National Library of Energy BETA

Sample records for lasers electron beams

  1. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    E-Print Network [OSTI]

    Matlis, N. H.

    2011-01-01

    Ultrafast Diagnostics for Electron Beams from Laser Plasmadiagnostic techniques [2]. While the field of electron beam

  2. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    E-Print Network [OSTI]

    Nakamura, Kei

    2012-01-01

    Electron Beam Charge Diagnostics for Laser PlasmaElectron beams were sent to the various charge diagnosticselectron spectrometer [27] before sending the e-beam to charge diagnostics,

  3. Rippled beam free electron laser amplifier

    DOE Patents [OSTI]

    Carlsten, Bruce E. (Los Alamos, NM)

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  4. Single electron beam rf feedback free electron laser

    DOE Patents [OSTI]

    Brau, C.A.; Stein, W.E.; Rockwood, S.D.

    1981-02-11

    A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.

  5. UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC

    E-Print Network [OSTI]

    Bakeman, M.S.

    2010-01-01

    LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC* M.S.quasi-monoenergetic electron beams with energies up to 1high-peak- current, electron beams are ideal for driving a

  6. Tailored Terahertz Pulses from a Laser-Modulated Electron Beam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tailored Terahertz Pulses from a Laser-Modulated Electron Beam Tailored Terahertz Pulses from a Laser-Modulated Electron Beam Print Wednesday, 29 November 2006 00:00 Researchers at...

  7. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    E-Print Network [OSTI]

    Bakeman, M.S.

    2011-01-01

    Laser Wakefield Accelerator Electron Beam Energy Spread andposition detection of electron beams from laser-plasmaLPA) to measure electron beam energy spread and emittance

  8. Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators

    E-Print Network [OSTI]

    Osterhoff, Jens

    2012-01-01

    Position Detection of Electron Beams from Laser-Plasmadiscussed. Keywords: Electron-beam transport, laser-plasmaand stability of produced electron beams has been steadily

  9. Tailored Terahertz Pulses from a Laser-Modulated Electron Beam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tailored Terahertz Pulses from a Laser-Modulated Electron Beam Print Researchers at the ALS have demonstrated a new method to generate tunable, coherent, broadband terahertz...

  10. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators N. H. Matlis, M. Bakeman, C key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented the ability to fine-tune and stabilize the electron beam parameters, however, is the ability to measure them

  11. Optical Sideband Generation: a Longitudinal Electron Beam Diagnostic Beyond the Laser Bandwidth Resolution Limit

    E-Print Network [OSTI]

    Tilborg, J. van

    2011-01-01

    a Longitudinal Electron Beam Diagnostic Beyond the LaserBeam diagnostics, electro-optic sampling, ultra-short electron

  12. Compact two-beam push-pull free electron laser

    DOE Patents [OSTI]

    Hutton, Andrew (Yorktown, VA)

    2009-03-03

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  13. Laser cooling of electron beams at linear colliders

    E-Print Network [OSTI]

    Valery Telnov

    2000-01-12

    A method of electron beam cooling is considered which can be used for linear colliders. The electron beam is cooled during collision with focused powerful laser pulse. The ultimate transverse emittances are much below those achievable by other methods. This method is especially useful for high energy gamma-gamma colliders. In this paper we review and analyse limitations in this method, also discuss a new method of obtaining very high laser powers required for the laser cooling, radiation conditions and finaly present a possible scheme for the laser cooling of electron beams.

  14. Laser cooling of electron beams for linear colliders

    E-Print Network [OSTI]

    Valery Telnov

    2013-10-24

    A novel method of electron beam cooling is considered which can be used for linear colliders. The electron beam is cooled during collision with focused powerful laser pulse. With reasonable laser parameters (laser flash energy about 10 J) one can decrease transverse beam emittances by a factor about 10 per one stage. The ultimate transverse emittances are much below those achievable by other methods. Beam depolarization during cooling is about 5--15 % for one stage. This method is especially useful for photon colliders and opens new possibilities for e+e- colliders.

  15. Beam conditioner for free electron lasers and synchrotrons

    DOE Patents [OSTI]

    Liu, Hongxiu (Williamsburg, VA); Neil, George R. (Williamsburg, VA)

    1998-01-01

    A focused optical is been used to introduce an optical pulse, or electromagnetic wave, colinearly with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM.sub.10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  16. Beam conditioner for free electron lasers and synchrotrons

    DOE Patents [OSTI]

    Liu, H.; Neil, G.R.

    1998-09-08

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM{sub 10} mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  17. Generation of mega-electron-volt electron beams by an ultrafast intense laser pulse

    E-Print Network [OSTI]

    Umstadter, Donald

    Generation of mega-electron-volt electron beams by an ultrafast intense laser pulse Xiaofang Wang filamentation and beam breakup. These results suggest an approach for generating a beam of femtosecond, Me-intensity lasers has made it pos- sible to study extreme physics on a tabletop. Among the studies, the generation

  18. Thermal effect on prebunched two-beam free electron laser

    SciTech Connect (OSTI)

    Mirian, N. S.; Maraghechi, B.

    2013-08-15

    A numerical simulation in one-dimension is conducted to study the two-beam free electron laser. The fundamental resonance of the fast electron beam coincides with the fifth harmonic of the slow electron beam in order to generate extreme ultraviolet radiation. Thermal effect in the form of the longitudinal velocity spread is included in the analysis. In order to reduce the length of the wiggler, prebunched slow electron beam is considered. The evaluation of the radiation power, bunching parameter, distribution function of energy, and the distribution function of the pondermotive phase is studied. Sensitivity of the power of the fifth harmonic to the jitter in the energy difference between the two beams is also studied. A phase space is presented that shows the trapped electrons at the saturation point.

  19. Energy spread reduction of electron beams produced via laser wakefield acceleration

    E-Print Network [OSTI]

    Pollock, Bradley Bolt

    2012-01-01

    the resulting electron beams. Each diagnostic that was useddiagnostic suite which was developed to characterize the laser, plasma, and electron beam

  20. Quasimonoenergetic electron beams from laser wakefield acceleration in pure nitrogen

    SciTech Connect (OSTI)

    Mo, M. Z.; Ali, A.; Fedosejevs, R. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); Fourmaux, S.; Lassonde, P.; Kieffer, J. C. [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2012-02-13

    Quasimonoenergetic electron beams with maximum energy >0.5 GeV and 2 mrad divergence have been generated in pure nitrogen gas via wakefield acceleration with 80 TW, 30 fs laser pulses. Long low energy tail features were typically observed due to continuous ionization injection. The measured peak electron energy decreased with the plasma density, agreeing with the predicted scaling for electrons. The experiments showed a threshold electron density of 3x10{sup 18}cm{sup -3} for self-trapping. Our experiments suggest that pure Nitrogen is a potential candidate gas to achieve GeV monoenergetic electrons using the ionization induced injection scheme for laser wakefield acceleration.

  1. Quantum radiation reaction in laser-electron beam collisions

    E-Print Network [OSTI]

    T. G. Blackburn; C. P. Ridgers; J. G. Kirk; A. R. Bell

    2015-03-03

    It is possible using current high intensity laser facilities to reach the quantum radiation reaction regime for energetic electrons. An experiment using a wakefield accelerator to drive GeV electrons into a counterpropagating laser pulse would demonstrate the increase in the yield of high energy photons caused by the stochastic nature of quantum synchrotron emission: we show that a beam of $10^9$ 1 GeV electrons colliding with a 30 fs laser pulse of intensity $10^{22}~\\text{Wcm}^{-2}$ will emit 6300 photons with energy greater than 700 MeV, $60\\times$ the number predicted by classical theory.

  2. GeV electron beams from a laser-plasma accelerator

    E-Print Network [OSTI]

    2008-01-01

    S. M. Hooker, “Gev electron beams from a centimetre-scaleproducing monoenergetic electron beams,” Nature, vol. 431,GeV electron beams from a laser-plasma accelerator C. B.

  3. GeV electron beams from cm-scale channel guided laser wakefield accelerator

    E-Print Network [OSTI]

    2008-01-01

    GeV electron beams from cm-scale channel guided laser wake?the generation of GeV-class electron beams using an intenseranges and high-quality electron beams with energy up to 1

  4. GeV electron beams from a centimeter-scale laser-driven plasma accelerator

    E-Print Network [OSTI]

    2008-01-01

    GeV electron beams from cm-scale channel guided laser wake?the generation of GeV-class electron beams using an intenseranges and high-quality electron beams with energy up to 1

  5. Applied Physics B28, 2/3 239 cw Ion Lasers Pumpedby Electron Beams

    E-Print Network [OSTI]

    Rocca, Jorge J.

    Applied Physics B28, 2/3 239 cw Ion Lasers Pumpedby Electron Beams J. J. Rocca, J. D. Meyer, Zeng, and As by exciting He metal-vapor mixtures with a dc electron beam. The beam is generated by glow discharge electron obtained using electron beam excitation. The conventional manner of exciting cw ion lasers is to use

  6. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    SciTech Connect (OSTI)

    Pollock, B

    2012-03-19

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 10{sup 18} cm{sup -3} in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a limited, defined region. Using this technique a 460 MeV electron beam was produced with an energy spread of 5%. This technique is directly scalable to multi-GeV electron beam generation with sub-percent energy spreads.

  7. Volume 42, number 2 OPTICSCOMMUNICATIONS 15 June 1982 ELECTRON BEAM PUMPED CW Se II LASER ~

    E-Print Network [OSTI]

    Rocca, Jorge J.

    Volume 42, number 2 OPTICSCOMMUNICATIONS 15 June 1982 ELECTRON BEAM PUMPED CW Se II LASER ~ J of singlyionized seleniumusingan electron beam to excite a He-Se mixture. The variation of the laser output power as a function of the electron beam dischargeparameters is reported. Recently we obtained cw laser radiation from

  8. Optical Deflection and Temporal Characterization of an Ultrafast Laser-Produced Electron Beam

    E-Print Network [OSTI]

    Umstadter, Donald

    Optical Deflection and Temporal Characterization of an Ultrafast Laser-Produced Electron Beam) The interaction of a laser-produced electron beam with an ultraintense laser pulse in free space is studied. We show that the optical pulse with a0 0:5 imparts momentum to the electron beam, causing it to deflect

  9. GeV electron beams from a centimeter-scale channel guided laser wakefield acceleratora...

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    GeV electron beams from a centimeter-scale channel guided laser wakefield acceleratora... K on the generation of GeV-class electron beams using an intense femtosecond laser beam and a 3.3 cm long preformed from 10­40 TW were guided over more than 20 Rayleigh ranges and high quality electron beams with energy

  10. Submillimeter-resolution radiography of shielded structures with laser-accelerated electron beams

    E-Print Network [OSTI]

    Umstadter, Donald

    Submillimeter-resolution radiography of shielded structures with laser-accelerated electron beams (Received 24 March 2010; published 14 October 2010) We investigate the use of energetic electron beams-wakefield accelera- tors have been shown to produce electron beams with source sizes comparable to the laser beam

  11. UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC

    E-Print Network [OSTI]

    Bakeman, M.S.

    2010-01-01

    ACCELERATOR ELECTRON BEAM DIAGNOSTIC* M.S. Bakeman # , W.M.of an undulator-based electron beam diagnostic to be used in

  12. Upgrade of laser and electron beam welding database

    E-Print Network [OSTI]

    Furman, Magdalena

    2014-01-01

    The main purpose of this project was to fix existing issues and update the existing database holding parameters of laser-beam and electron-beam welding machines. Moreover, the database had to be extended to hold the data for the new machines that arrived recently at the workshop. As a solution - the database had to be migrated to Oracle framework, the new user interface (using APEX) had to be designed and implemented with the integration with the CERN web services (EDMS, Phonebook, JMT, CDD and EDH).

  13. Inverse Free Electron Laser Interactions with Sub-Picosecond High Brightness Electron Beams

    E-Print Network [OSTI]

    Moody, Joshua Timothy

    2014-01-01

    Accelerated Electron Beam Spectrum . . . . . . . . . . . .2 High Brightness Electron Beams Produced in thetion of Uniformly Filled Ellipsoidal Electron Beam: Method-

  14. GeV ELECTRON BEAMS FROM A CENTIMETER-SCALE LASER-DRIVEN PLASMA ACCELERATOR

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    GeV ELECTRON BEAMS FROM A CENTIMETER-SCALE LASER-DRIVEN PLASMA ACCELERATOR A. J. Gonsalves, K discharge waveguide [1, 2]. Electron beams were not observed without a plasma channel, indicating that self of the electron beam spectra, and the dependence of the reliability of pro- ducing electron beams as a function

  15. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    SciTech Connect (OSTI)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Smith, Alan; Rodgers, David; Donahue, Rich; Byrne, Warren; Leemans, Wim

    2011-06-27

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/(ps mm{sup 2}), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within {+-}8%, showing that they all can provide accurate charge measurements for LPAs.

  16. Observation of laser multiple filamentation process and multiple electron beams acceleration in a laser wakefield accelerator

    SciTech Connect (OSTI)

    Li, Wentao; Liu, Jiansheng; Wang, Wentao; Chen, Qiang; Zhang, Hui; Tian, Ye; Zhang, Zhijun; Qi, Rong; Wang, Cheng; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2013-11-15

    The multiple filaments formation process in the laser wakefield accelerator (LWFA) was observed by imaging the transmitted laser beam after propagating in the plasma of different density. During propagation, the laser first self-focused into a single filament. After that, it began to defocus with energy spreading in the transverse direction. Two filaments then formed from it and began to propagate independently, moving away from each other. We have also demonstrated that the laser multiple filamentation would lead to the multiple electron beams acceleration in the LWFA via ionization-induced injection scheme. Besides, its influences on the accelerated electron beams were also analyzed both in the single-stage LWFA and cascaded LWFA.

  17. STABLE, MONOENERGETIC 50-400 MeV ELECTRON BEAMS WITH A MATCHED LASER WAKEFIELD ACCELERATOR

    E-Print Network [OSTI]

    Umstadter, Donald

    STABLE, MONOENERGETIC 50-400 MeV ELECTRON BEAMS WITH A MATCHED LASER WAKEFIELD ACCELERATOR Sudeep-monoenergetic electron beams from under- dense plasmas. Several groups have reported generating high-energy electron, and robustness. Our results demonstrate for the first time the generation of 300 - 400 MeV electron beams

  18. Laser-Energy Transfer and Enhancement of Plasma Waves and Electron Beams by Interfering High-Intensity Laser Pulses

    E-Print Network [OSTI]

    Umstadter, Donald

    Laser-Energy Transfer and Enhancement of Plasma Waves and Electron Beams by Interfering High%) and a decreased electron-beam divergence angle (by 45%), as compared with single-pulse illumination. Simulations reveal that increased stochastic heating of electrons may have also contributed to the electron-beam

  19. Title of Dissertation: LASER SWITCHED ELECTRON BEAM MODULATION WITH TERAHERTZ

    E-Print Network [OSTI]

    Anlage, Steven

    as well as the measurements from the accelerator system. This dissertation demonstrates at terahertz frequencies using laser driven photoemission. It is divided into three distinct areas: laser beam of terahertz radiation. The laser modulation portion covers the development of an interferometer system used

  20. Reversible Electron Beam Heating for Suppression of Microbunching Instabilities at Free-Electron Lasers

    SciTech Connect (OSTI)

    Behrens, Christopher; /DESY; Huang, Zhirong; Xiang, Dao; /SLAC

    2012-05-30

    The presence of microbunching instabilities due to the compression of high-brightness electron beams at existing and future x-ray free-electron lasers (FELs) results in restrictions on the attainable lasing performance and renders beam imaging with optical transition radiation impossible. The instability can be suppressed by introducing additional energy spread, i.e., heating the electron beam, as demonstrated by the successful operation of the laser heater system at the Linac Coherent Light Source. The increased energy spread is typically tolerable for self-amplified spontaneous emission FELs but limits the effectiveness of advanced FEL schemes such as seeding. In this paper, we present a reversible electron beam heating system based on two transverse deflecting radio-frequency structures (TDSs) upstream and downstream of a magnetic bunch compressor chicane. The additional energy spread is introduced in the first TDS, which suppresses the microbunching instability, and then is eliminated in the second TDS. We show the feasibility of the microbunching gain suppression based on calculations and simulations including the effects of coherent synchrotron radiation. Acceptable electron beam and radio-frequency jitter are identified, and inherent options for diagnostics and on-line monitoring of the electron beam's longitudinal phase space are discussed.

  1. Detailed dynamics of electron beams self-trapped and accelerated in a self-modulated laser wakefield

    E-Print Network [OSTI]

    Umstadter, Donald

    Detailed dynamics of electron beams self-trapped and accelerated in a self-modulated laser 1999 The electron beam generated in a self-modulated laser-wakefield accelerator is characterized, was measured for 2 MeV electrons. The electron beam was observed to have a multicomponent beam profile

  2. Beam conditioning for free electron lasers: Consequences and methods A. Wolski, G. Penn, A. Sessler, and J. Wurtele*

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Beam conditioning for free electron lasers: Consequences and methods A. Wolski, G. Penn, A. Sessler short-wavelength free-electron lasers (FELs) demands electron beams with very small transverse emittance operation with larger electron beam emit- tances than would otherwise be possible. The analysis in Ref. [1

  3. Three-dimensional simulation of efficiency enhancement in free-electron laser with prebunched electron beam

    SciTech Connect (OSTI)

    Chitsazi, Mahboobeh; Maraghechi, B.; Rouhani, M. H.

    2010-10-15

    The effect of prebunching of the electron beam and tapering of the wiggler amplitude on the harmonic upconversion in free-electron laser amplifier is studied in three dimensions. A set of coupled nonlinear first-order differential equations that describe the three-dimensional simulation of the system is solved numerically. This set of equation describes self-consistently the longitudinal spatial dependence of radiation waists, curvatures, and amplitudes together with the evaluation of the electron beam. The analysis is related to extreme ultraviolet and x-ray emission. In addition to uniform beam, prebunched electron beam has also been studied. The effect of sinusoidal distribution of entry times for the electron beam on the evolution of radiation is compared with uniform distribution. It is shown that prebunching reduces the saturation length substantially. For efficiency enhancement, the wiggler is set to decrease linearly when the radiation of the third harmonic saturates. The optimum starting point and the slope of tapering of the amplitude of the wiggler are found by a successive run of the code. It was found that tapering can increase the saturated power of the third harmonic considerably.

  4. Observations of the filamentation of high-intensity laser-produced electron beams

    SciTech Connect (OSTI)

    Wei, M.S.; Beg, F.N.; Dangor, A.E.; Gopal, A.; Tatarakis, M.; Krushelnick, K. [Blackett Laboratory, Imperial College London SW7 2BZ (United Kingdom); Clark, E.L.; Evans, R.G. [Blackett Laboratory, Imperial College London SW7 2BZ (United Kingdom); Plasma Physics Department, AWE plc, Aldermaston, Reading RG7 4PR (United Kingdom); Ledingham, K.W.D. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Plasma Physics Department, AWE plc, Aldermaston, Reading RG7 4PR (United Kingdom); McKenna, P. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Norreys, P.A. [Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Oxon OX11 OQX (United Kingdom); Zepf, M. [Department of Physics, The Queen's University, University Road, Belfast BT7 1NN (United Kingdom)

    2004-11-01

    Filamented electron beams have been observed to be emitted from the rear of thin solid targets irradiated by a high-intensity short-pulse laser when there is low-density plasma present at the back of the target. These observations are consistent with a laser-generated beam of relativistic electrons propagating through the target, which is subsequently fragmented by a Weibel-like instability in the low-density plasma at the rear. These measurements are in agreement with particle-in-cell simulations and theory, since the filamentation instability is predicted to be dramatically enhanced when the electron beam density approaches that of the background plasma.

  5. Terahertz radiation from a laser bunched relativistic electron beam in a magnetic wiggler

    SciTech Connect (OSTI)

    Kumar, Manoj; Tripathi, V. K. [Department of Physics, Indian Institute of Technology, Delhi, New Delhi 110016 (India)

    2012-07-15

    We develop a formalism for tunable coherent terahertz radiation generation from a relativistic electron beam, modulated by two laser beams, as it passes through a magnetic wiggler of wave vector k{sub w}z-caret. The lasers exert a beat frequency ponderomotive force on beam electrons, and modulate their velocity. In the drift space, velocity modulation translates into density modulation. As the beam bunches pass through the wiggler, they acquire a transverse velocity, constituting a transverse current that acts as an antenna to produce coherent THz radiation, when {omega}{sub 1}-{omega}{sub 2}=k{sub w}c/(cos{theta}-v{sub 0b}/c), where {omega}{sub 1}, {omega}{sub 2} are the frequencies of the lasers, v{sub 0b}z-caret is the beam velocity, and {theta} is the direction of maximum radiated intensity with respect to the direction of propagation of the beam.

  6. 1 GeV Electron Beams from a Laser-Driven Channel-Guided Accelerator

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    energy lasers. The radiation pressure of an intense laser pulse drives a space charge wave in a plasma [1 particle accelerators for radiation sources, high-energy physics, and other applications are typically machines. A different technology for generating intense energetic electron beams and synchronized

  7. Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    transport with miniature permanent quadrupole magnets from the electron source through our THUNDER undulator-beam transport, laser-plasma acceleration, permanent magnet quadrupole, beam-position monitor PACS: 52.38.Kd, 41. Traditionally, in conventional radio-frequency accelerator facilities these magnetic fields are generated

  8. Generation of high-energy electron-positron beams in the collision of a laser-accelerated electron beam and a multi-petawatt laser

    E-Print Network [OSTI]

    Lobet, Mathieu; d'Humières, Emmanuel; Gremillet, Laurent

    2015-01-01

    Generation of antimatter via the multiphoton Breit-Wheeler process in an all-optical scheme will be made possible on forthcoming high-power laser facilities through the collision of wakefield-accelerated GeV electrons with a counter-propagating laser pulse with $10^{22}$-$10^{23}$ $\\mathrm{Wcm}^{-2}$ peak intensity. By means of integrated 3D particle-in-cell simulations, we show that the production of positron beams with 0.1-1 nC total charge, 100-400 MeV mean energy and 0.01-0.1 rad divergence is within the reach of soon-to-be-available laser systems. The variations of the positron beam's properties with respect to the laser parameters are also examined.

  9. Testing General Relativity With Laser Accelerated Electron Beams

    E-Print Network [OSTI]

    L. Á. Gergely; T. Harko

    2012-07-16

    Electron accelerations of the order of $10^{21} g$ obtained by laser fields open up the possibility of experimentally testing one of the cornerstones of general relativity, the weak equivalence principle, which states that the local effects of a gravitational field are indistinguishable from those sensed by a properly accelerated observer in flat space-time. We illustrate how this can be done by solving the Einstein equations in vacuum and integrating the geodesic equations of motion for a uniformly accelerated particle.

  10. Stimulated Raman scattering of laser in a plasma in the presence of a co-propagating electron beam

    SciTech Connect (OSTI)

    Parashar, J. [Department of Physics, Samrat Ashok Technological Institute, Vidisha, Madhya Pradesh 464001 (India)] [Department of Physics, Samrat Ashok Technological Institute, Vidisha, Madhya Pradesh 464001 (India)

    2013-12-15

    A relativistic electron beam co-propagating with a high power laser in plasma is shown to add to the growth of the stimulated Raman back scattering of the laser. The growth rate is sensitive to phase matching of electron beam with the plasma wave. In the case of phase mismatch, the growth rate drops by an order. The energy spread of the electron beam significantly reduces the effectiveness of the beam on the stimulated Raman process.

  11. A Hybrid Laser-driven E-beam Injector Using Photo-cathode Electron Gun and superconducting Cavity*

    E-Print Network [OSTI]

    Geng, Rong-Li

    A Hybrid Laser-driven E-beam Injector Using Photo-cathode Electron Gun and superconducting Cavity, Beijing 100871, China * Work supported by NNSF of China Abstract A laser-driven photo-cathode electron gun constructed and tested. As the next step, a hybrid photo-injector, using a DC laser-driven electron gun

  12. IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-22, NO. 4, APRIL 1986 509 Cd Recombination Laser in a Plasma Generatedby an Electron Beam

    E-Print Network [OSTI]

    Rocca, Jorge J.

    IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-22, NO. 4, APRIL 1986 509 Cd Recombination Laser in a Plasma Generatedby an Electron Beam Abstract-Laser action was obtained in the 1.40, 1.43, and 1.65 pm lines of CdI following electron-ion recombination in a plasma gener- ated by an electron beam

  13. 326 IEEE JOURNAL OF QUANTUMELECTRONICS, VOL. QE-18, NO. 3, MARCH 1982 CW Iodine Ion Laser Excited by an Electron Beam

    E-Print Network [OSTI]

    Rocca, Jorge J.

    by an Electron Beam Abstract-CW laser oscillation has been obtained on the 5760.7 and 6127.5 A transitions of a dc electron beam created plasma as a new active medium for CW ion lasers. We report in this paper the generation of CW laser os- cillation in a He-12gas mixture using electron beam pumping. CW laser radiation

  14. Multiple species beam production on laser ion source for electron beam ion source in Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Sekine, M., E-mail: sekine.m.ae@m.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Meguro, Tokyo (Japan); Riken, Wako, Saitama (Japan); Ikeda, S. [Riken, Wako, Saitama (Japan) [Riken, Wako, Saitama (Japan); Department of Energy Science, Tokyo Institute of Technology, Yokohama, Kanagawa (Japan); Hayashizaki, N. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Meguro, Tokyo (Japan)] [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Meguro, Tokyo (Japan); Kanesue, T.; Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)] [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-02-15

    Extracted ion beams from the test laser ion source (LIS) were transported through a test beam transport line which is almost identical to the actual primary beam transport in the current electron beam ion source apparatus. The tested species were C, Al, Si, Cr, Fe, Cu, Ag, Ta, and Au. The all measured beam currents fulfilled the requirements. However, in the case of light mass ions, the recorded emittance shapes have larger aberrations and the RMS values are higher than 0.06 ??mm?mrad, which is the design goal. Since we have margin to enhance the beam current, if we then allow some beam losses at the injection point, the number of the single charged ions within the acceptance can be supplied. For heaver ions like Ag, Ta, and Au, the LIS showed very good performance.

  15. Time-dependent simulation of prebunched one and two-beam free electron laser

    SciTech Connect (OSTI)

    Mirian, N. S.; Maraghechi, B.

    2014-04-15

    A numerical simulation in one-dimension is conducted to study the slippage effects on prebunched free electron laser. A technique for the simulation of time dependent free electron lasers (FEL) to model the slippage effects is introduced, and the slowly varying envelope approximation in both z and t is used to illustrate the temporal behaviour in the prebunched FEL. Slippage effect on prebunched two-beam FEL is compared with the one-beam modeling. The evaluation of the radiation pulse energy, thermal and phase distribution, and radiation pulse shape in one-beam and two-beam modeling is studied. It was shown that the performance is considerably undermined when the slippage time is comparable to the pulse duration. However, prebunching reduces the slippage. Prebunching also leads to the radiation pulse with a single smooth spike.

  16. High Resolution Simulation of Beam Dynamics in Electron Linacs for Free Electron Lasers

    SciTech Connect (OSTI)

    Ryne, R.D.; Venturini, M.; Zholents, A.A.; Qiang, J.

    2009-01-05

    In this paper we report on large scale multi-physics simulation of beam dynamics in electron linacs for next generation free electron lasers (FELs). We describe key features of a parallel macroparticle simulation code including three-dimensional (3D) space-charge effects, short-range structure wake fields, longitudinal coherent synchrotron radiation (CSR) wake fields, and treatment of radiofrequency (RF) accelerating cavities using maps obtained from axial field profiles. A macroparticle up-sampling scheme is described that reduces the shot noise from an initial distribution with a smaller number of macroparticles while maintaining the global properties of the original distribution. We present a study of the microbunching instability which is a critical issue for future FELs due to its impact on beam quality at the end of the linac. Using parameters of a planned FEL linac at Lawrence Berkeley National Laboratory (LBNL), we show that a large number of macroparticles (beyond 100 million) is needed to control numerical shot noise that drives the microbunching instability. We also explore the effect of the longitudinal grid on simulation results. We show that acceptable results are obtained with around 2048 longitudinal grid points, and we discuss this in view of the spectral growth rate predicted from linear theory. As an application, we present results from simulations using one billion macroparticles of the FEL linac under design at LBNL. We show that the final uncorrelated energy spread of the beam depends not only on the initial uncorrelated energy spread but also depends strongly on the shape of the initial current profile. By using a parabolic initial current profile, 5 keV initial uncorrelated energy spread at 40 MeV injection energy, and improved linac design, those simulations demonstrate that a reasonable beam quality can be achieved at the end of the linac, with the final distribution having about 100 keV energy spread, 2.4 GeV energy, and 1.2 kA peak current.

  17. Tailoring the laser pulse shape to improve the quality of the self-injected electron beam in laser wakefield acceleration

    SciTech Connect (OSTI)

    Upadhyay, Ajay K.; Samant, Sushil A.; Krishnagopal, S.

    2013-01-15

    In laser wakefield acceleration, tailoring the shape of the laser pulse is one way of influencing the laser-plasma interaction and, therefore, of improving the quality of the self-injected electron beam in the bubble regime. Using three-dimensional particle-in-cell simulations, the evolution dynamics of the laser pulse and the quality of the self-injected beam, for a Gaussian pulse, a positive skew pulse (i.e., one with sharp rise and slow fall), and a negative skew pulse (i.e., one with a slow rise and sharp fall) are studied. It is observed that with a negative skew laser pulse there is a substantial improvement in the emittance (by around a factor of two), and a modest improvement in the energy-spread, compared to Gaussian as well as positive skew pulses. However, the injected charge is less in the negative skew pulse compared to the other two. It is also found that there is an optimal propagation distance that gives the best beam quality; beyond this distance, though the energy increases, the beam quality deteriorates, but this deterioration is least for the negative skew pulse. Thus, the negative skew pulse gives an improvement in terms of beam quality (emittance and energy spread) over what one can get with a Gaussian or positive skew pulse. In part, this is because of the lesser injected charge, and the strong suppression of continuous injection for the negative skew pulse.

  18. Proposed structure for a crossed-laser beam, GeV per meter gradient, vacuum electron linear accelerator

    E-Print Network [OSTI]

    Byer, Robert L.

    Proposed structure for a crossed-laser beam, GeV per meter gradient, vacuum electron linear We propose a dielectric-based, multistaged, laser-driven electron linear accelerator structure operating in a vacuum that is capable of accelerating electrons to 1 TeV in 1 km. Our study shows that a Ge

  19. Pulsed power considerations for electron beam pumped krypton fluoride lasers for inertial confinement fusion applications

    SciTech Connect (OSTI)

    Rose, E.A.; McDonald, T.E.; Rosocha, L.A.; Harris, D.B.; Sullivan, J.A. (Los Alamos National Lab., NM (USA)); Smith, I.D. (Pulse Sciences, Inc., San Leandro, CA (USA))

    1991-01-01

    The Los Alamos National Laboratory inertial confinement fusion (ICF) program is developing the krypton-fluoride excimer laser for use as an ICF driver. The KrF laser has a number of inherent characteristics that make it a promising driver candidate, such as short wavelength (0.25 {mu}m), broad bandwidth to target (>100 cm{sup {minus}1}), pulse-shaping with high dynamic range, and the potential for high overall efficiency (>5%) and repetitive operation. The large KrF laser amplifiers needed for ICF drivers are electron-beam pumped. A key issue for all laser ICF drivers is cost, and a leading cost component of a KrF laser driver is associated with the pulsed power and electron diode. Therefore, the efficient generation of electron beams is a high priority. The Los Alamos ICF program is investigating pulsed-power and diode designs and technologies to further the development of affordable KrF laser ICF drivers. 12 refs., 8 figs.

  20. Photonic-based laser driven electron beam deflection and focusing structures T. Plettner,* R. L. Byer, and C. McGuinness

    E-Print Network [OSTI]

    Byer, Robert L.

    Photonic-based laser driven electron beam deflection and focusing structures T. Plettner,* R. L, and for beam switching. Generation of beams consisting of electron pulses with sub-fsec duration from laser of other devices that manipulate sub-fsec electron beams. The compactness of the proposed deflection device

  1. Macroparticle Theory of a Standing Wave Free-Electron Laser Two-Beam Accelerator

    E-Print Network [OSTI]

    Takayama, K.

    2008-01-01

    Macroparticle Theory of a Standing Wave Free-Electron LaserMacroparticle Theory of a Standing Wave Free-Electron LaserMacroparticle Theory of a Standing Wave Free-Electron Laser

  2. Energy spread reduction of electron beams produced via laser wakefield acceleration

    E-Print Network [OSTI]

    Pollock, Bradley Bolt

    2012-01-01

    Chapter 5 Chapter 6 Electron Beam Energy Spread Reduction bywake?eld-accelerated electron beams,” Phys. Rev. Lett. (S. M. Hooker, “Gev electron beams from a centimetre-scale

  3. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    E-Print Network [OSTI]

    Bakeman, M.S.

    2011-01-01

    Accelerator, Undulator, Electron Beam Diagnostic PACS: 52 .of an undulator-based electron beam diagnostic to be used inElectron Beam Energy Spread and Emittance Diagnostic M.S.

  4. Quasimonoenergetic collimated electron beams from a laser wakefield acceleration in low density pure nitrogen

    SciTech Connect (OSTI)

    Tao, Mengze [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Bejing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Hafz, Nasr A. M., E-mail: nasr@sjtu.edu.cn; Li, Song; Mirzaie, Mohammad; Elsied, Ahmed M. M.; Ge, Xulei; Liu, Feng; Sokollik, Thomas; Sheng, Zhengming; Zhang, Jie, E-mail: jzhang1@sjtu.edu.cn [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Liming [Bejing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-07-15

    A laser wakefield acceleration (LWFA) experiment is performed using 30 TW, 30 fs, and 800?nm laser pulses, focused onto pure nitrogen plasma having relatively low densities in the range of 0.8×10{sup 18}?cm{sup ?3} to 2.7×10{sup 18}?cm{sup ?3}. Electron beams having a low divergence of ?3??mrad (full-width at half-maximum) and quasi-monoenergetic peak energies of ?105??MeV are achieved over 4-mm interaction length. The total electron beam charge reached to 2 nC, however, only 1%–2% of this (tens of pC) had energies >35?MeV. We tried different conditions to optimize the electron beam acceleration; our experiment verifies that lower nitrogen plasma densities are generating electron beams with high quality in terms of divergence, charge, pointing stability, and maximum energy. In addition, if LWFA is to be widely used as a basis for compact particle accelerators in the future, therefore, from the economic and safety points of view we propose the use of nitrogen gas rather than helium or hydrogen.

  5. Catalac free electron laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1982-01-01

    A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator or as an amplifier in conjunction with a master oscillator laser.

  6. Method and apparatus for secondary laser pumping by electron beam excitation

    DOE Patents [OSTI]

    George, E. Victor (Livermore, CA); Krupke, William F. (Pleasanton, CA); Murray, John R. (Livermore, CA); Powell, Howard T. (Livermore, CA); Swingle, James C. (Livermore, CA); Turner, Jr., Charles E. (Livermore, CA); Rhodes, Charles K. (Palo Alto, CA)

    1978-01-01

    An electron beam of energy typically 100 keV excites a fluorescer gas which emits ultraviolet radiation. This radiation excites and drives an adjacent laser gas by optical pumping or photolytic dissociation to produce high efficiency pulses. The invention described herein was made in the course of, or under, United States Energy Research and Development Administration Contract No. W-7405-Eng-48 with the University of California.

  7. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect (OSTI)

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  8. Experimental demonstration of longitudinal beam phase space linearizer in a free-electron laser facility by corrugated structures

    E-Print Network [OSTI]

    Deng, Haixiao; Feng, Chao; Zhang, Tong; Wang, Xingtao; Lan, Taihe; Feng, Lie; Zhang, Wenyan; Liu, Xiaoqing; Yao, Haifeng; Shen, Lei; Li, Bin; Zhang, Junqiang; Li, Xuan; Fang, Wencheng; Wang, Dan; Couprie, Marie-emmanuelle; Lin, Guoqiang; Liu, Bo; Gu, Qiang; Wang, Dong; Zhao, Zhentang

    2014-01-01

    Removal of residual linear energy chirp and intrinsic nonlinear energy curvature in the relativistic electron beam from radiofrequency linear accelerator is of paramount importance for efficient lasing of a high-gain free-electron laser. Recently, it was theoretically and experimentally demonstrated that the longitudinal wakefield excited by the electrons itself in the corrugated structure allows for precise control of the electron beam phase space. In this Letter, we report the first utilization of a corrugated structure as beam linearizer in the operation of a seeded free-electron laser driven by a 140 MeV linear accelerator, where a gain of ~10,000 over spontaneous emission was achieved at the second harmonic of the 1047 nm seed laser, and a free-electron laser bandwidth narrowing by about 50% was observed, in good agreement with the theoretical expectations.

  9. Compact X-ray Free Electron Laser from a Laser-plasma Accelerator...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 43 PARTICLE ACCELERATORS; ACCELERATORS; ELECTRON BEAMS; ELECTRONS; FREE ELECTRON LASERS; LASERS; PERFORMANCE; PLASMA GUNS; RADIATIONS; WIGGLER MAGNETS...

