Sample records for laser xfel light

  1. Numerical simulations of X-rays Free Electron Lasers (XFEL)

    E-Print Network [OSTI]

    Paolo Antonelli; Agissilaos Athanassoulis; Zhongyi Huang; Peter A. Markowich

    2014-06-17T23:59:59.000Z

    We study a nonlinear Schr\\"odinger equation which arises as an effective single particle model in X-ray Free Electron Lasers (XFEL). This equation appears as a first-principles model for the beam-matter interactions that would take place in an XFEL molecular imaging experiment in \\cite{frat1}. Since XFEL is more powerful by several orders of magnitude than more conventional lasers, the systematic investigation of many of the standard assumptions and approximations has attracted increased attention. In this model the electrons move under a rapidly oscillating electromagnetic field, and the convergence of the problem to an effective time-averaged one is examined. We use an operator splitting pseudo-spectral method to investigate numerically the behaviour of the model versus its time-averaged version in complex situations, namely the energy subcritical/mass supercritical case, and in the presence of a periodic lattice. We find the time averaged model to be an effective approximation, even close to blowup, for fast enough oscillations of the external field. This work extends previous analytical results for simpler cases \\cite{xfel1}.

  2. Feasibility considerations of a soft-x-ray distributed feedback laser pumped by an X-FEL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Feasibility considerations of a soft-x-ray distributed feedback laser pumped by an X-FEL Jean feedback laser (DFL) pumped by an x- ray free electron laser (X-FEL). The DFL under consideration is a Mg/SiC bi-layered Bragg reflector pumped by a single X-FEL bunch at 57.4 eV, stimulating the Mg L2

  3. Using the X-FEL to photo-pump X-ray laser transitions in He-like Ne

    SciTech Connect (OSTI)

    Nilsen, J; Rohringer, N

    2011-08-30T23:59:59.000Z

    Nearly four decades ago H-like and He-like resonantly photo-pumped laser schemes were proposed for producing X-ray lasers. However, demonstrating these schemes in the laboratory has proved to be elusive because of the difficulty of finding a strong resonant pump line. With the advent of the X-ray free electron laser (X-FEL) at the SLAC Linac Coherent Light Source (LCLS) we now have a tunable X-ray laser source that can be used to replace the pump line in previously proposed laser schemes and allow researchers to study the physics and feasibility of resonantly photo-pumped laser schemes. In this paper we use the X-FEL at 1174 eV to photo-pump the singly excited 1s2p state of He-like Ne to the doubly excited 2p3p state and model gain on the 2p3p-2p2s transition at 175 eV and the 2p3p-1s3p transition at 1017 eV. One motivation for studying this scheme is to explore possible quenching of the gain due to strong non-linear coupling effects from the intense X-FEL beam We compare this scheme with photo-pumping the He-like Ne ground state to the 1s3p singly excited state followed by lasing on the 3p-2s and 3d-2p transitions at 158 and 151 eV. Experiments are being planned at LCLS to study these laser processes and coherent quantum effects.

  4. Absorbed XFEL dose in the components of the LCLS X-Ray Optics

    SciTech Connect (OSTI)

    Hau-Riege, S

    2005-09-27T23:59:59.000Z

    We list the materials that are anticipated to be placed into the Linac Coherent Light Source (LCLS) x-ray free electron laser (XFEL) beam line, their positions, and the absorbed dose, and compare this dose with anticipated damage thresholds.

  5. Rontgen-Freie-Elektronen-Laser European XFEL Abbildung 119: Modul Nr. 8 bei der Verladung zum Transport nach Saclay.

    E-Print Network [OSTI]

    , Slowakei, Spanien und Ungarn) auf die Formulierungen der Gr¨undungsdokumente f¨ur den Eu- ropean XFEL verst

  6. Explosively pumped laser light

    DOE Patents [OSTI]

    Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

    1991-01-01T23:59:59.000Z

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  7. Absorbed XFEL Dose in the Components of the LCLS X-Ray Optics

    SciTech Connect (OSTI)

    Hau-Riege, Stefan

    2010-12-03T23:59:59.000Z

    There is great concern that the short, intense XFEL pulse of the LCLS will damage the optics that will be placed into the beam. We have analyzed the extent of the problem by considering the anticipated materials and position of the optical components in the beam path, calculated the absorbed dose as a function of photon energy, and compared these doses with the expected doses required (i) to observe rapid degradation due to thermal fatigue, (ii) to reach the melting temperature, or (iii) to actually melt the material. We list the materials that are anticipated to be placed into the Linac Coherent Light Source (LCLS) x-ray free electron laser (XFEL) beam line, their positions, and the absorbed dose, and compare this dose with anticipated damage thresholds.

  8. collaboration (Fig. 1). For all their promise, the LCLS and XFEL are large and expensive; the

    E-Print Network [OSTI]

    Cai, Long

    an existing particle accelera- tor, is about 300 million ($450 million), and XFEL will cost about 1 billion by combining the technology of lasers and electron accelerators (Fig. 2). A particle accelerator produces X-FEL. An even more advanced instrument under consideration6,7 is a high-gradient accel- erator

  9. New Laser's "First Light" Shatters Record | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson National Accelerator Facility have delivered first light from their Free Electron Laser (FEL). Only 2 years after ground was broken for the FEL, infrared light of more...

  10. Explosive laser light initiation of propellants

    DOE Patents [OSTI]

    Piltch, M.S.

    1993-05-18T23:59:59.000Z

    A improved initiator for artillery shell using an explosively generated laser light to uniformly initiate the propellent. A small quantity of a high explosive, when detonated, creates a high pressure and temperature, causing the surrounding noble gas to fluoresce. This fluorescence is directed into a lasing material, which lases, and directs laser light into a cavity in the propellant, uniformly initiating the propellant.

  11. Structural information extracted from the diffraction of XFEL fs-pulses in a crystal

    E-Print Network [OSTI]

    Leonov, A; Benediktovitch, A; Feranchuk, I; Pietsch, U

    2015-01-01T23:59:59.000Z

    We present a theoretical justification for a method of extracting of supplementary information for the phase retrieval procedure taken from diffraction of fs-pulses from X-ray Free Electron Laser facilities. The approach is based on numerical simulation of the dynamics of the electron density in the crystal composed of different atoms in the unit cell, namely a bi-atomic crystal containing heavy and light atoms. It is shown that evaluation of diffraction intensities measured by means of different values of XFEL pulse parameters enables to find absolute values of structure factors for both types of atoms and their relative phase. The accuracy of structural information is discussed in terms of fluctuations of the evaluated atomic scattering factors. Our approach could be important for improvement of phase retrieval methods with respect to a more efficient determination of atomic positions within the unit cell of macromolecules.

  12. Alopecia: A review of laser and light therapies

    E-Print Network [OSTI]

    Rangwala, Sophia; Rashid, Rashid M

    2012-01-01T23:59:59.000Z

    with alopecia. ACKNOWLEDGEMENT: Sophia Rangwala gratefullyof laser and light therapies Sophia Rangwala AB, Rashid M

  13. Engineering Light: Quantum Cascade Lasers

    ScienceCinema (OSTI)

    Claire Gmachl

    2010-09-01T23:59:59.000Z

    Quantum cascade lasers are ideal for environmental sensing and medical diagnostic applications. Gmachl discusses how these lasers work, and their applications, including their use as chemical trace gas sensors. As examples of these applications, she briefly presents results from her field campaign at the Beijing Olympics, and ongoing campaigns in Texas, Maryland, and Ghana.

  14. Laser microfluidics : fluid actuation by light Laser microfluidics: fluid actuation by light

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Laser microfluidics : fluid actuation by light Laser microfluidics: fluid actuation by light Jean.delville@cpmoh.u-bordeaux1.fr Abstract: The development of microfluidic devices is still hindered by the lack of robust to extend this concept to microfluidic two-phase flows. First, we investigate the destabilization of fluid

  15. Manipulating Bose-Einstein condensates with laser light Shin Inouye

    E-Print Network [OSTI]

    Manipulating Bose-Einstein condensates with laser light by Shin Inouye Submitted to the Department-Einstein condensates with laser light by Shin Inouye Submitted to the Department of Physics on June 7, 2001, in partial-Einstein condensate was probed and manipulated by off-resonant laser beams. Spontaneous and stimulated off

  16. Sailing Before the Light: Laser-Plasma Acceleration

    E-Print Network [OSTI]

    Columbia University

    at focus Andrea Macchi CNR/INO Sailing Before the Light: Laser-Plasma AccelerationDriven by RadiationSailing Before the Light: Laser-Plasma Acceleration Driven by Radiation Pressure Andrea Macchi 1 "Enrico Fermi", University of Pisa, Italy Plasma Physics Colloquium, Dept. of Applied Physics and Applied

  17. Noisy quadrature of squeezed light and laser cooling

    E-Print Network [OSTI]

    G. M. Saxena; A. Agarwal

    2008-07-01T23:59:59.000Z

    The laser cooling of atoms is a result of the combined effect of doppler shift, light shift and polarization gradient. These are basically undesirable phenomena. However, they combine gainfully in realizing laser cooling and trapping of the atoms. In this paper we discuss the laser cooling of atoms in the presence of the squeezed light with the decay of atomic dipole moment into noisy quadrature. We show that the higher decay rate of the atomic dipole moment into the noisy quadrature, which is also an undesirable effect, may contribute in realizing larger cooling force vis-a-vis normal laser light.

  18. Light-shining-through-walls with lasers

    E-Print Network [OSTI]

    Friederike Januschek

    2014-10-07T23:59:59.000Z

    Light-shining-through-walls experiments are the search experiments for weakly interacting slim particles (WISPs) with the smallest model dependence. They have the advantage that not only the detection, but also the production of the WISPs takes place in the laboratory and can thus be controlled. Using lasers is the preferred option for most of the mass region and has led to the world's most stringent laboratory limits (ALPS I) there. At CERN, OSQAR promises to surpass these and at DESY ALPS II is currently set up, which is planning to probe the axion-like particle to photon coupling down to $|g_{a\\gamma}|\\gtrsim 2\\cdot10^{-11}$ GeV$^{-1}$, which is in a region favored by many astrophysical hints.

  19. Laser microfluidics: fluid actuation by light

    E-Print Network [OSTI]

    Jean-Pierre Delville; Matthieu Robert De Saint-Vincent; Robert D. Schroll; Hamza Chraibi; B. Issenmann; Régis Wunenburger; Didier Lasseux; Wendy W Zhang; Etienne Brasselet

    2009-03-10T23:59:59.000Z

    The development of microfluidic devices is still hindered by the lack of robust fundamental building blocks that constitute any fluidic system. An attractive approach is optical actuation because light field interaction is contactless and dynamically reconfigurable, and solutions have been anticipated through the use of optical forces to manipulate microparticles in flows. Following the concept of an 'optical chip' advanced from the optical actuation of suspensions, we propose in this survey new routes to extend this concept to microfluidic two-phase flows. First, we investigate the destabilization of fluid interfaces by the optical radiation pressure and the formation of liquid jets. We analyze the droplet shedding from the jet tip and the continuous transport in laser-sustained liquid channels. In the second part, we investigate a dissipative light-flow interaction mechanism consisting in heating locally two immiscible fluids to produce thermocapillary stresses along their interface. This opto-capillary coupling is implemented in adequate microchannel geometries to manipulate two-phase flows and propose a contactless optical toolbox including valves, droplet sorters and switches, droplet dividers or droplet mergers. Finally, we discuss radiation pressure and opto-capillary effects in the context of the 'optical chip' where flows, channels and operating functions would all be performed optically on the same device.

  20. The LINAC Coherent Light Source and Radiological Issues During the Commissioning

    SciTech Connect (OSTI)

    Mao, X.S.; Leitner, M.Santana; Vollaire, J.; /SLAC

    2010-08-26T23:59:59.000Z

    The Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory is the world's first X-ray free electron laser (XFEL). Pulses of x-ray laser light from LCLS will be many orders of magnitude brighter and several orders of magnitude shorter than what can be produced by other x-ray sources available in the world. These characteristics will enable frontier new science in many areas. This paper describes the LCLS beam parameters and lay-out. The general radiological issues during commissioning are presented, such as radiation dose rates and integrated doses outside the enclosure. Also, specific radiological issues related to X-ray free electron lasers are discussed. XFEL with high peak power will burn through high-Z materials. The X-ray beam needs to be blocked by stoppers when the downstream areas are occupied. LCLS stoppers feature a piece of boron carbide (B{sub 4}C), 10 mm thick. B{sub 4}C is one of the best materials since it has a low absorption coefficient for X-rays and a high melting temperature. Theoretical calculations indicate that the unfocused fluence of the LCLS XFEL beam should be about one order of magnitude below the damage threshold for bulk B{sub 4}C, for 830 eV FEL radiation. However, these calculations have not been tested experimentally and cannot be validated until LCLS begins providing 830 eV XFEL pulses. This paper describes the test plan for using the initial LCLS radiation to evaluate the survivability of B{sub 4}C and reports the preliminary results. Another major issue for LCLS is the potential radiation damage to the LCLS undulator magnets during operation. TLD dosimeters were installed along the LCLS undulators for each period of two or three weeks. This paper reports the integrated doses along the undulators with and without XFEL generation.

  1. Visible light surface emitting semiconductor laser

    DOE Patents [OSTI]

    Olbright, Gregory R. (Boulder, CO); Jewell, Jack L. (Bridgewater, NJ)

    1993-01-01T23:59:59.000Z

    A vertical-cavity surface-emitting laser is disclosed comprising a laser cavity sandwiched between two distributed Bragg reflectors. The laser cavity comprises a pair of spacer layers surrounding one or more active, optically emitting quantum-well layers having a bandgap in the visible which serve as the active optically emitting material of the device. The thickness of the laser cavity is m .lambda./2n.sub.eff where m is an integer, .lambda. is the free-space wavelength of the laser radiation and n.sub.eff is the effective index of refraction of the cavity. Electrical pumping of the laser is achieved by heavily doping the bottom mirror and substrate to one conductivity-type and heavily doping regions of the upper mirror with the opposite conductivity type to form a diode structure and applying a suitable voltage to the diode structure. Specific embodiments of the invention for generating red, green, and blue radiation are described.

  2. Laser warning receiver to identify the wavelength and angle of arrival of incident laser light

    DOE Patents [OSTI]

    Sinclair; Michael B. (Albuquerque, NM); Sweatt, William C. (Albuquerque, NM)

    2010-03-23T23:59:59.000Z

    A laser warning receiver is disclosed which has up to hundreds of individual optical channels each optically oriented to receive laser light from a different angle of arrival. Each optical channel has an optical wedge to define the angle of arrival, and a lens to focus the laser light onto a multi-wavelength photodetector for that channel. Each multi-wavelength photodetector has a number of semiconductor layers which are located in a multi-dielectric stack that concentrates the laser light into one of the semiconductor layers according to wavelength. An electrical signal from the multi-wavelength photodetector can be processed to determine both the angle of arrival and the wavelength of the laser light.

  3. Optical laser systems at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; et al

    2015-05-01T23:59:59.000Z

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  4. Luminescent light source for laser pumping and laser system containing same

    DOE Patents [OSTI]

    Hamil, Roy A. (Tijeras, NM); Ashley, Carol S. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Reed, Scott (Albuquerque, NM); Walko, Robert J. (Albuquerque, NM)

    1994-01-01T23:59:59.000Z

    The invention relates to a pumping lamp for use with lasers comprising a porous substrate loaded with a component capable of emitting light upon interaction of the component with exciting radiation and a source of exciting radiation. Preferably, the pumping lamp comprises a source of exciting radiation, such as an electron beam, and an aerogel or xerogel substrate loaded with a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce light, e.g., visible light, of a suitable band width and of a sufficient intensity to generate a laser beam from a laser material.

  5. Final Report: Cooling Molecules with Laser Light

    SciTech Connect (OSTI)

    Di Rosa, Michael D. [Los Alamos National Laboratory

    2012-05-08T23:59:59.000Z

    Certain diatomic molecules are disposed to laser cooling in the way successfully applied to certain atoms and that ushered in a revolution in ultracold atomic physics, an identification first made at Los Alamos and which took root during this program. Despite their manipulation into numerous achievements, atoms are nonetheless mundane denizens of the quantum world. Molecules, on the other hand, with their internal degrees of freedom and rich dynamical interplay, provide considerably more complexity. Two main goals of this program were to demonstrate the feasibility of laser-cooling molecules to the same temperatures as laser-cooled atoms and introduce a means for collecting laser-cooled molecules into dense ensembles, a foundational start of studies and applications of ultracold matter without equivalence in atomic systems.

  6. Generation of 9 MeV -rays by all-laser-driven Compton scattering with second-harmonic laser light

    E-Print Network [OSTI]

    Umstadter, Donald

    Generation of 9 MeV -rays by all-laser-driven Compton scattering with second-harmonic laser light-harmonic-generated laser light (3 eV) inverse-Compton-scattered from a counterpropagating relativistic (450 MeV) laser in detection. Narrower band- width -rays are generated efficiently by means of inverse Compton scattering (ICS

  7. Laser remote sensing of backscattered light from a target sample

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Williams, John D. (Albuquerque, NM)

    2008-02-26T23:59:59.000Z

    A laser remote sensing apparatus comprises a laser to provide collimated excitation light at a wavelength; a sensing optic, comprising at least one optical element having a front receiving surface to focus the received excitation light onto a back surface comprising a target sample and wherein the target sample emits a return light signal that is recollimated by the front receiving surface; a telescope for collecting the recollimated return light signal from the sensing optic; and a detector for detecting and spectrally resolving the return light signal. The back surface further can comprise a substrate that absorbs the target sample from an environment. For example the substrate can be a SERS substrate comprising a roughened metal surface. The return light signal can be a surface-enhanced Raman signal or laser-induced fluorescence signal. For fluorescence applications, the return signal can be enhanced by about 10.sup.5, solely due to recollimation of the fluorescence return signal. For SERS applications, the return signal can be enhanced by 10.sup.9 or more, due both to recollimation and to structuring of the SERS substrate so that the incident laser and Raman scattered fields are in resonance with the surface plasmons of the SERS substrate.

  8. Single heterostructure lasers: a picosecond light pulse source

    SciTech Connect (OSTI)

    Nunes, F.D.

    1985-01-01T23:59:59.000Z

    In this paper we suggest a new use for single heterostructure semiconductor lasers as a source of high power pulses of coherent light with halfwidths of the order of 10 psec, repetition rates up to hundreds of hertz and tunable photon energy output. Our suggestion is based on the behavior shown by single heterostructure lasers at the Q-switching regime of operation when they exhibit the properties mentioned above.

  9. Light transmittance in forest canopies determined using airborne laser altimetry and in-canopy quantum measurements

    E-Print Network [OSTI]

    Lefsky, Michael

    Light transmittance in forest canopies determined using airborne laser altimetry and in Abstract The vertical distribution of light transmittance was derived from field and laser altimeter-directed laser light than of direct solar radiation from typical elevation angles. Transects of light

  10. Improved crystal orientation and physical properties from single-shot XFEL stills

    SciTech Connect (OSTI)

    Sauter, Nicholas K., E-mail: nksauter@lbl.gov; Hattne, Johan; Brewster, Aaron S.; Echols, Nathaniel; Zwart, Petrus H.; Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-12-01T23:59:59.000Z

    X-ray free-electron laser crystallography relies on the collection of still-shot diffraction patterns. New methods are developed for optimal modeling of the crystals’ orientations and mosaic block properties. X-ray diffraction patterns from still crystals are inherently difficult to process because the crystal orientation is not uniquely determined by measuring the Bragg spot positions. Only one of the three rotational degrees of freedom is directly coupled to spot positions; the other two rotations move Bragg spots in and out of the reflecting condition but do not change the direction of the diffracted rays. This hinders the ability to recover accurate structure factors from experiments that are dependent on single-shot exposures, such as femtosecond diffract-and-destroy protocols at X-ray free-electron lasers (XFELs). Here, additional methods are introduced to optimally model the diffraction. The best orientation is obtained by requiring, for the brightest observed spots, that each reciprocal-lattice point be placed into the exact reflecting condition implied by Bragg’s law with a minimal rotation. This approach reduces the experimental uncertainties in noisy XFEL data, improving the crystallographic R factors and sharpening anomalous differences that are near the level of the noise.

  11. Laser wakefield simulation using a speed-of-light frame envelope model

    E-Print Network [OSTI]

    Cowan, B.

    2010-01-01T23:59:59.000Z

    Laser wake?eld simulation using a speed-of-light frameAbstract. Simulation of laser wake?eld accelerator (LWFA)extend hundreds of laser wave- lengths transversely and many

  12. Fifth-Generation Free-Electron Laser Light Sources

    SciTech Connect (OSTI)

    Pellegrini, Claudio (UCLA) [UCLA

    2011-03-02T23:59:59.000Z

    During the past few years, the Linac Coherent Light Source (LCLS) and the Free-Electron Laser in Hamburg (FLASH) have demonstrated the outstanding capability of free-electron lasers (FELs) as sources of coherent radiation in the soft and hard x-ray region. The high intensity, tens of GW, short pulses (few to less than 100 femtoseconds, and the unique transverse coherence properties are opening a new window to study the structure and dynamics of atomic and molecular systems. The LCLS, FLASH, and the other FELs now under construction are only the beginning of the development of these light sources. The next generations will reach new levels of performance: terawatt, atto-second, ultra-small line-width, high repetition rate, full longitudinal and transverse coherence. These future developments and the R&D needed to successfully build and operate the next generation of FEL light sources will be discussed.

  13. Light source employing laser-produced plasma

    DOE Patents [OSTI]

    Tao, Yezheng; Tillack, Mark S

    2013-09-17T23:59:59.000Z

    A system and a method of generating radiation and/or particle emissions are disclosed. In at least some embodiments, the system includes at least one laser source that generates a first pulse and a second pulse in temporal succession, and a target, where the target (or at least a portion the target) becomes a plasma upon being exposed to the first pulse. The plasma expand after the exposure to the first pulse, the expanded plasma is then exposed to the second pulse, and at least one of a radiation emission and a particle emission occurs after the exposure to the second pulse. In at least some embodiments, the target is a solid piece of material, and/or a time period between the first and second pulses is less than 1 microsecond (e.g., 840 ns).

  14. Study of an HHG-Seeded Free-Electron Laser for the LBNL Next Generation Light Source

    E-Print Network [OSTI]

    Thompson, Neil

    2011-01-01T23:59:59.000Z

    Electron Laser for the LBNL Next Generation Light SourceElectron Laser for the LBNL Next Generation Light SourceBerkeley National Laboratory (LBNL). The proposed facil- ity

  15. Laser in ultrastrong light-matter coupling regime

    E-Print Network [OSTI]

    Motoaki Bamba; Tetsuo Ogawa

    2014-10-15T23:59:59.000Z

    In ultrastrong light-matter coupling regime, it is found theoretically that lasing accompanies odd-order harmonics of radiation field both inside and outside the cavity and even-order harmonics of atomic population. This qualitative difference from the normal laser is generally obtained independent of whether we choose the Coulomb gauge or the electric-dipole one, although quantitative behaviors strongly depend on the gauge choice due to the two-level and single-mode approximations used in our calculation. The lasing also shows a bistability for strong enough light-matter coupling and low enough cavity loss.

  16. Inverse free electron laser accelerator for advanced light sources

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Duris, J. P.; Musumeci, P.; Li, R. K.

    2012-06-01T23:59:59.000Z

    We discuss the inverse free electron laser (IFEL) scheme as a compact high gradient accelerator solution for driving advanced light sources such as a soft x-ray free electron laser amplifier or an inverse Compton scattering based gamma-ray source. In particular, we present a series of new developments aimed at improving the design of future IFEL accelerators. These include a new procedure to optimize the choice of the undulator tapering, a new concept for prebunching which greatly improves the fraction of trapped particles and the final energy spread, and a self-consistent study of beam loading effects which leads to an energy-efficient high laser-to-beam power conversion.

  17. Light emission patterns from stadium-shaped semiconductor microcavity lasers

    E-Print Network [OSTI]

    Susumu Shinohara; Takehiro Fukushima; Takahisa Harayama

    2008-03-10T23:59:59.000Z

    We study light emission patterns from stadium-shaped semiconductor (GaAs) microcavity lasers theoretically and experimentally. Performing systematic wave calculations for passive cavity modes, we demonstrate that the averaging by low-loss modes, such as those realized in multi-mode lasing, generates an emission pattern in good agreement with the ray model's prediction. In addition, we show that the dependence of experimental far-field emission patterns on the aspect ratio of the stadium cavity is well reproduced by the ray model.

  18. Light Wars: The Bright Future of Laser Weapons

    E-Print Network [OSTI]

    Mistry, Hemma

    2009-01-01T23:59:59.000Z

    currently the highest power solid-state laser in the world,funding the Joint High Power Solid-State Laser (JHPSSL)Solid-state lasers and chemical lasers have certain limitations on the power

  19. Fiber Bragg grating inscription by high-intensity femtosecond UV laser light: comparison

    E-Print Network [OSTI]

    Nikogosyan, David N.

    Fiber Bragg grating inscription by high-intensity femtosecond UV laser light: comparison with other 264-nm laser light and a phase mask technique, Bragg grating inscription in a range of different, that result in a significant photosensitivity enhancement of the in- vestigated fibers in comparison

  20. Infrared Spectroscopy of Laser Irradiated Dental Hard Tissues using the Advanced Light Source

    E-Print Network [OSTI]

    on the laser ablation/drilling process and may lead to a reduction in the ablation rate and efficiencyInfrared Spectroscopy of Laser Irradiated Dental Hard Tissues using the Advanced Light Source D Dental Sciences, San Francisco, CA 94143-0758, USA INTRODUCTION Infrared lasers are ideally suited

  1. Radiation Shielding for Electronic Devices OperatingRadiation Shielding for Electronic Devices Operating in XFEL Environment: Monte Carlo Simulations andin XFEL Environment: Monte Carlo Simulations and

    E-Print Network [OSTI]

    Radiation Shielding for Electronic Devices OperatingRadiation Shielding for Electronic Devices undergroundund tunnel. All LLRF Electronic Devices, made of radiation sensitivetunnel. All LLRF Electronic principle of the dedicated radiationtion shielding for the electronic devices to be operating in XFEL

  2. The Development of the Linac Coherent Light Source RF Gun

    E-Print Network [OSTI]

    Dowell, David H; Lewandowski, James; Limborg-Deprey, Cecile; Li, Zenghai; Schmerge, John; Vlieks, Arnold; Wang, Juwen; Xiao, Liling

    2015-01-01T23:59:59.000Z

    The Linac Coherent Light Source (LCLS) is the first x-ray laser user facility based upon a free electron laser (FEL). In addition to many other stringent requirements, the LCLS XFEL requires extraordinary beam quality to saturate at 1.5 angstroms within a 100 meter undulator.[1] This new light source is using the last kilometer of the three kilometer linac at SLAC to accelerate the beam to an energy as high as 13.6 GeV and required a new electron gun and injector to produce a very bright beam for acceleration. At the outset of the project it was recognized that existing RF guns had the potential to produce the desired beam but none had demonstrated it. This paper describes the analysis and design improvements of the BNL/SLAC/UCLA s-band gun leading to achievement of the LCLS performance goals.

  3. Multiple pulse thermal damage thresholds of materials for x-ray free electron laser optics investigated with an ultraviolet laser

    SciTech Connect (OSTI)

    Hau-Riege, Stefan P.; London, Richard A.; Bionta, Richard M.; Soufli, Regina; Ryutov, Dmitri; Shirk, Michael; Baker, Sherry L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94539 (United States); Smith, Patrick M.; Nataraj, Pradeep [Kovio, Inc., 1145 Sonora Court, Sunnyvale, California 94086 (United States)

    2008-11-17T23:59:59.000Z

    Optical elements to be used for x-ray free electron lasers (XFELs) must withstand multiple high-fluence pulses. We have used an ultraviolet laser to study the damage of two candidate materials, crystalline Si and B{sub 4}C-coated Si, emulating the temperature profile expected to occur in optics exposed to XFEL pulses. We found that the damage threshold for 10{sup 5} pulses is {approx}20% to 70% lower than the melting threshold.

  4. Theoretical study of electronic damage in single particle imaging experiments at XFELs for pulse durations 0.1 - 10 fs

    E-Print Network [OSTI]

    Gorobtsov, O Yu; Kabachnik, N M; Vartanyants, I A

    2015-01-01T23:59:59.000Z

    X-ray free-electron lasers (XFELs) may allow to employ the single particle imaging (SPI) method to determine the structure of macromolecules that do not form stable crystals. Ultrashort pulses of 10 fs and less allow to outrun complete disintegration by Coulomb explosion and minimize radiation damage due to nuclear motion, but electronic damage is still present. The major contribution to the electronic damage comes from the plasma generated in the sample that is strongly dependent on the amount of Auger ionization. Since the Auger process has a characteristic time scale on the order of femtoseconds, one may expect that its contribution will be significantly reduced for attosecond pulses. Here, we study the effect of electronic damage on the SPI at pulse durations from 0.1 fs to 10 fs and in a large range of XFEL fluences to determine optimal conditions for imaging of biological samples. We analyzed the contribution of different electronic excitation processes and found that at fluences higher than $10^{13}$-$...

  5. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOE Patents [OSTI]

    Skupsky, Stanley (Rochester, NY); Kessler, Terrance J. (Rochester, NY); Short, Robert W. (Rochester, NY); Craxton, Stephen (Rochester, NY); Letzring, Samuel A. (Honeoye Falls, NY); Soures, John (Pittsford, NY)

    1991-01-01T23:59:59.000Z

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies ("colors") cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers.

  6. Laser light backscatter from intermediate and high Z plasmas

    SciTech Connect (OSTI)

    Berger, R. L.; Constantin, C.; Divol, L.; Meezan, N.; Froula, D. H.; Glenzer, S. H.; Suter, L. J.; Niemann, C. [University of California, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States)

    2006-09-15T23:59:59.000Z

    In experiments at the Omega Laser Facility [J. M. Soures et al., Fusion Technol. 30, 492 (1996)], stimulated Brillouin backscatter (SBS) from gasbags filled with krypton and xenon gases was ten times lower than from CO{sub 2}-filled gasbags with similar electron densities. The SBS backscatter was a 1%-5% for both 527 and 351 nm interaction beams at an intensity of {approx}10{sup 15} W/cm{sup 2}. The SRS backscatter was less than 1%. The 351 nm interaction beam is below the threshold for filamentation and the SBS occurs in the density plateau between the blast waves. Inverse bremsstrahlung absorption of the incident and SBS light account for the lower reflectivity from krypton than from CO{sub 2}. The 527 nm interaction beam filaments in the blowoff plasma before the beam propagates through the blast wave, where it is strongly absorbed. Thus, most of the 527 nm SBS occurs in the flowing plasma outside the blast waves.

  7. Characterization of Light Scattering in Transparent Polycrystalline Laser Ceramics

    E-Print Network [OSTI]

    Sharma, Saurabh

    2013-01-01T23:59:59.000Z

    Laser Media (PLM) …………………………..… 4 Bulk Scatteringacross and through the entire PLM regardless of dimensions.42 Characterization of Transparent PLM …………………………. 43

  8. Boiling the Vacuum with an X-Ray Free Electron Laser

    E-Print Network [OSTI]

    A. Ringwald

    2003-04-15T23:59:59.000Z

    X-ray free electron lasers will be constructed in this decade, both at SLAC in the form of the so-called Linac Coherent Light Source as well as at DESY, where the so-called TESLA XFEL laboratory uses techniques developed for the design of the TeV energy superconducting electron-positron linear accelerator TESLA. Such X-ray lasers may allow also for high-field science applications by exploiting the possibility to focus their beams to a spot with a small radius, hopefully in the range of the laser wavelength. Along this route one obtains very large electric fields, much larger than those obtainable with any optical laser of the same power. We consider here the possibility of obtaining an electric field so high that electron-positron pairs are spontaneously produced in vacuum (Schwinger pair production) and review the prospects to verify this non-perturbative production mechanism for the first time in the laboratory.

  9. Design and commissioning of vertical test cryostats for XFEL superconducting cavities measurements

    SciTech Connect (OSTI)

    Polinski, J.; Chorowski, M.; Duda, P. [Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Bozhko, Y.; Petersen, B.; Schaffran, J. [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607Hamburg (Germany)

    2014-01-29T23:59:59.000Z

    The European X-ray Free Electron Laser (XFEL), now under construction at DESY in Hamburg, will make an extensive use of 1.3 GHz superconducting cavities aimed at accelerating the electrons to the energy of 17.5 GeV. The cavities will be operated at 2 K with the use of saturated HeII. Prior to their assembly in accelerator cryomodules, the RF performance of the cavities will be cold-tested in two dedicated vertical cryostats. Each cryostat allows a simultaneous testing of 4 cavities mounted on a dedicated insert. The cryostats are equipped with external lines allowing their supply with liquid helium and further conversion of the helium into superfluid He II. The paper describes the test stand flow scheme, the technical key elements, including a recuperative heat exchanger, and the cold commissioning. The thermodynamic analysis of the cryostat cool down and steady-state operation is given. A Second Law of Thermodynamics based theoretical model of the heat exchanger performance, and the model experimental validation, is presented.

  10. The European X-ray Free-Electron Laser: A Progress Report | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SLAC, Redtail Conference Room (901-108) M. Altarelli, European XFEL GmbH, Hamburg, Germany The present status of the construction of the European X-ray Free-Electron Laser in...

  11. Laser Drilling - Drilling with the Power of Light

    SciTech Connect (OSTI)

    Brian C. Gahan; Samih Batarseh

    2005-09-28T23:59:59.000Z

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation prototype tool. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

  12. Laser Drilling - Drilling with the Power of Light

    SciTech Connect (OSTI)

    Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

    2007-02-28T23:59:59.000Z

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and side tracking applications. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report has been prepared in two parts and each part may be treated as a stand-alone document. Part 1 (High Energy Laser Drilling) includes the general description of the concept and focuses on results from experiments under the ambient lab conditions. Part 2 (High Energy Laser Perforation and Completion Techniques) discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

  13. Laser Drilling - Drilling with the Power of Light

    SciTech Connect (OSTI)

    Brian C. Gahan; Samih Batarseh

    2004-09-28T23:59:59.000Z

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser compares with other lasers used in past experimental work, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. Variables investigated include laser power, beam intensity, external purging of cut materials, sample orientation, beam duration, beam shape, and beam frequency. The investigation also studied the thermal effects on the two sample rock types and their methods of destruction: spallation for sandstone, and thermal dissociation for limestone. Optimal operating conditions were identified for each rock type and condition. As a result of this experimental work, the HPFL has demonstrated a better capability of cutting and drilling limestone and sandstone when compared with other military and industrial lasers previously tested. Consideration should be given to the HPFL as the leading candidate for near term remote high power laser applications for well construction and completion.

