thermal Test Facility, Renewable Energy Dr. David Danielson visited Sandia National...

287

Sandia National Laboratories: Officials Turn to Sandia National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECResearch & CapabilitiesCapabilitiesOfficials Turn to Sandia National Labs for Help on Huge Sinkhole Officials Turn to Sandia National Labs for Help on Huge Sinkhole...

288

National Transportation Stakeholders Forum  

Broader source: Energy.gov (indexed) [DOE]

N N ti l T t ti National Transportation Stakeholders Forum Chicago, IL, May 26, 2010 Ahmad Al-Daouk Date and page number - 1 Director, National Security Department National Nuclear Security Administration Service Center - Albuquerque, NM National Transportation Stakeholders Forum OSRP * NNSA Contractors transporting in commerce, are required law to comply with applicable regulations required law to comply with applicable regulations (e.g. federal, local, tribal) * Great majority of NNSA shipments are non-secured * Off-Site Source Recovery Program (OSRP) - OSRP is a U.S. Government activity sponsored and overseen by NNSA Office of Global Threat Reduction and the program is managed by LANL Mi i i t t d b d d Date and page number - 2 - Mission is to remove excess, unwanted, abandoned, or

289

IDAHO NATIONAL LABORATORY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

History of the Idaho National Laboratory (INL) History of the Idaho National Laboratory (INL) You are here: DOE-ID Home > Inside ID > Brief History Site History The Idaho National Laboratory (INL), an 890-square-mile section of desert in southeast Idaho, was established in 1949 as the National Reactor Testing Station. Initially, the missions at the INL were the development of civilian and defense nuclear reactor technologies and management of spent nuclear fuel. Fifty-two reactors—most of them first-of-a-kind—were built, including the Navy’s first prototype nuclear propulsion plant. Of the 52 reactors, three remain in operation at the site. In 1951, the INL achieved one of the most significant scientific accomplishments of the century—the first use of nuclear fission to produce a usable quantity of electricity at the Experimental Breeder Reactor No.

290

AMERICA'S NATIONAL LABS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AMERICA'S AMERICA'S NATIONAL LABS by 50 50 M A D E IN U S A B r e a k t h r o u g h s America's National Laboratory system has been changing and improving the lives of millions for more than 80 years. Born at a time of great societal need, this network of Department of Energy Laboratories has now grown into 17 facilities, working together as engines of prosperity and invention. As this list of 50 Break- throughs attests, National Laboratory discoveries have spawned industries, saved lives, generated new products, fired the imagination, and helped to reveal the secrets of the universe. Rooted in the need to be the best and bring the best, America's National Laboratories have put an American stamp on the past century of science. With equal ingenuity and tenacity, they are now engaged in

291

national | OpenEI  

Open Energy Info (EERE)

national national Dataset Summary Description Gate to gate life cycle inventory (LCI) data for the US national grid. Includes generation and transmission of electricity for US electricity grid. Representative of year 2008 mix of fuels used for utility electricity generation in US. Fuels include biomass, coal, petroleum, geothermal, natural gas, nuclear, solar, hydroelectric and wind energy sources.This data was developed by:- Alberta Carpenter, NREL- Chris Goemans, Athena Institute Source NREL Date Released Unknown Date Updated Unknown Keywords 2008 Electricity LCI national US Data application/vnd.ms-excel icon SS_Electricity_at_Grid_US_2008.xls (xls, 176.6 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2008

292

National Synchrotron Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Assessment Environmental Assessment Proposed Upgrade and Improvement of the National Synchrotron Light Source Complex at Brookhaven National Laboratory, Upton, New York This Environmental Assessment addresses the proposed action by the U.S. Department of Energy to upgrade the facilities of the National Synchrotron Light Source Complex, namely the National Synchrotron Light Source (NSLS), the Accelerator Test Facility and the Source Development Laboratory. The environmental effects of a No-Action Alternative as well as a Proposed Action are evaluated in the Environmental Assessment. The “NSLS Environmental Assessment Fact Sheet” link below leads to a one-page summary of the Environmental Assessment. The “NSLS Environmental Assessment” link below leads to the whole 41-page

293

National Climate Assessment: Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production Team Production Team Indicators System Coastal Resilience Resources Make Our Science Accessible Link Climate Change & Health Provide Data and Tools Coordinate Internationally National Climate Assessment: Overview Print E-mail What is the National Climate Assessment (NCA)? The NCA is an important resource for understanding and communicating climate change science and impacts in the United States. It informs the nation about already observed changes, the current status of the climate, and anticipated trends for the future. The NCA report process integrates scientific information from multiple sources and sectors to highlight key findings and significant gaps in our knowledge. The NCA also establishes consistent methods for evaluating climate impacts in the U.S. in the context of broader global change. Finally, findings from the NCA provide input to Federal science priorities and are used by U.S. citizens, communities, and businesses as they create more sustainable and environmentally sound plans for the nation's future.

294

Savannah River National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Savannah River National Laboratory Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance Additive Manufacturing (3D Printing): Selectively Printed Conductive Pathways Researchers at the Savannah River National Laboratory (SRNL) have developed a rapid prototype conductive material that can be used for electrical shielding or circuit fabrication. Background Several rapid prototype technologies currently exist. A few of the technologies produce metallic parts, but the majority produce nonconductive parts made from various grades of plastic. In all of these technologies however, only conductive material or nonconductive material can be used within one part created. There is no known option for 3D printing conductive material for

295

Sandia National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PHOTOVOLTAIC ARRAY PERFORMANCE MODEL D. L. King, W. E. Boyson, J. A. Kratochvil Sandia National Laboratories Albuquerque, New Mexico 87185-0752 2 SAND2004-3535 Unlimited Release...

296

Sandia National Laboratories: Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

N.M. - April 28, 2011 - Sandia engineers Jose Zayas and Dale Berg were honored by Windpower Engineering magazine as two of the nation's innovators and influencers in wind...

297

National Day of Remembrance  

Broader source: Energy.gov [DOE]

On July 9, 2014, the U.S. Senate announced the passage of S. Res. 417, a Senate resolution designating October 30, 2014, as a National Day of Remembrance (NDR) for Nuclear Weapons Program Workers.

298

OAK RIDGE NATIONAL LABORATORY  

Office of Legacy Management (LM)

Pennsylvania The Measurement l i c a t i o n s and Development Group of the Oak Ridge National Laborator? served as the Independent Verification Contractor for the...

299

National Bioenergy Day 2014  

Broader source: Energy.gov [DOE]

Bioenergy, the use of agricultural waste and forestry byproducts to generate heat and energy, will be celebrated during the second annual National Bioenergy Day on October 22, 2014. This is an...

300

Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hazardous devices teams showcase skills at Robot Rodeo June 24-27 June 18, 2014 Bomb squads compete in timed scenarios at Los Alamos National Laboratory LOS ALAMOS, N.M., June 19,...

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

National Laboratory's Weapons Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Charles McMillan to lead Los Alamos National Laboratory's Weapons Program July 28, 2009 Los Alamos, New Mexico, July 28, 2009- Charles McMillan has been appointed the new principal...

302

AISES National Conference  

Office of Energy Efficiency and Renewable Energy (EERE)

The AISES National Conference is a one-of-a-kind, three day event convening graduate, undergraduate, and high school junior and senior students, teachers, workforce professionals, corporate and...

303

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

new student app July 15, 2014 Job searching tool for students, postdocs LOS ALAMOS, N.M., July 15, 2014-Los Alamos National Laboratory recently launched its new student mobile app...

304

National Synchrotron Light Source  

ScienceCinema (OSTI)

A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

None

2010-01-08T23:59:59.000Z

305

Safety | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Argonne National Laboratory and the U.S. Department of Energy (DOE) are very concerned about the well-being of all employees. Students at the undergraduate and graduate...

306

Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Economic development in Northern New Mexico focus of new podcast from Los Alamos National Laboratory November 25, 2013 Podcast part of Lab's new multi-channel effort to better...

307

Sandia National Laboratories: Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

scale. The SWiFT site is managed and operated by Sandia National Laboratories for the DOE Wind Program. In a separate, ... Sandia Has Signed a Memorandum of Understanding with...

308

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

acknowledged for progress in safety excellence by Department of Energy August 4, 2010 Lab is awarded VPP Merit status LOS ALAMOS, New Mexico, August 4, 2010-Los Alamos National...

309

National Environmental Information Infrastructure  

E-Print Network [OSTI]

National Environmental Information Infrastructure: Reference Architecture Contributing Information Infrastructure: Reference Architecture v1.1 Environmental Information Programme Publication Series: Reference Architecture, Environmental Information Programme Publication Series, document no. 4, Bureau

Greenslade, Diana

310

national | OpenEI Community  

Open Energy Info (EERE)

by Graham7781(2017) Super contributor 14 April, 2014 - 09:48 National Day of Civic Hacking code community data Event hacking international national OpenEI The National Day of...

311

Biomass Feedstock National User Facility  

Broader source: Energy.gov [DOE]

Breakout Session 1BIntegration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

312

National Transmission Grid Study: 2002  

Broader source: Energy.gov [DOE]

National Transmission Grid Study: The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity...

313

Sandia National Laboratories: National Security Missions: International  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WMD Counterterrorism & Response WMD Counterterrorism & Response Airworthiness Weapons of Mass Destruction (WMD) Counterterrorism & Response provides operational planning assistance and training to counter domestic and international nuclear and radiological terrorism, including: Specialized training for nuclear and explosive threats for warfighters and law enforcement Technologies for evaluating airframe integrity and other critical structural integrity Our partners include National Nuclear Security Administration (NNSA), Department of Defense (DoD), and Federal Aviation Administration (FAA). Program Areas include: Airworthiness and Infrastructure Assurance Nuclear Incident Response Nuclear Counterterrorism Chemical, Biological, Radiological, Nuclear and Explosives Technology Development

314

National Climate Assessment: Production Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NCA & Development Advisory Committee NCA & Development Advisory Committee Production Team Indicators System Coastal Resilience Resources Make Our Science Accessible Link Climate Change & Health Provide Data and Tools Coordinate Internationally National Climate Assessment: Production Team Print E-mail National Climate Assessment Staff (USGCRP National Coordination Office) Current NCA Staff Dr. Fabien Laurier, Director, Third National Climate Assessment Dr. Glynis Lough, Chief of Staff for the National Climate Assessment Emily Therese Cloyd, Engagement Coordinator for the National Climate Assessment Bryce Golden-Chen, Program Coordinator for the National Climate Assessment Alison Delgado, Scientist Dr. Ilya Fischhoffkri, Scientist Melissa Kenney, Indicators Coordinator Dr. Fred Lipschultz, Regional Coordinator for the National Climate Assessment

315

Climate Change and National Security  

E-Print Network [OSTI]

CLIMATE CHANGE Multiplying Threats to National Securityfor the impacts of climate change on national security. Pagea warming world. Page 11 Climate change acts as a threat

Alyson, Fleming; Summer, Kelly; Summer, Martin; Lauren, Franck; Jonathan, Mark

2015-01-01T23:59:59.000Z

316

with Oak Ridge National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Mechanisms for Partnering with Oak Ridge National Laboratory Partnerships-It's our name, but it also represents our driving philosophy and commitment. Oak Ridge National...

317

Sandia National Laboratories: PV Value  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

318

Sandia National Laboratories: PV evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

319

Sandia National Laboratories: bankability validation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Testing Center (PV RTC), Renewable Energy, Solar, Solar Newsletter, SunShot HelioVolt, Sandia National Laboratories, the National Renewable Energy Laboratory,...

320

Sandia National Laboratories: factory audits  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Testing Center (PV RTC), Renewable Energy, Solar, Solar Newsletter, SunShot HelioVolt, Sandia National Laboratories, the National Renewable Energy Laboratory,...

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

322

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

323

Sandia National Laboratories: Solar Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

324

Program Details | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oak Ridge National Laboratory are used to generate neutrons. These facilities are major DOE national user facilities. Lectures for the school cover a wide range of related...

325

National Advanced Biofuels Consortium Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biotechnologies Argonne National Laboratory BP Products North America Inc. Catchlight Energy, LLC Colorado School of Mines Iowa State University Los Alamos National Laboratory...

326

Mark Nutt | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mark Nutt Mark Nutt Principal Nuclear Engineer - Nuclear Engineering Dr. W. Mark Nutt is a Principal Nuclear Engineer at Argonne National Laboratory and is currently the National...

327

Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the Development and Evolution of Geothermal Systems: Collaborative Project in Chile  

Broader source: Energy.gov [DOE]

Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the Development and Evolution of Geothermal Systems: Collaborative Project in Chile presentation at the April 2013 peer review meeting held in Denver, Colorado.

328

Center for volcanic and tectonic studies, Department of Geoscience, Univ. of Nevada, Las Vegas, NV. Annual report No. 69, October 1, 1991--September 30, 1992  

SciTech Connect (OSTI)

The annual report of the Center for Volcanic and Tectonic Studies (CVTS) contains a series of papers, maps, and reprints that review the progress made by the CVTS between October 1, 1991 and December 31, 1992. During this period CVTS staff focused on several topics that had direct relevance to volcanic hazards related to the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. These topics included: (1) The role of the mantle during regional extension. (2) The structural controls and emplacement mechanisms of Pliocene/Quaternary basaltic centers and dikes. (3) The detailed geochemistry of individual volcanic centers in Crater Flat, Nevada. (4) Estimating the probability of disruption of the proposed repository by volcanic eruption (this topic is being studied by Dr. C-H. Ho at UNLV).