  10. Role of the laser pulse-length in producing high-quality electron beams in a homogenous plasma

    SciTech Connect (OSTI)

    Upadhyay, Ajay K.; Arun Samant, Sushil; Krishnagopal, Srinivas

    2012-07-15

    In laser wakefield acceleration, the pulse-length of the laser is an important parameter that affects the laser evolution and electron beam injection and acceleration in the bubble regime. Here, we use three-dimensional simulations to find, for a given plasma density, the optimal pulse-length that gives the best quality electron beam. For three different pulse lengths, we study the evolution dynamics of the laser spot-size and quality of the injected electron beam. We find that a pulse-length that is less than the theoretical optimum, {tau}{sub L} = {lambda}{sub p}/{radical}2{pi}c, derived from linear theory, gives the best beam quality. Conversely, our simulations suggest that for a given laser system, with a fixed pulse-length, there is an optimal value of the plasma density that will give the best quality accelerated beams in experiments. For an rms pulse-length of 10 fs (around 24 fs FWHM), this corresponds to a plasma density of around 3.4 Multiplication-Sign 10{sup 18}/cm{sup 3}. For these parameters, we obtain, in a homogenous plasma and with a single laser, an electron beam with an energy of around 700 MeV, an energy-spread less than 2%, and rms normalized emittance of a few {pi} mm-mrad.

  11. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    SciTech Connect (OSTI)

    Guimei Wang

    2011-12-31

    Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q{sub ext} with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam energy at ~5MeV. Simulation shows that in the 3+1/2 DC- C injector, there is a region the beam could be over focused by RF electromagnetic field and the transverse emittance in the transport line up to linac will increase instantly due to over focusing. In order to eliminate this effect on beam emittance, several solutions are investigated to avoid over focusing. This result is very important for beam loading experiment for low bunch charge operation. Meanwhile, different merger structures are compared in terms of error sensitivity and emittance increase with space charge effect. In recirculation beam line, a new symmetric 180{degree} arc structure is designed. It fulfills the achromatic condition and adjustable bunch compression. These two parameters are controlled by different Quads knob. With this novel structure, the recirculation lattice can achieve path length adjustment, bunch compression and decompression in a large range. With beamline error, the beam central orbit will deviate from the designed trajectory. An orbit correction system is optimized, which balances between cost and performance of orbit after correction at design level. Different methods are used to estimate its robustness. The BBU instability, especially multi-pass BBU imposed a potentially severe limitation to the average current that can be accelerated in an ERL. Simulation gives the harmful HOMs and predicts that the threshold average current in this machine is much higher than the possible operation current. This work is based on the existing facility in PKU, so it provides guidelines for the facility operation and upgrade in the future. The theoretical analysis of ERL requirement and FEL requirement on beam transport line and beam property paves the way for future ERL research.

  12. Free electron laser with bunched relativistic electron beam and electrostatic longitudinal wiggler

    SciTech Connect (OSTI)

    Sepehri Javan, Nasser [Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil (Iran, Islamic Republic of)

    2010-06-15

    The system of the nonlinear nonstationary equations describing spatial-temporal dynamics of the amplitudes of an undulator radiation and a space charge wave of a relativistic electron beam in the resonator is obtained. The electrostatic longitudinal wiggler is considered. A bunch of the electron beam injects to the resonator, at the ends of which two mirrors are placed. After the interaction of electrons of bunch with radiation in the presence of wiggler and after amplifying electromagnetic pulse, a part of radiation is reflected back by semitransparent mirror. Then, it reaches to the initial of the system where the other mirror is placed. Synchronously, when the pulse is reflecting, the other electron bunch enters to the resonator and interacts with the pulse. This operation has simulated until saturation of growth of the electromagnetic pulse. The dynamics of the problem is simulated by the method of macro particles. The dynamics of pulse amplification, motion of the electrons, and spectra of output radiation in each stage are simulated.

  13. Standing-Wave Free-Electron Laser Two-Beam Accelerator

    E-Print Network [OSTI]

    Sessler, Andrew M.

    2008-01-01

    in Physics Research A Standing-Wave Free-Electron Laser Two-AC03-76SF00098 LBL-30418 Standing-Wave Free-Electron LaserNo. W-740S-ENG-48. Standing-wave free-electron laser two-

  14. Study of beam transverse properties of a thermionic electron gun for application to a compact THz free electron laser

    SciTech Connect (OSTI)

    Hu, Tongning E-mail: yjpei@ustc.edu.cn; Qin, Bin; Tan, Ping; Chen, Qushan; Yang, Lei; Pei, Yuanji E-mail: yjpei@ustc.edu.cn; Li, Ji

    2014-10-15

    A novel thermionic electron gun adopted for use in a high power THz free electron laser (FEL) is proposed in this paper. By optimization of the structural and radiofrequency (RF) parameters, the physical design of the gun is performed using dynamic calculations. Velocity bunching is used to minimize the bunch's energy spread, and the dynamic calculation results indicate that high quality beams can be provided. The transverse properties of the beams generated by the gun are also analyzed. The novel RF focusing effects of the resonance cavity are investigated precisely and are used to establish emittance compensation, which enables the injector length to be reduced. In addition, the causes of the extrema of the beam radius and the normalized transverse emittance are analyzed and interpreted, respectively, and slice simulations are performed to illustrate how the RF focusing varies along the bunch length and to determine the effects of that variation on the emittance compensation. Finally, by observation of the variations of the beam properties in the drift tube behind the electron gun, prospective assembly scenarios for the complete THz-FEL injector are discussed, and a joint-debugging process for the injector is implemented.

  15. Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering

    SciTech Connect (OSTI)

    Gallais, Laurent; Capoulade, Jeremie; Natoli, Jean-Yves; Commandre, Mireille; Cathelinaud, Michel; Koc, Cian; Lequime, Michel

    2008-05-01

    A comparative study is made of the laser damage resistance of hafnia coatings deposited on fused silica substrates with different technologies: electron beam deposition (from Hf or HfO2 starting material), reactive low voltage ion plating, and dual ion beam sputtering.The laser damage thresholds of these coatings are determined at 1064 and 355 nm using a nanosecond pulsed YAG laser and a one-on-one test procedure. The results are associated with a complete characterization of the samples: refractive index n measured by spectrophotometry, extinction coefficient k measured by photothermal deflection, and roughness measured by atomic force microscopy.

  16. Study of beam loading and its compensation in the Compact Ultrafast Terahertz Free-Electron Laser injector linac

    SciTech Connect (OSTI)

    Lal, Shankar Pant, K. K.

    2014-12-15

    The RF properties of an accelerating structure, and the pulse structure and charge per bunch in the electron beam propagating through it are important parameters that determine the impact of beam loading in the structure. The injector linac of the Compact Ultrafast Terahertz Free-Electron Laser (CUTE-FEL) has been operated with two different pulse structures during initial commissioning experiments and the effect of beam loading on the accelerated electron beam parameters has been studied analytically for these two pulse structures. This paper discusses the analytical study of beam loading in a Standing Wave, Plane Wave Transformer linac employed in the CUTE-FEL setup, and a possible technique for its compensation for the electron beam parameters of the CUTE-FEL. A parametric study has been performed to study beam loading for different beam currents and to optimize injection time of the electron beam to compensate beam loading. Results from the parametric study have also been used to explain previously observed results from acceleration experiments in the CUTE-FEL setup.

  17. Resonantly excited betatron hard X-Rays from Ionization Injected Electron Beam in a Laser Plasma Accelerator

    E-Print Network [OSTI]

    Huang, K; Li, Y F; Li, D Z; Tao, M Z; Mirzaie, M; Ma, Y; Zhao, J R; Li, M H; Chen, M; Hafz, N; Sokollik, T; Sheng, Z M; Zhang, J

    2015-01-01

    A new scheme for bright hard x-ray emission from laser wakefield electron accelerator is reported, where pure nitrogen gas is adopted. Intense Betatron x-ray beams are generated from ionization injected K-shell electrons of nitrogen into the accelerating wave bucket. The x-ray radiation shows synchrotron-like spectrum with total photon yield 8$\\times$10$^8$/shot and $10^8$ over 110keV. In particular, the betatron hard x-ray photon yield is 10 times higher compared to the case of helium gas under the same laser parameters. Particle-in-cell simulation suggests that the enhancement of the x-ray yield results from ionization injection, which enables the electrons to be quickly accelerated to the driving laser region for subsequent betatron resonance. Employing the present scheme,the single stage nitrogen gas target could be used to generate stable high brightness betatron hard x-ray beams.

  18. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1994-02-15

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  19. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1993-12-28

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  20. Cyclotron-undulator cooling of a free-electron-laser beam

    SciTech Connect (OSTI)

    Bandurkin, I. V.; Kuzikov, S. V. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Savilov, A. V. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod (Russian Federation)

    2014-08-18

    We propose methods of fast cooling of an electron beam, which are based on wiggling of particles in an undulator in the presence of an axial magnetic field. We use a strong dependence of the axial electron velocity on the oscillatory velocity, when the electron cyclotron frequency is close to the frequency of electron wiggling in the undulator field. The abnormal character of this dependence (when the oscillatory velocity increases with the increase of the input axial velocity) can be a basis of various methods for fast cooling of moderately relativistic (several MeV) electron beams.

  1. Generation of Low Absolute Energy Spread Electron Beams in Laser Wakefield Acceleration Using Tightly Focused Laser through Near-Ionization-Threshold Injection

    E-Print Network [OSTI]

    Li, F; Wan, Y; Wu, Y P; Hua, J F; Pai, C H; Lu, W; Mori, W B; Joshi, C

    2015-01-01

    An enhanced ionization injection scheme using a tightly focused laser pulse with intensity near the ionization potential to trigger the injection process in a mismatched pre-plasma channel has been proposed and examined via multi-dimensional particle-in-cell simulations. The core idea of the proposed scheme is to lower the energy spread of trapped beams by shortening the injection distance. We have established theory to precisely predict the injection distance, as well as the ionization degree of injection atoms/ions, electron yield and ionized charge. We have found relation between injection distance and laser and plasma parameters, giving a strategy to control injection distance hence optimizing beam's energy spread. In the presented simulation example, we have investigated the whole injection and acceleration in detail and found some unique features of the injection scheme, like multi-bunch injection, unique longitudinal phase-space distribution, etc. Ultimate electron beam has a relative energy spread (rm...

  2. Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering

    SciTech Connect (OSTI)

    Kolbus, Lindsay M [ORNL; Payzant, E Andrew [ORNL; Cornwell, Paris A [ORNL; Watkins, Thomas R [ORNL; Babu, Sudarsanam Suresh [ORNL; Dehoff, Ryan R [ORNL; Duty, Chad E [ORNL

    2015-01-01

    Residual stress profiles were mapped using neutron diffraction in two simple prism builds of Inconel 718: one fabricated with electron beam melting and the other with direct laser sintering. Spatially indexed stress-free cubes were obtained by EDM sectioning equivalent prisms of similar shape. The (311) interplanar spacing examined for the EDM sectioned sample was compared to the interplanar spacings calculated to fulfill force and moment balance. We have shown that Applying force and moment balance is a necessary supplement to the measurements for the stress-free cubes with respect to accurate stress calculations in additively manufactured components. In addition, our work has shown that residual stresses in electron beam melting parts are much smaller than that of direct laser metal sintering parts.

  3. Rf Feedback free electron laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1981-01-01

    A free electron laser system and electron beam system for a free electron laser which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.

  4. Untangling the contributions of image charge and laser profile for optimal photoemission of high-brightness electron beams

    SciTech Connect (OSTI)

    Portman, J.; Zhang, H.; Makino, K.; Ruan, C. Y.; Berz, M.; Duxbury, P. M.

    2014-11-07

    Using our model for the simulation of photoemission of high brightness electron beams, we investigate the virtual cathode physics and the limits to spatio-temporal and spectroscopic resolution originating from the image charge on the surface and from the profile of the exciting laser pulse. By contrasting the effect of varying surface properties (leading to expanding or pinned image charge), laser profiles (Gaussian, uniform, and elliptical), and aspect ratios (pancake- and cigar-like) under different extraction field strengths and numbers of generated electrons, we quantify the effect of these experimental parameters on macroscopic pulse properties such as emittance, brightness (4D and 6D), coherence length, and energy spread. Based on our results, we outline optimal conditions of pulse generation for ultrafast electron microscope systems that take into account constraints on the number of generated electrons and on the required time resolution.

  5. Electron Beam Lithography

    E-Print Network [OSTI]

    Sandini, Giulio

    Electron Beam Lithography Marco Salerno #12;Outline · general lithographic concepts · EBL www.cnf.cornell.edu/SPIEBook/SPIE1.HTM #12;Typical Electron Beam Column Zeiss GeminiTM column Types of Electron Beam Columns · no e- cross over no Boersch-effect (additional energy spread) · beam booster

  6. Photons with a Twist: Coherent Optical Vortices From Relativistic Electron Beams

    E-Print Network [OSTI]

    Knyazik, Andrey

    2013-01-01

    107 Relevant Electron Beam, Laser and UndulatorRosenzweig, and M. Ruelas. Electron beam diagnostics usingof a relativistic electron beam. Appl. Phys. Lett. 100,

  7. Free-Electron Laser Targets Fat | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser Targets Fat April 10, 2006 Free-Electron Laser Scientists Rox Anderson, right, and Free-Electron Laser Scientist Steve Benson, left, discuss laser beam...

  8. Short pulse free electron laser amplifier

    DOE Patents [OSTI]

    Schlitt, Leland G. (Livermore, CA); Szoke, Abraham (Fremont, CA)

    1985-01-01

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  9. Single element laser beam shaper

    DOE Patents [OSTI]

    Zhang, Shukui (Yorktown, VA); Michelle D. Shinn (Newport News, VA)

    2005-09-13

    A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

  10. Combination free electron and gaseous laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Stein, William E. (Los Alamos, NM)

    1980-01-01

    A multiple laser having one or more gaseous laser stages and one or more free electron stages. Each of the free electron laser stages is sequentially pumped by a microwave linear accelerator. Subsequently, the electron beam is directed through a gaseous laser, in the preferred embodiment, and in an alternative embodiment, through a microwave accelerator to lower the energy level of the electron beam to pump one or more gaseous lasers. The combination laser provides high pulse repetition frequencies, on the order of 1 kHz or greater, high power capability, high efficiency, and tunability in the synchronous production of multiple beams of coherent optical radiation.

  11. 43 PARTICLE ACCELERATORS; ELECTRON GUNS; BEAM EMITTANCE; CHARGE

    Office of Scientific and Technical Information (OSTI)

    SPACE 430200* -- Particle Accelerators-- Beam Dynamics, Field Calculations, & Ion Optics The evolution of the electron-beam phase space distribution in laser-driven rf guns is...

  12. Multifrequency, single pass free electron laser

    DOE Patents [OSTI]

    Szoke, Abraham (Fremont, CA); Prosnitz, Donald (Walnut Creek, CA)

    1985-01-01

    A method for simultaneous amplification of laser beams with a sequence of frequencies in a single pass, using a relativistic beam of electrons grouped in a sequence of energies corresponding to the sequence of laser beam frequencies. The method allows electrons to pass from one potential well or "bucket" to another adjacent bucket, thus increasing efficiency of trapping and energy conversion.

  13. Ultra-bright, ultra-broadband hard x-ray driven by laser-produced energetic electron beams

    SciTech Connect (OSTI)

    Shi, Yin; Shen, Baifei; Zhang, Xiaomei; Wang, Wenpeng; Ji, Liangliang; Zhang, Lingang; Xu, Jiancai; Yu, Yahong; Zhao, Xueyan; Wang, Xiaofeng; Yi, Longqing; Xu, Tongjun; Xu, Zhizhan [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)] [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)

    2013-09-15

    We propose a new method of obtaining a compact ultra-bright, ultra-broadband hard X-ray source. This X-ray source has a high peak brightness in the order of 10{sup 22} photons/(s mm{sup 2} mrad{sup 2} 0.1\\%BW), an ultrashort duration (10 fs), and a broadband spectrum (flat distribution from 0.1 MeV to 4 MeV), and thus has wide-ranging potential applications, such as in ultrafast Laue diffraction experiments. In our scheme, laser-plasma accelerators (LPAs) provide driven electron beams. A foil target is placed oblique to the beam direction so that the target normal sheath field (TNSF) is used to provide a bending force. Using this TNSF-kick scheme, we can fully utilize the advantages of current LPAs, including their high charge, high energy, and low emittance.

  14. Free electron laser with masked chicane

    DOE Patents [OSTI]

    Nguyen, Dinh C. (Los Alamos, NM); Carlsten, Bruce E. (Los Alamos, NM)

    1999-01-01

    A free electron laser (FEL) is provided with an accelerator for outputting electron beam pulses; a buncher for modulating each one of the electron beam pulses to form each pulse into longitudinally dispersed bunches of electrons; and a wiggler for generating coherent light from the longitudinally dispersed bunches of electrons. The electron beam buncher is a chicane having a mask for physically modulating the electron beam pulses to form a series of electron beam bunches for input to the wiggler. In a preferred embodiment, the mask is located in the chicane at a position where each electron beam pulse has a maximum dispersion.

  15. Production of high-quality electron bunches by dephasing and beam loading in channeled and unchanneled laser plasma acceleratorsa...

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Production of high-quality electron bunches by dephasing and beam loading in channeled beams, with a few 109 electrons within a few percent of the same energy above 80 MeV, were produced with these data, particle-in-cell simulations indicate production of high-quality electron beams when trapping

  16. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    SciTech Connect (OSTI)

    Bonatto, A.; Schroeder, C.B.; Vay, J.-L.; Geddes, C.R.; Benedetti, C.; Esarey and, E.; Leemans, W.P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  17. Laser beam pulse formatting method

    DOE Patents [OSTI]

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  18. High-power beam injectors for 100 KW free-electron lasers

    SciTech Connect (OSTI)

    Todd, A. M.; Wood R. L.; Bluem, H.; Young, L. M.; Wiseman, M.; Schultheiss, T.; Schrage, D. L.; Russell, S. J.; Rode, C. H.; Rimmer, R.; Nguyen, D. C.; Kelley, J. P.; Kurennoy, S.; wood, r

    2003-01-01

    A key technology issue on the path to high-power FEL operation is the demonstration of reliable, high-brightness, high-power injector operation. We describe two ongoing programs to produce 100 mA injectors as drivers for 100 kW free-electron lasers. In one approach, in collaboration with the Thomas Jefferson National Accelerator Facility, we are fabricating a 750 MHz superconducting RF cryomodule that will be integrated with a room-temperature DC photocathode gun and tested at the Laboratory. In the other approach, in collaboration with Los Alamos National Laboratory, a high-current 700 MHz, normal-conducting, RF photoinjector is being designed and will undergo thermal management testing at the Laboratory. We describe the design, the projected performance and the status of both injectors.

  19. Laser acceleration of ion beams

    E-Print Network [OSTI]

    I. A. Egorova; A. V. Filatov; A. V. Prozorkevich; S. A. Smolyansky; D. B. Blaschke; M. Chubaryan

    2007-02-01

    We consider methods of charged particle acceleration by means of high-intensity lasers. As an application we discuss a laser booster for heavy ion beams provided, e.g. by the Dubna nuclotron. Simple estimates show that a cascade of crossed laser beams would be necessary to provide additional acceleration to gold ions of the order of GeV/nucleon.

  20. Electron Beam for LHC

    E-Print Network [OSTI]

    Mieczyslaw Witold Krasny

    2004-05-13

    A method of delivering a monochromatic electron beam to the LHC interaction points is proposed. In this method, heavy ions are used as carriers of the projectile electrons. Acceleration, storage and collision-stability aspects of such a hybrid beam is discussed and a new beam-cooling method is presented. This discussion is followed by a proposal of the Parasitic Ion-Electron collider at LHC (PIE@LHC). The PIE@LHC provides an opportunity, for the present LHC detectors, to enlarge the scope of their research program by including the program of electron-proton and electron-nucleuscollisions with minor machine and detector investments.

  1. Femtosecond laser-electron x-ray source

    DOE Patents [OSTI]

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  2. A NEW VERSION OF A FREE ELECTRON LASER TWO BEAM ACCELERATOR

    E-Print Network [OSTI]

    Sessler, A.M.

    2008-01-01

    S. S. Yu, "Relativistic Klystron Version of the Two- BeamSubharmonic Drive Relativistic Klystron Work at LLNL", Proc.cavities -- a relativistic klystron (RK) as the microwave

  3. Laser beam alignment apparatus and method

    DOE Patents [OSTI]

    Gruhn, Charles R. (Martinez, CA); Hammond, Robert B. (Los Alamos, NM)

    1981-01-01

    The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  4. Synchronization and Characterization of an Ultra-Short Laser for Photoemission and Electron-Beam Diagnostics Studies at a Radio Frequency Photoinjector

    SciTech Connect (OSTI)

    Maxwell, Timothy; Ruan, Jinhao; Piot, Philippe; Lumpkin, Alex; ,

    2012-03-01

    A commercially-available titanium-sapphire laser system has recently been installed at the Fermilab A0 photoinjector laboratory in support of photoemission and electron beam diagnostics studies. The laser system is synchronized to both the 1.3-GHz master oscillator and a 1-Hz signal use to trigger the radiofrequency system and instrumentation acquisition. The synchronization scheme and performance are detailed. Long-term temporal and intensity drifts are identified and actively suppressed to within 1 ps and 1.5%, respectively. Measurement and optimization of the laser's temporal profile are accomplished using frequency-resolved optical gating.

  5. Title of Dissertation: LONGITUDINAL DYNAMICS OF AN INTENSE ELECTRON BEAM

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Dissertation: LONGITUDINAL DYNAMICS OF AN INTENSE ELECTRON BEAM John Richardson fusion, spallation neutron sources, free-electron lasers, and other applications. In addition, all beams beams. #12;LONGITUDINAL DYNAMICS OF AN INTENSE ELECTRON BEAM By John Richardson Harris. Dissertation

  6. Efficiency Enhancement in a Tapered Free Electron Laser by Varying...

    Office of Scientific and Technical Information (OSTI)

    a Tapered Free Electron Laser by Varying the Electron Beam Radius Energy extraction efficiency of a free electron laser (FEL) can be increased when the undulator is tapered after...

  7. Generation and pointing stabilization of multi-GeV electron beams from a laser plasma accelerator driven in a pre-formed plasma waveguide

    SciTech Connect (OSTI)

    Gonsalves, A. J.; Nakamura, K.; Daniels, J.; Mao, H.-S.; Benedetti, C.; Schroeder, C. B.; Tóth, Cs.; Tilborg, J. van; Vay, J.-L.; Geddes, C. G. R.; Esarey, E.; Mittelberger, D. E.; Bulanov, S. S.; Leemans, W. P.

    2015-05-15

    Laser pulses with peak power 0.3?PW were used to generate electron beams with energy >4?GeV within a 9?cm-long capillary discharge waveguide operated with a plasma density of ?7×10{sup 17}?cm{sup ?3}. Simulations showed that the super-Gaussian near-field laser profile that is typical of high-power femtosecond laser systems reduces the efficacy of guiding in parabolic plasma channels compared with the Gaussian laser pulses that are typically simulated. In the experiments, this was mitigated by increasing the plasma density and hence the contribution of self-guiding. This allowed for the generation of multi-GeV electron beams, but these had angular fluctuation ?2?mrad rms. Mitigation of capillary damage and more accurate alignment allowed for stable beams to be produced with energy 2.7±0.1?GeV. The pointing fluctuation was 0.6?mrad rms, which was less than the beam divergence of ?1?mrad full-width-half-maximum.

  8. Free electron laser

    DOE Patents [OSTI]

    Villa, Francesco (Alameda, CA)

    1990-01-01

    A high gain, single-pass free electron laser formed of a high brilliance electron injector source, a linear accelerator which imparts high energy to the electron beam, and an undulator capable of extremely high magnetic fields, yet with a very short period. The electron injector source is the first stage (gap) of the linear accelerator or a radial line transformer driven by fast circular switch. The linear accelerator is formed of a plurality of accelerating gaps arranged in series. These gaps are energized in sequence by releasing a single pulse of energy which propagates simultaneously along a plurality of transmission lines, each of which feeds the gaps. The transmission lines are graduated in length so that pulse power is present at each gap as the accelerated electrons pass therethrough. The transmission lines for each gap are open circuited at their ends. The undualtor has a structure similar to the accelerator, except that the transmission lines for each gap are substantially short circuited at their ends, thus converting the electric field into magnetic field. A small amount of resistance is retained in order to generate a small electric field for replenishing the electron bunch with the energy lost as it traverses through the undulator structure.

  9. Generation of very low energy-spread electron beams using low-intensity laser pulses in a low-density plasma

    SciTech Connect (OSTI)

    Upadhyay, Ajay K.; Samant, Sushil Arun; Sarkar, Deepangkar; Krishnagopal, Srinivas; Jha, Pallavi

    2011-03-15

    The possibility of obtaining high-energy electron beams of high quality by using a low-density homogeneous plasma and a low-intensity laser (just above the self-injection threshold in the bubble regime) has been explored. Three-dimensional simulations are used to demonstrate, for the first time, an energy-spread of less than 1%, from self-trapping. More specifically, for a plasma density of 2x10{sup 18} cm{sup -3} and a laser intensity of a{sub 0}=2, a high-energy (0.55 GeV), ultrashort (1.4 fs) electron beam with very low energy-spread (0.55%) and high current (3 kA) is obtained. These parameters satisfy the requirements for drivers of short-wavelength free-electron lasers. It is also found that the quality of the electron beam depends strongly on the plasma length, which therefore needs to be optimized carefully to get the best performance in the experiments.

  10. Beams 92: Proceedings. Volume 2, Ion beams, electron beams, diagnostics

    SciTech Connect (OSTI)

    Mosher, D.; Cooperstein, G. [eds.] [Naval Research Lab., Washington, DC (United States)] [eds.; Naval Research Lab., Washington, DC (United States)

    1993-12-31

    This report contains papers on the following topics. Ion beam papers; electron beam papers; and these papers have been indexed separately elsewhere.

  11. Two-dimensional optimization of free electron laser designs

    DOE Patents [OSTI]

    Prosnitz, Donald (Walnut Creek, CA); Haas, Roger A. (Pleasanton, CA)

    1985-01-01

    Off-axis, two-dimensional designs for free electron lasers that maintain correspondence of a light beam with a "synchronous electron" at an optimal transverse radius r>0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  12. Two-dimensional optimization of free-electron-laser designs

    DOE Patents [OSTI]

    Prosnitz, D.; Haas, R.A.

    1982-05-04

    Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  13. Generation of short gamma-ray pulses on electron bunches formed in intense interfering laser beams with tilted fronts

    SciTech Connect (OSTI)

    Korobkin, V V; Romanovskiy, M Yu; Trofimov, V A; Shiryaev, O B

    2014-05-30

    It is shown that in the interference of multiple laser pulses with a relativistic intensity, phase and amplitude fronts of which are tilted at an angle with respect to their wave vector, effective traps of charged particles, which are moving at the velocity of light, are formed. Such traps are capable of capturing and accelerating the electrons produced in the ionisation of low-density gas by means of laser radiation. The accelerated electrons in the traps form a bunch, whose dimensions in all directions are much smaller than the laser radiation wavelength. Calculations show that the energy of accelerated electrons may amount to several hundred GeV at experimentally accessible relativistic laser intensities. As a result of the inverse Compton scattering, gamma-quanta with a high energy and narrow radiation pattern are emitted when these electrons interact with a laser pulse propagating from the opposite direction. The duration of emitted gamma-ray pulses constitutes a few attoseconds. The simulation is performed by solving the relativistic equation of motion for an electron with a relevant Lorentz force. (interaction of radiation with matter)

  14. All-optical Time-resolved Measurement of Laser Energy Modulation in a Relativistic Electron Beam

    SciTech Connect (OSTI)

    Xiang, D.; Colby, E.; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodley, M.; /SLAC

    2012-02-15

    Hamiltonian light-front theory has been proposed as a promising method for solving bound states problems in quantum field theory a long time ago, see, e.g., the review article[1] for its various advantages compared to the traditional instant-form theories. Recently the Basis Light-Front Quantization (BLFQ) approach [2, 3] has been developed as a nonperturbative approach to solve Hamiltonian light-front quantum field theory. Numerical efficiency is a key advantage of this approach. The basic idea of BLFQ is to represent the theory in an optimal basis which respects many symmetries of the theory and thus minimizes the dimensionality of the Hamiltonian for a fixed precision. Specifically, the BLFQ approach employs a plane wave basis in the light-front longitudinal direction and a 2D harmonic oscillator basis in the transverse directions. In previous work [3] this approach has been applied to evaluate the anomalous magnetic moment of electrons which are confined in an external trap with an extrapolation to the zero trap limit. In this work we extend and improve this approach in several aspects including the direct evaluation of a free electron system. This article is organized as follows: In Sec. 2 we discuss the key extensions and improvements made in this work over Ref [3]; in Sec. 3 we present the numerical results for the electron anomalous magnetic moment evaluated in different harmonic oscillator bases and compare to the perturbation theory result. Finally we conclude and give an outline for future works in Sec. 4.

  15. Electron beam generation in Tevatron electron lenses

    SciTech Connect (OSTI)

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.; /Novosibirsk, IYF

    2006-08-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices.

  16. A study of beam position diagnostics using beam-excited dipole modes in third harmonic superconducting accelerating cavities at a free-electron laser

    SciTech Connect (OSTI)

    Zhang Pei [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany); Jones, Roger M.; Shinton, Ian R. R. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Cockcroft Institute, Cheshire WA4 4AD (United Kingdom); Flisgen, Thomas; Glock, Hans-Walter [Institut fuer Allgemeine Elektrotechnik, Universitaet Rostock, 18051 Rostock (Germany)

    2012-08-15

    We investigate the feasibility of beam position diagnostics using higher order mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band, and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR), and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.

  17. Protective laser beam viewing device

    DOE Patents [OSTI]

    Neil, George R.; Jordan, Kevin Carl

    2012-12-18

    A protective laser beam viewing system or device including a camera selectively sensitive to laser light wavelengths and a viewing screen receiving images from the laser sensitive camera. According to a preferred embodiment of the invention, the camera is worn on the head of the user or incorporated into a goggle-type viewing display so that it is always aimed at the area of viewing interest to the user and the viewing screen is incorporated into a video display worn as goggles over the eyes of the user.

  18. High energy laser beam dump

    DOE Patents [OSTI]

    Halpin, John (Tracy, CA)

    2004-09-14

    The laser beam dump is positioned in a housing. An absorbing glass plate means is operatively connected to the housing. A heat sync means for extracting heat from the absorbing glass plate means is operatively connected to the housing and operatively connected to the absorbing glass plate means.

  19. 3D PIC simulations of electron beams created via reflection of intense laser light from a water target

    E-Print Network [OSTI]

    Ngirmang, Gregory K; Feister, Scott; Morrison, John T; Chowdhury, Enam A; Frische, Kyle; Roquemore, W M

    2015-01-01

    We present 3D Particle-in-Cell (PIC) modeling of an ultra-intense laser experiment by the Extreme Light group at the Air Force Research Laboratory (AFRL) using the PIC code LSP. This is the first time PIC simulations have been performed in 3D for this experiment which involves an ultra-intense, short-pulse (30 fs) laser interacting with a water jet target at normal incidence. These 3D PIC simulation results are compared to results from 2D(3$v$) PIC simulations for both $5.4\\cdot10^{17}$ W cm$^{-2}$ and $3\\cdot10^{18}$ W cm$^{-2}$ intensities. Comparing the 2D(3$v$) and 3D simulation results, the laser-energy-to-ejected-electron-energy conversion efficiencies were comparable, but the angular distribution of ejected electrons show interesting differences with qualitative differences at higher intensity. An analytic plane-wave model is provided that provides some explanation for the angular distribution and energies of ejected electrons in the 2D(3$v$) simulations. We also performed a 3D simulation with circular...

  20. Backscattering of an Intense Laser Beam by an Electron Fei He, Y.Y. Lau, Donald P. Umstadter, and Richard Kowalczyk

    E-Print Network [OSTI]

    Umstadter, Donald

    but is independent of the electron energy, that a high power laser does not necessarily produce high power radiation for this scattering problem from a low to an ultrahigh power laser, and from a low to an ultrahigh energy electron

  1. Beam transport and monitoring for laser plasma accelerators

    SciTech Connect (OSTI)

    Nakamura, K.; Sokollik, T.; Tilborg, J. van; Gonsalves, A. J.; Shaw, B.; Shiraishi, S.; Mittal, R.; De Santis, S.; Byrd, J. M.; Leemans, W. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States) and University of California, Berkeley, CA 94720 (United States)

    2012-12-21

    The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system, XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.

  2. Electron beam machining using rotating and shaped beam power distribution

    DOE Patents [OSTI]

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  3. Electron beam machining using rotating and shaped beam power distribution

    DOE Patents [OSTI]

    Elmer, John W. (Pleasanton, CA); O'Brien, Dennis W. (Livermore, CA)

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  4. Laser Wire and Beam Position Monitor tests

    E-Print Network [OSTI]

    Boogert, S T; Lyapin, A; Nevay, L; Snuverink, J

    2013-01-01

    This subtask involved two main activities; Firstly the development and subsequent usage of high resolution beam position monitors (BPM) for the International Linear Collider (ILC) and Compact Linear Collider projects (CLIC); and secondly the development of a laser-wire (LW) transverse beam size measurement systems. This report describes the technical progress achieved at a large-scale test ILC compatible BPM system installed at the Accelerator Test Facility 2 (ATF2). The ATF2 is an energy-scaled demonstration system for the final focus systems required to deliver the particle beams to collision at the ILC and CLIC. The ATF2 cavity beam position monitor system is one of the largest of its kind and rivals systems used at free electron lasers. The ATF2 cavity beam position system has achieved a position resolutionof 250 nm (with signal attuenation) and 27 nm (without attenuation). The BPM system has been used routinely for lattice diagnostics, beam based alignment and wakefield measurements. Extensive experience...

  5. Free electron laser using Rf coupled accelerating and decelerating structures

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1984-01-01

    A free electron laser and free electron laser amplifier using beam transport devices for guiding an electron beam to a wiggler of a free electron laser and returning the electron beam to decelerating cavities disposed adjacent to the accelerating cavities of the free electron laser. Rf energy is generated from the energy depleted electron beam after it emerges from the wiggler by means of the decelerating cavities which are closely coupled to the accelerating cavities, or by means of a second bore within a single set of cavities. Rf energy generated from the decelerated electron beam is used to supplement energy provided by an external source, such as a klystron, to thereby enhance overall efficiency of the system.

  6. Scattering apodizer for laser beams

    DOE Patents [OSTI]

    Summers, M.A.; Hagen, W.F.; Boyd, R.D.

    1984-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  7. Scattering apodizer for laser beams

    DOE Patents [OSTI]

    Summers, Mark A. (Livermore, CA); Hagen, Wilhelm F. (Livermore, CA); Boyd, Robert D. (Livermore, CA)

    1985-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  8. Cascaded injection resonator for coherent beam combining of laser arrays

    DOE Patents [OSTI]

    Kireev, Vassili [Sunnyvale, CA; Liu, Yun; Protopopescu, Vladimir [Knoxville, TN; Braiman, Yehuda [Oak Ridge, TN

    2008-10-21

    The invention provides a cascaded injection resonator for coherent beam combining of laser arrays. The resonator comprises a plurality of laser emitters arranged along at least one plane and a beam sampler for reflecting at least a portion of each laser beam that impinges on the beam sampler, the portion of each laser beam from one of the laser emitters being reflected back to another one of the laser emitters to cause a beam to be generated from the other one of the laser emitters to the beam reflector. The beam sampler also transmits a portion of each laser beam to produce a laser output beam such that a plurality of laser output beams of the same frequency are produced. An injection laser beam is directed to a first laser emitter to begin a process of generating and reflecting a laser beam from one laser emitter to another laser emitter in the plurality. A method of practicing the invention is also disclosed.

  9. Kinetic Electrostatic Electron Nonlinear (KEEN) Waves and their Interactions Driven by the Ponderomotive Force of Crossing Laser Beams

    E-Print Network [OSTI]

    Bedros Afeyan; K. Won; V. Savchenko; T. Johnston; A. Ghizzo; P. Bertrand

    2012-10-30

    We have found, using 1D periodic Vlasov-Poisson simulations, new nonlinear, nonstationary, stable, long lived, coherent structures in phase space, called kinetic electrostatic electron nonlinear (KEEN) waves. Ponderomotively driven for a short period of time, at a particular frequency and wavenumber, well inside the band gap that was thought to exist between electron plasma and electron acoustic wave frequencies, KEEN waves are seen to self-consistently form, and persist for thousands of plasma periods. KEEN waves are comprised of 4 or more significant phase-locked harmonic modes which persist only when driven sufficiently strongly. They also merge when two or more at different frequencies are driven sequentially. However, the final stable KEEN state that emerges is highly sensitive to their relative order of excitation. KEEN waves also interact quite strongly with electron plasma waves (EPW) especially when their harmonics are close to being resonant with the EPW frequency at the same k. The common assumption that whenever sufficiently large amplitude coherent laser energy is present in an unmagnetized plasma, EPWs and IAWs are the only waves with which the electromagnetic energy can interact coherently may require reconsideration.