  14. High-intensity double-pulse X-ray free-electron laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F. -J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; et al

    2015-03-06T23:59:59.000Z

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitudemore »in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.« less

  15. Observation of slow light in the noise spectrum of a vertical external cavity surface emitting laser

    E-Print Network [OSTI]

    A. El Amili; B. -X. Miranda; F. Goldfarb; G. Baili; G. Beaudoin; I. Sagnes; F. Bretenaker; M. Alouini

    2010-10-27T23:59:59.000Z

    The role of coherent population oscillations is evidenced in the noise spectrum of an ultra-low noise lasers. This effect is isolated in the intensity noise spectrum of an optimized single-frequency vertical external cavity surface emitting laser. The coherent population oscillations induced by the lasing mode manifest themselves through their associated dispersion that leads to slow light effects probed by the spontaneous emission present in the non-lasing side modes.

  16. Controlled light localisation and nonlinear-optical interactions of short laser pulses in holey fibres

    SciTech Connect (OSTI)

    Fedotov, Andrei B; Zheltikov, Aleksei M; Golovan', Leonid A; Kashkarov, Pavel K [Department of Physics, M.V. Lomonosov Moscow State University, Moscow (Russian Federation); Tarasevitch, A P; Podshivalov, Alexey A [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Alfimov, Mikhail V; Ivanov, Anatoliy A [Photochemistry Center, Russian Academy of Sciences, Moscow (Russian Federation); Beloglazov, V I [Institute of Technology and Processing of Glass Structures, Russian Academy of Sciences, Saratov (Russian Federation); Haus, J W [University of Dayton, Dayton, OH (United States); Linde, D von der [Institut fur Laser- und Plasmaphysik, Universitat Essen, Essen (Germany)

    2001-05-31T23:59:59.000Z

    The influence of the structure of holey-fibre cladding on the effective waveguide mode area and the spectral broadening of femtosecond pulses of titanium-sapphire and forsterite lasers is experimentally studied. These experiments demonstrate that the increase in the air-filling fraction of the holey-fibre cladding may substantially enhance the spectral broadening of laser pulses due to the increase in the degree of light localisation in the fibre core. (femtosecond technologies)

  17. Laser assisted proton collision on light nuclei at moderate energies

    E-Print Network [OSTI]

    I. F Barna; S. Varro

    2014-06-24T23:59:59.000Z

    We present analytic angular differential cross section model for laser assisted proton nucleon scattering on a Woods-Saxon optical potential where the nth-order photon absorption is taken into account simultaneously. As a physical example we calculate cross sections for proton - $^{12}$C collision at 49 MeV in the laboratory frame where the laser intensity is in the range of $ 10^{7} - 10^{21}$ W/cm$^2$ at optical frequencies. The upper intensity limit is slightly below the relativistic regime.

  18. Light Trapping for Thin Silicon Solar Cells by Femtosecond Laser Texturing: Preprint

    SciTech Connect (OSTI)

    Lee, B. G.; Lin, Y. T.; Sher, M. J.; Mazur, E.; Branz, H. M.

    2012-06-01T23:59:59.000Z

    Femtosecond laser texturing is used to create nano- to micron-scale surface roughness that strongly enhances light-trapping in thin crystalline silicon solar cells. Light trapping is crucial for thin solar cells where a single light-pass through the absorber is insufficient to capture the weakly absorbed red and near-infrared photons, especially with an indirect-gap semiconductor absorber layer such as crystalline Si which is less than 20 um thick. We achieve enhancement of the optical absorption from light-trapping that approaches the Yablonovitch limit.

  19. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOE Patents [OSTI]

    Skupsky, S.; Kessler, T.J.; Short, R.W.; Craxton, S.; Letzring, S.A.; Soures, J.

    1991-09-10T23:59:59.000Z

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies (''colors'') cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers. 8 figures.

  20. advanced laser light: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Advanced Light Source QUICK FACTS Funding Agency: U.S. Department of Energy, Office of Basic Energy the Nobel Prize in Physics in 1939. Today, the expanded...

  1. Comparison of particle size of cracking catalyst determined by laser light scattering and dry sieve methods

    SciTech Connect (OSTI)

    Dishman, K.L.; Doolin, P.K.; Hoffman, J.F. (Ashland Petroleum Co., Ashland, KY (United States))

    1993-07-01T23:59:59.000Z

    A method of interconversion of dry sieve and laser light scattering particle size values has been developed for cracking catalysts. Values obtained by light scattering techniques were consistently larger than those obtained by dry sieve analysis. The differences were primarily due to lack of sphericity of the particles. The particle size distribution determined by light scattering techniques was based on an average particle diameter. Conversely, the sieve measured the smallest diameter of the particle which can pass through the opening. Microscopic examination of commercial cracking catalysts confirmed their nonuniformity. The sphericity of the catalyst particles decreased as particle size increased. Therefore, the divergence between the laser light scattering and dry sieving value became greater as the catalyst particle size increased.

  2. Jitter Studies for a 2.4 GeV Light Source Accelerator Using LiTrack

    E-Print Network [OSTI]

    Penn, Gregory E

    2010-01-01T23:59:59.000Z

    S2E simulations on jitter for European XFEL project,”Jitter Studies for a 2.4 GeV Light Source Accelerator Usingpeak current, and energy chirp. Jitter in average energy is

  3. Visible light emitting vertical cavity surface emitting lasers

    DOE Patents [OSTI]

    Bryan, R.P.; Olbright, G.R.; Lott, J.A.; Schneider, R.P. Jr.

    1995-06-27T23:59:59.000Z

    A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of {lambda}/2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In{sub z}(Al{sub y}Ga{sub 1{minus}y}){sub 1{minus}z}P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m {lambda}/2n{sub eff} where m is an integer and n{sub eff} is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of {lambda}/n, typically within the green to red portion of the visible spectrum. 10 figs.

  4. Visible light emitting vertical cavity surface emitting lasers

    DOE Patents [OSTI]

    Bryan, Robert P. (Boulder, CO); Olbright, Gregory R. (Boulder, CO); Lott, James A. (Albuquerque, NM); Schneider, Jr., Richard P. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of .lambda./2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In.sub.z (Al.sub.y Ga.sub.1-y).sub.1-z P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m .lambda./2n.sub.eff where m is an integer and n.sub.eff is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of .lambda./n, typically within the green to red portion of the visible spectrum.

  5. DARPA Soldier Self Care: Rapid Healing of Laser Eye Injuries with Light Emitting Diode Technology

    E-Print Network [OSTI]

    Harry T. Whelan; Margaret T. T. Wong-riley, Ph.D.; Janis T. Eells, Ph.D.; James N. Verhoeve, Ph.D.; Rina Das, Ph.D.; Marti Jett, Ph.D.

    RGC, retinal ganglion cell; TTX, tetrodotoxin. Photobiomodulation by light in the red to near infrared range (630-1000 nm) using low energy lasers or lightemitting diode (LED) arrays has been shown to accelerate wound healing, improve recovery from ischemic injury and attenuate degeneration in the injured optic nerve. At the cellular level, photoirradiation at low fluences can generate significant biological effects including cellular proliferation and the release of growth factors from cells. Mitochondrial cytochromes have been postulated as photoacceptors for red to near-infrared (NIR) light energy and reactive oxygen species or mitochondrial redox changes have been advanced as potential mediators of the biological effects of this light. We hypothesize that the therapeutic effects of red to near infrared light result, in part, from intracellular signaling mechanisms triggered by the interaction of NIR light with the mitochondrial photoacceptor

  6. Manufacturing Considerations of the Magnetic Structures for the Undulators for the X-FEL at TESLA

    E-Print Network [OSTI]

    1 Manufacturing Considerations of the Magnetic Structures for the Undulators for the X-FEL at TESLA DESY / HASYLAB Notkestr. 85, 22607 Hamburg, Germany TESLA-FEL 2000-10 Abstract A study is presented FELs. The total magnetic length of the magnet structures is 1405m. It is proposed to produce these huge

  7. X-FEL Report 2004-04 DSP Integrated, Parameterized, FPGA Based

    E-Print Network [OSTI]

    X-FEL Report 2004-04 DSP Integrated, Parameterized, FPGA Based Cavity Simulator & Controller for UV-FEL and X-Ray FEL). The controller bases on a programmable circuit Xilinx VirtexII V3000 embedded on a PCB, VHDL, FEL, TESLA, TTF, UV-FEL, Xilinx, FPGA based systems, LLRF control system of third generation

  8. Study on the activation of styrene-based shape memory polymer by medium-infrared laser light

    SciTech Connect (OSTI)

    Leng Jinsong; Yu Kai; Lan Xin [Center for Composite Materials and Structures, Harbin Institute of Technology, HeiLongJiang 150001 (China); Zhang Dawei [Center for Composite Materials and Structures, Harbin Institute of Technology, HeiLongJiang 150001 (China); Material Science and Engineering College, Northeast Forestry University, HeiLongJiang 150040 (China); Liu Yanju [Department of Astronautical Science and Mechanics, Harbin Institute of Technology, HeiLongJiang 150001 (China)

    2010-03-15T23:59:59.000Z

    This paper demonstrates the feasibility of shape memory polymer (SMP) activation by medium-infrared laser light. Medium-infrared light is transmitted by an optical fiber embedded in the SMP matrix, and the shape recovery process and temperature distribution are recorded by an infrared camera. Light-induced SMP exhibits potential applications in biomedicines and flexible displays.

  9. Delivering pump light to a laser gain element while maintaining access to the laser beam

    DOE Patents [OSTI]

    Beach, Raymond J. (Livermore, CA); Honea, Eric C. (Sunol, CA); Payne, Stephen A. (Castro Valley, CA)

    2001-01-01T23:59:59.000Z

    A lens duct is used for pump delivery and the laser beam is accessed through an additional component called the intermediate beam extractor which can be implemented as part of the gain element, part of the lens duct or a separate component entirely.

  10. Fundamental physics at an X-ray free electron laser

    E-Print Network [OSTI]

    A. Ringwald

    2001-12-19T23:59:59.000Z

    X-ray free electron lasers (FELs) have been proposed to be constructed both at SLAC in the form of the so-called Linac Coherent Light Source as well as at DESY, where the so-called XFEL laboratory is part of the design of the electron-positron linear collider TESLA. In addition to the immediate applications in condensed matter physics, chemistry, material science, and structural biology, X-ray FELs may be employed also to study some physics issues of fundamental nature. In this context, one may mention the boiling of the vacuum (Schwinger pair creation in an external field), horizon physics (Unruh effect), and axion production. We review these X-ray FEL opportunities of fundamental physics and discuss the necessary technological improvements in order to achieve these goals.

  11. X-ray amplification from a Raman Free Electron Laser I.A. Andriyash,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    X-ray amplification from a Raman Free Electron Laser I.A. Andriyash, E. d'Humi`eres, V 5107, F33400 Talence, France We demonstrate that a mm-scale free electron laser can operate in the X and health applications. Large scale X-ray free electron laser (XFEL) projects have been launched, and start

  12. Femtosecond Xray Absorption Spectroscopy at a Hard Xray Free Electron Laser: Application to Spin Crossover Dynamics

    E-Print Network [OSTI]

    Ihee, Hyotcherl

    Femtosecond Xray Absorption Spectroscopy at a Hard Xray Free Electron Laser: Application to Spin Rennes 1, F35042, Rennes, France ABSTRACT: X-ray free electron lasers (XFELs) deliver short ( operated in femtosecond laser slicing mode15 ). The development of new X-ray facilities such as X-ray free

  13. Second user workshop on high-power lasers at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heimann, Phil; Glenzer, Siegfried

    2015-05-04T23:59:59.000Z

    The second international workshop on the physics enabled by the unique combination of high-power lasers with the world-class Linac Coherent Light Source (LCLS) free-electron X-ray laser beam was held in Stanford, CA, on October 7–8, 2014. The workshop was co-organized by UC Berkeley, Lawrence Berkeley, Lawrence Livermore, and SLAC National Accelerator Laboratories. More than 120 scientists, including 40 students and postdoctoral scientists who are working in high-intensity laser-matter interactions, fusion research, and dynamic high-pressure science came together from North America, Europe, and Asia. The focus of the second workshop was on scientific highlights and the lessons learned from 16 newmore »experiments that were performed on the Matter in Extreme Conditions (MEC) instrument since the first workshop was held one year ago.« less

  14. Test of candidate light distributors for the muon (g$-$2) laser calibration system

    E-Print Network [OSTI]

    A. Anastasi; D. Babusci; F. Baffigi; G. Cantatore; D. Cauz; G. Corradi; S. Dabagov; G. Di Sciascio; R. Di Stefano; C. Ferrari; A. T. Fienberg; A. Fioretti; L. Fulgentini; C. Gabbanini; L. A. Gizzi; D. Hampai; D. W. Hertzog; M. Iacovacci; M. Karuza; J. Kaspar; P. Koester; L. Labate; S. Mastroianni; D. Moricciani; G. Pauletta; L. Santi; G. Venanzoni

    2015-04-01T23:59:59.000Z

    The new muon (g-2) experiment E989 at Fermilab will be equipped with a laser calibration system for all the 1296 channels of the calorimeters. An integrating sphere and an alternative system based on an engineered diffuser have been considered as possible light distributors for the experiment. We present here a detailed comparison of the two based on temporal response, spatial uniformity, transmittance and time stability.

  15. Test of candidate light distributors for the muon (g$-$2) laser calibration system

    E-Print Network [OSTI]

    Anastasi, A; Baffigi, F; Cantatore, G; Cauz, D; Corradi, G; Dabagov, S; Di Sciascio, G; Di Stefano, R; Ferrari, C; Fienberg, A T; Fioretti, A; Fulgentini, L; Gabbanini, C; Gizzi, L A; Hampai, D; Hertzog, D W; Iacovacci, M; Karuza, M; Kaspar, J; Koester, P; Labate, L; Mastroianni, S; Moricciani, D; Pauletta, G; Santi, L; Venanzoni, G

    2015-01-01T23:59:59.000Z

    The new muon (g-2) experiment E989 at Fermilab will be equipped with a laser calibration system for all the 1296 channels of the calorimeters. An integrating sphere and an alternative system based on an engineered diffuser have been considered as possible light distributors for the experiment. We present here a detailed comparison of the two based on temporal response, spatial uniformity, transmittance and time stability.

  16. Conversion of heat to light using Townes' maser-laser engine: Quantum optics and thermodynamic analysis

    SciTech Connect (OSTI)

    Ooi, C. H. Raymond [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2011-04-15T23:59:59.000Z

    It is shown that thermal energy from a heat source can be converted to useful work in the form of maser-laser light by using a combination of a Stern-Gerlach device and stimulated emissions of excited particles in a maser-laser cavity. We analyze the populations of atoms or quantum dots exiting the cavity, the photon statistics, and the internal entropy as a function of atomic transit time, using the quantum theory of masers and lasers. The power of the laser light is estimated to be sufficiently high for device applications. The thermodynamics of the heat converter is analyzed as a heat engine operating between two reservoirs of different temperature but is generalized to include the change of internal quantum states. The von Neumann entropies for the internal degree are obtained. The sum of the internal and external entropies increases after each cycle and the second law is not violated, even if the photon entropy due to finite photon number distribution is not included. An expression for efficiency relating to the Carnot efficiency is obtained. We resolve the subtle paradox on the reduction of the internal entropy with regards to the path separation after the Stern-Gerlach device.

  17. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs...

  18. Tunable blue light source by intracavity frequency doubling of a Cr-LiSrAIF6 laser

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Tunable blue light source by intracavity frequency doubling of a Cr- LiSrAIF6 laser Franqois-switched operation at 10 kHz was intracavity frequency doubled by using a LiIOl crystal. The 230 ns tunable blue lasers emitting in the blue-green wavelength range are expected to be the key components for optical

  19. Intrauterine device for laser light diffusion and method of using the same

    DOE Patents [OSTI]

    Tadir, Y.; Berns, M.W.; Svaasand, L.O.; Tromberg, B.J.

    1995-12-26T23:59:59.000Z

    An improved device for delivery of photoenergy from a light source, such as a laser, into a uterine cavity for photodynamic therapy is comprised of a plurality of optic fibers, which are bundled together and inserted into the uterine cavity by means of a uterine cannula. The cannula is positioned within the uterine cavity at a preferred location and then withdrawn thereby allowing the plurality of optic fibers to splay or diverge one from the other within the cavity. Different portions of the distal tip of the optic fiber is provided with a light diffusing tip, the remainder being provided with a nondiffusing tip portion. The fiber optic shape, as well as the segment which is permitted to actively diffuse light through the tip, is selected in order to provide a more uniform exposure intensity of the photo energy or at least sufficient radiation directed to each segment of the uterine walls. 5 figs.

  20. TESLA-FEL 2004-03 Proposed continuous wave energy recovery operation of an XFEL*

    E-Print Network [OSTI]

    of the LCLS and 20 GeV in the case of the DESY XFEL. For both, the charge per bunch is 1 nC and the transverse normalized emittance is ~1.4 µm·rad. The rms bunch length is 80 fs (DESY) and 97 fs (LCLS). The difference in the average brilliance mostly results from the number of bunches per second, which is 120 in the LCLS design

  1. Feasibility considerations of a soft-x-ray distributed feedback laser pumped by an x-ray free electron laser

    E-Print Network [OSTI]

    André, Jean-Michel; Jonnard, Philippe

    2014-01-01T23:59:59.000Z

    We discuss the feasibility of a soft-x-ray distributed feedback laser (DFL) pumped by an x-ray free electron laser (X-FEL). The DFL under consideration is a Mg/SiC bi-layered Bragg reflector pumped by a single X-FEL bunch at 57.4 eV, stimulating the Mg L2,3 emission at 49 eV corresponding to the 3s-3d â??2p1/2,3/2 transition. Based on a model developed by Yariv and Yeh and an extended coupled-wave theory, we show that it would be possible to obtain a threshold gain compatible with the pumping provided by available X-FEL facilities.

  2. DarkLight: A Search for Dark Forces at the Jefferson Laboratory Free-Electron Laser Facility

    E-Print Network [OSTI]

    J. Balewski; J. Bernauer; W. Bertozzi; J. Bessuille; B. Buck; R. Cowan; K. Dow; C. Epstein; P. Fisher; S. Gilad; E. Ihloff; Y. Kahn; A. Kelleher; J. Kelsey; R. Milner; C. Moran; L. Ou; R. Russell; B. Schmookler; J. Thaler; C. Tschalär; C. Vidal; A. Winnebeck; S. Benson; C. Gould; G. Biallas; J. R. Boyce; J. Coleman; D. Douglas; R. Ent; P. Evtushenko; H. C. Fenker; J. Gubeli; F. Hannon; J. Huang; K. Jordan; R. Legg; M. Marchlik; W. Moore; G. Neil; M. Shinn; C. Tennant; R. Walker; G. Williams; S. Zhang; M. Freytsis; R. Fiorito; P. O'Shea; R. Alarcon; R. Dipert; G. Ovanesyan; T. Gunter; N. Kalantarians; M. Kohl; I. Albayrak; M. Carmignotto; T. Horn; D. S. Gunarathne; C. J. Martoff; D. L. Olvitt; B. Surrow; X. Lia; R. Beck; R. Schmitz; D. Walther; K. Brinkmann; H. Zaunig

    2013-07-19T23:59:59.000Z

    We give a short overview of the DarkLight detector concept which is designed to search for a heavy photon A' with a mass in the range 10 MeV/c^2 free electon laser, and a way to extend DarkLight's reach using A' --> invisible decays.

  3. Surfaces in the interaction of intense long wavelength laser light with plasmas

    SciTech Connect (OSTI)

    Jones, R.D.

    1985-01-01T23:59:59.000Z

    The role of surface in the interaction of intense CO/sub 2/ laser light with plasmas is reviewed. The collisionless absorption of long wavelength light is discussed. Specific comments on the role of ponderomotive forces and profile steepening on resonant absorption are made. It is shown that at intensities above 10/sup 15/W/cm/sup 2/ the absorption is determined by ion acoustic-like surface modes. It is demonstrated experimentally that harmonics up to the forty-sixth can be generated in steep density profiles. Computer simulations and theoretical mechanisms for this phenomena are presented. The self generation of magnetic fields on surfaces is discussed. The role these fields play in the lateral transport of energy, the insulation of the target from hot electrons, and the acceleration of fast ions is discussed.

  4. Lunar Laser-Ranging Detection of Light-Speed Anisotropy and Gravitational Waves

    E-Print Network [OSTI]

    Reginald T Cahill

    2010-02-03T23:59:59.000Z

    The Apache Point Lunar Laser-ranging Operation (APOLLO), in NM, can detect photon bounces from retro-reflectors on the moon surface to 0.1ns timing resolution. This facility enables not only the detection of light speed anisotropy, which defines a local preferred frame of reference - only in that frame is the speed of light isotropic, but also fluctuations/turbulence (gravitational waves) in the flow of the dynamical 3-space relative to local systems/observers. So the APOLLO facility can act as an effective "gravitational wave" detector. A recently published small data set from November 5, 2007, is analysed to characterise both the average anisotropy velocity and the wave/turbulence effects. The results are consistent with some 13 previous detections, with the last and most accurate being from the spacecraft earth-flyby Doppler-shift NASA data.

  5. Direct periodic patterning of GaN-based light-emitting diodes by three-beam interference laser ablation

    SciTech Connect (OSTI)

    Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch [Center for Compound Semiconductors and School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Dr. NW, Atlanta, Georgia 30332-0250 (United States); Yuan, Dajun; Guo, Rui [Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); Liu, Jianping [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215125 (China); Asadirad, Mojtaba [Materials Engineering Program, University of Houston, Houston, Texas 77204-4005 (United States); Kwon, Min-Ki [Department of Photonic Engineering, Chosun University, Seosuk-dong, Gwangju 501-759 (Korea, Republic of); Dupuis, Russell D. [Center for Compound Semiconductors and School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Dr. NW, Atlanta, Georgia 30332-0250 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Das, Suman [Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Ryou, Jae-Hyun, E-mail: jryou@uh.edu [Materials Engineering Program, University of Houston, Houston, Texas 77204-4005 (United States); Department of Mechanical Engineering and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, Texas 77204-4006 (United States)

    2014-04-07T23:59:59.000Z

    We report on the direct patterning of two-dimensional periodic structures in GaN-based light-emitting diodes (LEDs) through laser interference ablation for the fast and reliable fabrication of periodic micro- and nano-structures aimed at enhancing light output. Holes arranged in a two-dimensional hexagonal lattice array having an opening size of 500?nm, depth of 50?nm, and a periodicity of 1??m were directly formed by three-beam laser interference without photolithography or electron-beam lithography processes. The laser-patterned LEDs exhibit an enhancement in light output power of 20% compared to conventional LEDs having a flat top surface without degradation of electrical and optical properties of the top p-GaN layer and the active region, respectively.

  6. XFEL diffraction: developing processing methods to optimize data quality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sauter, Nicholas K.

    2015-03-01T23:59:59.000Z

    Serial crystallography, using either femtosecond X-ray pulses from free-electron laser sources or short synchrotron-radiation exposures, has the potential to reveal metalloprotein structural details while minimizing damage processes. However, deriving a self-consistent set of Bragg intensities from numerous still-crystal exposures remains a difficult problem, with optimal protocols likely to be quite different from those well established for rotation photography. Here several data processing issues unique to serial crystallography are examined. It is found that the limiting resolution differs for each shot, an effect that is likely to be due to both the sample heterogeneity and pulse-to-pulse variation in experimental conditions. Shotsmore »with lower resolution limits produce lower-quality models for predicting Bragg spot positions during the integration step. Also, still shots by their nature record only partial measurements of the Bragg intensity. An approximate model that corrects to the full-spot equivalent (with the simplifying assumption that the X-rays are monochromatic) brings the distribution of intensities closer to that expected from an ideal crystal, and improves the sharpness of anomalous difference Fourier peaks indicating metal positions.« less

  7. DarkLight: A Search for Dark Forces at the Jefferson Laboratory Free-Electron Laser Facility

    SciTech Connect (OSTI)

    Balewski, Jan; Bernauer, J.; Bertozzi, William; Bessuille, Jason; Buck, B.; Cowan, Ray; Dow, K.; Epstein, C.; Fisher, Peter; Gilad, Shalev; Ihloff, Ernest; Kahn, Yonatan; Kelleher, Aidan; Kelsey, J.; Milner, Richard; Moran, C.; Ou, Longwu; Russell, R.; Schmookler, Barak; Thaler, J.; Tschalar, C.; Vidal, Christopher; Winnebeck, A.; Benson, Stephen [JLAB; Gould, Christopher [JLAB; Biallas, George [JLAB; Boyce, James [JLAB; Coleman, James [JLAB; Douglas, David [JLAB; Ent, Rolf [JLAB; Evtushenko, Pavel [JLAB; Fenker, Howard [JLAB; Gubeli, Joseph [JLAB; Hannon, Fay [JLAB; Huang, Jia [JLAB; Jordan, Kevin [JLAB; Legg, Robert [JLAB; Marchlik, Matthew [JLAB; Moore, Steven [JLAB; Neil, George [JLAB; Shinn, Michelle D [JLAB; Tennant, Christopher [JLAB; Walker, Richard [JLAB; Williams, Gwyn [JLAB; Zhang, Shukui [JLAB; Freytsis, M.; Fiorito, Ralph; O'Shea, P.; Alarcon, Ricardo; Dipert, R.; Ovanesyan, G.; Gunter, Thoth; Kalantarians, Narbe; Kohl, M.; Albayrak, Ibrahim; Horn, Tanja; Gunarathne, D. S.; Martoff, C. J.; Olvitt, D. L.; Surrow, Bernd; Lia, X.; Beck, Reinhard; Schmitz, R.; Walther, D.; Brinkmann, K.; Zaunig, H.

    2014-05-01T23:59:59.000Z

    We give a short overview of the DarkLight detector concept which is designed to search for a heavy photon A' with a mass in the range 10 MeV/c^2 < m(A') < 90 MeV/c^2 and which decays to lepton pairs. We describe the intended operating environment, the Jefferson Laboratory free electon laser, and a way to extend DarkLight's reach using A' --> invisible decays.

  8. Laser microfluidics: fluid actuation by light This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Zhang, Wendy

    Laser microfluidics: fluid actuation by light This article has been downloaded from IOPscience.1088/1464-4258/11/3/034015 Laser microfluidics: fluid actuation by light Jean-Pierre Delville1 , Matthieu Robert de Saint Vincent1.iop.org/JOptA/11/034015 Abstract The development of microfluidic devices is still hindered by the lack of robust

  9. Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength

    E-Print Network [OSTI]

    von der Linde, D.

    to the optical components required to utilize XFEL beams, including radiation damage. Theoretical workDamage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength SC were exposed to single 25 fs long pulses of 32.5 nm free-electron-laser radiation at fluences of up

  10. Monochromatic imaging of scattered laser light from in situ generated particles in plasmas

    SciTech Connect (OSTI)

    Hareland, W.A.; Buss, R.J.; Brown, D.A. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Collins, S.M. [Univ. of Arizona, Tucson, AZ (United States)] [Univ. of Arizona, Tucson, AZ (United States)

    1996-02-01T23:59:59.000Z

    In recent years, there has been a great deal of interest in the behavior of particles in plasmas because of the negative economic impact of contamination during processing of silicon for microelectronics manufacture. Here, spatially resolved images of particle distributions are measured in steady-state plasmas in a GEC (gaseous electronics conference) plasma reactor. Images are obtained by monochromatic imaging of scattered laser light using a microchannel plate (MCP) image intensifier and a high-speed video camera. The observed distributions of particulates generated by adding small quantities of CHF{sub 3} to an argon plasma are extremely complex and diverse. The patterns observed are temporally varying, and rarely as simple as domes and rings observed in other reactors. The forces acting on the particles are sufficiently complex that reproducing specific spatial patterns by controlling processing parameters if often impossible.

  11. Excitation of fountain and entrainment instabilities at the interface between two viscous fluids using a beam of laser light

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    : 43.25.Qp, 42.50.Wk. When the bottom fluid is pumped through a tube above a horizontal interface by the action of bulk flows driven by a laser beam. These streaming flows are due to light scattering losses separating two immiscible fluids, the upper fluid is withdrawn and a jet occurs above a threshold flow rate

  12. Search for anisotropic light propagation as a function of laser beam alignment relative to the Earth's velocity vector

    E-Print Network [OSTI]

    C. E. Navia; C. R. A. Augusto; D. F. Franceschini; M. B. Robba; K. H. Tsui

    2006-08-10T23:59:59.000Z

    A laser diffraction experiment was conducted to study light propagation in air. The experiment is easy to reproduce and it is based on simple optical principles. Two optical sensors (segmented photo-diodes) are used for measuring the position of diffracted light spots with a precision better than $0.1 \\mu m$. The goal is to look for signals of anisotropic light propagation as function of the laser beam alignment to the Earth's motion (solar barycenter motion) obtained by COBE. Two raster search techniques have been used. First, a fixed laser beam in the laboratory frame that scans due to Earth's rotation. Second, an active rotation of the laser beam on a turntable system. The results obtained with both methods show that the course of the light rays are affected by the motion of the Earth, and a predominant quantity of first order with a $\\Delta c/c=-\\beta (1+2a)\\cos \\theta$ signature with $a=-0.4106\\pm 0.0225$ describes well the experimental results. This result differs in a amount of 18% from the Special Relativity Theory prediction and that supplies the value of $a=-1/2$ (isotropy).

  13. Design Parameters and Commissioning of Vertical Inserts Used for Testing the XFEL Superconducting Cavities

    E-Print Network [OSTI]

    J. Schaffran; Y. Bozhko; B. Petersen; D. Meissner; M. Chorowski; J. Polinski

    2013-06-26T23:59:59.000Z

    The European XFEL is a new research facility currently under construction at DESY in the Hamburg area in Germany. From 2015 on, it will generate extremely intense X-ray flashes that will be used by researchers from all over the world. The superconducting XFEL linear accelerator consists of 100 accelerator modules with more than 800 RF-cavities inside. The accelerator modules, superconducting magnets and cavities will be tested in the accelerator module test facility (AMTF). This paper gives an overview of the design parameters and the commissioning of the vertical insert, used in two cryostats (XATC) of the AMTF-hall. The Insert serves as a holder for 4 nine-cell cavities. This gives the possibility to cool down 4 cavities to 2K in parallel and, consequently, to reduce the testing time. The following RF measurement, selected as quality check, will be done separately for each cavity. Afterwards the cavities will be warmed up again and will be sent to the accelerator module assembly.

  14. Development of ZnO Based Light Emitting Diodes and Laser Diodes

    E-Print Network [OSTI]

    Kong, Jieying

    2012-01-01T23:59:59.000Z

    laser process. These processes are used for a wide variety of applications in semiconductor manufacturing

  15. Pair Production from Vacuum at the Focus of an X-Ray Free Electron Laser

    E-Print Network [OSTI]

    A. Ringwald

    2001-03-16T23:59:59.000Z

    There are definite plans for the construction of X-ray free electron lasers (FEL), both at DESY, where the so-called XFEL is part of the design of the electron-positron linear collider TESLA, as well as at SLAC, where the so-called Linac Coherent Light Source (LCLS) has been proposed. Such an X-ray laser would allow for high-field science applications: One could make use of not only the high energy and transverse coherence of the X-ray beam, but also of the possibility of focusing it to a spot with a small radius, hopefully in the range of the laser wavelength. Along this route one obtains very large electric fields, much larger than those obtainable with any optical laser of the same power. In this letter we discuss the possibility of obtaining an electric field so high that electron-positron pairs are spontaneously produced in vacuum (Schwinger pair production). We find that if X-ray optics can be improved to approach the diffraction limit of focusing, and if the power of the planned X-ray FELs can be increased to the terawatt region, then there is ample room for an investigation of the Schwinger pair production mechanism.

  16. Localisation of light and spectral broadening of femtosecond laser pulses in a fibre with a minimal-microstructure cladding

    SciTech Connect (OSTI)

    Zheltikov, Aleksei M [Department of Physics, M.V. Lomonosov Moscow State University, Moscow (Russian Federation); Zhou, Ping; Temnov, V V; Tarasevitch, A P; Linde, D von der [Institut fur Laser- und Plasmaphysik, Universitat Essen, Essen (Germany); Kondrat'ev, Yu N; Shevandin, V S; Dukel'skii, K V; Khokhlov, A V [All-Russian Scientific Centre 'S.I. Vavilov State Optical Institute', St Petersburg (Russian Federation); Bagayev, S N [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); Smirnov, Valerii B [Russian Center of Laser Physics, St. Petersburg State University, St. Petersburg (Russian Federation)

    2002-06-30T23:59:59.000Z

    Microstructure optical fibres with a cladding consisting of a single cycle of air holes and the minimum core diameter of 1 {mu}m have been fabricated and studied. Guided modes supported by this fibre are characterised by a high light localisation degree and display the C{sub 6{nu}} point-group spatial symmetry of the transverse field distribution. A high refractive index step between the core and the cladding in the created fibres strongly confines the light field in the fibre core. The spectral broadening of low-power femtosecond laser pulses in the fibre of this type is experimentally studied. (nonlinear optical phenomena)

  17. Development of ZnO Based Light Emitting Diodes and Laser Diodes

    E-Print Network [OSTI]

    Kong, Jieying

    2012-01-01T23:59:59.000Z

    E. Fred Schubert, Light-Emitting Diodes, New York (2006) [8]ZnO homojunction light emitting diode 3. 1. Motivation ofAlGaAs red light-emitting diodes, in: G.B. Stringfellow, M.

  18. Quantum effects with an X-ray free electron laser

    E-Print Network [OSTI]

    C. D. Roberts; S. M. Schmidt; D. V. Vinnik

    2002-06-03T23:59:59.000Z

    A quantum kinetic equation coupled with Maxwell's equation is used to estimate the laser power required at an XFEL facility to expose intrinsically quantum effects in the process of QED vacuum decay via spontaneous pair production. A 9 TW-peak XFEL laser with photon energy 8.3 keV could be sufficient to initiate particle accumulation and the consequent formation of a plasma of spontaneously produced pairs. The evolution of the particle number in the plasma will exhibit non-Markovian aspects of the strong-field pair production process and the plasma's internal currents will generate an electric field whose interference with that of the laser leads to plasma oscillations.

  19. Amplified short-wavelength light scattered by relativistic electrons in the laser-induced optical lattice

    E-Print Network [OSTI]

    Andriyash, I A; Malka, V; d'Humières, E; Balcou, Ph

    2014-01-01T23:59:59.000Z

    The scheme of the XUV/X-ray free electron laser based on the optical undulator created by two overlapped transverse laser beams is analyzed. A kinetic theoretical description and an ad hoc numerical model are developed to account for the finite energy spread, angular divergence and the spectral properties of the electron beam in the optical lattice. The theoretical findings are compared to the results of the one- and three-dimensional numerical modeling with the spectral free electron laser code PLARES.