Smith, E.I.

1992-12-15T23:59:59.000Z

329

P-Wave Residual Differences and Inferences on an Upper Mantle Source for the Silent Canyon Volcanic Centre, Southern Great Basin, Nevada  

Science Journals Connector (OSTI)

......Canyon volcanic centre of the Nevada Test Site have been reduced by corresponding...1968. Geologic setting of Nevada Test Site and Neliis Air Force Range...comparison of the Lake Superior and Nevada Test Site source regions, Seism. Data......

William Spence

1974-09-01T23:59:59.000Z

330

Oversight Reports - Argonne National Laboratory | Department...  

Broader source: Energy.gov (indexed) [DOE]

Argonne National Laboratory Oversight Reports - Argonne National Laboratory August 24, 2012 Independent Activity Report, Argonne National Laboratory - July 2012 Operational...

331

National Electric Transmission Congestion Study Webinars | Department...  

Broader source: Energy.gov (indexed) [DOE]

National Electric Transmission Congestion Study National Electric Transmission Congestion Study Webinars National Electric Transmission Congestion Study Webinars The Department...

332

National Nuclear Security Administration | Department of Energy  

Office of Environmental Management (EM)

National Nuclear Security Administration National Nuclear Security Administration National Nuclear Security Administration More Documents & Publications Global Threat Reduction...

333

Paleomagnetic and paleointensity study of Oligocene volcanic rocks from Chihuahua (northern Mexico)  

Science Journals Connector (OSTI)

A detailed rock-magnetic, paleomagnetic and paleointensity study was carried out on Oligocene volcanic formations from Chihuahua (northern Mexico) in order to obtain some decisive constraints for the tectonic evolution of the southern Cordilleran Orogenic Belt of North America and for the geomagnetic field strength during Oligocene time. Age of the volcanic units lies between 33 and 25Ma according to available radiometric data. Rock-magnetic experiments reveal that remanence is carried in most cases by Ti-poor titanomagnetite, resulting of oxy-exsolution of original titanomagnetite during the initial flow cooling. Unblocking temperature spectra and relatively high coercivities point to small pseudo-single domain magnetic grains for these (titano)magnetites. Single-component, linear demagnetization plots were observed in most cases. Nine sites yield reverse polarity magnetization, three are normally magnetized and one unit shows intermediate polarity magnetization. An evidence of strong lightning-produced magnetization overprint was detected for one site. Combining all paleomagnetic data currently available for northern Mexico, we obtained a well-defined EoceneOligocene mean paleomagnetic direction with I=48.5, D=337.1, k=20, ?95=6.8, N=24, which deviates counterclockwise from the expected direction estimated from the North American apparent polar wander path. This suggests a vertical-axis tectonic counterclockwise rotation of about 16 relative to stable North America. Transition from Laramide compression to Basin and Range extension occurred during Oligocene, around 3230Ma. Tectonic rotation may then reflect eastnortheast extension in the mid- to late-Cenozoic. Twenty-three samples were pre-selected for Thellier palaeointensity experiments because of their low viscosity index, stable remanent magnetization and reasonably reversible continuous thermomagnetic curves. Only 12 samples, coming from three individual basaltic lava flows, yielded reliable paleointensity estimates with the flow-mean virtual dipole moments (VDM) ranging from 3.96 to 4.651022Am2. Combination of Mexican data with the available comparable quality Oligocene paleointensity results yield a mean VDM of 41022Am2, which is comparable or slightly higher than the mean \\{VDMs\\} calculated for the Mesozoic low field period, but significantly lower than present day value. This low intensity may correlate with the relatively high paleosecular variation rate invoked around 30Ma by several authors.

A Goguitchaichvili; L.M Alva-Valdivia; J Urrutia-Fucugauchi; C Zesati; C Caballero

2001-01-01T23:59:59.000Z

334

Naturally occurring heavy radioactive elements in the geothermal microcosm of the Los Azufres (Mexico) volcanic complex  

Science Journals Connector (OSTI)

Abstract The Los Azufres geothermal complex of central Mexico is characterized by fumaroles and boiling hot-springs. The fumaroles form habitats for extremophilic mosses and ferns. Physico-chemical measurements of two relatively pristine fumarolic microcosms point to their resemblance with the paleo-environment of earth during the Ordovician and Devonian periods. These geothermal habitats were analysed for the distribution of elemental mass fractions in the rhizospheric soil (RS), the native volcanic substrate (VS) and the sediments (S), using the new high-sensitivity technique of polarized x-ray energy dispersive fluorescence spectrometry (PEDXRF) as well as instrumental neutron activation analysis (INAA) for selected elements. This work presents the results for the naturally occurring heavy radioactive elements (NOHRE) Bi, Th and U but principally the latter two. For the RS, the density was found to be the least and the total organic matter content the most. Bi was found to be negligibly present in all substrate types. The average Th and U mass fractions in the RS were higher than in the VS and about equal to their average mass fractions in the S. The VS mass fraction of Th was higher, and of U lower, than the mass fractions in the earth's crust. In fact for the fumaroles of one site, the average RS mass fractions of these elements were higher than the averaged values for S (without considering the statistical dispersion). The immobilization of the NOHRE in the RS is brought about by the bio-geochemical processes specific to these extremophiles. Its effectiveness is such that despite the small masses of these plants, it compares with, or may sometimes exceed, the immobilization of the NOHRE in the S by the abiotic and aggressive chemical action of the hot-springs. These results indicate that the fumarolic plants are able to transform the volcanic substrate to soil and to affect the NOHRE mass fractions even though these elements are not plant nutrients. Mirrored back to the paleo times when such plant types were ubiquitous, it would mean that the first plants contributed significantly to pedogenesis and the biogeochemical recycling of even the heaviest and radioactive elements. Such plants may potentially be useful for the phytostabilisation of soil moderately contaminated by the NOHRE. Furthermore where applicable, geochronology may require taking into account the influence of the early plants on the NOHRE distributions.

W.A. Abuhani; N. Dasgupta-Schubert; L.M. Villaseor; D. Garca Avila; L. Surez; C. Johnston; S.E. Borjas; S.A. Alexander; S. Landsberger; M.C. Surez

2015-01-01T23:59:59.000Z

335

Oak Ridge National Laboratory | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oak Ridge National Laboratory Oak Ridge National Laboratory An aerial view of the Oak Ridge National Laboratory campus. An aerial view of the Oak Ridge National Laboratory campus....

336

Oak Ridge National Laboratory | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory Oak Ridge National Laboratory Oak Ridge National Laboratory | April 2013 Aerial View Oak Ridge National Laboratory | April 2013 Aerial View Oak Ridge...

337

Stockpile Stewardship Program Quarterly Experiments | National...  

National Nuclear Security Administration (NNSA)

facility at Los Alamos National Laboratory, National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, and the Z machine at Sandia National Laboratories. The...

338

National Labs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

National Labs National Labs Special Feature: National Security & Public Safety at the National Labs This month on energy.gov, learn how the National Labs are advancing the national security and public safety interests of the United States. Read more Top 10 Things You Didn't Know About Los Alamos National Laboratory From national security science to supercomputing, Los Alamos National Lab is leading the way in protecting the American public, countering global threats and solving emerging energy challenges. Read more Energetic Science and Piranha-Proof Armor Learn how Berkeley Lab's Advanced Light Source is revealing the unique structure of incredible, adaptable fish armor. Read more Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory From nuclear security to supercomputing, Lawrence Livermore National Lab is

339

National Labs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

National Labs National Labs Special Feature: National Security & Public Safety at the National Labs This month on energy.gov, learn how the National Labs are advancing the national security and public safety interests of the United States. Read more Top 10 Things You Didn't Know About Los Alamos National Laboratory From national security science to supercomputing, Los Alamos National Lab is leading the way in protecting the American public, countering global threats and solving emerging energy challenges. Read more Energetic Science and Piranha-Proof Armor Learn how Berkeley Lab's Advanced Light Source is revealing the unique structure of incredible, adaptable fish armor. Read more Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory From nuclear security to supercomputing, Lawrence Livermore National Lab is

340

National Security Information Systems (NSIS) -National Security Systems &  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NSSA: National Security Information Systems NSSA: National Security Information Systems Nonproliferation & National Security (NPNS) Overview Technical Nonproliferation Policy Support Strategic Trade Control Review of export license applications Multilateral Export Control Arrangements Interdiction Engagement & Training INECP INSEP GIPP Safeguards Concepts and Approaches Human Capital Development Additional Protocol Technical Assistance National Security Systems & Assessments National Security Information Systems Vulnerability Assessment Team (VAT) Radiation Detection & Response (RDR) Contact NPNS Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nonproliferation and National Security Program National Security Systems & Assessments

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Director of the National Ignition Facility, Lawrence Livermore National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Director of the National Ignition Facility, Lawrence Livermore National Director of the National Ignition Facility, Lawrence Livermore National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Edward Moses Director of the National Ignition Facility, Lawrence Livermore National Laboratory

342

Groundbreaking at National Ignition Facility | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Groundbreaking at National Ignition Facility | National Nuclear Security Groundbreaking at National Ignition Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Groundbreaking at National Ignition Facility Groundbreaking at National Ignition Facility May 29, 1997 Livermore, CA Groundbreaking at National Ignition Facility

343

Consent Order, Lawrence Livermore National National Security, LLC -  

Broader source: Energy.gov (indexed) [DOE]

Lawrence Livermore National National Security, LLC - Lawrence Livermore National National Security, LLC - WCO-2010-01 Consent Order, Lawrence Livermore National National Security, LLC - WCO-2010-01 October 29, 2010 Consent Order issued to Lawrence Livermore National Security, LLC for deficiencies associated with the Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program This letter refers to the Office of Health, Safety and Security, Office of Enforcement investigation into deficiencies associated with the Lawrence Livermore National Laboratory (LLNL) Chronic Beryllium Disease Prevention Program (CBDPP) and related work planning and control processes. The results of the investigation were provided to Lawrence Livermore National Security, LLC (LLNS) in an Investigation Report dated July 7, 2009. An

344

Factors controlling the morphology of monogenetic basaltic volcanoes: The Holocene volcanism of Gran Canaria (Canary Islands, Spain)  

Science Journals Connector (OSTI)

A detailed morphometric analysis was performed on the 24 Holocene eruptions of Gran Canaria, a nearly circular island located at the centre of the Canary Islands (Spain), developed as result of the eastward movement of the African plate over a mantle hotspot. Rigorous field work was carried out to generate a palaeogeomorphological reconstruction of the Holocene eruptions of Gran Canaria to obtain pre- and post-eruption digital terrain models (DTMs). These eruptions were of Strombolian monogenetic basaltic volcanism style. With respect to the cones, feeder fissures determine their location and some morphological features as crater openings which are usually perpendicular to the slope direction. In addition, the trade winds influence the final volcanic edifice shape and the extent of the pyroclastic sheet-like fall deposits. For the lava flows, the most significant controls are the eruption rate, affecting the maximum distance travelled, and the gully slope and shape that condition their flow path. Concerning volcanic hazard and risk assessment, the applied methodology has led to a better understanding of the recent eruptions and foresees the location and nature of future eruptions.

A. Rodriguez-Gonzalez; J.L. Fernandez-Turiel; F.J. Perez-Torrado; R. Paris; D. Gimeno; J.C. Carracedo; M. Aulinas

2012-01-01T23:59:59.000Z

345

Late Jurassic extension in the Bisbee basin: Marine and volcanic strata of the Chiricahua Mountains, Arizona  

SciTech Connect (OSTI)

Upper Jurassic strata in the northeastern Chiricahua Mountains provide unambiguous stratigraphic and geographic links between the Chihuahua trough of north-central Mexico and the Bisbee basin of southeastern Arizona. Approximately 1,800 m of limestone, shale, and mafic volcanic rocks overlie the Glance Conglomerate and underlie fluvial redbeds of the Lower Cretaceous Morita Formation. Basal strata are alluvial-fan and sabkha deposits. A thick (150 m), ammonite-bearing black shale interval above the sabkha deposits indicates an abrupt increase of water depths; deepening was accompanied initially by emplacement of subaerial basalt flows and subsequently by deposition of basaltic tuff and pillow lava. Ammonites are present both below and above the tuff and indicate its exclusively subaqueous origin. Arkosic deltaic deposits above the tuff were derived from Precambrian rocks of the footwall block to the northeast. At least 200 m of mafic subaerial flows, previously regarded as mid-Tertiary, overlie the deltaic deposits. The existence of a depleted mantle source beneath the Bisbee basin at 150 Ma suggests a unique tectonic setting that combined backarc and Gulf of Mexico extension.

Lawton, T.F.; McMillan, N.J. (New Mexico State Univ., Las Cruces, NM (United States)); Cameron, K.L. (Univ. of California, Santa Cruz, CA (United States). Earth Sciences Board)

1993-04-01T23:59:59.000Z

346

Analysis of fractures in volcanic cores from Pahute Mesa, Nevada Test Site  

SciTech Connect (OSTI)

The Nevada Test Site (NTS), located in Nye County, southern Nevada, was the location of 828 announced underground nuclear tests, conducted between 1951 and 1992. Approximately one-third of these tests were detonated near or below the water table. An unavoidable consequence of these testing activities was introducing radionuclides into the subsurface environment, impacting groundwater. Groundwater flows beneath the NTS almost exclusively through interconnected natural fractures in carbonate and volcanic rocks. Information about these fractures is necessary to determine hydrologic parameters for future Corrective Action Unit (CAU)-specific flow and transport models which will be used to support risk assessment calculations for the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Underground Test Area (UGTA) remedial investigation. Fracture data are critical in reducing the uncertainty of the predictive capabilities of CAU-specific models because of their usefulness in generating hydraulic conductivity values and dispersion characteristics used in transport modeling. Specifically, fracture aperture and density (spacing) are needed to calculate the permeability anisotropy of the formations. Fracture mineralogy information is used qualitatively to evaluate diffusion and radionuclide retardation potential in transport modeling. All these data can best be collected through examination of core samples.