  10. Raman beam combining for laser brightness enhancement

    DOE Patents [OSTI]

    Dawson, Jay W; Allen, Grahan S; Pax, Paul H; Heebner, John E; Sridharan, Arun K; Rubenchik, Alexander M; Barty, Christopher B.J

    2015-11-05

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  11. Raman beam combining for laser brightness enhancement

    DOE Patents [OSTI]

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  12. Coherent transition radiation from a helically microbunched electron beam

    SciTech Connect (OSTI)

    Hemsing, E.; Rosenzweig, J. B. [Department of Physics and Astronomy, Particle Beam Physics Laboratory, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2009-05-01

    The coherent transition radiation emitted from an electron beam with higher-order spatial microbunching is analyzed. The characteristic angular and phase dependence can be used to identify the dominant bunching structure of such beams, which can be generated during the harmonic interaction in optical klystron modulators and free-electron lasers, and used as tunable sources of coherent light with orbital angular momentum.

  13. Laser-driven electron acceleration in infinite vacuum

    E-Print Network [OSTI]

    Wong, Liang Jie

    2011-01-01

    I first review basic models for laser-plasma interaction that explain electron acceleration and beam confinement in plasma. Next, I discuss ponderomotive electron acceleration in infinite vacuum, showing that the transverse ...

  14. Center for Beam Physics

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2010-01-01

    UV Laser Ionization and Electron Beam Diagnostics for Plasmaradiation based electron beam diagnostics, fast beamdiagnostic instru- mentation for electron and photon beams

  15. Two-Dimensional Simulation Analysis of the Standing-wave Free-electron Laser Two-Beam Accelerator

    E-Print Network [OSTI]

    Wang, C.

    2008-01-01

    and S. Yu, "Relativistic klystron simulations using RKTW2D,"dimensional relativistic klystron code, developed by Ryneand the relativistic klystron two-beam accelerator. In this

  16. Longitudinal Diagnostics for Short Electron Beam Bunches

    SciTech Connect (OSTI)

    Loos, H.; ,

    2010-06-11

    Single-pass free electron lasers require high peak currents from ultra-short electron bunches to reach saturation and an accurate measurement of bunch length and longitudinal bunch profile is necessary to control the bunch compression process from low to high beam energy. The various state-of-the-art diagnostics methods from ps to fs time scales using coherent radiation detection, RF deflection, and other techniques are presented. The use of linear accelerators as drivers for free electron lasers (FEL) and the advent of single-pass (SASE) FELs has driven the development of a wide range of diagnostic techniques for measuring the length and longitudinal distribution of short and ultra-short electron bunches. For SASE FELs the radiation power and the length of the undulator needed to achieve saturation depend strongly on the charge density of the electron beam. In the case of X-ray FELs, this requires the accelerator to produce ultra-high brightness beams with micron size transverse normalized emittances and peak currents of several kA through several stages of magnetic bunch compression. Different longitudinal diagnostics are employed to measure the peak current and bunch profile along these stages. The measurement techniques can be distinguished into different classes. Coherent methods detect the light emitted from the beam by some coherent radiation process (spectroscopic measurement), or directly measure the Coulomb field traveling with the beam (electro-optic). Phase space manipulation techniques map the time coordinate onto a transverse dimension and then use conventional transverse beam diagnostics (transverse deflector, rf zero-phasing). Further methods measure the profile or duration of an incoherent light pulse emitted by the bunch at wavelengths much shorted than the bunch length (streak camera, fluctuation technique) or modulate the electron beam at an optical wavelength and then generate a narrow bandwidth radiation pulse with the longitudinal profile of the beam mapped onto (optical replicator). The operational needs for bunch length measurements to have fast acquisitions, to be used in feedback systems, to distinguish pulse to pulse changes and to be nondestructive or parasitically have resulted into developing many of the diagnostics into single-shot techniques and in the following the main discussion will emphasize them.

  17. following an electron bunch for free electron laser

    SciTech Connect (OSTI)

    2012-01-01

    A video artist's ultra-slow-motion impression of an APEX-style electron gun firing a continuous train of electron bunches into a superconducting linear accelerator (in reality this would happen a million times a second). As they approach the speed of light the bunches contract, maintaining beam quality. After acceleration, the electron bunches are diverted into one or more undulators, the key components of free electron lasers. Oscillating back and forth in the changing magnetic field, they create beams of structured x-ray pulses. Before entering the experimental areas the electron bunches are diverted to a beam dump. (Animation created by Illumina Visual, http://www.illuminavisual.com/, for Lawrence Berkeley National Laboratory. Music for this excerpt, "Feeling Dark (Behind The Mask)" is by 7OOP3D http://ccmixter.org/files/7OOP3D/29126 and is licensed under a Creative Commons license: http://creativecommons.org/licenses/by-nc/3.0/)

  18. Electron beam ion source and electron beam ion trap (invited)

    SciTech Connect (OSTI)

    Becker, Reinard [Scientific Software Service, Kapellenweg 2a, D-63571 Gelnhausen (Germany); Kester, Oliver [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  19. Design and Commissioning Plan for a Laser Heater for FERMI@elettra

    E-Print Network [OSTI]

    Zholents, Alexander A.

    2008-01-01

    at the focus. Electron beam and laser beam diagnostic insidewill be used for diagnostic of the electron beam spontaneousdiagnostics provisions for both the electron and laser beams.

  20. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    E-Print Network [OSTI]

    Gonsalves, Anthony

    2012-01-01

    38 fs. Laser and electron beam diagnostics Laser radiationdiagnostic provided charge density images of the electron beam

  1. Vortex stabilized electron beam compressed fusion grade plasma

    SciTech Connect (OSTI)

    Hershcovitch, Ady

    2014-03-19

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  2. Beam Characterizations at Femtosecond Electron Beam Facility

    SciTech Connect (OSTI)

    Rimjaem, S.; Jinamoon, V.; Kangrang, M.; Kusoljariyakul, K.; Saisut, J.; Thongbai, C.; Vilaithong, T.; Rhodes, M.W.; Wichaisirimongkol, P.; Wiedemann, H.; /SLAC

    2006-03-17

    The SURIYA project at the Fast Neutron Research Facility (FNRF) has been established and is being commissioning to generate femtosecond (fs) electron bunches. Theses short bunches are produced by a system consisting of an S-band thermionic cathode RF-gun, an alpha magnet (a-magnet) serving as a magnetic bunch compressor, and a SLAC-type linear accelerator (linac). The characteristics of its major components and the beam characterizations as well as the preliminary experimental results will be presented and discussed in this paper.

  3. GeV electron beams from a centimetre-scale accelerator

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    GeV electron beams from a centimetre-scale accelerator W. P. LEEMANS1 * , B. NAGLER1 , A. J-quality electron beam with 1 GeV energy by channelling a 40 TW peak-power laser pulse in a 3.3-cm-long gas-100 GV m-1 in laser-wakefield accelerators1,2 , until recently the electron beams (e-beams) from

  4. Electron beam dynamics for the ISIS bremsstrahlung beam generation system

    E-Print Network [OSTI]

    Block, Robert E. (Robert Edward)

    2011-01-01

    An electron beam transport system was designed for use in the Bremsstrahlung Beam Generation System of the Integrated Stand-off Inspection System (ISIS). The purpose of this electron transport system was to provide for ...

  5. Shimmed electron beam welding process

    DOE Patents [OSTI]

    Feng, Ganjiang (Clifton Park, NY); Nowak, Daniel Anthony (Alplaus, NY); Murphy, John Thomas (Niskayuna, NY)

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  6. Adapting High Brightness Relativistic Electron Beams for Ultrafast Science

    E-Print Network [OSTI]

    Scoby, Cheyne Matthew

    2012-01-01

    111 Transverse electron beamfemtosecond relativistic electron beams . . Organization offields of a relativistic electron beam. Phys. Rev. Lett. ,

  7. SINGLE SHOT ELECTRON-BEAM BUNCH LENGTH MEASUREMENTS , G.M.H. Knippels

    E-Print Network [OSTI]

    Strathclyde, University of

    SINGLE SHOT ELECTRON-BEAM BUNCH LENGTH MEASUREMENTS G. Berden , G.M.H. Knippels , D. Oepts, A- nostics. Of these diagnostics, electo-optic detection of the electric field of electron bunches offers of the electron beam. The probe laser beam is linearly polarized and passes through the ZnTe crystal parallel

  8. Electron Beam Collimation for the Next Generation Light Source

    SciTech Connect (OSTI)

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  9. Beam current controller for laser ion source

    DOE Patents [OSTI]

    Okamura, Masahiro

    2014-10-28

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  10. Ponderomotive self-focusing of Gaussian laser beam in warm collisional plasma

    SciTech Connect (OSTI)

    Jafari Milani, M. R.; Niknam, A. R.; Farahbod, A. H.

    2014-06-15

    The propagation characteristics of a Gaussian laser beam through warm collisional plasma are investigated by considering the ponderomotive force nonlinearity and the complex eikonal function. By introducing the dielectric permittivity of warm unmagnetized plasma and using the WKB and paraxial ray approximations, the coupled differential equations defining the variations of laser beam parameters are obtained and solved numerically. Effects of laser and plasma parameters such as the collision frequency, the initial laser intensity and its spot size on the beam width parameter and the axis laser intensity distribution are analyzed. It is shown that, self-focusing of the laser beam takes place faster by increasing the collision frequency and initial laser spot size and then after some distance propagation the laser beam abruptly loses its initial diameter and vastly diverges. Furthermore, the modified electron density distribution is obtained and the collision frequency effect on this distribution is studied.

  11. Vacuum laser acceleration of relativistic electrons using plasma mirror injectors

    E-Print Network [OSTI]

    Thévenet, M; Kahaly, S; Vincenti, H; Vernier, A; Quéré, F; Faure, J

    2015-01-01

    Accelerating particles to relativistic energies over very short distances using lasers has been a long standing goal in physics. Among the various schemes proposed for electrons, vacuum laser acceleration has attracted considerable interest and has been extensively studied theoretically because of its appealing simplicity: electrons interact with an intense laser field in vacuum and can be continuously accelerated, provided they remain at a given phase of the field until they escape the laser beam. But demonstrating this effect experimentally has proved extremely challenging, as it imposes stringent requirements on the conditions of injection of electrons in the laser field. Here, we solve this long-standing experimental problem for the first time by using a plasma mirror to inject electrons in an ultraintense laser field, and obtain clear evidence of vacuum laser acceleration. With the advent of PetaWatt class lasers, this scheme could provide a competitive source of very high charge (nC) and ultrashort rela...

  12. Novel Aspects of Direct Laser Acceleration of Relativistic Electrons

    E-Print Network [OSTI]

    Arefiev, A V; Khudik, V N

    2015-01-01

    We examine the impact of several factors on electron acceleration by a laser pulse and the resulting electron energy gain. Specifically, we consider the role played by: 1) static longitudinal electric field; 2) static transverse electric field; 3) electron injection into the laser pulse; and 4) static longitudinal magnetic field. It is shown that all of these factors lead, under certain conditions, to a considerable electron energy gain from the laser pulse. In contrast with other mechanisms such as wakefield acceleration, the static electric fields in this case do not directly transfer substantial energy to the electron. Instead, they reduce the longitudinal dephasing between the electron and the laser beam, which then allows the electron to gain extra energy from the beam. The mechanisms discussed here are relevant to experiments with under-dense gas jets, as well as to experiments with solid-density targets involving an extended pre-plasma.

  13. Electron Beam--21st Century Food Technology 

    E-Print Network [OSTI]

    Vestal, Andy

    2003-03-07

    This publication explains electron beam irradiation technology to consumers, industry professionals and government officials. Electron beam irradiation is a method of treating food and other products for pathogens that ...

  14. Stable Electron Beams With Low Absolute Energy Spread From a Laser Wakefield Accelerator With Plasma Density Ramp Controlled Injection

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    -keV level energy spread and central energy sta- bility by using the plasma density profile to control self is reached. Because dephasing limits electron energy gain [2], low densities ( to order of 100 keV at GeV energies and beyond. RESULTS In the present experiments, the density profile

  15. Generation of low-divergence laser beams

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-09-14

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source. 11 figures.

  16. Heavy Oil Upgrading from Electron Beam (E-Beam) Irradiation 

    E-Print Network [OSTI]

    Yang, Daegil

    2011-02-22

    to upgrade. This thesis demonstrates that electron beam (E-Beam) heavy oil upgrading, which uses unique features of E-Beam irradiation, may be used to improve conventional heavy oil upgrading. E-Beam processing lowers the thermal energy requirements and could...

  17. Synchronous Characterization of Semiconductor Microcavity Laser Beam

    E-Print Network [OSTI]

    Wang, Tao

    2015-01-01

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross-section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center and the defects-related spectrum can also be extracted from these high-resolution pictures.

  18. Collective Dynamics and Coherent Diagnostics of Microbunched Relativistic Electron Beams

    E-Print Network [OSTI]

    Marinelli, Agostino

    2012-01-01

    Brightness Relativistic Electron Beams for Free-Electrona Thermal Relativistic Electron Beam: Eigenvalue/Eigenmodemicrobunching in the electron beam. The microbunched

  19. Isochronous Beamlines for Free Electron Lasers

    E-Print Network [OSTI]

    Berz, M.

    2010-01-01

    and A. H. Lumpkin. Electron-beam diagnostics and results forDiagnostics and Transport to the Beam Dump After the electron

  20. Laser power beaming for satellite applications

    SciTech Connect (OSTI)

    Friedman, H.W.

    1993-09-22

    A serious consideration of laser power beaming for satellite applications appears to have grown out of a NASA mission analysis for transmitting power to lunar bases during the two week dark period. System analyses showed that laser power beaming to the moon in conjunction with efficient, large area solar cell collection panels, were an attractive alternative to other schemes such as battery storage and nuclear generators, largely because of the high space transportation costs. The primary difficulty with this scheme is the need for very high average power visible lasers. One system study indicated that lasers in excess of 10 MW at a wavelength of approximately 850 nm were required. Although such lasers systems have received much attention for military applications, their realization is still a long term goal.

  1. Laser and Particle Beams http://journals.cambridge.org/LPB

    E-Print Network [OSTI]

    Liska, Richard

    Laser and Particle Beams http://journals.cambridge.org/LPB Additional services for Laser, J. Limpouch, R. Liska and P. Váchal Laser and Particle Beams / Volume 30 / Issue 03 / September 2012 of annularlaserbeamdriven plasma jets from massive planar targets. Laser and Particle Beams,30, pp 445457 doi:10.1017/S

  2. Electron beam exposure mechanisms in hydrogen silsesquioxane investigated by vibrational spectroscopy and in-situ electron beam induced desorption

    E-Print Network [OSTI]

    Olynick, D.L.

    2010-01-01

    Electron beam exposure mechanisms in hydrogen silsesquioxanespectroscopy and in-situ electron beam induced desorption.Infrared) and electron beam desorption spectroscopy (EBDS).

  3. Electron beam diagnostic for space charge measurement of an ion beam

    E-Print Network [OSTI]

    2004-01-01

    Electron beam diagnostic for space charge measurement of annon-perturbing electron beam diagnostic system for measuringnon intercepting electron beam diagnostic system consists of

  4. Electron-beam diagnostic for space-charge measurement of an ion beam

    E-Print Network [OSTI]

    2003-01-01

    76, 023301 (2005) Electron-beam diagnostic for space-chargenonperturbing electron-beam diagnostic system for measuring8. (Color online). Electron-beam diagnostic, as installed in

  5. Electron beam diagnostic for space charge measurement of an ion beam

    E-Print Network [OSTI]

    2004-01-01

    Electron beam diagnostic for space charge measurement of anAbstract A non-perturbing electron beam diagnostic systemlow energy, low current electron beam is swept transversely

  6. Electron-beam diagnostic for space-charge measurement of an ion beam

    E-Print Network [OSTI]

    2003-01-01

    76, 023301 (2005) Electron-beam diagnostic for space-charge2005) A nonperturbing electron-beam diagnostic system forlow energy, low current electron beam is swept transversely

  7. Method and apparatus for laser-controlled proton beam radiology

    DOE Patents [OSTI]

    Johnstone, Carol J. (Warrenville, IL)

    1998-01-01

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

  8. Method and apparatus for laser-controlled proton beam radiology

    DOE Patents [OSTI]

    Johnstone, C.J.

    1998-06-02

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H{sup {minus}} beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H{sup {minus}} beam and laser beam to produce a neutral beam therefrom within a subsection of the H{sup {minus}} beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H{sup {minus}} beam in order to form the neutral beam in subsections of the H{sup {minus}} beam. As the scanning laser moves across the H{sup {minus}} beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser. 9 figs.

  9. Collimation Studies with Hollow Electron Beams

    SciTech Connect (OSTI)

    Stancari, G.; Annala, G.; Johnson, T.R.; Saewert, G.W.; Shiltsev, V.; Still, D.A.; Valishev, A.; /Fermilab

    2011-08-01

    Recent experimental studies at the Fermilab Tevatron collider have shown that magnetically confined hollow electron beams can act as a new kind of collimator for high-intensity beams in storage rings. In a hollow electron beam collimator, electrons enclose the circulating beam. Their electric charge kicks halo particles transversely. If their distribution is axially symmetric, the beam core is unaffected. This device is complementary to conventional two-stage collimation systems: the electron beam can be placed arbitrarily close to the circulating beam; and particle removal is smooth, so that the device is a diffusion enhancer rather than a hard aperture limitation. The concept was tested in the Tevatron collider using a hollow electron gun installed in one of the existing electron lenses. We describe some of the technical aspects of hollow-beam scraping and the results of recent measurements.

  10. Beam/seam alignment control for electron beam welding

    DOE Patents [OSTI]

    Burkhardt, Jr., James H. (Knoxville, TN); Henry, J. James (Oak Ridge, TN); Davenport, Clyde M. (Knoxville, TN)

    1980-01-01

    This invention relates to a dynamic beam/seam alignment control system for electron beam welds utilizing video apparatus. The system includes automatic control of workpiece illumination, near infrared illumination of the workpiece to limit the range of illumination and camera sensitivity adjustment, curve fitting of seam position data to obtain an accurate measure of beam/seam alignment, and automatic beam detection and calculation of the threshold beam level from the peak beam level of the preceding video line to locate the beam or seam edges.

  11. Density gradient free electron collisionally excited x-ray laser

    DOE Patents [OSTI]

    Campbell, E.M.; Rosen, M.D.

    1984-11-29

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  12. Density gradient free electron collisionally excited X-ray laser

    DOE Patents [OSTI]

    Campbell, Edward M. (Pleasanton, CA); Rosen, Mordecai D. (Berkeley, CA)

    1989-01-01

    An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

  13. Transmission of Megawatt Relativistic Electron Beams Through Millimeter Apertures

    E-Print Network [OSTI]

    R. Alarcon; S. Balascuta; S. V. Benson; W. Bertozzi; J. R. Boyce; R. Cowan; D. Douglas; P. Evtushenko; P. Fisher; E. Ihloff; N. Kalantarians; A. Kelleher; R. Legg; R. G. Milner; G. R. Neil; L. Ou; B. Schmookler; C. Tennant; C. Tschalaer; G. P. Williams; S. Zhang

    2013-05-01

    High power, relativistic electron beams from energy recovery linacs have great potential to realize new experimental paradigms for pioneering innovation in fundamental and applied research. A major design consideration for this new generation of experimental capabilities is the understanding of the halo associated with these bright, intense beams. In this Letter, we report on measurements performed using the 100 MeV, 430 kWatt CW electron beam from the energy recovery linac at the Jefferson Laboratory's Free Electron Laser facility as it traversed a set of small apertures in a 127 mm long aluminum block. Thermal measurements of the block together with neutron measurements near the beam-target interaction point yielded a consistent understanding of the beam losses. These were determined to be 3 ppm through a 2 mm diameter aperture and were maintained during a 7 hour continuous run.

  14. Title of Document: EMITTANCE MEASUREMENTS OF THE JEFFERSON LAB FREE ELECTRON LASER

    E-Print Network [OSTI]

    Anlage, Steven

    to be a quality diagnostic that is especially useful for high brightness electron beams such as Jefferson Labs FEL, such as the ones that power Free Electron Lasers (FEL), require high quality (low emittance) beams for efficient operation. Accurate and reliable beam diagnostics are essential to monitoring beam parameters in order

  15. Nuclear astrophysics and electron beams

    SciTech Connect (OSTI)

    Schwenk, A.

    2013-11-07

    Electron beams provide important probes and constraints for nuclear astrophysics. This is especially exciting at energies within the regime of chiral effective field theory (EFT), which provides a systematic expansion for nuclear forces and electroweak operators based on quantum chromodynamics. This talk discusses some recent highlights and future directions based on chiral EFT, including nuclear structure and reactions for astrophysics, the neutron skin and constraints for the properties of neutron-rich matter in neutron stars and core-collapse supernovae, and the dark matter response of nuclei.

  16. GeV electron beams from a centimetre-scale accelerator

    E-Print Network [OSTI]

    Loss, Daniel

    LETTERS GeV electron beams from a centimetre-scale accelerator W. P. LEEMANS1 * , B. NAGLER1 , A. J be needed to reach GeV energies6,7 , here we demonstrate production of a high-quality electron beam with 1 in laser-wakefield accelerators1,2 , until recently the electron beams (e-beams) from such accelerators had

  17. In this simulation of a plasma accelerator, a laser or electron beam (not shown) shoots through the plasma from left to right, shaping electrons

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    revolution. Just as electronics were originally based on vacuum tubes and then later on semiconductors around the world--providing radiation treatments for cancer patients, sterilizing food, treating

  18. Coherent beam combiner for a high power laser

    DOE Patents [OSTI]

    Dane, C. Brent (Livermore, CA); Hackel, Lloyd A. (Livermore, CA)

    2002-01-01

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  19. TRANSVERSE ELECTRON BEAM DIAGNOSTICS AT THE VUV-FEL AT K. Honkavaara

    E-Print Network [OSTI]

    TRANSVERSE ELECTRON BEAM DIAGNOSTICS AT THE VUV-FEL AT DESY K. Honkavaara , F. L¨oehl, Hamburg. Catani, A. Cianchi, INFN-Roma2, 00133 Roma, Italy Abstract The VUV-FEL is a new free electron laser user tools and methods. At the VUV-FEL the transverse distribution of the electron beam is measured using

  20. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    E-Print Network [OSTI]

    Rubel, Oliver

    2010-01-01

    A. Hakim, R¨ bel et al. Automatic Beam Path Analysis of399, 1976. R¨ bel et al. Automatic Beam Path Analysis ofAutomatic Beam Path Analysis of Laser Wake?eld Particle

  1. Focused electron and ion beam systems

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  2. Robust Collimation Control of Laser-Generated Ion Beam

    E-Print Network [OSTI]

    Kawata, S; Kamiyama, D; Nagashima, T; Barada, D; Gu, Y J; Li, X; Yu, Q; Kong, Q; Wang, P X

    2015-01-01

    The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the electric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters and the collimation target sizes. The intense short-pulse lasers are now available, and are used to generate an ion beam. The issues in the laser ion acceleration include an ion beam collimation, ion energy spectrum control, ion production efficiency, ion energy control, ion beam bunching, etc. The laser-produced ion beam tends to expand in the transverse and longitudinal directions during the ion beam propagation. The ion beam collimation is focused in this paper.

  3. Virtual mask digital electron beam lithography

    DOE Patents [OSTI]

    Baylor, L.R.; Thomas, C.E.; Voelkl, E.; Moore, J.A.; Simpson, M.L.; Paulus, M.J.

    1999-04-06

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made. 5 figs.

  4. Virtual mask digital electron beam lithography

    DOE Patents [OSTI]

    Baylor, Larry R. (Farragut, TN); Thomas, Clarence E. (Knoxville, TN); Voelkl, Edgar (Oak Ridge, TN); Moore, James A. (Powell, TN); Simpson, Michael L. (Knoxville, TN); Paulus, Michael J. (Knoxville, TN)

    1999-01-01

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made.

  5. Collective Dynamics and Coherent Diagnostics of Microbunched Relativistic Electron Beams

    E-Print Network [OSTI]

    Marinelli, Agostino

    2012-01-01

    in the diagnostic of compressed electron beams and free-imaging and diagnostics of high-brightness electron beamsfor the diagnostics of compressed electron beams, such as

  6. Electron Beam Transport in Advanced Plasma Wave Accelerators

    SciTech Connect (OSTI)

    Williams, Ronald L

    2013-01-31

    The primary goal of this grant was to develop a diagnostic for relativistic plasma wave accelerators based on injecting a low energy electron beam (5-50keV) perpendicular to the plasma wave and observing the distortion of the electron beam's cross section due to the plasma wave's electrostatic fields. The amount of distortion would be proportional to the plasma wave amplitude, and is the basis for the diagnostic. The beat-wave scheme for producing plasma waves, using two CO2 laser beam, was modeled using a leap-frog integration scheme to solve the equations of motion. Single electron trajectories and corresponding phase space diagrams were generated in order to study and understand the details of the interaction dynamics. The electron beam was simulated by combining thousands of single electrons, whose initial positions and momenta were selected by random number generators. The model was extended by including the interactions of the electrons with the CO2 laser fields of the beat wave, superimposed with the plasma wave fields. The results of the model were used to guide the design and construction of a small laboratory experiment that may be used to test the diagnostic idea.

  7. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOE Patents [OSTI]

    Neil, G.R.

    1996-07-30

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  8. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOE Patents [OSTI]

    Neil, George R. (Williamsburg, VA)

    1996-01-01

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  9. Focused electron beam in pyroelectric electron probe microanalyzer

    SciTech Connect (OSTI)

    Imashuku, Susumu; Imanishi, Akira; Kawai, Jun [Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan)] [Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan)

    2013-07-15

    We report a method to focus the electron beam generated using a pyroelectric crystal. An electron beam with a spot size of 100 ?m was achieved by applying an electrical field to an electroconductive needle tip set on a pyroelectric crystal. When the focused electron beam bombarded a sample, characteristic X-rays of the sample were only detected due to the production of an electric field between the needle tip and the sample.

  10. Design and operation of a retarding field energy analyzer with variable focusing for space-charge-dominated electron beams

    E-Print Network [OSTI]

    Valfells, Ágúst

    -charge-dominated electron beams Y. Cui, Y. Zou, A. Valfells, M. Reiser, M. Walter, I. Haber, R. A. Kishek, S. Bernal, and P with electron beams of several keV, in which space-charge effects play an important role. A cylindrical focusing, high-energy colliders, free electron lasers, and other applications require high-quality intense beams

  11. Two-color-laser-driven direct electron acceleration in infinite vacuum

    E-Print Network [OSTI]

    Wong, Liang Jie

    We propose a direct electron acceleration scheme that uses a two-color pulsed radially polarized laser beam. The two-color scheme achieves electron acceleration exceeding 90% of the theoretical energy gain limit, over twice ...

  12. Free-Electron Laser | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vacuum ultraviolet light, and is also a source of Terahertz light. The FEL uses electrons to produce laser light. The electrons are energized using the lab's superconducting...

  13. High flux, narrow bandwidth compton light sources via extended laser-electron interactions

    DOE Patents [OSTI]

    Barty, V P

    2015-01-13

    New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.

  14. Saturation of multi-laser beams laser-plasma instabilities from stochastic ion heating

    SciTech Connect (OSTI)

    Michel, P.; Williams, E. A.; Divol, L.; Berger, R. L.; Glenzer, S. H.; Callahan, D. A. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Rozmus, W. [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G2G7 (Canada) [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G2G7 (Canada); Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2013-05-15

    Cross-beam energy transfer (CBET) has been used as a tool on the National Ignition Facility (NIF) since the first energetics experiments in 2009 to control the energy deposition in ignition hohlraums and tune the implosion symmetry. As large amounts of power are transferred between laser beams at the entrance holes of NIF hohlraums, the presence of many overlapping beat waves can lead to stochastic ion heating in the regions where laser beams overlap [P. Michel et al., Phys. Rev. Lett. 109, 195004 (2012)]. This increases the ion acoustic velocity and modifies the ion acoustic waves’ dispersion relation, thus reducing the plasma response to the beat waves and the efficiency of CBET. This pushes the plasma oscillations driven by CBET in a regime where the phase velocities are much smaller than both the electron and ion thermal velocities. CBET gains are derived for this new regime and generalized to the case of multi ion species plasmas.

  15. Intense steady state electron beam generator

    DOE Patents [OSTI]

    Hershcovitch, A.; Kovarik, V.J.; Prelec, K.

    1990-07-17

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source. 2 figs.

  16. Nonlinear model for thermal effects in free-electron lasers

    SciTech Connect (OSTI)

    Peter, E. Endler, A. Rizzato, F. B.

    2014-11-15

    In the present work, we extend results of a previous paper [Peter et al., Phys. Plasmas 20, 12?3104 (2013)] and develop a semi-analytical model to account for thermal effects on the nonlinear dynamics of the electron beam in free-electron lasers. We relax the condition of a cold electron beam but still use the concept of compressibility, now associated with a warm beam model, to evaluate the time scale for saturation and the peak laser intensity in high-gain regimes. Although vanishing compressibilites and the associated divergent densities are absent in warm models, a series of discontinuities in the electron density precede the saturation process. We show that full wave-particle simulations agree well with the predictions of the model.

  17. Simulation of relativistically colliding laser-generated electron flows

    E-Print Network [OSTI]

    Yang, Xiaohu; Sarri, Gianluca; Borghesi, Marco

    2012-01-01

    The plasma dynamics resulting from the simultaneous impact, of two equal, ultra-intense laser pulses, in two spatially separated spots, onto a dense target is studied via particle-in-cell (PIC) simulations. The simulations show that electrons accelerated to relativistic speeds, cross the target and exit at its rear surface. Most energetic electrons are bound to the rear surface by the ambipolar electric field and expand along it. Their current is closed by a return current in the target, and this current configuration generates strong surface magnetic fields. The two electron sheaths collide at the midplane between the laser impact points. The magnetic repulsion between the counter-streaming electron beams separates them along the surface normal direction, before they can thermalize through other beam instabilities. This magnetic repulsion is also the driving mechanism for the beam-Weibel (filamentation) instability, which is thought to be responsible for magnetic field growth close to the internal shocks of ...

  18. Polarization measurement of Cs using the pump laser beam

    E-Print Network [OSTI]

    Fang, Jiancheng; Duan, Lihong; Fan, Wenfeng; Jiang, Liwei

    2015-01-01

    In the optical pumping systems based on the pump-probe arrangement, the spin polarization of the atoms is generally monitored utilizing the probe laser beam, in which way an extra perturbation must be introduced and thus affects the normal operation of the sensors. By investigating the absorption rate of the circularly polarized pump laser, here we demonstrate the feasibility of extracting the electron-spin polarization from the transmitted pump laser intensity. We experimentally validate the method in a spin-exchange relaxation free (SERF) magnetometer and the results are in excellent agreement with the theory. The scheme operates in a silent mode and features a real-time observation. We also study the corresponding magnetic field response of the SERF magnetometer and a term arising from the diffusion effects has been added to the original model to explain the discrepancy of the response.

  19. Ultra-bright pulsed electron beam with low longitudinal emittance

    DOE Patents [OSTI]

    Zolotorev, Max (Oakland, CA)

    2010-07-13

    A high-brightness pulsed electron source, which has the potential for many useful applications in electron microscopy, inverse photo-emission, low energy electron scattering experiments, and electron holography has been described. The source makes use of Cs atoms in an atomic beam. The source is cycled beginning with a laser pulse that excites a single Cs atom on average to a band of high-lying Rydberg nP states. The resulting valence electron Rydberg wave packet evolves in a nearly classical Kepler orbit. When the electron reaches apogee, an electric field pulse is applied that ionizes the atom and accelerates the electron away from its parent ion. The collection of electron wave packets thus generated in a series of cycles can occupy a phase volume near the quantum limit and it can possess very high brightness. Each wave packet can exhibit a considerable degree of coherence.

  20. Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile

    SciTech Connect (OSTI)

    Habibi, M.; Ghamari, F.

    2012-10-15

    By using a transient density profile, we have demonstrated stationary self-focusing of an electromagnetic Gaussian beam in cold quantum plasma. The paper is devoted to the prospects of using upward increasing ramp density profile of an inhomogeneous nonlinear medium with quantum effects in self-focusing mechanism of high intense laser beam. We have found that the upward ramp density profile in addition to quantum effects causes much higher oscillation and better focusing of laser beam in cold quantum plasma in comparison to that in the classical relativistic case. Our computational results reveal the importance and influence of formation of electron density profiles in enhancing laser self-focusing.

  1. Chiral specific electron vortex beam spectroscopy

    E-Print Network [OSTI]

    J. Yuan; S. M. Lloyd; M. Babiker

    2013-07-29

    Electron vortex beams carry well-defined orbital angular momentum (OAM) about the propagation axis. Such beams are thus characterised by chirality features which make them potentially useful as probes of magnetic and other chiral materials. An analysis of the inelastic processes in which electron vortex beams interact with atoms and which involve OAM exchange is outlined, leading to the multipolar selection rules governing this chiral specific electron vortex beam spectroscopy. Our results show clearly that the selection rules are dependent on the dynamical state and location of the atoms involved. In the most favorable scenario, this form of electron spectroscopy can induce magnetic sublevel transitions which are commonly probed using circularly polarized photon beams.

  2. Collaborative Research: Instability and transport of laser beam in plasma

    SciTech Connect (OSTI)

    Rose, Harvey Arnold; Lushnikov, Pavel

    2014-11-18

    Our goal was to determine the onset of laser light scattering due to plasma wave instabilities. Such scatter is usually regarded as deleterious since laser beam strength is thereby diminished. While this kind of laser-plasma-instability (LPI) has long been understood for the case of coherent laser light, the theory of LPI onset for a laser beam with degraded coherence is recent. Such a laser beam fills plasma with a mottled intensity distribution, which has large fluctuations. The key question is: do the exceptionally large fluctuations control LPI onset or is it controlled by the relatively quiescent background laser intensity? We have answered this question. This is significant because LPI onset power in the former case is typically small compared to that of the latter. In addition, if large laser intensity fluctuations control LPI onset, then nonlinear effects become significant for less powerful laser beams than otherwise estimated.

  3. Status of the visible Free-Electron Laser at the Brookhaven Accelerator Test Facility

    SciTech Connect (OSTI)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fisher, A.S.; Friedman, A.; Gallardo, J.; Ingold, G.; Kirk, H.; Kramer, S.; Lin, L.; Rogers, J.T.; Sheehan, J.F.; van Steenbergen, A.; Woodle, M.; Xie, J.; Yu, L.H.; Zhang, R. ); Bhowmik, A. . Rocketdyne Div.)

    1991-01-01

    The 500 nm Free-Electron Laser (ATF) of the Brookhaven National Laboratory is reviewed. We present an overview of the ATF, a high-brightness, 50-MeV, electron accelerator and laser complex which is a users' facility for accelerator and beam physics. A number of laser acceleration and FEL experiments are under construction at the ATF. The visible FEL experiment is based on a novel superferric 8.8 mm period undulator. The electron beam parameters, the undulator, the optical resonator, optical and electron beam diagnostics are discussed. The operational status of the experiment is presented. 22 refs., 7 figs.

  4. Optimum Electron Distributions for Space Charge Dominated Beams in Photoinjectors

    SciTech Connect (OSTI)

    Limborg-Deprey, C.; Bolton, P.R.; /SLAC

    2006-06-15

    The optimum photo-electron distribution from the cathode of an RF photoinjector producing a space charge dominated beam is a uniform distribution contained in an ellipsoid. For such a bunch distribution, the space charge forces are linear and the emittance growth induced by those forces is totally reversible and consequently can be compensated. With the appropriate tuning of the emittance compensation optics, the emittance, at the end of photoinjector beamline, for an ellipsoidal laser pulse, would only have two contributions, the cathode emittance and the RF emittance. For the peak currents of 50A and 100 A required from the SBand and L-Band RF gun photoinjectors discussed here, the RF emittance contribution is negligible. If such an ellipsoidal photo-electron distribution were available, the emittance at the end of the beamline could be reduced to the cathode emittance. Its value would be reduced by more than 40% from that obtained using cylindrical shape laser pulses. This potentially dramatic improvement warrants review of the challenges associated with the production of ellipsoidal photo-electrons. We assume the photo-electrons emission time to be short enough that the ellipsoidal electron pulse shape will come directly from the laser pulse. We shift the challenge to ellipsoidal laser pulse shaping. To expose limiting technical issues, we consider the generation of ellipsoidal laser pulse shape in terms of three different concepts.

  5. Laser systems configured to output a spectrally-consolidated laser beam and related methods

    DOE Patents [OSTI]

    Koplow, Jeffrey P. (San Ramon, CA)

    2012-01-10

    A laser apparatus includes a plurality of pumps each of which is configured to emit a corresponding pump laser beam having a unique peak wavelength. The laser apparatus includes a spectral beam combiner configured to combine the corresponding pump laser beams into a substantially spatially-coherent pump laser beam having a pump spectrum that includes the unique peak wavelengths, and first and second selectively reflective elements spaced from each other to define a lasing cavity including a lasing medium therein. The lasing medium generates a plurality of gain spectra responsive to absorbing the pump laser beam. Each gain spectrum corresponds to a respective one of the unique peak wavelengths of the substantially spatially-coherent pump laser beam and partially overlaps with all other ones of the gain spectra. The reflective elements are configured to promote emission of a laser beam from the lasing medium with a peak wavelength common to each gain spectrum.