  20. FEMTOSECOND TIMING DISTRIBUTION AND CONTROL FOR NEXT GENERATION ACCELERATORS AND LIGHT SOURCES

    SciTech Connect (OSTI)

    Chen, Li-Jin [Idesta Quantum Electronics, LLC

    2014-03-31T23:59:59.000Z

    Femtosecond Timing Distribution At LCLS Free-electron-lasers (FEL) have the capability of producing high photon flux from the IR to the hard x-ray wavelength range and to emit femtosecond and eventually even at-tosecond pulses. This makes them an ideal tool for fundamental as well as applied re-search. Timing precision at the Stanford Linear Coherent Light Source (LCLS) between the x-ray FEL (XFEL) and ultrafast optical lasers is currently no better than 100 fs RMS. Ideally this precision should be much better and could be limited only by the x-ray pulse duration, which can be as short as a few femtoseconds. An increasing variety of science problems involving electron and nuclear dynamics in chemical and material systems will become accessible as the timing improves to a few femtoseconds. Advanced methods of electron beam conditioning or pulse injection could allow the FEL to achieve pulse durations less than one femtosecond. The objec-tive of the work described in this proposal is to set up an optical timing distribution sys-tem based on modelocked Erbium doped fiber lasers at LCLS facility to improve the timing precision in the facility and allow time stamping with a 10 fs precision. The primary commercial applications for optical timing distributions systems are seen in the worldwide accelerator facilities and next generation light sources community. It is reasonable to expect that at least three major XFELs will be built in the next decade. In addition there will be up to 10 smaller machines, such as FERMI in Italy and Maxlab in Sweden, plus the market for upgrading already existing facilities like Jefferson Lab. The total market is estimated to be on the order of a 100 Million US Dollars. The company owns the exclusive rights to the IP covering the technology enabling sub-10 fs synchronization systems. Testing this technology, which has set records in a lab environment, at LCLS, hence in a real world scenario, is an important corner stone of bringing the technology to market.

  1. Fluctuation properties of laser light after interaction with an atomic system: comparison between two-level and multilevel atomic transitions

    E-Print Network [OSTI]

    Lezama, A; Kastberg, A; Tanzilli, S; Kaiser, R

    2015-01-01T23:59:59.000Z

    The complex internal atomic structure involved in radiative transitions has an effect on the spectrum of fluctuations (noise) of the transmitted light. A degenerate transition has different properties in this respect than a pure two-level transition. We investigate these variations by studying a certain transition between two degenerate atomic levels for different choices of the polarization state of the driving laser. For circular polarization, corresponding to the textbook two-level atom case, the optical spectrum shows the characteristic Mollow triplet for strong laser drive, while the corresponding noise spectrum exhibits squeezing in some frequency ranges. For a linearly polarized drive, corresponding to the case of a multilevel system, additional features appear in both optical and noise spectra. These differences are more pronounced in the regime of a weakly driven transition: whereas the two-level case essentially exhibits elastic scattering, the multilevel case has extra noise terms related to sponta...

  2. Rapid production of large-area deep sub-wavelength hybrid structures by femtosecond laser light-field tailoring

    SciTech Connect (OSTI)

    Wang, Lei; Chen, Qi-Dai, E-mail: chenqd@jlu.edu.cn, E-mail: hbsun@jlu.edu.cn; Yang, Rui; Xu, Bin-Bin; Wang, Hai-Yu [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Yang, Hai; Huo, Cheng-Song; Tu, Hai-Ling [General Research Institute for Nonferrous Metals, Beijing 100088 (China); Sun, Hong-Bo, E-mail: chenqd@jlu.edu.cn, E-mail: hbsun@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); College of Physics, Jilin University, 119 Jiefang Road, Changchun 130023 (China)

    2014-01-20T23:59:59.000Z

    The goal of creation of large-area deep sub-wavelength nanostructures by femtosecond laser irradiation onto various materials is being hindered by the limited coherence length. Here, we report solution of the problem by light field tailoring of the incident beam with a phase mask, which serves generation of wavelets. Direct interference between the wavelets, here the first-order diffracted beams, and interference between a wavelet and its induced waves such as surface plasmon polariton are responsible for creation of microgratings and superimposed nanogratings, respectively. The principle of wavelets interference enables extension of uniformly induced hybrid structures containing deep sub-wavelength nanofeatures to macro-dimension.

  3. Towards laser based improved experimental schemes for multiphoton e+ e- pair production from vacuum

    E-Print Network [OSTI]

    I. Ploumistakis; S. D. Moustaizis; I. Tsohantjis

    2009-07-15T23:59:59.000Z

    Numerical estimates for pair production from vacuum in the presence of strong electromagnetic fields are derived, for two experimental schemes : the First concerns a laser based X-FEL and the other imitates the E144 experiment. The approximation adopted in this work is that of two level multiphoton on resonance. Utilizing achievable values of laser beam parameters, an enhancedproduction efficiency of up to 10^11 and 10^15 pairs can be obtained, for the two schemes respectively.

  4. A revised partiality model and post-refinement algorithm for X-ray free-electron laser data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ginn, Helen Mary; Brewster, Aaron S.; Hattne, Johan; Evans, Gwyndaf; Wagner, Armin; Grimes, Jonathan M.; Sauter, Nicholas K.; Sutton, Geoff; Stuart, David Ian

    2015-06-01T23:59:59.000Z

    Research towards using X-ray free-electron laser (XFEL) data to solve structures using experimental phasing methods such as sulfur single-wavelength anomalous dispersion (SAD) has been hampered by shortcomings in the diffraction models for X-ray diffraction from FELs. Owing to errors in the orientation matrix and overly simple partiality models, researchers have required large numbers of images to converge to reliable estimates for the structure-factor amplitudes, which may not be feasible for all biological systems. Here, data for cytoplasmic polyhedrosis virus type 17 (CPV17) collected at 1.3 Å wavelength at the Linac Coherent Light Source (LCLS) are revisited. A previously published definitionmore »of a partiality model for reflections illuminated by self-amplified spontaneous emission (SASE) pulses is built upon, which defines a fraction between 0 and 1 based on the intersection of a reflection with a spread of Ewald spheres modelled by a super-Gaussian wavelength distribution in the X-ray beam. A method of post-refinement to refine the parameters of this model is suggested. This has generated a merged data set with an overall discrepancy (by calculating theRsplitvalue) of 3.15% to 1.46 Å resolution from a 7225-image data set. The atomic numbers of C, N and O atoms in the structure are distinguishable in the electron-density map. There are 13 S atoms within the 237 residues of CPV17, excluding the initial disordered methionine. These only possess 0.42 anomalous scattering electrons each at 1.3 Å wavelength, but the 12 that have single predominant positions are easily detectable in the anomalous difference Fourier map. It is hoped that these improvements will lead towards XFEL experimental phase determination and structure determination by sulfur SAD and will generally increase the utility of the method for difficult cases.« less

  5. Fluctuation properties of laser light after interaction with an atomic system: comparison between two-level and multilevel atomic transitions

    E-Print Network [OSTI]

    A. Lezama; R. Rebhi; A. Kastberg; S. Tanzilli; R. Kaiser

    2015-03-09T23:59:59.000Z

    The complex internal atomic structure involved in radiative transitions has an effect on the spectrum of fluctuations (noise) of the transmitted light. A degenerate transition has different properties in this respect than a pure two-level transition. We investigate these variations by studying a certain transition between two degenerate atomic levels for different choices of the polarization state of the driving laser. For circular polarization, corresponding to the textbook two-level atom case, the optical spectrum shows the characteristic Mollow triplet for strong laser drive, while the corresponding noise spectrum exhibits squeezing in some frequency ranges. For a linearly polarized drive, corresponding to the case of a multilevel system, additional features appear in both optical and noise spectra. These differences are more pronounced in the regime of a weakly driven transition: whereas the two-level case essentially exhibits elastic scattering, the multilevel case has extra noise terms related to spontaneous Raman transitions. We also discuss the possibility to experimentally observe these predicted differences for the commonly encountered case where the laser drive has excess noise in its phase quadrature.

  6. Laser ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    2003-01-01T23:59:59.000Z

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

  7. Laser ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    2002-01-01T23:59:59.000Z

    In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

  8. Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us countLighting Sign In About | Careers |

  9. Light dark matter candidates in intense laser pulses I: paraphotons and fermionic minicharged particles

    E-Print Network [OSTI]

    Selym Villalba-Chávez; Carsten Müller

    2014-12-15T23:59:59.000Z

    Polarimetric experiments driven by the strong field of a circularly polarized laser wave can become a powerful tool to limit the parameter space of not yet detected hidden-photons and minicharged particles associated with extra U(1) gauge symmetries. We show how the absorption and dispersion of probe electromagnetic waves in the vacuum polarized by such a background are modified due to the coupling between the visible U(1)-gauge sector and these hypothetical degrees of freedom. The results of this analysis reveal that the regime close to the two-photon reaction threshold can be a sensititive probe of these hidden particles. Parameters of modern laser systems are used to estimate the constraints on the corresponding coupling constants in regions where experiments driven by dipole magnets are less constricted. The role played by a paraphoton field is analyzed via a comparison with a model in which the existence of minicharges is assumed only. For both scenarios is found that the most stringent exclusion limit occurs at the lowest threshold mass; this one being determined by a certain combination of the field frequencies and dictated by energy momentum balance of the photo-production of a pair of minicharged particles. The dependencies of the observables on the laser attributes as well as on the unknown particle parameters are also analyzed.

  10. Laser ignition

    DOE Patents [OSTI]

    Early, James W.; Lester, Charles S.

    2004-01-13T23:59:59.000Z

    Sequenced pulses of light from an excitation laser with at least two resonator cavities with separate output couplers are directed through a light modulator and a first polarzing analyzer. A portion of the light not rejected by the first polarizing analyzer is transported through a first optical fiber into a first ignitor laser rod in an ignitor laser. Another portion of the light is rejected by the first polarizing analyzer and directed through a halfwave plate into a second polarization analyzer. A first portion of the output of the second polarization analyzer passes through the second polarization analyzer to a second, oscillator, laser rod in the ignitor laser. A second portion of the output of the second polarization analyzer is redirected by the second polarization analyzer to a second optical fiber which delays the beam before the beam is combined with output of the first ignitor laser rod. Output of the second laser rod in the ignitor laser is directed into the first ignitor laser rod which was energized by light passing through the first polarizing analyzer. Combined output of the first ignitor laser rod and output of the second optical fiber is focused into a combustible fuel where the first short duration, high peak power pulse from the ignitor laser ignites the fuel and the second long duration, low peak power pulse directly from the excitation laser sustains the combustion.

  11. Cold-target recoil-ion momentum spectroscopy for diagnostics of high harmonics of the extreme-ultraviolet free-electron laser light source at SPring-8

    SciTech Connect (OSTI)

    Liu, X.-J.; Fukuzawa, H.; Pruemper, G.; Ueda, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); RIKEN, XFEL Project Head Office, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Okunishi, M.; Shimada, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Motomura, K.; Saito, N. [RIKEN, XFEL Project Head Office, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); National Metrology Institute of Japan, AIST, Tsukuba 305-8568 (Japan); Iwayama, H.; Nagaya, K.; Yao, M. [RIKEN, XFEL Project Head Office, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Rudenko, A. [RIKEN, XFEL Project Head Office, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Max Planck Advanced Study Group, CFEL, D-22607, Hamburg (Germany); Ullrich, J. [RIKEN, XFEL Project Head Office, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Max Planck Advanced Study Group, CFEL, D-22607, Hamburg (Germany); Max Planck-Insitut fuer Kernphysik, D-69117 Heidelberg (Germany); Foucar, L. [RIKEN, XFEL Project Head Office, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Institut fuer Kernphysik, Universitaet Frankfurt, D-60486 Frankfurt (Germany); Czasch, A.; Schmidt-Boecking, H.; Doerner, R. [Institut fuer Kernphysik, Universitaet Frankfurt, D-60486 Frankfurt (Germany); Nagasono, M.; Higashiya, A.; Yabashi, M. [RIKEN, XFEL Project Head Office, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); and others

    2009-05-15T23:59:59.000Z

    We have developed a cold-target recoil-ion momentum spectroscopy apparatus dedicated to the experiments using the extreme-ultraviolet light pulses at the free-electron laser facility, SPring-8 Compact SASE Source test accelerator, in Japan and used it to measure spatial distributions of fundamental, second, and third harmonics at the end station.

  12. Collisional absorption of laser light in under-dense plasma: The role of Coulomb logarithm

    SciTech Connect (OSTI)

    Kundu, M. [Institute for Plasma Research, Bhat, Gandhinagar 382 428, Gujarat (India)] [Institute for Plasma Research, Bhat, Gandhinagar 382 428, Gujarat (India)

    2014-01-15T23:59:59.000Z

    In this work, we re-examine collisional absorption of 800?nm wavelength laser pulses in under-dense plasma. For a given temperature and density of the plasma, most of the conventional models of the electron-ion collision frequency ?{sub ei}, with a Coulomb logarithm independent of the electron-ponderomotive velocity, show that ?{sub ei} and the corresponding fractional laser absorption ? remain almost constant (or decrease slowly) up to a value I{sub c} of the peak intensity I{sub 0} of the laser pulse, and then ?{sub ei} and ? decrease as ?I{sub 0}{sup ?3/2} when I{sub 0} is increased beyond I{sub c}. On the contrary, below some temperature (?10?eV) and density, with a total-velocity (thermal velocity plus the ponderomotive velocity) dependent Coulomb logarithm, we find that ?{sub ei} and ? grow hand in hand up to a maximum value around I{sub c} followed by the conventional I{sub 0}{sup ?3/2} decrease when I{sub 0}>I{sub c}. Such a non-conventional anomalous variation of ? with I{sub 0} was observed in some earlier experiments, but no explanation has been given so far. The modified Coulomb logarithm considered in this work may be responsible for those experimental observations. With increasing temperature and density, the anomalous behavior is found to disappear even with the modified Coulomb logarithm, and the variation of ?{sub ei} and ? with I{sub 0} approach to the conventional scenario.

  13. Cold molecules formation by shaping with light the short-range interaction between cold atoms: photoassociation with strong laser pulses

    E-Print Network [OSTI]

    M. Vatasescu

    2009-06-10T23:59:59.000Z

    The paper investigates cold molecules formation in the photoassociation of two cold atoms by a strong laser pulse applied at short interatomic distances, which lead to a molecular dynamics taking place in the light-induced (adiabatic) potentials. A two electronic states model in the cesium dimer is used to analyse the effects of this strong coupling regime and to show specific results: i) acceleration of the ground state population to the inner zone due to a non-impulsive regime of coupling at short and intermediate interatomic distances; ii) formation of cold molecules in strongly bound levels of the ground state, where the population at the end of the pulse is much bigger than the population photoassociated in bound levels of the excited state; iii) the final momentum distribution of the ground state wavepacket keeping the signatures of the maxima in the initial wavefunction continuum. It is shown that the topology of the light-induced potentials plays an important role in dynamics.

  14. From Nuclei to Micro-structure: investigating intermediate length scales by small angle laser light scattering

    E-Print Network [OSTI]

    Richard Beyer; Markus Franke; Hans Joachim Schöpe; Eckhard Bartsch; Thomas Palberg

    2014-12-02T23:59:59.000Z

    Hard spheres are a well recognized model system of statistical physics and soft condensed matter. Their crystallization behaviour has been intensively studied at the structural length scale by Bragg light scattering and/or high resolution microscopy. We here present an improved light scattering apparatus capable to perform simultaneous measurements in the Bragg scattering regime and in the small angle regime. We give an account of its construction and demonstrate its performance for several examples of hard sphere and attractive hard sphere suspensions. Comparison of small angle to Bragg data allows a calibration of the sequence of events in time. We show how important complementary information can be gained from the small angle studies e.g. on the immediate environment of the growing crystals or the global scale crystallite distribution. We further demonstrate that processes occurring on larger length scales have a significant influence on the crystallization kinetics and the final micro-structure.

  15. The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser

    SciTech Connect (OSTI)

    Schlotter, W. F.; Turner, J. J.; Rowen, M.; Holmes, M.; Messerschmidt, M.; Moeller, S.; Krzywinski, J.; Lee, S.; Coffee, R.; Hays, G. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); Heimann, P. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Krupin, O. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Soufli, R.; Fernandez-Perea, M.; Hau-Riege, S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Kelez, N. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Beye, M.; Gerken, N.; Sorgenfrei, F.; Wurth, W. [Institute for Experimental Physics and CFEL, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); and others

    2012-04-15T23:59:59.000Z

    The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480-2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser.

  16. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    SciTech Connect (OSTI)

    Liu, James C.; Rokni, Sayed H.; /SLAC; Vylet, Vaclav; /Jefferson Lab

    2009-12-11T23:59:59.000Z

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power ({approx} 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  17. Laser barometer

    DOE Patents [OSTI]

    Abercrombie, Kevin R. (Westminster, CO); Shiels, David (Thornton, CO); Rash, Tim (Aurora, CO)

    2001-02-06T23:59:59.000Z

    A pressure measuring instrument that utilizes the change of the refractive index of a gas as a function of pressure and the coherent nature of a laser light to determine the barometric pressure within an environment. As the gas pressure in a closed environment varies, the index of refraction of the gas changes. The amount of change is a function of the gas pressure. By illuminating the gas with a laser light source, causing the wavelength of the light to change, pressure can be quantified by measuring the shift in fringes (alternating light and dark bands produced when coherent light is mixed) in an interferometer.

  18. An overview of the photon beam properties from the European XFEL operating with new baseline

    E-Print Network [OSTI]

    Recent success of the Linac Coherent Light Source (LCLS) demonstrated fea- sibility for reliable production, compression, and acceleration of electron beams with small emittance. Currently LCLS provides.x kA) and wide wavelength range (0.12 nm to 2.2 nm) [4]. Conceptual Design Report of LCLS considered

  19. Photonics and Laser Applications in Engineering ENSC 460-4 (Undergraduate) (3-0-2) 894-3 (Graduate) (3-0-0)

    E-Print Network [OSTI]

    Chapman, Glenn H.

    (building 3D objects with lasers), Medical applications, laser pantography. Lasers in Microelectronics Applications compact disk operation/mastering, Applications in laser light shows, laser printers, holography

  20. X-ray-optical cross-correlator for gas-phase experiments at the Linac Coherent Light Source free-electron laser

    SciTech Connect (OSTI)

    Schorb, S.; Cryan, J. P.; Glownia, J. M.; Bionta, M. R.; Coffee, R. N.; Swiggers, M.; Carron, S.; Castagna, J.-C.; Bozek, J. D.; Messerschmidt, M.; Schlotter, W. F.; Bostedt, C. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, P.O. Box 20450, Stanford, California 94309 (United States); Gorkhover, T. [Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Erk, B.; Boll, R.; Schmidt, C.; Rudenko, A. [Max-Planck Advanced-Study-Group at CFEL, Notkestr. 85, 22607 Hamburg (Germany); Max-Planck-Institut f. Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Rolles, D. [Max-Planck Advanced-Study-Group at CFEL, Notkestr. 85, 22607 Hamburg (Germany); Max-Planck-Institut f. med. Forschung, Jahnstr. 29, 69120 Heidelberg (Germany); Rouzee, A. [Max-Born-Institut, Max-Born-Str. 2, 12489 Berlin (Germany)

    2012-03-19T23:59:59.000Z

    X-ray-optical pump-probe experiments at the Linac Coherent Light Source (LCLS) have so far been limited to a time resolution of 280 fs fwhm due to timing jitter between the accelerator-based free-electron laser (FEL) and optical lasers. We have implemented a single-shot cross-correlator for femtosecond x-ray and infrared pulses. A reference experiment relying only on the pulse arrival time information from the cross-correlator shows a time resolution better than 50 fs fwhm (22 fs rms) and also yields a direct measurement of the maximal x-ray pulse length. The improved time resolution enables ultrafast pump-probe experiments with x-ray pulses from LCLS and other FEL sources.

  1. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field...

  2. CONEUR-996; NO. OF PAGES 10 Please cite this article in press as: Jeong D, et al. Prospect for feedback guided surgery with ultra-short pulsed laser light, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.10.020

    E-Print Network [OSTI]

    Kleinfeld, David

    2011-01-01T23:59:59.000Z

    for feedback guided surgery with ultra-short pulsed laser light, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.10.020 Prospect for feedback guided surgery with ultra-short pulsed laser light Diana C Jeong1,a, of laser light, as a tool for surgical cutting [16­23] (Figure 1B). We then ask: (1) How can ultra-short

  3. Laser preheat enhanced ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A method for enhancing fuel ignition performance by preheating the fuel with laser light at a wavelength that is absorbable by the fuel prior to ignition with a second laser is provided.

  4. Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength

    SciTech Connect (OSTI)

    Hau-Riege, S; London, R A; Bionta, R M; McKernan, M A; Baker, S L; Krzywinski, J; Sobierajski, R; Nietubyc, R; Pelka, J B; Jurek, M; Klinger, D; Juha, L; Chalupsky, J; Cihelka, J; Hajkova, V; Koptyaev, S; Velyhan, A; Krasa, J; Kuba, J; Tiedtke, K; Toleikis, S; Tschentscher, T; Wabnitz, H; Bergh, M; Caleman, C; Sokolowski-Tinten, K; Stojanovic, N; Zastrau, U; Tronnier, A; Meyer-ter-Vehn, J

    2007-12-03T23:59:59.000Z

    We exposed samples of B4C, amorphous C, chemical-vapor-deposition (CVD)-diamond C, Si, and SiC to single 25 fs-long pulses of 32.5 nm free-electron-laser radiation at fluences of up to 2.2 J/cm{sup 2}. The samples were chosen as candidate materials for x-ray free electron laser (XFEL) optics. We found that the threshold for surface-damage is on the order of the fluence required for thermal melting. For larger fluences, the crater depths correspond to temperatures on the order of the critical temperature, suggesting that the craters are formed by two-phase vaporization [1]. XFELs have the promise of producing extremely high-intensity ultrashort pulses of coherent, monochromatic radiation in the 1 to 10 keV regime. The expected high output fluence and short pulse duration pose significant challenges to the optical components, including radiation damage. It has not been possible to obtain direct experimental verification of the expected damage thresholds since appropriate x-ray sources are not yet available. FLASH has allowed us to study the interaction of high-fluence short-duration photon pulses with materials at the shortest wavelength possible to date. With these experiments, we have come closer to the extreme conditions expected in XFEL-matter interaction scenarios than previously possible.

  5. Laser lift-off technique for freestanding GaN substrate using an In droplet formed by thermal decomposition of GaInN and its application to light-emitting diodes

    SciTech Connect (OSTI)

    Iida, Daisuke, E-mail: dft0tfi16@meijo-u.ac.jp; Kawai, Syunsuke; Ema, Nobuaki; Tsuchiya, Takayoshi; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi [Faculty of Science and Technology, Meijo University, Nagoya 468-8502 (Japan); Akasaki, Isamu [Faculty of Science and Technology, Meijo University, Nagoya 468-8502 (Japan); Akasaki Research Center, Nagoya University, Nagoya 464-8603 (Japan)

    2014-08-18T23:59:59.000Z

    We developed a laser lift-off technique for a freestanding GaN substrate using an In droplet formed by thermal decomposition of GaInN. A combination of an In droplet formed by thermal decomposition of GaInN during growth and a pulsed second-harmonic neodymium-doped yttrium aluminum garnet laser (??=?532?nm) realized the lift-off GaN substrate. After laser lift-off of the GaN substrate, it was used to achieve 380?nm ultraviolet light-emitting diodes with light output enhanced 1.7-fold. In this way, the light extraction can be improved by removing the GaN substrate.

  6. Maskless direct laser writing with visible light: Breaking through the optical resolving limit with cooperative manipulations of nonlinear reverse saturation absorption and thermal diffusion

    SciTech Connect (OSTI)

    Wei, Jingsong, E-mail: weijingsong@siom.ac.cn [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Wang, Rui [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-03-28T23:59:59.000Z

    In this work, the resolving limit of maskless direct laser writing is overcome by cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion, where the nonlinear reverse saturation absorption can induce the formation of below diffraction-limited energy absorption spot, and the thermal diffusion manipulation can make the heat quantity at the central region of energy absorption spot propagate along the thin film thickness direction. The temperature at the central region of energy absorption spot transiently reaches up to melting point and realizes nanolithography. The sample “glass substrate/AgInSbTe” is prepared, where AgInSbTe is taken as nonlinear reverse saturation absorption thin film. The below diffraction-limited energy absorption spot is simulated theoretically and verified experimentally by near-field spot scanning method. The “glass substrate/Al/AgInSbTe” sample is prepared, where the Al is used as thermal conductive layer to manipulate the thermal diffusion channel because the thermal diffusivity coefficient of Al is much larger than that of AgInSbTe. The direct laser writing is conducted by a setup with a laser wavelength of 650?nm and a converging lens of NA=0.85, the lithographic marks with a size of about 100?nm are obtained, and the size is only about 1/10 the incident focused spot. The experimental results indicate that the cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion is a good method to realize nanolithography in maskless direct laser writing with visible light.

  7. Using X-ray free-electron lasers for probing of complex interaction dynamics of ultra-intense lasers with solid matter

    SciTech Connect (OSTI)

    Kluge, T., E-mail: t.kluge@hzdr.de; Huang, L. G.; Metzkes, J.; Bussmann, M. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany)] [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Gutt, C. [Universität Siegen, D-57068 Siegen (Germany)] [Universität Siegen, D-57068 Siegen (Germany); Schramm, U.; Cowan, T. E. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany) [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Technische Universität Dresden, D-01062 Dresden (Germany)

    2014-03-15T23:59:59.000Z

    We demonstrate the potential of X-ray free-electron lasers (XFEL) to advance the understanding of complex plasma dynamics by allowing for the first time nanometer and femtosecond resolution at the same time in plasma diagnostics. Plasma phenomena on such short timescales are of high relevance for many fields of physics, in particular in the ultra-intense ultra-short laser interaction with matter. Highly relevant yet only partially understood phenomena become directly accessible in experiment. These include relativistic laser absorption at solid targets, creation of energetic electrons and electron transport in warm dense matter, including the seeding and development of surface and beam instabilities, ambipolar expansion, shock formation, and dynamics at the surfaces or at buried layers. In this paper, we focus on XFEL plasma probing for high power laser matter interactions based on quantitative calculations using synthesized data and evaluate the feasibility of various imaging and scattering techniques with special focus on the small angle X-ray scattering technique.

  8. Laser cooling with ultrafast pulse trains

    E-Print Network [OSTI]

    David Kielpinski

    2003-06-14T23:59:59.000Z

    We propose a new laser cooling method for atomic species whose level structure makes traditional laser cooling difficult. For instance, laser cooling of hydrogen requires vacuum-ultraviolet laser light, while multielectron atoms need laser light at many widely separated frequencies. These restrictions can be eased by laser cooling on two-photon transitions with ultrafast pulse trains. Laser cooling of hydrogen, antihydrogen, and carbon appears feasible, and extension of the technique to molecules may be possible.

  9. Laser Optomechanics

    E-Print Network [OSTI]

    Yang, Weijian; Ng, Kar Wei; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J

    2015-01-01T23:59:59.000Z

    Cavity optomechanics explores the coupling between the optical field and the mechanical oscillation to induce cooling and regenerative oscillation in a mechanical oscillator. So far, optomechanics relies on the detuning between the cavity and an external pump laser, where the laser acts only as a power supply. Here, we report a new scheme with mutual coupling between a mechanical oscillator that supports a mirror of a vertical-cavity surface-emitting laser (VCSEL) and the optical field, greatly enhancing the light-matter energy transfer. In this work, we used an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror in a VCSEL, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity with > 550 nm self-oscillation amplitude of the micro-mechanical oscillator, two to three orders of magnitude larger than typical. This new scheme not only offers an efficient approach for high-...

  10. Laser-plasma instabilities in large plasmas irradiated at 1. 06. mu. m and the wavelength scaling of the absorption, hot-electron production, ablation pressure for 1. 06-, 0. 53-, and 0. 35-. mu. m light

    SciTech Connect (OSTI)

    Phillion, D.W.; Campbell, E.M.; Turner, R.E.

    1982-01-01T23:59:59.000Z

    Plasmas were created by exploding 7000 A thick CH foils at the irradiation conditions: 1.064 ..mu..m, 3 kJ, 2.5 x 10/sup 15/ W/cm/sup 2/, 900 ps FWHM, 400 ..mu..m spot diameter. Ten percent of the laser energy appeared as Raman light and 0.04% as 3..omega../sub 0//2 light. The 3..omega../sub 0//2 light and the 30-70 keV X rays occurred simultaneouly at t=-120/sup +50//sub -//sub 200/ psec and lasted only 300 psec FWHM. The foil was calculated to explode to n/sub c/4 at t=-300 psec. The spectrum and angular distribution of the Raman light were also measured. Time-resolved spectral measurements have been made in experiments with 5320 A laser light in a 600-900 psec FWHM pulse. The scaling of the 3..omega../sub 0//2 light with both the laser spot size and pulse length has been studied.

  11. 7 Å Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction at Linac Coherent Light Source

    SciTech Connect (OSTI)

    Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark; Zatsepin, Nadia A.; Barty, Anton; Benner, Henry; Boutet, Sebastien; Feld, Geoffrey K.; Hau-Riege, Stefan; Kirian, Rick; Kupitz, Christopher; Messerschmidt, Marc; Ogren, John I.; Pardini, Tommaso; Segelke, Brent; Williams, Garth J.; Spence , John C.; Abela, Rafael; Coleman, Matthew A.; Evans, James E.; Schertler, Gebhard; Frank, Matthias; Li, Xiao-Dan

    2014-06-09T23:59:59.000Z

    Membrane proteins arranged as two-dimensional (2D) crystals in the lipid en- vironment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. X-ray diffraction from individual 2D crystals did not represent a suitable investigation tool because of radiation damage. The recent availability of ultrashort pulses from X-ray Free Electron Lasers (X-FELs) has now provided a mean to outrun the damage. Here we report on measurements performed at the LCLS X-FEL on bacteriorhodopsin 2D crystals mounted on a solid support and kept at room temperature. By merg- ing data from about a dozen of single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 °A, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase of resolution. The presented results pave the way to further X-FEL studies on 2D crystals, which may include pump-probe experiments at subpicosecond time resolution.

  12. (Revised May 25, 2012) Interference of Light

    E-Print Network [OSTI]

    Collins, Gary S.

    (Revised May 25, 2012) Interference of Light WARNING: Use the laser SAFELY. Do not look directly) To observe the interference patterns for laser light passing through a single narrow slit, through two. (2) To determine by graphical techniques the wavelength of the laser light based on the observed

  13. Theoretical computation of the polarization characteristics of an X-ray Free-Electron Laser with planar undulator

    E-Print Network [OSTI]

    Geloni, Gianluca; Saldin, Evgeni

    2015-01-01T23:59:59.000Z

    We show that radiation pulses from an X-ray Free-Electron Laser (XFEL) with a planar undulator, which are mainly polarized in the horizontal direction, exhibit a suppression of the vertical polarization component of the power at least by a factor $\\lambda_w^2/(4 \\pi L_g)^2$, where $\\lambda_w$ is the length of the undulator period and $L_g$ is the FEL field gain length. We illustrate this fact by examining the XFEL operation under the steady state assumption. In our calculations we considered only resonance terms: in fact, non resonance terms are suppressed by a factor $\\lambda_w^3/(4 \\pi L_g)^3$ and can be neglected. While finding a situation for making quantitative comparison between analytical and experimental results may not be straightforward, the qualitative aspects of the suppression of the vertical polarization rate at XFELs should be easy to observe. We remark that our exact results can potentially be useful to developers of new generation FEL codes for cross-checking their results.

  14. XFEL 2004 - Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat isJoin theanniversaryI 1 0

  15. Linac Coherent Light Source Overview

    Broader source: Energy.gov [DOE]

    Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

  16. Linac Coherent Light Source Overview

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

  17. Linac Coherent Light Source Overview

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

  18. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, D.J.

    1999-06-08T23:59:59.000Z

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  19. Wiggler, undulator, and free-electron laser-radiation sources development at the National Synchrotron Light Source

    SciTech Connect (OSTI)

    Hsieh, H.; Krinsky, S.; Luccio, A.; Pellegrini, C.; van Steenbergen, A.

    1982-01-01T23:59:59.000Z

    An overview is presented of the special radiation sources development at the NSLS for incorporation in a 2.5 GeV X-ray storage ring and a 700 MeV vuv storage ring. This includes a superconducting high field multipole wiggler, lambda/sub c/ = 0.5A; a permanent magnet wiggler, lambda/sub c/ = 2.0A; a maximum photon energy undulator (5 to 7 keV); an undulator for a soft X-ray line or continuum spectrum and a free electron laser source tunable in the 2500 to 4500A region. Source characteristics and status of development are given. In addition, the incorporation of a backscattered Compton photon source is being studied and relevant parameters are presented.

  20. Atomic physics: An almost lightless laser

    E-Print Network [OSTI]

    Vuletic, Vladan

    Lasers are often described in terms of a light field circulating in an optical resonator system. Now a laser has been demonstrated in which the field resides primarily in the atomic medium that is used to generate the light.

  1. Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Turner, Joshua J.; Dakovski, Georgi L.; Hoffmann, Matthias C.; Hwang, Harold Y.; Zarem, Alex; Schlotter, William F.; Moeller, Stefan; Minitti, Michael P.; Staub, Urs; Johnson, Steven; et al

    2015-05-01T23:59:59.000Z

    This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm?¹ electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed.

  2. Fundamentals of Laser Safety

    E-Print Network [OSTI]

    Wu, Dapeng Oliver

    ) Helium neon (NIR) Erbium (NIR) Helium neon (NIR) Hydrogen fluoride (NIR) Carbon dioxide (FIR) Carbon. These three properties of laser light are what can make it more hazardous than ordinary light. Laser light can dioxide (FIR) 0.594 0.610 0.627 0.633 0.647 0.570-0.650 0.694 0.840 1.064 1.

  3. Toward ZnO Light Emitting Diode

    E-Print Network [OSTI]

    Liu, Jianlin

    2008-01-01T23:59:59.000Z

    applications such as light emitting diodes (LEDs) and laser009 "Toward ZnO Light Emitting Diode" Jianlin Liu July 2008Title: “Toward ZnO Light Emitting Diode” Sponsor: UC Energy

  4. Laser Safety Laser-emitting tools and equipment are common to many work situations. Lasers in printers, grocery store

    E-Print Network [OSTI]

    Burke, Peter

    Laser Safety Laser-emitting tools and equipment are common to many work situations. Lasers in printers, grocery store scanners, construction tools, and laser pointers are generally lower powered lasers emit high-intensity, directional light beams that vary in strength, they are a particular hazard

  5. From Nuclei to Micro-Structure in Colloidal Crystallization: Investigating Intermediate Length Scales by Small Angle Laser Light Scattering

    E-Print Network [OSTI]

    Richard Beyer; Markus Franke; Hans Joachim Schöpe; Eckhard Bartsch; Thomas Palberg

    2015-05-11T23:59:59.000Z

    Hard sphere suspensions are well recognized model systems of statistical physics and soft condensed matter. We here investigate the temporal evolution of the immediate environment of nucleating and growing crystals and/or their global scale distribution using time resolved Small Angle Light Scattering (SALS). Simultaneously performed Bragg scattering (BS) measurements provide an accurate temporal gauging of the sequence of events. We apply this approach to studies of re-crystallization in several different shear molten hard sphere and attractive hard sphere samples with the focus being on the diversity of observable signal shapes and their change in time. We demonstrate that depending on the preparation conditions different processes occur on length scales larger than the structural scale which significantly influence both the crystallization kinetics and the final micro-structure. By careful analysis of the SALS signal evolution and by comparing different suggestions for small angle signal shapes to our data we can for most cases identify the processes leading to the observed signals. These include phase contrast form factor scattering from depletion zones during formation and overlap as well as during gelation, amplitude contrast form factor scattering by more transparent crystals, and structure factor scattering from late stage inter-crystallite ordering. The large variety of different small angle signals thus in principle contains valuable information complementary to that gained from Bragg scattering or microscopy. Our comparison, however, also shows that further refinement and adaptation of the theoretical expressions to the sample specific boundary conditions is desired for a quantitative kinetic analysis of micro-structural evolution.