Drellack, S.L. Jr.; Prothro, L.B.; Roberson, K.E. [and others

1997-09-01T23:59:59.000Z

347

Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

record neutron beam at Los record neutron beam at Los Alamos National Laboratory July 10, 2012 New method has potential to advance materials measurement LOS ALAMOS, New Mexico, July 10, 2012-Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam ever made by a short-pulse laser, breaking a world record. Neutron beams are usually made with particle accelerators or nuclear reactors and are commonly used in a wide variety of scientific research, particularly in advanced materials science. Using the TRIDENT laser, a unique and powerful 200 trillion-watt short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin plastic sheet

348

National Energy Policy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Energy Policy May 2001 Report of the National Energy Policy Development Group Reliable, Affordable, and Environmentally Sound Energy for America's Future Report of the National Energy Policy Development Group "America must have an energy policy that plans for the future, but meets the needs of today. I believe we can develop our natural resources and protect our environment." - President George W. Bush For Sale by the Superintendent of Documents, U.S Government Printing Office Internet: bookstore.gpo.gov Phone: (202) 512-1800 Fax: (202) 512-2250 Mail: Stop SSOP, Washington, DC 20402-0001 ISBN 0-16-050814-2 Members of the National Energy Policy Development Group DICK CHENEY The Vice President COLIN L. POWELL The Secretary of State PAUL O'NEILL The Secretary of the Treasury

349

National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

National Nuclear Security Administration National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog US, UK, France Discuss Stockpile Stewardship, Arms Control and Nonproliferation and Visit the Nevada National Security Site Learn More NNSA DOE removes all remaining HEU from Hungary Learn More DOE removes all remaining HEU from Hungary Tiffany A. Blanchard-Case receives 2013 Linton Brooks Medal

350

National Synchrotron Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Report 2001 Report 2001 National Synchrotron Light Source For the period October 1, 2000 through September 30, 2001 Introduction Science Highlights Year in Review Operations Publications Abstracts Nancye Wright & Lydia Rogers The National Synchrotron Light Source Department is supported by the Office of Basic Energy Sciences United States Department of Energy Washington, D.C. Brookhaven National Laboratory Brookhaven Science Associates, Inc. Upton, New York 11973 Under Contract No. DE-AC02-98CH10886 Mary Anne Corwin Steven N. Ehrlich & Lisa M. Miller Managing Editor Science Editors Production Assistants Cover images (clockwise from top left) 1. from Science Highlight by K.R. Rajashankar, M.R. Chance, S.K. Burley, J. Jiang, S.C. Almo, A. Bresnick, T. Dodatko, R. Huang, G. He,

351

Idaho National Laboratory - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports Reports Idaho National Laboratory Review Reports 2013 Review of Radiation Protection Program Implementation at the Advanced Mixed Waste Treatment Project of the Idaho Site, April 2013 Review of the Facility Representative Program at the Idaho Site, March 2013 Activity Reports 2013 Accident Investigation at the Idaho National Laboratory Engineering Demonstration Facility, February 2013 Review Reports 2012 Review of Radiation Protection Program Implementation at the Idaho Site, November 2012 Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project, November 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Idaho National Laboratory, July 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review, June 2012

352

SANDIA NATIONAL LABORATORIES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NATIONAL LABORATORIES NATIONAL LABORATORIES SF 6432-CS (10-98) SECTION II STANDARD TERMS & CONDITIONS FOR COMMERCIAL SERVICES PROCURED ON A FIRM FIXED PRICE OR FIXED RATE BASIS THE FOLLOWING CLAUSES APPLY TO THIS CONTRACT AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN THE SIGNATURE PAGE OR SECTION I. CS10 - DEFINITIONS The following terms shall have the meanings set forth below for all purposes of this contract. (a) GOVERNMENT means the United States of America and includes the U.S. Department of Energy (DOE) or any duly authorized representative thereof. (b) SANDIA means Sandia National Laboratories, operated by Sandia Corporation under Contract No. DE-ACO4-94AL-85000 with the U.S. Department of Energy.

353

NATIONAL POLICY ASSURANCES  

Broader source: Energy.gov (indexed) [DOE]

TO BE INCLUDED AS AWARD TERMS 1. Nondiscrimination - By signing or accepting funds under the agreement, the recipient agrees that it will comply with applicable provisions of the following national policies prohibiting discrimination: Applies to: Required by: Additional Requirements: Discrimination on the basis of race, color, or national origin Grants, cooperative agreements, and subawards (10 C.F.R. § 600.3) 10 C.F.R. Part 600, App. A; 10 C.F.R. Part 1040; Title VI of the Civil Rights Act of 1964, 42 U.S.C. § 2000d et seq. Requirements flow down to subawards (10 C.F.R. §§ 1040.83 & 89-2) Discrimination on the basis of race, color, religion, sex, or national origin against any person employed by or seeking employment with Government

354

National Land Cover Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Land Cover Data National Land Cover Data Metadata also available as Metadata: q Identification_Information q Data_Quality_Information q Spatial_Data_Organization_Information q Spatial_Reference_Information q Entity_and_Attribute_Information q Distribution_Information q Metadata_Reference_Information Identification_Information: Citation: Citation_Information: Originator: United States Geological Survey Publication_Date: Unpublished Material Title: National Land Cover Data Edition: 01 Geospatial_Data_Presentation_Form: raster digital data Other_Citation_Details: Classification and processing of the orginal remote sensing products was done by the Multi-Resolution Land Characterization Consortium and EROS Data Center (U.S. Geological Survey). The Consortium includes the

355

SUBJECT: National Nuclear Security Administration  

Broader source: Energy.gov (indexed) [DOE]

National Nuclear Security Administration Sandia Site Ofce P. 0. Box 5400 Albuquerque, NM 87185 JAN O=P= ONP= Annual National Environmental Policy Act Planning Sumary 2013 Attached is: the Annual National Environmental Policy Act (NEPA) Planning Summary for the National Nuclear Security Administation, Sandia Site Ofce (SSO). Currently, there are two environmental assessments planned and one environmental impact statement in progess for the

356

Jobs at the National Labs  

Broader source: Energy.gov [DOE]

Search for jobs, internships and educational programs at the Department of Energy's National Laboratories.

357

Lawrence Berkeley National Laboratory Overview  

Office of Energy Efficiency and Renewable Energy (EERE)

Presentation about the history, structure, and projects of the Lawrence Berkeley National Laboratory.

358

Sandia National Laboratories: Sandia National Laboratories: Missions:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

results. Our areas of accomplishment for results. Our areas of accomplishment for 2010 include: Nuclear Weapons Engineering People photo 90-day Feasibility Study: Sandia researchers conducted a 90-day feasibility study for the Office of the Secretary of Defense in a common arming, fuzing, and firing (AF&F) system for the W78/Mk12A and W88/Mk5 warheads, with excursions of the AF&F for high-surety warheads and the W87/Mk21 systems. The study found that significant levels of AF&F commonality are possible with existing system architectures that support use in the Mk5, Mk12A, and Mk21 re-entry systems and enable modernization goals for the future stockpile. People photo Arming & Fuzing Subsystem Inspection: On July 23, 2010, the 500th Arming & Fuzing Subsystem (AFS) was accepted by the National Nuclear

359

Los Alamos National Lab: National Security Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Content stc logo Content stc logo Best of Show Winner of STC's International Summit Awards Competition, 2013 Top Innovations of the Year Science and technology for a safe, secure nation Impenetrable encryption defends data from cyberterrorism keyboard with atrack button A hacker could crack a code, steal private information or shut down systems we rely on daily. Small enough to fit in a smart phone, our QkarD technology ("kee-u-kard") provides virtually impenetrable defense, using quantum cryptography to secure computers. This novel encryption generates security at the subatomic particle level. If someone tries to hack in, that particle is altered, and the owner quietly alerted. And it works-even against super-powerful quantum computers. Multipronged HIV vaccine shows promise in monkeys

360

Sandia National Laboratories: Sandia National Laboratories: Missions:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Nuclear Weapons at Sandia About Nuclear Weapons at Sandia Weapons Researcher World-class scientists and engineers come to Sandia to conduct breakthrough research in nuclear weapons. Sandia designs more than 6,300 parts of a modern nuclear weapon's 6,500 components. Our state-of-the-art laboratories facilitate large-scale testing and computer simulation. Sandia's work is of the highest consequence and those doing the work face awesome responsibilities. Unlike other national labs, which focus on the physics package, Sandia's work is to weaponize the physics package. Sandia must ensure that the other 95% of the weapon's parts work perfectly at every point of contact with the delivery systems. This requires the broadest competencies in engineering, with a deep science foundation. At the core of Sandia's nuclear weapons program is warhead systems

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Brookhaven National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Synchrotron Light Source National Synchrotron Light Source Subject: NSLS Conduct of Operations Manual Number: LS-CO-0001 Revision: B Effective: 10/22/2007 Page 1 of 38 M. Buckley E. Zivogel A. Ackerman S. Dierker Prepared By: Approved By: J. Murphy C-C. Kao Revision Log *Approval signatures on file with master copy. TABLE OF CONTENTS Page INTRODUCTION ........DOE Order 5480.19...........................................................................................2 CHAPTER I ..................OPERATIONS ORGANIZATION AND ADMINISTRATION ......................3 CHAPTER II.................SHIFT ROUTINES & OPERATING PRACTICES .........................................6 CHAPTER III ...............CONTROL AREA ACTIVITIES......................................................................9

362

National Energy Technology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CRTD-80 CRTD-80 National Energy Technology Laboratory Final Report Carbon Sequestration Project Review Meeting Greater Pittsburgh International Airport Hyatt Hotel September 26-29, 2005 Volume I: Meeting Summary and Recommendations José D. Figueroa NETL Project Manager and Meeting Coordinator D:\Project Files\EPD\RDS Sequestration Project Review Task\Volume 1\ASME Final Version Nov 28 2005\2005 Carbon Sequestration Project Review Meeting Final 11292005.doc National Energy Technology Laboratory Final Report Carbon Sequestration Project Review Meeting Greater Pittsburgh International Airport Hyatt Hotel September 26-29, 2005 Volume I: Meeting Summary and Recommendations José D. Figueroa NETL Project Manager and Meeting Coordinator

363

Implementing the National Broadband  

Broader source: Energy.gov (indexed) [DOE]

Type text] Type text] Response to Request for Information from the Department of Energy: Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy [FR Doc. 2010-11127] July 12, 2010 EnerNOC Page 2 of 8 EnerNOC, Inc. ("EnerNOC") is pleased to provide these comments to the Department of Energy in response to the Request for Information "Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy." EnerNOC is a provider of demand response and energy efficiency solutions to utilities, Independent

364

2012 National Electricity Forum  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of Energy U.S. Department of Energy National Electric Transmission Congestion Study Workshop - December 6, 2011 National Electric Transmission Congestion Study Workshop - December 6, 2011 Hilton Philadelphia Airport, 4509 Island Avenue, Philadelphia, PA 19153 Hilton Philadelphia Airport, 4509 Island Avenue, Philadelphia, PA 19153 Agenda Agenda 8:00 am - 9:00 am Registration 9:00 am - 9:20 am DOE Welcome and Presentation David Meyer, US Department of Energy, Session Moderator 9:20 am - 10:30 am Panel I - Regulators * Garry Brown, Chairman, New York Public Service Commission * Edward S. Finley, Jr., Chairman, North Carolina Utilities Commission

365

Sandia National Laboratories (SNL)  

National Nuclear Security Administration (NNSA)

Sandia National Laboratories (SNL) Sandia National Laboratories (SNL) Current Projects with the Russian Federation Project Title: Development of Models of Energy Transfer in Nanostructured Materials. Russian Institute: Institute for Problems in Mechanical Engineering, Russian Academy of Sciences (IPME RAS), St. Petersburg. Brief Description: To develop modeling approaches and simulations to examine energy transport and transfer in materials with structural features at the nanoscale. Tasks include developing such a model for thin crystal structures subjected to short duration laser excitation, and using atomic-scale simulations to evaluate microscopic expressions for stress and heat flux in crystals containing defects such as vacancies, dislocations and bi-material interfaces.

