Sample records for laser isotope separation

  1. Laser isotope separation

    DOE Patents [OSTI]

    Robinson, C. Paul (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Cotter, Theodore P. (Munich, DE); Boyer, Keith (Los Alamos, NM); Greiner, Norman R. (Los Alamos, NM)

    1988-01-01T23:59:59.000Z

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  2. Isotope separation by laser means

    DOE Patents [OSTI]

    Robinson, C. Paul (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Cotter, Theodore P. (Los Alamos, NM); Greiner, Norman R. (Los Alamos, NM); Boyer, Keith (Los Alamos, NM)

    1982-06-15T23:59:59.000Z

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  3. Atomic-vapor-laser isotope separation

    SciTech Connect (OSTI)

    Davis, J.I.

    1982-10-01T23:59:59.000Z

    This paper gives a brief history of the scientific considerations leading to the development of laser isotope separation (LIS) processes. The close relationship of LIS to the broader field of laser-induced chemical processes is evaluated in terms of physical criteria to achieve an efficient production process. Atomic-vapor LIS processes under development at Livermore are reviwed. 8 figures.

  4. Laser isotope separation by multiple photon absorption

    DOE Patents [OSTI]

    Robinson, C. Paul (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Lyman, John L. (Los Alamos, NM); Aldridge, III, Jack P. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  5. Laser isotope separation by multiple photon absorption

    DOE Patents [OSTI]

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07T23:59:59.000Z

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  6. Laser isotope separation of erbium and other isotopes

    DOE Patents [OSTI]

    Haynam, Christopher A. (3035 Ferdale Ct., Pleasanton, CA 94566); Worden, Earl F. (117 Vereda del Ciervo, Diablo, CA 94528)

    1995-01-01T23:59:59.000Z

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of .sup.167 Er. The hyperfine structure of .sup.167 Er was used to find two three-step photoionization pathways having a common upper energy level.

  7. Laser isotope separation of erbium and other isotopes

    DOE Patents [OSTI]

    Haynam, C.A.; Worden, E.F.

    1995-08-22T23:59:59.000Z

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of {sup 167}Er. The hyperfine structure of {sup 167}Er was used to find two three-step photoionization pathways having a common upper energy level. 3 figs.

  8. Laser-assisted isotope separation of tritium

    DOE Patents [OSTI]

    Herman, Irving P. (Castro Valley, CA); Marling, Jack B. (Livermore, CA)

    1983-01-01T23:59:59.000Z

    Methods for laser-assisted isotope separation of tritium, using infrared multiple photon dissociation of tritium-bearing products in the gas phase. One such process involves the steps of (1) catalytic exchange of a deuterium-bearing molecule XYD with tritiated water DTO from sources such as a heavy water fission reactor, to produce the tritium-bearing working molecules XYT and (2) photoselective dissociation of XYT to form a tritium-rich product. By an analogous procedure, tritium is separated from tritium-bearing materials that contain predominately hydrogen such as a light water coolant from fission or fusion reactors.

  9. A Mass Spectrometry Study of Isotope Separation in the Laser Plume

    E-Print Network [OSTI]

    Suen, Timothy Wu

    2012-01-01T23:59:59.000Z

    Zhang, and J. A. Nees, “Isotope Enrichment in Laser-AblationA. Naik, “Comment on “Isotope Enrichment in Laser-AblationP. Pronko, “Isotope separation and enrichment by ultrafast

  10. Atomic vapor laser isotope separation of lead-210 isotope

    DOE Patents [OSTI]

    Scheibner, K.F.; Haynam, C.A.; Johnson, M.A.; Worden, E.F.

    1999-08-31T23:59:59.000Z

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207. 5 figs.

  11. Atomic vapor laser isotope separation of lead-210 isotope

    DOE Patents [OSTI]

    Scheibner, Karl F. (Tracy, CA); Haynam, Christopher A. (Pleasanton, CA); Johnson, Michael A. (Pleasanton, CA); Worden, Earl F. (Diablo, CA)

    1999-01-01T23:59:59.000Z

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207.

  12. Photochemical isotope separation

    DOE Patents [OSTI]

    Robinson, C. Paul (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Cotter, Theodore P. (Los Alamos, NM); Greiner, Norman R. (Los Alamos, NM); Boyer, Keith (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  13. Photochemical isotope separation

    DOE Patents [OSTI]

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28T23:59:59.000Z

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  14. Resonance ionization laser ion sources for on-line isotope separators (invited)

    SciTech Connect (OSTI)

    Marsh, B. A. [EN Department, CERN, 1211 Geneva (Switzerland)] [EN Department, CERN, 1211 Geneva (Switzerland)

    2014-02-15T23:59:59.000Z

    A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented.

  15. Innovative lasers for uranium isotope separation. Final report, September 1, 1989--April 1, 1993

    SciTech Connect (OSTI)

    Brake, M.L.; Gilgenbach, R.M.