  6. Microscopic linear liquid streams in vacuum: Injection of solvated biological samples into X-ray free electron lasers

    SciTech Connect (OSTI)

    Doak, R. B.; DePonte, D. P.; Nelson, G.; Camacho-Alanis, F.; Ros, A.; Spence, J. C. H.; Weierstall, U. [Arizona State University, Tempe, AZ 85287-1504 (United States); Centre for Free-Electron Laser Science, DESY, D-22607 Hamburg (Germany); Arizona State University, Tempe, AZ 85287-1504 (United States)

    2012-11-27T23:59:59.000Z

    Microscopic linear liquid free-streams offer a means of gently delivering biological samples into a probe beam in vacuum while maintaining the sample species in a fully solvated state. By employing gas dynamic forces to form the microscopic liquid stream (as opposed to a conventional solid-walled convergent nozzle), liquid free-streams down to 300 nm diameter have been generated. Such 'Gas Dynamic Virtual Nozzles' (GDVN) are ideally suited to injecting complex biological species into an X-ray Free Electron Laser (XFEL) to determine the structure of the biological species via Serial Femtosecond Crystallography (SFX). GDVN injector technology developed for this purpose is described.

  7. Laser Plasma Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    processes. A typical configuration uses a low intensity laser beam (2nd, 3rd, or 4th harmonic of 1054-nm) to probe a plasma volume. The Thomson scattered light is collected by a...

  8. R&D for a Soft X-Ray Free Electron Laser Facility

    E-Print Network [OSTI]

    Staples, John

    2009-01-01T23:59:59.000Z

    Electron Laser Conference, Trieste, Italy (2004) p. 558. 11.Committees of: Sincrotrone Trieste, Italy Pohang Light

  9. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01T23:59:59.000Z

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  10. The Laser DiodeThe Laser Diode Jason HillJason Hill

    E-Print Network [OSTI]

    La Rosa, Andres H.

    a Laser Diode Works Edge Emitting Laser Diode Operates similar to a Light Emitting DiodeOperates similar to a Light Emitting Diode Active medium is a semiconductor pActive medium is a semiconductor p--n junctionn Operates similar to a Light Emitting DiodeOperates similar to a Light Emitting Diode Active medium

  11. Fiber laser coupled optical spark delivery system

    DOE Patents [OSTI]

    Yalin, Azer (Fort Collins, CO); Willson, Bryan (Fort Collins, CO); Defoort, Morgan (Fort Collins, CO); Joshi, Sachin (Fort Collins, CO); Reynolds, Adam (Fort Collins, CO)

    2008-03-04T23:59:59.000Z

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  12. Mutually injection locked lasers for enhanced frequency response

    DOE Patents [OSTI]

    Tauke-Pedretti, Anna; Skogen, Erik J; Vawter, Gregory A; Chow, Weng W

    2014-04-01T23:59:59.000Z

    Semiconductor light-emitting devices; methods of forming semi-conductor light emitting devices, and methods of operating semi-conductor light emitting devices are provided. A semiconductor light-emitting device includes a first laser section monolithically integrated with a second laser section on a common substrate. Each laser section has a phase section, a gain section and at least one distributed Bragg reflector (DBR) structure. The first laser section and the second laser section are optically coupled to permit optical feedback therebetween. Each phase section is configured to independently tune a respective one of the first laser section and second laser section relative to each other.

  13. Hybrid fiber-rod laser

    DOE Patents [OSTI]

    Beach, Raymond J.; Dawson, Jay W.; Messerly, Michael J.; Barty, Christopher P. J.

    2012-12-18T23:59:59.000Z

    Single, or near single transverse mode waveguide definition is produced using a single homogeneous medium to transport both the pump excitation light and generated laser light. By properly configuring the pump deposition and resulting thermal power generation in the waveguide device, a thermal focusing power is established that supports perturbation-stable guided wave propagation of an appropriately configured single or near single transverse mode laser beam and/or laser pulse.

  14. Laser cooling of infrared sensors.

    SciTech Connect (OSTI)

    Hasselbeck, M. P. (Michael P.); Sheik-Bahae, M (Mansoor); Thiede, J. (Jared); Distel, J. R. (James R.); Greenfield, S. R. (Scott R.); Patterson, Wendy M.; Bigotta, S.; Imangholi, B.; Seletskiy, D. (Denis); Bender, D.; Vankipuram, V.; Vadiee, N.; Epstein, Richard I.

    2004-01-01T23:59:59.000Z

    We present an overview of laser cooling of solids. In this all-solid-state approach to refrigeration, heat is removed radiatively when an engineered material is exposed to high power laser light. We report a record amount of net cooling (88 K below ambient) that has been achieved with a sample made from doped fluoride glass. Issues involved in the design of a practical laser cooler are presented. The possibility of laser cooling of semiconductor sensors is discussed.

  15. Compact and highly efficient laser pump cavity

    DOE Patents [OSTI]

    Chang, Jim J. (Dublin, CA); Bass, Isaac L. (Castro Valley, CA); Zapata, Luis E. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  16. Speckle-free laser imaging

    E-Print Network [OSTI]

    Redding, Brandon; Cao, Hui

    2011-01-01T23:59:59.000Z

    Many imaging applications require increasingly bright illumination sources, motivating the replacement of conventional thermal light sources with light emitting diodes (LEDs), superluminescent diodes (SLDs) and lasers. Despite their brightness, lasers and SLDs are poorly suited for full-field imaging applications because their high spatial coherence leads to coherent artifacts known as speckle that corrupt image formation. We recently demonstrated that random lasers can be engineered to provide low spatial coherence. Here, we exploit the low spatial coherence of specifically-designed random lasers to perform speckle-free full-field imaging in the setting of significant optical scattering. We quantitatively demonstrate that images generated with random laser illumination exhibit higher resolution than images generated with spatially coherent illumination. By providing intense laser illumination without the drawback of coherent artifacts, random lasers are well suited for a host of full-field imaging applicatio...

  17. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2007-10-23T23:59:59.000Z

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  18. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2006-07-26T23:59:59.000Z

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  19. JOURNAL DE PHYSIQUE Colloque C6, supplkment au no 12, Tome 38, Dkcembre 1977, page C6-43 ABSORPTION OF CO, LASER LIGHT BY A

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    au CO2 et le plasma produit par un dispositif plasma focus est examink des points de w e thtorique et. -The interaction between a pulsed, CO* laser beam and the plasma produced in a plasma focus device. The plasma is the dense pinch formed in a plasma focus device [I]. (*) Now at Ecole Polytechnique FedCrale de

  20. An analysis of the effect of coupling between temperature rise and light distribution in laser irradiated tissue using finite element and Monte-Carlo methods

    E-Print Network [OSTI]

    Kim, Beop-Min

    1991-01-01T23:59:59.000Z

    is the radial distance from the laser source, 0 is the azimuthal angle, and Q is the heat source term (W/ms). The temperature distribution, after finding out the heat source term Q, can be evaluated from equation 1. 1 or 1. 2. This equation is solved...

  1. Highly reliable InGaP/InGaAlP visible light emitting inner stripe lasers with 667 nm lasing wavelength

    SciTech Connect (OSTI)

    Okuda, H.; Ishikawa, M.; Shiozawa, H.; Watanabe, Y.; Itaya, K.; Nitta, K.; Hatakoshi, G.; Kokubun, Y.; Uematsu, Y.

    1989-06-01T23:59:59.000Z

    In order to obtain highly reliable InGaP/InGaAlP inner stripe (IS) lasers, the authors have clarified the relation between the maximum CW operation temperature and other laser characteristics, such as the pulsed threshold current, characteristic temperature, series resistance, and thermal resistance. The Al composition of the cladding layer, the carrier concentration of the p-cladding layer, and the thicknesses of the active layer and cladding layer have been optimized. It was found that an Al composition of 0.7 was the most suitable for the cladding layer, and the optimized carrier concentration was 4 x 10/sup 17/ cm/sup -3/. A maximum temperature of 90/sup 0/C was obtained for a 0.1 /mu/m active layer thickness and a 0.6 /mu/m cladding layer thickness. This is the highest value for InGaP/InGaAlP IS lasers, to our knowledge. In the case of a 0.06 /mu/m active layer thickness and a 0.8 /mu/m cladding layer thickness, a maximum temperature of 75/sup 0/C was obtained. IS lasers with facet coating have been stably operating for more than 8000 h at 40/sup 0/C and 3 mW and for more than 4000 h at 50/sup 0/C and 3 mW.

  2. Laser isotope separation

    DOE Patents [OSTI]

    Robinson, C. Paul (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Cotter, Theodore P. (Munich, DE); Boyer, Keith (Los Alamos, NM); Greiner, Norman R. (Los Alamos, NM)

    1988-01-01T23:59:59.000Z

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  3. Unidirectional ring lasers

    DOE Patents [OSTI]

    Hohimer, J.P.; Craft, D.C.

    1994-09-20T23:59:59.000Z

    Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity is disclosed. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction. 21 figs.

  4. Laser controlled flame stabilization

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Thomas, Matthew E. (Huntsville, AL)

    2001-01-01T23:59:59.000Z

    A method and apparatus is provided for initiating and stabilizing fuel combustion in applications such as gas turbine electrical power generating engines and jet turbine engines where it is desired to burn lean fuel/air mixtures which produce lower amounts of NO.sub.x. A laser induced spark is propagated at a distance from the fuel nozzle with the laser ignitor being remotely located from the high temperature environment of the combustion chamber. A laser initiating spark generated by focusing high peak power laser light to a sufficiently tight laser spot within the fuel to cause the ionization of air and fuel into a plasma is unobtrusive to the flow dynamics of the combustion chamber of a fuel injector, thereby facilitating whatever advantage can be taken of flow dynamics in the design of the fuel injector.

  5. The beauty of laser lines

    E-Print Network [OSTI]

    Kim, Sue-Mie

    1993-01-01T23:59:59.000Z

    A line, the simplest way to express an artist's feelings or interpretation of an object, has its own emotions that an artist can employ for her purpose. Laser light, the most self-concentrated, self-sustained and directed, ...

  6. Laser Atmospheric Studies with VERITAS

    E-Print Network [OSTI]

    C. M. Hui; for the VERITAS collaboration

    2007-09-25T23:59:59.000Z

    As a calibrated laser pulse propagates through the atmosphere, the amount of Rayleigh-scattered light arriving at the VERITAS telescopes can be calculated precisely. This technique was originally developed for the absolute calibration of ultra-high-energy cosmic-ray fluorescence telescopes but is also applicable to imaging atmospheric Cherenkov telescopes (IACTs). In this paper, we present two nights of laser data taken with the laser at various distances away from the VERITAS telescopes and compare it to Rayleigh scattering simulations.

  7. Optical diagnostics integrated with laser spark delivery system

    DOE Patents [OSTI]

    Yalin, Azer (Fort Collins, CO); Willson, Bryan (Fort Collins, CO); Defoort, Morgan (Fort Collins, CO); Joshi, Sachin (Fort Collins, CO); Reynolds, Adam (Fort Collins, CO)

    2008-09-02T23:59:59.000Z

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  8. Intense Femtosecond Laser Interactions with Ions in

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ), ultra-short laser light with atoms and molecules has led to the discovery of new phenomena such as bondIntense Femtosecond Laser Interactions with Ions in Beams and Traps A thesis presented through a re-scattering process where an electron is ionized, propagated in the laser field and is driven

  9. Polarization methods for diode laser excitation of solid state lasers

    DOE Patents [OSTI]

    Holtom, Gary R. (Richland, WA)

    2008-11-25T23:59:59.000Z

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. A Yb-doped gain medium can be used that absorbs light having a first polarization and emits light having a second polarization. Using such pumping with laser cavity dispersion control, pulse durations of less than 100 fs can be achieved.

  10. Scanning laser photoluminescence imaging system for nondestructive evaluation of direct bandgap materials

    E-Print Network [OSTI]

    Moon, Inchul

    1986-01-01T23:59:59.000Z

    optoelectronic device applications for light generators such as light emitting diodes (LED) and lasers. The use of LEDs in digital watches and calculators displays is well known. LEDs are also used as lamps and optoisolators. Semiconductor lasers...

  11. Shock Wave Acceleration of Monoenergetic Protons using a Multi-Terawatt CO2 Laser

    E-Print Network [OSTI]

    Haberberger, Dan

    2012-01-01T23:59:59.000Z

    fusion implosions at ultra-high laser energies,” Science,of ultrashort, ultra-intense laser light by solids andby an ultra intense and short- pulsed laser in under-dense

  12. Laser Noise Reduction in Air

    E-Print Network [OSTI]

    Pierre Bejot; Jerome Kasparian; Estelle Salmon; Roland Ackermann; Nicolas Gisin; Jean-Pierre Wolf

    2006-08-09T23:59:59.000Z

    Fluctuations of the white-light supercontinuum produced by ultrashort laser pulses in selfguided filaments (spatio-temporal solitons) in air are investigated. We demonstrate that correlations exist within the white-light supercontinuum, and that they can be used to significantly reduce the laser intensity noise by filtering the spectrum. More precisely, the fundamental wavelength is anticorrelated with the wings of the continuum, while conjugated wavelength pairs on both sides of the continuum are strongly correlated. Spectral filtering of the continuum reduces the laser intensity noise by 1.2 dB, showing that fluctuations are rejected to the edges of the spectrum.

  13. Laser ablation based fuel ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    1998-01-01T23:59:59.000Z

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  14. Laser ablation based fuel ignition

    DOE Patents [OSTI]

    Early, J.W.; Lester, C.S.

    1998-06-23T23:59:59.000Z

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  15. Optical coatings for laser fusion applications

    SciTech Connect (OSTI)

    Lowdermilk, W.H.; Milam, D.; Rainer, F.

    1980-04-24T23:59:59.000Z

    Lasers for fusion experiments use thin-film dielectric coatings for reflecting, antireflecting and polarizing surface elements. Coatings are most important to the Nd:glass laser application. The most important requirements of these coatings are accuracy of the average value of reflectance and transmission, uniformity of amplitude and phase front of the reflected or transmitted light, and laser damage threshold. Damage resistance strongly affects the laser's design and performance. The success of advanced lasers for future experiments and for reactor applications requires significant developments in damage resistant coatings for ultraviolet laser radiation.

  16. Diode-pumped laser with improved pumping system

    DOE Patents [OSTI]

    Chang, Jim J.

    2004-03-09T23:59:59.000Z

    A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.

  17. Fusion pumped light source

    DOE Patents [OSTI]

    Pappas, Daniel S. (Los Alamos, NM)

    1989-01-01T23:59:59.000Z

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  18. High efficiency light source using solid-state emitter and down-conversion material

    SciTech Connect (OSTI)

    Narendran, Nadarajah (Clifton Park, NY); Gu, Yimin (Troy, NY); Freyssinier, Jean Paul (Troy, NY)

    2010-10-26T23:59:59.000Z

    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  19. Laser ablation system, and method of decontaminating surfaces

    DOE Patents [OSTI]

    Ferguson, Russell L. (Idaho Falls, ID); Edelson, Martin C. (Ames, IA); Pang, Ho-ming (Ames, IA)

    1998-07-14T23:59:59.000Z

    A laser ablation system comprising a laser head providing a laser output; a flexible fiber optic cable optically coupled to the laser output and transmitting laser light; an output optics assembly including a nozzle through which laser light passes; an exhaust tube in communication with the nozzle; and a blower generating a vacuum on the exhaust tube. A method of decontaminating a surface comprising the following steps: providing an acousto-optic, Q-switched Nd:YAG laser light ablation system having a fiber optically coupled output optics assembly; and operating the laser light ablation system to produce an irradiance greater than 1.times.10.sup.7 W/cm.sup.2, and a pulse width between 80 and 170 ns.

  20. Sandia National Laboratories: GaN-based nanowire laser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GaN-based nanowire laser BES Web Highlight: Single-mode gallium nitride nanowire lasers On January 28, 2013, in EC, Energy Efficiency, Solid-State Lighting A new top-down method...

  1. Smart lighting: New Roles for Light

    E-Print Network [OSTI]

    Salama, Khaled

    Smart lighting: New Roles for Light in the Solid State Lighting World Robert F. Karlicek, Jr. Director, Smart Lighting Engineering Research Center Professor, Electrical, Systems and Computer Lighting · What is Smart Lighting · Technology Barriers to Smart Lighting · Visible Light Communications

  2. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers

    SciTech Connect (OSTI)

    Hattne, Hattne

    2014-03-04T23:59:59.000Z

    Diffraction patterns from thermolysin microcrystals and one dark run, collected in December 2011. This data was used for metrology calibration and general cctbx.xfel development.

  3. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hattne, Hattne

    Diffraction patterns from thermolysin microcrystals and one dark run, collected in December 2011. This data was used for metrology calibration and general cctbx.xfel development.

  4. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  5. Summary Report of Working Group 6: Laser-Plasma Acceleration

    E-Print Network [OSTI]

    Leemans, Wim P.; Downer, Michael; Siders, Craig

    2008-01-01T23:59:59.000Z

    be an important focus of laser-plasma acceleration researchfocus. In both cases, light regions of the image ionized and heated the plasma,

  6. advanced laser diagnostic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the laser radiation and conversion to electrical power For the first element above, photovoltaic concentrator systems using ultra-light Fresnel lenses to focus space sunlight...

  7. advanced laser diagnostics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the laser radiation and conversion to electrical power For the first element above, photovoltaic concentrator systems using ultra-light Fresnel lenses to focus space sunlight...

  8. Monte Carlo study for optimal conditions in single-shot imaging with femtosecond x-ray laser pulses

    SciTech Connect (OSTI)

    Park, Jaehyun; Ishikawa, Tetsuya; Song, Changyong [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan)] [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Joti, Yasumasa [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)] [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2013-12-23T23:59:59.000Z

    Intense x-ray pulses from x-ray free electron lasers (XFELs) enable the unveiling of atomic structure in material and biological specimens via ultrafast single-shot exposures. As the radiation is intense enough to destroy the sample, a new sample must be provided for each x-ray pulse. These single-particle delivery schemes require careful optimization, though systematic study to find such optimal conditions is still lacking. We have investigated two major single-particle delivery methods: particle injection as flying objects and membrane-mount as fixed targets. The optimal experimental parameters were searched for via Monte Carlo simulations to discover that the maximum single-particle hit rate achievable is close to 40%.

  9. Laser isotope separation by multiple photon absorption

    DOE Patents [OSTI]

    Robinson, C. Paul (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Lyman, John L. (Los Alamos, NM); Aldridge, III, Jack P. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  10. Laser isotope separation by multiple photon absorption

    DOE Patents [OSTI]

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07T23:59:59.000Z

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  11. area diode laser: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Diode Operates similar to a Light Emitting DiodeOperates similar to a Light Emitting Diode Active medium is a semiconductor pActive medium is a semiconductor p--n...

  12. assisted diode laser: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Diode Operates similar to a Light Emitting DiodeOperates similar to a Light Emitting Diode Active medium is a semiconductor pActive medium is a semiconductor p--n...

  13. Silicon rich nitride for silicon based laser devices

    E-Print Network [OSTI]

    Yi, Jae Hyung

    2008-01-01T23:59:59.000Z

    Silicon based light sources, especially laser devices, are the key components required to achieve a complete integrated silicon photonics system. However, the fundamental physical limitation of the silicon material as light ...

  14. Electro-optic harmonic conversion to switch a laser beam out of a cavity

    DOE Patents [OSTI]

    Haas, R.A.; Henesian, M.A.

    1984-10-19T23:59:59.000Z

    The present invention relates to switching laser beams out of laser cavities, and more particularly, it relates to the use of generating harmonics of the laser beam to accomplish the switching. When laser light is generatd in a laser cavity the problem arises of how to switch the laser light out of the cavity in order to make use of the resulting laser beam in a well known multitude of ways. These uses include range finding, communication, remote sensing, medical surgery, laser fusion applications and many more. The switch-out problem becomes more difficult as the size of the laser aperture grows such as in laser fusion applications. The final amplifier stages of the Nova and Novette lasers at Lawrence Livermore National Laboratory are 46 centimeters with the laser beam expanded to 74 centimeters thereafter. Larger aperture lasers are planned.

  15. Isotope separation by laser means

    DOE Patents [OSTI]

    Robinson, C. Paul (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Cotter, Theodore P. (Los Alamos, NM); Greiner, Norman R. (Los Alamos, NM); Boyer, Keith (Los Alamos, NM)

    1982-06-15T23:59:59.000Z

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  16. Page 1Laser Safety Training Laser Institute of America Laser Safety Laser Institute of America

    E-Print Network [OSTI]

    Farritor, Shane

    Page 1Laser Safety Training © Laser Institute of America 1 Laser Safety © Laser Institute of America Laser Safety: Hazards, Bioeffects, and Control Measures Laser Institute of America Gus Anibarro Education Manager 2Laser Safety © Laser Institute of America Laser Safety Overview Laser Safety Accidents

  17. Laser Telecommunication timeLaser beam

    E-Print Network [OSTI]

    La Rosa, Andres H.

    Laser Telecommunication Experiment Laser time Laser beam intensity timeLaser beam Laser battery Laser connected to a circuit without a modulator. Bottom graph illustrates what happen when a modulating signal is superimposed to the DC voltage driving the laser Laser beam intensity DC Input voltage DC

  18. Threading plasmonic nanoparticle strings with light

    E-Print Network [OSTI]

    Herrmann, Lars O.; Valev, Ventsislav K.; Tserkezis, Christos; Barnard, Jonathan S.; Kasera, Setu; Scherman, Oren A.; Aizpurua, Javier; Baumberg, Jeremy J.

    2014-07-28T23:59:59.000Z

    by light induces large-scale threading, probed here across ml volumes (as depicted in Fig. 1b). Threads formed using unfocussed 805 nm, 200 fs, ultrafast laser pulses of 90MWcm#2; 2 intensity are directly seen in transmission electron microscopy (TEM... for this laser-induced assembly. Important factors for assembling nanomaterials with light. In our experiments, threading is achieved with high peak power (Ppeak) ultrafast laser pulses, which indicates that the process is non-thermal. In a non-thermal process...

  19. Laser pulse detector

    DOE Patents [OSTI]

    Mashburn, Douglas N. (Knoxville, TN); Akerman, M. Alfred (Knoxville, TN)

    1981-01-01T23:59:59.000Z

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  20. Laser Assisted Emittance Exchange

    SciTech Connect (OSTI)

    Xiang, Dao; /SLAC

    2012-06-11T23:59:59.000Z

    We describe here the laser assisted emittance exchange (LAEE) technique. A laser operating in the transverse mode (TEM10 or TEM01) is used to interact with the electron beam in a dispersive region and to initiate the transverse-to-longitudinal emittance exchange. It is shown that with the LAEE one can generate an electron beam with ultralow transverse emittance, which allows one to significantly bring down the size of an X-ray free electron laser (FEL) and greatly extend the availability of these light sources. The technique can also be used to enhance the performances of X-ray FELs in storage rings. The timing and energy jitter problems for the standard emittance exchange and LAEE techniques are also discussed.

  1. Light Properties Light travels at the speed of light `c'

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    LIGHT!! #12;Light Properties Light travels at the speed of light `c' C = 3 x 108 m/s Or 190,000 miles/second!! Light could travel around the world about 8 times in one second #12;What is light?? Light is a "wave packet" A photon is a "light particle" #12;Electromagnetic Radiation and You Light is sometimes

  2. AlGaAs inverted strip buried heterostructure lasers

    SciTech Connect (OSTI)

    Blauvelt, H.; Margalit, S.; Yariv, A.

    1982-09-01T23:59:59.000Z

    Inverted strip buried heterostructure lasers have been fabricated. These lasers have threshold currents and quantum efficiencies that are comparable to those of conventional buried heterostructure lasers. The optical mode is confined by a weakly guiding strip loaded waveguide which makes possible operation in the fundamental transverse mode for larger stripe widths than is possible for conventional buried heterostructure lasers. Scattering of the laser light by irregularities in the sidewalls of the waveguide, which can be a serious problem in conventional buried heterostructure lasers, is also greatly reduced in these lasers.

  3. Collaborative Research: Instability and transport of laser beam in plasma

    SciTech Connect (OSTI)

    Rose, Harvey Arnold [New Mexico Consortium; Lushnikov, Pavel [University of New Mexico

    2014-11-18T23:59:59.000Z

    Our goal was to determine the onset of laser light scattering due to plasma wave instabilities. Such scatter is usually regarded as deleterious since laser beam strength is thereby diminished. While this kind of laser-plasma-instability (LPI) has long been understood for the case of coherent laser light, the theory of LPI onset for a laser beam with degraded coherence is recent. Such a laser beam fills plasma with a mottled intensity distribution, which has large fluctuations. The key question is: do the exceptionally large fluctuations control LPI onset or is it controlled by the relatively quiescent background laser intensity? We have answered this question. This is significant because LPI onset power in the former case is typically small compared to that of the latter. In addition, if large laser intensity fluctuations control LPI onset, then nonlinear effects become significant for less powerful laser beams than otherwise estimated.

  4. Laser microphone

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    2000-11-14T23:59:59.000Z

    A microphone for detecting sound pressure waves includes a laser resonator having a laser gain material aligned coaxially between a pair of first and second mirrors for producing a laser beam. A reference cell is disposed between the laser material and one of the mirrors for transmitting a reference portion of the laser beam between the mirrors. A sensing cell is disposed between the laser material and one of the mirrors, and is laterally displaced from the reference cell for transmitting a signal portion of the laser beam, with the sensing cell being open for receiving the sound waves. A photodetector is disposed in optical communication with the first mirror for receiving the laser beam, and produces an acoustic signal therefrom for the sound waves.

  5. Protective laser beam viewing device

    DOE Patents [OSTI]

    Neil, George R.; Jordan, Kevin Carl

    2012-12-18T23:59:59.000Z

    A protective laser beam viewing system or device including a camera selectively sensitive to laser light wavelengths and a viewing screen receiving images from the laser sensitive camera. According to a preferred embodiment of the invention, the camera is worn on the head of the user or incorporated into a goggle-type viewing display so that it is always aimed at the area of viewing interest to the user and the viewing screen is incorporated into a video display worn as goggles over the eyes of the user.

  6. LCLS Laser (in Polish)

    E-Print Network [OSTI]

    Romaniuk, R S

    2013-01-01T23:59:59.000Z

    The most powerful now in the world, American X-ray laser LCLS (Linac Coherent Light Source), has been working as a research and user facility since 2009. It is further developed to LCLSII machine at the Stanford National Accelerator Laboratory SLAC in Menlo Park CA. In a certain sense, LCLS is a response to the EXFEL machine and a logical extension of LCLS. All these machines are light sources of the fifth generation. EXFELis expected to open user facility in 2016, at a cost of over 1 bil Euro. LCLS II, which design started in 2010, will be operational in 2017. The lasers LCLS, LCLS II and EXFEL use SASE and SEED methods to generate light and are powered by electron liniacs, LCLS by a wrm one, and EXFEL by a cold one. The liniacs have energies approaching 20 GeV, and are around 2 - 3 km in length. EXFEL liniac uses SRF TESLA cavity technology at 1,3GHz. A prototype of EXFEL was FLASH laser. SLAC Laboratory uses effectively over 50 years experience in research, building and exploitation of linear electron acce...

  7. Patterned three-color ZnCdSeZnCdMgSe quantum-well structures for integrated full-color and white light emitters

    E-Print Network [OSTI]

    . This result demonstrates the feasibility of fabricating integrated full-color light emitting diode and laser American Institute of Physics. S0003-6951 00 04149-8 Light emitting diodes LEDs and laser diodes LDs having

  8. Apparatus, system, and method for laser-induced breakdown spectroscopy

    DOE Patents [OSTI]

    Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R

    2014-11-18T23:59:59.000Z

    In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.

  9. Dipole nano-laser: Theory and properties

    SciTech Connect (OSTI)

    Ghannam, T., E-mail: gtalal@hotmail.com [King Abdullah Institute for Nano-Technology, King Saud University, PO Box 2454, Riyadh 11451 (Saudi Arabia)

    2014-03-31T23:59:59.000Z

    In this paper we outline the main quantum properties of the system of nano-based laser called Dipole Nano-Laser emphasizing mainly on its ability to produce coherent light and for different configurations such as different embedding materials and subjecting it to an external classical electric field.

  10. Smart Lighting Controller!! Smart lighting!

    E-Print Network [OSTI]

    Anderson, Betty Lise

    1! Smart Lighting Controller!! #12;2! Smart lighting! No need to spend energy lighting the room if://blogs.stthomas.edu/realestate/2011/01/24/residential-real-estate-professionals-how-do-you- develop feedback! There is a connection between the output and the input! Therefore forces inputs to same voltage

  11. Approaching attometer laser vibrometry

    SciTech Connect (OSTI)

    Rembe, Christian; Kadner, Lisa; Giesen, Moritz [Research and Development, Polytec GmbH, Polytec Platz 1-7, 76337 Waldbronn (Germany)

    2014-05-27T23:59:59.000Z

    The heterodyne two-beam interferometer has been proven to be the optimal solution for laser-Doppler vibrometry regarding accuracy and signal robustness. The theoretical resolution limit for a two-beam interferometer of laser class 3R (up to 5 mW visible measurement-light) is in the regime of a few femtometer per square-root Hertz and well suited to study vibrations in microstructures. However, some new applications of RF-MEM resonators, nanostructures, and surface-nano-defect detection require resolutions beyond that limit. The resolution depends only on the noise and the sensor sensitivity to specimen displacements. The noise is already defined in nowadays systems by the quantum nature of light for a properly designed optical sensor and more light would lead to an inacceptable influence like heating of a very tiny structure. Thus, noise can only be improved by squeezed-light techniques which require a negligible loss of measurement light which is impossible for almost all technical measurement tasks. Thus, improving the sensitivity is the only possible path which could make attometer laser vibrometry possible. Decreasing the measurement wavelength would increase the sensitivity but would also increase the photon shot noise. In this paper, we discuss an approach to increase the sensitivity by assembling an additional mirror between interferometer and specimen to form an optical cavity. A detailed theoretical analysis of this setup is presented and we derive the resolution limit, discuss the main contributions to the uncertainty budget, and show a first experiment proving the sensitivity amplification of our approach.

  12. A Laser-Wire System at the ATF Extraction Line

    SciTech Connect (OSTI)

    Boogert, S.T.; Blair, G.; Boorman, G.; Bosco, A.; Deacon, L.; Driouichi, C.; Karataev, P.; /Royal Holloway, U. of London; Kamps, T.; /BESSY, Berlin; Delerue, N.; Dixit, S.; Foster, B.; Gannaway, F.; Howell, D.F.; Qureshi, M.; Reichold, A.; Senanayake, R.; /Oxford U.; Aryshev, A.; Hayano, H.; Kubo, K.; Terunuma, N.; Urakawa, J.; /KEK, Tsukuba /Liverpool

    2007-02-12T23:59:59.000Z

    A new laser-wire (LW) system has been installed at the ATF extraction line at KEK, Tsukuba. The system aims at a micron-scale laser spot size and employs a mode-locked laser system. The purpose-built interaction chamber, light delivery optics, and lens systems are described, and the first results are presented.

  13. Laser mode hyper-combs Alon Schwartz and Baruch Fischer*

    E-Print Network [OSTI]

    Fischer, Baruch

    , and G. Angelow, "Toward single-cycle laser systems," IEEE J. Select. Topics in Quantum. Electron. 9, 990. Fischer, "Melting and freezing of light pulses and modes in mode-locked lasers," Opt. Express 11(25), 3418Laser mode hyper-combs Alon Schwartz and Baruch Fischer* Department of Electrical Engineering

  14. Laser device

    DOE Patents [OSTI]

    Scott, Jill R. (Idaho Falls, ID); Tremblay, Paul L. (Idaho Falls, ID)

    2007-07-10T23:59:59.000Z

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  15. Fiber optic laser-induced breakdown spectroscopy sensor for molten material analysis

    DOE Patents [OSTI]

    Zhang, Hansheng; Rai, Awadesh K.; Singh, Jagdish P.; Yueh, Fang-Yu

    2004-07-13T23:59:59.000Z

    A fiber optic laser-induced breakdown spectroscopy (LIBS) sensor, including a laser light source, a harmonic separator for directing the laser light, a dichroic mirror for reflecting the laser light, a coupling lens for coupling the laser light at an input of a multimode optical fiber, a connector for coupling the laser light from an output of the multimode optical fiber to an input of a high temperature holder, such as a holder made of stainless steel, and a detector portion for receiving emission signal and analyzing LIBS intensities. In one variation, the multimode optical fiber has silica core and silica cladding. The holder includes optical lenses for collimating and focusing the laser light in a molten alloy to produce a plasma, and for collecting and transmitting an emission signal to the multimode optical fiber.

  16. Laser photoelectron spectroscopy of ions

    SciTech Connect (OSTI)

    Ellison, G.B. [Univ. of Colorado, Boulder (United States)

    1993-12-01T23:59:59.000Z

    During the last year the author has (a) completed a review article that critically contrasts three methods to measure R-H bond energies, (b) finished a spectroscopic study of the phenylnitrene anion, and (c) successfully completed an overhaul of the light source of the photodetachment spectrometer. The new light source is based on an Ar III laser that provides approximately 100 W of 3.531 eV photons.

  17. Programmable phase plate for tool modification in laser machining applications

    DOE Patents [OSTI]

    Thompson Jr., Charles A.; Kartz, Michael W.; Brase, James M.; Pennington, Deanna; Perry, Michael D.

    2004-04-06T23:59:59.000Z

    A system for laser machining includes a laser source for propagating a laser beam toward a target location, and a spatial light modulator having individual controllable elements capable of modifying a phase profile of the laser beam to produce a corresponding irradiance pattern on the target location. The system also includes a controller operably connected to the spatial light modulator for controlling the individual controllable elements. By controlling the individual controllable elements, the phase profile of the laser beam may be modified into a desired phase profile so as to produce a corresponding desired irradiance pattern on the target location capable of performing a machining operation on the target location.