  6. Ultraviolet laser beam monitor using radiation responsive crystals

    DOE Patents [OSTI]

    McCann, Michael P. (Oliver Springs, TN); Chen, Chung H. (Knoxville, TN)

    1988-01-01

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  7. Electron Beam Production by Pyroelectric Crystals

    E-Print Network [OSTI]

    James D. Brownridge; Stephen M. Shafroth

    2002-09-20

    Pyroelectric crystals are used to produce self-focused electron beams with energies greater than 170 keV. No high voltage power supply or electron gun is needed. The system works by simply changing the temperature of a crystal of LiNbO3 or LiTaO3 by about 100oC in dilute gas. Electron beam energy spectra as well as positive-ion-beam energy spectra and profiles are shown. A change in the crystal temperature of 100oC will cause a spontaneous change in polarization. The change in polarization will be manifested by a change in charge on the surface of the crystal. It is this uncompensated charge that produces the electric field, which accelerates the electrons, or the positive ions and gives rise to the plasma, which in turn focuses them. The source of the accelerated electrons or positive ions is gas molecules ionized near the crystal surface. When the crystal surface is negative electrons are accelerated away from it and positive ions are attracted to the surface. These positive ions reduce the net negative charge on the surface thereby reducing the electric field, which causes the electron energy to decrease over time even though the focal properties remain unchanged. When the surface is positive the reverse obtains and the positive ion beam energy decreases over time as well. We will present video clips, photographic and electronic data that demonstrate many of the characteristics and applications of these electron beams.

  8. Electron Injection by Dephasing Electrons with Laser Fields

    E-Print Network [OSTI]

    Umstadter, Donald

    mechanism, resultant beams will be similar due to wave structure. Also, most schemes employ the same basic. INTRODUCTION Laser-plasma based acceleration coupled with CPA laser technology has become the topic of much for x-ray gener- ation or high-energy physics has yet to be demonstrated by use of laser wake- elds

  9. Broadband microwave burst produced by electron beams

    E-Print Network [OSTI]

    A. T. Altyntsev; G. D. Fleishman; G. -L. Huang; V. F. Melnikov

    2007-12-16

    Theoretical and experimental study of fast electron beams attracts a lot of attention in the astrophysics and laboratory. In the case of solar flares the problem of reliable beam detection and diagnostics is of exceptional importance. This paper explores the fact that the electron beams moving oblique to the magnetic field or along the field with some angular scatter around the beam propagation direction can generate microwave continuum bursts via gyrosynchrotron mechanism. The characteristics of the microwave bursts produced by beams differ from those in case of isotropic or loss-cone distributions, which suggests a new tool for quantitative diagnostics of the beams in the solar corona. To demonstrate the potentiality of this tool, we analyze here a radio burst occurred during an impulsive flare 1B/M6.7 on 10 March 2001 (AR 9368, N27W42). Based on detailed analysis of the spectral, temporal, and spatial relationships, we obtained firm evidence that the microwave continuum burst is produced by electron beams. For the first time we developed and applied a new forward fitting algorithm based on exact gyrosynchrotron formulae and employing both the total power and polarization measurements to solve the inverse problem of the beam diagnostics. We found that the burst is generated by a oblique beam in a region of reasonably strong magnetic field ($\\sim 200-300$ G) and the burst is observed at a quasi-transverse viewing angle. We found that the life time of the emitting electrons in the radio source is relatively short, $\\tau_l \\approx 0.5$ s, consistent with a single reflection of the electrons from a magnetic mirror at the foot point with the stronger magnetic field. We discuss the implications of these findings for the electron acceleration in flares and for beam diagnostics.

  10. M11.3.1: Requirements for electron beam diagnostics

    E-Print Network [OSTI]

    Malka, V

    2014-01-01

    The all optical external injection scheme that we will use with two colliding laser pulses allows a way to stabilize the injection of electrons into the plasma wave, and to easily tune the energy of the output beam by changing the longitudinal position of the injection. The charge and relative energy spread are also controllable by tuning parameters such as the injection intensity and its polarization. We report here on the control of the ebeam parameters, on the e-beam parameters that will be used for the conception and design of the emittance meter and on the experimental arrangement on which emittance measurement experiments will be achieved.

  11. Emittance growth from electron beam modulation

    SciTech Connect (OSTI)

    Blaskiewicz, M.

    2009-12-01

    In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to a modulation of the beam beam tune shift and steering errors. These modulations can lead to emittance growth. This note presents simple formulas to estimate these effects which generalize some previous results.

  12. The Electron Beam Ion Source (EBIS)

    ScienceCinema (OSTI)

    Brookhaven Lab

    2010-01-08

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  13. Scrap uranium recycling via electron beam melting

    SciTech Connect (OSTI)

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  14. Ion beam processing of advanced electronic materials

    SciTech Connect (OSTI)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  15. A wide bandwidth free-electron laser with mode locking using current modulation.

    SciTech Connect (OSTI)

    Kur, E.; Dunning, D. J.; McNeil, B. W. J.; Wurtele, J.; Zholents, A. A. )

    2011-01-20

    A new scheme for mode locking a free-electron laser amplifier is proposed based on electron beam current modulation. It is found that certain properties of the original concept, based on the energy modulation of electrons, are improved including the spectral brightness of the source and the purity of the series of short pulses. Numerical comparisons are made between the new and old schemes and between a mode-locked free-electron laser and self-amplified spontaneous emission free-electron laser. Illustrative examples using a hypothetical mode-locked free-electron laser amplifier are provided. The ability to generate intense coherent radiation with a large bandwidth is demonstrated.

  16. Control and manipulation of electron beams

    SciTech Connect (OSTI)

    Piot, Philippe; /NICADD, DeKalb /Northern Illinois U. /Fermilab

    2008-09-01

    The concepts of the advanced accelerators and light source rely on the production of bright electron beams. The rms areas of the beam phase space often need to be tailored to the specific applications. Furthermore, a new class of the forefront research calls for detailed specific distribution such as the particle density in the time coordinate. Several groups are tackling these various challenges and in this report we attempt to give a review of the state-of-the-art of the control and manipulation of the electron beams.

  17. Production of a monoenergetic electron bunch in a self-injected laser-wakefield accelerator C.-L. Chang,1

    E-Print Network [OSTI]

    electrons. The tomographic method adds a crucial dimension to the whole array of existing diagnostics for laser beams, plasma waves, and electron beams. With this method the details of the underlying physical limitations on applications. Recently pro- duction of well-collimated electron beam with up to GeV energy

  18. Holographic generation of highly twisted electron beams

    E-Print Network [OSTI]

    Vincenzo Grillo; Gian Carlo Gazzadi; Erfan Mafakheri; Stefano Frabboni; Ebrahim Karimi; Robert W. Boyd

    2014-12-11

    Free electrons can possess an intrinsic orbital angular momentum, similar to those in an electron cloud, upon free-space propagation. The wavefront corresponding to the electron's wavefunction forms a helical structure with a number of twists given by the \\emph{angular speed}. Beams with a high number of twists are of particular interest because they carry a high magnetic moment about the propagation axis. Among several different techniques, electron holography seems to be a promising approach to shape a \\emph{conventional} electron beam into a helical form with large values of angular momentum. Here, we propose and manufacture a nano-fabricated phase hologram for generating a beam of this kind with an orbital angular momentum up to 200$\\hbar$. Based on a novel technique the value of orbital angular momentum of the generated beam are measured, then compared with simulations. Our work, apart from the technological achievements, may lead to a way of generating electron beams with a high quanta of magnetic moment along the propagation direction, and thus may be used in the study of the magnetic properties of materials and for manipulating nano-particles.

  19. Jefferson Lab electron beam charges up (Inside Business) | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsreleasesjefferson-lab-electron-beam-charges Submitted: Friday, October 24, 2008...

  20. Device and method for electron beam heating of a high density plasma

    DOE Patents [OSTI]

    Thode, Lester E. (Los Alamos, NM)

    1981-01-01

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.

  1. A Free-Electron Laser in the Pulsar Magnetosphere

    E-Print Network [OSTI]

    P. -K. Fung; J. Kuijpers

    2004-05-18

    We have studied systematically the free-electron laser in the context of high brightness pulsar radio emission. In this paper, we have numerically examined the case where a transverse electromagnetic wave is distorting the motion of a relativistic electron beam while travelling over one stellar radius ($ approx 10 :{km}$). For different sets of parameters, coherent emission is generated by bunches of beam electrons in the radio domain, with bandwidths of 3 GHz. Pulse power often reached $10^{13} :{W}$, which corresponds with brightness temperature of $10^{30} :{K}$. The duration of these pulses is of the order of nanoseconds. In the context of pulsar radio emission, our results indicate that the laser can produce elementary bursts of radiation which build up the observed microstructures of a few tens of microseconds duration. The process is sensitive mostly to the beam particles energy, number density and the background magnetic field, but much less so to the transverse wave parameters. We demonstrate that the operation of a free-electron laser with a transverse electromagnetic wiggler in the pulsar magnetosphere occurs preferably at moder ate Lorentz factors $ gamma geq 100$, high beam density $n gtrsim 0.1 n_{textrm{GJ}}(r_ ast)$ where $n_{textrm{GJ}}(r_ ast)$ is the Goldrei ch-Julian density at a stellar radius $r_ ast$, and finally, at large altitude where the background magnetic field is low $B_0 leq 10^{-2} textrm{T}$.

  2. Contactless transfer of angular momentum by rotating laser beam

    E-Print Network [OSTI]

    E. V. Barmina; G. A. Shafeev

    2014-07-17

    Contactless transfer of angular momentum from rotating laser beam to a solid target is experimentally demonstrated. The effect is observed under irradiation of a glassy carbon target immersed in water by a pulsed laser beam that is scanned across the target surface along circular trajectory. The direction of target rotation coincides with that of the laser beam at small thickness of the liquid layer above the target while is opposite in case of higher thickness of the layer. The effect is interpreted as the interplay between thermocapillary and convective flows induced in the liquid by laser heating.

  3. Inelastic electron-vortex-beam scattering

    E-Print Network [OSTI]

    Ruben Van Boxem; Bart Partoens; Jo Verbeeck

    2015-03-16

    Recent theoretical and experimental developments in the field of electron vortex beam physics have raised questions on what exactly this novelty in the field of electron microscopy (and other fields, such as particle physics) really provides. An important part in the answer to those questions lies in scattering theory. The present investigation explores various aspects of inelastic quantum scattering theory for cylindrically symmetric beams with orbital angular momentum. The model system of Coulomb scattering on a hydrogen atom provides the setting to address various open questions: How is momentum transferred? Do vortex beams selectively excite atoms, and how can one employ vortex beams to detect magnetic transitions? The analytical approach presented here provides answers to these questions. OAM transfer is possible, but not through selective excitation; rather, by pre- and post-selection one can filter out the relevant contributions to a specific signal.

  4. Measured Properties of the DUVFEL High Brightness, Ultrashort Electron Beam

    SciTech Connect (OSTI)

    Emma, Paul J

    2002-08-20

    The DUVFEL electron linac is designed to produce sub-picosecond, high brightness electron bunches to drive an ultraviolet FEL. The accelerator consists of a 1.6 cell S-band photoinjector, variable pulse length Ti:Sapp laser, 4 SLAC-type S-band accelerating sections, and 4-dipole chicane bunch compressor. In preparation for FEL operation, the compressed electron beam has been fully characterized. Measurement of the beam parameters and simulation of the beam are presented. The properties of the laser and photoinjector are summarized in Table 1. In typical running, 10 mJ of IR light is produced by the Spectraphyics Tsunami Ti:Sapphire oscillator and TSA50 amplifier, which is frequency tripled to produce 450 uJ of UV light. After spatial filtering and aperturing of the gaussian mode to produce a nearly uniform laser spot, about 200-300 uJ is delivered to the cathode. This produces 300 pC of charge at the accelerating phase of 30 degrees. The RF cavity is a Gun IV [1] with copper cathode that has been modified for better performance [2]. In principle, the laser pulse length may be adjusted from 100 fs to 10 ps, however there are practical limitations on the range of adjustment due to dispersion characteristics and efficiency of the BBO crystals. The thickness of the harmonic crystals is optimized for pulse lengths from 1-5 ps. Within this range of pulse lengths there is evidence [3] of variations in the time profile of the UV light that are sensitive to the phase-matching angle of the crystal.

  5. Near-term feasibility demonstration of laser power beaming

    SciTech Connect (OSTI)

    Friedman, H.W.

    1994-01-01

    A mission to recharge batteries of satellites in geostationary orbits (geosats) may be a commercially viable application which could be achieved with laser systems somewhat larger than present state-of-the-art. The lifetime of batteries on geosats is limited by repetitive discharge cycles which occur when the satellites are eclipsed by the earth during the spring and fall equinoxes. By coupling high power lasers with modern, large aperture telescopes and laser guide star adaptive optics systems, present day communications satellites could be targeted. It is important that a near term demonstration of laser power beaming be accomplished using lasers in the kilowatt range so that issues associated with high average power be addressed. The Laser Guide Star Facility at LLNL has all the necessary subsystems needed for such a near term demonstration, including high power lasers for both the power beam and guide star, beam directors and satellite tracking system.

  6. Beam physics in future electron hadron colliders

    E-Print Network [OSTI]

    Valloni, A; Klein, M; Schulte, D; Zimmermann, F

    2013-01-01

    High-energy electron-hadron collisions could support a rich research programme in particle and nuclear physics. Several future projects are being proposed around the world, in particular eRHIC at BNL, MEIC at TJNAF in the US, and LHeC at CERN in Europe. This paper will highlight some of the accelerator physics issues, and describe related technical developments and challenges for these machines. In particular, optics design and beam dynamics studies are discussed, including longitudinal phase space manipulation, coherent synchrotron radiation, beam-beam kink instability, ion effects, as well as mitigation measures for beam break up and for space-charge induced emittance growth, all of which could limit the machine performance. Finally, first steps are presented towards an LHeC R&D facility, which should investigate relevant beam-physics processes.

  7. Method for changing the cross section of a laser beam

    DOE Patents [OSTI]

    Sweatt, W.C.; Seppala, L.

    1995-12-05

    A technique is disclosed herein in which a circular optical beam, for example a copper vapor laser (CVL) beam, is converted to a beam having a profile other than circular, e.g. square or triangular. This is accomplished by utilizing a single optical mirror having a reflecting surface designed in accordance with a specifically derived formula in order to make the necessary transformation, without any substantial light loss and without changing substantially the intensity profile of the circular beam which has a substantially uniform intensity profile. In this way, the output beam can be readily directed into the dye cell of a dye laser. 4 figs.

  8. Electron beam diagnostic for profiling high power beams

    DOE Patents [OSTI]

    Elmer, John W. (Danville, CA); Palmer, Todd A. (Livermore, CA); Teruya, Alan T. (Livermore, CA)

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  9. Beam Loading by Distributed Injection of Electrons in a Plasma...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Beam Loading by Distributed Injection of Electrons in a Plasma Wakefield Accelerator Citation Details In-Document Search Title: Beam Loading by Distributed...

  10. Meso-Scale during Electron Beam Additive Manufacturing Chen,...

    Office of Scientific and Technical Information (OSTI)

    Thermal Properties and Beam-Particle Interaction at Meso-Scale during Electron Beam Additive Manufacturing Chen, Jian ORNL ORNL; Zheng, Lili ORNL ORNL; Feng, Zhili...

  11. Electron Beam Polarization Measurement Using Touschek Lifetime Technique

    SciTech Connect (OSTI)

    Sun, Changchun; /Duke U., DFELL; Li, Jingyi; /Duke U., DFELL; Mikhailov, Stepan; /Duke U., DFELL; Popov, Victor; /Duke U., DFELL; Wu, Wenzhong; /Duke U., DFELL; Wu, Ying; /Duke U., DFELL; Chao, Alex; /SLAC; Xu, Hong-liang; /Hefei, NSRL; Zhang, Jian-feng; /Hefei, NSRL

    2012-08-24

    Electron beam loss due to intra-beam scattering, the Touschek effect, in a storage ring depends on the electron beam polarization. The polarization of an electron beam can be determined from the difference in the Touschek lifetime compared with an unpolarized beam. In this paper, we report on a systematic experimental procedure recently developed at Duke FEL laboratory to study the radiative polarization of a stored electron beam. Using this technique, we have successfully observed the radiative polarization build-up of an electron beam in the Duke storage ring, and determined the equilibrium degree of polarization and the time constant of the polarization build-up process.

  12. Beam loading in a laser-plasma accelerator using a near-hollow plasma channel

    SciTech Connect (OSTI)

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.

    2013-12-15

    Beam loading in laser-plasma accelerators using a near-hollow plasma channel is examined in the linear wake regime. It is shown that, by properly shaping and phasing the witness particle beam, high-gradient acceleration can be achieved with high-efficiency, and without induced energy spread or emittance growth. Both electron and positron beams can be accelerated in this plasma channel geometry. Matched propagation of electron beams can be achieved by the focusing force provided by the channel density. For positron beams, matched propagation can be achieved in a hollow plasma channel with external focusing. The efficiency of energy transfer from the wake to a witness beam is calculated for single ultra-short bunches and bunch trains.

  13. Electron gun jitter effects on beam bunching

    SciTech Connect (OSTI)

    Liu, M. S.; Iqbal, M.

    2014-02-15

    For routine operation of Beijing Electron Positron Collider II (BEPCII) linac, many factors may affect the beam bunching process directly or indirectly. We present the measurements and analyses of the gun timing jitter, gun high voltage jitter, and beam energy at the exit of the standard acceleration section of the linac quantitatively. Almost 80 mV and more than 200 ps of gun high voltage and time jitters have ever been measured, respectively. It was analyzed that the gun timing jitter produced severe effects on beam energy than the gun high voltage jitter, if the timing jitter exceeded 100 ps which eventually deteriorates both the beam performance and the injection rate to the storage ring.

  14. Electron beams of cylindrically symmetric spin polarization

    E-Print Network [OSTI]

    Yan Wang; Chun-Fang Li

    2011-04-24

    Cylindrically symmetric electron beams in spin polarization are reported for the first time. They are shown to be the eigen states of total angular momentum in the $z$ direction. But they are neither the eigen states of spin nor the eigen states of orbital angular momentum in that direction.

  15. DPSS Laser Beam Quality Optimization Through Pump Current Tuning

    SciTech Connect (OSTI)

    Omohundro, Rob; Callen, Alice; Sukuta, Sydney; /San Jose City Coll.

    2012-03-30

    The goal of this study is to demonstrate how a DPSS laser beam's quality parameters can be simultaneously optimized through pump current tuning. Two DPSS lasers of the same make and model were used where the laser diode pump current was first varied to ascertain the lowest RMS noise region. The lowest noise was found to be 0.13% in this region and the best M{sup 2} value of 1.0 and highest laser output power were simultaneously attained at the same current point. The laser manufacturer reported a M{sup 2} value of 1.3 and RMS noise value of .14% for these lasers. This study therefore demonstrates that pump current tuning a DPSS laser can simultaneously optimize RMS Noise, Power and M{sup 2} values. Future studies will strive to broaden the scope of the beam quality parameters impacted by current tuning.

  16. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring

    SciTech Connect (OSTI)

    Kumar, Pradeep; Ghodke, A. D.; Karnewar, A. K.; Holikatti, A. C.; Yadav, S.; Puntambekar, T. A.; Singh, G.; Singh, P.

    2013-12-15

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  17. Two-beam detuned-cavity electron accelerator structure

    SciTech Connect (OSTI)

    Jiang, Y.; Hirshfield, J. L. [Beam Physics Laboratory, Yale University, New Haven, CT 06511 (United States); Beam Physics Laboratory, Yale University, New Haven, CT 06511 (United States) and Omega-P, Inc., New Haven, CT 06510 (United States)

    2012-12-21

    Progress has been made in the theory, development, cavity design and optimization, beam dynamics study, beam transport design, and hardware construction for studies of a detuned two-beam electron accelerator structure.

  18. Automatic beam path analysis of laser wakefield particle acceleration data

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Automatic beam path analysis of laser wakefield particle acceleration data Oliver Rübel1 in a pipeline fashion to automatically locate and analyze high-energy particle bunches undergoing acceleration

  19. Spreader Design for FERMI@Elettra Free Electron Laser

    E-Print Network [OSTI]

    2008-01-01

    emittance diagnostic section, the electron beam switchyarddiagnostic using optical transition radiation from the screens that can be inserted into the electron beam

  20. Polarized electron beams at milliampere average current

    SciTech Connect (OSTI)

    Poelker, Matthew

    2013-11-01

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today's CEBAF polarized source operating at ~ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  1. Design of titania nanotube structures by focused laser beam direct writing

    SciTech Connect (OSTI)

    Enachi, Mihai [National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare av. 168, Chisinau, MD-2004 (Moldova, Republic of); Stevens-Kalceff, Marion A. [School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); Sarua, Andrei [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Ursaki, Veaceslav [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, MD-2028 (Moldova, Republic of); Tiginyanu, Ion, E-mail: tiginyanu@asm.md [National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare av. 168, Chisinau, MD-2004 (Moldova, Republic of); Institute of Electronic Engineering and Nanotechnologies, Academy of Sciences of Moldova, Chisinau, MD-2028 (Moldova, Republic of)

    2013-12-21

    In this work, we report on electrochemical fabrication of titania films consisting of nanotubes (NTs) and their treatment by focused laser beam. The results of sample characterization by optical and scanning electron microscopy, cathodoluminescence imaging, and Raman scattering scanning spectroscopy are compared to those inherent to specimens subjected to thermal treatment in a furnace. The obtained data demonstrate possibilities for controlling crystallographic structure of TiO{sub 2} NTs by focused laser beam direct writing. These findings open new prospects for the design and fabrication of spatial architectures based on titania nanotubes.

  2. 2D Optical Streaking for Ultra-Short Electron Beam Diagnostics

    SciTech Connect (OSTI)

    Ding, Y.T.; Huang, Z.; Wang, L.; /SLAC

    2011-12-14

    We propose a novel approach to measure short electron bunch profiles at micrometer level. Low energy electrons generated during beam-gas ionization are simultaneously modulated by the transverse electric field of a circularly-polarized laser, and then they are collected at a downstream screen where the angular modulation is converted to a circular shape. The longitudinal bunch profile is simply represented by the angular distribution of the electrons on the screen. We only need to know the laser wavelength for calibration and there is no phase synchronization problem. Meanwhile the required laser power is also relatively low in this setup. Some simulations examples and experimental consideration of this method are discussed. At Linac Coherent Light Source (LCLS), an S-band RF transverse deflector (TCAV) is used to measure the bunch length with a resolution 10 femtosecond (fs) rms. An X-band deflector (wavelength 2.6cm) is proposed recently to improve the resolution. However, at the low charge operation mode (20pC), the pulse length can be as short as fs. It is very challenging to measure femtosecond and sub-femtosecond level bunch length. One of the methods is switching from RF to {mu}m level wavelength laser to deflect the bunch. A powerful laser ({approx}10s GW) is required to deflect such a high energy beam (GeV) in a wiggler. Synchronization is another difficulty: the jitter between the bunch and the laser can be larger than the laser wavelength, which makes single-shot measurement impossible. To reduce the laser power, we propose to use ionized electrons from high energy electron beam and gas interaction for high energy electron bunch diagnostics. Similarly, the femtosecond X-ray streak camera uses X-ray ionization electrons to measure the X-ray pulse. The electrons generated by beam-gas ionization have low energy (eVs). Therefore, a lower laser power is possible to deflect such low energy electrons. Note that there is no field ionization in our case. To avoid field ionization, which occurs in plasma case, gases species with high field ionization threshold should be considered. For a linear polarized laser, the kick to the ionized electrons depends on the phase of the laser when the electrons are born and the unknown timing jitter between the electron beam and laser beam makes the data analysis very difficult. Here we propose to use a circular polarized laser to do a 2-dimensional (2D) streaking (both x and y) and measure the bunch length from the angular distribution on the screen, where the phase jitter causes only a rotation of the image on the screen without changing of the relative angular distribution. Also we only need to know the laser wavelength for calibration. A similar circular RF deflecting mode was used to measure long bunches. We developed a numerical particle-in-Cell (PIC) code to study the dynamics of ionization electrons with the high energy beam and the laser beam.

  3. Ionized channel generation of an intense-relativistic electron beam

    DOE Patents [OSTI]

    Frost, Charles A. (Albuquerque, NM); Leifeste, Gordon T. (Albuquerque, NM); Shope, Steven L. (Albuquerque, NM)

    1988-01-01

    A foilless intense relativistic electron beam generator uses an ionized cnel to guide electrons from a cathode passed an anode to a remote location.

  4. Spectroscopic Evidence for Exceptional Thermal Contribution to Electron-Beam Induced Fragmentation

    E-Print Network [OSTI]

    Caldwell, Marissa A.

    2011-01-01

    Thermal Contribution to Electron-Beam Induced FragmentationThermal Contribution to Electron-Beam Induced FragmentationAbstract While electron beam induced fragmentation (EBIF)

  5. A fast high-order method to calculate wakefield forces in an electron beam

    E-Print Network [OSTI]

    Qiang, Ji

    2013-01-01

    wakefield for an electron beam. The same method can alsowakefields inside an electron beam using a modified densitywakefield forces in an electron beam Ji Qiang, Chad

  6. Dual beam translator for use in Laser Doppler anemometry

    DOE Patents [OSTI]

    Brudnoy, David M. (Albany, NY)

    1987-01-01

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  7. Dual beam translator for use in Laser Doppler anemometry

    DOE Patents [OSTI]

    Brudnoy, D.M.

    1984-04-12

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  8. Electron-beam controlled radio frequency discharges for plasma processing

    E-Print Network [OSTI]

    Kushner, Mark

    Electron-beam controlled radio frequency discharges for plasma processing Mark J. Kushner,a) Wenli study of an electron beam controlled rf discharge in which the production and acceleration of ions are similarly separately controlled. Ionization is dominantly produced by injection of an electron beam

  9. Electron beam kinetics: numerical results Discussion of the experiments

    E-Print Network [OSTI]

    Zharkova, Valentina V.

    Electron beam kinetics: numerical results Discussion of the experiments In all the experiments the first set of Figures presents the differential energy spectra dN/dE for electron beams at a given depth presents the beam's mean electron flux. For comparison all the results for Experiments 1-3 are presented

  10. Electron beam ion sources and traps ,,invited... Reinard Beckera)

    E-Print Network [OSTI]

    Electron beam ion sources and traps ,,invited... Reinard Beckera) Institut fu¨r Angewandte Physik, Johann Wolfgang Goethe-Universita¨t, Frankfurt, Germany Presented on 7 September 1999 The electron beam method of stepwise ionization to highest charge states has found applications in electron beam ion

  11. Title of Dissertation: CONTROL AND TRANSPORT OF INTENSE ELECTRON BEAMS

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Dissertation: CONTROL AND TRANSPORT OF INTENSE ELECTRON BEAMS Hui Li, Doctor of beam characteristics over long distances. The University of Maryland Electron Ring (UMER), which uses low energy, high current electron beams to model the transport physics of intense space

  12. Susceptor heating device for electron beam brazing

    DOE Patents [OSTI]

    Antieau, Susan M. (Pittsburgh, PA); Johnson, Robert G. R. (Trafford, PA)

    1999-01-01

    A brazing device and method are provided which locally apply a controlled amount of heat to a selected area, within a vacuum. The device brazes two components together with a brazing metal. A susceptor plate is placed in thermal contact with one of the components. A serrated pedestal supports the susceptor plate. When the pedestal and susceptor plate are in place, an electron gun irradiates an electron beam at the susceptor plate such that the susceptor plate is sufficiently heated to transfer heat through the one component and melt the brazing metal.

  13. Non-Diffracting Electron Vortex Beams Balancing Their Electron-Electron Interactions

    E-Print Network [OSTI]

    Maor Mutzafi; Ido Kaminer; Gal Harari; Mordechai Segev

    2015-10-10

    By introducing concepts of beam shaping into quantum mechanics, we show how interference effects of the quantum wavefunction describing multiple electrons can exactly balance the repulsion among the electrons. With proper shaping of the fermionic wavefunction, we propose non-diffracting quantum wavepackets of multiple electrons that can also carry orbital angular momentum, in the form of multi-electron non-diffracting vortex beams. The wavefunction is designed to compensate for both the repulsion between electrons and for the diffraction-broadening. This wavefunction shaping facilitates the use of electron beams of higher current in numerous applications, thereby improving the signal-to-noise-ratio in electron microscopy and related systems without compromising on the spatial resolution. Our scheme potentially applies for any beams of charged particles, such as protons, muons and ion beams.

  14. Electron beam coupling to a metamaterial structure

    SciTech Connect (OSTI)

    French, David M.; Shiffler, Don [Directed Energy Directorate, Air Force Research Laboratory, Albuquerque, New Mexico 87117 (United States)] [Directed Energy Directorate, Air Force Research Laboratory, Albuquerque, New Mexico 87117 (United States); Cartwright, Keith [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2013-08-15

    Microwave metamaterials have shown promise in numerous applications, ranging from strip lines and antennas to metamaterial-based electron beam driven devices. In general, metamaterials allow microwave designers to obtain electromagnetic characteristics not typically available in nature. High Power Microwave (HPM) sources have in the past drawn inspiration from work done in the conventional microwave source community. In this article, the use of metamaterials in an HPM application is considered by using an effective medium model to determine the coupling of an electron beam to a metamaterial structure in a geometry similar to that of a dielectric Cerenkov maser. Use of the effective medium model allows for the analysis of a wide range of parameter space, including the “mu-negative,”“epsilon-negative,” and “double negative” regimes of the metamaterial. The physics of such a system are modeled analytically and by utilizing the particle-in-cell code ICEPIC. For this geometry and effective medium representation, optimum coupling of the electron beam to the metamaterial, and thus the optimum microwave or RF production, occurs in the epsilon negative regime of the metamaterial. Given that HPM tubes have been proposed that utilize a metamaterial, this model provides a rapid method of characterizing a source geometry that can be used to quickly understand the basic physics of such an HPM device.

  15. Impedance-Based Analysis of the Relativistic Klystron and the Coupled-Cavity Free-Electron Laser Two-Beam Accelerator

    E-Print Network [OSTI]

    Wurtele, Jonathan S.

    2008-01-01

    of the relativistic klystron. REFERENCES 1. A.M. Sessler, inof both the relativistic klystron (RK) and the standing-wavethrough a Relativistic Klystron (RK) or a Free-Electron

  16. R&D for a Soft X-Ray Free Electron Laser Facility

    E-Print Network [OSTI]

    Staples, John

    2009-01-01

    resolution electron beam diagnostics. • Radiation protectionelectron source, beam instrumentation and diagnostics andand diagnostics equipment to characterize the electron beam.

  17. Emittance of positron beams produced in intense laser plasma interaction

    SciTech Connect (OSTI)

    Chen Hui; Hazi, A.; Link, A.; Anderson, S.; Gronberg, J.; Izumi, N.; Tommasini, R.; Wilks, S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Sheppard, J. C. [SLAC, Standford University, Menlo Park, California 94025 (United States); Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Baldis, H. A.; Marley, E.; Park, J.; Williams, G. J. [Department of Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Fedosejev, R.; Kerr, S. [Department of Applied Science, University of Alberta, Alberta T6G 2R3 (Canada)

    2013-01-15

    The first measurement of the emittance of intense laser-produced positron beams has been made. The emittance values were derived through measurements of positron beam divergence and source size for different peak positron energies under various laser conditions. For one of these laser conditions, we used a one dimensional pepper-pot technique to refine the emittance value. The laser-produced positrons have a geometric emittance between 100 and 500 mm{center_dot}mrad, comparable to the positron sources used at existing accelerators. With 10{sup 10}-10{sup 12} positrons per bunch, this low emittance beam, which is quasi-monoenergetic in the energy range of 5-20 MeV, may be useful as an alternative positron source for future accelerators.

  18. First test of BNL electron beam ion source with high current density electron beam

    SciTech Connect (OSTI)

    Pikin, Alexander Alessi, James G. Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  19. Design Alternatives for a Free Electron Laser Facility

    SciTech Connect (OSTI)

    Jacobs, K; Bosch, R A; Eisert, D; Fisher, M V; Green, M A; Keil, R G; Kleman, K J; Kulpin, J G; Rogers, G C; Wehlitz, R; Chiang, T; Miller, T J; Lawler, J E; Yavuz, D; Legg, R A

    2012-07-01

    The University of Wisconsin-Madison is continuing design efforts for a vacuum ultraviolet/X-ray Free Electron Laser facility. The design incorporates seeding the FEL to provide fully coherent photon output at energies up to {approx}1 keV. The focus of the present work is to minimize the cost of the facility while preserving its performance. To achieve this we are exploring variations in the electron beam driver for the FEL, in undulator design, and in the seeding mechanism. Design optimizations and trade-offs between the various technologies and how they affect the FEL scientific program will be presented.

  20. Electron beam directed energy device and methods of using same

    DOE Patents [OSTI]

    Retsky, Michael W. (Trumbull, CT)

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  1. Electrons trajectories around a bubble regime in intense laser plasma interaction

    SciTech Connect (OSTI)

    Lu, Ding; Xie, Bai-Song; Ali Bake, Muhammad; Sang, Hai-Bo; Zhao, Xue-Yan; Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 ; Wu, Hai-Cheng

    2013-06-15

    Some typical electrons trajectories around a bubble regime in intense laser plasma interaction are investigated theoretically. By considering a modification of the fields and ellipsoid bubble shape due to the presence of residual electrons in the bubble regime, we study in detail the electrons nonlinear dynamics with or without laser pulse. To examine the electron dynamical behaviors, a set of typical electrons, which locate initially at the front of the bubble, on the transverse edge and at the bottom of the bubble respectively, are chosen for study. It is found that the range of trapped electrons in the case with laser pulse is a little narrower than that without laser pulse. The partial phase portraits for electrons around the bubble are presented numerically and their characteristic behaviors are discussed theoretically. Implication of our results on the high quality electron beam generation is also discussed briefly.

  2. Control of Electron Beam Using Strong Magnetic Field for Efficient Core Heating in Fast Ignition

    E-Print Network [OSTI]

    Johzaki, T; Sentoku, Y; Sunahara, A; Nagatomo, H; Sakagami, H; Mima, K; Fujioka, S; Shiraga, H

    2014-01-01

    For enhancing the core heating efficiency in electron-driven fast ignition, we proposed the fast electron beam guiding using externally applied longitudinal magnetic fields. Based on the PIC simulations for the FIREX-class experiments, we demonstrated the sufficient beam guiding performance in the collisional dense plasma by kT-class external magnetic fields for the case with moderate mirror ratio (~<10 ). Boring of the mirror field was found through the formation of magnetic pipe structure due to the resistive effects, which indicates a possibility of beam guiding in high mirror field for higher laser intensity and/or longer pulse duration.

  3. Computationally efficient description of relativistic electron beam transport in collisionless plasma

    E-Print Network [OSTI]

    Kaganovich, Igor

    Computationally efficient description of relativistic electron beam transport in collisionless and relativistic electron beam transport in collisionless background plasma is developed. Beam electrons saturation of a low-current electron beam is presented. Using the present approach, linear growth rates

  4. Axial interaction free-electron laser

    DOE Patents [OSTI]

    Carlsten, B.E.

    1997-09-02

    Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies. 5 figs.

  5. Axial interaction free-electron laser

    DOE Patents [OSTI]

    Carlsten, Bruce E. (Los Alamos, NM)

    1997-01-01

    Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies.

  6. Electron-Yield Enhancement in a Laser-Wakefield Accelerator Driven by Asymmetric Laser Pulses

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Electron-Yield Enhancement in a Laser-Wakefield Accelerator Driven by Asymmetric Laser Pulses W. P accelerator by using nonlinearly chirped laser pulses from a 10 Hz, Ti:Al2O3, CPA based laser system [8

  7. A Free-Electron Laser in the Pulsar Magnetosphere

    E-Print Network [OSTI]

    Kuijpers, P K F J

    2004-01-01

    We have studied systematically the free-electron laser in the context of high brightness pulsar radio emission. In this paper, we have numerically examined the case where a transverse electromagnetic wave is distorting the motion of a relativistic electron beam while travelling over one stellar radius ($ approx 10 :{km}$). For different sets of parameters, coherent emission is generated by bunches of beam electrons in the radio domain, with bandwidths of 3 GHz. Pulse power often reached $10^{13} :{W}$, which corresponds with brightness temperature of $10^{30} :{K}$. The duration of these pulses is of the order of nanoseconds. In the context of pulsar radio emission, our results indicate that the laser can produce elementary bursts of radiation which build up the observed microstructures of a few tens of microseconds duration. The process is sensitive mostly to the beam particles energy, number density and the background magnetic field, but much less so to the transverse wave parameters. We demonstrate that th...