366

National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

U.S. Department of Energy National Nuclear Security Administration Federal Equal Opportunity Recruitment Program Plan Certification - Fiscal Year 2011 Please type or print clearly and return this sheet with original signature to: Ms. Carmen Andujar, Manager Recruiting, Examining and Assessment Group Center for Talent and Capacity Policy Strategic Human Resources Policy Attn: FY 2011 FEORP Report U.S. Office of Personnel Management 1900 E Street, NW, Room 6547 Washington, D.C. 20415-9800 A. Name and Address of Agency National Nuclear Security Administration 1000 Independence Avenue, SW Washington, DC 20585 B. Name and Title of Designated FEORP Official (include address, if different from above,

367

National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

U.S. Department of Energy National Nuclear Security Administration Federal Equal Opportunity Recruitment Program Plan Certification - Fiscal Year 2009 Please type or print clearly and return this sheet with original signature to: Ms. Carmen Andujar, Manager Recruiting, Examining and Assessment Group Center for Talent and Capacity Policy Strategic Human Resources Policy Attn: FY 2009 FEORP Report U.S. Office of Personnel Management 1900 E Street, NW, Room 6547 Washington, D.C. 20415-9800 A. Name and Address of Agency National Nuclear Security Administration Office of Diversity and Outreach 1000 Independence Avenue, SW Washington, DC 20585 B. Name and Title of Designated FEORP Official (include address, if different from above,

368

Security | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Security Security Nonproliferation and Nuclear Forensics Decision Science Sensors and Materials Security Enhancing national and homeland security requires technological advancements in everything from biosensors to risk assessments. Game-changing scientific discovery is required for the development of sensors, detectors and other technological advancements used to protect and defend our country. At Argonne, our highly collaborative community of scientists and engineers discover and develop critical security and defense technologies to prevent and mitigate events with the potential for mass disruption or destruction, thereby protecting our citizens and our national interests. Our goal is to make America a safer place through innovations in threat decision science, sensors and materials, infrastructure assurance,

369

Lawrence Livermore National Laboratory - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Review Reports 2013 Independent Oversight Review of the Fire Protection Program at Lawrence Livermore National Laboratory, September 2013 Independent Oversight Review of Preparedness for Severe Natural Phenomena Events at the Lawrence Livermore National Laboratory, July 2013 Activity Reports 2013 Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility, February 2013 Activity Reports 2012 Lawrence Livermore National Laboratory Site Lead Planning Activities, October 2012 Review Reports 2011 Review of Integrated Safety Management System Effectiveness at the Livermore Site Office, October 2011 Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory, September 2011

370

Nevada National Security Site - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports Reports Nevada National Security Site Review Reports 2013 Independent Oversight Targeted Review of the Safety Significant Blast Door and Special Door Interlock Systems and Review of Federal Assurance Capability at the Nevada National Security Site, December 2013 Review of the Nevada National Security Site Criticality Safety Program Corrective Action Plan Closure, May 2013 Review Reports 2012 Review of the Nevada National Security Site Implementation Verification Review Processes, March 2012 Activity Reports 2012 Nevada National Security Site Operational Awareness Visit, December 2012 Operational Awareness Oversight of the Nevada National Security Site, August 2012 Review Reports 2011 Review of Nevada Site Office and National Security Technologies, LLC, Line Oversight and Contractor Assurance Systems

371

Hanford Site Celebrates National Native American Heritage Month...  

Office of Environmental Management (EM)

handle obsidian, a naturally occurring volcanic glass, which is part of a simulated fire hearth at the cultural test beds site. Hanford Site, Tribes Raise Awareness of...

372

National Sea Grant College What Does the National Sea Grant College Program Do for the Nation?  

E-Print Network [OSTI]

National Sea Grant College Program What Does the National Sea Grant College Program Do for the Nation? NOAA's National Sea Grant College Program enhances the practical use and conservation of coastal, marine, and Great Lakes resources to create a sustainable economy and environment. Sea Grant

373

Sandia National Laboratories  

E-Print Network [OSTI]

Sandia National Laboratories 7011 East Ave. Livermore, CA 94550 Las Positas College 3000 Campus competitions scheduled for the California Bay Area. The Science Bowl is a Jeopardy-like highly competitive Area competitions: Date (all on Saturdays): Location: Host: Regional HIGH SCHOOL Science Bowls January

374

National Laboratory Poornima Upadhya  

E-Print Network [OSTI]

-program national laboratory operated by Brookhaven Science Associates for the U.S. Department of Energy is not detrimentally affected by the magnetic fields produced by the MRI scanner. The technology allows one which includes a magnet for producing a magnetic field suitable for magnetic resonance imaging

375

National Security System Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The manual provides baseline requirements and controls for the graded protection of the confidentiality, integrity, and availability of classified information and information systems used or operated by the Department of Energy (DOE), contractors, and any other organization on behalf of DOE, including the National Nuclear Security Administration. Cancels DOE M 471.2-2. Canceled by DOE O 205.1B.

2007-03-08T23:59:59.000Z

376

United Nations Development Programme  

E-Print Network [OSTI]

United Nations Development Programme Bureau for Development Policy Energy and Atmosphere Programme Development Programme with support from the Government of Norway #12;The views expressed in this volume. #12;5 Acknowledgements 6 Notes on Authors 7 Foreword 9 Executive Summary 27 Introduction: Energy

377

National Laboratory Dorene Price  

E-Print Network [OSTI]

Brookhaven National Laboratory Dorene Price Office of Intellectual Property and Sponsored Research: price@bnl.gov ACTIVATED ALUMINUM HYDRIDE HYDROGEN STORAGE COMPOSITIONS AND USES THEREOF Brookhaven alternatives to increase the fuel economies of vehicles as well as other applications that require an energy

378

Comprehensive national energy strategy  

SciTech Connect (OSTI)

This Comprehensive National Energy Strategy sets forth a set of five common sense goals for national energy policy: (1) improve the efficiency of the energy system, (2) ensure against energy disruptions, (3) promote energy production and use in ways that respect health and environmental values, (4) expand future energy choices, and (5) cooperate internationally on global issues. These goals are further elaborated by a series of objectives and strategies to illustrate how the goals will be achieved. Taken together, the goals, objectives, and strategies form a blueprint for the specific programs, projects, initiatives, investments, and other actions that will be developed and undertaken by the Federal Government, with significant emphasis on the importance of the scientific and technological advancements that will allow implementation of this Comprehensive National Energy Strategy. Moreover, the statutory requirement of regular submissions of national energy policy plans ensures that this framework can be modified to reflect evolving conditions, such as better knowledge of our surroundings, changes in energy markets, and advances in technology. This Strategy, then, should be thought of as a living document. Finally, this plan benefited from the comments and suggestions of numerous individuals and organizations, both inside and outside of government. The Summary of Public Comments, located at the end of this document, describes the public participation process and summarizes the comments that were received. 8 figs.

NONE

1998-04-01T23:59:59.000Z

379

National Laboratory Poornima Upadhya  

E-Print Network [OSTI]

-program national laboratory operated by Brookhaven Science Associates for the U.S. Department of Energy-Exclusive · Exclusive Patent Status ApplicationFiled US-2007-0262269-A1 Product Describes a compact particle therapy in medical cancer therapy facilities. Inventor Dejan Trbojevic License Status Available for Licensing · Non

380

National Laboratory Contacts  

Broader source: Energy.gov [DOE]

Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

New Solicitations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

National Laser User Facilities Program New Solicitations New Solicitations National Laser Users' Facility Grant Program...

382

FY 2011 National Security Technologies, LLC, PER Summary | National Nuclear  

National Nuclear Security Administration (NNSA)

National Security Technologies, LLC, PER Summary | National Nuclear National Security Technologies, LLC, PER Summary | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog FY 2011 National Security Technologies, LLC, PER Summary Home > About Us > Our Operations > Acquisition and Project Management > Performance Evaluations > FY 2011 National Security Technologies, LLC, PER

383

FY 2007 National Security Technologies, LLC, PER Summary | National Nuclear  

National Nuclear Security Administration (NNSA)

National Security Technologies, LLC, PER Summary | National Nuclear National Security Technologies, LLC, PER Summary | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog FY 2007 National Security Technologies, LLC, PER Summary Home > About Us > Our Operations > Acquisition and Project Management > Performance Evaluations > FY 2007 National Security Technologies, LLC, PER

384

FY 2009 National Security Technologies, LLC, PER Summary | National Nuclear  

National Nuclear Security Administration (NNSA)

National Security Technologies, LLC, PER Summary | National Nuclear National Security Technologies, LLC, PER Summary | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog FY 2009 National Security Technologies, LLC, PER Summary Home > About Us > Our Operations > Acquisition and Project Management > Performance Evaluations > FY 2009 National Security Technologies, LLC, PER

385

Investigation of the thermal regime and geologic history of the Cascade volcanic arc: First phase of a program for scientific drilling in the Cascade Range  

SciTech Connect (OSTI)

A phased, multihole drilling program with associated science is proposed as a means of furthering our understanding of the thermal regime and geologic history of the Cascade Range of Washington, Oregon, and northern California. The information obtained from drilling and ancillary geological and geophysical investigations will contribute to our knowledge in the following general areas: (1) the magnitude of the regional background heat flow of parts of the Quaternary volcanic belt dominated by the most abundant volcanic rock types, basalt and basaltic andesite; (2) the nature of the heat source responsible for the regional heat-flow anomaly; (3) the characteristics of the regional hydrothermal and cold-water circulation; the rates of volcanism for comparison with models for the rate and direction of plate convergence of the Cascades; (5) the history of deformation and volcanism in the volcanic arc that can be related to subduction; (6) the present-day stress regime of the volcanic arc and the relation of these stresses to plate interactions and possible large earthquakes; and the current geometry of the subducted oceanic plate below the Cascade Range and the relationship of the plate to the distribution of heat flow, Quaternary volcanism, and Quaternary deformation. Phase I research will be directed toward a detailed investigation of the Santiam Pass segment. In concert with the Santiam Pass research, a detailed study of the nearby Breitenbush Hot Springs area is also recommended as a component of Phase I. The object of the Breitenbush research is to study one of the hottest known Cascade hydrothermal systems, which coincidentally also has a good geological and geophysical data base. A coordinated program of drilling, sampling, subsurface measurements, and surface surveys will be associated with the drilling of several holes.

Priest, G.R.

1987-01-01T23:59:59.000Z

386

Geology, geochemistry, and geochronology of volcanic rocks between Cuauhtemoc and La Junta, central Chihuahua, Mexico  

SciTech Connect (OSTI)

The 1200 km/sup 2/ area of this study straddles the boundary between the Sierra Madre Occidental and Basin and Range physiographic provinces and contains three north-northwest trending, block-faulted mountain ranges. The stratigraphy includes a 200 m thick sequence of ash-flow tuffs with subordinate mafic flows that either overlie or are interlayered with the ash-flow tuffs. This sequence overlies an approximately equal thickness of rhyolitic to dacitic flows and tuffs. At the base of the section occurs a distinctly different and thinner (about 50 m thick) sequence of flows, tuffs, and volcaniclastic sediments that is more nearly intermediate in average composition. The volcanic rocks of this study are primarily mafic and felsic with a bimodal distribution of Rb, Sr, and SiO/sub 2/ concentrations and other chemical parameters. The two modes have similar and overlapping ranges of initial /sup 87/Sr//sup 86/Sr ratios. Trace-element and major-element data generally support magmatic fractional crystallization as an important mechanism within each mode. Chemical trends within mafic rocks can be generated by 20 to 40% fractional crystallization of plagioclase and clinopyroxene (70:30 mixture). However, the formation of rhyolite or dacite from mafic rock requires implausible amounts of fractional crystallization of any proposed phenocryst assemblage, and thus the felsic rocks do not appear to be related to the mafic rocks by this mechanism. Most rhyolites of this study can form from dacitic liquid by 10 to 40% fractional crystallization of plagioclase and alkali feldspar (60:40 mixture).

Duex, T.W.

1983-01-01T23:59:59.000Z

387

National Security | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Areas Program Areas Initiatives Facilities Events and Conferences Supporting Organizations A scientific approach to global security Initiatives | Programs Home | Science & Discovery | National Security National Security | National Security SHARE ORNL plays an important role in national and global security by virtue of its expertise in advanced materials, nuclear science, supercomputing and other scientific specialties. Discovery and innovation in these areas are essential for protecting US citizens and advancing national and global security priorities. ORNL supports these missions by using its signature strengths to meet complex national security challenges in a number of areas. Nuclear Nonproliferation - The laboratory's expertise and experience covers the spectrum of nuclear nonproliferation work, from basic R&D to

388

DOE Congratulates Under Secretary, National Lab Director and Other National  

Broader source: Energy.gov (indexed) [DOE]

Congratulates Under Secretary, National Lab Director and Other Congratulates Under Secretary, National Lab Director and Other National Lab Scientists for Receiving Top Scientific Honor DOE Congratulates Under Secretary, National Lab Director and Other National Lab Scientists for Receiving Top Scientific Honor April 29, 2010 - 12:00am Addthis Washington, DC - U.S. Department of Energy Under Secretary for Science Steven E. Koonin, SLAC National Accelerator Laboratory Director Persis Drell, and other National Lab affiliated scientists and engineers are among the 72 new members elected to the National Academy of Sciences (NAS). NAS is a private, nonprofit, honorific society of distinguished scholars engaged in scientific and engineering research, dedicated to furthering science and technology and to their use for the general welfare.

389

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test Facility (NSTTF) Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

390

FY 2009 National Security Technologies, LLC, PER Summary | National...  

National Nuclear Security Administration (NNSA)

Fee Total Fee Earned % 23,150,112 21,529,431 93% National Security Technologies, LLC (NSTec), the management and operating contractor for the Nevada National Security Site,...

391

FY 2008 National Security Technologies, LLC, PER Summary | National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fee Total Fee Earned % 21,915,495 20,818,340 95% National Security Technologies, LLC (NSTec), the management and operating contractor for the Nevada National Security Site,...

392

FY 2006 National Security Technologies, LLC, PER Summary | National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fee Total Fee Earned % 5,717,227 5,431,366 85% National Security Technologies, LLC (NSTec), the management and operating contractor for the Nevada National Security Site,...

393

FY 2011 National Security Technologies, LLC, PER Summary | National...  

National Nuclear Security Administration (NNSA)

Total Fee Earned % 23,778,080 22,711,395 95.51% National Security Technologies, LLC (NSTec), the management and operating contractor for the Nevada National Security Site,...