  18. Free-Electron Laser FLASH Injector Laser

    E-Print Network [OSTI]

    FLASH. Free-Electron Laser in Hamburg FLASH Injector Laser Laser 1 Laser 2 Next steps Siegfried | FLASH Meeting | 16-Nov-2009 FLASH. Free-Electron Laser in Hamburg Laser 1 System Overview fround trip A 541 (2005) 467­477 #12;Siegfried Schreiber | FLASH Meeting | 16-Nov-2009 FLASH. Free-Electron Laser

  19. Can laser selffocusing in air replace interferometer siderostats and delay lines?

    E-Print Network [OSTI]

    Ribak, Erez

    experiments in high-power lasers show that they modulate of the density of air at long ranges, up, depending on the laser power. Two such laser-heated volumes can scatter stellar light into a central station, where they are made to interfere in speckled fringes. Usually the density modulations deflect the light

  20. Nonequilibrium lighting plasmas

    SciTech Connect (OSTI)

    Dakin, J.T. (GE Lighting, Nela Park, Cleveland, OH (US))

    1991-12-01T23:59:59.000Z

    In this paper the science of a variety of devices employing nonequilibrium lighting plasmas is reviewed. The devices include the fluorescent lamp, the low-pressure sodium lamp, the neon sign, ultraviolet lamps, glow indicators, and a variety of devices used by spectroscopists, such as the hollow cathode light source. The plasma conditions in representative commercial devices are described. Recent research on the electron gas, the role of heavy particles, spatial and temporal inhomogeneities, and new electrodeless excitation schemes is reviewed. Areas of future activity are expected to be in new applications of high-frequency electronics to commercial devices, new laser-based diagnostics of plasma conditions, and more sophisticated models requiring more reliable and extensive rate coefficient data.

  1. Laser-Compton Light Source Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured VideosTechnologies |

  2. Laser Light Engines | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy Development JumpLars Enviro JumpLas

  3. Electro-optic harmonic conversion to switch a laser beam out of a cavity

    DOE Patents [OSTI]

    Haas, Roger A. (Pleasanton, CA); Henesian, Mark A. (Livermore, CA)

    1987-01-01T23:59:59.000Z

    The invention is a switch to permit a laser beam to escape a laser cavity through the use of an externally applied electric field across a harmonic conversion crystal. Amplification takes place in the laser cavity, and then the laser beam is switched out by the laser light being harmonically converted with dichroic or polarization sensitive elements present to alter the optical path of the harmonically converted laser light. Modulation of the laser beam can also be accomplished by varying the external electric field.

  4. Cerenkov Light

    ScienceCinema (OSTI)

    Slifer, Karl

    2014-05-22T23:59:59.000Z

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  5. Cerenkov Light

    SciTech Connect (OSTI)

    Slifer, Karl

    2013-06-13T23:59:59.000Z

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  6. Lighting Renovations

    Broader source: Energy.gov [DOE]

    When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

  7. Dual wavelength laser damage testing for high energy lasers.

    SciTech Connect (OSTI)

    Atherton, Briggs W.; Rambo, Patrick K.; Schwarz, Jens; Kimmel, Mark W.

    2010-05-01T23:59:59.000Z

    As high energy laser systems evolve towards higher energies, fundamental material properties such as the laser-induced damage threshold (LIDT) of the optics limit the overall system performance. The Z-Backlighter Laser Facility at Sandia National Laboratories uses a pair of such kiljoule-class Nd:Phosphate Glass lasers for x-ray radiography of high energy density physics events on the Z-Accelerator. These two systems, the Z-Beamlet system operating at 527nm/ 1ns and the Z-Petawatt system operating at 1054nm/ 0.5ps, can be combined for some experimental applications. In these scenarios, dichroic beam combining optics and subsequent dual wavelength high reflectors will see a high fluence from combined simultaneous laser exposure and may even see lingering effects when used for pump-probe configurations. Only recently have researchers begun to explore such concerns, looking at individual and simultaneous exposures of optics to 1064 and third harmonic 355nm light from Nd:YAG [1]. However, to our knowledge, measurements of simultaneous and delayed dual wavelength damage thresholds on such optics have not been performed for exposure to 1054nm and its second harmonic light, especially when the pulses are of disparate pulse duration. The Z-Backlighter Facility has an instrumented damage tester setup to examine the issues of laser-induced damage thresholds in a variety of such situations [2] . Using this damage tester, we have measured the LIDT of dual wavelength high reflectors at 1054nm/0.5ps and 532nm/7ns, separately and spatially combined, both co-temporal and delayed, with single and multiple exposures. We found that the LIDT of the sample at 1054nm/0.5ps can be significantly lowered, from 1.32J/cm{sup 2} damage fluence with 1054/0.5ps only to 1.05 J/cm{sup 2} with the simultaneous presence of 532nm/7ns laser light at a fluence of 8.1 J/cm{sup 2}. This reduction of LIDT of the sample at 1054nm/0.5ps continues as the fluence of 532nm/7ns laser light simultaneously present increases. The reduction of LIDT does not occur when the 2 pulses are temporally separated. This paper will also present dual wavelength LIDT results of commercial dichroic beam-combining optics simultaneously exposed with laser light at 1054nm/2.5ns and 532nm/7ns.

  8. Nonlinear propagation of light in Dirac matter

    SciTech Connect (OSTI)

    Eliasson, Bengt [Institut fuer Theoretische Physik, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Shukla, P. K. [RUB International Chair, International Centre for Advanced Studies in Physical Sciences, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

    2011-03-15T23:59:59.000Z

    The nonlinear interaction between intense laser light and a quantum plasma is modeled by a collective Dirac equation coupled with the Maxwell equations. The model is used to study the nonlinear propagation of relativistically intense laser light in a quantum plasma including the electron spin-1/2 effect. The relativistic effects due to the high-intensity laser light lead, in general, to a downshift of the laser frequency, similar to a classical plasma where the relativistic mass increase leads to self-induced transparency of laser light and other associated effects. The electron spin-1/2 effects lead to a frequency upshift or downshift of the electromagnetic (EM) wave, depending on the spin state of the plasma and the polarization of the EM wave. For laboratory solid density plasmas, the spin-1/2 effects on the propagation of light are small, but they may be significant in superdense plasma in the core of white dwarf stars. We also discuss extensions of the model to include kinetic effects of a distribution of the electrons on the nonlinear propagation of EM waves in a quantum plasma.

  9. Biocavity Lasers

    SciTech Connect (OSTI)

    Gourley, P.L.; Gourley, M.F.

    2000-10-05T23:59:59.000Z

    Laser technology has advanced dramatically and is an integral part of today's healthcare delivery system. Lasers are used in the laboratory analysis of human blood samples and serve as surgical tools that kill, burn or cut tissue. Recent semiconductor microtechnology has reduced the size o f a laser to the size of a biological cell or even a virus particle. By integrating these ultra small lasers with biological systems, it is possible to create micro-electrical mechanical systems that may revolutionize health care delivery.

  10. Optics -Laser Doppler Imaging. As the name suggests,LDI,Laser Doppler Imaging exploits the Doppler

    E-Print Network [OSTI]

    Floreano, Dario

    Optics - Laser Doppler Imaging. As the name suggests,LDI,Laser Doppler Imaging exploits the Doppler effect to generate images,in this case of red blood cells moving within the microcirculatory system the Doppler shifted light we obtain information on all the red cells moving in the illuminated tissue,hence we

  11. Room-temperature cw operation of InGaP/InGaAlP visible light laser diodes on GaAs substrates grown by metalorganic chemical vapor deposition

    SciTech Connect (OSTI)

    Ishikawa, M.; Ohba, Y.; Sugawara, H.; Yamamoto, M.; Nakanisi, T.

    1986-01-20T23:59:59.000Z

    Room-temperature cw operation for InGaP/InGaAlP double heterostructure (DH) laser diodes on GaAs substrates was achieved for the first time. The DH wafers were grown by low-pressure metalorganic chemical vapor deposition using methyl metalorganics. A lasing wavelength of 679 nm and a threshold current of 109 mA at 24C were obtained for an inner stripe structure laser diode with a 250- m-long and 7- m stripe geometry. The laser operated at up to 51C. The characteristic temperature T0 was 87 K at around room temperature. The lowest threshold current density, 5.0 kA/cmS, was obtained with a 20- m stripe width laser diode under room-temperature pulsed operation.

  12. Fiber Fabry-Perot interferometer (FFPI) sensor using vertical cavity surface emitting laser (VCSEL) 

    E-Print Network [OSTI]

    Lee, Kyung-Woo

    2006-10-30T23:59:59.000Z

    This research represents the first effort to apply vertical cavity surface emitting lasers (VCSELs) to the monitoring of interferometric fiber optic sensors. Modulation of the drive current causes thermal tuning of the laser light frequency...

  13. Blue, green, orange, and red upconversion laser

    DOE Patents [OSTI]

    Xie, Ping (San Jose, CA); Gosnell, Timothy R. (Sante Fe, NM)

    1998-01-01T23:59:59.000Z

    A laser for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr.sup.3+ ions and Yb.sup.3+ ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output.

  14. Blue, green, orange, and red upconversion laser

    DOE Patents [OSTI]

    Xie, P.; Gosnell, T.R.

    1998-09-08T23:59:59.000Z

    A laser is disclosed for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr{sup 3+} ions and Yb{sup 3+} ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output. 11 figs.

  15. TESLA-FEL 2004-02 The Potential for the Development of the

    E-Print Network [OSTI]

    scheme is applicable for the Linac Coherent Light Source (LCLS) and European XFEL. 11 March 2004 #12 of the XFEL facilities. Rele- vant study for possible perspective developments of LCLS within next ten years

  16. Review: Semiconductor Quantum Light Sources

    E-Print Network [OSTI]

    Andrew J Shields

    2007-04-03T23:59:59.000Z

    Lasers and LEDs display a statistical distribution in the number of photons emitted in a given time interval. New applications exploiting the quantum properties of light require sources for which either individual photons, or pairs, are generated in a regulated stream. Here we review recent research on single-photon sources based on the emission of a single semiconductor quantum dot. In just a few years remarkable progress has been made in generating indistinguishable single-photons and entangled photon pairs using such structures. It suggests it may be possible to realise compact, robust, LED-like semiconductor devices for quantum light generation.

  17. The FERMI@Elettra free-electron-laser source for coherent X-ray physics: photon properties, beam transport system, and applications

    E-Print Network [OSTI]

    Allaria, Enrico

    2010-01-01T23:59:59.000Z

    49625-Rev. 1 (also SLAC Rpt. LCLS-TN-04-3) Fawley W M 2006wavelength FELs (e.g. , FLASH, LCLS, SCSS, XFEL, SPARX) have

  18. Ultraviolet laser beam monitor using radiation responsive crystals

    DOE Patents [OSTI]

    McCann, Michael P. (Oliver Springs, TN); Chen, Chung H. (Knoxville, TN)

    1988-01-01T23:59:59.000Z

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  19. Evaluation of potential applications for templated arrays of heterostructural semiconductor nanowires as light emitting devices

    E-Print Network [OSTI]

    Zou, Ting, M. Eng. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    While light emitting devices, such as laser diodes (LDs) and light emitting diodes (LEDs), were first introduced decades ago, they have been the subject of continuing research and improvements due to their relatively poor ...

  20. Light sources based on semiconductor current filaments

    DOE Patents [OSTI]

    Zutavern, Fred J. (Albuquerque, NM); Loubriel, Guillermo M. (Albuquerque, NM); Buttram, Malcolm T. (Sandia Park, NM); Mar, Alan (Albuquerque, NM); Helgeson, Wesley D. (Albuquerque, NM); O'Malley, Martin W. (Edgewood, NM); Hjalmarson, Harold P. (Albuquerque, NM); Baca, Albert G. (Albuquerque, NM); Chow, Weng W. (Cedar Crest, NM); Vawter, G. Allen (Albuquerque, NM)

    2003-01-01T23:59:59.000Z

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  1. E-Print Network 3.0 - atom-photon pair laser Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quantum communication and a first... pairs of counterpropagating laser beams for optical cooling. Fluorescence light is collected... photon 5 . This kind of atom-photon...

  2. Laser goniometer

    DOE Patents [OSTI]

    Fairer, George M. (Boulder, CO); Boernge, James M. (Lakewood, CO); Harris, David W. (Lakewood, CO); Campbell, DeWayne A. (Littleton, CO); Tuttle, Gene E. (Littleton, CO); McKeown, Mark H. (Golden, CO); Beason, Steven C. (Lakewood, CO)

    1993-01-01T23:59:59.000Z

    The laser goniometer is an apparatus which permits an operator to sight along a geologic feature and orient a collimated lamer beam to match the attitude of the feature directly. The horizontal orientation (strike) and the angle from horizontal (dip), are detected by rotary incremental encoders attached to the laser goniometer which provide a digital readout of the azimuth and tilt of the collimated laser beam. A microprocessor then translates the square wave signal encoder outputs into an ASCII signal for use by data recording equipment.

  3. Infrared light sources with semimetal electron injection

    DOE Patents [OSTI]

    Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

  4. Laser barometer

    SciTech Connect (OSTI)

    Abercrombie, K.R.; Shiels, D.; Rash, T.

    1998-04-01T23:59:59.000Z

    This paper describes an invention of a pressure measuring instrument which uses laser radiation to sense the pressure in an enclosed environment by means of measuring the change in refractive index of a gas - which is pressure dependent.

  5. Ultrafast Magnetic Light

    E-Print Network [OSTI]

    Makarov, Sergey V; Krasnok, Alexander E; Belov, Pavel A

    2015-01-01T23:59:59.000Z

    We propose a novel concept for efficient dynamic tuning of optical properties of a high refractive index subwavelength nanoparticle with a magnetic Mie-type resonance by means of femtosecond laser radiation. This concept is based on ultrafast generation of electron-hole plasma within such nanoparticle, drastically changing its transient dielectric permittivity. This allows to manipulate by both electric and magnetic nanoparticle responses, resulting in dramatic changes of its extinction cross section and scattering diagram. Specifically, we demonstrate the effect of ultrafast switching-on a Huygens source in the vicinity of the magnetic dipole resonance. This approach enables to design ultrafast and compact optical switchers and modulators based on the "ultrafast magnetic light" concept.

  6. algan-based laser diodes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Diode Operates similar to a Light Emitting DiodeOperates similar to a Light Emitting Diode Active medium is a semiconductor pActive medium is a semiconductor p--n...

  7. Light Computing

    E-Print Network [OSTI]

    Gordon Chalmers

    2006-10-13T23:59:59.000Z

    A configuration of light pulses is generated, together with emitters and receptors, that allows computing. The computing is extraordinarily high in number of flops per second, exceeding the capability of a quantum computer for a given size and coherence region. The emitters and receptors are based on the quantum diode, which can emit and detect individual photons with high accuracy.

  8. Contour forming of metals by laser peening

    DOE Patents [OSTI]

    Hackel, Lloyd (Livermore, CA); Harris, Fritz (Rocklin, CA)

    2002-01-01T23:59:59.000Z

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  9. Linac Coherent Light Source II (LCLS-II) Conceptual Design Report

    SciTech Connect (OSTI)

    Stohr, J

    2011-11-16T23:59:59.000Z

    The LCLS-II Project is designed to support the DOE Office of Science mission, as described in the 22 April 2010 Mission Need Statement. The scope of the Project was chosen to provide an increase in capabilities and capacity for the facility both at project completion in 2017 and in the subsequent decade. The Project is designed to address all points of the Mission Need Statement (MNS): (1) Expanded spectral reach; (2) Capability to provide x-ray beams with controllable polarization; (3) Capability to provide 'pump' pulses over a vastly extended range of photon energies to a sample, synchronized to LCLS-II x-ray probe pulses with controllable inter-pulse time delay; and (4) Increase of user access through parallel rather than serial x-ray beam use within the constraint of a $300M-$400M Total Project Cost (TPC) range. The LCLS-II Project will construct: (1) A hard x-ray undulator source (2-13 keV); (2) A soft x-ray undulator source (250-2,000 eV); (3) A dedicated, independent electron source for these new undulators, using sectors 10-20 of the SLAC linac; (4) Modifications to existing SLAC facilities for the injector and new shielded enclosures for the undulator sources, beam dumps and x-ray front ends; (5) A new experiment hall capable of accommodating four experiment stations; and (6) Relocation of the two soft x-ray instruments in the existing Near Experiment Hall (NEH) to the new experiment hall (Experiment Hall-II). A key objective of LCLS-II is to maintain near-term international leadership in the study of matter on the fundamental atomic length scale and the associated ultrafast time scales of atomic motion and electronic transformation. Clearly, such studies promise scientific breakthroughs in key areas of societal needs like energy, environment, health and technology, and they are uniquely enabled by forefront X-ray Free Electron Laser (X-FEL) facilities. While the implementation of LCLS-II extends to about 2017, it is important to realize that LCLS-II only constitutes a stepping stone to what we believe is needed over a longer time scale. At present, a practical time horizon for planning is about 15 years into the future, matching that of worldwide planning activities for competitive X-FEL facilities in Europe and Asia. We therefore envision LCLS-II as an important stage in development to what is required by about 2025, tentatively called LCLS-2025, for continued US leadership even as new facilities around the world are being completed. We envision LCLS primarily as a hard x-ray FEL facility with some soft x-ray capabilities. A survey of planned X-FEL facilities around the world suggests that US planning to 2025 needs to include an internationally competitive soft x-ray FEL facility which complements the LCLS plans outlined in this document.

  10. Time delayed laser networks: phase versus chaos synchronization

    E-Print Network [OSTI]

    Reidler, I; Aviad, Y; Guberman, S; Friesem, A A; Rosenbluh, M; Davidson, N; Kanter, I

    2013-01-01T23:59:59.000Z

    The synchronization of chaotic lasers and the optical phase synchronization of light originating in multiple coupled lasers have both been extensively studied, however, the interplay between these two phenomena, especially at the network level is unexplored. Here we experimentally compare chaos synchronization of laser networks with heterogeneous coupling delay times to phase synchronization of similar networks. While chaotic lasers exhibit deterioration in synchronization as the network time delay heterogeneity increases, phase synchronization is found to be independent of heterogeneity. The experimental results are found to be in agreement with numerical simulations for semiconductor lasers.

  11. Time delayed laser networks: phase versus chaos synchronization

    E-Print Network [OSTI]

    I. Reidler; M. Nixon; Y. Aviad; S. Guberman; A. A. Friesem; M. Rosenbluh; N. Davidson; I. Kanter

    2013-04-03T23:59:59.000Z

    The synchronization of chaotic lasers and the optical phase synchronization of light originating in multiple coupled lasers have both been extensively studied, however, the interplay between these two phenomena, especially at the network level is unexplored. Here we experimentally compare chaos synchronization of laser networks with heterogeneous coupling delay times to phase synchronization of similar networks. While chaotic lasers exhibit deterioration in synchronization as the network time delay heterogeneity increases, phase synchronization is found to be independent of heterogeneity. The experimental results are found to be in agreement with numerical simulations for semiconductor lasers.

  12. FREE ELECTRON LASERS

    E-Print Network [OSTI]

    Colson, W.B.

    2008-01-01T23:59:59.000Z

    1984). Colson, W. B. , "Free electron laser theory," Ph.D.aspects of the free electron laser," Laser Handbook i,Quant. Elect. Bendor Free Electron Laser Conference, Journal

  13. Imaging System With Confocally Self-Detecting Laser.

    DOE Patents [OSTI]

    Webb, Robert H. (Lincoln, MA); Rogomentich, Fran J. (Concord, MA)

    1996-10-08T23:59:59.000Z

    The invention relates to a confocal laser imaging system and method. The system includes a laser source, a beam splitter, focusing elements, and a photosensitive detector. The laser source projects a laser beam along a first optical path at an object to be imaged, and modulates the intensity of the projected laser beam in response to light reflected from the object. A beam splitter directs a portion of the projected laser beam onto a photodetector. The photodetector monitors the intensity of laser output. The laser source can be an electrically scannable array, with a lens or objective assembly for focusing light generated by the array onto the object of interest. As the array is energized, its laser beams scan over the object, and light reflected at each point is returned by the lens to the element of the array from which it originated. A single photosensitive detector element can generate an intensity-representative signal for all lasers of the array. The intensity-representative signal from the photosensitive detector can be processed to provide an image of the object of interest.

  14. Multiple laser pulse ignition method and apparatus

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM)

    1998-01-01T23:59:59.000Z

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures.

  15. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms

    E-Print Network [OSTI]

    Toshiyuki Hosoya; Martin Miranda; Ryotaro Inoue; Mikio Kozuma

    2014-12-02T23:59:59.000Z

    We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system, which does not depend on complex nonlinear frequency-doubling, has great importance for implementing transportable optical lattice clocks, and is also useful for investigations on condensed matter physics or quantum information processing using cold atoms.

  16. Non-intrusive beam power monitor for high power pulsed or continuous wave lasers

    DOE Patents [OSTI]

    Hawsey, Robert A. (Oak Ridge, TN); Scudiere, Matthew B. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    A system and method for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor.

  17. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical squestionnairesquestionnaires AgreementLighting

  18. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, Bruce A. (Kennewick, WA)

    1986-01-01T23:59:59.000Z

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  19. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, B.A.

    1983-06-10T23:59:59.000Z

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  20. Aerosol measurements with laser-induced breakdown spectroscopy

    E-Print Network [OSTI]

    Lithgow, Gregg Arthur

    2007-01-01T23:59:59.000Z

    fused silica lenses to focus the plasma emission onto a UVideal lens focuses light from the plasma onto the tip of anboth focus the laser pulse and collect the plasma emission

  1. Finite element analysis of controlled laser coagulation experiments

    E-Print Network [OSTI]

    Tolat, Nimish Prabodh

    1997-01-01T23:59:59.000Z

    . The light distfibutionwasmodeledusinganapproximationofthelightdiffusion theory. Thermal feedback allowed for constant surface temperature conditions using a modulated laser source term. A two-layered set-up of gel and tissue allowed for comparing our...

  2. Terahertz quantum cascade laser based optical coherence tomography

    E-Print Network [OSTI]

    Lee, Alan W. M.

    The interfaces of a dielectric sample are resolved in reflection geometry using light from a frequency agile array of terahertz quantum-cascade lasers. The terahertz source is a 10-element linear array of third-order ...

  3. Exploding conducting film laser pumping apparatus

    DOE Patents [OSTI]

    Ware, Kenneth D. (San Diego, CA); Jones, Claude R. (Los Alamos, NM)

    1986-01-01T23:59:59.000Z

    Exploding conducting film laser optical pumping apparatus. The 342-nm molecular iodine and the 1.315-.mu.m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.

  4. Lighting Inventory Lighting Theatre and Drama

    E-Print Network [OSTI]

    Indiana University

    Lighting Inventory Lighting Theatre and Drama Description Totals R.Halls Wells- Metz Light ERS ETC SourceFour 25 25 50 degree ERS Strand Lighting 64 14 24 12 14 36 degree ERS ETC Source Four 15 15 36 degree ERS Strand Lighting 124 60 58 2 4 26 degree ERS ETC SourceFour 2 2 26 degree ERS Strand

  5. Amyloid diffraction at XFELs | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 1, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Meng Liang, LCLS Program Description Amyloid fibers are formed when segments of proteins self-assemble...

  6. Physics 2, 62 (2009) Heralding the storage of light

    E-Print Network [OSTI]

    Vuletic, Vladan

    2009-01-01T23:59:59.000Z

    Physics 2, 62 (2009) Viewpoint Heralding the storage of light Julien Laurat Laboratoire Kastler, demonstrate an atomic quantum mem- ory where the successful storage of a light beam is her- alded [2-level scheme with two ground states and one excited state--boosted this broad effort. A "write" laser pulse

  7. 5 (Upgradable to 25 keV) Free Electron Laser (FEL) Facility

    E-Print Network [OSTI]

    York, R C

    2013-01-01T23:59:59.000Z

    A Free Electron Laser (FEL) facility utilizing a recirculated Superconducting Radio Frequency (SRF) linear accelerator (linac) provides the opportunity to achieve about five times greater photon energy than an unrecirculated linac of similar cost. > A 4 GeV SRF, cw, electron linac can be used to drive an FEL producing 5 keV photons. The SLAC National Accelerator Laboratory, a Department of Energy (DOE) Basic Energy Sciences (BES) laboratory, proposes to utilize a 4 GeV unrecirculated, SRF, linac in a segment of existing linac tunnel. > For an initial investment similar to that of the proposed SLAC strategy, a recirculated SRF linac system could deliver the 4 GeV electrons for photon energies of 5 keV and provide an upgrade path to photon energies of 25 keV. > Further support amounting to about a third of the initial investment would provide upgrade funds for additional SRF linac and cryogenic capacity sufficient to provide electron energies appropriate for 25 keV photons matching the European XFEL.

  8. Vacuum aperture isolator for retroreflection from laser-irradiated target

    DOE Patents [OSTI]

    Benjamin, Robert F. (Los Alamos, NM); Mitchell, Kenneth B. (Los Alamos, NM)

    1980-01-01T23:59:59.000Z

    The disclosure is directed to a vacuum aperture isolator for retroreflection of a laser-irradiated target. Within a vacuum chamber are disposed a beam focusing element, a disc having an aperture and a recollimating element. The edge of the focused beam impinges on the edge of the aperture to produce a plasma which refracts any retroreflected light from the laser's target.

  9. Double active region index-guided semiconductor laser

    SciTech Connect (OSTI)

    Chen, T.R.; Kajanto, M.; Zhuang, Y.; Yariv, A.

    1989-01-09T23:59:59.000Z

    A buried crescent InGaAsP/InP laser with a double active layer was fabricated. The laser showed very high characteristic temperature T/sub 0/ and highly nonlinear light versus current characteristics. A theoretical model using a rate equation approach showed good agreement with the experimental results.

  10. Buffer Layer Assisted Laser Patterning of Metals on Surfaces

    E-Print Network [OSTI]

    Asscher, Micha

    power. In general, absorbed laser power density above 10 MW/cm2 should be avoided, to conserve* Department of Physical Chemistry, The Farkas Center for Light Induced Processes, The Hebrew Uni tool of metallic thin films on surfaces due to their strong binding and the extremely high laser power

  11. Two-dimensional optimization of free-electron-laser designs

    DOE Patents [OSTI]

    Prosnitz, D.; Haas, R.A.

    1982-05-04T23:59:59.000Z

    Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  12. Two-dimensional optimization of free electron laser designs

    DOE Patents [OSTI]

    Prosnitz, Donald (Walnut Creek, CA); Haas, Roger A. (Pleasanton, CA)

    1985-01-01T23:59:59.000Z

    Off-axis, two-dimensional designs for free electron lasers that maintain correspondence of a light beam with a "synchronous electron" at an optimal transverse radius r>0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  13. LED Lighting Basics

    Broader source: Energy.gov [DOE]

    Light-Emitting diodes (LEDs) efficiently produce light in a fundamentally different way than any legacy or traditional source of light.

  14. Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienertLift Forces in a Light

  15. Simultaneous measurement of laser reflection and transmission of poly,,vinyl chloride...

    E-Print Network [OSTI]

    Van de Ven, James D.

    , unpigmented state are highly transmissive of light in the near-infrared range, al- lowing laser transmissionSimultaneous measurement of laser reflection and transmission of poly,,vinyl chloride... James D reflection, emphasizing the light transmitted through a material. This paper presents work creating a low

  16. Direction controllable linearly polarized laser from a dye-doped cholesteric liquid crystal

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Direction controllable linearly polarized laser from a dye-doped cholesteric liquid crystal Ying demonstrate a direction controllable linearly polarized laser from a dye-doped cholesteric liquid crystal (CLC superposition of two orthogonal polarization states, the output laser light becomes linearly polarized and its

  17. LASER & PHOTONICS www.lpr-journal.org Vol. 7 No. 5 September 2013

    E-Print Network [OSTI]

    Wang, Wei Hua

    LASER & PHOTONICS REVIEWS www.lpr-journal.org Vol. 7 No. 5 September 2013 4H-SiC: a new nonlinear material for midinfrared lasers Nonlinear optical (NLO) frequency conversion is commonly used for generating midinfrared (MIR) lasers that offer light sources for a variety of applications. However, the low

  18. Optical injection and spectral filtering of high-power UV laser diodes

    E-Print Network [OSTI]

    Schäfer, V M; Tock, C J; Lucas, D M

    2015-01-01T23:59:59.000Z

    We demonstrate injection-locking of 120mW laser diodes operating at 397nm. We achieve stable operation with injection powers of ~100uW and a slave laser output power of up to 110mW. We investigate the spectral purity of the slave laser light via photon scattering experiments on a single trapped Ca40 ion. We show that it is possible to achieve a scattering rate indistinguishable from that of monochromatic light by filtering the laser light with a diffraction grating to remove amplified spontaneous emission.

  19. Method for optical pumping of thin laser media at high average power

    DOE Patents [OSTI]

    Zapata, Luis E. (Livermore, CA); Beach, Raymond J. (Livermore, CA); Honea, Eric C. (Sunol, CA); Payne, Stephen A. (Castro Valley, CA)

    2004-07-13T23:59:59.000Z

    A thin, planar laser material is bonded to a light guide of an index-matched material forming a composite disk. Diode array or other pump light is introduced into the composite disk through the edges of the disk. Pump light trapped within the composite disk depletes as it multi-passes the laser medium before reaching an opposing edge of the disk. The resulting compound optical structure efficiently delivers concentrated pump light and to a laser medium of minimum thickness. The external face of the laser medium is used for cooling. A high performance cooler attached to the external face of the laser medium rejects heat. Laser beam extraction is parallel to the heat flux to minimize optical distortions.

  20. Quantum control and manipulations with stationary three-color lights

    E-Print Network [OSTI]

    S. A. Moiseev; B. S. Ham

    2006-01-04T23:59:59.000Z

    A dynamic quantum control of three-color lights in an optically dense medium is presented. We discuss how effectively to stop traveling three-color light pulses in the medium by using three control laser fields at near resonant transitions satisfying electromagnetically induced transparency. This opens a door to the quantum coherent control of multiple traveling light pulses for quantum memory and quantum switching, which are essential components in multi-party quantum optical communications.

  1. Direct laser acceleration of electrons in free-space

    E-Print Network [OSTI]

    Carbajo, Sergio; Wong, Liang Jie; Miller, R J Dwayne; Kärtner, Franz X

    2015-01-01T23:59:59.000Z

    Compact laser-driven accelerators are versatile and powerful tools of unarguable relevance on societal grounds for the diverse purposes of science, health, security, and technology because they bring enormous practicality to state-of-the-art achievements of conventional radio-frequency accelerators. Current benchmarking laser-based technologies rely on a medium to assist the light-matter interaction, which impose material limitations or strongly inhomogeneous fields. The advent of few cycle ultra-intense radially polarized lasers has materialized an extensively studied novel accelerator that adopts the simplest form of laser acceleration and is unique in requiring no medium to achieve strong longitudinal energy transfer directly from laser to particle. Here we present the first observation of direct longitudinal laser acceleration of non-relativistic electrons that undergo highly-directional multi-GeV/m accelerating gradients. This demonstration opens a new frontier for direct laser-driven particle accelerati...

  2. Sustainable Office Lighting Options

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Sustainable Office Lighting Options Task Lighting: Task lighting is a localized method of lighting a workspace so that additional, unnecessary lighting is eliminated, decreasing energy usage and costs. Illumination levels in the targeted work areas are higher with task lighting than with the ambient levels

  3. A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms

    E-Print Network [OSTI]

    Miake, Yudai; O'Hara, Kenneth M; Gensemer, Stephen

    2015-01-01T23:59:59.000Z

    We have constructed a solid-state light source for experiments with laser cooled lithium atoms based on a Nd:YVO$_4$ ring laser with second-harmonic generation. Unidirectional lasing, an improved mode selection, and a high output power of the ring laser was achieved by weak coupling to an external cavity which contained the lossy elements required for single frequency operation. Continuous frequency tuning is accomplished by controlling two PZTs in the internal and the external cavities simultaneously. The light source has been utilized to trap and cool fermionic lithium atoms into the quantum degenerate regime.

  4. Laser ablated hard coating for microtools

    DOE Patents [OSTI]

    McLean, W. II; Balooch, M.; Siekhaus, W.J.

    1998-05-05T23:59:59.000Z

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.

  5. Laser ablated hard coating for microtools

    DOE Patents [OSTI]

    McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Siekhaus, Wigbert J. (Berkeley, CA)

    1998-05-05T23:59:59.000Z

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.

  6. Electrical laser frequency tuning by three terminal terahertz quantum cascade lasers

    SciTech Connect (OSTI)

    Ohtani, K., E-mail: otanik@phys.ethz.ch; Beck, M.; Faist, J., E-mail: jerome.faist@phys.ethz.ch [Institute for Quantum Electronics, ETH Zurich, Wolfgang-Pauli Str. 16, 8093 Zurich (Switzerland)

    2014-01-06T23:59:59.000Z

    Electrical laser emission frequency tuning of a three terminal THz quantum cascade laser is demonstrated. A high electron mobility transistor structure is used in a surface plasmon waveguide to modulate the electron density in a channel, controlling the effective refractive index of the waveguide. The threshold current density was modulated by 28% via applying voltage from ?3 to 2?V. The observed laser emission frequency shift by electric field was 2?GHz. By using the three terminal devices, pure frequency modulation of the output light is, in principle, achievable.

  7. Levitated droplet dye laser

    E-Print Network [OSTI]

    Azzouz, H; Balslev, S; Johansson, J; Mortensen, N A; Nilsson, S; Kristensen, A

    2006-01-01T23:59:59.000Z

    We present the first observation, to our knowledge, of lasing from a levitated, dye droplet. The levitated droplets are created by computer controlled pico-liter dispensing into one of the nodes of a standing ultrasonic wave (100 kHz), where the droplet is trapped. The free hanging droplet forms a high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine 6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser, and the dye laser emission is analyzed by a fixed grating spectrometer. With this setup we have achieved reproducible lasing spectra in the visible wavelength range from 610 nm to 650 nm. The levitated droplet technique has previously successfully been applied for a variety of bio-analytical applications at single cell level. In combination with the lasing droplets, the capability of this high precision setup has potential applications within highly sensitive intra-cavity absorban...

  8. Dual beam translator for use in Laser Doppler anemometry

    DOE Patents [OSTI]

    Brudnoy, D.M.

    1984-04-12T23:59:59.000Z

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  9. Coupled optical and electronic simulations of electrically pumped photonic-crystal-based light-emitting diodes

    E-Print Network [OSTI]

    Dutton, Robert W.

    trade-offs in electrically pumped photonic-crystal-based light-emitting diodes. A finite- toelectronic devices, such as light-emitting diodes LEDs and lasers. It has been suggested that a thin slabCoupled optical and electronic simulations of electrically pumped photonic-crystal-based light-emitting

  10. BNL | CO2 Laser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 Laser The ATF is one of the only two facilities worldwide operating picosecond, terawatt-class CO2 lasers. Our laser system consists of a picoseconds pulse-injector based on...

  11. FREE-ELECTRON LASERS

    E-Print Network [OSTI]

    Sessler, A.M.

    2008-01-01T23:59:59.000Z

    Variable-Wiggler Free-Electron-Laser Oscillat.ion. Phys. :_.The Los Alamos Free Electron Laser: Accelerator Perfoemance.First Operation of a Free-Electron Laser. Phys . __ Rev~.