  8. Laser beam temporal and spatial tailoring for laser shock processing

    DOE Patents [OSTI]

    Hackel, Lloyd (Livermore, CA); Dane, C. Brent (Livermore, CA)

    2001-01-01

    Techniques are provided for formatting laser pulse spatial shape and for effectively and efficiently delivering the laser energy to a work surface in the laser shock process. An appropriately formatted pulse helps to eliminate breakdown and generate uniform shocks. The invention uses a high power laser technology capable of meeting the laser requirements for a high throughput process, that is, a laser which can treat many square centimeters of surface area per second. The shock process has a broad range of applications, especially in the aerospace industry, where treating parts to reduce or eliminate corrosion failure is very important. The invention may be used for treating metal components to improve strength and corrosion resistance. The invention has a broad range of applications for parts that are currently shot peened and/or require peening by means other than shot peening. Major applications for the invention are in the automotive and aerospace industries for components such as turbine blades, compressor components, gears, etc.

  9. Dispersion relation and growth rate in a Cherenkov free electron laser: Finite axial magnetic field

    SciTech Connect (OSTI)

    Kheiri, Golshad; Esmaeilzadeh, Mahdi

    2013-12-15

    A theoretical analysis is presented for dispersion relation and growth rate in a Cherenkov free electron laser with finite axial magnetic field. It is shown that the growth rate and the resonance frequency of Cherenkov free electron laser increase with increasing axial magnetic field for low axial magnetic fields, while for high axial magnetic fields, they go to a saturation value. The growth rate and resonance frequency saturation values are exactly the same as those for infinite axial magnetic field approximation. The effects of electron beam self-fields on growth rate are investigated, and it is shown that the growth rate decreases in the presence of self-fields. It is found that there is an optimum value for electron beam density and Lorentz relativistic factor at which the maximum growth rate can take place. Also, the effects of velocity spread of electron beam are studied and it is found that the growth rate decreases due to the electron velocity spread.

  10. Two-Beam Instability in Electron Cooling

    SciTech Connect (OSTI)

    Burov, Alexey V.; /Fermilab

    2006-04-01

    The drift motion of cooling electrons makes them able to respond to transverse perturbations of a cooled ion beam. This response may lead to dipole or quadrupole transverse instabilities at specific longitudinal wave numbers. While the dipole instabilities can be suppressed by a combination of the Landau damping, machine impedance, and the active damper, the quadrupole and higher order modes can lead to either emittance growth, or a lifetime degradation, or both. The growth rates of these instabilities are strongly determined by the machine x-y coupling. Thus, tuning out of the coupling resonance and/or reduction of the machine coupling can be an efficient remedy for these instabilities.

  11. Turbulence-induced persistence in laser beam wandering

    E-Print Network [OSTI]

    Zunino, Luciano; Funes, Gustavo; Pérez, Darío G

    2015-01-01

    We have experimentally confirmed the presence of long-memory correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. A laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing detrended fluctuation analysis. This is a very well-known and widely used methodology to unveil memory effects from time series. Results obtained from this experimental analysis allow us to confirm that both coordinates behave as highly persistent signals for strong turbulent intensities. This finding is relevant for a better comprehension and modeling of the turbulence effects in free-space optical communication systems and other applications related to propagation of optical signals in the atmosphere.

  12. Crystallographic data processing for free-electron laser sources

    SciTech Connect (OSTI)

    White, Thomas A. Barty, Anton; Stellato, Francesco; Holton, James M.; Kirian, Richard A.; Zatsepin, Nadia A.; Chapman, Henry N.

    2013-07-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.

  13. Nonlinear transmission line based electron beam driver

    SciTech Connect (OSTI)

    French, David M.; Hoff, Brad W.; Tang Wilkin; Heidger, Susan; Shiffler, Don [Directed Energy Directorate, Air Force Research Laboratory, Kirtland AFB, New Mexico 87117 (United States); Allen-Flowers, Jordan [Program in Applied Mathematics, University of Arizona, Tucson, Arizona 85721 (United States)

    2012-12-15

    Gated field emission cathodes can provide short electron pulses without the requirement of laser systems or cathode heating required by photoemission or thermionic cathodes. The large electric field requirement for field emission to take place can be achieved by using a high aspect ratio cathode with a large field enhancement factor which reduces the voltage requirement for emission. In this paper, a cathode gate driver based on the output pulse train from a nonlinear transmission line is experimentally demonstrated. The application of the pulse train to a tufted carbon fiber field emission cathode generates short electron pulses. The pulses are approximately 2 ns in duration with emission currents of several mA, and the train contains up to 6 pulses at a frequency of 100 MHz. Particle-in-cell simulation is used to predict the characteristic of the current pulse train generated from a single carbon fiber field emission cathode using the same technique.

  14. Measuring fast electron spectra and laser absorption in relativistic...

    Office of Scientific and Technical Information (OSTI)

    Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors Citation Details In-Document Search...

  15. GeV electron beams from a centimetre-scale accelerator

    E-Print Network [OSTI]

    to synchrotron radiation facilities and free-electron lasers, and as modules for high-energy particle physics. Radiofrequency-based accelerators are limited to relatively low accelerating fields (10-50 MV m-1 ), requiring tens to hundreds of metres to reach the multi-GeV beam energies needed to drive radiation sources

  16. High energy photon production in strong colliding laser beams

    E-Print Network [OSTI]

    Michael Kuchiev; Julian Ingham

    2015-07-21

    The collision of two intense, low-frequency laser beams is considered. The $e^-e^+$ pairs created in this field are shown to exhibit recollisions, which take place at high energy accumulated due to the wiggling of fermions. The resulting $e^-e^+$ annihilation produces high energy photons, or heavy particles. The coherent nature of the laser field provides strong enhancement of the probability of these events. Analytical and numerical results are outlined.

  17. Photons with a Twist: Coherent Optical Vortices From Relativistic Electron Beams

    E-Print Network [OSTI]

    Knyazik, Andrey

    2013-01-01

    and M. Ruelas. Electron beam diagnostics using coherentlaser and electron beam system there is precision diagnosticelectron beam there are picosecond-class direct timing diagnostic,

  18. Development of a fast position-sensitive laser beam detector

    SciTech Connect (OSTI)

    Chavez, Isaac; Huang Rongxin; Henderson, Kevin; Florin, Ernst-Ludwig; Raizen, Mark G. [Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

    2008-10-15

    We report the development of a fast position-sensitive laser beam detector. The detector uses a fiber-optic bundle that spatially splits the incident beam, followed by a fast balanced photodetector. The detector is applied to the study of Brownian motion of particles on fast time scales with 1 A spatial resolution. Future applications include the study of molecule motors, protein folding, as well as cellular processes.

  19. Laser wakefield acceleration of electrons with ionization injection in a pure N{sup 5+} plasma waveguide

    SciTech Connect (OSTI)

    Goers, A. J.; Yoon, S. J.; Elle, J. A.; Hine, G. A.; Milchberg, H. M.

    2014-05-26

    Ionization injection-assisted laser wakefield acceleration of electrons up to 120?MeV is demonstrated in a 1.5?mm long pure helium-like nitrogen plasma waveguide. The guiding structure stabilizes the high energy electron beam pointing and reduces the beam divergence. Our results are confirmed by 3D particle-in-cell simulations.

  20. Acceleration and Compression of Charged Particle Bunches Using Counter-Propagating Laser Beams

    SciTech Connect (OSTI)

    G. Shvets; N. J. Fisch; A. Pukhov

    2000-10-17

    The nonlinear interaction between counter-propagating laser beams in a plasma results in the generation of large (enhanced) plasma wakes. The two beams need to be slightly detuned in frequency, and one of them has to be ultra-short (shorter than a plasma period). Thus produced wakes have a phase velocity close to the speed of light and can be used for acceleration and compression of charged bunches. The physical mechanism responsible for the enhanced wake generation is qualitatively described and compared with the conventional laser wakefield mechanism. The authors also demonstrate that, depending on the sign of the frequency difference between the lasers, the enhanced wake can be used as a ``snow-plow'' to accelerate and compress either positively or negatively charged bunches. This ability can be utilized in an electron-positron injector.

  1. High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from

    E-Print Network [OSTI]

    High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from, Darmstadt, Germany 2 GSI, Darmstadt, Germany 3 Université de Provence et CNRS, Marseille, France 4, Albuquerque, New Mexico. ~Received 21 February 2005; Accepted 20 April 2005! Abstract High energy heavy ions

  2. A cascaded laser acceleration scheme for the generation of spectrally controlled proton beams

    E-Print Network [OSTI]

    Pfotenhauer, Sebastian Michael

    We present a novel, cascaded acceleration scheme for the generation of spectrally controlled ion beams using a laser-based accelerator in a 'double-stage' setup. An MeV proton beam produced during a relativistic laser–plasma ...

  3. Hole-boring through clouds for laser power beaming

    SciTech Connect (OSTI)

    Lipinski, R.J. [Sandia National Labs., Albuquerque, NM (United States); Walter, R.F. [W.J. Schafer Associates, Inc., Albuquerque, NM (United States)

    1994-12-31

    Power beaming to satellites with a ground-based laser can be limited by clouds. Hole-boring through the clouds with a laser has been proposed as a way to overcome this obstacle. This paper reviews the past work on laser hole-boring and concludes that hole-boring for direct beaming to satellites is likely to require 10--100 MW. However, it may be possible to use an airborne relay mirror at 10--25 km altitude for some applications in order to extend the range of the laser (e.g., for beaming to satellites near the horizon). In these cases, use of the relay mirror also would allow a narrow beam between the laser and the relay, as well as the possibility of reducing the crosswind if the plane matched speed with the cloud temporarily. Under these conditions, the power requirement to bore a hole through most cirrus and cirrostratus clouds might be only 500-kW if the hole is less than 1 m in diameter and if the crosswind speed is less than 10 m/s. Overcoming cirrus and cirrostratus clouds would reduce the downtime due to weather by a factor of 2. However, 500 kW is a large laser, and it may be more effective instead to establish a second power beaming site in a separate weather zone. An assessment of optimum wavelengths for hole boring also was made, and the best options were found to be 3.0--3.4 {mu}m and above 10 {mu}m.

  4. Electron beam diagnostic system using computed tomography and an annular sensor

    DOE Patents [OSTI]

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  5. Electro-optic harmonic conversion to switch a laser beam out of a cavity

    DOE Patents [OSTI]

    Haas, R.A.; Henesian, M.A.

    1984-10-19

    The present invention relates to switching laser beams out of laser cavities, and more particularly, it relates to the use of generating harmonics of the laser beam to accomplish the switching. When laser light is generatd in a laser cavity the problem arises of how to switch the laser light out of the cavity in order to make use of the resulting laser beam in a well known multitude of ways. These uses include range finding, communication, remote sensing, medical surgery, laser fusion applications and many more. The switch-out problem becomes more difficult as the size of the laser aperture grows such as in laser fusion applications. The final amplifier stages of the Nova and Novette lasers at Lawrence Livermore National Laboratory are 46 centimeters with the laser beam expanded to 74 centimeters thereafter. Larger aperture lasers are planned.

  6. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    SciTech Connect (OSTI)

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  7. Longitudinal bunch profile and electron beam energy spread

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ring Parameters Previous: Storage Ring Operation Modes Longitudinal bunch profile and electron beam energy spread Longitudinal bunch profile depends mainly on the single bunch...

  8. Development of hollow electron beams for proton and ion collimation

    SciTech Connect (OSTI)

    Stancari, G.; Drozhdin, A.I.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.

    2010-06-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  9. Thermographic In-Situ Process Monitoring of the Electron Beam...

    Office of Scientific and Technical Information (OSTI)

    ARCAM electron beam melting technology to additively manufacture complex geometric structures directly from powder. Although the technology has demonstrated the ability to...

  10. Properties of Inconel 625 Mesh Structures Grown by Electron Beam...

    Office of Scientific and Technical Information (OSTI)

    Properties of Inconel 625 Mesh Structures Grown by Electron Beam Additive Manufacturing Citation Details In-Document Search Title: Properties of Inconel 625 Mesh Structures Grown...

  11. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, Daniel L. (Brentwood, CA); Reginato, Louis L. (Orinda, CA)

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  12. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  13. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, Daniel L. (Brentwood, CA); Reginato, Louis L. (Orinda, CA)

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  14. Thermographic In-Situ Process Monitoring of the Electron Beam...

    Office of Scientific and Technical Information (OSTI)

    Thermographic In-Situ Process Monitoring of the Electron Beam Melting Technology used in Additive Manufacturing Dinwiddie, Ralph Barton ORNL ORNL; Dehoff, Ryan R ORNL ORNL;...

  15. Study on electron beam in a low energy plasma focus

    SciTech Connect (OSTI)

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  16. Possible generation of $?$-ray laser by electrons wiggling in a background laser

    E-Print Network [OSTI]

    Qi-Ren Zhang

    2015-04-02

    The possibility of $\\gamma-$ray laser generation by the radiation of wiggling electrons in an usual background laser is discussed.

  17. Ion-beam and electron-beam irradiation of synthetic britholite S. Utsunomiya a

    E-Print Network [OSTI]

    Utsunomiya, Satoshi

    Ion-beam and electron-beam irradiation of synthetic britholite S. Utsunomiya a , S. Yudintsev b , L ). The sequence of increasing Tc correlates with the mass of the incident ion; whereas, the ratio of electronic to nuclear stopping power (ENSP) is inversely correlated with Tc. Electron irradiations were conducted

  18. Very thick holographic nonspatial filtering of laser beams

    E-Print Network [OSTI]

    Shahriar, Selim

    of a thick photo- polymer with diffusion amplification (PDA). We report results of holo- graphic nonspatial Society of Photo-Optical In- strumentation Engineers. [S0091-3286(97)01606-1] Subject terms: holography information if the input laser beam has an intensity minimum at a critical feature location. It is also

  19. Interpretation of electron beam induced charging of oxide layers in a transistor studied using electron holography

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Interpretation of electron beam induced charging of oxide layers in a transistor studied using in the electron beam direction. The technique offers the prospect of mapping dopant potentials in semiconductors electron beam irradiation in the TEM. Here we attempt to understand the magnitude, location

  20. Incoherent combining of 100-W Yb-fiber laser beams by PTR Bragg Igor V. Ciapurin,

    E-Print Network [OSTI]

    Glebov, Leon

    -energy lasers, incoherent beam combining 1. INTRODUCTION Generation of high power laser radiation has always been a challenge due to the necessity to dissipate waste heat. This process limits the ultimate power suggested that the single higher power beam from several lasers can be obtained by combining the beams from

  1. Terahertz generation by two cross focused laser beams in collisional plasmas

    SciTech Connect (OSTI)

    Sharma, R. P., E-mail: rpsharma@ces.iitd.ernet.in; Singh, Ram Kishor, E-mail: ram007kishor@gmail.com [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2014-07-15

    The role of two cross-focused spatial-Gaussian laser beams has been studied for the high power and efficient terahertz (THz) radiation generation in the collisional plasma. The nonlinear current at THz frequency arises on account of temperature dependent collision frequency of electrons with ions in the plasma and the presence of a static electric field (applied externally in the plasma) and density ripple. Optimisation of laser-plasma parameters gives the radiated THz power of the order of 0.23??MW.

  2. Laser beam apparatus and method for analyzing solar cells

    DOE Patents [OSTI]

    Staebler, David L. (Lawrenceville, NJ)

    1980-01-01

    A laser beam apparatus and method for analyzing, inter alia, the current versus voltage curve at the point of illumination on a solar cell and the open circuit voltage of a solar cell. The apparatus incorporates a lock-in amplifier, and a laser beam light chopper which permits the measurement of the AC current of the solar cell at an applied DC voltage at the position on the solar cell where the cell is illuminated and a feedback scheme which permits the direct scanning measurements of the open circuit voltage. The accuracy of the measurement is a function of the intensity and wavelength of the laser light with respect to the intensity and wavelength distribution of sunlight and the percentage the dark current is at the open circuit voltage to the short circuit current of the solar cell.

  3. A compact x-ray free electron laser

    SciTech Connect (OSTI)

    Barletta, W.A. . Center for Advanced Accelerators Physics Lawrence Livermore National Lab., CA ); Atac, M.; Cline, D.B.; Kolonko, J. . Center for Advanced Accelerators Physics); Bhowmik, A.; Bobbs, B.; Cover, R.A.; Dixon, F.P.; Rakowsky, G. . Rocketdyne Div.); Gallardo

    1988-01-01

    We present a design concept and simulation of the performance of a compact x-ray, free electron laser driven by ultra-high gradient rf-linacs. The accelerator design is based on recent advances in high gradient technology by a LLNL/SLAC/LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be converted to soft x-rays in the range from 2--10 nm by passage through short period, high field strength wigglers as are being designed at Rocketdyne Linear light sources of this type can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitablee for flash holography of biological specimens in vivo and for studies of fast chemical reactions. 12 refs., 8 figs., 4 tabs.

  4. Time-resolved electron beam diagnostics with sub-femtosecond resolution

    E-Print Network [OSTI]

    Wang, Guanglei; Zhang, Wei; Deng, Haixiao; Yang, Xueming

    2015-01-01

    In modern high-gain free-electron lasers, ultra-fast photon pulses designed for studying chemical, atomic and biological systems are generated from a serial of behaviors of high-brightness electron beam at the time-scale ranging from several hundred femtoseconds to sub-femtosecond. Currently, radiofrequency transverse deflectors are widely used to provide reliable, single-shot electron beam phase space diagnostics, with a temporal resolution of femtosecond. Here, we show that the time resolution limitations caused by the intrinsic beam size in transverse deflectors, can be compensated with specific transverse-to-longitudinal coupling elements. For the purpose, an undulator with transverse gradient field is introduced before the transverse deflector. With this technique, a resolution of less than 1fs root mean square has been theoretically demonstrated for measuring the longitudinal profile and/or the micro-bunching of the electron bunch.

  5. Laser Irradiated Enhancement of the Atomic Electron Capture Rate in search of New Physics

    E-Print Network [OSTI]

    Takaaki Nomura; Joe Sato; Takashi Shimomura

    2007-06-16

    Electron capture processes are important in the search for new physics. In this context, a high capture rate is desired. We investigate the possibility of enhancing the electron capture rate by irradiating laser beam to ''atom''. The possibility of such enhancement can be understood as a consequence of an enhancement of the electron wave function at the origin, $\\Psi (0)$, through an increased effective mass of the electron. We find that an order of magnitude enhancement can be realized by using a laser with intensity on the order of $10^{10}$ W/mm$^2$ and a photon energy on the order of $10^{-3}$ eV.

  6. A Low Diffraction Laser Beam as Applied to Polymer Ablation Xuanhui Lu*

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    ] and UV [8] beams is a well established process. Factors of laser beams likely to affect drilling-diffraction beam to ablation-dominated drilling and grooving processes involving polymer material and its

  7. Wavelength beam combining of quantum cascade laser arrays for remote sensing

    E-Print Network [OSTI]

    Sanchez-Rubio, Antonio

    Wavelength beam combining was used to co-propagate beams from 28 elements in a linear array of distributedfeedback quantum cascade lasers (DFB-QCLs). The overlap of the beams in the far-field is improved using wavelength ...

  8. The splitted laser beam filamentation in interaction of laser and an exponential decay inhomogeneous underdense plasma

    SciTech Connect (OSTI)

    Xia Xiongping; Yi Lin; Xu Bin; Lu Jianduo

    2011-10-15

    The splitted beam filamentation in interaction of laser and an exponential decay inhomogeneous underdense plasma is investigated. Based on Wentzel-Kramers-Brillouin (WKB) approximation and paraxial/nonparaxial ray theory, simulation results show that the steady beam width and single beam filamentation along the propagation distance in paraxial case is due to the influence of ponderomotive nonlinearity. In nonparaxial case, the influence of the off-axial of {alpha}{sub 00} and {alpha}{sub 02} (the departure of the beam from the Gaussian nature) and S{sub 02} (the departure from the spherical nature) results in more complicated ponderomotive nonlinearity and changing of the channel density and refractive index, which led to the formation of two/three splitted beam filamentation and the self-distortion of beam width. In addition, influence of several parameters on two/three splitted beam filamentation is discussed.

  9. Summary Report of Working Group 1: Laser-Plasma Acceleration

    E-Print Network [OSTI]

    Geddes, C.G.R.

    2011-01-01

    an accurate diagnostic of the electron beam properties, aselectron and laser beam character- istics. New diagnosticselectron beam charge, peak energy and energy spread, and provide diagnostics

  10. Electron beam enhanced surface modification for making highly resolved structures

    DOE Patents [OSTI]

    Pitts, John R. (Golden, CO)

    1986-01-01

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  11. Method and apparatus for monitoring the power of a laser beam

    DOE Patents [OSTI]

    Paris, Robert D. (San Ramon, CA); Hackel, Richard P. (Livermore, CA)

    1996-01-01

    A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam.

  12. NOx reduction by electron beam-produced nitrogen atom injection

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA)

    2002-01-01

    Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

  13. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    SciTech Connect (OSTI)

    Alarcon, Ricardo [Arizona State University, Glendale, AZ (United States); Balascuta, S. [Arizona State University, Glendale, AZ (United States); Benson, Stephen V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Bertozzi, William [Massachusetts Institute of Technology, Cambridge, MA (United States); Boyce, James R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cowan, Ray [Massachusetts Institute of Technology, Cambridge, MA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Evtushenko, Pavel [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Fisher, P. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ihloff, Ernest E. [Hampton University, Hampton, VA (United States); Kalantarians, Narbe [Hampton University, Hampton, VA (United States); Kelleher, Aidan Michael [Massachusetts Institute of Technology, Cambridge, MA (United States); Krossler, W. J. [William and Mary College, Williamsburg, VA (United States); Legg, Robert A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Long, Elena [University of New Hampshire, Durham, NH (United States); Milner, Richard [Massachusetts Institute of Technology, Cambridge, MA (United States); Neil, George R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Ou, Longwu [Massachusetts Institute of Technology, Cambridge, MA (United States); Schmookler, Barack Abraham [Massachusetts Institute of Technology, Cambridge, MA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tschalar, C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Williams, Gwyn P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Shukui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-11-01

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.

  14. Electron Gun For Multiple Beam Klystron Using Magnetic Focusing

    DOE Patents [OSTI]

    Ives, R. Lawrence (Saratoga, CA); Miram, George (Atherton, CA); Krasnykh, Anatoly (Santa Clara, CA)

    2004-07-27

    An RF device comprising a plurality of drift tubes, each drift tube having a plurality of gaps defining resonant cavities, is immersed in an axial magnetic field. RF energy is introduced at an input RF port at one of these resonant cavities and collected at an output RF port at a different RF cavity. A plurality of electron beams passes through these drift tubes, and each electron beam has an individual magnetic shaping applied which enables confined beam transport through the drift tubes.

  15. Electron Beam Verification with an Amorphous-Silicon Flat Panel Electronic

    E-Print Network [OSTI]

    Pouliot, Jean

    Electron Beam Verification with an Amorphous-Silicon Flat Panel Electronic Portal Imaging Device Latest News: First clinical electron beam portal image acquired in July 2001*** Rationale: Accuracy-6]. The electronic portal image represents the projection of the patient anatomy within the radiation field boundary

  16. Electrostatic electron cyclotron waves generated by low-energy electron beams

    E-Print Network [OSTI]

    Scudder, Jack

    Electrostatic electron cyclotron waves generated by low-energy electron beams J. D. Menietti, O the role of electron beams with E ] 1 keV in the generation of these waves. Observed plasma parameters. D. Scudder, J. S. Pickett, and D. A. Gurnett, Electrostatic electron cyclotron waves generated

  17. Laser acceleration and deflection of 963 keV electrons with a silicon dielectric structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leedle, Kenneth J.; Pease, R. Fabian; Byer, Robert L.; Harris, James S.

    2015-02-12

    Radio frequency particle accelerators are ubiquitous in ultrasmall and ultrafast science, but their size and cost have prompted exploration of compact and scalable alternatives such as the dielectric laser accelerator. We present the first demonstration, to the best of our knowledge, of high gradient laser acceleration and deflection of electrons with a silicon structure. Driven by a 5 nJ, 130 fs mode-locked Ti:sapphire laser at 907 nm wavelength, our devices achieve accelerating gradients in excess of 200 MeV/m and suboptical cycle streaking of 96.30 keV electrons. These results pave the way for high gradient silicon dielectric laser accelerators using commercialmore »lasers and subfemtosecond electron beam experiments.« less

  18. Filamentation of Beam-Shaped Femtosecond Laser Pulses

    SciTech Connect (OSTI)

    Polynkin, Pavel; Kolesik, Miroslav; Moloney, Jerome

    2010-10-08

    When ultra-intense and ultra-short optical pulses propagate in transparent dielectrics, the dynamic balance between multiple linear and nonlinear effects results in the generation of laser filaments. These peculiar objects have numerous interesting properties and can be potentially used in a variety of applications from remote sensing to the optical pulse compression down to few optical cycles to guiding lightning discharges away from sensitive sites. Materializing this practical potential is not straightforward owing to the complexity of the physical picture of filamentation. In this paper, we discuss recent experiments on using beam shaping as a means of control over the filament formation and dynamics. Two particular beam shapes that we have investigated so far are Bessel and Airy beams. The diffraction-free propagation of femtosecond Bessel beams allows for the creation of extended plasma channels in air. These extended filaments can be used for the generation of energetic optical pulses with the duration in the few-cycle range. In the case of filamentation of femtosecond Airy beams, the self-bending property of these beams allows for the creation of curved filaments. This is a new regime of the intense laser-pulse propagation in which the linear self-bending property of the beam competes against the nonlinear self-channeling. The bent filaments generated by ultra-intense Airy beams emit forward-propagating broadband radiation. Analysis of the spatial and spectral distribution of this emission provides for a valuable tool for analyzing the evolution of the ultra-intense optical pulse along the optical path.

  19. Electron lenses for compensation of beam-beam effects: Tevatron, RHIC, LHC

    SciTech Connect (OSTI)

    Shiltsev, V.; /Fermilab

    2007-12-01

    Since previous BEAM'06 workshop a year ago, significant progress has been made in the field of beam-beam compensation (BBC)--it has been experimentally demonstrated that both Tevatron Electron Lenses (TEL) significantly improve proton and luminosity lifetimes in high-luminosity stores. This article summarizes these results and discusses prospects of the BBC in Tevatron, RHIC and LHC.

  20. Electro-optic harmonic conversion to switch a laser beam out of a cavity

    DOE Patents [OSTI]

    Haas, Roger A. (Pleasanton, CA); Henesian, Mark A. (Livermore, CA)

    1987-01-01

    The invention is a switch to permit a laser beam to escape a laser cavity through the use of an externally applied electric field across a harmonic conversion crystal. Amplification takes place in the laser cavity, and then the laser beam is switched out by the laser light being harmonically converted with dichroic or polarization sensitive elements present to alter the optical path of the harmonically converted laser light. Modulation of the laser beam can also be accomplished by varying the external electric field.

  1. Non-intrusive beam power monitor for high power pulsed or continuous wave lasers

    DOE Patents [OSTI]

    Hawsey, Robert A. (Oak Ridge, TN); Scudiere, Matthew B. (Oak Ridge, TN)

    1993-01-01

    A system and method for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor.

  2. Thermal response of photovoltaic cell to laser beam irradiation

    E-Print Network [OSTI]

    Yuan, Yu-Chen

    2014-01-01

    This paper firstly presents the concept of using dual laser beam to irradiate the photovoltaic cell, so as to investigate the temperature dependency of the efficiency of long distance energy transmission. Next, the model on the multiple reflection and absorption of any monochromatic light in multilayer structure has been established, and the heat generation in photovoltaic cell has been interpreted in this work. Then, the finite element model has been set up to calculate the temperature of photovoltaic cell subjected to laser irradiation. Finally, the effect of temperature elevation on the efficiency and reliability of photovoltaic cell has been discussed to provide theoretical references for designing the light-electricity conversion system.

  3. Generation and Application of Bessel Beams in Electron Microscopy

    E-Print Network [OSTI]

    Vincenzo Grillo; Jérémie Harris; Gian Carlo Gazzadi; Roberto Balboni; Erfan Mafakheri; Mark R. Dennis; Stefano Frabboni; Robert W. Boyd; Ebrahim Karimi

    2015-05-28

    We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as well as the actual electro-optical configuration used experimentally. We show that by optimizing our nanofabrication recipe, electron Bessel beams can be generated with efficiencies reaching $37 \\pm 3\\%$. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be produced with many visible rings, making them ideal for interferometric applications, or in more highly localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune beam localization in this way, and explore beam and hologram configurations that allow the convergences and topological charges of electron Bessel beams to be controlled. We also characterize the phase structure of the Bessel beams generated with our technique, using a simulation procedure that accounts for imperfections in the hologram manufacturing process. Finally, we discuss a specific potential application of electron Bessel beams in scanning transmission electron microscopy.

  4. Much Ado about Microbunching: Coherent Bunching in High Brightness Electron Beams

    SciTech Connect (OSTI)

    Ratner, Daniel; /Stanford U. /SLAC

    2012-05-25

    The push to provide ever brighter coherent radiation sources has led to the creation of correspondingly bright electron beams. With billions of electrons packed into normalized emittances (phase space) below one micron, collective effects may dominate both the preservation and use of such ultra-bright beams. An important class of collective effects is due to density modulations within the bunch, or microbunching. Microbunching may be deleterious, as in the case of the Microbunching Instability (MBI), or it may drive radiation sources of unprecedented intensity, as in the case of Free Electron Lasers (FELs). In this work we begin by describing models of microbunching due to inherent beam shot noise, which sparks both the MBI as well as SLAC's Linac Coherent Light Source, the world's first hard X-ray laser. We first use this model to propose a mechanism for reducing the inherent beam shot noise as well as for predicting MBI effects. We then describe experimental measurements of the resulting microbunching at LCLS, including optical radiation from the MBI, as well as the first gain length and harmonic measurements from a hard X-ray FEL. In the final chapters, we describe schemes that use external laser modulations to microbunch light sources of the future. In these sections we describe coherent light source schemes for both both linacs and storage rings.

  5. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    SciTech Connect (OSTI)

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Malka, V. [Laboratoire d'Optique Appliquée, ENSTA ParisTech—CNRS UMR7639—École Polytechnique ParisTech, Chemin de la Hunière, 91761 Palaiseau (France)] [Laboratoire d'Optique Appliquée, ENSTA ParisTech—CNRS UMR7639—École Polytechnique ParisTech, Chemin de la Hunière, 91761 Palaiseau (France); Mangles, S. P. D.; Bloom, M. S.; Kneip, S. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)] [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)

    2013-06-15

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  6. Controllable high-quality electron beam generation by phase slippage effect in layered targets

    SciTech Connect (OSTI)

    Yu, Q.; Li, X. F.; Huang, S.; Zhang, F.; Kong, Q.; Gu, Y. J.; Ma, Y. Y.; Kawata, S.

    2014-11-15

    The bubble structure generated by laser-plasma interactions changes in size depending on the local plasma density. The self-injection electrons' position with respect to wakefield can be controlled by tailoring the longitudinal plasma density. A regime to enhance the energy of the wakefield accelerated electrons and to improve the beam quality is proposed and achieved using layered plasmas with increasing densities. Both the wakefield size and the electron bunch duration are significantly contracted in this regime. The electrons remain in the strong acceleration phase of the wakefield, while their energy spread decreases because of their tight spatial distribution. An electron beam of 0.5?GeV with less than 1% energy spread is obtained through 2.5D particle-in-cell simulations.

  7. Closely spaced mirror pair for reshaping and homogenizing pump beams in laser amplifiers

    SciTech Connect (OSTI)

    Bass, I.L.

    1992-12-01

    Channeling a laser beam by multiple reflections between two closely-spaced, parallel or nearly parallel mirrors, serves to reshape and homogenize the beam at the output gap between the mirrors. Application of this device to improve the spatial overlap of a copper laser pump beam with the signal beam in a dye laser amplifier is described. This technique has been applied to the AVLIS program at the Lawrence Livermore National Laboratory.

  8. Enhancement of injection and acceleration of electrons in a laser wakefield accelerator by using an argon-doped hydrogen gas jet and optically

    E-Print Network [OSTI]

    Enhancement of injection and acceleration of electrons in a laser wakefield accelerator by using of electrons in a gas-jet-based laser wakefield accelerator via ionization of dopant was conducted. The pump-pulse threshold energy for producing a quasi-monoenergetic electron beam was significantly reduced by doping

  9. Acceleration of electrons using an inverse free electron laser auto- accelerator

    SciTech Connect (OSTI)

    Wernick, I.K.; Marshall, T.C.

    1992-07-01

    We present data from our study of a device known as the inverse free electron laser. First, numerical simulations were performed to optimize the design parameters for an experiment that accelerates electrons in the presence of an undulator by stimulated absorption of radiation. The Columbia free electron laser (FEL) was configured as an auto-accelerator (IFELA) system; high power (MW's) FEL radiation at {approximately}1.65 mm is developed along the first section of an undulator inside a quasi-optical resonator. The electron beam then traverses a second section of undulator where a fraction of the electrons is accelerated by stimulated absorption of the 1.65 mm wavelength power developed in the first undulator section. The second undulator section has very low gain and does not generate power on its own. We have found that as much as 60% of the power generated in the first section can be absorbed in the second section, providing that the initial electron energy is chosen correctly with respect to the parameters chosen for the first and second undulators. An electron momentum spectrometer is used to monitor the distribution of electron energies as the electrons exit the IFELA. We have found; using our experimental parameters, that roughly 10% of the electrons are accelerated to energies as high as 1100 keV, in accordance with predictions from the numerical model. The appearance of high energy electrons is correlated with the abrupt absorption of millimeter power. The autoaccelerator configuration is used because there is no intense source of coherent power at the 1.65 mm design wavelength other than the FEL.

  10. Acceleration of electrons using an inverse free electron laser auto- accelerator

    SciTech Connect (OSTI)

    Wernick, I.K.; Marshall, T.C.

    1992-07-01

    We present data from our study of a device known as the inverse free electron laser. First, numerical simulations were performed to optimize the design parameters for an experiment that accelerates electrons in the presence of an undulator by stimulated absorption of radiation. The Columbia free electron laser (FEL) was configured as an auto-accelerator (IFELA) system; high power (MW`s) FEL radiation at {approximately}1.65 mm is developed along the first section of an undulator inside a quasi-optical resonator. The electron beam then traverses a second section of undulator where a fraction of the electrons is accelerated by stimulated absorption of the 1.65 mm wavelength power developed in the first undulator section. The second undulator section has very low gain and does not generate power on its own. We have found that as much as 60% of the power generated in the first section can be absorbed in the second section, providing that the initial electron energy is chosen correctly with respect to the parameters chosen for the first and second undulators. An electron momentum spectrometer is used to monitor the distribution of electron energies as the electrons exit the IFELA. We have found; using our experimental parameters, that roughly 10% of the electrons are accelerated to energies as high as 1100 keV, in accordance with predictions from the numerical model. The appearance of high energy electrons is correlated with the abrupt absorption of millimeter power. The autoaccelerator configuration is used because there is no intense source of coherent power at the 1.65 mm design wavelength other than the FEL.

  11. Thermal imaging diagnostics of high-current electron beams

    SciTech Connect (OSTI)

    Pushkarev, A.; Kholodnaya, G.; Sazonov, R.; Ponomarev, D. [Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation)

    2012-10-15

    The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm{sup 2}, the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm{sup 2} (or with current density over 10 A/cm{sup 2}, pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time.

  12. Laser induced electron acceleration in vacuum K. P. Singha)

    E-Print Network [OSTI]

    Singh, Kunwar Pal

    of the laser wave and initial electron energy. The electric field of the laser wave is taken as E x^A0 cos to much higher energies.4,5 In the beat wave scheme, the laser exerts an axial ponderomotive force of Technology, New Delhi-110016, India Received 12 September 2003; accepted 21 November 2003 Electron

  13. Study of the Electron Beam Dynamics in the FERMI @ ELETTRA Linac

    E-Print Network [OSTI]

    2006-01-01

    STUDY OF THE ELECTRON BEAM DYNAMICS IN THE FERMI @ ELETTRAAbstract A study of the electron beam dynamics in the linacused to direct the electron beam into one of two undulator

  14. Interfacial Properties of Electron Beam Cured Composites

    SciTech Connect (OSTI)

    Eberle, C.C.

    1999-12-30

    The objectives of the CRADA are to: Confirm that fiber-resin adhesion is responsible for the observed poor shear properties; Determine the mechanism(s) responsible for poor adhesion between carbon fibers and epoxy resins after e-beam curing; Develop and evaluate resin systems and fiber treatments to improve the properties of e-beam cured, carbon-fiber-reinforced composites; and Develop refined methods for processing e-beam cured, carbon-fiber-reinforced composites.

  15. Investigation Of PETN Monocrystals Initiation By Electron Beams

    SciTech Connect (OSTI)

    Loboiko, B. G.; Garmasheva, N. V.; Filin, V. P.; Gromov, V. T.; Shukailo, V. P.; Stryakhnin, V. L.; Nesterov, O. V.; Khruliova, O. V.; Alekseev, A. V.; Gagarin, A. L.; Taybinov, N. P.

    2006-08-03

    Electron beam initiation of PETN monocrystals depending on their size and defectiveness as well as electron beam parameters and environmental acoustic stiffness, was investigated. The length of PETN monocrystals was from 1 mm to 30 mm. The experiments used pulsed accelerator of electrons GIN-540 with the average beam-current value of {approx}1kA, pulse length of {tau}0.5{approx_equal}10 ns, the average electron energy of {approx}250keV. The experiments showed that the low level of fluence of electrons led to the appearance of additional defects in PETN crystals. When fluence of electrons increased the different experimental results were observed: crystal destruction, initiation of crystal explosive decomposition, sample detonation to form a mark on witness plate. The fixed parameters of electron action showed the dependence of experimental results on acoustic stiffness of a reference plate material.