    1993-07-01T23:59:59.000Z

    Copper vapor laser have important applications to uranium atomic vapor laser isotope separation (AVLIS). We have investigated two innovative methods of exciting/pumping copper vapor lasers which have the potential to improve the efficiency and scaling of large laser systems used in uranium isotope separation. Experimental research has focused on the laser discharge kinetics of (1) microwave, and (2) electron beam excitation/pumping of large-volume copper vapor lasers. Microwave resonant cavity produced copper vapor plasmas at 2.45 GHz, have been investigated in three separate experimental configurations. The first examined the application of CW (0-500W) power and was found to be an excellent method for producing an atomic copper vapor from copper chloride. The second used a pulsed (5kW, 0.5--5 kHz) signal superimposed on the CW signal to attempt to produce vaporization, dissociation and excitation to the laser states. Enhanced emission of the optical radiation was observed but power densities were found to be too low to achieve lasing. In a third experiment we attempted to increase the applied power by using a high power magnetron to produce 100 kW of pulsed power. Unfortunately, difficulties with the magnetron power supply were encountered leaving inconclusive results. Detailed modeling of the electromagnetics of the system were found to match the diagnostics results well. An electron beam pumped copper vapor system (350 kV, 1.0 kA, 300 ns) was investigated in three separate copper chloride heating systems, external chamber, externally heated chamber and an internally heated chamber. Since atomic copper spectral lines were not observed, it is assumed that a single pulse accelerator is not capable of both dissociating the copper chloride and exciting atomic copper and a repetitively pulsed electron beam generator is needed.

  16. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, Frederick T. (Livermore, CA)

    1981-01-01T23:59:59.000Z

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  17. Isotope separation of {sup 17}O by photodissociation of ozone with near-infrared laser irradiation

    SciTech Connect (OSTI)

    Hayashida, Shigeru; Kambe, Takashi; Sato, Tetsuya; Igarashi, Takehiro [Tsukuba Laboratories, Taiyo Nippon Sanso Corporation, 10 Okubo Tsukuba-shi, Ibaraki 300-2611 (Japan); Kuze, Hiroaki [Center for Environmental Remote Sensing, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522 (Japan)

    2012-04-01T23:59:59.000Z

    Oxygen-17 is a stable oxygen isotope useful for various diagnostics in both engineering and medical applications. Enrichment of {sup 17}O, however, has been very costly due to the lack of appropriate methods that enable efficient production of {sup 17}O on an industrial level. In this paper, we report the first {sup 17}O-selective photodissociation of ozone at a relatively high pressure, which has been achieved by irradiating a gas mixture of 10 vol% O{sub 3}-90 vol% CF{sub 4} with narrowband laser. The experiment was conducted on a pilot-plant scale. A total laser power of 1.6 W was generated by external-cavity diode lasers with all the laser wavelengths fixed at the peak of an absorption line of {sup 16}O{sup 16}O{sup 17}O around 1 {mu}m. The beams were introduced into a 25 -m long photoreaction cell under the sealed-off condition with a total pressure of 20 kPa. Lower cell temperature reduced the background decomposition of ozone, and at the temperature of 158 K, an {sup 17}O enrichment factor of 2.2 was attained.

  18. Method for laser induced isotope enrichment

    DOE Patents [OSTI]

    Pronko, Peter P.; Vanrompay, Paul A.; Zhang, Zhiyu

    2004-09-07T23:59:59.000Z

    Methods for separating isotopes or chemical species of an element and causing enrichment of a desired isotope or chemical species of an element utilizing laser ablation plasmas to modify or fabricate a material containing such isotopes or chemical species are provided. This invention may be used for a wide variety of materials which contain elements having different isotopes or chemical species.

  19. Method of separating boron isotopes

    DOE Patents [OSTI]

    Jensen, Reed J. (Los Alamos, NM); Thorne, James M. (Provo, UT); Cluff, Coran L. (Provo, UT); Hayes, John K. (Salt Lake City, UT)

    1984-01-01T23:59:59.000Z

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  20. Method of separating boron isotopes

    DOE Patents [OSTI]

    Jensen, R.J.; Thorne, J.M.; Cluff, C.L.

    1981-01-23T23:59:59.000Z

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)-dichloroborane as the feed material. The photolysis can readily by achieved with CO/sub 2/ laser radiation and using fluences significantly below those required to dissociate BCl/sub 3/.

  1. Hybrid isotope separation scheme

    DOE Patents [OSTI]

    Maya, J.

    1991-06-18T23:59:59.000Z

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.

  2. Hybrid isotope separation scheme

    DOE Patents [OSTI]

    Maya, Jakob (Brookline, MA)

    1991-01-01T23:59:59.000Z

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

  3. Hydrogen isotope separation

    DOE Patents [OSTI]

    Bartlit, John R. (Los Alamos, NM); Denton, William H. (Abingdon, GB3); Sherman, Robert H. (Los Alamos, NM)

    1982-01-01T23:59:59.000Z

    A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

  4. Apparatus and process for separating hydrogen isotopes

    DOE Patents [OSTI]

    Heung, Leung K; Sessions, Henry T; Xiao, Xin

    2013-06-25T23:59:59.000Z

    The apparatus and process for separating hydrogen isotopes is provided using dual columns, each column having an opposite hydrogen isotopic effect such that when a hydrogen isotope mixture feedstock is cycled between the two respective columns, two different hydrogen isotopes are separated from the feedstock.