  12. Characteristics of yttrium oxide laser ceramics with additives

    SciTech Connect (OSTI)

    Osipov, V V; Solomonov, V I; Orlov, A N; Shitov, V A; Maksimov, R N; Spirina, A V [Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation)

    2013-03-31T23:59:59.000Z

    Neodymium- or ytterbium-doped laser ceramics with a disordered crystal-field structure formed by introduction of iso- and heterovalent elements into yttrium oxide are studied. It is shown that these additives broaden the spectral band of laser transitions, which makes it possible to use ceramics as active laser media emitting ultrashort pulses. Lasing was obtained in several samples of this ceramics. At the same time, it is shown that addition of zirconium and hafnium stimulates the Foerster quenching of upper laser levels and pump levels. (extreme light fields and their applications)

  13. Short pulse laser train for laser plasma interaction experiments

    SciTech Connect (OSTI)

    Kline, J. L.; Shimada, T.; Johnson, R. P.; Montgomery, D. S.; Hegelich, B. M.; Esquibel, D. M.; Flippo, K. A.; Gonzales, R. P.; Hurry, T. R.; Reid, S. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2007-08-15T23:59:59.000Z

    A multiframe, high-time resolution pump-probe diagnostic consisting of a consecutive train of ultrashort laser pulses ({approx}ps) has been developed for use with a chirped pulse amplification (CPA) system. A system of high quality windows is used to create a series of 1054 nm picosecond-laser pulses which are injected into the CPA system before the pulse stretcher and amplifiers. By adding or removing windows in the pulse train forming optics, the number of pulses can be varied. By varying the distance and thickness of the respective optical elements, the time in between the pulses, i.e., the time in between frames, can be set. In our example application, the CPA pulse train is converted to 527 nm using a KDP crystal and focused into a preformed plasma and the reflected laser light due to stimulated Raman scattering is measured. Each pulse samples different plasma conditions as the plasma evolves in time, producing more data on each laser shot than with a single short pulse probe. This novel technique could potentially be implemented to obtain multiple high-time resolution measurements of the dynamics of physical processes over hundreds of picoseconds or even nanoseconds with picosecond resolution on a single shot.

  14. Laser Safety Management Policy Statement ............................................................................................................1

    E-Print Network [OSTI]

    Davidson, Fordyce A.

    Laser Safety Management Policy Statement...........................................................2 Laser Users.............................................................................................................2 Unit Laser Safety Officer (ULSO

  15. Laser programs highlights 1994

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report provides highlights of the Lawrence Livermore National Laboratories` laser programs. Laser uses and technology assessment and utilization are provided.

  16. BNL | ATF Laser Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be continuously escorted by someone who has such training: The training consists of an eye exam, BNL general laser safety lecture, and formal ATF laser familiarization. Untrained...

  17. Laser satellite power systems

    SciTech Connect (OSTI)

    Walbridge, E.W.

    1980-01-01T23:59:59.000Z

    A laser satellite power system (SPS) converts solar power captured by earth-orbiting satellites into electrical power on the earth's surface, the satellite-to-ground transmission of power being effected by laser beam. The laser SPS may be an alternative to the microwave SPS. Microwaves easily penetrate clouds while laser radiation does not. Although there is this major disadvantage to a laser SPS, that system has four important advantages over the microwave alternative: (1) land requirements are much less, (2) radiation levels are low outside the laser ground stations, (3) laser beam sidelobes are not expected to interfere with electromagnetic systems, and (4) the laser system lends itself to small-scale demonstration. After describing lasers and how they work, the report discusses the five lasers that are candidates for application in a laser SPS: electric discharge lasers, direct and indirect solar pumped lasers, free electron lasers, and closed-cycle chemical lasers. The Lockheed laser SPS is examined in some detail. To determine whether a laser SPS will be worthy of future deployment, its capabilities need to be better understood and its attractiveness relative to other electric power options better assessed. First priority should be given to potential program stoppers, e.g., beam attenuation by clouds. If investigation shows these potential program stoppers to be resolvable, further research should investigate lasers that are particularly promising for SPS application.

  18. Fast wavelength tuning techniques for external cavity lasers

    DOE Patents [OSTI]

    Wysocki, Gerard (Princeton, NJ); Tittel, Frank K. (Houston, TX)

    2011-01-11T23:59:59.000Z

    An apparatus comprising a laser source configured to emit a light beam along a first path, an optical beam steering component configured to steer the light beam from the first path to a second path at an angle to the first path, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path, wherein the angle determines an external cavity length. Included is an apparatus comprising a laser source configured to emit a light beam along a first path, a beam steering component configured to redirect the light beam to a second path at an angle to the first path, wherein the optical beam steering component is configured to change the angle at a rate of at least about one Kilohertz, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path.

  19. Fiber Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours, Programs and EventsFiber Lasers NIF

  20. Laser Faraday

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sandLaser Decontamination ofFaraday

  1. Lighting Options for Homes.

    SciTech Connect (OSTI)

    Baker, W.S.

    1991-04-01T23:59:59.000Z

    This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

  2. Mobile lighting apparatus

    DOE Patents [OSTI]

    Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

    2013-05-14T23:59:59.000Z

    A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

  3. Light disappears rapidly (exponentially)

    E-Print Network [OSTI]

    Kudela, Raphael M.

    #12;#12;#12;#12;Light disappears rapidly (exponentially) with depth At the same time, the color of the light shifts #12;#12;#12;#12;· Euphotic zone ­ plentiful light ­ 0-100 m (about) · Dysphotic zone ­ very, very little light ­ 100-1000 m (about) · Aphotic zone ­ no light ­ below 1000 m #12;Sunlight in Water

  4. Transverse pumped laser amplifier architecture

    DOE Patents [OSTI]

    Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary

    2013-07-09T23:59:59.000Z

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  5. Tunable pulsed narrow bandwidth light source

    DOE Patents [OSTI]

    Powers, Peter E. (Dayton, OH); Kulp, Thomas J. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

  6. Laser Oil and Gas Well Drilling Demonstration Videos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

  7. New Light Sources for Tomorrow's Lighting Designs

    E-Print Network [OSTI]

    Krailo, D. A.

    can ever be saved on that monthly energy bill. During the past several years, many new light sources have been developed and introduced. These product introductions have not been limited to anyone lamp type, but instead may be found in fila ment..., fluorescent and high intensity discharge lamp families. Man , ufacturers of light sources have two basic goals for new product development. These goals are high efficiency lighting and improved colo'r rendering properties. High efficiency lighting may take...

  8. EK101 Engineering Light Smart Lighting

    E-Print Network [OSTI]

    Bifano, Thomas

    EK101 Engineering Light Smart Lighting Homework for 9/10 1. Make an estimate (using if the patent is granted.) 3. What is a lumen? A lux? How are the two related? How would you use a lux meter, (Lux, Lumens/m2) Luminous Flux: Perceivable light power from a source, (Lumens) Use the lux meter

  9. Generation and manipulation of nonclassical light using photonic crystals

    E-Print Network [OSTI]

    Jelena Vuckovic; Dirk Englund; David Fattal; Edo Waks; Yoshihisa Yamamoto

    2005-10-07T23:59:59.000Z

    Photonic crystal cavities can localize light into nanoscale volumes with high quality factors. This permits a strong interaction between light and matter, which is important for the construction of classical light sources with improved properties (e.g., low threshold lasers) and of nonclassical light sources (such as single and entangled photon sources) that are crucial pieces of hardware of quantum information processing systems. This article will review some of our recent experimental and theoretical results on the interaction between single quantum dots and photonic crystal cavity fields, and on the integration of multiple photonic crystal devices into functional circuits for quantum information processing.

  10. Structured Light In Sunlight Mohit Gupta

    E-Print Network [OSTI]

    Nayar, Shree K.

    an off-the-shelf laser 3D scanner is shown in Figure 1. Under strong ambient il- lumination solution to the ambient light problem is (a) An object placed outdoors (b) Image of the sky 6 am 9 am 12 pm illuminance Ra from the sun and the sky. (b) Im- age of the sky at 9am. (c-e) 3D reconstructions using

  11. Specific light in sculpture

    E-Print Network [OSTI]

    Powell, John William

    1989-01-01T23:59:59.000Z

    Specific light is defined as light from artificial or altered natural sources. The use and manipulation of light in three dimensional sculptural work is discussed in an historic and contemporary context. The author's work ...

  12. Light pulse in {Lambda}-type cold-atom gases

    SciTech Connect (OSTI)

    Wei Ran; Deng Youjin; Chen Shuai; Chen Zengbing; Pan Jianwei [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhao Bo [Institute for Theoretical physics, University of Innsbruck, A-6020 Innsbruck (Austria); Institute for Quantum Optics and Quantum Information of the Austrian Academy of Science, A-6020 Innsbruck (Austria)

    2010-04-15T23:59:59.000Z

    We investigate the behavior of the light pulse in {Lambda}-type cold-atom gases with two counter-propagating control lights with equal strength by directly simulating the dynamic equations and exploring the dispersion relation. Our analysis shows that, depending on the length L{sub 0} of the stored wave packet and the decay rate {gamma} of ground-spin coherence, the recreated light can behave differently. For long L{sub 0} and/or large {gamma}, a stationary light pulse is produced, while two propagating light pulses appear for short L{sub 0} and/or small {gamma}. In the {gamma}{yields}0 limit, the light always splits into two propagating pulses for a sufficiently long time. This scenario agrees with a recent experiment [Y.-W. Lin et al., Phys. Rev. Lett. 102, 213601 (2009)] where two propagating light pulses are generated in laser-cooled cold-atom ensembles.

  13. Longitudinal discharge laser baffles

    DOE Patents [OSTI]

    Warner, B.E.; Ault, E.R.

    1994-06-07T23:59:59.000Z

    The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam. 1 fig.

  14. Short wavelength laser

    DOE Patents [OSTI]

    Hagelstein, P.L.

    1984-06-25T23:59:59.000Z

    A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

  15. Narrow gap laser welding

    DOE Patents [OSTI]

    Milewski, John O. (Santa Fe, NM); Sklar, Edward (Santa Fe, NM)

    1998-01-01T23:59:59.000Z

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

  16. Narrow gap laser welding

    DOE Patents [OSTI]

    Milewski, J.O.; Sklar, E.

    1998-06-02T23:59:59.000Z

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

  17. Grazing incidence liquid metal mirrors (GILMM) for radiation hardened final optics for laser inertial fusion energy power plants*

    E-Print Network [OSTI]

    California at Los Angeles, University of

    1 Grazing incidence liquid metal mirrors (GILMM) for radiation hardened final optics for laser final optics in a laser inertial fusion energy (IFE) power plant. The amount of laser light the GILMM substrate, adaptive (deformable) optics, surface tension and low Reynolds number, laminar flow in the film

  18. Constraints on photon pulse duration from longitudinal electron beam diagnostics at a soft X-ray free-electron laser

    E-Print Network [OSTI]

    -ray free-electron laser C. Behrens1 , N. Gerasimova1 , Ch. Gerth1 , B. Schmidt1 , E.A. Schneidmiller1 , S, Ukraine (Dated: February 28, 2012) The successful operation of X-ray free-electron lasers (FELs), like the Linac Coherent Light Source or the Free-Electron Laser in Hamburg (FLASH), makes unprecedented research

  19. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...

  20. Laser detection of material thickness

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    There is provided a method for measuring material thickness comprising: (a) contacting a surface of a material to be measured with a high intensity short duration laser pulse at a light wavelength which heats the area of contact with the material, thereby creating an acoustical pulse within the material: (b) timing the intervals between deflections in the contacted surface caused by the reverberation of acoustical pulses between the contacted surface and the opposite surface of the material: and (c) determining the thickness of the material by calculating the proportion of the thickness of the material to the measured time intervals between deflections of the contacted surface.

  1. Exciting White Lighting

    Broader source: Energy.gov [DOE]

    Windows that emit light and are more energy efficient? Universal Display’s PHOLED technology enables windows that have transparent light-emitting diodes in them.

  2. Nonlinear laser energy depletion in laser-plasma accelerators

    E-Print Network [OSTI]

    Shadwick, B.A.

    2009-01-01T23:59:59.000Z

    Nonlinear laser energydepletion in laser-plasma accelerators ? B. A. Shadwick,of intense, short-pulse lasers via excitation of plasma

  3. Quantum to Classical Transition in a Single-Ion Laser

    E-Print Network [OSTI]

    François Dubin; Carlos Russo; Helena G. Barros; Andreas Stute; Christoph Becher; Piet O. Schmidt; Rainer Blatt

    2010-02-18T23:59:59.000Z

    Stimulated emission of photons from a large number of atoms into the mode of a strong light field is the principle mechanism for lasing in "classical" lasers. The onset of lasing is marked by a threshold which can be characterised by a sharp increase in photon flux as a function of external pumping strength. The same is not necessarily true for the fundamental building block of a laser: a single trapped atom interacting with a single optical radiation mode. It has been shown that such a "quantum" laser can exhibit thresholdless lasing in the regime of strong coupling between atom and radiation field. However, although theoretically predicted, a threshold at the single-atom level could not be experimentally observed so far. Here, we demonstrate and characterise a single-atom laser with and without threshold behaviour by changing the strength of atom-light field coupling. We observe the establishment of a laser threshold through the accumulation of photons in the optical mode even for a mean photon number substantially lower than for the classical case. Furthermore, self-quenching occurs for very strong external pumping and constitutes an intrinsic limitation of single-atom lasers. Moreover, we find that the statistical properties of the emitted light can be adjusted for weak external pumping, from the quantum to the classical domain. Our observations mark an important step towards fundamental understanding of laser operation in the few-atom limit including systems based on semiconductor quantum dots or molecules.

  4. Zigzag laser with reduced optical distortion

    DOE Patents [OSTI]

    Albrecht, G.F.; Comaskey, B.; Sutton, S.B.

    1994-04-19T23:59:59.000Z

    The architecture of the present invention has been driven by the need to solve the beam quality problems inherent in Brewster's angle tipped slab lasers. The entrance and exit faces of a solid state slab laser are cut perpendicular with respect to the pump face, thus intrinsically eliminating distortion caused by the unpumped Brewster's angled faces. For a given zigzag angle, the residual distortions inherent in the remaining unpumped or lightly pumped ends may be reduced further by tailoring the pump intensity at these ends. 11 figures.

  5. Zigzag laser with reduced optical distortion

    DOE Patents [OSTI]

    Albrecht, Georg F. (Livermore, CA); Comaskey, Brian (Stockton, CA); Sutton, Steven B. (Manteca, CA)

    1994-01-01T23:59:59.000Z

    The architecture of the present invention has been driven by the need to solve the beam quality problems inherent in Brewster's angle tipped slab lasers. The entrance and exit faces of a solid state slab laser are cut perpendicular with respect to the pump face, thus intrinsically eliminating distortion caused by the unpumped Brewster's angled faces. For a given zigzag angle, the residual distortions inherent in the remaining unpumped or lightly pumped ends may be reduced further by tailoring the pump intensity at these ends.

  6. Three-Dimensional Laser Cooling

    E-Print Network [OSTI]

    Okamato, H.

    2008-01-01T23:59:59.000Z

    Three-Dimensional Laser Cooling H. Okamoto, A.M. Sessler,effective transverse laser cooling simultaneously withlongitudinal laser cooling, two possibilities are

  7. PALM - Laser Capture Microdissection | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PALM - Laser Capture Microdissection PALM - Laser Capture Microdissection This Laser Capture Microdissection system is equipped with 100 x objective lens for enriching distinct...

  8. A narrow-band speckle-free light source via random Raman lasing

    E-Print Network [OSTI]

    Hokr, Brett H; Bixler, Joel N; Dyer, Phillip N; Noojin, Gary D; Redding, Brandon; Thomas, Robert J; Rockwell, Benjamin A; Cao, Hui; Yakovlev, Vladislav V; Scully, Marlan O

    2015-01-01T23:59:59.000Z

    Currently, no light source exists which is both narrow-band and speckle-free with sufficient brightness for full-field imaging applications. Light emitting diodes (LEDs) are excellent spatially incoherent sources, but are tens of nanometers broad. Lasers on the other hand can produce very narrow-band light, but suffer from high spatial coherence which leads to speckle patterns which distort the image. Here we propose the use of random Raman laser emission as a new kind of light source capable of providing short-pulsed narrow-band speckle-free illumination for imaging applications.

  9. Proof-of-principle experiments of laser Wakefield acceleration

    SciTech Connect (OSTI)

    Nakajima, K.; Kawakubo, T.; Nakanishi, H. [National Lab. for Higher Energy Physics, Ibaraki (Japan)] [and others

    1994-04-01T23:59:59.000Z

    Recently there has been a great interest in laser-plasma accelerators as possible next-generation particle accelerators because of their potential for ultra high accelerating gradients and compact size compared with conventional accelerators. It is known that the laser pulse is capable of exciting a plasma wave propagating at a phase velocity close to the velocity of light by means of beating two-frequency lasers or an ultra short laser pulse. These schemes came to be known as the Beat Wave Accelerator (BWA) for beating lasers or as the Laser Wakefield Accelerator (LWFA) for a short pulse laser. In this paper, the principle of laser wakefield particle acceleration has been tested by the Nd:glass laser system providing a short pulse with a power of 10 TW and a duration of 1 ps. Electrons accelerated up to 18 MeV/c have been observed by injecting 1 MeV/c electrons emitted from a solid target by an intense laser impact. The accelerating field gradient of 30 GeV/m is inferred.

  10. Impact of the spatial laser distribution on photocathode gun operation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Feng; Brachmann, Axel; Emma, Paul; Gilevich, Sasha; Huang, Zhirong

    2012-09-01T23:59:59.000Z

    It is widely believed that a drive laser with uniform temporal and spatial laser profiles is required to generate the lowest emittance beam at the photoinjector. However, for a given 3 ps smooth-Gaussian laser temporal profile, our recent simulations indicate that a truncated-Gaussian laser spatial profile produces an electron beam with smaller emittance. The simulation results are qualitatively confirmed by later analytical calculation, and also confirmed by measurements: emittance reduction of ?25% was observed at the linac coherent light source (LCLS) injector with a truncated-Gaussian laser spatial profile at the nominal operating bunch charge of 150 pC. There was a significant secondary benefit—laser transmission through the iris for the truncated-Gaussian profile was about twice that compared to the nearly uniform distribution, which significantly loosens the laser power and quantum efficiency requirements for drive laser system and photocathode. Since February 9, 2012, the drive laser with the truncated-Gaussian spatial distribution has been used for LCLS routine user operations and the corresponding free electron laser power is at least the same as the one when using the nearly uniform spatial profile.

  11. PFP Emergency Lighting Study

    SciTech Connect (OSTI)

    BUSCH, M.S.

    2000-02-02T23:59:59.000Z

    NFPA 101, section 5-9 mandates that, where required by building classification, all designated emergency egress routes be provided with adequate emergency lighting in the event of a normal lighting outage. Emergency lighting is to be arranged so that egress routes are illuminated to an average of 1.0 footcandle with a minimum at any point of 0.1 footcandle, as measured at floor level. These levels are permitted to drop to 60% of their original value over the required 90 minute emergency lighting duration after a power outage. The Plutonium Finishing Plant (PFP) has two designations for battery powered egress lights ''Emergency Lights'' are those battery powered lights required by NFPA 101 to provide lighting along officially designated egress routes in those buildings meeting the correct occupancy requirements. Emergency Lights are maintained on a monthly basis by procedure ZSR-12N-001. ''Backup Lights'' are battery powered lights not required by NFPA, but installed in areas where additional light may be needed. The Backup Light locations were identified by PFP Safety and Engineering based on several factors. (1) General occupancy and type of work in the area. Areas occupied briefly during a shiftly surveillance do not require backup lighting while a room occupied fairly frequently or for significant lengths of time will need one or two Backup lights to provide general illumination of the egress points. (2) Complexity of the egress routes. Office spaces with a standard hallway/room configuration will not require Backup Lights while a large room with several subdivisions or irregularly placed rooms, doors, and equipment will require Backup Lights to make egress safer. (3) Reasonable balance between the safety benefits of additional lighting and the man-hours/exposure required for periodic light maintenance. In some plant areas such as building 236-Z, the additional maintenance time and risk of contamination do not warrant having Backup Lights installed in all rooms. Sufficient light for egress is provided by existing lights located in the hallways.

  12. Alight a beam and beaming light: A theme with variations

    SciTech Connect (OSTI)

    Chattopadhyay, S. [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, California94720 (United States)] [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, California94720 (United States)

    1998-05-01T23:59:59.000Z

    The interaction of light (coherent and incoherent) with charged particle beams is explored in various configurations: incoherent scattering of coherent light (laser) from an incoherent particle beam (high temperature), coherent scattering of coherent light (laser) from a {open_quotes}cold{close_quotes} (bunched) beam, femtosecond generation of particle and light beams via {open_quotes}optical slicing{close_quotes} and Thomson/Compton scattering techniques, etc. The domains of ultrashort temporal duration (femtoseconds) as well as ultrashort wavelengths (x rays and shorter), with varying degrees of coherence, are explored. The relevance to a few critical areas of research in the natural sciences, e.g., ultrafast material, chemical and biological processes, protein folding, particle phase space cooling, etc. are touched upon. All the processes discussed involve proper interpretation and understanding of coherent states of matter and radiation, as well as the quality and quantity of information and energy embedded in them. {copyright} {ital 1998 American Institute of Physics.}

  13. Phase controlled light switching at low power levels

    E-Print Network [OSTI]

    Hoonsoo Kang; Gessler Hernandez; Jiepeng Zhang; Yifu Zhu

    2005-10-05T23:59:59.000Z

    We report experimental observations of interference between three-photon and one-photon excitations, and phase control of light attenuation/transmission in a four-level system. Either constructive interference or destructive interference can be obtained by varying the phase and/or frequency of a weak control laser. The interference enables absorptive switching of one field by another field at different frequencies and ultra-low light levels.

  14. Gain-assisted superluminal light propagation via incoherent pump field

    E-Print Network [OSTI]

    M. Mahmoudi; S. Worya Rabiei; L. Safari; M. Sahrai

    2008-08-03T23:59:59.000Z

    We investigate the dispersion and the absorption properties of a weak probe field in a three-level Lambda-type atomic system. We use just an incoherent field for controlling the group velocity of light. It is shown that the slope of dispersion changes from positive to negative just with changing the intensity of the indirect incoherent pumping field. Gain-assisted superluminal light propagation appears in this system. No laser field is used in the pumping processes.

  15. Lighting and Daylight Harvesting

    E-Print Network [OSTI]

    Bos, J.

    2011-01-01T23:59:59.000Z

    exposing us to the latest products and technologies. Daylight Harvesting A system of controlling the direction and the quantity of light both natural and artificial within a given space. This implies: Control of fenestration in terms of size..., transmission and direction. Control of reflected light within a space. Control of electric light in terms of delivery and amount Daylight harvesting systems are typically designed to maintain a minimum recommended light level. This light level...

  16. EK101 Engineering Light Project: Evaluate Residential Lighting

    E-Print Network [OSTI]

    Bifano, Thomas

    EK101 Engineering Light Project: Evaluate Residential Lighting Compare technical and economic characteristics of three sources of residential light. Two teams of four complete the same project Engineering Light Project: Evaluate Residential Lighting Project Assignment: Evaluate current options

  17. A proposed high-power UV industrial demonstration laser at CEBAF

    SciTech Connect (OSTI)

    Benson, S.V.; Bisognano, J.J.; Bohn, C.L. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States)] [and others

    1996-04-01T23:59:59.000Z

    The Laser Processing Consortium, a collaboration of industries, universities, and the Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, Virginia, has proposed building a demonstration industrial processing laser for surface treatment and micro-machining. The laser is a free-electron laser (FEL) with average power output exceeding 1 kW in the ultraviolet (UV). The design calls for a novel driver accelerator that recovers most of the energy of the exhaust electron beam to produce laser light with good wall-plug efficiency. The laser and accelerator design use technologies that are scalable to much higher power. The authors describe the critical design issues in the laser such as the stability, power handling, and losses of the optical resonator, and the quality, power, and reliability of the electron beam. They also describe the calculated laser performance. Finally progress to date on accelerator development and resonator modeling will be reported.

  18. Direct laser powder deposition - 'State of the Art'

    SciTech Connect (OSTI)

    Sears, J.W.

    1999-11-01T23:59:59.000Z

    Recent developments on Laser Cladding and Rapid Prototyping have led to Solid Freeform Fabrication (SFF) technologies that produce net shape metal components by laser fusion of metal powder alloys. These processes are known by various names such as Directed Light Fabrication (DLF{trademark}), Laser Engineered Net Shaping (LENS{trademark}), and Direct Metal Deposition (DMD{trademark}) to name a few. These types of processes can be referred to as direct laser powder deposition (DLPD). DLPD involves fusing metal alloy powders in the focal point of a laser (or lasers) that is (are) being controlled by Computer Aided Design-Computer Aided Manufacturing (CAD-CAM) technology. DLPD technology has the capability to produce fully dense components with little need for subsequent processing. Research and development of DLPD is being conducted throughout the world. The list of facilities conducting work in this area continues to grow (over 25 identified in North America alone). Selective Laser Sintering (SLS{trademark}) is another type of SFF technology based on laser fusion of powder. The SLS technology was developed as a rapid prototyping technique, whereas DLPD is an extension of the laser cladding technology. Most of the effort in SLS has been directed towards plastics and ceramics. In SLS, the powder is pre-placed by rolling out a layer for each laser pass. The computer control selects where in the layer the powder will be sintered by the laser. Sequential layers are sintered similarly forming a shape. In DLPD, powder is fed directly into a molten metal pool formed at the focal point of the laser where it is melted. As the laser moves on the material it rapidly resolidifies to form a shape. This talk elaborates on the state of these developments.

  19. Simple formula for the interspaces of periodic grating structures self-organized on metal surfaces by femtosecond laser ablation

    SciTech Connect (OSTI)

    Hashida, Masaki; Ikuta, Yoshinobu; Miyasaka, Yasuhiro; Tokita, Shigeki; Sakabe, Shuji [ARCBS, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan and Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502 (Japan)] [ARCBS, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan and Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502 (Japan)

    2013-04-29T23:59:59.000Z

    Self-organized grating structures formed on Mo and Ti metal surfaces irradiated with femtosecond laser pulses at wavelengths of 800 and 400 nm are investigated by electron microscopy. We observe the formation of the self-organized grating structures on the metals irradiated with 400-nm laser pulses at low laser fluence in narrow fluence ranges. The interspaces of the grating structure depend on the wavelength and fluence of the laser. We find that the dependence of the grating interspaces on laser fluence can be explained by a simple formula for induction of a surface-plasma wave through the parametric decay of laser light.

  20. Efficient semiconductor light-emitting device and method

    DOE Patents [OSTI]

    Choquette, Kent D. (Albuquerque, NM); Lear, Kevin L. (Albuquerque, NM); Schneider, Jr., Richard P. (Albuquerque, NM)

    1996-01-01T23:59:59.000Z

    A semiconductor light-emitting device and method. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL).

  1. Efficient semiconductor light-emitting device and method

    DOE Patents [OSTI]

    Choquette, K.D.; Lear, K.L.; Schneider, R.P. Jr.

    1996-02-20T23:59:59.000Z

    A semiconductor light-emitting device and method are disclosed. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL). 12 figs.

  2. Electrically injected visible vertical cavity surface emitting laser diodes

    DOE Patents [OSTI]

    Schneider, R.P.; Lott, J.A.

    1994-09-27T23:59:59.000Z

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.

  3. Method of defining features on materials with a femtosecond laser

    DOE Patents [OSTI]

    Roos, Edward Victor (Los Altos, CA); Roeske, Franklin (Livermore, CA); Lee, Ronald S. (Livermore, CA); Benterou, Jerry J. (Livermore, CA)

    2006-05-23T23:59:59.000Z

    The invention relates to a pulsed laser ablation method of metals and/or dielectric films from the surface of a wafer, printed circuit board or a hybrid substrate. By utilizing a high-energy ultra-short pulses of laser light, such a method can be used to manufacture electronic circuits and/or electro-mechanical assemblies without affecting the material adjacent to the ablation zone.

  4. Observation of recoil-induced resonances and electromagnetically induced absorption of diffuse light by cold atoms

    SciTech Connect (OSTI)

    Zhang Wenzhuo [Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100039 (China); Cheng Huadong; Wang Yuzhu [Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Liu Liang [Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China)

    2009-05-15T23:59:59.000Z

    In this paper we report an experiment on the observation of the recoil-induced resonances (RIR) and electromagnetically induced absorption (EIA) of cold {sup 87}Rb atoms in diffuse light. The pump light of the RIR and the EIA comes from the diffuse light in an integrating sphere, which also serves the cooling light. We measured the RIR and the EIA signal varying with the detuning of the diffuse laser light, and also measured the number and the temperature of the cold atoms at the different detunings. The mechanism of RIR and EIA in the configuration with diffuse-light pumping and laser probing are discussed, and the difference between the nonlinear spectra of cold atoms in a diffuse-light cooling system and in a magneto-optical trap is studied.

  5. Efficiency and stray light measurements and calculations of diffraction gratings for the Advanced Light Source

    SciTech Connect (OSTI)

    McKinney, W.R.; Mossessian, D. (Accelerator and Fusion Research Division, Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States)); Gullikson, E. (Materials Sciences Division, Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States)); Heimann, P. (Accelerator and Fusion Research Division, Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States))

    1995-02-01T23:59:59.000Z

    Water-cooled gratings manufactured for spherical grating monochromators of the Advanced Light Source beamlines 7.0, 8.0, and 9.0 were measured with the laser plasma source and reflectometer in the Center for X-ray Optics at Lawrence Berkeley Laboratory. The square-wave gratings are ion milled into the polished electroless nickel surface after patterning by holographic photolithography. Absolute efficiency data are compared with exact electromagnetic theory calculation. Interorder stray light and groove depths can be estimated from the measurements.

  6. Title: The recollision model in ultra-short light fields Prof. H.W. van der Hart Description

    E-Print Network [OSTI]

    Paxton, Anthony T.

    advances in laser technology have enabled scientists to create ultra-short light pulses with a durationTitle: The recollision model in ultra-short light fields Prof. H.W. van der Hart Description Recent of the current questions in attosecond physics is the question of how ultra-short light pulses can be shaped

  7. Blue-green lasers and electrodeless flashlamps

    SciTech Connect (OSTI)

    Perkins, F.W.

    1983-08-01T23:59:59.000Z

    This paper addresses the questions of combining the technology of moderate pressure electrodeless discharge lamps with the efficiency of a resonantly pumped solid state laser to achieve an efficient, compact, and reliable blue green laser. The scheme is based on resonant absorption of the 1D2 state of Pr(+3) which coincides with strong yellow lines of a sodium discharge at 589 nm. A Q switched lasing transition to the 3F3 state can be doubled into the desired blue green region. Estimates show that a moderate pressure electrodeless flashlamp should emit roughly 30% of its light in the 589 nm band. More generally, the moderate pressure electrodeless flashlamp should be an effective and efficient emitter of resonant radiation throughout the visible and UV region, opening possibilities for other resonantly pumped lasers. Several specific possibilities are pointed out, including an energy efficient system at 610 nm, and a candidate inertial fusion driven at 250 nm.

  8. Laser ignition of aluminum nanoparticles in air

    SciTech Connect (OSTI)

    Sandstrom, M. M. (Mary M.); Oschwald, D. M. (David M); Son, S. F. (Steven F.)

    2004-01-01T23:59:59.000Z

    This paper reports on recent experiments of the ignition of nanoaluminum in air by CO{sub 2} laser heating. Ignition time and temperature were measured as a function of Al particle size and laser power. The ignition time was determined by high-speed digital images and frrst light as determined by a photodiode. The ignition delay increases with increasing particle size, and the decreasing laser power. Two stage burning is observed. The first reaction takes place on the surface of the powder sample and moves from the center to the edges followed by the second reaction, which takes place within the bulk of the sample. As the particles size increases the material is less likely to burn through out, leaving behind unreacted Al powder.

  9. Drop shaping by laser-pulse impact

    E-Print Network [OSTI]

    Klein, Alexander L; Visser, Claas Willem; Lhuissier, Henri; Sun, Chao; Snoeijer, Jacco H; Villermaux, Emmanuel; Lohse, Detlef; Gelderblom, Hanneke

    2015-01-01T23:59:59.000Z

    We study the hydrodynamic response of a falling drop hit by a laser pulse. Combining high-speed with stroboscopic imaging we report that a millimeter-sized dyed water drop hit by a milli-Joule nanosecond laser-pulse deforms and propels forward at several meters per second, until it eventually fragments. We show that the drop motion results from the recoil momentum imparted at the drop surface by water vaporization. We measure the propulsion speed and the time-deformation law of the drop, complemented by boundary integral simulations. We explain the drop propulsion and shaping in terms of the laser pulse energy and drop surface tension. These findings are crucial for the generation of extreme ultraviolet (EUV) light in lithography machines.

  10. Laser-assisted electrochemistry

    SciTech Connect (OSTI)

    Glenn, D.F.

    1995-05-01T23:59:59.000Z

    The effect of laser irradiation on electrodeposition processes has been investigated. These studies demonstrated that the addition of laser irradiation to an electroplating process can dramatically enhance plating rates and current efficiencies, as well as improve the morphology of the resultant electrodeposit. During the course of these investigations, the mechanism for the laser enhancement of electrodeposition processes was determined. Experimental evidence was obtained to show that laser irradiation of the substrate results in increased metal ion concentrations at the surface of the electrode due to a laser-induced Soret effect. The laser-induced Soret effect has important implications for laser-assisted electrochemical processing. The increase in the surface concentration of ions allows efficient electrodeposition from dilute solutions. As such, laser- assisted electrodeposition may develop into an environmentally conscious manufacturing process by reducing waste and limiting worker exposure to toxic chemicals.

  11. The interaction of intense subpicosecond laser pulses with underdense plasmas

    SciTech Connect (OSTI)

    Coverdale, C.A.

    1995-05-11T23:59:59.000Z

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 10{sup 16} W/cm{sup 2} laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by L{sub plasma} {ge} 2L{sub Rayleigh} > c{tau}. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (n{sub o} {le} 0.05n{sub cr}). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in {omega}-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  12. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect (OSTI)

    Cowan, B.; /SLAC

    2005-09-19T23:59:59.000Z

    We discuss simulated photonic crystal structure designs for laser-driven particle acceleration, focusing on three-dimensional planar structures based on the so-called ''woodpile'' lattice. We demonstrate guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice and discuss the properties of this mode. We also discuss particle beam dynamics in the structure, presenting a novel method for focusing the beam. In addition we describe some potential coupling methods for the structure.

  13. Laser intensity effects in noncommutative QED

    E-Print Network [OSTI]

    Thomas Heinzl; Anton Ilderton; Mattias Marklund

    2010-02-17T23:59:59.000Z

    We discuss a two-fold extension of QED assuming the presence of strong external fields provided by an ultra-intense laser and noncommutativity of spacetime. While noncommutative effects leave the electron's intensity induced mass shift unchanged, the photons change significantly in character: they acquire a quasi-momentum that is no longer light-like. We study the consequences of this combined noncommutative strong-field effect for basic lepton-photon interactions.

  14. COHERENT LASER VISION SYSTEM (CLVS) OPTION PHASE

    SciTech Connect (OSTI)

    Robert Clark

    1999-11-18T23:59:59.000Z

    The purpose of this research project was to develop a prototype fiber-optic based Coherent Laser Vision System (CLVS) suitable for DOE's EM Robotic program. The system provides three-dimensional (3D) vision for monitoring situations in which it is necessary to update the dimensional spatial data on the order of once per second. The system has total immunity to ambient lighting conditions.