  16. SbSI nanocrystal formation in As–Sb–S–I glass under laser beam

    SciTech Connect (OSTI)

    Azhniuk, Yu.M.; Stoyka, V.; Petryshynets, I.; Rubish, V.M.; Guranich, O.G.; Gomonnai, A.V.; Zahn, D.R.T.

    2012-06-15

    Highlights: ? As–Sb–S–I glasses are obtained by co-melting of As{sub 2}S{sub 3} and SbSI. ? The glass structure and composition are confirmed by SEM, EDX, and Raman studies. ? Laser-induced crystallization of SbSI from the glass is observed by Raman spectroscopy. -- Abstract: As–Sb–S–I glasses are obtained by co-melting of As{sub 2}S{sub 3} and SbSI in a broad compositional interval. Their structure and composition are confirmed by the studies of scanning electron microscopy, energy dispersive X-ray spectroscopy, and micro-Raman scattering. Laser-induced crystallization of SbSI crystallites from the glass matrix is observed in the course of the micro-Raman measurement as a result of local laser beam heating.

  17. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    DOE Patents [OSTI]

    Thode, Lester E. (Los Alamos, NM)

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.

  18. A compact, versatile low-energy electron beam ion source

    SciTech Connect (OSTI)

    Zschornack, G., E-mail: g.zschornack@hzdr.de [Department of Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01328 Dresden (Germany); König, J.; Schmidt, M.; Thorn, A. [DREEBIT GmbH, 01109 Dresden (Germany)] [DREEBIT GmbH, 01109 Dresden (Germany)

    2014-02-15

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  19. Excitation of kinetic Alfvén waves by fast electron beams

    SciTech Connect (OSTI)

    Chen, L.; Wu, D. J.; Zhao, G. Q. [Purple Mountain Observatory, CAS, Nanjing (China); Tang, J. F. [Xinjiang Astronomical Observatory, CAS, Urumqi 830011 (China); Huang, J., E-mail: clvslc214@pmo.ac.cn, E-mail: djwu@pmo.ac.cn, E-mail: gqzhao@pmo.ac.cn, E-mail: jftang@xao.ac.cn, E-mail: huangj@bao.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing (China)

    2014-09-20

    Energetic electron beams, which are ubiquitous in a large variety of active phenomena in space and astrophysical plasmas, are one of the most important sources that drive plasma instabilities. In this paper, taking account of the return-current effect of fast electron beams, kinetic Alfvén wave (KAW) instability driven by a fast electron beam is investigated in a finite-? plasma of Q < ? < 1 (where ? is the kinetic-to-magnetic pressure ratio and Q ? m{sub e} /m{sub i} is the mass ratio of electrons to ions). The results show that the kinetic resonant interaction of beam electrons is the driving source for KAW instability, unlike the case driven by a fast ion beam, where both the kinetic resonant interaction of beam ions and the return-current are the driving source for the KAW instability. KAW instability has a nonzero growth rate in the range of the perpendicular wave number, 0electron beam v{sub b} , and the most favorable beam velocity occurs between 8v{sub A} < v{sub b} < 10v{sub A} . On the other hand, the excited KAWs are weakly dispersive with k ? {sub i} < 1 and have the maximum growth rate at relatively low perpendicular wave numbers in the range 0.3beam velocity v{sub b} < 10v{sub A} . A possible application to the upward electron beams in the terrestrial magnetosphere is briefly discussed.

  20. High-power laser beam control by PTR Bragg gratings Igor Ciapurin(1)

    E-Print Network [OSTI]

    Glebov, Leon

    High-power laser beam control by PTR Bragg gratings Igor Ciapurin(1) , Vadim Smirnov(1,2) , George is a photo-thermo-refractive (PTR) glass, and used for high-power laser beam control. Exceptionally narrow combining (SBC) is considered as a promising way for high power laser systems design in numerous

  1. Transverse dynamics of a relativistic electron beam in an underdense plasma channel

    E-Print Network [OSTI]

    Transverse dynamics of a relativistic electron beam in an underdense plasma channel Andrew A electron beam in a plasma less dense than the beam is analyzed, with particular attention to the electronV electron beam in a 1.5 m plasma cell, with the amplification of beam-centroid offsets on the order of 100

  2. Sculpting Nanoelectrodes with a Transmission Electron Beam for

    E-Print Network [OSTI]

    Dekker, Cees

    such electrodes showed the expected single-electron tunneling behavior, with a Coulomb gap corresponding, is that visual inspection of the trapped particle with a high-resolution transmission electron microscope (HRTEMSculpting Nanoelectrodes with a Transmission Electron Beam for Electrical and Geometrical

  3. CW argon-ion laser beams with a central dark region

    SciTech Connect (OSTI)

    Lu Ke Cheng; Sheng Qiu Qin; Liu Zhi Guo; Lu Fu Yun

    1986-08-01

    This paper studies the central dark-region of CW Ar/sup +/ laser beams. The relationship between the dark-region of beam cross section and discharge current has been measured and the spectrum of laser beam has been studied. The cause for the central dark region is discussed.

  4. Precision Electron-Beam Polarimetry using Compton Scattering at 1 GeV

    E-Print Network [OSTI]

    Narayan, A; Cornejo, J C; Dalton, M M; Deconinck, W; Dutta, D; Gaskell, D; Martin, J W; Paschke, K D; Tvaskis, V; Asaturyan, A; Benesch, J; Cates, G; Cavness, B S; Dillon-Townes, L A; Hays, G; Ihloff, E; Jones, R; Kowalski, S; Kurchaninov, L; Lee, L; McCreary, A; McDonald, M; Micherdzinska, A; Mkrtchyan, A; Mkrtchyan, H; Nelyubin, V; Page, S; Ramsay, W D; Solvignon, P; Storey, D; Tobias, A; Urban, E; Vidal, C; Wang, P; Zhamkotchyan, S

    2015-01-01

    We report on the highest precision yet achieved in the measurement of the polarization of a low energy, $\\mathcal{O}$(1 GeV), electron beam, accomplished using a new polarimeter based on electron-photon scattering, in Hall~C at Jefferson Lab. A number of technical innovations were necessary, including a novel method for precise control of the laser polarization in a cavity and a novel diamond micro-strip detector which was able to capture most of the spectrum of scattered electrons. The data analysis technique exploited track finding, the high granularity of the detector and its large acceptance. The polarization of the $180~\\mu$A, $1.16$~GeV electron beam was measured with a statistical precision of $future low-energy experiments require polarization uncertainty $<$~0.4\\%, and this result represents an important de...

  5. Investigation of the electron trajectories and gain regimes of the whistler pumped free-electron laser

    SciTech Connect (OSTI)

    Jafarinia, F.; Jafari, S. [Department of Physics, University of Guilan, Rasht 41335-1914 (Iran, Islamic Republic of); Mehdian, H. [Department of Physics and Institute for Plasma Research, Tarbiat Moallem University, Tehran 15614 (Iran, Islamic Republic of)

    2013-04-15

    A free-electron laser (FEL) scheme, which employs the whistler wave as a slow electromagnetic wave wiggler, was studied theoretically. Subjected to the transverse fields of whistler wave wiggler, the beam electrons are the source of the energy needed to produce electromagnetic radiation. The strength and the period of the wiggler field depend on the parameters of the magnetoplasma medium. This configuration has a higher tunability by controlling the plasma density, on top of the {gamma}-tunability of the conventional FELs. The theory of linear gain and electron trajectories was presented and four groups (I, II, III, and IV) of electron orbits were found in the presence of an axial guide magnetic field. Using perturbation analysis, it is found that these groups of orbits were stable except small regions of group I and IV orbits. The function {Phi} which determines the rate of change of axial velocity with beam energy was also derived. In the case in which {Phi}<0 represents a negative-mass regime in which the axial velocity accelerates as the electrons lose energy. Numerical solutions showed that by increasing the cyclotron frequency, the gain for group I and III orbits increased, while a gain decrement was obtained for group II and IV orbits.

  6. Electron gun for a multiple beam klystron with magnetic compression of the electron beams

    SciTech Connect (OSTI)

    Ives, R. Lawrence; Tran, Hien T; Bui, Thuc; Attarian, Adam; Tallis, William; David, John; Forstall, Virginia; Andujar, Cynthia; Blach, Noah T; Brown, David B; Gadson, Sean E; Kiley, Erin M; Read, Michael

    2013-10-01

    A multi-beam electron gun provides a plurality N of cathode assemblies comprising a cathode, anode, and focus electrode, each cathode assembly having a local cathode axis and also a central cathode point defined by the intersection of the local cathode axis with the emitting surface of the cathode. Each cathode is arranged with its central point positioned in a plane orthogonal to a device central axis, with each cathode central point an equal distance from the device axis and with an included angle of 360/N between each cathode central point. The local axis of each cathode has a cathode divergence angle with respect to the central axis which is set such that the diverging magnetic field from a solenoidal coil is less than 5 degrees with respect to the projection of the local cathode axis onto a cathode reference plane formed by the device axis and the central cathode point, and the local axis of each cathode is also set such that the angle formed between the cathode reference plane and the local cathode axis results in minimum spiraling in the path of the electron beams in a homogenous magnetic field region of the solenoidal field generator.

  7. Lasers Used to Make First Boron-Nitride Nanotube Yarn | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Jefferson Lab's Free-Electron Laser and later perfected using a commercial welding laser. In this technique, the laser beam strikes a target inside a chamber filled...

  8. A Gridded Electron Gun for a Sheet Beam Klystron

    SciTech Connect (OSTI)

    Read, M.E.; Miram, G.; Ives, R.L.; /Calabazas Creek Res., Saratoga; Ivanov, V.; Krasnykh, A.; /SLAC

    2008-04-25

    This paper describes the development of an electron gun for a sheet beam klystron. Initially intended for accelerator applications, the gun can operate at a higher perveance than one with a cylindrically symmetric beam. Results of 2D and 3D simulations are discussed.

  9. Electron Beam Guides Engineering of Functional Defects | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Characterization Electron Beam Guides Engineering of Functional Defects May 20, 2015 Shown is a Z-contrast image of a vacancy-induced inversion domain (highlighted by the...

  10. Electron vortex beams in a magnetic field and spin filter

    E-Print Network [OSTI]

    Debashree Chowdhury; Banasri Basu; Pratul Bandyopadhyay

    2015-02-25

    We investigate the propagation of electron vortex beams in a magnetic field. It is pointed out that when electron vortex beams carrying orbital angular momentum propagate in a magnetic field, the Berry curvature associated with the scalar electron moving in a cyclic path around the vortex line is modified from that in free space. This alters the spin-orbit interaction, which affects the propagation of nonparaxial beams. The electron vortex beams with tilted vortex lead to spin Hall effect in free space. In presence of a magnetic field in time space we have spin filtering such that either positive or negative spin states emerge in spin Hall currents with clustering of spin $\\frac{1}{2}$ states.

  11. Active negative-index metamaterial powered by an electron beam

    E-Print Network [OSTI]

    Shapiro, Michael

    An active negative index metamaterial that derives its gain from an electron beam is introduced. The metamaterial consists of a stack of equidistant parallel metal plates perforated by a periodic array of holes shaped as ...

  12. Transmission of Megawatt Relativistic Electron Beams through Millimeter Apertures

    E-Print Network [OSTI]

    Alarcon, R.

    High-power, relativistic electron beams from energy-recovering linacs have great potential to realize new experimental paradigms for pioneering innovation in fundamental and applied research. A major design consideration ...

  13. The electron beam hole drilling of silicon nitride thin films

    SciTech Connect (OSTI)

    Howitt, D. G.; Chen, S. J.; Gierhart, B. C.; Smith, R. L.; Collins, S. D.

    2008-01-15

    The mechanism by which an intense electron beam can produce holes in thin films of silicon nitride has been investigated using a combination of in situ electron energy loss spectrometry and electron microscopy imaging. A brief review of electron beam interactions that lead to material loss in different materials is also presented. The loss of nitrogen and silicon decreases with decreasing beam energy and although still observable at a beam energy of 150 keV ceases completely at 120 keV. The linear behavior of the loss rate coupled with the energy dependency indicates that the process is primarily one of direct displacement, involving the sputtering of atoms from the back surface of the specimen with the rate controlling mechanism being the loss of nitrogen.

  14. Electron-acoustic solitons in an electron-beam plasma system Matthieu Berthomiera)

    E-Print Network [OSTI]

    California at Berkeley, University of

    Electron-acoustic solitons in an electron-beam plasma system Matthieu Berthomiera) Swedish Physics, Uppsala, Sweden Received 18 November 1999; accepted 16 March 2000 Electron-acoustic solitons exist in a two electron temperature plasma with ``cold'' and ``hot'' electrons and take the form

  15. Characterization of the fast electrons distribution produced in a high intensity laser target interaction

    SciTech Connect (OSTI)

    Westover, B.; Lawrence Livermore National Laboratory, Livermore, California 94550 ; Chen, C. D.; Patel, P. K.; McLean, H.; Beg, F. N.

    2014-03-15

    Experiments on the Titan laser (?150?J, 0.7 ps, 2 × 10{sup 20} W cm{sup ?2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo code Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2?MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5?MeV and 4?MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.

  16. The European XFEL Free Electron Laser at DESY

    ScienceCinema (OSTI)

    Weise, Hans [Deutsches Elektronen-Synchrotron, Germany

    2009-09-01

    The European X-ray Free-Electron laser Facility (XFEL) is going to be built in an international collaboration at the Deutsches Elektronen-Synchrotron (DESY), Germany, and the Technical Design Report was published in 2006. The official project is expected for summer 2007. This new facility will offer photon beams at wavelengths as short as 1 angstrom with highest peak brilliance being more than 100 million times higher than present day synchrotron radiation sources. The radiation has a high degree of transverse coherence and the pulse duration is reduced from {approx}100 picoseconds (typ. for SR light sources) down to the {approx}10 femtosecond time domain. The overall layout of the XFEL will be described. This includes the envisaged operation parameters for the linear accelerator using superconducting TESLA technology. The complete design is based on the actually operated FLASH free-electron laser at DESY. Experience with the operation during first long user runs at wavelengths from 30 to 13 nm will be described in detail.

  17. Guiding of cold atoms by a red-detuned laser beam of moderate power

    E-Print Network [OSTI]

    Amsterdam, Universiteit van

    Guiding of cold atoms by a red-detuned laser beam of moderate power B T Wolschrijn, R A Cornelussen laser power (atoms. We systematically study laser power. We systematically study the fraction of guided atoms by varying the main parameters, laser

  18. Note: Characteristic beam parameter for the line electron gun

    SciTech Connect (OSTI)

    Iqbal, M.; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 ; Islam, G. U.; Zhou, Z.; Chi, Y.

    2013-11-15

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm{sup 2} at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm{sup 2}), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  19. Resolving unoccupied electronic states with laser ARPES in bismuth...

    Office of Scientific and Technical Information (OSTI)

    Resolving unoccupied electronic states with laser ARPES in bismuth-based cuprate superconductors Citation Details In-Document Search This content will become publicly available on...

  20. Purified self-amplified spontaneous emission free-electron lasers...

    Office of Scientific and Technical Information (OSTI)

    Purified self-amplified spontaneous emission free-electron lasers with slippage-boosted filtering Citation Details In-Document Search Title: Purified self-amplified spontaneous...

  1. Topological analysis of paraxially scattered electron vortex beams

    E-Print Network [OSTI]

    Axel Lubk; Laura Clark; Giulio Guzzinati; Jo Verbeeck

    2014-10-10

    We investigate topological aspects of sub-nm electron vortex beams upon elastic propagation through atomic scattering potentials. Two main aspects can be distinguished: (i) Significantly reduced delocalization compared to a similar non-vortex beam if the beam centers on an atomic column and (ii) site symmetry dependent splitting of higher-order vortex beams. Furthermore, the results provide insight into the complex vortex line fabric within the elastically scattered wave containing characteristic vortex loops predominantly attached to atomic columns and characteristic twists of vortex lines around atomic columns.

  2. Beam Dump Experiment at Future Electron-Positron Colliders

    E-Print Network [OSTI]

    Kanemura, Shinya; Tanabe, Tomohiko

    2015-01-01

    We propose a new beam dump experiment at future colliders with electron ($e^-$) and positron ($e^+$) beams, BDee, which will provide a new possibility to search for hidden particles, like hidden photon. If a particle detector is installed behind the beam dump, it can detect the signal of in-flight decay of the hidden particles produced by the scatterings of $e^\\pm$ beams off materials for dumping. We show that, compared to past experiments, BDee (in particular BDee at $e^+e^-$ linear collider) significantly enlarges the parameter region where the signal of the hidden particle can be discovered.

  3. Beam Dump Experiment at Future Electron-Positron Colliders

    E-Print Network [OSTI]

    Shinya Kanemura; Takeo Moroi; Tomohiko Tanabe

    2015-07-10

    We propose a new beam dump experiment at future colliders with electron ($e^-$) and positron ($e^+$) beams, BDee, which will provide a new possibility to search for hidden particles, like hidden photon. If a particle detector is installed behind the beam dump, it can detect the signal of in-flight decay of the hidden particles produced by the scatterings of $e^\\pm$ beams off materials for dumping. We show that, compared to past experiments, BDee (in particular BDee at $e^+e^-$ linear collider) significantly enlarges the parameter region where the signal of the hidden particle can be discovered.

  4. The TeraFERMI terahertz source at the seeded FERMI free-electron-laser facility

    SciTech Connect (OSTI)

    Perucchi, A. [Sincrotrone Trieste S.C.p.A., Area Science Park, I-34012 Basovizza, Trieste (Italy); INSTM UdR Trieste-ST, Area Science Park, I-34012 Basovizza, Trieste (Italy); Di Mitri, S.; Penco, G.; Allaria, E. [Sincrotrone Trieste S.C.p.A., Area Science Park, I-34012 Basovizza, Trieste (Italy); Lupi, S. [CNR-IOM and Dipartimento di Fisica, Universita di Roma 'La Sapienza', P.le Aldo Moro 2, I-00185 Roma (Italy)

    2013-02-15

    We describe the project for the construction of a terahertz (THz) beamline to be called TeraFERMI at the seeded FERMI free electron laser (FEL) facility in Trieste, Italy. We discuss topics as the underlying scientific case, the choice of the source, the expected performance, and THz beam propagation. Through electron beam dynamics simulations we show that the installation of the THz source in the beam dump section provides a new approach for compressing the electron bunch length without affecting FEL operation. Thanks to this further compression of the FEL electron bunch, the TeraFERMI facility is expected to provide THz pulses with energies up to the mJ range during normal FEL operation.

  5. The filamentation of the laser beam as a labyrinth instability

    E-Print Network [OSTI]

    Spineanu, Florin

    2015-01-01

    At incident powers much higher than the threshold for filamentation a pulse from a high-power laser generates in the transversal plane a complex structure. It consists of randomly meandering stripes defining connected regions where the field intensity is high; and, the complementary regions dominated by diffusive plasma with defocusing property. The pattern is similar to an ensemble of clusters of various extensions. We provide evidence that there is a correlation between this filamentation and the {\\it labyrinth} instability in reaction-diffusion systems. Besides the similarity of the spatial organization in the two cases, we show that the differential equations that describe these two dynamical processes lead to effects that can be mutually mapped. For the laser beam at high power the Non-linear Schrodinger Equation in a regime of strong self-focusing and ionization of the air leads to multiple filamentation and the structure of clusters. Under the effect of the {\\it labyrinth} instability a model of activa...

  6. Transverse profile of the electron beam for the RHIC electron lenses

    SciTech Connect (OSTI)

    Gu, X.; Altinbas, Z.; Costanzo, M.; Fischer, W.; Gassner, D. M.; Hock, J.; Luo, Y.; Miller, T.; Tan, Y.; Thieberger, P.; Montag, C.; Pikin, A. I.

    2015-07-10

    To compensate for the beam-beam effects from the proton-proton interactions at the two interaction points IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are constructing two electron lenses (e-lenses) that we plan to install in the interaction region IR10. Before installing them, the electron gun, collector, instrumentation were tested and the electron beam properties were qualified on an electron lens test bench. We will present the test results and discuss our measurement of the electron beam current and of the electron gun perveance. We achieved a maximum current of 1 A with 5 kV energy for both the pulsed- and the DC-beam (which is a long turn-by-turn pulse beam). We measured beam transverse profiles with an Yttrium Aluminum Garnet (YAG) screen and pinhole detector, and compared those to simulated beam profiles. Measurements of the pulsed electron beam stability were obtained by measuring the modulator voltage.

  7. Transverse profile of the electron beam for the RHIC electron lenses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gu, X.; Altinbas, Z.; Costanzo, M.; Fischer, W.; Gassner, D. M.; Hock, J.; Luo, Y.; Miller, T.; Tan, Y.; Thieberger, P.; et al

    2015-07-10

    To compensate for the beam-beam effects from the proton-proton interactions at the two interaction points IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are constructing two electron lenses (e-lenses) that we plan to install in the interaction region IR10. Before installing them, the electron gun, collector, instrumentation were tested and the electron beam properties were qualified on an electron lens test bench. We will present the test results and discuss our measurement of the electron beam current and of the electron gun perveance. We achieved a maximum current of 1 A with 5 kV energy for bothmore »the pulsed- and the DC-beam (which is a long turn-by-turn pulse beam). We measured beam transverse profiles with an Yttrium Aluminum Garnet (YAG) screen and pinhole detector, and compared those to simulated beam profiles. Measurements of the pulsed electron beam stability were obtained by measuring the modulator voltage.« less

  8. Self-pinched transport of a high ?/? electron beam

    SciTech Connect (OSTI)

    Myers, M. C.; Wolford, M. F.; Sethian, J. D. [U.S. Naval Research Laboratory, Plasma Physics Division, 4555 Overlook Ave., SW, Washington DC 20375 (United States)] [U.S. Naval Research Laboratory, Plasma Physics Division, 4555 Overlook Ave., SW, Washington DC 20375 (United States); Rose, D. V. [Voss Scientific, 418 Washington St. SE, Albuquerque, New Mexico 87108 (United States)] [Voss Scientific, 418 Washington St. SE, Albuquerque, New Mexico 87108 (United States); Hegeler, F. [Commonwealth Technology Inc., 5875 Barclay Drive, Alexandria, Virginia 22315 (United States)] [Commonwealth Technology Inc., 5875 Barclay Drive, Alexandria, Virginia 22315 (United States)

    2013-10-15

    The self-pinched transport of a 0.5 MeV, 18 kA cylindrical electron beam has been studied experimentally and computationally. The relatively low voltage and high current required for materials surface modification applications leads to complicated beam dynamics as the Alfven limit is approached. Transport and focusing of the high ?/? beam was done in a sub-Torr, neutral gas-filled, conducting tube in the ion-focused regime. In this regime, beam space charge forces are progressively neutralized to allow focusing of the beam by its self-magnetic field. The beam exhibits stable envelope oscillations as it is efficiently and reproducibly propagated for distances greater than a betatron wavelength. Experimental results follow the trends seen in 2-D particle-in-cell simulations. Results show that the input electron beam can be periodically focused to a peaked profile with the beam half-current radius decreased by a factor of 2.84. This results in an increase of a factor of 8 in beam current density. This focusing is sufficient to produce desired effects in the surface layers of metallic materials.

  9. CMOS ROM arrays programmable by laser beam scanning 

    E-Print Network [OSTI]

    Lee, Jongjune

    1984-01-01

    New CMOS PROM arrays have been developed. Memory cells consist of two n-channel transistors and a p-n junc- tion diode which is built by a p-moat in an n-well. Pro- gramming is accomplished by scanning green laser beams on diodes to decrease... minority carrier lifetime, without dis- turbing passivation after the fabrication is complete. Scanned diodes have lower leakage current when they are reverse-biased. The logical status of a cell is determined by the magnitude of the leakage current...

  10. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOE Patents [OSTI]

    Skupsky, S.; Kessler, T.J.; Short, R.W.; Craxton, S.; Letzring, S.A.; Soures, J.

    1991-09-10

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies (''colors'') cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers. 8 figures.

  11. GeV electron beams from a cm-scale accelerator

    E-Print Network [OSTI]

    2006-01-01

    radiation facilities and free electron lasers, and as modules for high-energy particle physics. Radiofrequency-

  12. The polarized electron beam for the SLAC Linear Collider

    E-Print Network [OSTI]

    M. Woods

    1996-11-09

    The SLAC Linear Collider has been colliding a polarized electron beam with an unpolarized positron beam at the Z^0 resonance for the SLD experiment since 1992. An electron beam polarization of close to 80% has been achieved for the experiment at luminosities up to 8x10^29 cm^-2 s^-1. This is the world's first and only linear collider, and is a successful prototype for the next generation of high energy electron linear colliders. This paper discusses polarized beam operation for the SLC, and includes aspects of the polarized source, spin transport and polarimetry. Presented at the 12th International Symposium on High Energy Spin Physics held at Amsterdam, The Netherlands September 10-14, 1996.

  13. Airborne Tactical Free-Electron Laser

    SciTech Connect (OSTI)

    Roy Whitney; George Neil

    2007-02-01

    The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.

  14. PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons

    SciTech Connect (OSTI)

    Adeyemi, Adeleke H.

    2015-09-01

    Polarized positron beams have been identified as either an essential or a significant ingredient for the experimental program of both the present and next generation of lepton accelerators (JLab, Super KEK B, ILC, CLIC). An experiment demonstrating a new method for producing polarized positrons has been performed at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e-/e+ pairs from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a high Z conversion target. PEPPo demonstrated the effective transfer of spin-polarization of an 8.2 MeV/c polarized (P~85%) electron beam to positrons produced in varying thickness tungsten production targets, and collected and measured in the range of 3.1 to 6.2 MeV/c. In comparison to other methods this technique reveals a new pathway for producing either high energy or thermal polarized positron beams using a relatively low polarized electron beam energy (~10MeV) .This presentation will describe the PEPPo concept, the motivations of the experiment and high positron polarization achieved.

  15. Charge Diagnostics for Laser Plasma Accelerators

    E-Print Network [OSTI]

    Nakamura, K.

    2011-01-01

    electron spectrometer [24] before sending the e-beam to charge diagnostics,electron beams from the laser plasma accelerator, a comprehensive study of charge diagnosticselectron spectrom- eter was turned off to send e-beams to charge diagnostics.

  16. KrF Laser Development Opening Remarks on KrF Laser Development

    E-Print Network [OSTI]

    , Russia The Naval Research Laboratory is the first to develop routine, high energy, efficient #12;4 Elements of a Krypton Fluoride (KrF) electron beam pumped gas laser Laser Gas Recirculator Laser e-beam E-beam physics on full scale diode Laser-target physics #12;6 Pulsed Power Laser Gas

  17. Part 2: Coherent emission from Free Electron Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    beam from conventional accelerators is presented. Both spontaneous and coherent emission of electrons is considered. Introduction The importance of the time-resolved studies...

  18. 2-D studies of Relativistic electron beam plasma instabilities in an inhomogeneous plasma

    E-Print Network [OSTI]

    Shukla, Chandrashekhar; Patel, Kartik

    2015-01-01

    Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [Phys. Rev Letts. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nano tube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and simulations with the help of 2-D Particle - In - Cell code. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/ks...

  19. Electron cyclotron beam measurement system in the Large Helical Device

    SciTech Connect (OSTI)

    Kamio, S., E-mail: kamio@nifs.ac.jp; Takahashi, H.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Osakabe, M.; Mutoh, T. [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2014-11-15

    In order to evaluate the electron cyclotron (EC) heating power inside the Large Helical Device vacuum vessel and to investigate the physics of the interaction between the EC beam and the plasma, a direct measurement system for the EC beam transmitted through the plasma column was developed. The system consists of an EC beam target plate, which is made of isotropic graphite and faces against the EC beam through the plasma, and an IR camera for measuring the target plate temperature increase by the transmitted EC beam. This system is applicable to the high magnetic field (up to 2.75 T) and plasma density (up to 0.8 × 10{sup 19} m{sup ?3}). This system successfully evaluated the transmitted EC beam profile and the refraction.

  20. Electron Beam Instability in Left-Handed Media

    E-Print Network [OSTI]

    Yury P. Bliokh; Sergey Savel'ev; Franco Nori

    2008-04-08

    We predict that two electron beams can develop an instability when passing through a slab of left-handed media (LHM). This instability, which is inherent only for LHM, originates from the backward Cherenkov radiation and results in a self-modulation of the beams and radiation of electromagnetic waves. These waves leave the sample via the rear surface of the slab (the beam injection plane) and form two shifted bright circles centered at the beams. A simulated spectrum of radiation has well-separated lines on top of a broad continuous spectrum, which indicates dynamical chaos in the system. The radiation intensity and its spectrum can be controlled either by the beams' current or by the distance between the two beams.

  1. Manipulation of Electron Beam Propagation by Hetero-Dimensional

    E-Print Network [OSTI]

    Simons, Jack

    . It consists of a HDGJ made of 1D graphene nanoribbon (GNR) and 2D graphene sheet with zigzag *AddressManipulation of Electron Beam Propagation by Hetero-Dimensional Graphene Junctions Zhengfei Wang-dimensional electron gas (2DEG) created in semiconductor hetero- structures, and many optical behaviors

  2. Upgrade of the electron beam ion trap in Shanghai

    SciTech Connect (OSTI)

    Lu, D.; Yang, Y.; Xiao, J.; Shen, Y.; Fu, Y.; Wei, B.; Yao, K.; Hutton, R.; Zou, Y., E-mail: zouym@fudan.edu.cn [The Key Lab of Applied Ion Beam Physics, Ministry of Education, 200433 Shanghai (China); Shanghai EBIT Lab, Institute of Modern Physics, Fudan University, 200433 Shanghai (China)

    2014-09-15

    Over the last few years the Shanghai electron beam ion trap (EBIT) has been successfully redesigned and rebuilt. The original machine, developed under collaboration with the Shanghai Institute of Applied Physics, first produced an electron beam in 2005. It could be tuned with electron energies between 1 and 130 keV and beam current up to 160 mA. After several years of operation, it was found that several modifications for improvements were necessary to reach the goals of better electron optics, higher photon detection, and ion injection efficiencies, and more economical running costs. The upgraded Shanghai-EBIT is made almost entirely from Ti instead of stainless steel and achieves a vacuum of less than 10{sup ?10} Torr, which helps to minimize the loss of highly changed ions through charge exchange. Meanwhile, a more compact structure and efficient cryogenic system, and excellent optical alignment have been of satisfactory. The magnetic field in the central trap region can reach up till 4.8 T with a uniformity of 2.77 × 10{sup ?4}. So far the upgraded Shanghai-EBIT has been operated up to an electron energy of 151 keV and a beam current of up to 218 mA, although promotion to even higher energy is still in progress. Radiation from ions as highly charged as Xe{sup 53+,} {sup 54+} has been produced and the characterization of current density is estimated from the measured electron beam width.

  3. Start-to-end modelling of a mode-locked optical klystron free electron laser amplifier

    SciTech Connect (OSTI)

    Dunning, D. J.; Thompson, N. R. [University of Strathclyde (SUPA), Glasgow G4 0NG (United Kingdom); ASTeC, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Mc Neil, B. W. J. [University of Strathclyde (SUPA), Glasgow G4 0NG (United Kingdom); Williams, P. H. [ASTeC, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom)

    2011-07-15

    A free electron laser (FEL) in a mode-locked optical klystron (MLOK) configuration is modelled using start-to-end simulations that simulate realistic electron beam acceleration and transport before input into a full three-dimensional FEL simulation code. These simulations demonstrate that the MLOK scheme is compatible with the present generation of radiofrequency accelerator designs. A train of few-optical cycle pulses is predicted with peak powers similar to those of the equivalent conventional FEL amplifier. The role of electron beam energy modulation in these results is explained and the limitations of some simulation codes discussed. It is shown how seeding the FEL interaction using a High Harmonic seed laser can improve the coherence properties of the output.

  4. Simulation of a Standing-Wave Free-Electron Laser

    E-Print Network [OSTI]

    Sharp, W.M.

    2008-01-01

    potential shortcoming of the standing- wa.ve FEL. ReferencesPREPRINT SIMULATION OF A STANDING-WAVE FREE-ELECTRON LASERauthor. SIMULATION OF A STANDING·WAVE FREE-ELECTRON LASEr

  5. Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma

    E-Print Network [OSTI]

    Sydorenko, D; Chen, L; Ventzek, P L G

    2015-01-01

    Generation of anomalously energetic suprathermal electrons was observed in simulation of a high- voltage dc discharge with electron emission from the cathode. An electron beam produced by the emission interacts with the nonuniform plasma in the discharge via a two-stream instability. Efficient energy transfer from the beam to the plasma electrons is ensured by the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The short waves near the anode accelerate plasma bulk electrons to suprathermal energies. The sheath near the anode reflects some of the accelerated electrons back into the plasma. These electrons travel through the plasma, reflect near the cathode, and enter the accelerating area again but with a higher energy than before. Such particles are accelerated to energies much higher than after the first acceleration. This mechanism plays a role in explaining earlier experimental observations of energetic suprathermal electrons i...

  6. Generation of a spin-polarized electron beam by multipole magnetic fields

    E-Print Network [OSTI]

    Boyd, Robert W.

    Generation of a spin-polarized electron beam by multipole magnetic fields Ebrahim Karimi a October 2013 Accepted 18 December 2013 Available online 31 December 2013 Keywords: Electron vortex beam Polarized electron beam Spin-to-orbit conversion a b s t r a c t The propagation of an electron beam

  7. Spin-to-Orbital Angular Momentum Conversion and Spin-Polarization Filtering in Electron Beams

    E-Print Network [OSTI]

    Marrucci, Lorenzo

    Spin-to-Orbital Angular Momentum Conversion and Spin-Polarization Filtering in Electron Beams-variant Wien filter for electron beams that induces a spin half-turn and converts the corresponding spin-polarized electron beam, such a device can generate an electron vortex beam, carrying orbital angular momentum. When

  8. Pattern transfer of electron beam modified self-assembled monolayers for high-resolution lithography

    E-Print Network [OSTI]

    Parikh, Atul N.

    Pattern transfer of electron beam modified self-assembled monolayers for high-resolution electron beam lithography. Focused electron beams from 1 to 50 keV and scanning tunneling microscopy at 10 of electron beam damage on the monolayers and the subsequent etching reactions has been explored through x

  9. Equilibrium beam distribution in an electron storage ring near linear synchrobetatron coupling resonances

    E-Print Network [OSTI]

    Nash, B; Wu, JuHao

    2006-01-01

    Equilibrium beam distribution in an electron storage ring near linear synchrobetatron coupling resonances

  10. Strongly aligned gas-phase molecules at Free-Electron Lasers

    E-Print Network [OSTI]

    Kierspel, Thomas; Mullins, Terry; Robinson, Joseph; Aquila, Andy; Barty, Anton; Bean, Richard; Boll, Rebecca; Boutet, Sébastien; Bucksbaum, Philip; Chapman, Henry N; Christensen, Lauge; Fry, Alan; Hunter, Mark; Koglin, Jason E; Liang, Mengning; Mariani, Valerio; Morgan, Andrew; Natan, Adi; Petrovic, Vladimir; Rolles, Daniel; Rudenko, Artem; Schnorr, Kirsten; Stapelfeldt, Henrik; Stern, Stephan; Thøgersen, Jan; Yoon, Chun Hong; Wang, Fenglin; Trippel, Sebastian; Küpper, Jochen

    2015-01-01

    We demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the Linac Coherent Light Source. Chirped laser pulses, i. e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2,5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment of $\\left$ = 0.85 was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses.

  11. Electron Beam Diagnostics Of The JLAB UV FEL

    SciTech Connect (OSTI)

    Evtushenko, Pavel; Benson, Stephen; Biallas, George; Coleman, James; Dickover, Cody; Douglas, David; Marchlik, Matthew; Sexton, Daniel; Tennant, Christopher

    2011-03-01

    In this contribution we describe various systems and aspects of the electron beam diagnostics of the JLab UV FEL. The FEL is installed on a new bypass beam line at the existing 10 kW IR Upgrade FEL. Here, we describe a set of the following systems. A combination of OTR and phosphor viewers is used for measurements of the transverse beam profile, transverse emittance, and Twiss parameters. This system is also used for alignment of the optical cavity of the UV oscillator and to ensure the overlap between the electron beam and optical mode in the FEL wiggler. A system of beam position monitors equipped with log-amp based BPM electronics. Bunch length on the order of 120 fs RMS is measured with the help of a modified Martin-Puplett interferometer. The longitudinal transfer function measurement system is used to set up bunch compression in an optimal way, such that the LINAC RF curvature is compensated using only higher order magnetic elements of the beam transport. This set of diagnostic systems made a significant contribution in achieving first lasing of the FEL after only about 60 hours of beam operation.

  12. THE SYSTEM OF POWER SUPPLIES, CONTROL AND MODULATION OF ELECTRON GUN FOR FREE ELECTRON LASER

    E-Print Network [OSTI]

    Kozak, Victor R.