394

FY 2010 National Security Technologies, LLC, PER Summary | National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Fee Earned % 21,963,057 19,293,505 87.8% National Security Technologies, LLC (NSTec), the management and operating contractor for the Nevada National Security Site,...

395

FY 2007 National Security Technologies, LLC, PER Summary | National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Fee Earned % 23,060,224 19,264,822 83.5% National Security Technologies, LLC (NSTec), the management and operating contractor for the Nevada National Security Site,...

396

Sandia National Laboratories: National Algae Testbed Public-Private...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Algae Testbed Public-Private Partnership The National Algae Testbed Public-Private Partnership Kick-Off Meeting at Arizona State University On July 25, 2013, in Biofuels,...

397

Notice of Availability for the National Ignition Facility Draft Supplemental Environmental Impact Statement (11/5/99)  

Broader source: Energy.gov (indexed) [DOE]

30 30 Federal Register / Vol. 64, No. 214 / Friday, November 5, 1999 / Notices natural or human environment. Because no significant environmental impacts will result from implementation of the proposed action, an Environmental Impact Statement is not required and will not be prepared. The Army will not initiate the proposed action for 15 days following the completion of the EA and FNSI and publication of a public notice in a local newspaper. This EA is available for review at the following repositories: Lassen Community College Library, Highway 139, P.O. Box 3000, Susanville, CA 96130; Lassen County Public Works, 707 Nevada Street, Suite 2, Susanville, CA 96130; and the Washoe County Library, Downtown Branch, 301 South Center Street, Reno NV 89501. Dated: November 1, 1999.

398

factsheet: National Prototype Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the World Safer the World Safer This enduring national asset integrates science and technology for manufacturing success that meets our customer's special manufacturability challenges. Since its establishment in 1997, more than 5,0 0 0 i ndustr ies and government agencies have capitalized on the resources of the National Prototype Center (NPC). These customers received subject -matter expertise as well as critical manufacturing resources enabling development of i n novat ive manufacturing solutions. Specializing in high-risk, complex prototype work, the NPC integrates manufacturing, engineering and science to build first-of-a-kind products. It also modifies or enhances existing products and develops new, innovative manufacturing processes to solve the toughest manufacturing problems.

399

Transportation | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Transportation From modeling and simulation programs to advanced electric powertrains, engines, biofuels, lubricants, and batteries, Argonne's transportation research is vital to the development of next-generation vehicles. Revolutionary advances in transportation are critical to reducing our nation's petroleum consumption and the environmental impact of our vehicles. Some of the most exciting new vehicle technologies are being ushered along by research conducted at Argonne National Laboratory. Our Transportation Technology R&D Center (TTRDC) brings together scientists and engineers from many disciplines across the laboratory to work with the U.S. Department of Energy (DOE), automakers and other industrial partners. Our goal is to put new transportation technologies on the road that improve

400

Second United Nations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nations Nations . DISCLAIMER This report was prepared a s an account of work sponsored by an agency of the United States Government. Neither t h e United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

I Bechtel National, Inc.  

Office of Legacy Management (LM)

Bechtel National, Inc. Bechtel National, Inc. Engineers - Constructors Jackson Plaza lower 800 Oak Ridge Turnpike Oak Ridge. Tennessee 37830 Mail Address P 0. Box 350. Oak Rrdge. TN 37831-0350 Telex 3785873 U . S . Department of Energy Oak Ridge Operations Post Office Box E Oak Ridge, Tennessee 37831 Attention: J. F. Wing, Supervisor Project Support Group > E r t > Subject : Bechtel Job No. 14501, FUSRAP Project z7 - Verification of Remedial Action at the University s of Chicago - - DOE Contract No. DE-AC05-810R20722 Code: 7350/WBS: 131 > Dear Mr. Wing: As you requested, we are enclosing a copy of the verification letter for the remedial action on the ventilation systems at the University of Chicago's Jones Hall. In addition, floor drains and sumps inside the Jones, Ryerson,

402

NATIONAL ENERGY POLICY A  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

merica's energy strength lies in merica's energy strength lies in the abundance and diversity of its energy resources, and in its technological leadership in de veloping and efficiently using these resources. Our nation has rich depos- its of coal, oil, and natural gas. The United Energy for a New Century Increasing Domestic Energy Supplies Figure 5-1 U.S. Energy Production: 1970-2000 Production of coal, the nation's most abundant fuel source, ex- ceeded 1 billion tons in 2000. Electricity generation accounted for about 90 percent of U.S. coal consumption last year. ________ Source: U.S. Department of Energy, Energy Information Administration. Coal Oil Nuclear 25 20 15 10 5 0 Non-hydro Renewables Hydropower 1970 80 90 00

403

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

announces Express Licensing program announces Express Licensing program August 1, 2013 Streamlined procedure speeds business access to new technology LOS ALAMOS, N.M., August 1, 2013-With the launch of a new "Express Licensing" program, access to innovative technology invented at Los Alamos National Laboratory (LANL) has gotten easier. The new licensing alternative was announced today by David Pesiri, director of LANL's Technology Transfer Division. "The Express License program offers an additional licensing resource for local entrepreneurs as well as national collaborators," Pesiri said. "Our licensing and software teams have worked very hard to offer this specialized model for those wanting to quickly license Los Alamos technology." - 2 - The Express Licensing program at LANL is the first of several new initiatives under

404

2012 National Electricity Forum  

Broader source: Energy.gov (indexed) [DOE]

National Electric Transmission Congestion Study National Electric Transmission Congestion Study Workshop - December 15, 2011 Sheraton San Diego Hotel & Marina, 1380 Harbor Island Drive, San Diego, California 92101 Agenda 8:00 am - 9:00 am Registration 9:00 am - 9:15 am DOE Welcome and Presentation David Meyer, US Department of Energy, Session Moderator 9:15 am - 10:30 am Panel I - Regulators * Rebecca D. Wagner, Commissioner, Nevada Public Utilities Commission * Charles Hains, Chief Counsel, Arizona Corporation Commission * Keith D. White, Ph.D., Regulatory Analyst, Energy Division, California Public Utilities Commission 10:30 am - 10:45 am Break 10:45 am - 12:00 pm Panel II - Industry

405

NATIONAL ENERGY POLICY U  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U U .S. national energy security de- pends on sufficient energy supplies to support U.S. and global economic growth. Energy policies that have em- phasized reliance on market forces have led to major energy security gains over the past two decades. Major improvements in explo- ration and production technology, as well as the trend toward opening new areas around the globe for exploration and devel- opment, have yielded significant dividends: Strengthening Global Alliances Enhancing National Energy Security and International Relationships * The U.S. and world economies have diversified their sources of oil sup- plies, largely through increased production in the Western Hemisphere, the North Sea, and Africa. * The world's fuel mix is also more diverse, primarily because of greater reli-

406

Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Laboratory National Laboratory Standard Procurement Forms An Acrobat Reader is needed to display these documents How to get an Acrobat Reader Date Form (Link to PDF) Title GSA Library of Standard Government Forms ANL Forms Repository PARIS Enrollment/Change Status Forms Argonne Terms & Conditions (headmark list) Suspect/Counterfeit Parts December 9, 2010 Poster PD-154 Appendix A - ARRA Supplement Previous Revisions: August 17,2010 August 7, 2009 Whistleblower Protection Poster Under Recovery Act January 24, 2013 ANL-71-COM Argonne Terms and Conditions for Commercial Items Previous Revisions: May 10, 2012 January 5, 2012 July 11, 2011 April 14, 2011 March 1, 2011 December 7, 2010 August 13, 2010 June 15, 2010 January 18, 2010 December 22, 2009 April 2, 2009

407

National Service Activation Checklist  

Broader source: Energy.gov (indexed) [DOE]

Service Activation Checklist Service Activation Checklist You have just received information that you are being activated for national service. Covered or Not Covered If you have received notice to report for active duty - Army, Navy, Marines, Air Force, National Guard, Public Health Service, or Coast Guard and you are a Federal employee, you have employment and reemployment rights under the Uniformed Services Employment and Reemployment Act of 1994 (USERRA). Basics - Telling People What is Happening 1. Have you told your spouse, family, best friend, or someone else who is important to you? Point of Contact for Department of Energy Use: Name: Telephone Number: E-mail: 2. Go to Employee Self-Service and make sure your personal information is up to date.

408

Science | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Argonne Research Library supports the scientific and technical research The Argonne Research Library supports the scientific and technical research of the employees of Argonne National Laboratory. While the library is not open to the public, we do make our catalog available for searching. The Institute for Molecular Engineering explores innovative technologies that address fundamental societal problems through advances in nanoscale manipulation and design at a molecular scale. Women in Science and Technology (WIST) aims to promote the success of women in scientific and technical positions at Argonne. Science The best and brightest minds come to Argonne to make scientific discoveries and technological innovations that improve the quality of life throughout the nation and the world. The best and brightest minds come to Argonne.

409

2012 National Electricity Forum  

Broader source: Energy.gov (indexed) [DOE]

1 1 U.S. Department of Energy U.S. Department of Energy National Electric Transmission Congestion Study Workshop - December 8, 2011 National Electric Transmission Congestion Study Workshop - December 8, 2011 Hilton St. Louis Airport, 10330 Natural Bridge Road, St. Louis, Missouri 63134 Hilton St. Louis Airport, 10330 Natural Bridge Road, St. Louis, Missouri 63134 Agenda Agenda 8:00 am - 9:00 am Registration 9:00 am - 9:20 am DOE Welcome and Presentation David Meyer, US Department of Energy, Session Moderator 9:20 am - 10:30 am Panel I - Regulators * Kevin D. Gunn, Chairman, Missouri Public Service Commission * Jerry Lein, Staff Engineer, North Dakota Public Service Commission

410

S ARGONNE NATIONAL LABORATORY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARGONNE NATIONAL LABORATORY ARGONNE NATIONAL LABORATORY 19 ON CLOSED SHEIIS IN NUCLEI. II Maria G. Mayer April., 1949 Feenberg (1) ' (2) and Nordlkeim (3) have used the spins and magnetic moments of the even-odd nuclei to determine the angular momentum of the eigenfunction of the odd particle. The tabulations given by them indi- cate that spin orbit coupling favors the state of higher total angular momentum, If - strong spin.orbit coupling' increasing with angular mom- entum is assumed, a level assignment encounters a very few contradictions. with experimental facts and requires no major crossing of the levels from those of a square well potential. The magic numbers O, 82, and 126 occur at the' place of the spin-orbit splitting of levels of high angular momen- tum, Table 1 contains in column two in order

411

NATIONAL ENERGY POLICY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

viii viii Over the next 20 years, growth in U.S. energy consumption will increasingly outpace U.S. energy production, if production only grows at the rate of the last 10 years. ________ Sources: Sandia National Laboratories and U.S. Department of Energy, Energy Information Administration. (Quadrillion Btus) 2000 2005 2010 2015 2020 Energy Production at 1990-2000 Growth Rates 140 120 100 80 60 40 20 0 Overview Reliable, Affordable, and Environmentally Sound Energy for America's Future I n his second week in office, President George W. Bush established the Na- tional Energy Policy Development Group, directing it to "develop a national energy policy designed to help the private sector, and, as necessary

412

ARGONNE NATIONAL LABORATORY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IL IL 60439 ANL/MCS-TM-234 Users Guide for ROMIO: A High-Performance, Portable MPI-IO Implementation by Rajeev Thakur, Robert Ross, Ewing Lusk, William Gropp, Robert Latham Mathematics and Computer Science Division Technical Memorandum No. 234 Revised May 2004, November 2007, April 2010 This work was supported by the Mathematical, Information, and Computational Sciences Division subpro- gram of the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38; and by the Scalable I/O Initiative, a multiagency project funded by the Defense Ad- vanced Research Projects Agency (Contract DABT63-94-C-0049), the Department of Energy, the National Aeronautics and Space Administration, and the National Science Foundation. Contents Abstract 1 1 Introduction 1 2 Major Changes in This Version 1 3 General Information 1 3.1 ROMIO Optimizations

413

Implementing the National Broadband  

Broader source: Energy.gov (indexed) [DOE]

Before the Before the Department of Energy Washington, D.C. 20585 In the Matter of Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities To Inform Federal Smart Grid Policy NBP RFI: Communications Requirements COMMENTS OF BALTIMORE GAS & ELECTRIC COMPANY I. Introduction BGE is the nation's oldest and most experienced utility company. It has met the energy needs of central Maryland for nearly 200 years. Today, it serves more than 1.2 million business and residential electric customers, and approximately 650,000 gas customers in an economically diverse, 2,300-square-mile area encompassing Baltimore City and all or part of ten central Maryland counties.