  15. Laser-Stimulated Fluorescence in Paleontology

    E-Print Network [OSTI]

    Kaye, Thomas G.; Falk, Amanda Renee; Pittman, Michael; Sereno, Paul C.; Martin, Larry D.; Burnham, David A.; Gong, Enpu; Xu, Xing; Wang, Yinan

    2015-05-27T23:59:59.000Z

    . doi: 10.1371/journal.pone. 0009223 PMID: 20169153 8. Warren TS, Gleason S, Bostwick RC, Verbeek ER. Ultraviolet light and fluorescent minerals: under- standing, collecting and displaying fluorescent minerals. GemGuides Book. 1999. 9. Hibbs AR. Confocal... fake and genuine vertebrate fossils. Journal of Paleontological Techniques. 2008; 2:1–5. Laser-Stimulated Fluorescence in Paleontology PLOS ONE | DOI:10.1371/journal.pone.0125923 May 27, 2015 22 / 22 ...

  16. Broadband laser polarization control with aligned carbon nanotubes

    E-Print Network [OSTI]

    Yang, He; Lia, Diao; Chen, Ya; Mattila, Marco; Tian, Ying; Yong, Zhenzhong; Yang, Changxi; Tittonen, Ilkka; Ren, Zhaoyu; Bai, Jingtao; Li, Qingwen; Kauppinen, Esko I; Lipsanen, Harri; Sun, Zhipei

    2015-01-01T23:59:59.000Z

    We introduce a simple approach to fabricate aligned carbon nanotube (ACNT) device for broadband polarization control in fiber laser systems. The ACNT device was fabricated by pulling from as-fabricated vertically-aligned carbon nanotube arrays. Their anisotropic property is confirmed with optical and scanning electron microscopy, and with polarized Raman and absorption spectroscopy. The device was then integrated into fiber laser systems (at two technologically important wavelengths of 1 and 1.5 um) for polarization control. We obtained a linearly-polarized light output with the maximum extinction ratio of ~12 dB. The output polarization direction could be fully controlled by the ACNT alignment direction in both lasers. To the best of our knowledge, this is the first time that ACNT device is applied to polarization control in laser systems. Our results exhibit that the ACNT device is a simple, low-cost, and broadband polarizer to control laser polarization dynamics, for various photonic applications (such as ...

  17. Measurement of laser frequency response through heterodyne technique using optical modulation

    E-Print Network [OSTI]

    Ahmed, Syed Faisal

    1994-01-01T23:59:59.000Z

    An optical modulation technique for measuring the parasitic-free frequency response of high frequency semiconductor lasers is demonstrated. In this technique, we heterodyne light from two continuously tunable external cavity travelling wave ring...

  18. Growth and characterization of mid-infrared phosphide-based semiconductor diode lasers

    E-Print Network [OSTI]

    Chi, Pei-Chun

    2010-01-01T23:59:59.000Z

    A diode laser emitting at mid-infrared wavelength (2~5 pm) is an ideal light source for petrochemical or industrial-important gas sensing. Antimony-based III-V compound semiconductor material is the most prominent pseudomorphic ...

  19. Short wavelength laser

    DOE Patents [OSTI]

    Hagelstein, Peter L. (Livermore, CA)

    1986-01-01T23:59:59.000Z

    A short wavelength laser (28) is provided that is driven by conventional-laser pulses (30, 31). A multiplicity of panels (32), mounted on substrates (34), are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path (42). When the panels (32) are illuminated by the conventional-laser pulses (30, 31), single pass EUV or soft x-ray laser pulses (44, 46) are produced.

  20. Thermal response of photovoltaic cell to laser beam irradiation

    E-Print Network [OSTI]

    Yuan, Yu-Chen

    2014-01-01T23:59:59.000Z

    This paper firstly presents the concept of using dual laser beam to irradiate the photovoltaic cell, so as to investigate the temperature dependency of the efficiency of long distance energy transmission. Next, the model on the multiple reflection and absorption of any monochromatic light in multilayer structure has been established, and the heat generation in photovoltaic cell has been interpreted in this work. Then, the finite element model has been set up to calculate the temperature of photovoltaic cell subjected to laser irradiation. Finally, the effect of temperature elevation on the efficiency and reliability of photovoltaic cell has been discussed to provide theoretical references for designing the light-electricity conversion system.

  1. Analysis of confocal microscopy under ultrashort light-pulse illumination

    SciTech Connect (OSTI)

    Kempe, M.; Rudolph, W. (Univ. of New Mexico, Albuquerque (United States))

    1993-02-01T23:59:59.000Z

    The resolution of confocal laser scanning microscopes is analyzed if they are used in measurements that are to combine high spatial and high temporal resoltuion. A generalized Fourier-optical treatment is developed in which the system characteristics contain all necessary information regarding the optical arrangement and the illuminating light pulses. Coherent and incoherent imaging are considered in detail. 10 refs., 8 figs.

  2. STABILITY PROPERTIES OF LIGHT PROPAGATING IN FIBER OPTICS

    E-Print Network [OSTI]

    Kasman, Alex

    STABILITY PROPERTIES OF LIGHT PROPAGATING IN FIBER OPTICS ST´EPHANE LAFORTUNE Summary The study is crucial in applications such as lasers and optical fibers. In this proposal I will focus on a model of fiber optics: the Manakov system. This system consists of two differential equations, that is two

  3. Surface-electrode ion trap with integrated light source

    E-Print Network [OSTI]

    Kim, Tony Hyun

    An atomic ion is trapped at the tip of a single-mode optical fiber in a cryogenic (8 K) surface-electrode ion trap. The fiber serves as an integrated source of laser light, which drives the quadrupolequbit transition of ...

  4. Laser EYE SURGERY LASIK and Excimer Lasers

    E-Print Network [OSTI]

    Fygenson, Deborah Kuchnir

    Laser EYE SURGERY LASIK and Excimer Lasers Michael Hutchins #12;The PROBLEM opia - near sightedness. ically corrected with concave #12;THE PROBLEM eropia - far sightedness sed by a flat cornea or ort eye from different focal points in different nes of the eye. used by non-uniform curvature of the cornea

  5. Deficiencies of Lighting Codes and Ordinances in Controlling Light Pollution from Parking Lot Lighting Installations

    E-Print Network [OSTI]

    Royal, Emily

    2012-05-31T23:59:59.000Z

    The purpose of this research was to identify the main causes of light pollution from parking lot electric lighting installations and highlight the deficiencies of lighting ordinances in preventing light pollution. Using an industry-accepted lighting...

  6. Transmyocardial Laser Revascularization

    E-Print Network [OSTI]

    Fygenson, Deborah Kuchnir

    Transmyocardial Laser Revascularization Max Wiedmann #12;What is TMR? · TMR is used to improve blood flow to heart muscle tissue (myocardial tissue). · This is done using a laser to create small with bypass surgery so no additional opening is required. · The surgeon uses the laser to create 20 to 40 1mm

  7. Laser bottom hole assembly

    DOE Patents [OSTI]

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14T23:59:59.000Z

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  8. LaserFest Celebration

    SciTech Connect (OSTI)

    Dr. Alan Chodos; Elizabeth A. Rogan

    2011-08-25T23:59:59.000Z

    LaserFest was the yearlong celebration, during 2010, of the 50th anniversary of the demonstration of the first working laser. The goals of LaserFest were: to highlight the impact of the laser in its manifold commercial, industrial and medical applications, and as a tool for ongoing scientific research; to use the laser as one example that illustrates, more generally, the route from scientific innovation to technological application; to use the laser as a vehicle for outreach, to stimulate interest among students and the public in aspects of physical science; to recognize and honor the pioneers who developed the laser and its many applications; to increase awareness among policymakers of the importance of R&D funding as evidenced by such technology as lasers. One way in which LaserFest sought to meet its goals was to encourage relevant activities at a local level all across the country -- and also abroad -- that would be identified with the larger purposes of the celebration and would carry the LaserFest name. Organizers were encouraged to record and advertise these events through a continually updated web-based calendar. Four projects were explicitly detailed in the proposals: 1) LaserFest on the Road; 2) Videos; 3) Educational material; and 4) Laser Days.

  9. OpenGL Lighting 13. OpenGL Lighting

    E-Print Network [OSTI]

    McDowell, Perry

    OpenGL Lighting 13. OpenGL Lighting · Overview of Lighting in OpenGL In order for lighting to have an effect in OpenGL, two things are required: A light An object to be lit Lights can be set to any color determine how they reflect the light which hits them. The color(s) of an object is determined

  10. Radiative cooling of bulk silicon by incoherent light pump

    SciTech Connect (OSTI)

    Malyutenko, V. K., E-mail: malyut@isp.kiev.ua; Bogatyrenko, V. V.; Malyutenko, O. Yu. [V. E. Lashkaryov Institute of Semiconductor Physics, 03028 Kiev (Ukraine)] [V. E. Lashkaryov Institute of Semiconductor Physics, 03028 Kiev (Ukraine)

    2013-12-23T23:59:59.000Z

    In contrast to radiative cooling by light up conversion caused exclusively by a low-entropy laser pump and employing thermally assisted fluorescence/luminescence as a power out, we demonstrate light down conversion cooling by incoherent pumps, 0.47–0.94??m light emitting diodes, and employing thermal emission (TE) as a power out. We demonstrate ?3.5?K bulk cooling of Si at 450?K because overall energy of multiple below bandgap TE photons exceeds the energy of a single above bandgap pump photon. We show that using large entropy TE as power out helps avoid careful tuning of an incoherent pump wavelength and cool indirect-bandgap semiconductors.

  11. Adaptive Street Lighting Controls

    Broader source: Energy.gov [DOE]

    This two-part DOE Municipal Solid-State Street Lighting Consortium webinar focused on LED street lighting equipped with adaptive control components. In Part I, presenters Amy Olay of the City of...

  12. Sandia National Laboratories: Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Solid-State Lighting Science EFRC On November 11, 2010, in Welcome History of Incandescence History of LEDs Grand Challenges Our EFRC SSLS-EFRC Contacts News Publications...

  13. Possible applications of powerful pulsed CO{sub 2}-lasers in tokamak reactors

    SciTech Connect (OSTI)

    Nastoyashchii, A.F.; Morozov, I.N. [Troitsk Inst. for Innovation and Fusion Research, Moscow (Russian Federation); Hassanein, A. [Argonne National Lab., IL (United States)

    1998-08-01T23:59:59.000Z

    Applications of powerful pulsed CO{sub 2}-lasers for injection of fuel tablets or creation of a protective screen from the vapor of light elements to protect against the destruction of plasma-facing components are discussed, and the corresponding laser parameters are determined. The possibility of using CO{sub 2}-lasers in modeling the phenomena of powerful and energetic plasma fluxes interaction with a wall, as in the case of a plasma disruption, is considered.

  14. Thermal plasma irradiation under the action of the microwave-frequency-modulated laser beam

    SciTech Connect (OSTI)

    Rudenko, V. V., E-mail: jasmin@spnet.ru [12 Central Scientific Research Institute (Russian Federation)

    2011-12-15T23:59:59.000Z

    The results of the calculation of the thermal irradiation of the laser plasma formed by a powerful laser beam with the microwave-frequency-modulated intensity are presented. The analytical solution has been obtained for the case of the light detonation regime. It has been shown that the modulation of the gasdynamic parameters due to the absorption of the laser radiation leads to the modulation of the spectral and integral brightness observed from the thermal plasma irradiation.

  15. DEVELOPMENT OF NEW MID-INFRARED ULTRAFAST LASER SOURCES FOR COMPACT COHERENT X-RAY SOURCES

    SciTech Connect (OSTI)

    Sterling Backus

    2012-05-14T23:59:59.000Z

    In this project, we proposed to develop laser based mid-infrared lasers as a potentially robust and reliable source of ultrafast pulses in the mid-infrared region of the spectrum, and to apply this light source to generating bright, coherent, femtosecond-to-attosecond x-ray beams.

  16. The infrared laser transmission as a function of magnetic field in a single layer

    E-Print Network [OSTI]

    Weston, Ken

    (known as "graphene") indicates the band filling as some of the transmitted light is absorbed. In samples of graphene this has proven to be an important capability. Also, since the laser wavelength layer graphene taken at room temperature using a 10.6 micron laser and the Single Turn Magnet system

  17. Real-Time Optical Characterization of Laser Oxidation Process in Bimetallic Direct Write Gray Scale Photomasks

    E-Print Network [OSTI]

    Chapman, Glenn H.

    density (OD), changes smoothly with increasing laser power, from ~3.0OD (unexposed) to developed capable of providing real time optical density and exposure power changes for the bimetallic thin) are exposed to laser light with power greater than its conversion threshold power, the thin film oxidizes

  18. Numerical modeling of spray cooling-assisted dermatologic laser surgery for treatment of port wine stains

    E-Print Network [OSTI]

    Aguilar, Guillermo

    Numerical modeling of spray cooling-assisted dermatologic laser surgery for treatment of port wine to the epidermis during dermatologic laser surgery (DLS) for removal of port wine stain (PWS) birthmarks heat (J/kg/K) c speed of light in i (m/s) D optical diffusion coefficient (m) Ea activation energy

  19. Light emitting device comprising phosphorescent materials for white light generation

    DOE Patents [OSTI]

    Thompson, Mark E.; Dapkus, P. Daniel

    2014-07-22T23:59:59.000Z

    The present invention relates to phosphors for energy downconversion of high energy light to generate a broadband light spectrum, which emit light of different emission wavelengths.

  20. Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals

    SciTech Connect (OSTI)

    Frank, Matthias; Carlson, David B.; Hunter, Mark; Williams, Garth J.; Messerschmidt, Marc; Zatsepin, Nadia A.; Barty, Anton; Benner, Henry; Chu, Kaiqin; Graf, Alexander; Hau-Riege, Stefan; Kirian, Rick; Padeste, Celestino; Pardini, Tommaso; Pedrini, Bill; Segelke, Brent; Seibert, M. M.; Spence , John C.; Tsai, Ching-Ju; Lane, Steve M.; Li, Xiao-Dan; Schertler, Gebhard; Boutet, Sebastien; Coleman, Matthew A.; Evans, James E.

    2014-02-28T23:59:59.000Z

    Here we present femtosecond x-ray diffraction patterns from two-dimensional (2-D) protein crystals using an x-ray free electron laser (XFEL). To date it has not been possible to acquire x-ray diffraction from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permits a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy methodology at the Linac Coherent Light Source, we observed Bragg diffraction to better than 8.5 Å resolution for two different 2-D protein crystal samples that were maintained at room temperature. These proof-of-principle results show promise for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.

  1. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  2. Light Rail Transit Strengthening

    E-Print Network [OSTI]

    Minnesota, University of

    Light Rail Transit Improving mobility Easing congestion Strengthening our communities Central Corridor Communicating to the Public During Major Construction May 25, 2011 #12;2 Light Rail Transit;Light Rail Transit Central Corridor Route and Stations 3 · 18 new stations · 9.8 miles of new double

  3. X-ray laser

    DOE Patents [OSTI]

    Nilsen, Joseph (Livermore, CA)

    1991-01-01T23:59:59.000Z

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  4. A High Efficiency Grazing Incidence Pumped X-ray Laser

    SciTech Connect (OSTI)

    Dunn, J; Keenan, R; Price, D F; Patel, P K; Smith, R F; Shlyaptsev, V N

    2006-08-31T23:59:59.000Z

    The main objective of the project is to demonstrate a proof-of-principle, new type of high efficiency, short wavelength x-ray laser source that will operate at unprecedented high repetition rates (10Hz) that could be scaled to 1kHz or higher. The development of a high average power, tabletop x-ray laser would serve to complement the wavelength range of 3rd and future 4th generation light sources, e.g. the LCLS, being developed by DOE-Basic Energy Sciences. The latter are large, expensive, central, synchrotron-based facilities while the tabletop x-ray laser is compact, high-power laser-driven, and relatively inexpensive. The demonstration of such a unique, ultra-fast source would allow us to attract funding from DOE-BES, NSF and other agencies to pursue probing of diverse materials undergoing ultrafast changes. Secondly, this capability would have a profound impact on the semiconductor industry since a coherent x-ray laser source would be ideal for ''at wavelength'' {approx}13 nm metrology and microscopy of optics and masks used in EUV lithography. The project has major technical challenges. We will perform grazing-incidence pumped laser-plasma experiments in flat or groove targets which are required to improve the pumping efficiency by ten times. Plasma density characterization using our existing unique picosecond x-ray laser interferometry of laser-irradiated targets is necessary. Simulations of optical laser propagation as well as x-ray laser production and propagation through freely expanding and confined plasma geometries are essential. The research would be conducted using the Physics Directorate Callisto and COMET high power lasers. At the end of the project, we expect to have a high-efficiency x-ray laser scheme operating below 20 nm at 10Hz with a pulse duration of {approx}2 ps. This will represent the state-of-the-art in x-ray lasers and would be a major step forward from our present picosecond laser-driven x-ray lasers. There is an added bonus of creating the shortest wavelength laboratory x-ray laser, below 4.5 nm and operating in the water window, by using the high-energy capability of the Titan laser.

  5. Optical-acoustic effect in laser optics investigations N. E. Aver'anov (1), Yu. A. Baloshin (1), K. F. Bukhanov (1), I. V. Pavlishin (1),

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -induced damage such as evaporation of heat insulated defects, melting and optical breakdown off irradiated to laser induced damage greatly depends on an ability to absorb the laser radiation because at intense of an optical material, that is its damage. In laser optics, among well known methods of light absorption

  6. Tapered laser rods as a means of minimizing the path length of trapped barrel mode rays

    DOE Patents [OSTI]

    Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.; Mercer, Ian; Perry, Michael D.

    2005-08-30T23:59:59.000Z

    By tapering the diameter of a flanged barrel laser rod over its length, the maximum trapped path length of a barrel mode can be dramatically reduced, thereby reducing the ability of the trapped spontaneous emission to negatively impact laser performance through amplified spontaneous emission (ASE). Laser rods with polished barrels and flanged end caps have found increasing application in diode array end-pumped laser systems. The polished barrel of the rod serves to confine diode array pump light within the rod. In systems utilizing an end-pumping geometry and such polished barrel laser rods, the pump light that is introduced into one or both ends of the laser rod, is ducted down the length of the rod via the total internal reflections (TIRs) that occur when the light strikes the rod's barrel. A disadvantage of using polished barrel laser rods is that such rods are very susceptible to barrel mode paths that can trap spontaneous emission over long path lengths. This trapped spontaneous emission can then be amplified through stimulated emission resulting in a situation where the stored energy available to the desired lasing mode is effectively depleted, which then negatively impacts the laser's performance, a result that is effectively reduced by introducing a taper onto the laser rod.

  7. Method of making self-aligned lightly-doped-drain structure for MOS transistors

    DOE Patents [OSTI]

    Weiner, Kurt H. (San Jose, CA); Carey, Paul G. (Mountain View, CA)

    2001-01-01T23:59:59.000Z

    A process for fabricating lightly-doped-drains (LDD) for short-channel metal oxide semiconductor (MOS) transistors. The process utilizes a pulsed laser process to incorporate the dopants, thus eliminating the prior oxide deposition and etching steps. During the process, the silicon in the source/drain region is melted by the laser energy. Impurities from the gas phase diffuse into the molten silicon to appropriately dope the source/drain regions. By controlling the energy of the laser, a lightly-doped-drain can be formed in one processing step. This is accomplished by first using a single high energy laser pulse to melt the silicon to a significant depth and thus the amount of dopants incorporated into the silicon is small. Furthermore, the dopants incorporated during this step diffuse to the edge of the MOS transistor gate structure. Next, many low energy laser pulses are used to heavily dope the source/drain silicon only in a very shallow region. Because of two-dimensional heat transfer at the MOS transistor gate edge, the low energy pulses are inset from the region initially doped by the high energy pulse. By computer control of the laser energy, the single high energy laser pulse and the subsequent low energy laser pulses are carried out in a single operational step to produce a self-aligned lightly-doped-drain-structure.

  8. Tunable light source for use in photoacoustic spectrometers

    DOE Patents [OSTI]

    Bisson, Scott E.; Kulp, Thomas J.; Armstrong, Karla M.

    2005-12-13T23:59:59.000Z

    The present invention provides a photoacoustic spectrometer that is field portable and capable of speciating complex organic molecules in the gas phase. The spectrometer has a tunable light source that has the ability to resolve the fine structure of these molecules over a large wavelength range. The inventive light source includes an optical parametric oscillator (OPO) having combined fine and coarse tuning. By pumping the OPO with the output from a doped-fiber optical amplifier pumped by a diode seed laser, the inventive spectrometer is able to speciate mixtures having parts per billion of organic compounds, with a light source that has a high efficiency and small size, allowing for portability. In an alternative embodiment, the spectrometer is scanned by controlling the laser wavelength, thus resulting in an even more compact and efficient design.

  9. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOE Patents [OSTI]

    Neil, G.R.

    1996-07-30T23:59:59.000Z

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  10. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOE Patents [OSTI]

    Neil, George R. (Williamsburg, VA)

    1996-01-01T23:59:59.000Z

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  11. Light extraction from organic light-emitting diodes for lighting applications by sand-blasting

    E-Print Network [OSTI]

    Light extraction from organic light-emitting diodes for lighting applications by sand@ust.hk Abstract: Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost

  12. Generation of low-divergence laser beams

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1993-01-01T23:59:59.000Z

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source.

  13. Generation of low-divergence laser beams

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-09-14T23:59:59.000Z

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source. 11 figures.

  14. Photonic crystal light source

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Bur, James A. (Corrales, NM)

    2004-07-27T23:59:59.000Z

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  15. Laser Safety Training Notes for URI Laser Users

    E-Print Network [OSTI]

    Rhode Island, University of

    ;URI Radiation Safety Office 11 Laser Output · Continuous Wave (steady output) · Pulsed (short time extremely short laser pulses (typically a few nanoseconds in duration). The Q-switch may use a rotatingLaser Safety Training Notes for URI Laser Users #12;URI Radiation Safety Office 2 Laser The word

  16. Laser system using ultra-short laser pulses

    DOE Patents [OSTI]

    Dantus, Marcos (Okemos, MI); Lozovoy, Vadim V. (Okemos, MI); Comstock, Matthew (Milford, MI)

    2009-10-27T23:59:59.000Z

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  17. The Theta Laser A Low Noise Chirped Pulse Laser

    E-Print Network [OSTI]

    Van Stryland, Eric

    · Increased laser coherence · Ultra-low noise lasersOC ISO SOA #12;8 Approach Semiconductor-Based FrequencyThe Theta Laser A Low Noise Chirped Pulse Laser Dimitrios Mandridis dmandrid@creol.ucf.edu April 29, 2011 CREOL Affiliates Day 2011 #12;2 Objective: Frequency Swept (FM) Mode-locked Laser · Develop

  18. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    SciTech Connect (OSTI)

    Mazzeo, M., E-mail: marco.mazzeo@unisalento.it [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Genco, A. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); Gambino, S. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy); Ballarini, D.; Mangione, F.; Sanvitto, D. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Di Stefano, O.; Patanè, S.; Savasta, S. [Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina (Italy); Gigli, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy)

    2014-06-09T23:59:59.000Z

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  19. Prospective emission efficiency and in-plane light polarization of nonpolar m-plane InxGa1-xN/GaN blue light emitting diodes fabricated on freestanding GaN substrates

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    m-plane In x Ga 1?x N / GaN blue light emitting diodesmea- surements. Since the blue MQW emission is polarized toS. Nakamura and G. Fasol, The Blue Laser Diode ?Springer,

  20. Status of the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Galayda, John N.; /SLAC

    2011-11-04T23:59:59.000Z

    The Linac Coherent Light Source (LCLS) is a free electron laser facility in construction at Stanford Linear Accelerator Center. It is designed to operate in the wavelength range 0.15-1.5 nanometers. At the time of this conference, civil construction of new tunnels and buildings is complete, the necessary modifications to the SLAC linac are complete, and the undulator system and x-ray optics/diagnostics are being installed. The electron gun, 135 MeV injector linac and 250 MeV bunch compressor were commissioned in 2007. Accelerator commissioning activities are presently devoted to the achievement of performance goals for the completed 14 GeV linac.

  1. Entangled light from Bose-Einstein condensates

    E-Print Network [OSTI]

    H. T. Ng; S. Bose

    2008-09-30T23:59:59.000Z

    We propose a method to generate entangled light with a Bose-Einstein condensate trapped in a cavity, a system realized in recent experiments. The atoms of the condensate are trapped in a periodic potential generated by a cavity mode. The condensate is continuously pumped by a laser and spontaneously emits a pair of photons of different frequencies in two distinct cavity modes. In this way, the condensate mediates entanglement between two cavity modes which leak out and can be separated and exhibit continuous variable entanglement. The scheme exploits the experimentally demonstrated strong, steady and collective coupling of condensate atoms to a cavity field.

  2. Foundations and Light Compass Foundations and Light Compass

    E-Print Network [OSTI]

    Wong, Jennifer L.

    Foundations and Light Compass Case Study Foundations and Light Compass Case Study Jennifer L. WongQuantitative Sensor--centric Designcentric Design Light CompassLight Compass ­­ Models and Abstractions Contaminant Transport Marine Microorganisms Ecosystems, Biocomplexity What is a Light Compass?What is a Light

  3. Lighting and Surfaces 11.1 Introduction to Lighting

    E-Print Network [OSTI]

    Boyd, John P.

    Chapter 11 Lighting and Surfaces 11.1 Introduction to Lighting Three-dimensional surfaces can react to light, and how computer graphics simulates this. There are three species of light (or "illumination models"): 1. Intrinsic (self-emitting) 2. Ambient light (sometimes called "diffuse light") 3

  4. A Search for Optical Laser Emission Using Keck HIRES

    E-Print Network [OSTI]

    Tellis, Nathaniel K

    2015-01-01T23:59:59.000Z

    We present a search for laser emission coming from point sources in the vicinity of 2796 stars, including 1368 Kepler Objects of Interest (KOIs) that host one or more exoplanets. We search for extremely narrow emission lines in the wavelength region between 3640 and 7890 Angstroms using the Keck 10-meter telescope and spectroscopy with high resolution ($\\lambda/\\Delta \\lambda$ = 60,000). Laser emission lines coming from non-natural sources are distinguished from natural astrophysical sources by being monochromatic and coming from an unresolved point in space. We search for laser emission located 2-7 arcsec from the 2796 target stars. The detectability of laser emission is limited by Poisson statistics of the photons and scattered light, yielding a detection threshold flux of approximately $10^{-2}$ photons $m^{-2} s^{-1}$ for typical Kepler stars and 1 photon $m^{-2} s^{-1}$ for solar-type stars within 100 light-years. Diffraction-limited lasers having a 10-meter aperture can be detected from 100 light-years ...

  5. Laser Heater and seeded Free Electron Laser

    E-Print Network [OSTI]

    Dattoli, G; Sabia, E

    2014-01-01T23:59:59.000Z

    In this paper we consider the effect of laser heater on a seeded Free Electron Laser. We develop a model embedding the effect of the energy modulation induced by the heater with those due to the seeding. The present analysis is compatible with the experimental results obtained at FERMI displaying secondary maxima with increasing heater intensity. The treatment developed in the paper confirms and extends previous analyses and put in evidence further effects which can be tested in future experiments.

  6. Arnold Schwarzenegger LIGHTING RESEARCH PROGRAM

    E-Print Network [OSTI]

    Project Summaries ELEMENT 2: ADVANCE LIGHTING TECHNOLOGIES PROJECT 2.1 LIGHT EMITTING DIODE (LED light emitting diodes (LED) technology for general lighting applications by developing a task lamp

  7. Fine tunable red-green upconversion luminescence from glass ceramic containing 5%Er{sup 3+}:NaYF{sub 4} nanocrystals under excitation of two near infrared femtosecond lasers

    SciTech Connect (OSTI)

    Shang, Xiaoying; Cheng, Wenjing; Zhou, Kan; Ma, Jing; Feng, Donghai; Zhang, Shian; Sun, Zhenrong; Jia, Tianqing, E-mail: tqjia@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China); Chen, Ping; Qiu, Jianrong [State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)

    2014-08-14T23:59:59.000Z

    In this paper, we report fine tunable red-green upconversion luminescence of glass ceramic containing 5%Er{sup 3+}: NaYF{sub 4} nanocrystals excited simultaneously by two near infrared femtosecond lasers. When the glass ceramic was irradiated by 800?nm femtosecond laser, weak red emission centered at 670?nm was detected. Bright red light was observed when the fs laser wavelength was tuned to 1490?nm. However, when excited by the two fs lasers simultaneously, the sample emitted bright green light centered at 550?nm, while the red light kept the same intensity. The dependences of the red and the green light intensities on the two pump lasers are much different, which enables us to manipulate the color emission by adjusting the two pump laser intensities, respectively. We present a theoretical model of Er{sup 3+} ions interacting with two fs laser fields, and explain well the experimental results.

  8. Scope channel Photo-cathode UV laser light

    E-Print Network [OSTI]

    Timing results #12;5 ground Glass or ceramic insulation between ground and HV copper electrode Stack. Grid spacer or MCP is compressed with quartz window. Ground connection is provided by the top electrode 12258- 543 3nm Chem-2, 68nm Al2O3, 6nm 4hrs@400C ~20 8" chamber/ storage APS no 12258- 540 3nm Chem-2

  9. Underwater Lighting by Submerged Lasers and Incandescent Sources

    E-Print Network [OSTI]

    Duntley, Seibert Q

    1971-01-01T23:59:59.000Z

    books. For eX3.I11ple, equation (5.49.1) on page 107 of Glastone and Edlund's, "Elements of Nuclear Reactor

  10. anomalous laser light: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the radiative one. The case is similar to the recently introduced anomalous scattering PRL vol. 97, 263902 (2006) and exhibits similar peculiarities. Tribelsky, Michael I...

  11. Laser-PlasmaWakefield Acceleration with Higher Order Laser Modes

    E-Print Network [OSTI]

    Geddes, C.G.R.

    2011-01-01T23:59:59.000Z

    Design considerations for a laser-plasma linear collider,"E.Esarey, and W.P.Leemans, "Free-electron laser driven bythe LBNL laser-plasma accelerator," in Proc. Adv. Acc. Con.

  12. Nonlinear laser energy depletion in laser-plasma accelerators

    E-Print Network [OSTI]

    Shadwick, B.A.

    2009-01-01T23:59:59.000Z

    k p k 0 and assume a short laser pulse, k p L ? 2. WithE 0 = mc? p /q. For a short laser pulse, ? ? ? short-pulse lasers via excitation of

  13. OPTICAL EMISSION DIAGNOSTICS OF LASER PRODUCED PLASMA FROM

    E-Print Network [OSTI]

    Harilal, S. S.

    OPTICAL EMISSION DIAGNOSTICS OF LASER PRODUCED PLASMA FROM GRAPHITE AND YBa2Cu30 7 HARILAL. s irradiances, ionization occurs which leads to the plasma formation. Spectroscopic studies of optical emission and the resulting plasma. Optical emission spectroscopy is a technique which analyzes the light emitted from

  14. Propagation of light in low pressure gas

    E-Print Network [OSTI]

    Jacques Moret-Bailly

    2012-04-13T23:59:59.000Z

    The criticism by W. E. Lamb, W. Schleich, M. Scully, C. Townes of a simplified quantum electrodynamics which represents the photon as a true particle is illustrated. Collisions being absent in low-pressure gas, exchanges of energy are radiative and coherent. Thin shells of plasma containing atoms in a model introduced by Str\\"omgren are superradiant, seen as circles possibly dotted. Spectral radiance of novae has magnitude of laser radiance, and column densities are large in nebulae: Superradiance, multiphoton effects, etc., work in astrophysics. The superradiant beams induce multiphotonic scatterings of light emitted by the stars, brightening the limbs of plasma bubbles and darkening the stars. In excited atomic hydrogen, impulsive Raman scatterings shift frequencies of light. Microwaves exchanged with the Pioneer probes are blueshifted, simulating anomalous accelerations. Substituting coherence for wrong calculations in astrophysical papers, improves results, avoids "new physics".

  15. Laser beam apparatus and method for analyzing solar cells

    DOE Patents [OSTI]

    Staebler, David L. (Lawrenceville, NJ)

    1980-01-01T23:59:59.000Z

    A laser beam apparatus and method for analyzing, inter alia, the current versus voltage curve at the point of illumination on a solar cell and the open circuit voltage of a solar cell. The apparatus incorporates a lock-in amplifier, and a laser beam light chopper which permits the measurement of the AC current of the solar cell at an applied DC voltage at the position on the solar cell where the cell is illuminated and a feedback scheme which permits the direct scanning measurements of the open circuit voltage. The accuracy of the measurement is a function of the intensity and wavelength of the laser light with respect to the intensity and wavelength distribution of sunlight and the percentage the dark current is at the open circuit voltage to the short circuit current of the solar cell.

  16. Laser-induced differential normalized fluorescence method for cancer diagnosis

    DOE Patents [OSTI]

    Vo-Dinh, T.; Panjehpour, M.; Overholt, B.F.

    1996-12-03T23:59:59.000Z

    An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample. 5 figs.

  17. Laser-induced differential normalized fluorescence method for cancer diagnosis

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (Knoxville, TN); Panjehpour, Masoud (Knoxville, TN); Overholt, Bergein F. (Knoxville, TN)

    1996-01-01T23:59:59.000Z

    An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample.

  18. Science and Technology of Future Light Sources

    E-Print Network [OSTI]

    Bergmann, Uwe

    2009-01-01T23:59:59.000Z

    static pressures. Ultra-fast laser systems for intensetechniques, laser synchronization and ultra-stable timingand laser sources, and ultimately combining the THz with ultra-

  19. Precision laser aiming system

    DOE Patents [OSTI]

    Ahrens, Brandon R. (Albuquerque, NM); Todd, Steven N. (Rio Rancho, NM)

    2009-04-28T23:59:59.000Z

    A precision laser aiming system comprises a disrupter tool, a reflector, and a laser fixture. The disrupter tool, the reflector and the laser fixture are configurable for iterative alignment and aiming toward an explosive device threat. The invention enables a disrupter to be quickly and accurately set up, aligned, and aimed in order to render safe or to disrupt a target from a standoff position.

  20. Excimer laser chemical problems

    SciTech Connect (OSTI)

    Tennant, R.; Peterson, N.

    1982-01-01T23:59:59.000Z

    Techniques need to be developed to maintain XeF and XeCl laser performance over long periods of time without degradation resulting from chemical processes occurring within the laser. The dominant chemical issues include optical damage, corrosions of laser materials, gas contamination, and control of halogen concentration. Each of these issues are discussed and summarized. The methods of minimizing or controlling the chemical processes involved are presented.