    THE SYSTEM OF POWER SUPPLIES, CONTROL AND MODULATION OF ELECTRON GUN FOR FREE ELECTRON LASER E of the system. Proceedings of RUPAC2012, Saint|-|Petersburg, Russia TUPPB050 Ion sources and electron guns ISBN

  13. Multi-MeV electron acceleration by sub-terawatt laser pulses

    E-Print Network [OSTI]

    Goers, A J; Feder, L; Miao, B; Salehi, F; Milchberg, H M

    2015-01-01

    We demonstrate laser-plasma acceleration of high charge electron beams to the ~10 MeV scale using ultrashort laser pulses with as little energy as 10 mJ. This result is made possible by an extremely dense and thin hydrogen gas jet. Total charge up to ~0.5 nC is measured for energies >1 MeV. Acceleration is correlated to the presence of a relativistically self-focused laser filament accompanied by an intense coherent broadband light flash, associated with wavebreaking, which can radiate more than ~3% of the laser energy in a sub-femtosecond bandwidth consistent with half-cycle optical emission. Our results enable truly portable applications of laser-driven acceleration, such as low dose radiography, ultrafast probing of matter, and isotope production.

  14. Ignition feedback regenerative free electron laser (FEL) amplifier

    DOE Patents [OSTI]

    Kim, Kwang-Je (Burr Ridge, IL); Zholents, Alexander (Walnut Creek, CA); Zolotorev, Max (Oakland, CA)

    2001-01-01

    An ignition feedback regenerative amplifier consists of an injector, a linear accelerator with energy recovery, and a high-gain free electron laser amplifier. A fraction of the free electron laser output is coupled to the input to operate the free electron laser in the regenerative mode. A mode filter in this loop prevents run away instability. Another fraction of the output, after suitable frequency up conversion, is used to drive the photocathode. An external laser is provided to start up both the amplifier and the injector, thus igniting the system.

  15. Efficiency enhancement of a harmonic lasing free-electron laser

    SciTech Connect (OSTI)

    Salehi, E.; Maraghechi, B.; Mirian, N. S.

    2015-03-15

    The harmonic lasing free-electron laser amplifier, in which two wigglers is employed in order for the fundamental resonance of the second wiggler to coincide with the third harmonic of the first wiggler to generate ultraviolet radiation, is studied. A set of coupled nonlinear first-order differential equations describing the nonlinear evolution of the system, for a long electron bunch, is solved numerically by CYRUS code. Solutions for the non-averaged and averaged equations are compared. Remarkable agreement is found between the averaged and non-averaged simulations for the evolution of the third harmonic. Thermal effects in the form of longitudinal velocity spread are also investigated. For efficiency enhancement, the second wiggler field is set to decrease linearly and nonlinearly at the point where the radiation of the third harmonic saturates. The optimum starting point and the slope of the tapering of the amplitude of the wiggler are found by a successive run of the code. It is found that tapering can increase the saturated power of the third harmonic considerably. In order to reduce the length of the wiggler, the prebunched electron beam is considered.

  16. Tomographic determination of the power distribution in electron beams

    DOE Patents [OSTI]

    Teruya, Alan T. (Livermore, CA); Elmer, John W. (Pleasanton, CA)

    1996-01-01

    A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process.

  17. Beamed neutron emission driven by laser accelerated light ions

    E-Print Network [OSTI]

    S. Kar; A. Green; H. Ahmed; A. Alejo; A. P. L. Robinson; M. Cerchez; R. Clarke; D. Doria; S. Dorkings; J. Fernandez; S. R. Mirfyazi; P. McKenna; K. Naughton; D. Neely; P. Norreys; C. Peth; H. Powell; J. A. Ruiz; J. Swain; O. Willi; M. Borghesi

    2015-07-16

    We report on the experimental observation of beam-like neutron emission with peak flux of the order of 10^9 n/sr, from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by high power laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of 70 degrees, with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)^1H and d(d,n)^3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons' spatial and spectral profiles are most likely related to the directionality and high energy of the projectile ions.

  18. Beamed neutron emission driven by laser accelerated light ions

    E-Print Network [OSTI]

    Kar, S; Ahmed, H; Alejo, A; Robinson, A P L; Cerchez, M; Clarke, R; Doria, D; Dorkings, S; Fernandez, J; Mirfyazi, S R; McKenna, P; Naughton, K; Neely, D; Norreys, P; Peth, C; Powell, H; Ruiz, J A; Swain, J; Willi, O; Borghesi, M

    2015-01-01

    We report on the experimental observation of beam-like neutron emission with peak flux of the order of 10^9 n/sr, from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by high power laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of 70 degrees, with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)^1H and d(d,n)^3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons' spatial and spectral profiles are most likely related to the directionality and high energy of the projectile ions.

  19. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    E-Print Network [OSTI]

    Schroeder, C B; Bulanov, S S; Chen, M; Esarey, E; Geddes, C G R; Vay, J -L; Yu, L -L; Leemans, W P

    2015-01-01

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2...

  20. Nano-scale electron bunching in laser-triggered ionization injection in plasma accelerators

    E-Print Network [OSTI]

    Xu, X L; Li, F; Wan, Y; Wu, Y P; Hua, J F; Pai, C -H; Lu, W; An, W; Yu, P; Mori, W B; Joshi, C

    2015-01-01

    Ionization injection is attractive as a controllable injection scheme for generating high quality electron beams using plasma-based wakefield acceleration. Due to the phase dependent tunneling ionization rate and the trapping dynamics within a nonlinear wake, the discrete injection of electrons within the wake is nonlinearly mapped to discrete final phase space structure of the beam at the location where the electrons are trapped. This phenomenon is theoretically analyzed and examined by three-dimensional particle-in-cell simulations which show that three dimensional effects limit the wave number of the modulation to between $> 2k_0$ and about $5k_0$, where $k_0$ is the wavenumber of the injection laser. Such a nano-scale bunched beam can be diagnosed through coherent transition radiation upon its exit from the plasma and may find use in generating high-power ultraviolet radiation upon passage through a resonant undulator.

  1. Laser-Cooled Lithium Atoms: A New Source for Focused Ion Beams

    E-Print Network [OSTI]

    Laser-Cooled Lithium Atoms: A New Source for Focused Ion Beams P R O J E C T L E A D E R : Jabez Mc E N T S Designed and constructed a laser-cooled, magneto-optical trap-based lithium ion source mounted on a commercial focused ion beam system, creating the world's first lithium ion microscope

  2. Direct periodic patterning of GaN-based light-emitting diodes by three-beam interference laser ablation

    SciTech Connect (OSTI)

    Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch; Yuan, Dajun; Guo, Rui; Liu, Jianping; Asadirad, Mojtaba; Kwon, Min-Ki; Dupuis, Russell D.; Das, Suman; Ryou, Jae-Hyun

    2014-04-07

    We report on the direct patterning of two-dimensional periodic structures in GaN-based light-emitting diodes (LEDs) through laser interference ablation for the fast and reliable fabrication of periodic micro- and nano-structures aimed at enhancing light output. Holes arranged in a two-dimensional hexagonal lattice array having an opening size of 500?nm, depth of 50?nm, and a periodicity of 1??m were directly formed by three-beam laser interference without photolithography or electron-beam lithography processes. The laser-patterned LEDs exhibit an enhancement in light output power of 20% compared to conventional LEDs having a flat top surface without degradation of electrical and optical properties of the top p-GaN layer and the active region, respectively.

  3. Post-Disruptive Runaway Electron Beam in COMPASS Tokamak

    E-Print Network [OSTI]

    Vlainic, Milos; Cavalier, Jordan; Weinzettl, Vladimir; Paprok, Richard; Imrisek, Martin; Ficker, Ondrej; Noterdaeme, Jean-Marie

    2015-01-01

    For ITER-relevant runaway electron studies, such as suppression, mitigation, termination and/or control of runaway beam, obtaining the runaway electrons after the disruption is important. In this paper we report on the first achieved discharges with post-disruptive runaway electron beam, entitled "runaway plateau", in the COMPASS tokamak. The runaway plateau is produced by massive gas injection of argon. Almost all of the disruptions with runaway electron plateaus occurred during the plasma current ramp-up phase. Comparison between the Ar injection discharges with and without plateau has been done for various parameters. Parametrisation of the discharges shows that COMPASS disruptions fulfill the range of parameters important for the runaway plateau occurrence. These parameters include electron density, electric field, disruption speed, effective safety factor, maximum current quench electric field. In addition to these typical parameters, the plasma current value just before the massive gas injection surpris...

  4. Turning point temperature and competition between relativistic and ponderomotive effects in self-focusing of laser beam in plasma

    SciTech Connect (OSTI)

    Bokaei, B.; Niknam, A. R.; Jafari Milani, M. R.

    2013-10-15

    The propagation characters of Gaussian laser beam in collisionless plasma are investigated by considering the ponderomotive and relativistic nonlinearities. The second-order differential equation of dimensionless beam width parameter is solved numerically, taking into account the effect of electron temperature. The results show that the ponderomotive force does not facilitate the relativistic self-focusing in all intensity ranges. In fact, there exists a certain intensity value that, if below this value, the ponderomotive nonlinearity can contribute to the relativistic self-focusing, or obstruct it, if above. It is also indicated that there is a temperature interval in which self-focusing can occur, while the beam diverges outside of this region. In addition, the results represent the existence of a “turning point temperature” in the mentioned interval that the self-focusing has the strongest power. The value of the turning point is dependent on laser intensity in which higher intensities result in higher turning point.

  5. Portable radiography system using a relativistic electron beam

    DOE Patents [OSTI]

    Hoeberling, R.F.

    1987-09-22

    A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment. 8 figs.

  6. Portable radiography system using a relativistic electron beam

    DOE Patents [OSTI]

    Hoeberling, Robert F. (502 Hamlin Ct., Los Alamos, NM 87544)

    1990-01-01

    A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment.

  7. Single Crystal Diamond Beam Position Monitors with Radiofrequency Electronic Readout

    SciTech Connect (OSTI)

    Solar, B.; Graafsma, H.; Potdevin, G.; Trunk, U. [Hasylab, Deutsches Elektronen Synchroton, Hamburg (Germany); Morse, J.; Salome, M. [Instrumentation Services and Development Division, European Synchroton Radiation Facility, Grenoble (France)

    2010-06-23

    Over the energy range 5{approx}30 keV a suitably contacted, thin ({approx}100 {mu}m) diamond plate can be operated in situ as a continuous monitor of X-ray beam intensity and position as the diamond absorbs only a small percentage of the incident beam. Single crystal diamond is a completely homogeneous material showing fast (ns), spatially uniform signal response and negligible (beams. We report on tests made at ESRF and DESY using diamond beam position monitors of simple quadrant electrode designs with metal contacts, operated using wideband electronic readout corresponding to the RF accelerator frequency. The instrumentation for these monitors must cover a large range of operating conditions: different beam sizes, fluxes, energies and time structure corresponding to the synchrotron fill patterns. Sophisticated new RF sampling electronics can satisfy most requirements: using a modified Libera Brilliance readout system, we measured the center of gravity position of a 25 {mu}m beam at the DORIS III F4 beam line at a rate of 130 Msample/s with narrowband filtering of a few MHz bandwidth. Digitally averaging the signal further provided a spatial resolution {approx}20 nm.

  8. Electron cloud effects on an intense ion beam in a four solenoid lattice

    E-Print Network [OSTI]

    2008-01-01

    electrons when intercepting the beam with diagnostics. Theon the electron cloud diagnostics for the 45-mA beam andbeam ion and electron species in the vicinity of the diagnostic (

  9. Electromagnetic cascade in high energy electron, positron, and photon interactions with intense laser pulses

    E-Print Network [OSTI]

    S. S. Bulanov; C. B. Schroeder; E. Esarey; W. P. Leemans

    2013-06-05

    The interaction of high energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when 3D effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high energy e-beam interacting with a counter-streaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  10. Slit disk for modified faraday cup diagnostic for determining power density of electron and ion beams

    DOE Patents [OSTI]

    Teruya, Alan T. (Livermore, CA); Elmer; John W. (Danville, CA); Palmer, Todd A. (State College, PA)

    2011-03-08

    A diagnostic system for characterization of an electron beam or an ion beam includes an electrical conducting disk of refractory material having a circumference, a center, and a Faraday cup assembly positioned to receive the electron beam or ion beam. At least one slit in the disk provides diagnostic characterization of the electron beam or ion beam. The at least one slit is located between the circumference and the center of the disk and includes a radial portion that is in radial alignment with the center and a portion that deviates from radial alignment with the center. The electron beam or ion beam is directed onto the disk and translated to the at least one slit wherein the electron beam or ion beam enters the at least one slit for providing diagnostic characterization of the electron beam or ion beam.

  11. Exploiting lens aberrations to create electron vortex beams

    E-Print Network [OSTI]

    L. Clark; A. Béché; G. Guzzinati; A. Lubk; M. Mazilu; R. Van Boxem; J. Verbeeck

    2013-07-18

    A model for a new electron vortex beam production method is proposed and experimentally demonstrated. The technique calls on the controlled manipulation of the degrees of freedom of the lens aberrations to achieve a helical phase front. These degrees of freedom are accessible by using the corrector lenses of a transmission electron microscope. The vortex beam is produced through a particular alignment of these lenses into a specifically designed astigmatic state and applying an annular aperture in the condensor plane. Experimental results are found to be in good agreement with simulations.

  12. High-Power Microwave Switch Employing Electron Beam Triggering

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-09-19

    A high-power active microwave pulse compressor is described that modulates the quality factor Q of the energy storage cavity by a new means involving mode conversion controlled by a triggered electron-beam discharge through a switch cavity. The electron beam is emitted from a diamond-coated molybdenum cathode. This report describes the principle of operation, the design of the switch, the configuration used for the test, and the experimental results. The pulse compressor produced output pulses with 140 - Ã?Â?165 MW peak power, power gain of 16 - 20, and pulse duration of 16 - 20 ns at a frequency of 11.43 GHz.

  13. Radial electron-beam-breakup transit-time oscillator

    DOE Patents [OSTI]

    Kwan, Thomas J. T. (Los Alamos, NM); Mostrom, Michael A. (Albuquerque, NM)

    1998-01-01

    A radial electron-beam-breakup transit-time oscillator (RBTO) provides a compact high power microwave generator. The RBTO includes a coaxial vacuum transmission line having an outer conductor and an inner conductor. The inner conductor defines an annular cavity with dimensions effective to support an electromagnetic field in a TEM.sub.00m mode. A radial field emission cathode is formed on the outer conductor for providing an electron beam directed toward the annular cavity electrode. Microwave energy is then extracted from the annular cavity electrode.

  14. Electron beam collector for a microwave power tube

    DOE Patents [OSTI]

    Dandl, Raphael A. (Oak Ridge, TN)

    1980-01-01

    This invention relates to a cylindrical, electron beam collector that efficiently couples the microwave energy out of a high power microwave source while stopping the attendant electron beam. The interior end walls of the collector are a pair of facing parabolic mirrors and the microwave energy from an input horn is radiated between the two mirrors and reassembled at the entrance to the output waveguide where the transmitted mode is reconstructed. The mode transmission through the collector of the present invention has an efficiency of at least 94%.

  15. Dynamics of Longitudinal Phase-Space Modulations in an rf Compressor for Electron Beams

    SciTech Connect (OSTI)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-05-21

    Free Electron Lasers (FELs) operating in the UV or x-ray radiation spectrum require peak beam currents that are generally higher than those obtainable by present electron sources, thus making bunch compression necessary. Compression, however, may heighten the effects of collective forces and degrade the beam quality. In this paper they provide a framework for investigating some of these effects in rf compressors by focusing on the longitudinal dynamics of small-amplitude density perturbations, which have the potential to cause the disruptive appearance of the so-called microbunching instability. They develop a linear theory valid for low-to-moderate compression factors under the assumption of a 1D impedance model of longitudinal space charge and provide validation against macroparticle simulations.

  16. Quantum fluid model of coherent stimulated radiation by a dense relativistic cold electron beam

    SciTech Connect (OSTI)

    Monteiro, L. F.; Serbeto, A.; Tsui, K. H. [Instituto de Física, Universidade Federal Fluminense, Campus da Praia Vermelha, Niterói, RJ 24210-346 (Brazil)] [Instituto de Física, Universidade Federal Fluminense, Campus da Praia Vermelha, Niterói, RJ 24210-346 (Brazil); Mendonça, J. T.; Galvão, R. M. O. [Instituto de Física, Universidade de São Paulo, São Paulo, SP 05508-090 (Brazil)] [Instituto de Física, Universidade de São Paulo, São Paulo, SP 05508-090 (Brazil)

    2013-07-15

    Using a quantum fluid model, the linear dispersion relation for FEL pumped by a short wavelength laser wiggler is deduced. Subsequently, a new quantum corrected resonance condition is obtained. It is shown that, in the limit of low energy electron beam and low frequency pump, the quantum recoil effect can be neglected, recovering the classical FEL resonance condition, k{sub s}=4k{sub w}?{sup 2}. On the other hand, for short wavelength and high energy electron beam, the quantum recoil effect becomes strong and the resonance condition turns into k{sub s}=2?(k{sub w}/?{sub c})?{sup 3/2}, with ?{sub c} being the reduced Compton wavelength. As a result, a set of nonlinear coupled equations, which describes the quantum FEL dynamics as a three-wave interaction, is obtained. Neglecting wave propagation effects, this set of equations is solved numerically and results are presented.

  17. Theoretical and Experimental Studies on Molybdenum and Stainless Steel Mirrors Cleaning by High Repetition Rate Laser Beam

    E-Print Network [OSTI]

    Theoretical and Experimental Studies on Molybdenum and Stainless Steel Mirrors Cleaning by High Repetition Rate Laser Beam

  18. Counter-Streaming Electron Beams in the Plasma Sheet Associated with Auroral Activity

    E-Print Network [OSTI]

    Fillingim, Matthew

    Counter-Streaming Electron Beams in the Plasma Sheet Associated with Auroral Activity M. Fillingim1 expansion and recovery reveal the presence of counter-streaming electron beams. The beams, which appear in the auroral region show a similar electron spectrum. The source of the field-aligned beams is unknown

  19. Electron Beam Energy Chirp Control with a Rectangular Corrugated Structure at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen; Bane, Karl; Ding, Yantao; Huang, Zhirong; Iverson, Richard; Maxwell, Timothy; Stupakov, Gennady; Wang, Lanfa

    2015-01-30

    Electron beam energy chirp is an important parameter that affects the bandwidth and performance of a linac-based, free-electron laser. In this paper we study the wakefields generated by a beam passing between at metallic plates with small corrugations, and then apply such a device as a passive dechirper for the Linac Coherent Light Source (LCLS) energy chirp control with a multi-GeV and femtosecond electron beam. Similar devices have been tested in several places at relatively low energies (#24;100 MeV) and with relatively long bunches (> 1ps). In the parameter regime of the LCLS dechirper, with the corrugation size similar to the gap between the plates, the analytical solutions of the wakefields are no longer applicable, and we resort to a #12;field matching program to obtain the wakes. Based on the numerical calculations, we #12;fit the short-range, longitudinal wakes to simple formulas, valid over a large, useful parameter range. Finally, since the transverse wakefields - both dipole and quadrupole-are strong, we compute and include them in beam dynamics simulations to investigate the error tolerances when this device is introduced in the LCLS.

  20. Electron Beam Energy Chirp Control with a Rectangular Corrugated Structure at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen; Bane, Karl; Ding, Yantao; Huang, Zhirong; Iverson, Richard; Maxwell, Timothy; Stupakov, Gennady; Wang, Lanfa

    2015-01-30

    Electron beam energy chirp is an important parameter that affects the bandwidth and performance of a linac-based, free-electron laser. In this paper we study the wakefields generated by a beam passing between at metallic plates with small corrugations, and then apply such a device as a passive dechirper for the Linac Coherent Light Source (LCLS) energy chirp control with a multi-GeV and femtosecond electron beam. Similar devices have been tested in several places at relatively low energies (#24;100 MeV) and with relatively long bunches (> 1ps). In the parameter regime of the LCLS dechirper, with the corrugation size similar tomore »the gap between the plates, the analytical solutions of the wakefields are no longer applicable, and we resort to a #12;field matching program to obtain the wakes. Based on the numerical calculations, we #12;fit the short-range, longitudinal wakes to simple formulas, valid over a large, useful parameter range. Finally, since the transverse wakefields - both dipole and quadrupole-are strong, we compute and include them in beam dynamics simulations to investigate the error tolerances when this device is introduced in the LCLS.« less

  1. Multiple-beam laser–plasma interactions in inertial confinement fusion

    SciTech Connect (OSTI)

    Myatt, J. F. Zhang, J.; Maximov, A. V.; Short, R. W.; Seka, W.; Edgell, D. H.; Michel, D. T.; Igumenshchev, I. V.; Froula, D. H.; Hinkel, D. E.; Michel, P.; Moody, J. D.

    2014-05-15

    The experimental evidence for multiple-beam laser-plasma instabilities of relevance to laser driven inertial confinement fusion at the ignition scale is reviewed, in both the indirect and direct-drive approaches. The instabilities described are cross-beam energy transfer (in both indirectly driven targets on the NIF and in direct-drive targets), multiple-beam stimulated Raman scattering (for indirect-drive), and multiple-beam two-plasmon decay instability (in direct drive). Advances in theoretical understanding and in the numerical modeling of these multiple beam instabilities are presented.

  2. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    SciTech Connect (OSTI)

    Chuyu Liu

    2012-12-31

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measure photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the difficulty of diagnostics. For most cases, intercepting measurements are no longer acceptable, and nonintercepting method like synchrotron radiation monitor can not be applied to linear accelerators. The development of accelerator technology asks for simutanous diagnostics innovations, to expand the performance of diagnostic tools to meet the requirements of the next generation accelerators. Diffraction radiation and inverse Compton scattering are two of the most promising techniques, their nonintercepting nature avoids perturbance to the beam and damage to the instrumentation. This thesis is divided into two parts, beam size measurement by optical diffraction radiation and Laser system for Compton polarimeter. Diffraction radiation, produced by the interaction between the electric field of charged particles and the target, is related to transition radiation. Even though the theory of diffraction radiation has been discussed since 1960s, there are only a few experimental studies in recent years. The successful beam size measurement by optical diffraction radiation at CEBAF machine is a milestone: First of all, we have successfully demonstrated diffraction radiation as an effective nonintercepting diagnostics; Secondly, the simple linear relationship between the diffraction radiation image size and the actual beam size improves the reliability of ODR measurements; And, we measured the polarized components of diffraction radiation for the first time and I analyzed the contribution from edge radiation to diffraction radiation.

  3. High Efficiency, Multi-Terawatt X-ray free electron lasers

    E-Print Network [OSTI]

    Emma, Claudio; Wu, Juhao; Pellegrini, Claudio

    2015-01-01

    We study high efficiency, multi-terawatt peak power, few angstrom wavelength, X-ray Free Electron Lasers (X-ray FELs). To obtain these characteristics we consider an optimized undulator design: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. The peak power and efficiency depend on the transverse electron beam distribution and on time dependent effects, like synchrotron sideband growth. The last effect is identified as the main cause for reduction of electron beam microbunching and FEL peak power. We show that the optimal functional form for the undulator magnetic field tapering profile, yielding the maximum output power, depends significantly on these effects. The output power achieved when neglecting time dependent effects for an LCLS-like X-ray FEL with a 100 m lo...

  4. Practical method and device for enhancing pulse contrast ratio for lasers and electron accelerators

    DOE Patents [OSTI]

    Zhang, Shukui; Wilson, Guy

    2014-09-23

    An apparatus and method for enhancing pulse contrast ratios for drive lasers and electron accelerators. The invention comprises a mechanical dual-shutter system wherein the shutters are placed sequentially in series in a laser beam path. Each shutter of the dual shutter system has an individually operated trigger for opening and closing the shutter. As the triggers are operated individually, the delay between opening and closing first shutter and opening and closing the second shutter is variable providing for variable differential time windows and enhancement of pulse contrast ratio.

  5. Thermoacoustic dosimetry of electron beam in extra field

    SciTech Connect (OSTI)

    Kalinichenko, A.I.; Kresnin, Yu.A.; Popov, G.F.

    1996-12-31

    The theoretical basis is elaborated for thermoacoustic dosimetry of electron beam by one-dimensional (1-D) thin target TT in extra thermal and electromagnetic fields. The basic equation joining the deposited energy distribution to the stress wave amplitude in the case when the generation coefficient is function of temperature and coordinate in material permits realizing nonlinear thermoacoustic dosimetry with regulated sensitivity. Some variants of joint employment of the thermoacoustic dosimeter and electromagnetic scanner/splitter are considered. The first variant consists in beam scanning along 1-D dosimeter body to create the moving thermoacoustic source. This regime may be used for dosimetry of long beams. The second variant consists in spectral decomposition of the beam in electromagnetic field before its directing to the dosimeter. Principle of operation for some termoelastic dosimeters on the base of 1-D TTs is considered.

  6. Risk Management Plan Electron Beam Ion Source Project

    E-Print Network [OSTI]

    Risk Management Plan for the Electron Beam Ion Source Project (EBIS) Project # 06-SC-002. There are three specific areas of risk that can be controlled and managed by the EBIS Project team and these are and operations. The BNL ISM clearly indicates that risk management is everybody's business and will be factored

  7. Usage Policies Notebook for CHA Electron Beam One Metal Evaporator

    E-Print Network [OSTI]

    Mease, Kenneth D.

    ;2 Emergency Plan for CHA Electron Beam One Metal Evaporator Standard Operating Procedures for Emergencies (nitrogen) gas Asphyxiant Alarms or indications of danger Alarm type Condition and response Alarm and the lab manager. #12;3 Emergency shutdown plan #1 In the event of an emergency, when there is very little

  8. Single-shot measurement of free-electron laser polarization at SDUV-FEL

    E-Print Network [OSTI]

    Feng, Lie; Zhang, Tong; Feng, Chao; Chen, Jianhui; Wang, Xingtao; Lan, Taihe; Shen, Lei; Zhang, Wenyan; Yao, Haifeng; Liu, Xiaoqing; Liu, Bo; Wang, Dong

    2014-01-01

    In this paper, a division-of-amplitude photopolarimeter (DOAP) for measuring the polarization state of free-electron laser (FEL) pulse is described. The incident FEL beam is divided into four separate beams, and four Stokes parameters can be measured in a single-shot. In the crossed-planar undulators experiment at Shanghai deep ultraviolet FEL test facility, this DOAP instrument constructed in house responses accurately and timely while the polarization-state of fully coherent FEL pulses are switched, which is helpful for confirming the crossed-planar undulators technique for short-wavelength FELs.

  9. Energy exchange between a laser beam and charged particles using inverse transition radiation and method for its use

    DOE Patents [OSTI]

    Kimura, Wayne D. (Bellevue, WA); Romea, Richard D. (Seattle, WA); Steinhauer, Loren C. (Bothell, WA)

    1998-01-01

    A method and apparatus for exchanging energy between relativistic charged particles and laser radiation using inverse diffraction radiation or inverse transition radiation. The beam of laser light is directed onto a particle beam by means of two optical elements which have apertures or foils through which the particle beam passes. The two apertures or foils are spaced by a predetermined distance of separation and the angle of interaction between the laser beam and the particle beam is set at a specific angle. The separation and angle are a function of the wavelength of the laser light and the relativistic energy of the particle beam. In a diffraction embodiment, the interaction between the laser and particle beams is determined by the diffraction effect due to the apertures in the optical elements. In a transition embodiment, the interaction between the laser and particle beams is determined by the transition effect due to pieces of foil placed in the particle beam path.

  10. Self-truncated ionization injection and consequent monoenergetic electron bunches in laser wakefield acceleration

    SciTech Connect (OSTI)

    Zeng, Ming; Zhang, Jie [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)] [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Min, E-mail: minchen@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China) [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mathematics, Institute of Natural Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai 20040 (China); Sheng, Zheng-Ming, E-mail: zmsheng@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China) [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Mori, Warren B. [University of California, Los Angeles, California 90095 (United States)] [University of California, Los Angeles, California 90095 (United States)

    2014-03-15

    The ionization-induced injection in laser wakefield acceleration has been recently demonstrated to be a promising injection scheme. However, the energy spread controlling in this mechanism remains a challenge because continuous injection in a mixed gas target is usually inevitable. Here, we propose that by use of certain initially unmatched laser pulses, the electron injection can be constrained to the very front region of the mixed gas target, typically in a length of a few hundreds micrometers determined by the laser self-focusing and the wake deformation. As a result, the produced electron beam has narrow energy spread and meanwhile contains tens of pC in charge. Both multidimensional simulations and theoretical analysis illustrate the effectiveness of this scheme.

  11. Effects of the imposed magnetic field on the production and transport of relativistic electron beams

    SciTech Connect (OSTI)

    Cai, Hong-bo; He, X. T. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China) [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Zhu, Shao-ping [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)] [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2013-07-15

    The effects of the imposed uniform magnetic field, ranging from 1 MG up to 50 MG, on the production and transport of relativistic electron beams (REBs) in overdense plasmas irradiated by ultraintense laser pulse are investigated with two-dimensional particle-in-cell numerical simulations. This study gives clear evidence that the imposed magnetic field is capable of effectively confining the relativistic electrons in space even when the source is highly divergent since it forces the electrons moving helically. In comparison, the spontaneous magnetic fields, generated by the helically moving electrons interplaying with the current filamentation instability, are dominant in scattering the relativistic electrons. As the imposed magnetic field was increased from 1 MG to 50 MG, overall coupling from laser to the relativistic electrons which have the potential to heat the compressed core in fast ignition was found to increase from 6.9% to 21.3% while the divergence of the REB increases significantly from 64° to 90°. The simulations show that imposed magnetic field of the value of 3–30 MG could be more suitable to fast-ignition inertial fusion.

  12. 60 KEV 30 KW ELECTRON BEAM FACILITY FOR ELECTRON BEAM Yu.I.Semenov, V.E.Akimov, M.A.Batazova, B.A.Dovzhenko, V.V.Ershov, A.R.Frolov,

    E-Print Network [OSTI]

    Kozak, Victor R.

    60 KEV 30 KW ELECTRON BEAM FACILITY FOR ELECTRON BEAM TECHNOLOGY Yu.I.Semenov, V.E.Akimov, M Abstract At the Budker Institute of Nuclear Physics, Novosibirsk, the 60 keV 30 kW electron beam facility for electron beam technology has been developed. The electron gun provides continuous or modulated beam within

  13. FAST observations of the solar illumination dependence of downgoing auroral electron beams: Relationship to electron energy flux

    E-Print Network [OSTI]

    Carlson, Charles W.

    FAST observations of the solar illumination dependence of downgoing auroral electron beams] The dependence of the occurrence frequency of downgoing auroral electron beams on solar illumination almost no effect on the occurrence frequency of electron beams with energy flux less than or equal

  14. Apparatus and process for active pulse intensity control of laser beam

    DOE Patents [OSTI]

    Wilcox, Russell B. (Oakland, CA)

    1992-01-01

    An optically controlled laser pulse energy control apparatus and process is disclosed wherein variations in the energy of a portion of the laser beam are used to vary the resistance of a photodetector such as a photoresistor through which a control voltage is fed to a light intensity controlling device through which a second portion of the laser beam passes. Light attenuation means are provided to vary the intensity of the laser light used to control the resistance of the photodetector. An optical delay path is provided through which the second portion of the beam travels before reaching the light intensity controlling device. The control voltage is supplied by a variable power supply. The apparatus may be tuned to properly attenuate the laser beam passing through the intensity controlling device by adjusting the power supply, the optical delay path, or the light attenuating means.

  15. Chirped pulse inverse free-electron laser vacuum accelerator

    DOE Patents [OSTI]

    Hartemann, Frederic V. (Dublin, CA); Baldis, Hector A. (Pleasanton, CA); Landahl, Eric C. (Walnut Creek, CA)

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  16. Direct laser acceleration of electrons in free-space

    E-Print Network [OSTI]

    Carbajo, Sergio; Wong, Liang Jie; Miller, R J Dwayne; Kärtner, Franz X

    2015-01-01

    Compact laser-driven accelerators are versatile and powerful tools of unarguable relevance on societal grounds for the diverse purposes of science, health, security, and technology because they bring enormous practicality to state-of-the-art achievements of conventional radio-frequency accelerators. Current benchmarking laser-based technologies rely on a medium to assist the light-matter interaction, which impose material limitations or strongly inhomogeneous fields. The advent of few cycle ultra-intense radially polarized lasers has materialized an extensively studied novel accelerator that adopts the simplest form of laser acceleration and is unique in requiring no medium to achieve strong longitudinal energy transfer directly from laser to particle. Here we present the first observation of direct longitudinal laser acceleration of non-relativistic electrons that undergo highly-directional multi-GeV/m accelerating gradients. This demonstration opens a new frontier for direct laser-driven particle accelerati...

  17. Resonator design for a visible wavelength free-electron laser (*)

    SciTech Connect (OSTI)

    Bhowmik, A.; Lordi, N. . Rocketdyne Div.); Ben-Zvi, I.; Gallardo, J. )

    1990-01-01

    Design requirements for a visible wavelength free-electron laser being developed at the Accelerator Test Facility at Brookhaven National Laboratory are presented along with predictions of laser performance from 3-D numerical simulations. The design and construction of the optical resonator, its alignment and control systems are also described. 15 refs., 8 figs., 4 tabs.

  18. Jefferson Lab's upgraded Free-Electron Laser produces first ligh...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Navy's goals and expectations and we expect no less from the upgraded FEL." The Free-Electron Laser upgrade project is funded by the Department of Defense's Office of...

  19. Systems for controlling the intensity variations in a laser beam and for frequency conversion thereof

    DOE Patents [OSTI]

    Skupsky, S.; Craxton, R.S.; Soures, J.

    1990-10-02

    In order to control the intensity of a laser beam so that its intensity varies uniformly and provides uniform illumination of a target, such as a laser fusion target, a broad bandwidth laser pulse is spectrally dispersed spatially so that the frequency components thereof are spread apart. A disperser (grating) provides an output beam which varies spatially in wavelength in at least one direction transverse to the direction of propagation of the beam. Temporal spread (time delay) across the beam is corrected by using a phase delay device (a time delay compensation echelon). The dispersed beam may be amplified with laser amplifiers and frequency converted (doubled, tripled or quadrupled in frequency) with nonlinear optical elements (birefringent crystals). The spectral variation across the beam is compensated by varying the angle of incidence on one of the crystals with respect to the crystal optical axis utilizing a lens which diverges the beam. Another lens after the frequency converter may be used to recollimate the beam. The frequency converted beam is recombined so that portions of different frequency interfere and, unlike interference between waves of the same wavelength, there results an intensity pattern with rapid temporal oscillations which average out rapidly in time thereby producing uniform illumination on target. A distributed phase plate (also known as a random phase mask), through which the spectrally dispersed beam is passed and then focused on a target, is used to provide the interference pattern which becomes nearly modulation free and uniform in intensity in the direction of the spectral variation. 16 figs.

  20. Electron Dynamics in Nanostructures in Strong Laser Fields

    SciTech Connect (OSTI)

    Kling, Matthias

    2014-09-11

    The goal of our research was to gain deeper insight into the collective electron dynamics in nanosystems in strong, ultrashort laser fields. The laser field strengths will be strong enough to extract and accelerate electrons from the nanoparticles and to transiently modify the materials electronic properties. We aimed to observe, with sub-cycle resolution reaching the attosecond time domain, how collective electronic excitations in nanoparticles are formed, how the strong field influences the optical and electrical properties of the nanomaterial, and how the excitations in the presence of strong fields decay.

  1. Method of automatic measurement and focus of an electron beam and apparatus therefore

    DOE Patents [OSTI]

    Giedt, W.H.; Campiotti, R.

    1996-01-09

    An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding is disclosed. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined. 12 figs.

  2. Method of automatic measurement and focus of an electron beam and apparatus therefor

    DOE Patents [OSTI]

    Giedt, Warren H. (San Jose, CA); Campiotti, Richard (Livermore, CA)

    1996-01-01

    An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined.

  3. Electron-beam-induced deposition of 3-nm-half-pitch patterns on bulk Si

    E-Print Network [OSTI]

    van Oven, J. C.

    This paper demonstrates electron-beam-induced deposition of few-nm-width dense features on bulk samples by using a scanning electron-beam lithography system. To optimize the resultant features, three steps were taken: (1) ...

  4. Metrology for electron-beam lithography and resist contrast at the sub-10 nm scale

    E-Print Network [OSTI]

    Duan, Huigao

    Exploring the resolution limit of electron-beam lithography is of great interest both scientifically and technologically. However, when electron-beam lithography approaches its resolution limit, imaging and metrology of ...