414

ARGONNE NATIONAL LABORATORY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Empirical Empirical performance modeling of GPU kernels using active learning 1 Prasanna Balaprakash 2 , Karl Rupp 2 , Azamat Mametjanov 2 , Robert B. Gramacy 3 , Paul D. Hovland 2 , Stefan M. Wild 2 Mathematics and Computer Science Division Preprint ANL/MCS-P4097-0713 July 2013 1 Support for this work was provided through the SciDAC program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, under Contract No. DE-AC02-06CH11357. 2 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA 3 Booth School of Business, University of Chicago Empirical performance modeling of GPU kernels using active learning Prasanna Balaprakash 1 , Karl Rupp 1 , Azamat Mametjanov 1 Robert B. Gramacy 2 , Paul D. Hovland 1 , Stefan M. Wild 1 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

415

Northwest National Labo-  

Broader source: Energy.gov (indexed) [DOE]

Northwest National Labo- Northwest National Labo- ratory. Daniel Poneman, Deputy Secretary of Energy, dis- cussed the importance of having the Federal and contractor staffs working closely together and using peer reviews and the DOE core management princi- ples to provide excellence in project management. Mel Williams, Jr., Associate Deputy Secretary of En- ergy, discussed the leader- ship principles of align- ment, accountability and execution. A special thanks to all who made the workshop a suc- cess. These presenta- tions, and others provided at the event, are posted at the link below. By Steven H. Rossi, P.E., PMP, LEED AP, CCE OECM On March 15-16, the Office of Engineering and Con- struction Management (OECM) hosted the 2011 DOE Project Management Workshop at the Holiday

416

The National Renewable  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

National Renewable National Renewable Energy Laboratory's (NREL) Alternative Fuels Utilization Program, which is widely known for its alternative fuel vehicle (AFV) emissions information, is also doing much to bring better alternative fuel vehicles to the field. Many of the AFVs of tomor- row will include components developed through NREL's research, which is sponsored by the U.S. Department of Energy (DOE). Most of NREL's projects involve ethanol, methanol, natural gas, biodiesel, and propane, but researchers are also working on future fuels such as hydrogen and dimethyl ether. In this issue of AFDC Update, we highlight a few of these projects. Up-to-date fact sheets are available on line through the AFDC World Wide Web (WWW) site at: http://www. afdc.doe.gov/fuelutil/engoptim.html.

417

National Infrastructure Protection Plan  

Broader source: Energy.gov (indexed) [DOE]

Infrastructure Infrastructure Protection Plan 2006 Preface Preface i The ability to protect the critical infrastructure and key resources (CI/KR) of the United States is vital to our national security, public health and safety, economic vitality, and way of life. U.S. policy focuses on the importance of enhancing CI/KR protection to ensure that essential governmental missions, public services, and economic functions are maintained in the event of a

418

National Synchrotron Light Source  

ScienceCinema (OSTI)

A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

BNL

2009-09-01T23:59:59.000Z

419

The Department of Energy's National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

THE THE DEPARTMENT OF ENERGY'S National Laboratories All National Laboratories Achievements History Argonne National Laboratory (ANL) Achievements History Brookhaven National Laboratory (BNL) Achievements History Fermi National Accelerator Laboratory (FNAL) Achievements History Idaho National Laboratory (INL) Achievements History Lawrence Berkeley National Laboratory (LBNL) Achievements History Lawrence Livermore National Laboratory (LLNL) Achievements History Los Alamos National Laboratory (LANL) Achievements History National Energy Technology Laboratory (NETL) Achievements History National Renewable Energy Laboratory (NREL) Achievements History Oak Ridge National Laboratory (ORNL) Achievements History Pacific Northwest National Laboratory (PNNL) Achievements History

420

Los Alamos National Laboratory - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Nuclear Safety Home Nuclear Sites Map Nuclear Sites List › Argonne National Laboratory › East Tennessee Technology Park › Hanford › Idaho Site › Los Alamos National Laboratory › Lawrence Livermore National Laboratory › Nevada National Security Site › New Brunswick Laboratory › Oak Ridge National Laboratory › Paducah › Pantex › Pacific Northwest National Laboratory › Portsmouth Gaseous Diffusion Plant › Sandia National Laboratories › Savannah River Site › Waste Isolation Pilot Plant › West Valley Demonstration Project › Y-12 National Security Complex HSS Reports - Enforcement - Corporate Safety Analysis Fire Protection DOELAP - Safety and Emergency Management Evaluations Safety Basis Information System Office of Corporate Safety Analysis

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

National Mining Association Experimental Determination  

E-Print Network [OSTI]

National Mining Association Experimental Determination of Radon Fluxes over Water #12;Introduction research funded by the National Mining Association (NMA) regarding radon fluxes from water surfaces surfaces at uranium recovery operations are insignificant and approximate background soil fluxes for most

422

Contact OAK RIDGE NATIONAL LABORATORY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact OAK RIDGE NATIONAL LABORATORY ORNL is managed by UT-Battelle for the US Department of Energy Solving the big problems Oak Ridge National Laboratory is the largest US...

423

National Laboratory Impact Initiative Team  

Office of Energy Efficiency and Renewable Energy (EERE)

The mission of the Office of Energy Efficiency and Renewable Energy's (EERE's) National Laboratory Impact Initiative is to significantly increase the industrial impact of the Energy Department's national laboratories on the U.S. clean energy sector.

424

Sandia National Laboratories: Solar Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergySolar EnergySolar Newsletter Solar Newsletter T Receive Updates Go Govbubble20px.png?3.21 Sandia National Laboratory - Energy & Climate banner image Sandia National...

425

National Ignition Facility & Photon Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 National Ignition Facility & Photon Science how do Lasers work? how Do Lasers work? A laser can be as small as a microscopic computer chip or as immense as the National Ignition...

426

About SRNL - Directorates - National Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Security Environmental Stewardship Science and Technology Clean Energy Nuclear Materials Program Integration Strategic Development and Technical Partnerships Global...

427

Counterterrorism and Counterproliferation | National Nuclear...  

National Nuclear Security Administration (NNSA)

and Counterproliferation | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

428

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

20, 2013, in CINT, Facilities, Grid Integration, Infrastructure Security, Materials Science, Partnership, Research & Capabilities, Transmission Grid Integration The nation's...

429

National Environmental Policy Act | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Environmental ... National Environmental ... National Environmental Policy Act The National Environmental Policy Act of 1969 requires all federal agencies to consider the environmental impacts of their proposed actions and the reasonable alternatives for implementing those actions during the decision making process. The Y-12 National Security Complex follows the Council on Environmental Quality regulations (40 CFR 1500-1508) and the Department of Energy's Implementing Procedures (10 CFR 1021). There are three types of NEPA documents, an Environmental Impact Statement, and Environmental Assessment, and a Categorical Exclusion Determination. Categorical exclusions are classes of DOE actions that DOE has, by regulation, determined do not individually or cumulatively have a

430

Office of National Infrastructure & Sustainability | National Nuclear  

National Nuclear Security Administration (NNSA)

National Infrastructure & Sustainability | National Nuclear National Infrastructure & Sustainability | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Office of National Infrastructure & Sustainability Home > About Us > Our Programs > Nonproliferation > Nuclear Nonproliferation Program Offices > Office of International Material

431

FY 2012 Lawrence Livermore National Security, LLC, PEP | National Nuclear  

National Nuclear Security Administration (NNSA)

PEP | National Nuclear PEP | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog FY 2012 Lawrence Livermore National Security, LLC, PEP Home > About Us > Our Operations > Acquisition and Project Management > Performance Evaluations > FY 2012 Lawrence Livermore National Security, LLC, PEP FY 2012 Lawrence Livermore National Security, LLC, PEP

432

FY 2012 National Security Technologies, LLC, PEP | National Nuclear  

National Nuclear Security Administration (NNSA)

PEP | National Nuclear PEP | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog FY 2012 National Security Technologies, LLC, PEP Home > About Us > Our Operations > Acquisition and Project Management > Performance Evaluations > FY 2012 National Security Technologies, LLC, PEP FY 2012 National Security Technologies, LLC, PEP

433

National Algal Biofuels Technology Roadmap  

E-Print Network [OSTI]

National Algal Biofuels Technology Roadmap MAY 2010 BIOMASS PROGRAM #12;#12;U.S. DOE 2010. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Visit http://biomass.energy.gov for more information National Algal Biofuels

434

NATIONAL RESEARCH COUNCIL Executive Office  

E-Print Network [OSTI]

) and Independent Scientific Review Panel (ISRP). Dr. David Policansky of the National Research Council's Board Commission, the National Research Council's Board on Environmental Studies and Toxicology is pleased nominees. In addition, several members of the National Research Council's (NRC's) Board on Environmental

435

E-Print Network 3.0 - aps hans lassen Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storch ist Direktor des Instituts fr Kstenforschung am GKSS-Forschungszentrum in Geesthacht... . Bitte erlutern Sie warum. Hans von Storch: Ich halte das IPCC fr eine sehr...

436

Integrating Sub-national Actors into National Mitigation Strategies Through  

Open Energy Info (EERE)

Integrating Sub-national Actors into National Mitigation Strategies Through Integrating Sub-national Actors into National Mitigation Strategies Through Vertically Integrated NAMAs (V-NAMAs) Jump to: navigation, search Name Integrating Sub-national Actors into National Mitigation Strategies Through Vertically Integrated NAMAs (V-NAMAs) Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Renewable Energy Topics Low emission development planning, -LEDS, -NAMA Program Start 2011 Program End 2014 Country Indonesia, South Africa South-Eastern Asia, Southern Africa References Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ)[1] Program Overview Many future NAMAs will only be successful to the extent that the sub-national players who also carry responsibility - such as provinces

437

Los Alamos National Laboratory | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Laboratory | National Nuclear Security Administration National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our Locations > Los Alamos National Laboratory Los Alamos National Laboratory http://www.lanl.gov/ Field Office: Los Alamos Field Office (NA-00-LA) manages the resources of the NNSA Los Alamos National Weapons Design Laboratory. NA-00-LA aims to

438

EA-1933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation  

Broader source: Energy.gov (indexed) [DOE]

933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation 933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation Reservation, WA EA-1933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation Reservation, WA SUMMARY DOE is a cooperating agency with the Department of the Interior's Bureau of Indian Affairs as a lead agency for the preparation of an EA to evaluate the potential environmental impacts of a proposal by the Confederated Tribes and Bands of the Yakama Nation Department of Natural Resources to install an inline turbine on the Wapato Irrigation Project (WIP) Main Canal to generate approximately one megawatt of supplemental hydroelectric power. The Main Canal is a non-fish bearing irrigation canal within the WIP water conveyance system. The project site is located two miles southwest of Harrah, Washington.

439

A Nuclear Family: Y-12 National Security Complex | National Nuclear  

National Nuclear Security Administration (NNSA)

Nuclear Family: Y-12 National Security Complex | National Nuclear Nuclear Family: Y-12 National Security Complex | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > A Nuclear Family: Y-12 National Security Complex A Nuclear Family: Y-12 National Security Complex Posted By Office of Public Affairs Nuclear family "A Nuclear Family: Y-12 National Security Complex" is a four episode

440

Sandia National Laboratories: About Sandia: Community Involvement: National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Board Certification National Board Certification Sandia National Laboratories and Lockheed Martin recognize the importance of quality teaching and promote the professional development of math and science teachers in New Mexico. A National Research Council (NRC) of the National Academies report affirms many of the positive findings of other research into the affects of National Board Certification. According to the rigorous and comprehensive report, the National Board for Professional Teach Standards (NBPTS) have had a positive impact on student achievement, teacher retention, and professional development. Certifications are available in mathematics (Early Adolescence, Adolescence and Young Adulthood) and science (Early Adolescence, Adolescence and Young Adulthood). Candidates are strongly encouraged to attend the Pre-Candidate

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Y-12 National Security Complex | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Home > About Us > Our Locations > Y-12 National Security Complex Home > About Us > Our Locations > Y-12 National Security Complex Y-12 National Security Complex http://www.y12.doe.gov/ Field Office: The NNSA Production Office is responsible for contract management and oversight of the Pantex Plant in Amarillo, Texas and the Y-12 National Security Complex in Oak Ridge, Tenn. Y-12 supports the Nuclear Security Enterprise through nuclear material processing, manufacturing and storage operations and nuclear nonproliferation activities and provides enriched uranium feedstock for the U.S. Navy. National Security Complex: The Y-12 National Security Complex (Y-12) serves as the nation's only source of enriched uranium nuclear weapons components and provides enriched uranium for the U.S. Navy. Y-12 is a leader in materials science and precision manufacturing and serves as the

442

National Nuclear Security Administration Overview  

Broader source: Energy.gov (indexed) [DOE]

1, 2011 - 1, 2011 - Page 1 National Transportation Stakeholders Forum Denver, Colorado May 11, 2011 Ahmad Al-Daouk Manager, National Security Department (NSD) National Nuclear Security Administration (NNSA) Service Center - Albuquerque, NM May 11, 2011 - Page 2 National Transportation Stakeholders Forum (NTSF) * Introduction * NNSA Certifying Official Role * Offsite Source Recovery Project * Waste Shipments * Nuclear Materials Management Planning * Summary May 11, 2011 - Page 3 NNSA Plays a Critical Role: Ensuring our Nation's Security * Maintaining the safety, security and effectiveness of the nuclear weapons stockpile without nuclear testing * Reducing the global danger from the proliferation of nuclear weapons and materials * Provide safe and effective nuclear propulsion for the

443

2012 National Electricity Forum  

Broader source: Energy.gov (indexed) [DOE]

National Electric Transmission Congestion Study Workshop - December 13, 2011 Sheraton Portland Airport Hotel, 8235 Northeast Airport Way, Portland, OR 97220 Agenda 8:00 am - 9:00 am Registration 9:00 am - 9:20 am DOE Welcome and Presentation David Meyer, US Department of Energy, Session Moderator 9:20 am - 10:15 am Panel I - Regulators * John Savage, Commissioner, Oregon Public Utilities Commission * Marsha Smith, Commissioner, Idaho Public Utilities Commission * Steve Oxley, Deputy Chairman, Wyoming Public Service Commission * Philip B. Jones, Commissioner, Washington Utilities and Transportation Commission 10:15 am - 10:30 am Break

444

Implementing the National Broadband  

Broader source: Energy.gov (indexed) [DOE]

Consumer and the Consumer and the Smart Grid: Data Access, Third Party Use and Privacy NBP RFI: Data Access, Third Party Use and Privacy COMMENTS OF BALTIMORE GAS & ELECTRIC COMPANY I. Introduction BGE is the nation's oldest and most experienced utility company. It has met the energy needs of Central Maryland for nearly 200 years. Today, it serves more than 1.2 million business and residential electric customers and approximately 650,000 gas customers in an economically diverse, 2,300-square-mile area encompassing Baltimore City and all or part of ten central Maryland counties. BGE already has many systems that it considers to be "smart." For example:

445

Lawrence Livermore National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March/April 2008 March/April 2008 4 Lawrence Livermore National Laboratory Extending the Search for Extending the Search for A new imager will allow astrophysicists to study the atmospheres of distant planets. T HE discovery of other solar systems beyond ours has been the stuff of science fiction for decades. Great excitement greeted the positive identification of the first planet outside our solar system in 1995. Since then, scientists have identified approximately 250 extrasolar planets (exoplanets), but they have had no way to study the majority of these planets or their

446

Program Objectives | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

National Laser Users' Facility Grant Program Program Objectives Program Objectives National Laser Users' Facility Grant Program Objectives The primary purpose of the National...