  1. X-ray lasers and methods utilizing two component driving illumination provided by optical laser means of relatively low energy and small physical size

    DOE Patents [OSTI]

    Rosen, Mordecai D. (Berkeley, CA); Matthews, Dennis L. (El Granada, CA)

    1991-01-01T23:59:59.000Z

    An X-ray laser (10), and related methodology, are disclosed wherein an X-ray laser target (12) is illuminated with a first pulse of optical laser radiation (14) of relatively long duration having scarcely enough energy to produce a narrow and linear cool plasma of uniform composition (38). A second, relatively short pulse of optical laser radiation (18) is uniformly swept across the length, from end to end, of the plasma (38), at about the speed of light, to consecutively illuminate continuously succeeding portions of the plasma (38) with optical laser radiation having scarcely enough energy to heat, ionize, and invert them into the continuously succeeding portions of an X-ray gain medium. This inventive double pulse technique results in a saving of more than two orders of magnitude in driving optical laser energy, when compared to the conventional single pulse approach.

  2. High efficiency incandescent lighting

    DOE Patents [OSTI]

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02T23:59:59.000Z

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  3. National Synchrotron Light Source

    ScienceCinema (OSTI)

    BNL

    2009-09-01T23:59:59.000Z

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  4. LED Lighting Retrofit

    E-Print Network [OSTI]

    Shaw-Meadow, N.

    2011-01-01T23:59:59.000Z

    ? Municipal Street Lighting Consortium ? American Public Power Association (APPA) ? Demonstration in Energy Efficiency Development (DEED) ? Source of funding and database of completed LED roadway projects 6 Rules of the Road ESL-KT-11-11-57 CATEE 2011..., 2011 ? 9 Solar-Assisted LED Case Study LaQuinta Hotel, Cedar Park, Texas ? Utilizes 18 - ActiveLED Solar-Assisted Parking Lot Lights ? Utilizes ?power management? to extend battery life while handling light output ? Reduces load which reduces PV...

  5. Edmund G. Brown Jr. LIGHTING CALIFORNIA'S FUTURE

    E-Print Network [OSTI]

    Edmund G. Brown Jr. Governor LIGHTING CALIFORNIA'S FUTURE: SMART LIGHT-EMITTING DIODE LIGHTING's Future: Smart LightEmitting Diode Lighting in Residential Fans. California Energy Commission, PIER

  6. Novel fluorinated laser dyes

    DOE Patents [OSTI]

    Hammond, Peter R. (Livermore, CA); Feeman, James F. (Wyomissing, PA)

    1991-01-01T23:59:59.000Z

    A novel class of dye is disclosed which is particularly efficient and stable for dye laser applications, lasing between 540 and 570 nm.

  7. Laser Desorption Analysis | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mounted on standardized EMSL platens and attached to a vacuum manipulator. Several excitation, or pump, nanosecond and femtosecond lasers are available in the laboratory for...

  8. ATF CO2 LASER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    *Operate at low pressure <<1 atm *Bandwidth P (10 atm supports a picosecond pulse) 4 Ultrafast gas lasers require high pressure Inverse Fourier Transform for discrete spectrum...

  9. Laser Desorption Analysis | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and TOF mass spectrometers; neutral particle detection using a second multiphoton ionization or REMPI laser system; and UHV surface diagnostic equipment (AES, LEED, XPS)....

  10. Fusion reactor pumped laser

    DOE Patents [OSTI]

    Jassby, Daniel L. (Princeton, NJ)

    1988-01-01T23:59:59.000Z

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  11. Comparing Light Bulbs

    Broader source: Energy.gov [DOE]

    In this exercise, students will use a light to demonstrate the difference between being energy-efficient and energy-wasteful, and learn what energy efficiency means.

  12. Total Light Management

    Broader source: Energy.gov [DOE]

    Presentation covers total light management, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  13. Lighting Technology Panel

    Broader source: Energy.gov [DOE]

    Presentation covers the Lighting Technology Panel for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009. 

  14. Hybrid Solar Lighting

    SciTech Connect (OSTI)

    Maxey, L Curt [ORNL

    2008-01-01T23:59:59.000Z

    Hybrid solar lighting systems focus highly concentrated sunlight into a fiber optic bundle to provide sunlight in rooms without windows or conventional skylights.

  15. Solid-State Lighting

    Broader source: Energy.gov (indexed) [DOE]

    into the market. On the market side, DOE works closely with drivers, heat sinks, and optics. LEDs must be carefully energy efficiency program partners, lighting professionals,...

  16. BNL | Nd:YAG Laser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nd:YAG Laser The Nd:YAG laser is located in a class 1000 clean room (the YAG Room) near the electron gun end of the ATF accelerator. The clean area also includes a separate laser...

  17. BNL | CFN Laser System Qualifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lasers. This standard requires each Class 3B and 4 laser user to have a pre-assignment eye examination by an ophthalmologist, which is recorded on Part B of the Laser Medical...

  18. Laser Program annual report 1987

    SciTech Connect (OSTI)

    O'Neal, E.M.; Murphy, P.W.; Canada, J.A.; Kirvel, R.D.; Peck, T.; Price, M.E.; Prono, J.K.; Reid, S.G.; Wallerstein, L.; Wright, T.W. (eds.)

    1989-07-01T23:59:59.000Z

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies.

  19. Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array

    DOE Patents [OSTI]

    Beach, R.J.; Benett, W.J.; Mills, S.T.

    1997-04-01T23:59:59.000Z

    The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a ``rack and stack`` configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber. 3 figs.

  20. Laser Micromachining: Advantages of Liquid Environments

    E-Print Network [OSTI]

    Petta, Jason

    Laser Micromachining: Advantages of Liquid Environments Marc J. Palmeri Princeton University Arnold Lab #12;Outline · Motivation ­ Applications of laser micromachining ­ Problems with laser micromachining · How do lasers work? · What is laser micromachining? · Micromachining assembly · Methods

  1. Laser cooling of a trapped particle with increased Rabi frequencies

    SciTech Connect (OSTI)

    Blake, Tony; Kurcz, Andreas; Saleem, Norah S.; Beige, Almut [School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2011-11-15T23:59:59.000Z

    This paper analyzes the cooling of a single particle in a harmonic trap with red-detuned laser light with fewer approximations than previously done in the literature. We avoid the adiabatic elimination of the excited atomic state but are still interested in Lamb-Dicke parameters {eta}<<1. Our results show that the Rabi frequency of the cooling laser can be chosen higher than previously assumed, thereby increasing the effective cooling rate but not affecting the final outcome of the cooling process. Since laser cooling is already a well-established experimental technique, the main aim of this paper is to present a model which can be extended to more complex scenarios, like cavity-mediated laser cooling.

  2. Laser cooling of a trapped particle with increased Rabi frequencies

    E-Print Network [OSTI]

    Tony Blake; Andreas Kurcz; Norah S. Saleem; Almut Beige

    2011-10-14T23:59:59.000Z

    This paper analyses the cooling of a single particle in a harmonic trap with red-detuned laser light with fewer approximations than previously done in the literature. We avoid the adiabatic elimination of the excited atomic state but are still interested in Lamb-Dicke parameters $\\eta \\ll 1$. Our results show that the Rabi frequency of the cooling laser can be chosen higher than previously assumed, thereby increasing the effective cooling rate but {\\em not} affecting the final outcome of the cooling process. Since laser cooling is already a well established experimental technique, the main aim of this paper is to present a model which can be extended to more complex scenarios, like cavity-mediated laser cooling.

  3. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    SciTech Connect (OSTI)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

    2011-07-15T23:59:59.000Z

    Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

  4. Low-spatial coherence electrically-pumped semiconductor laser for speckle-free full-field imaging

    E-Print Network [OSTI]

    Redding, B; Huang, X; Lee, M L; Stone, A D; Choma, M A; Cao, H

    2014-01-01T23:59:59.000Z

    The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically-pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ~1000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, wh...

  5. LANL | Physics | Trident Laser Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery science at Trident Laser Facility Several important discoveries and first observations have been made at the Trident Laser Facility, a unique three-beam neodymium-glass...

  6. The dynamics of laser droplet generation

    E-Print Network [OSTI]

    Blaz Krese; Matjaz Perc; Edvard Govekar

    2010-03-01T23:59:59.000Z

    We propose an experimental setup allowing for the characterization of laser droplet generation in terms of the underlying dynamics, primarily showing that the latter is deterministically chaotic by means of nonlinear time series analysis methods. In particular, we use a laser pulse to melt the end of a properly fed vertically placed metal wire. Due to the interplay of surface tension, gravity force and light-metal interaction, undulating pendant droplets are formed at the molten end, which eventually completely detach from the wire as a consequence of their increasing mass. We capture the dynamics of this process by employing a high-speed infrared camera, thereby indirectly measuring the temperature of the wire end and the pendant droplets. The time series is subsequently generated as the mean value over the pixel intensity of every infrared snapshot. Finally, we employ methods of nonlinear time series analysis to reconstruct the phase space from the observed variable and test it against determinism and stationarity. After establishing that the observed laser droplet generation is a deterministic and dynamically stationary process, we calculate the spectra of Lyapunov exponents. We obtain a positive largest Lyapunov exponent and a negative divergence, i.e., sum of all the exponents, thus indicating that the observed dynamics is deterministically chaotic with an attractor as solution in the phase space. In addition to characterizing the dynamics of laser droplet generation, we outline industrial applications of the process and point out the significance of our findings for future attempts at mathematical modeling.

  7. Reducing home lighting expenses

    SciTech Connect (OSTI)

    Aimone, M.A.

    1981-02-01T23:59:59.000Z

    Ways to reduce lighting expenses are summarized. These include: turning off lights when not in use; keeping fixtures and lamps clean; replacing lamps with more efficient types; using three-way bulbs; use of daylighting; buying fewer lamps and reducing lamp wattage; consider repainting rooms; replacing recessed fixtures with tracklighting; and using efficient lamps for outdoor use. (MCW)

  8. Light intensity compressor

    DOE Patents [OSTI]

    Rushford, Michael C. (Livermore, CA)

    1990-01-01T23:59:59.000Z

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  9. Accelerator Design Study for a Soft X-Ray Free Electron Laser at the Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    Kur, E.

    2010-01-01T23:59:59.000Z

    and Phase Diagnostics, SLAC Report LCLS-TN-00-12. Emma P.al. 2009, First Results of the LCLS Laser-Heater System, PACLinac Coherent Light Source (LCLS) Conceptual Design Report,

  10. Transcranial Low-Level Laser Therapy Improves Neurological Performance in Traumatic Brain Injury in Mice: Effect of Treatment Repetition Regimen

    E-Print Network [OSTI]

    Hamblin, Michael R.

    Low-level laser (light) therapy (LLLT) has been clinically applied around the world for a spectrum of disorders requiring healing, regeneration and prevention of tissue death. One area that is attracting growing interest ...

  11. Energy exchange between a laser beam and charged particles using inverse transition radiation and method for its use

    DOE Patents [OSTI]

    Kimura, Wayne D. (Bellevue, WA); Romea, Richard D. (Seattle, WA); Steinhauer, Loren C. (Bothell, WA)

    1998-01-01T23:59:59.000Z

    A method and apparatus for exchanging energy between relativistic charged particles and laser radiation using inverse diffraction radiation or inverse transition radiation. The beam of laser light is directed onto a particle beam by means of two optical elements which have apertures or foils through which the particle beam passes. The two apertures or foils are spaced by a predetermined distance of separation and the angle of interaction between the laser beam and the particle beam is set at a specific angle. The separation and angle are a function of the wavelength of the laser light and the relativistic energy of the particle beam. In a diffraction embodiment, the interaction between the laser and particle beams is determined by the diffraction effect due to the apertures in the optical elements. In a transition embodiment, the interaction between the laser and particle beams is determined by the transition effect due to pieces of foil placed in the particle beam path.

  12. Titan Laser Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Titan Titan is a two-beam laser platform. The nanosecond "long-pulse" beam is one of the Janus lasers, up to 1 kJ at 1.053 m. The "short-pulse" beam is 1-to-10 ps and energies up...

  13. Longitudinal discharge laser electrodes

    DOE Patents [OSTI]

    Warner, B.E.; Miller, J.L.; Ault, E.R.

    1994-08-23T23:59:59.000Z

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window. 2 figs.

  14. Dye laser amplifier

    DOE Patents [OSTI]

    Moses, E.I.

    1992-12-01T23:59:59.000Z

    An improved dye laser amplifier is disclosed. The efficiency of the dye laser amplifier is increased significantly by increasing the power of a dye beam as it passes from an input window to an output window within the dye chamber, while maintaining the intensity of the dye beam constant. 3 figs.

  15. Drive laser Photocathode

    E-Print Network [OSTI]

    Anlage, Steven

    Drive laser Gun cavity Scale 2" 3"0 1" Photocathode Schematic Overview of a Free Electron Laser Steel Sleeve Compressed Cs2CrO4:Ti Pellet (0.725g) 1.27 cm Nickel-Assisted Hermetic Braze #12;Foundation

  16. Laser Programs Highlight 1995

    SciTech Connect (OSTI)

    Jacobs, R.R.

    1997-01-31T23:59:59.000Z

    Our contributions to laser science and technology and corresponding applications range from concept to design of the National Ignition Facility, transfer of Atomic Vapor Laser Isotope Separation technology to the private sector, and from new initiatives in industry and defense to micro-optics for improving human vision.

  17. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1994-02-15T23:59:59.000Z

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  18. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1993-12-28T23:59:59.000Z

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  19. Lighting affects appearance LightSource emits photons

    E-Print Network [OSTI]

    Jacobs, David

    1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Reflectance Model how objects reflect light. Model light sources Algorithms for computing Shading: computing intensities within polygons Determine what light strikes what

  20. VIRTUAL LIGHT: DIGITALLY-GENERATED LIGHTING FOR VIDEO CONFERENCING APPLICATIONS

    E-Print Network [OSTI]

    Fisher, Kathleen

    VIRTUAL LIGHT: DIGITALLY-GENERATED LIGHTING FOR VIDEO CONFERENCING APPLICATIONS Andrea Basso method to improve the lighting conditions of a real scene or video sequence. In particular we concentrate on modifying real light sources intensities and inserting virtual lights into a real scene viewed from a fixed

  1. DarkLight radiation backgrounds

    SciTech Connect (OSTI)

    Kalantarians, N. [Department of Physics, Hampton University, Hampton VA 23668 (United States); Collaboration: DarkLight Collaboration

    2013-11-07T23:59:59.000Z

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-on, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW CW beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, field emission inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation.

  2. Laser dividing apparatus

    DOE Patents [OSTI]

    English, Jr., R. Edward (Tracy, CA); Johnson, Steve A. (Tracy, CA)

    1995-01-01T23:59:59.000Z

    A laser beam dividing apparatus (10) having a first beam splitter (14) with an aperture (16) therein positioned in the path of a laser beam (12) such that a portion of the laser beam (12) passes through the aperture (16) onto a second beam splitter (20) and a portion of the laser beam (12) impinges upon the first beam splitter (14). Both the first beam splitter (14) and the second beam splitter (20) are, optionally, made from a dichroic material such that a green component (24) of the laser beam (12) is reflected therefrom and a yellow component (26) is refracted therethrough. The first beam splitter (14) and the second beam splitter (20) further each have a plurality of facets (22) such that the components (24, 26) are reflected and refracted in a number equaling the number of facets (22).

  3. Catalac free electron laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1982-01-01T23:59:59.000Z

    A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator or as an amplifier in conjunction with a master oscillator laser.

  4. Femtosecond laser induced breakdown for combustion diagnostics

    SciTech Connect (OSTI)

    Kotzagianni, M. [Department of Physics, University of Patras, 26504 Patras (Greece); Institute of Chemical Engineering and High Temperature Chemical Processes (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), 26504 Patras (Greece); Couris, S. [Department of Physics, University of Patras, 26504 Patras (Greece); Institute of Chemical Engineering and High Temperature Chemical Processes (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), 26504 Patras (Greece); Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), Universite de Bourgogne, 21078 Dijon Cedex (France)

    2012-06-25T23:59:59.000Z

    The focused beam of a 100 fs, 800 nm laser is used to induce a spark in some laminar premixed air-methane flames operating with variable fuel content (equivalence ratio). The analysis of the light escaping from the plasma revealed that the Balmer hydrogen lines, H{sub {alpha}} and H{sub {beta}}, and some molecular origin emissions were the most prominent spectral features, while the CN ({Beta}{sup 2}{Sigma}{sup +}-{Chi}{sup 2}{Sigma}{sup +}) band intensity was found to depend linearly with methane content, suggesting that femtosecond laser induced breakdown spectroscopy can be a useful tool for the in-situ determination and local mapping of fuel content in hydrocarbon-air combustible mixtures.

  5. Free electron laser designs for laser amplification

    DOE Patents [OSTI]

    Prosnitz, Donald (Walnut Creek, CA); Szoke, Abraham (Fremont, CA)

    1985-01-01T23:59:59.000Z

    Method for laser beam amplification by means of free electron laser techniques. With wiggler magnetic field strength B.sub.w and wavelength .lambda..sub.w =2.pi./k.sub.w regarded as variable parameters, the method(s) impose conditions such as substantial constancy of B.sub.w /k.sub.w or k.sub.w or B.sub.w and k.sub.w (alternating), coupled with a choice of either constant resonant phase angle or programmed phase space "bucket" area.

  6. Classical light analogue of the nonlocal Aharonov-Bohm effect

    E-Print Network [OSTI]

    Nandan Satapathy; Deepak Pandey; Poonam Mehta; Supurna Sinha; Joseph Samuel; Hema Ramachandran

    2012-02-13T23:59:59.000Z

    We demonstrate the existence of a non-local geometric phase in the intensity-intensity correlations of classical incoherent light, that is not seen in the lower order correlations. This two-photon Pancharatnam phase was observed and modulated in a Mach-Zehnder interferometer. Using acousto-optic interaction, independent phase noise was introduced to light in the two arms of the interferometer to create two independent incoherent classical sources from laser light. The experiment is the classical optical analogue of the multi-particle Aharonov-Bohm effect. As the trajectory of light over the Poincare sphere introduces a phase shift observable only in the intensity-intensity correlation, it provides a means of deflecting the two-photon wavefront, while having no effect on single photons.

  7. Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control G. R. Plateau, , C. G. R acceleration is a key challenge to achieve compact, reliable, tunable laser-plasma accelerators (LPA) [1, 2]. In colliding pulse injection the beat between multiple laser pulses can be used to control energy, energy

  8. Diagnostic apparatus and method for use in the alignment of one or more laser means onto a fiber optics interface

    DOE Patents [OSTI]

    Johnson, Steve A. (Tracy, CA); Shannon, Robert R. (Tucson, AZ)

    1987-01-01T23:59:59.000Z

    Diagnostic apparatus for use in determining the proper alignment of a plurality of laser beams onto a fiber optics interface is disclosed. The apparatus includes a lens assembly which serves two functions, first to focus a plurality of laser beams onto the fiber optics interface, and secondly to reflect and image the interface using scattered light to a monitor means. The monitor means permits indirect observation of the alignment or focusing of the laser beams onto the fiber optics interface.

  9. Diagnostic apparatus and method for use in the alignment of one or more laser means onto a fiber optics interface

    DOE Patents [OSTI]

    Johnson, S.A.; Shannon, R.R.

    1985-01-18T23:59:59.000Z

    Diagnostic apparatus for use in determining the proper alignment of a plurality of laser beams onto a fiber optics interface is disclosed. The apparatus includes a lens assembly which serves two functions, first to focus a plurality of laser beams onto the fiber optics interface, and secondly to reflect and image the interface using scattered light to a monitor means. The monitor means permits indirect observation of the alignment or focusing of the laser beams onto the fiber optics interface.

  10. Effects of excitation laser wavelength on Ly-a and He-a line emission from nitrogen plasmas

    E-Print Network [OSTI]

    Harilal, S. S.

    to the wave- length of the light used, and hence, shorter wavelengths in the soft x-ray region provide higher are soft x-ray lasers,6,7 laser-produced plasma (LPP) sources,8­11 and higher har- monics from laser heatedV (2.88 nm).1 Being on the higher energy side of the WW region, Ly-a and He-a nitrogen lines are more

  11. Efficient 13.5 nm extreme ultraviolet emission from Sn plasma irradiated by a long CO2 laser pulse

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    Efficient 13.5 nm extreme ultraviolet emission from Sn plasma irradiated by a long CO2 laser pulse-band 2% bandwidth conversion efficiency CE from a CO2 laser to 13.5 nm extreme ultraviolet EUV light was investigated for Sn plasma. It was found that high in-band CE, 2.6%, is consistently obtained using a CO2 laser

  12. Solid state laser technology for inertial confinement fusion: A collection of articles from ''Energy and Technology Review''

    SciTech Connect (OSTI)

    Not Available

    1988-06-01T23:59:59.000Z

    This paper contains reprinted articles that record several milestones in laser research at LLNL. ''Neodymium-Glass Laser Research and Development at LLNL'' recounts the history of the Laser Program and our work on neodymium-glass lasers. ''Nova Laser Technology'' describes the capabilities of the Nova laser and some of its uses. ''Building Nova: Industry Relations and Technology Transfer'' illustrates the Laboratory's commitment to work with US industry in technology development. ''Managing the Nova Laser Project'' details the organization and close monitoring of costs and schedules during the construction of the Nova laser facility. The article ''Optical Coatings by the Sol-Gel Process,'' describes our chemical process for making the damage-resistant, antireflective silica coatings used on the Nova laser glass. The technical challenges in designing and fabricating the KDP crystal arrays used to convert the light wave frequency of the Nova lasers are reported in ''Frequency Conversion of the Nova Laser.'' Two articles, ''Eliminating Platinum Inclusions in Laser Glass'' and ''Detecting Microscopic Inclusions in Optical Glass,'' describe how we dealt with the problem of damaging metal inclusions in the Nova laser glass. The last article reprinted here, ''Auxilliary Target Chamber for Nova,'' discusses the diversion of two of Nova's ten beamlines into a secondary chamber for the purpose of increasing our capacity for experimentation.

  13. Laser Doppler flowmetry signals to quantify effects of isoflurane on the peripheral cardiovascular system of healthy rats

    E-Print Network [OSTI]

    Chapeau-Blondeau, François

    Laser Doppler flowmetry signals to quantify effects of isoflurane on the peripheral cardiovascular; published online 27 December 2007 The optical Doppler effect resulting from interactions between laser light increases. These findings demonstrate the usefulness of the optical Doppler effect in physiological

  14. Lakeview Light and Power- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Lakeview Light and Power offers a commercial lighting rebate program. Rebates apply to the installation of energy efficient lighting retrofits in non-residential buildings. The rebate program is...

  15. Green Light Pulse Oximeter

    DOE Patents [OSTI]

    Scharf, John Edward (Oldsmar, FL)

    1998-11-03T23:59:59.000Z

    A reflectance pulse oximeter that determines oxygen saturation of hemoglobin using two sources of electromagnetic radiation in the green optical region, which provides the maximum reflectance pulsation spectrum. The use of green light allows placement of an oximetry probe at central body sites (e.g., wrist, thigh, abdomen, forehead, scalp, and back). Preferably, the two green light sources alternately emit light at 560 nm and 577 nm, respectively, which gives the biggest difference in hemoglobin extinction coefficients between deoxyhemoglobin, RHb, and oxyhemoglobin, HbO.sub.2.

  16. Light induced modulation instability of surfaces under intense illumination

    SciTech Connect (OSTI)

    Burlakov, V. M., E-mail: burlakov@maths.ox.ac.uk; Goriely, A. [Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG (United Kingdom)] [Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG (United Kingdom); Foulds, I. [4700 King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia)] [4700 King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia)

    2013-12-16T23:59:59.000Z

    We show that a flat surface of a polymer in rubber state illuminated with intense electromagnetic radiation is unstable with respect to periodic modulation. Initial periodic perturbation is amplified due to periodic thermal expansion of the material heated by radiation. Periodic heating is due to focusing-defocusing effects caused by the initial surface modulation. The surface modulation has a period longer than the excitation wavelength and does not require coherent light source. Therefore, it is not related to the well-known laser induced periodic structures on polymer surfaces but may contribute to their formation and to other phenomena of light-matter interaction.

  17. Quantum electrodynamics in a laser and the electron laser collision

    E-Print Network [OSTI]

    Qi-Ren Zhang

    2014-08-08T23:59:59.000Z

    Quantum electrodynamics in a laser is formulated, in which the electron-laser interaction is exactly considered, while the interaction of an electron and a single photon is considered by perturbation. The formulation is applied to the electron-laser collisions. The effect of coherence between photons in the laser is therefore fully considered in these collisions. The possibility of $\\gamma-$ray laser generation by use of this kind of collision is discussed.

  18. Laser Direct Drive: Scientific Advances,

    E-Print Network [OSTI]

    1 Laser Direct Drive: Scientific Advances, Technical Achievements, and the Road To Fusion Energy energy gain ( 40) at 1 MJ laser energy · Advanced lasers/ target designs overcome uniformity requirements, medical applications) Gas laser medium is easy to cool (tough to break gas) Nike single beam focus #12

  19. Coupled parallel waveguide semiconductor laser

    SciTech Connect (OSTI)

    Mukai, S.; Kapon, E.; Katz, J.; Lindsey, C.; Rav-Noy, Z.; Margalit, S.; Yariv, A.

    1984-03-01T23:59:59.000Z

    The operation of a new type of tunable laser, where the two separately controlled individual lasers are placed vertically in parallel, has been demonstrated. One of the cavities (''control'' cavity) is operated below threshold and assists the longitudinal mode selection and tuning of the other laser. With a minor modification, the same device can operate as an independent two-wavelength laser source.

  20. Ultra-fast laser system

    DOE Patents [OSTI]

    Dantus, Marcos; Lozovoy, Vadim V

    2014-01-21T23:59:59.000Z

    A laser system is provided which selectively excites Raman active vibrations in molecules. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and remote sensing.

  1. 1982 laser program annual report

    SciTech Connect (OSTI)

    Hendricks, C.D.; Grow, G.R. (eds.)

    1983-08-01T23:59:59.000Z

    This annual report covers the following eight sections: (1) laser program review, (2) laser systems and operation, (3) target design, (4) target fabrication, (5) fusion experiments program, (6) Zeus laser project, (7) laser research and development, and (8) energy applications. (MOW)

  2. LASER SAFETY POLICY Policy Statement

    E-Print Network [OSTI]

    Vertes, Akos

    LASER SAFETY POLICY Policy Statement Each department that acquires or operates lasers for use in the university's Laser Safety Manual. Reason for Policy/Purpose If improperly used or controlled, lasers can produce multiple injuries, including burns, blindness, and electrocution. This policy and the university

  3. High-power, very low threshold, GaImnP/AIGaInP visble-diode lasers l-l. B. Serreze, v. C. Chen, and R. 6. Waters

    E-Print Network [OSTI]

    lasers,and this cw threshold current density is believedto be, by far, the lowest. Low-power visibleHigh-power, very low threshold, GaImnP/AIGaInP visble-diode lasers l-l. B. Serreze, v. C. Chen light (665 nm) laser diodesemploying a strained-layer,single quantum well, graded index

  4. Laser Plasma Material Interactions

    SciTech Connect (OSTI)

    Schaaf, Peter; Carpene, Ettore [Universitaet Goettingen, II. Physikalisches Institut, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2004-12-01T23:59:59.000Z

    Surface treatment by means of pulsed laser beams in reactive atmospheres is an attractive technique to enhance the surface features, such as corrosion and wear resistance or the hardness. Many carbides and nitrides play an important role for technological applications, requiring the mentioned property improvements. Here we present a new promising fast, flexible and clean technique for a direct laser synthesis of carbide and nitride surface films by short pulsed laser irradiation in reactive atmospheres (e.g. methane, nitrogen). The corresponding material is treated by short intense laser pulses involving plasma formation just above the irradiated surface. Gas-Plasma-Surface reactions lead to a fast incorporation of the gas species into the material and subsequently the desired coating formation if the treatment parameters are chosen properly. A number of laser types have been used for that (Excimer Laser, Nd:YAG, Ti:sapphire, Free Electron Laser) and a number of different nitride and carbide films have been successfully produced. The mechanisms and some examples will be presented for Fe treated in nitrogen and Si irradiated in methane.

  5. Deterministic generation of non-classical states of light using photon blockade

    E-Print Network [OSTI]

    Andrei Faraon; Arka Majumdar; Jelena Vuckovic

    2009-08-28T23:59:59.000Z

    The generation of non-classical states of light via photon blockade with time-modulated input is analyzed. We show that improved single photon statistics can be obtained by adequately choosing the parameters of the driving laser pulses. An alternative method, where the system is driven via a continuous wave laser and the frequency of the dipole is controlled (e.g. electrically) at very fast timescales is presented.

  6. Generation of nonclassical states of light via photon blockade in optical nanocavities

    SciTech Connect (OSTI)

    Faraon, Andrei; Majumdar, Arka; Vuckovic, Jelena [E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305 (United States)

    2010-03-15T23:59:59.000Z

    The generation of nonclassical states of light via photon blockade with time-modulated input is analyzed. We show that improved single-photon statistics can be obtained by adequately choosing the parameters of the driving laser pulses. An alternative method, where the system is driven via a continuous-wave laser and the frequency of the dipole is controlled (e.g., electrically) at very fast time scales is presented.

  7. Dichroic beamsplitter for high energy laser diagnostics

    DOE Patents [OSTI]

    LaFortune, Kai N (Livermore, CA); Hurd, Randall (Tracy, CA); Fochs, Scott N (Livermore, CA); Rotter, Mark D (San Ramon, CA); Hackel, Lloyd (Livermore, CA)

    2011-08-30T23:59:59.000Z

    Wavefront control techniques are provided for the alignment and performance optimization of optical devices. A Shack-Hartmann wavefront sensor can be used to measure the wavefront distortion and a control system generates feedback error signal to optics inside the device to correct the wavefront. The system can be calibrated with a low-average-power probe laser. An optical element is provided to couple the optical device to a diagnostic/control package in a way that optimizes both the output power of the optical device and the coupling of the probe light into the diagnostics.

  8. Free electron laser with masked chicane

    DOE Patents [OSTI]

    Nguyen, Dinh C. (Los Alamos, NM); Carlsten, Bruce E. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A free electron laser (FEL) is provided with an accelerator for outputting electron beam pulses; a buncher for modulating each one of the electron beam pulses to form each pulse into longitudinally dispersed bunches of electrons; and a wiggler for generating coherent light from the longitudinally dispersed bunches of electrons. The electron beam buncher is a chicane having a mask for physically modulating the electron beam pulses to form a series of electron beam bunches for input to the wiggler. In a preferred embodiment, the mask is located in the chicane at a position where each electron beam pulse has a maximum dispersion.

  9. Optical penetration sensor for pulsed laser welding

    DOE Patents [OSTI]

    Essien, Marcelino (Albuquerque, NM); Keicher, David M. (Albuquerque, NM); Schlienger, M. Eric (Albuquerque, NM); Jellison, James L. (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

  10. Laser-assisted isotope separation of tritium

    DOE Patents [OSTI]

    Herman, Irving P. (Castro Valley, CA); Marling, Jack B. (Livermore, CA)

    1983-01-01T23:59:59.000Z

    Methods for laser-assisted isotope separation of tritium, using infrared multiple photon dissociation of tritium-bearing products in the gas phase. One such process involves the steps of (1) catalytic exchange of a deuterium-bearing molecule XYD with tritiated water DTO from sources such as a heavy water fission reactor, to produce the tritium-bearing working molecules XYT and (2) photoselective dissociation of XYT to form a tritium-rich product. By an analogous procedure, tritium is separated from tritium-bearing materials that contain predominately hydrogen such as a light water coolant from fission or fusion reactors.

  11. Sandia Energy - (Lighting and) Solid-State Lighting: Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the third and upcoming revolution (illumination). Topics cover the basics of light-emitting diode (LED) operation; a 200-year history of lighting technology; the importance of...

  12. Sandia National Laboratories: (Lighting and) Solid-State Lighting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the third and upcoming revolution (illumination). Topics cover the basics of light-emitting diode (LED) operation; a 200-year history of lighting technology; the importance of...

  13. Columbia Water and Light- HVAC and Lighting Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water and Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain...

  14. Reading Municipal Light Department- Business Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Reading Municipal Light Department (RMLD) offers incentives for non-residential customers to install energy efficient lights and sensors in existing facilities. In addition to rebates for the...

  15. Peninsula Light Company- Commercial Efficient Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Peninsula Light Company (PLC) offers a rebate program for commercial customers who wish to upgrade to energy efficient lighting. Participating customers must be served by PLC commercial service....

  16. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    duty Diesel Combustion Research Advanced Light-Duty Combustion Experiments Paul Miles Sandia National Laboratories Light-Duty Combustion Modeling Rolf Reitz University of Wisconsin...

  17. Lateral coupled cavity semiconductor laser

    SciTech Connect (OSTI)

    Salzman, J.; Lang, R.J.; Yariv, A.

    1987-06-16T23:59:59.000Z

    This patent describes a monolithic lateral-coupled laser array comprised of at least two stripe laser cavities of different effective length in close parallel proximity to each other for coupling of radiation. The longer of the stripe laser cavities is cleaved to provide separate parts, and the parts are cleaved coupled to form one strip laser cavity lateral coupled to the shorter laser cavity. A separate stripe contact varies the relative currents supplied to each laser cavity, including the cleaved coupled cavities of the longer of the stripe laser cavities.

  18. Electron Beam Collimation for the Next Generation Light Source

    SciTech Connect (OSTI)

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20T23:59:59.000Z

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  19. Coherent flash of light emitted by a cold atomic cloud

    SciTech Connect (OSTI)

    Chalony, M. [Institut Non Lineaire de Nice, Universite de Nice Sophia-Antipolis, CNRS, F-06560 Valbonne (France); Pierrat, R. [Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, 10 rue Vauquelin, F-75005 Paris (France); Delande, D. [Laboratoire Kastler Brossel, UPMC-Paris 6, ENS, CNRS, 4 Place Jussieu, F-75005 Paris (France); Wilkowski, D. [Institut Non Lineaire de Nice, Universite de Nice Sophia-Antipolis, CNRS, F-06560 Valbonne (France); Centre for Quantum Technologies, National University of Singapore, 117543 Singapore (Singapore)

    2011-07-15T23:59:59.000Z

    When a resonant laser sent on an optically thick cold atomic cloud is abruptly switched off, a coherent flash of light is emitted in the forward direction. This transient phenomenon is observed due to the highly resonant character of the atomic scatterers. We analyze quantitatively its temporal properties and show very good agreement with theoretical predictions. Based on complementary experiments, the phase of the coherent field is reconstructed without interferometric tools.

  20. Effects of optical feedback in a birefringence-Zeeman dual frequency laser at high optical feedback levels

    SciTech Connect (OSTI)

    Mao Wei; Zhang Shulian

    2007-04-20T23:59:59.000Z

    Optical feedback effects are studied in a birefringence-Zeeman dual frequency laser at high optical feedback levels. The intensity modulation features of the two orthogonally polarized lights are investigated in both isotropic optical feedback (IOF) and polarized optical feedback (POF). In IOF, the intensities of both beams are modulated simultaneously, and four zones, i.e., the e-light zone, the o-light and e-light zone, the o-light zone, and the no-light zone, are formed in a period corresponding to a half laser wavelength displacement of the feedback mirror. In POF, the two orthogonally polarized lights will oscillate alternately. Strong mode competition can be observed, and it affects the phase difference between the two beams greatly. The theoretical analysis is presented, which is in good agreement with the experimental results. The potential use of the experimental results is also discussed.