  5. Non-Invasive Beam Detection in a High-Average Power Electron Accelerator

    SciTech Connect (OSTI)

    Williams, J. [Colorado State U.; Biedron, S. [Colorado State U.; Harris, J. [Colorado State U.; Martinez, J. [Colorado State U.; Milton, S. V. [Colorado State U.; Van Keuren, J. [Colorado State U.; Benson, Steve V. [JLAB; Evtushenko, Pavel [JLAB; Neil, George R. [JLAB; Zhang, Shukui [JLAB

    2013-12-01

    For a free-electron laser (FEL) to work effectively the electron beam quality must meet exceptional standards. In the case of an FEL operating at infrared wavelengths in an amplifier configuration the critical phase space tends to be in the longitudinal direction. Achieving high enough longitudinal phase space density directly from the electron injector system of such an FEL is difficult due to space charge effects, thus one needs to manipulate the longitudinal phase space once the beam energy reaches a sufficiently high value. However, this is fraught with problems. Longitudinal space charge and coherent synchrotron radiation can both disrupt the overall phase space, furthermore, the phase space disruption is exacerbated by the longitudinal phase space manipulation process required to achieve high peak current. To achieve and maintain good FEL performance one needs to investigate the longitudinal emittance and be able to measure it during operation preferably in a non-invasive manner. Using the electro-optical sampling (EOS) method, we plan to measure the bunch longitudinal profile of a high-energy (~120-MeV), high-power (~10kW or more FEL output power) beam.

  6. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    E-Print Network [OSTI]

    Lemery, Francois

    2015-01-01

    Collinear high-gradient ${\\cal O} (GV/m)$ beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios $>2$, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting "drive" bunch to an accelerated "witness" bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative current profiles which are smooth which also lead to enhanced transformer ratios. We especially explore a laser-shaping method capable of generating one the suggested distributions directly out of a photoinjector and discuss a linac concept that could possible drive a dielectric ...

  7. Design and performance of an automated video-based laser beam alignment system

    SciTech Connect (OSTI)

    Rundle, W.J. ); Kartz, M.W. ); Bliss, E.S.; English, R.E. Jr.; Peterson, R.L.; Thompson, G.R.; Uhlich, D.M. )

    1992-07-14

    This paper describes the design and performance of an automated, closed-loop, laser beam alignment system. Its function is to sense a beam alignment error in a laser beam transport system and automatically steer mirrors preceding the sensor location as required to maintain beam alignment. The laser beam is sampled by an optomechanical package which uses video cameras to sense pointing and centering errors. The camera outputs are fed to an image processing module, which includes video digitizers and uses image storage and software to sense the centroid of the image. Signals are sent through a VMEbus to an optical device controller'' (ODC), which drives stepper-motor actuators on mirror mounts preceding the beam-sampling location to return the beam alignment to the prescribed condition. Photodiodes are also used to extend the control bandwidth beyond that which is achievable with video cameras. This system has been operated at LLNL in the Atomic Vapor Laser Isotope Separation (AVLIS) program to maintain the alignment of copper and dye laser beams, the latter to within [plus minus]2 [mu]r in pointing and less than 1 mm in centering. The optomechanical design of the instrumented package, which includes lens, mirror, and video mounts in a rigid housing, the automated control system architecture, and the performance of this equipment is described.

  8. Design and performance of an automated video-based laser beam alignment system

    SciTech Connect (OSTI)

    Rundle, W.J.; Kartz, M.W.; Bliss, E.S.; English, R.E. Jr.; Peterson, R.L.; Thompson, G.R.; Uhlich, D.M.

    1992-07-14

    This paper describes the design and performance of an automated, closed-loop, laser beam alignment system. Its function is to sense a beam alignment error in a laser beam transport system and automatically steer mirrors preceding the sensor location as required to maintain beam alignment. The laser beam is sampled by an optomechanical package which uses video cameras to sense pointing and centering errors. The camera outputs are fed to an image processing module, which includes video digitizers and uses image storage and software to sense the centroid of the image. Signals are sent through a VMEbus to an ``optical device controller`` (ODC), which drives stepper-motor actuators on mirror mounts preceding the beam-sampling location to return the beam alignment to the prescribed condition. Photodiodes are also used to extend the control bandwidth beyond that which is achievable with video cameras. This system has been operated at LLNL in the Atomic Vapor Laser Isotope Separation (AVLIS) program to maintain the alignment of copper and dye laser beams, the latter to within {plus_minus}2 {mu}r in pointing and less than 1 mm in centering. The optomechanical design of the instrumented package, which includes lens, mirror, and video mounts in a rigid housing, the automated control system architecture, and the performance of this equipment is described.

  9. GHz Laser-free Time-resolved Transmission Electron Microscopy: a Stroboscopic High-duty-cycle Method

    E-Print Network [OSTI]

    Qiu, Jiaqi; Jing, Chunguang; Baryshev, Sergey V; Reed, Bryan W; Zhu, Yimei; Lau, June W

    2015-01-01

    A device and a method for producing ultrashort electron pulses with GHz repetition rates via pulsing an input direct current (dc) electron beam are provided. The device and the method are based on an electromagnetic-mechanical pulser (EMMP) that consists of a series of transverse deflecting cavities and magnetic quadrupoles. The EMMP modulates and chops the incoming dc electron beam and converts it into pico- and sub-pico-second (100 fs to 10 ps) electron pulse sequences at >1 GHz repetition rates. Applying the EMMP to a transmission electron microscope (TEM) with any dc electron source, a GHz stroboscopic high-duty-cycle TEM can be realized. Unlike in many recent developments in time-resolved TEM that rely on a sample pumping laser paired with a laser launching electrons from a photocathode to probe the sample, there is no laser in the presented experimental set-up. This is expected to be a significant relief for electron microscopists who are not familiar with laser systems. The EMMP and the sample are exte...

  10. Pulsed laser deposition with a high average power free electron laser: Benefits of subpicosecond pulses with high repetition rate

    E-Print Network [OSTI]

    Reilly, Anne

    Pulsed laser deposition with a high average power free electron laser: Benefits of subpicosecond 2002 We have conducted experiments exploring pulsed laser deposition of thin films using the high average power Thomas Jefferson National Accelerator Facility Free Electron Laser. The combination

  11. Ultra low-K shrinkage behavior when under electron beam in a scanning electron microscope

    SciTech Connect (OSTI)

    Lorut, F.; Imbert, G. [ST Microelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France)] [ST Microelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); Roggero, A. [Centre National d'Etudes Spatiales, 18 Avenue Edouard Belin, 31400 Toulouse (France)] [Centre National d'Etudes Spatiales, 18 Avenue Edouard Belin, 31400 Toulouse (France)

    2013-08-28

    In this paper, we investigate the tendency of porous low-K dielectrics (also named Ultra Low-K, ULK) behavior to shrink when exposed to the electron beam of a scanning electron microscope. Various experimental electron beam conditions have been used for irradiating ULK thin films, and the resulting shrinkage has been measured through use of an atomic force microscope tool. We report the shrinkage to be a fast, cumulative, and dose dependent effect. Correlation of the shrinkage with incident electron beam energy loss has also been evidenced. The chemical modification of the ULK films within the interaction volume has been demonstrated, with a densification of the layer and a loss of carbon and hydrogen elements being observed.

  12. Magnetic Field Generation and Electron Acceleration in Relativistic Laser Channel

    SciTech Connect (OSTI)

    I.Yu. Kostyukov; G. Shvets; N.J. Fisch; J.M. Rax

    2001-12-12

    The interaction between energetic electrons and a circularly polarized laser pulse inside an ion channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the ion channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy. Absorbed energy and generated magnetic field are estimated for the small and large energy gain regimes. Qualitative comparisons with recent experiments are also made.

  13. Longitudinally Coherent Single-Spike Radiation from a Self-Amplified Spontaneous Emission Free-Electron Laser

    E-Print Network [OSTI]

    Marcus, Gabriel Andrew

    2012-01-01

    power supplies, electron beam diagnostics, and FEL radiationbeen reported. Electron Beam Characterization The diagnosticelectron beams. In addition, nonlinear optics, the foundation upon which all FROG diagnostics

  14. Higher harmonics generation in relativistic electron beam with virtual cathode

    SciTech Connect (OSTI)

    Kurkin, S. A., E-mail: KurkinSA@gmail.com; Badarin, A. A.; Koronovskii, A. A.; Hramov, A. E. [Saratov State Technical University, Politechnicheskaja 77, Saratov 410028, Russia and Saratov State University, Astrakhanskaja 83, Saratov 410012 (Russian Federation)

    2014-09-15

    The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in the spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.

  15. The influence of electron irradiation on electron holography of focused ion beam milled GaAs p-n junctions

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    The influence of electron irradiation on electron holography of focused ion beam milled GaAs p beam electron diffraction CBED , a value for Vbi in the electri- cally "active" part of the specimen, United Kingdom Received 16 November 2006; accepted 10 March 2007; published online 14 May 2007 Electron

  16. Semiconductor diode laser having an intracavity spatial phase controller for beam control and switching

    DOE Patents [OSTI]

    Hohimer, J.P.

    1994-06-07

    A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure. 6 figs.

  17. Semiconductor diode laser having an intracavity spatial phase controller for beam control and switching

    DOE Patents [OSTI]

    Hohimer, John P. (Albuquerque, NM)

    1994-01-01

    A high-power broad-area semiconductor laser having a intracavity spatial phase controller is disclosed. The integrated intracavity spatial phase controller is easily formed by patterning an electrical contact metallization layer when fabricating the semiconductor laser. This spatial phase controller changes the normally broad far-field emission beam of such a laser into a single-lobed near-diffraction-limited beam at pulsed output powers of over 400 mW. Two operating modes, a thermal and a gain operating mode, exist for the phase controller, allowing for steering and switching the beam as the modes of operation are switched, and the emission beam may be scanned, for example, over a range of 1.4 degrees or switched by 8 degrees. More than one spatial phase controller may be integrated into the laser structure.

  18. Nanowire growth by an electron beam induced massive phase transformation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sood, Shantanu [State Univ., of New York, Stony Brook, NY (United States); Kisslinger, Kim [Brookhaven National Lab. (BNL), Upton, NY (United States); Gouma, Perena [State Univ., of New York, Stony Brook, NY (United States)

    2014-12-01

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stable growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.

  19. Nanowire growth by an electron beam induced massive phase transformation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stablemore »growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.« less

  20. Nanowire growth by an electron beam induced massive phase transformation

    SciTech Connect (OSTI)

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stable growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.

  1. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    SciTech Connect (OSTI)

    Liu, James C.; Rokni, Sayed H.; /SLAC; Vylet, Vaclav; /Jefferson Lab

    2009-12-11

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power ({approx} 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  2. Halo formation and self-pinching of an electron beam undergoing the Weibel instability

    E-Print Network [OSTI]

    Kaganovich, Igor

    Halo formation and self-pinching of an electron beam undergoing the Weibel instability Vladimir-D Phys. Plasmas 19, 092511 (2012) 0.22 THz wideband sheet electron beam traveling wave tube amplifier://pop.aip.org/about/rights_and_permissions #12;Halo formation and self-pinching of an electron beam undergoing the Weibel instability Vladimir

  3. Stabilization of a cold cathode electron beam glow discharge for surface treatment

    E-Print Network [OSTI]

    Rocca, Jorge J.

    Stabilization of a cold cathode electron beam glow discharge for surface treatment N. Mingolo and C that the reproducibility of electron beam pulses generated by a high power, cold cathode glow discharge is greatly improved cathode high voltage glow discharges can generate powerful electron beams for materials processing.1

  4. Geometry of nanopore devices fabricated by electron beam lithography: Simulations and experimental comparisons

    E-Print Network [OSTI]

    Nair, Sankar

    Geometry of nanopore devices fabricated by electron beam lithography: Simulations and experimental 2013 Keywords: Nanopore Simulation Electron beam lithography Penelope Nanotechnology Monte Carlo a b be fabricated by electron beam lithography (EBL) with high density (on the order of 10 devices per cm2

  5. BEAM TRANSPORT EXPERIMENTS OVER HALF-TURN AT THE UNIVERSITY OF MARYLAND ELECTRON RING (UMER)

    E-Print Network [OSTI]

    Valfells, Ágúst

    BEAM TRANSPORT EXPERIMENTS OVER HALF-TURN AT THE UNIVERSITY OF MARYLAND ELECTRON RING (UMER) S energy (up to 10 keV), high current (up to 100 mA) electron beams. A general description and motivation of electron beam transport experiments over one-half turn, i.e. 18 FODO periods. A detailed account

  6. Surface roughening by electron beam heating D. Grozea, E. Landree, and L. D. Marks

    E-Print Network [OSTI]

    Marks, Laurence D.

    Surface roughening by electron beam heating D. Grozea, E. Landree, and L. D. Marks Department 1997; accepted for publication 15 August 1997 The effect of electron beam heating during. The electron beam irradiation produced a disordered surface on the incident side of the sample and well

  7. Scattering with angular limitation projection electron beam lithography for suboptical lithography

    E-Print Network [OSTI]

    Harriott, Lloyd R.

    Scattering with angular limitation projection electron beam lithography for suboptical lithography era early in the next century. The scattering with angular limitation projection electron-beam lithography SCALPEL approach combines the high resolution and wide process latitude inherent in electron beam

  8. Reinforcing multiwall carbon nanotubes by electron beam irradiation Martial Duchamp,1

    E-Print Network [OSTI]

    Tománek, David

    Reinforcing multiwall carbon nanotubes by electron beam irradiation Martial Duchamp,1 Richard August 2010; published online 25 October 2010 We study the effect of electron beam irradiation-slip motion prior to irradiation, indicating presence of extended defects. Upon electron beam irradiation

  9. Modification of graphene properties due to electron-beam irradiation D. Teweldebrhan and A. A. Balandina

    E-Print Network [OSTI]

    Modification of graphene properties due to electron-beam irradiation D. Teweldebrhan and A. A of changes in the single and bilayer graphene crystal lattice induced by the low and medium energy electron-beam and device fabrication, which rely on the electron microscopy and focused ion beam processing. © 2009

  10. High quality YBa2Cu307 Josephson junctions made by direct electron beam writing

    E-Print Network [OSTI]

    Nadgorny, Boris

    High quality YBa2Cu307 Josephson junctions made by direct electron beam writing S. K. Tolpygo, S beam writing over YBa,C&O, thin-tilm microbridges, using scanning transmission electron microscope fabricated by the technologically attractive method of direct electron beam writing. The idea of using

  11. Merging of Super-Alfvenic Current Filaments during Collisionless Weibel Instability of Relativistic Electron Beams

    E-Print Network [OSTI]

    Kaganovich, Igor

    of Relativistic Electron Beams Oleg Polomarov,1 Igor Kaganovich,2 and Gennady Shvets1 1 Department of Physics energetics of current filaments during the Weibel instability of an electron beam in a collisionless plasma in the collective energy loss of a relativistic electron beam in a target plasma [6­ 13]. Collisionless WI has been

  12. Influence of process variables on electron beam chemical vapor deposition of platinum

    E-Print Network [OSTI]

    Wang, Zhong L.

    Influence of process variables on electron beam chemical vapor deposition of platinum D. Beaulieu; accepted 8 August 2005; published 22 September 2005 Electron beam chemical vapor deposition was performed. DOI: 10.1116/1.2050672 I. INTRODUCTION Electron beam chemical vapor deposition EBCVD is a technology

  13. Low-voltage spatial-phase-locked scanning-electron-beam lithography

    E-Print Network [OSTI]

    Cheong, Lin Lee

    2010-01-01

    Spatial-phase-locked electron-beam lithography (SPLEBL) is a method that tracks and corrects the position of an electron-beam in real-time by using a reference grid placed above the electron-beam resist. In this thesis, ...

  14. Fiber Optic Picosecond Laser Pulse Transmission Line for Hydrogen Ion Beam Profile Measurement

    SciTech Connect (OSTI)

    Liu, Yun [ORNL; Huang, Chunning [ORNL; Aleksandrov, Alexander V [ORNL

    2013-01-01

    We present a fiber optic laser pulse transmission line for non-intrusive longitudinal profile measurement of the hydrogen ion (H-) beam at the front-end of the Spallation Neutron Source (SNS) accelerator. The 80.5 MHz, 2.5 ps, multi-killowatt optical pulses are delivered to the accelerator beam line through a large mode area polarization maintaining optical fiber to ensure a high measurement stability. The transmission efficiency, output laser beam quality, pulse jitter and pulse width broadening over a 100-ft fiber line are experimentally investigated. A successful measurement of the H- beam microbunch (~130 ps) profile is obtained. Our experiment is the first demonstration of particle beam profile diagnostics using fiber optic laser pulse transmission line.

  15. Electron bunch energy and phase feed-forward stabilization system for the Mark V RF-linac free-electron laser

    SciTech Connect (OSTI)

    Hadmack, M. R.; Kowalczyk, J. M. D.; Lienert, B. R.; Madey, J. M. J.; Szarmes, E. B. [Department of Physics and Astronomy, University of Hawai'i at Manoa, Honolulu, Hawaii 96822 (United States); Jacobson, B. T. [RadiaBeam Technologies, Santa Monica, California 90404 (United States)

    2013-06-15

    An amplitude and phase compensation system has been developed and tested at the University of Hawai'i for the optimization of the RF drive system to the Mark V free-electron laser. Temporal uniformity of the RF drive is essential to the generation of an electron beam suitable for optimal free-electron laser performance and the operation of an inverse Compton scattering x-ray source. The design of the RF measurement and compensation system is described in detail and the results of RF phase compensation are presented. Performance of the free-electron laser was evaluated by comparing the measured effects of phase compensation with the results of a computer simulation. Finally, preliminary results are presented for the effects of amplitude compensation on the performance of the complete system.

  16. Electron beam assisted synthesis of cadmium selenide nanomaterials

    SciTech Connect (OSTI)

    Rath, M. C.; Guleria, A.; Singh, S.; Singh, A. K.; Adhikari, S.; Sarkar, S. K.

    2013-02-05

    Cadmium selenide nanomaterials of various shapes and sizes have been synthesized in different condensed media through electron beam irradiation using a 7 MeV linear accelerator. The microstructures in different media as well as the presence of capping reagents play a crucial role in the formation of nanomaterials of different shapes and sizes. Their optical properties could be efficiently tuned by controlling the synthetic parameters.

  17. Simulation Studies of Beam-Beam Effects of a Ring-Ring Electron-Ion Collider Based on CEBAF

    SciTech Connect (OSTI)

    Yuhong Zhang,Ji Qiang

    2009-05-01

    The collective beam-beam effect can potentially cause a rapid growth of beam sizes and reduce the luminosity of a collider to an unacceptably low level. The ELIC, a proposed ultra high luminosity electron-ion collider based on CEBAF, employs high repetition rate crab crossing colliding beams with very small bunch transverse sizes and very short bunch lengths, and collides them at up to 4 interaction points with strong final focusing. All of these features can make the beam-beam effect challenging. In this paper, we present simulation studies of the beam-beam effect in ELIC using a self-consistent strong-strong beam-beam simulation code developed at Lawrence Berkeley National Laboratory. This simulation study is used for validating the ELIC design and for searching for an optimal parameter set.

  18. Laser Triggered Injection of Electrons in a Laser Wakefield Accelerator with the Colliding Pulse

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    consider a CPI configuration in which the electron injection results from the beat wave generated, Berkeley, CA 94720 University of Tokyo, Japan University of Paris XI, Orsay, France § Department (colliding with the drive laser pulse, used to generate a plasma wake) is discussed. The threshold laser

  19. Metal Photocathodes for Free Electron Laser Applications

    E-Print Network [OSTI]

    Greaves, Corin Michael Ricardo

    2012-01-01

    uSXRD orientation map of the LCLS Photocathode. The field ofimage of the center of the LCLS photocathode. The horizontalsize of the laser spot in LCLS. The image was taken with a

  20. A microwave chip-based beam splitter for low-energy guided electrons

    E-Print Network [OSTI]

    Jakob Hammer; Sebastian Thomas; Philipp Weber; Peter Hommelhoff

    2015-05-18

    We demonstrate the splitting of a low-energy electron beam by means of a microwave pseudopotential formed above a planar chip substrate. Beam splitting arises from smoothly transforming the transverse guiding potential for an electron beam from a single-well harmonic confinement into a double-well, thereby generating two separated output beams with $5\\,$mm lateral spacing. Efficient beam splitting is observed for electron kinetic energies up to $3\\,$eV, in excellent agreement with particle tracking simulations. We discuss prospects of this novel beam splitter approach for electron-based quantum matter-wave optics experiments.

  1. Precision Electron-Beam Polarimetry using Compton Scattering at 1 GeV

    E-Print Network [OSTI]

    A. Narayan; D. Jones; J. C. Cornejo; M. M. Dalton; W. Deconinck; D. Dutta; D. Gaskell; J. W. Martin; K. D. Paschke; V. Tvaskis; A. Asaturyan; J. Benesch; G. Cates; B. S. Cavness; L. A. Dillon-Townes; G. Hays; E. Ihloff; R. Jones; S. Kowalski; L. Kurchaninov; L. Lee; A. McCreary; M. McDonald; A. Micherdzinska; A. Mkrtchyan; H. Mkrtchyan; V. Nelyubin; S. Page; W. D. Ramsay; P. Solvignon; D. Storey; A. Tobias; E. Urban; C. Vidal; P. Wang; S. Zhamkotchyan

    2015-09-22

    We report on the highest precision yet achieved in the measurement of the polarization of a low energy, $\\mathcal{O}$(1 GeV), electron beam, accomplished using a new polarimeter based on electron-photon scattering, in Hall~C at Jefferson Lab. A number of technical innovations were necessary, including a novel method for precise control of the laser polarization in a cavity and a novel diamond micro-strip detector which was able to capture most of the spectrum of scattered electrons. The data analysis technique exploited track finding, the high granularity of the detector and its large acceptance. The polarization of the $180~\\mu$A, $1.16$~GeV electron beam was measured with a statistical precision of $<$~1\\% per hour and a systematic uncertainty of 0.59\\%. This exceeds the level of precision required by the \\qweak experiment, a measurement of the vector weak charge of the proton. Proposed future low-energy experiments require polarization uncertainty $<$~0.4\\%, and this result represents an important demonstration of that possibility. This measurement is also the first use of diamond detectors for particle tracking in an experiment.

  2. Phase stability of a standing-wave free-electron laser

    E-Print Network [OSTI]

    Sharp, W.M.

    2008-01-01

    J. S. Wurtele, "Simulation of a Standing-Wave Free-ElectronPhase Stability of a Standing-Wave Free-Electron Laser W. M.Phase stability of a standing-wave free-electron laser W. M.

  3. Ion bunch length effects on the beam-beam interaction and its compensation in a high-luminosity ring-ring electron-ion collider

    SciTech Connect (OSTI)

    Montag C.; Oeftiger, A.; Fischer, W.

    2012-05-20

    One of the luminosity limits in a ring-ring electron-ion collider is the beam-beam effect on the electrons. In the limit of short ion bunches, simulation studies have shown that this limit can be significantly increased by head-on beam-beam compensation with an electron lens. However, with an ion bunch length comparable to the beta-function at the IP in conjunction with a large beam-beam parameter, the electrons perform a sizeable fraction of a betatron oscillation period inside the long ion bunches. We present recent simulation results on the compensation of this beam-beam interaction with multiple electron lenses.

  4. Exact analytical expression for the electromagnetic field in a focused laser beam or pulse

    E-Print Network [OSTI]

    Alexander M. Fedotov; Konstantin Yu. Korolev; Maxim V. Legkov

    2007-05-18

    We present a new class of exact nonsingular solutions for the Maxwell equations in vacuum, which describe the electromagnetic field of the counterpropagating focused laser beams and the subperiod focused laser pulse. These solutions are derived by the use of a modification of the "complex source method", investigated and visualized.

  5. Fast Ignition relevant study of the flux of high intensity laser generated electrons via a hollow cone into a laser-imploded plasma

    SciTech Connect (OSTI)

    Key, M; Adam, J; Akli, K; Borgheshi, M; Chen, M; Evans, R; Freeman, R; Hatchett, S; Hill, J; Heron, A; King, J; Lancaster, K; Mackinnon, A; Norreys, P; Phillips, T; Romagnani, L; Snavely, R; Stephens, R; Stoeckl, C

    2005-10-11

    An integrated experiment relevant to fast ignition is described. A Cu doped CD spherical shell target is imploded around an inserted hollow Au cone by a six beam 600J, 1ns laser to a peak density of 4gcm{sup -3} and a diameter of 100 {micro}m. A 10 ps, 20TW laser pulse is focused into the cone at the time of peak compression. The flux of high-energy electrons through the imploded material is determined from the yield of Cu K{alpha} fluorescence by comparison with a Monte Carlo model and is estimated to carry 15% of the laser energy. Collisional and Ohmic heating are modeled. An electron spectrometer shows significantly greater reduction of the transmitted electron flux than is due to binary collisions and Ohmic potential. Enhanced scattering by instability-induced magnetic fields is suggested.

  6. Rapid embedded wire heating via resistive guiding of laser-generated fast electrons as a hydrodynamic driver

    SciTech Connect (OSTI)

    Robinson, A. P. L.; Schmitz, H. [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom)] [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Pasley, J. [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom) [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom); York Plasma Institute, University of York, York YO10 5DD (United Kingdom)

    2013-12-15

    Resistively guiding laser-generated fast electron beams in targets consisting of a resistive wire embedded in lower Z material should allow one to rapidly heat the wire to over 100 eV over a substantial distance without strongly heating the surrounding material. On the multi-ps timescale, this can drive hydrodynamic motion in the surrounding material. Thus, ultra-intense laser solid interactions have the potential as a controlled driver of radiation hydrodynamics in solid density material. In this paper, we assess the laser and target parameters needed to achieve such rapid and controlled heating of the embedded wire.

  7. Electron acceleration in cavitated laser produced ion channels

    SciTech Connect (OSTI)

    Naseri, N. [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada) [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Tech-X Corporation, Boulder, Colorado 80303 (United States); Pesme, D. [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada) [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Centre de Physique Théorique, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Rozmus, W. [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada)] [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada)

    2013-10-15

    This paper is concerned with the channeling of a relativistic laser pulse in an underdense plasma and with the subsequent generation of fast electrons in the cavitated ion channel. The laser pulse has a duration of several hundreds of femtoseconds and its power P{sub L} exceeds the critical power for laser channeling P{sub ch}, with P{sub ch}?1.1P{sub c}, P{sub c} denoting the critical power for relativistic self-focusing. The laser pulse is focused in a plasma of electron density n{sub 0} such that the ratio n{sub 0}/n{sub c} lies in the interval [10{sup ?3},10{sup ?1}], n{sub c} denoting the critical density. The laser-plasma interaction under such conditions is investigated by means of three dimensional Particle-In-Cell (PIC) simulations. It is observed that the steep laser front gives rise to the excitation of a surface wave which propagates along the sharp radial boundaries of the electron free channel created by the laser pulse. The mechanism responsible for the generation of relativistic electrons observed in the PIC simulations is also analyzed by means of a test particles code. The fast electrons are found to be generated by the combination of a surface wave and of the betatron resonance. The maximum electron energy observed in the simulations is scaled as a function of P{sub L}/P{sub c}; it reaches 350–600 MeV for P{sub L}/P{sub c} = 70–140.

  8. 570 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 16, NO. 5, OCTOBER 1988 A Reflex Electron Beam Discharge as a Plasma

    E-Print Network [OSTI]

    Rocca, Jorge J.

    570 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 16, NO. 5, OCTOBER 1988 A Reflex Electron Beam Discharge as a Plasma Source for Electron Beam Generation Abstract-A reflex electron beam glow discharge has been used as a plasma source for the generation of broad-area electron beams. An electron current

  9. Laser-Driven Shock Acceleration of Ion Beams from Spherical Mass-Limited Targets

    SciTech Connect (OSTI)

    Henig, A.; Kiefer, D.; Hoerlein, R.; Major, Zs.; Krausz, F.; Habs, D. [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Geissler, M. [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Department of Physics and Astronomy, Queen's University Belfast, Belfast BT7 1NN (United Kingdom); Rykovanov, S. G. [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Moscow Physics Engineering Institute, Kashirskoe shosse 31, Moscow (Russian Federation); Ramis, R. [ETSI Aeronauticos, Universidad Politecnica de Madrid (Spain); Osterhoff, J.; Veisz, L.; Karsch, S. [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Schreiber, J. [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)

    2009-03-06

    We report on experimental studies of ion acceleration from spherical targets of diameter 15 {mu}m irradiated by ultraintense (1x10{sup 20} W/cm{sup 2}) pulses from a 20-TW Ti:sapphire laser system. A highly directed proton beam with plateau-shaped spectrum extending to energies up to 8 MeV is observed in the laser propagation direction. This beam arises from acceleration in a converging shock launched by the laser, which is confirmed by 3-dimensional particle-in-cell simulations. The temporal evolution of the shock-front curvature shows excellent agreement with a two-dimensional radiation pressure model.

  10. Cooperative effect of ultraviolet and near-infrared beams in laser-induced condensation

    SciTech Connect (OSTI)

    Matthews, M.; Henin, S.; Pomel, F.; Kasparian, J.; Wolf, J.-P.; Théberge, F.; Daigle, J.-F.; Lassonde, P.; Kieffer, J.-C.

    2013-12-23

    We demonstrate the cooperative effect of near infrared (NIR) and ultraviolet (UV) beams on laser-induced condensation. Launching a UV laser after a NIR pulse yields up to a 5-fold increase in the production of nanoparticles (25–300 nm) as compared to a single NIR beam. This cooperative effect exceeds the sum of those from the individual beams and occurs for delays up to 1 ?s. We attribute it to the UV photolysis of ozone created by the NIR pulses. The resulting OH radicals oxidize NO{sub 2} and volatile organic compounds, producing condensable species.

  11. Simulating a Maxwellian plasma using an electron beam ion trap D. W. Savina)

    E-Print Network [OSTI]

    Savin, Daniel Wolf

    Simulating a Maxwellian plasma using an electron beam ion trap D. W. Savina) Columbia Astrophysics for producing a Maxwell­Boltzmann electron energy distribution using an electron beam ion trap EBIT of DR to EIE lines in heliumlike ions is a well understood electron temperature diagnostic

  12. Increasing the upper-limit intensity and temperature range for thermal self-focusing of a laser beam by using plasma density ramp-up

    SciTech Connect (OSTI)

    Bokaei, B.; Niknam, A. R.

    2014-03-15

    This work is devoted to improving relativistic and ponderomotive thermal self-focusing of the intense laser beam in an underdense plasma. It is shown that the ponderomotive nonlinearity induces a saturation mechanism for thermal self-focusing. Therefore, in addition to the well-known lower-limit critical intensity, there is an upper-limit intensity for thermal self-focusing above which the laser beam starts to experience ponderomotive defocusing. It is indicated that the upper-limit intensity value is dependent on plasma and laser parameters such as the plasma electron temperature, plasma density, and laser spot size. Furthermore, the effect of the upward plasma density ramp profile on the thermal self-focusing is studied. Results show that by using the plasma density ramp-up, the upper-limit intensity increases and the self-focusing temperature range expands.

  13. Quantum radiation by electrons in lasers and the Unruh effect

    E-Print Network [OSTI]

    Ralf Schützhold; Clovis Maia

    2010-04-14

    In addition to the Larmor radiation known from classical electrodynamics, electrons in a laser field may emit pairs of entangled photons -- which is a pure quantum effect. We investigate this quantum effect and discuss why it is suppressed in comparison with the classical Larmor radiation (which is just Thomson backscattering of the laser photons). Further, we provide an intuitive explanation of this process (in a simplified setting) in terms of the Unruh effect.

  14. Fabrication of moth-eye structures on silicon by direct six-beam laser interference lithography

    SciTech Connect (OSTI)

    Xu, Jia; Zhang, Ziang; Weng, Zhankun; Wang, Zuobin Wang, Dapeng

    2014-05-28

    This paper presents a new method for the generation of cross-scale laser interference patterns and the fabrication of moth-eye structures on silicon. In the method, moth-eye structures were produced on a surface of silicon wafer using direct six-beam laser interference lithography to improve the antireflection performance of the material surface. The periodic dot arrays of the moth-eye structures were formed due to the ablation of the irradiance distribution of interference patterns on the wafer surface. The shape, size, and distribution of the moth-eye structures can be adjusted by controlling the wavelength, incidence angles, and exposure doses in a direct six-beam laser interference lithography setup. The theoretical and experimental results have shown that direct six-beam laser interference lithography can provide a way to fabricate cross-scale moth-eye structures for antireflection applications.

  15. Collinear Laser-Beam Ion-Beam Measurement of the Mean Lifetime of the Ar Ii 4p'2f-Degrees-7/2 Level 

    E-Print Network [OSTI]

    Jin, J.; Church, David A.

    1993-01-01

    The mean lifetime tau of the 4p'F-2(7/2)-degrees level of Ar II has been measured using a variant of the collinear laser-beam-fast-ion-beam spectroscopy technique. Our variant requires no mechanical motion or laser frequency tuning. The result...

  16. Initial commissioning results with the NSCL Electron Beam Ion Trap

    SciTech Connect (OSTI)

    Schwarz, S.; Kittimanapun, K.; Lapierre, A.; Leitner, D.; Ottarson, J.; Portillo, M. [National Superconducting Cyclotron Laboratory, NSCL, Michigan State University, East Lansing, Michigan 48824 (United States); Bollen, G. [National Superconducting Cyclotron Laboratory, NSCL, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Lopez-Urrutia, J. R. Crespo [Max-Planck Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Kester, O. [GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany)

    2012-02-15

    The ReA reaccelerator is being added to the National Superconducting Cyclotron Laboratory (NSCL) fragmentation facility in order to provide exotic rare-isotope beams, not available at the Isotope Separation On-Line facilities, in the several-MeV/u energy range. The first stage of the NSCL reaccelerator complex, consisting of an EBIT charge breeder, a room-temperature radiofrequency quadrupole (RFQ) accelerator, and superconducting linear accelerator modules, has been completed and is being put into operation. Commissioning of the EBIT has started by extracting charge-bred residual gas ions, ions created from a Ne gas jet directed across the EBIT's electron beam and ions captured from an external test ion source. Charge-bred ions from the Ne gas jet have been extracted as a pulse and accelerated through the RFQ and the two cryomodules.

  17. Laser fusion neutron source employing compression with short pulse lasers

    DOE Patents [OSTI]

    Sefcik, Joseph A; Wilks, Scott C

    2013-11-05

    A method and system for achieving fusion is provided. The method includes providing laser source that generates a laser beam and a target that includes a capsule embedded in the target and filled with DT gas. The laser beam is directed at the target. The laser beam helps create an electron beam within the target. The electron beam heats the capsule, the DT gas, and the area surrounding the capsule. At a certain point equilibrium is reached. At the equilibrium point, the capsule implodes and generates enough pressure on the DT gas to ignite the DT gas and fuse the DT gas nuclei.

  18. Laser Based Sub-picoseond Electron Bunch Characterization using 90 Degree Thomson Scattering

    E-Print Network [OSTI]

    Leemans, W.P.

    2008-01-01

    MeV electron beam are shown to be an effective diagnostic toelectron bunches produced with high performance linear accelerators, requires development of beam diagnostics

  19. Measurement of beam characteristics from C{sup 6+} laser ion source

    SciTech Connect (OSTI)

    Yamaguchi, A. Sako, K.; Sato, K.; Hayashizaki, N.; Hattori, T.

    2014-02-15

    We developed a C{sup 6+} laser ion source for a heavy-ion accelerator. A carbon target was irradiated with a Q-switched Nd:YAG laser (1064 nm wavelength, 1.4 J maximum laser energy, 10 ns pulse duration) to generate a high-density plasma. The laser ion source employed a rotating carbon target for continuous operation. Ion beams were extracted from the plasma through a drift space using a direct plasma injection scheme [B. Yu. Sharkov, A. V. Shumshurov, V. P. Dubenkow, O. B. Shamaev, and A. A. Golubev, Rev. Sci. Instrum. 63, 2841 (1992)] up to a maximum voltage of 40 kV. We measured the characteristics of the ion beams from the laser ion source and present the results of experiments here.

  20. EBIT (Electron Beam Ion Trap), N-Division Experimental Physics. Annual report, 1994

    SciTech Connect (OSTI)

    Schneider, D. [ed.

    1995-10-01

    The experimental groups in the Electron Beam Ion Trap (EBIT) program continue to perform front-line research with trapped and extracted highly charged ions (HCI) in the areas of ion/surface interactions, atomic spectroscopy, electron-ion interaction and structure measurements, highly charged ion confinement, and EBIT development studies. The ion surface/interaction studies which were initiated five years ago have reached a stage where they an carry out routine investigations, as well as produce breakthrough results towards the development of novel nanotechnology. At EBIT and SuperEBIT studies of the x-ray emission from trapped ions continue to produce significant atomic structure data with high precision for few electron systems of high-Z ions. Furthermore, diagnostics development for magnetic and laser fusion, supporting research for the x-ray laser and weapons programs, and laboratory astrophysics experiments in support of NASA`s astrophysics program are a continuing effort. The two-electron contributions to the binding energy of helium like ions were measured for the first time. The results are significant because their precision is an order of magnitude better than those of competing measurements at accelerators, and the novel technique isolates the energy corrections that are the most interesting. The RETRAP project which was initiated three years ago has reached a stage where trapping, confining and electronic cooling of HCI ions up to Th{sup 80+} can be performed routinely. Measurements of the rates and cross sections for electron transfer from H{sub 2} performed to determine the lifetime of HCI up to Xe{sup q+} and Th{sup q+} (35 {le} q {le} 80) have been studied at mean energies estimated to be {approximately} 5 q eV. This combination of heavy ions with very high charges and very low energies is rare in nature, but may be encountered in planned fusion energy demonstration devices, in highly charged ion sources, or in certain astrophysical events.