447

Independent Oversight Review, Argonne National Laboratory - November...  

Energy Savers [EERE]

Argonne National Laboratory - November 2011 Independent Oversight Review, Argonne National Laboratory - November 2011 November 2011 Review of the Argonne National Laboratory...

448

Independent Oversight Review, Oak Ridge National Laboratory ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Laboratory - January 2013 Independent Oversight Review, Oak Ridge National Laboratory - January 2013 January 2013 Review of the Oak Ridge National Laboratory High Flux...

449

Oversight Reports - Oak Ridge National Laboratory | Department...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory Oversight Reports - Oak Ridge National Laboratory April 24, 2014 Independent Oversight Targeted Review, Oak Ridge National Laboratory - April 2014...

450

National Cybersecurity Awareness Month (NCSAM) Campaigns | Department...  

Broader source: Energy.gov (indexed) [DOE]

National Cybersecurity Awareness Month (NCSAM) Campaigns National Cybersecurity Awareness Month (NCSAM) Campaigns Each year the OCIO recognizes October as National Cybersecurity...

451

National Training Center | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organizational Chart National Training Center National Training Center MISSION The National Training Center (NTC), the Department's Center of Excellence for Security and Safety...

452

National Securities Technologies _NSTec_ Livermore Operations...  

Broader source: Energy.gov (indexed) [DOE]

National Nuclear Security Administration NRTL Nationally Recognized Testing Laboratory NSTec National Security Technologies, LLC NTS Nevada Test Site OSHA Occupational Safety and...

453

National Transportation Stakeholders Forum | Department of Energy  

Office of Environmental Management (EM)

Stakeholders Forum National Transportation Stakeholders Forum Presentation by Ahmad Al-Daouk, Director of National Security Department NNSA Service Center National...

454

2012 National Electricity Forum | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

National Electricity Forum 2012 National Electricity Forum At the 2012 National Electricity Forum, held February 8-9, 2012 and jointly organized by DOE's Office of Electricity...

455

National Laboratory Contacts | Department of Energy  

Office of Environmental Management (EM)

National Laboratory Contacts National Laboratory Contacts The Geothermal Technologies Office works closely with several DOE national laboratories in managing and contributing to...

456

Department of Energy National Laboratories A - L  

Office of Scientific and Technical Information (OSTI)

Department of Energy National Laboratories A - L DOE National Laboratories N- T Other Major Laboratories and Facilities National Laboratories The Department of Energy (DOE) has...

457

Department of Energy National Laboratories N - T  

Office of Scientific and Technical Information (OSTI)

Energy National Laboratories N - T DOE National Laboratories A - L Other Major Laboratories and Facilities National Laboratories The Department of Energy (DOE) has seventeen...

458

Schneider National | Open Energy Information  

Open Energy Info (EERE)

National National Jump to: navigation, search Name Schneider National Place Denver, CO Website http://www.schneidernational.c References Schneider National[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnership Year 2004 Link to project description http://www.nrel.gov/news/press/2004/383.html LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Schneider National is a company located in Denver, CO. References ↑ "Schneider National" Retrieved from "http://en.openei.org/w/index.php?title=Schneider_National&oldid=381706" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link

459

Argonne National Laboratory - Enforcement Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enforcement Documents Enforcement Documents Argonne National Laboratory Preliminary Notice of Violation issued to the University of Chicago related to Nuclear Safety Program Deficiencies at Argonne National Laboratory, March 7, 2006 (EA-2006-02) - University of Chicago/Argonne National Laboratory - Press Release, March 7, 2006 Preliminary Notice of Violation issued to the University of Chicago related to the Uncontrolled Release of Radioactive Material at Argonne National Laboratory-East, August 14, 2001 (EA-2001-05) - Argonne National Laboratory - Press Release, August 17, 2001 Preliminary Notice of Violation issued to the University of Chicago related to Programmatic Management Failures at Argonne National Laboratory-West, February 28, 2001 (EA-2001-01) - Argonne National Laboratory-West - Press Release, March 2, 2001

460

The PlioQuaternary volcanic evolution of Gran Canaria based on new KAr ages and magnetostratigraphy  

Science Journals Connector (OSTI)

The combined use of radiometric dating (51 new unspiked KAr ages), magnetostratigraphy and field geology establishes a new time framework for the last two stages of the volcanic evolution of Gran Canaria. Most of the dated samples have ages coherent with their stratigraphic positions and magnetic polarities. Our new set of data extends the end of the Roque Nublo (RN) group, one of the main posterosive stages of Gran Canaria which started about 4.9 Ma ago, to ages as young as 2.87 Ma. This is about 0.7 Ma younger than previously thought. Moreover, the dating of samples collected in well-defined stratigraphic sequences supports the contemporaneity of the early stages of the post-Roque Nublo group and the vanishing activity of the Roque Nublo stratovolcano between 3.7 and 2.9 Ma. The multiple lateral collapses of the Roque Nublo stratovolcano occurred during this period between 3.5 and 3.1 Ma which corresponds to a main period of volcanic quiescence. After 2.9 Ma, the effusive activity propagated along a well-defined NWSE rift until about 1.5 Ma, shifting progressively from a rifting propagation to platform-forming lavas. Thereafter, the activity is very disperse and belongs to the Brunhes period, with most of it before 500 ka.

Herv Guillou; Francisco Jos Perez Torrado; Alex R Hansen Machin; Juan Carlos Carracedo; Domingo Gimeno

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Geologic Controls of Hydraulic Conductivity in the Snake River Plain Aquifer At and Near the Idaho National Engineering and Environmental Laboratory, Idaho  

SciTech Connect (OSTI)

The effective hydraulic conductivity of basalt and interbedded sediment that compose the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory (INEEL) ranges from about 1.0x10 -2 to 3.2x10 4 feet per day (ft/d). This six-order-of-magnitude range of hydraulic conductivity was estimated from single-well aquifer tests in 114 wells, and is attributed mainly to the physical characteristics and distribution of basalt flows and dikes. Hydraulic conductivity is greatest in thin pahoehoe flows and near-vent volcanic deposits. Hydraulic conductivity is least in flows and deposits cut by dikes. Estimates of hydraulic conductivity at and near the INEEL are similar to those measured in similar volcanic settings in Hawaii. The largest variety of rock types and the greatest range of hydraulic conductivity are in volcanic rift zones, which are characterized by numerous aligned volcanic vents and fissures related to underlying dikes. Three broad categories of hydraulic conductivity corresponding to six general types of geologic controls can be inferred from the distribution of wells and vent corridors. Hydraulic conductivity of basalt flows probably is increased by localized fissures and coarse mixtures of interbedded sediment, scoria, and basalt rubble. Hydraulic conductivity of basalt flows is decreased locally by abundant alteration minerals of probable hydrothermal origin. Hydraulic conductivity varies as much as six orders of magnitude in a single vent corridor and varies from three to five orders of magnitude within distances of 500 to 1,000 feet. Abrupt changes in hydraulic conductivity over short distances suggest the presence of preferential pathways and local barriers that may greatly affect the movement of ground water and the dispersion of radioactive and chemical wastes downgradient from points of waste disposal.

S. R. Anderson; M. A. Kuntz; L. C. Davis

1999-02-01T23:59:59.000Z

462

National Park Service - Yellowstone National Park, Wyoming | Department of  

Broader source: Energy.gov (indexed) [DOE]

Yellowstone National Park, Wyoming Yellowstone National Park, Wyoming National Park Service - Yellowstone National Park, Wyoming October 7, 2013 - 10:15am Addthis Photo of Photovoltaic System at Lamar Buffalo Ranch in Yellowstone National Park Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are currently being used by the Yellowstone Association Institute for ecology classes. Since the ranch is located in the northeast corner of the park it is quite isolated from the commercial power grid, and power has been traditionally supplied by propane generators. The generators are now only a backup system

463

Pantex receives National Weather Service recognition | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Weather Service recognition | National Nuclear National Weather Service recognition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex receives National Weather Service recognition Pantex receives National Weather Service recognition Posted By Office of Public Affairs On the plains of the Texas Panhandle, it pays to be ready for unpredictable

464

Leader, Los Alamos National Laboratory Stimulus Project | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leader, Los Alamos National Laboratory Stimulus Project | National Nuclear Leader, Los Alamos National Laboratory Stimulus Project | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Carolyn Zerkle Leader, Los Alamos National Laboratory Stimulus Project Carolyn Zerkle Carolyn Zerkle Role: Leader, Los Alamos National Laboratory Stimulus Project

465

National Environmental Policy Act (NEPA) | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Environmental Policy Act (NEPA) | National Nuclear Security Environmental Policy Act (NEPA) | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog National Environmental Policy Act (NEPA) Home > About Us > Our Operations > NNSA Office of General Counsel > National Environmental Policy Act (NEPA) National Environmental Policy Act (NEPA) Welcome to the U.S. Department of Energy National Nuclear Security

466

Los Alamos National Laboratory | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Los Alamos National Laboratory Los Alamos National Laboratory Home > About Us > Our Operations > Acquisition and Project Management > M & O Support Department > Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos National Laboratory DE-AC52-06NA25396 Operated by Los Alamos National Security, LLC Conformed to Modification Mod 242 dated 09/29/2013 BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Unofficial) LANL Basic Contract dated 12/21/05 (pdf, 5,501KB) LANL A004 (8/11/06) (pdf, 501KB) LANL Conformed Contract (Conformed to Mod 242, 09/29/2013) LANL A008 (9/29/06) (pdf, 485KB) LANL A009 (9/29/06) (pdf, 410KB) LANL A010 (9/30/06) (doc, 483KB) LANL A011(10/31/06) (pdf,6290KB) LANL A015 (1/25/07) (pdf, 954KB)

467

Bruce Held visits Y-12 National Security Complex | National Nuclear  

National Nuclear Security Administration (NNSA)

Held visits Y-12 National Security Complex | National Nuclear Held visits Y-12 National Security Complex | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Bruce Held visits Y-12 National Security Complex Bruce Held visits Y-12 National Security Complex Posted By Office of Public Affairs Acting NNSA Administrator and Acting Undersecretary for Nuclear Security

468

National Laser User Facilities Program | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laser User Facilities Program | National Nuclear Security Laser User Facilities Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog National Laser User Facilities Program Home > National Laser User Facilities Program National Laser User Facilities Program National Laser Users' Facility Grant Program Overview The Laboratory for Laser Energetics (LLE) at the University of Rochester

469

EA-1914: National Renewable Energy Laboratory (NREL) National Wind  

Broader source: Energy.gov (indexed) [DOE]

EA-1914: National Renewable Energy Laboratory (NREL) National Wind EA-1914: National Renewable Energy Laboratory (NREL) National Wind Technology Center (NWTC) Site-Wide Environmental Assessment, Golden, CO EA-1914: National Renewable Energy Laboratory (NREL) National Wind Technology Center (NWTC) Site-Wide Environmental Assessment, Golden, CO SUMMARY This Site-Wide EA will evaluate the environmental impacts of reasonably foreseeable activities at NWTC. Currently, natural resource surveys are in progress including wildlife, vegetation, avian, and bat surveys to establish baseline conditions of the NWTC. The proposed EA would address any changes in the regional environment that may have occurred since the previous EA and would evaluate new site development proposals and operations. A site-wide review provides an overall NEPA baseline that is

470

FY 2009 Lawrence Livermore National Security, LLC, PER Summary | National  

National Nuclear Security Administration (NNSA)

Lawrence Livermore National Security, LLC, PER Summary | National Lawrence Livermore National Security, LLC, PER Summary | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog FY 2009 Lawrence Livermore National Security, LLC, PER Summary Home > About Us > Our Operations > Acquisition and Project Management > Performance Evaluations > FY 2009 Lawrence Livermore National Security,

471

Director at Sandia National Laboratories | National Nuclear Security  

National Nuclear Security Administration (NNSA)

at Sandia National Laboratories | National Nuclear Security at Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Sidney Gutierrez Director at Sandia National Laboratories Sidney Gutierrez Sidney Gutierrez Role: Director at Sandia National Laboratories Award: 2010 Notable New Mexican

472

Drell receives National Medal of Science | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Drell receives National Medal of Science | National Nuclear Security Drell receives National Medal of Science | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Drell receives National Medal of Science Drell receives National Medal of Science Posted By Office of Public Affairs NNSA Blog Sidney Drell, physicist, arms control expert and adviser, is one

473

National Laser User Facilities Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

User Facilities Program | National Nuclear Security User Facilities Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog National Laser User Facilities Program Home > National Laser User Facilities Program National Laser User Facilities Program National Laser Users' Facility Grant Program Overview The Laboratory for Laser Energetics (LLE) at the University of Rochester

474

Leader, Los Alamos National Laboratory Stimulus Project | National Nuclear  

National Nuclear Security Administration (NNSA)

Leader, Los Alamos National Laboratory Stimulus Project | National Nuclear Leader, Los Alamos National Laboratory Stimulus Project | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Carolyn Zerkle Leader, Los Alamos National Laboratory Stimulus Project Carolyn Zerkle Carolyn Zerkle Role: Leader, Los Alamos National Laboratory Stimulus Project

475

National Environmental Policy Act (NEPA) | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Policy Act (NEPA) | National Nuclear Security Environmental Policy Act (NEPA) | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog National Environmental Policy Act (NEPA) Home > About Us > Our Operations > NNSA Office of General Counsel > National Environmental Policy Act (NEPA) National Environmental Policy Act (NEPA) Welcome to the U.S. Department of Energy National Nuclear Security

476

National Smart Water Grid  

SciTech Connect (OSTI)

The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US-Mexico border; and decreased eutrophication (excessive plant growth and decay) in the Gulf of Mexico to name a few. The National Smart Water Grid{trademark} will pay for itself in a single major flood event.

Beaulieu, R A

2009-07-13T23:59:59.000Z

477

National Atmospheric Release Advisory Center | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Release Advisory Center | National Nuclear Security Atmospheric Release Advisory Center | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog National Atmospheric Release Advisory Center Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Consequence Management > National Atmospheric Release Advisory Center

478

FY 2012 Lawrence Livermore National Security, LLC, PER Summary | National  

National Nuclear Security Administration (NNSA)

PER Summary | National PER Summary | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog FY 2012 Lawrence Livermore National Security, LLC, PER Summary Home > About Us > Our Operations > Acquisition and Project Management > Performance Evaluations > FY 2012 Lawrence Livermore National Security, LLC, ...

479

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

480

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

Note: This page contains sample records for the topic "lassen volcanic national" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test Facility Air Force Research Laboratory Testing On August 17, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Renewable...

482

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia Wins Three R&D100 Awards On July 24, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News & Events, Photovoltaic,...

483

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Power Technical Management Position On July 12, 2012, in Concentrating Solar Power, Energy, Facilities, Job Listing, National Solar Thermal Test Facility, News,...

484

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

485

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Sandia Capabilities to Support Power Industry On January 8, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

486

Nevada National Security Site | National Nuclear Security Administrati...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

federal agencies. It provides the government with the capability to return to underground nuclear testing should the President deem it necessary. NNSS is contractor-run by National...

487

National Security Campus leader receives STEM award | National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and engineered material components and integrating evolving technologies, such as 3D printing, to improve the safety and security of our nation's defense programs. Stubenhofer...

488

ARGONNE NATIONAL LABORATORY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Performance Performance modeling for exascale autotuning: An integrated approach ∗ Prasanna Balaprakash, Stefan M. Wild, and Paul D. Hovland Mathematics and Computer Science Division Preprint ANL/MCS-P5000-0813 July 2013 ∗ Support for this work was provided through the SciDAC program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, under Contract No. DE-AC02-06CH11357. 1 Performance modeling for exascale autotuning: An integrated approach Prasanna Balaprakash ∗ , Stefan M. Wild, and Paul D. Hovland Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 The usual suspects-shrinking integrated circuit feature sizes, heterogeneous nodes with many- core processors, deep memory hierarchies, an ever-present power wall, energy efficiency demands, and resiliency concerns-make exascale

489

National Transportation Stakeholders Forum  

Broader source: Energy.gov (indexed) [DOE]

Transportation Stakeholders Forum Transportation Stakeholders Forum May 14-16, 2013 Tuesday, May 14 7:00 am - 5:00 pm Registration Niagara Foyer 7:00 am - 7:45 am Breakfast and Networking Grand A 8:00 am - 10:00 am National Updates for Transportation Stakeholder Groups and Guests - Panel Grand BC Moderator: John Giarrusso Jr., MA Emergency Management Agency / Northeast High-Level Radioactive Waste Transportation Task Force Co-Chair US Department of Energy, Office of Environmental Management - Steve O'Connor, Director, Office of Packaging & Transportation US Nuclear Regulatory Commission - Earl P. Easton, Senior Level Advisor (retired) and David W. Pstrak, Transportation and Storage Specialist, Division of Spent Fuel Storage and Transportation

490

National Fertilizer Development Center  

Office of Legacy Management (LM)

h-L h-L National Fertilizer Development Center May 15, 1980 nww Hr. William Et Mott, Director Environmental Control Technology Division Office of Environment Dcpartiaent of Energy Washington, DC 20545 Dear Mr. Mott: This is in response to your letter of May 5 requesting ccmments on a report dated Xarct; 1930 which summarizes a preliminary radiological survey of facilities used in the early 1950's for studies of recovery of uranium from leached zone ore. I have made a few suggested changes to the report, which is being returned to you. * Thaul, you for the opportunity to review this report. Sincerely, , Enclosure Development Branch . 1 -a' . I . . . PRELIMINARY SURVEY OF TENNESSEE VALLEY AUTHORITY MUSCLE SHOALS, ALA&A Work .performed by the Health and Safety Research Division

491

National Synchrotron Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

All Documents listed below are part of the Photon Sciences Directorate and All Documents listed below are part of the Photon Sciences Directorate and will be updated as needed. Photon Sciences ESH Standard Operating Procedures (SOPs) SOP No. Standard Operating Procedure for: LS-ES-0002 Procedure for Acid Etching of Silicon and Germanium Crystals LS-ESH-0004 NSLS Operations Group Chemical Spill and Gas Release Response LS-ESH-0010 VUV Injection Shutter LOTO LS-ESH-0012 LINAC LOTO LS-ESH-0013 Controlled Access to the VUV Ring LS-ESH-0014 Radiation Safety Interlocks at the National Synchrotron Light Source LS-ESH-0019 Beam Line Configuration Control Checklist Requirements LS-ESH-0020 Biosafety Requirements at the NSLS LS-ESH-0021 Biosafety Level 2 work at the NSLS/ A Technical Basis LS-ESH-0022 Beam Line Configuration Control Checklist Requirements

492

National Environmental Policy Act  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Policy Act (NEPA) Environmental Policy Act (NEPA) Public inquiries should be directed to: Gary S. Hartman DOE ORO NEPA Compliance Officer P.O. Box 2001, SE-32 Oak Ridge, TN 37831 (865) 576-0273 hartmangs@oro.doe.gov *Categorical Exclusion Determination Documents (CX Determinations): Date Title Reference No. Program 02/01/2010 Receipt and Processing of TRU Soils from Nuclear Fuel Services (NFS) in Erwin, Tennessee by the Transuranic (TRU) Waste Processing Center (TWPC) on the Oak Ridge Reservation, Tennessee CX-TWPC-09-0001 EM 02/01/2010 Conducting Macroencapsulation Treatment in the Parking Lot of the Contact Handled Marshalling Building (CHMB) at the TRU Waste Processing Center (TWPC) on the Oak Ridge Reservation, Tennessee CX-TWPC-09-0003 EM 03/02/2010 East Campus Parking Structure at the Oak Ridge National Laboratory (ORNL)

493

Brookhaven National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building 725 Fire Hazard Analysis/Fire Hazard Assessment Number: LS-ESH-0068 Revision: 1 Effective: 7/15/2009 Page 1 of 18 Prepared By: Robert Chmiel Approved By: Andrew Ackerman Approved By: Joe Levesque *Approval signatures on file with master copy. Revision Log Purpose/Scope The purpose of this Assessment is to comprehensively and qualitatively assess the risk from fire within the National Synchrotron Light Source (NSLS) to ensure DOE fire safety objectives are met. DOE fire protection criteria are outlined in DOE Order 420.1. The Fire Protection Assessment includes identifying the risks from fire and related hazards (direct flame impingement, hot gases, smoke migration, fire-fighting water damage, etc.). A Fire Hazard

494

National Energy Strategy  

Broader source: Energy.gov (indexed) [DOE]

Strategy Strategy Background Paper - 2001 Natural Gas In the 1988 Energy Council National Energy Strategy background paper, the role of natural gas was characterized as a transition fuel, a bridge to a cleaner fuel future. Over the intervening decade, the growth of the importance of natural gas has been dramatic and it now appears that the "transition fuel" may have a role of its own for a long time to come. The inherent efficiency of gas, its environmental advantages and the removal of regulatory constraints are all important factors in its su:cess. The U.S. is the world's largest gas producer, followed by the former Soviet Union. Estimates of supplies of gas are icasin dug nt nnl ^ -nloration. but better assesment tchniues. The deman'd outo fatnres gas dominating the burgeoning U.S. elecmic gei mket. Long-

495

National Renewable Energy Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RENEWABLE ENERGY RENEWABLE ENERGY AND ENERGY EFFICIENCY SCIENCE PROJECTS 1 SCIENCE PROECTS IN RENEWABLE ENERGY AND ENERGY EFFICIENCY A guide for Secondary School Teachers Authors and Acknowledgements: This second edition was produced at the National Renewable Energy Laboratory (NREL), through the laboratory's Office of Education Programs, under the leadership of the Manager, Dr. Cynthia Howell and guidance of the Program Coordinators, Matt Kuhn and Linda Lung. The contents are the result of contributions by a select group of teacher researchers that were invited to NREL as part of the Department of Energy's Teacher Research Programs. During the summers between 2003 and 2007, fifty four secondary pre-service and experienced teachers came to NREL to do real research in

496

Yavapai-Apache Nation  

Broader source: Energy.gov (indexed) [DOE]

Yavapai- Yavapai- Apache Nation TRIBAL ENERGY DEVELOPMENT Presented by David E. Lewis, Environmental Specialist Background WAPA - Post - 2004 Hydropower Allocations Announced to Tribes - Late 2001 ANA - Created the Tribal Energy Action Plan - October 2000 - September 2001 YAN 1 st Solar Project Photovoltaic Solar System - Middle Verde Community Day Care Facility - Power Reliability Study - System Size 1kw - Double Axis Tracking System - Funded by Urban Consortium Energy Task Force Demonstration Projects HUD RHED Economic Development & Capacity Building (September 2001) Demonstration Projects - 10kW PV Solar Covered Parking Project on Food Bank - 2 - 2kW PV Solar Projects on Residential Homes - 2 - Solar Hot Water Projects on Residential Homes - Weatherization Improvements using DOE's

497

Idaho National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

INL Logo INL Logo Search The case of the missing silver Skip Navigation Links Home Newsroom About INL Careers Research Programs Facilities Education Distinctive Signature: ICIS Environment, Safety & Health Research Library Technology Transfer Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor Sustainability Idaho Regional Optical Network LDRD Next Generation Nuclear Plant Docs CONTACT US Center for Advanced Energy Studies Idaho scientists discover clue in the case of the missing silver Idaho scientists gain understanding of advanced nuclear fuel... More Other Features Counting the ways INL gives back to eastern Idaho communities December 23, 2013 Illuminating results: INL broadens understanding of solar storms

498

Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

employees receive Pollution Prevention employees receive Pollution Prevention Awards April 23, 2013 Protecting environment, saving taxpayer dollars LOS ALAMOS, N.M., April 23, 2013-Nearly 400 Los Alamos National Laboratory employees on 47 teams received Pollution Prevention awards for protecting the environment and saving taxpayers more than $8 million. The employees were recognized at the Laboratory's annual Pollution Prevention Awards ceremony on Monday (April 22), Earth Day. "The Pollution Prevention Awards are the result of people taking the initiative to improve their own operations," said Pat Gallagher of the Laboratory's Environmental - 2 - Stewardship group. "These are clever, innovative, homegrown and home-owned ideas that save the Laboratory and taxpayers millions of dollars each year while reducing

499

NATIONAL ENERGY POLICY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6-1 6-1 A sound national energy policy should encourage a clean and diverse portfolio of domestic energy supplies. Such diversity helps to ensure that future gen- erations of Americans will have access to the energy they need. Renewable energy can help provide for our future needs by harnessing abun- dant, naturally occurring sources of energy, such as the sun, the wind, geothermal heat, and biomass. Effectively harnessing these renewable resources requires careful plan- ning and advanced technology. Through im- proved technology, we can ensure that America will lead the world in the develop- ment of clean, natural, renewable and alter- native energy supplies. Renewable and alternative energy supplies not only help diversify our energy portfolio; they do so with few adverse envi-

500

National Energy Technology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Design Standards for the NETL Logo Design Standards for the NETL Logo May 2013 The Logo Display of the NETL logo is critical because this symbol represents who we are - it's our signature. Consistent application of the logo is crucial to the success of our identity. As the primary identifier of the National Energy Technology Laboratory, it is essential that the logo's appearance is consistent throughout all of the Laboratory's communications. Over time, consistent and repeated use of the logo will establish a strengthened visual identity for the laboratory. To ensure consistency it is critical for every user of the logo, regardless of personal preference, to use it in accordance with the guidelines that follow. The height of the NETL logo is .75 times the length, a 3 by 4 ratio. This relationship is always the same, regardless of