  5. Laser Isotope Enrichment for Medical and Industrial Applications

    SciTech Connect (OSTI)

    Leonard Bond

    2006-07-01T23:59:59.000Z

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation repression. In this scheme a gas, of the selected isotopes for enrichment, is irradiated with a laser at a particular wavelength that would excite only one of the isotopes. The entire gas is subject to low temperatures sufficient to cause condensation on a cold surface. Those molecules in the gas that the laser excited are not as likely to condense as are the unexcited molecules. Hence the gas drawn out of the system will be enriched in the isotope that was excited by the laser. We have evaluated the relative energy required in this process if applied on a commercial scale. We estimate the energy required for laser isotope enrichment is about 20% of that required in centrifuge separations, and 2% of that required by use of "calutrons".

  6. Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOE Patents [OSTI]

    Horton, J.A.; Hayden, H.W. Jr.

    1995-05-30T23:59:59.000Z

    An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

  7. Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOE Patents [OSTI]

    Horton, James A. (Livermore, CA); Hayden, Jr., Howard W. (Oakridge, TN)

    1995-01-01T23:59:59.000Z

    An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

  8. Electrochemical Isotope Effect and Lithium Isotope Separation Jay R. Black,

    E-Print Network [OSTI]

    Mcdonough, William F.

    results showing a large lithium isotope separation due to electrodeposition. The fractionation is tunable lithium were plated from solutions of 1 M LiClO4 in propylene carbonate (PC) on planar nickel electrodes

  9. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site

    SciTech Connect (OSTI)

    Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

    1991-09-01T23:59:59.000Z

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3.

  10. EIS-0136: Special Isotope Separation Project Idaho National Engineering Laboratory, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to provide environmental input to the decision to construct the Special Isotope Separation Project which would allow for the processing of existing fuel-grade plutonium into weapons-grade plutonium using the Atomic Laser Isotope Separation process.

  11. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

  12. Apparatus for separating and recovering hydrogen isotopes

    DOE Patents [OSTI]

    Heung, Leung K. (Aiken, SC)

    1994-01-01T23:59:59.000Z

    An apparatus for recovering hydrogen and separating its isotopes. The apparatus includes a housing bearing at least a fluid inlet and a fluid outlet. A baffle is disposed within the housing, attached thereto by a bracket. A hollow conduit is coiled about the baffle, in spaced relation to the baffle and the housing. The coiled conduit is at least partially filled with a hydride. The hydride can be heated to a high temperature and cooled to a low temperature quickly by circulating a heat transfer fluid in the housing. The spacing between the baffle and the housing maximizes the heat exchange rate between the fluid in the housing and the hydride in the conduit. The apparatus can be used to recover hydrogen isotopes (protium, deuterium and tritium) from gaseous mixtures, or to separate hydrogen isotopes from each other.

  13. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

    1990-01-01T23:59:59.000Z

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  14. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

    1991-01-01T23:59:59.000Z

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  15. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, R.J.; Cecchi, J.L.

    1991-08-20T23:59:59.000Z

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.

  16. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    SciTech Connect (OSTI)

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H. (ed.)

    1991-09-01T23:59:59.000Z

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

  17. Mantle Helium And Carbon Isotopes In Separation Creek Geothermal...

    Open Energy Info (EERE)

    Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State...

  18. Magnetically activated and guided isotope separation This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Raizen, Mark G.

    The world relies today on enriched isotopes for medicine, basic science and energy, and the need will only excitation, and similarly requires high-power lasers. A lower power laser isotope enrichment (LIE) methodMagnetically activated and guided isotope separation This article has been downloaded from

  19. Novel hybrid isotope separation scheme and apparatus

    DOE Patents [OSTI]

    Maya, Jakob (Brookline, MA)

    1991-01-01T23:59:59.000Z

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means.

  20. Novel hybrid isotope separation scheme and apparatus

    DOE Patents [OSTI]

    Maya, J.

    1991-06-18T23:59:59.000Z

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means. 3 figures.

  1. Isotopic Effect on Ion Mobility and Separation of Isotopomers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effect on Ion Mobility and Separation of Isotopomers by High-Field Ion Mobility Spectrometry . Isotopic Effect on Ion Mobility and Separation of Isotopomers by High-Field Ion...

  2. Isotope separation by selective photodissociation of glyoxal

    DOE Patents [OSTI]

    Marling, John B. (Pleasanton, CA)

    1976-01-01T23:59:59.000Z

    Dissociation products, mainly formaldehyde and carbon monoxide, enriched in a desired isotope of carbon, oxygen, or hydrogen are obtained by the selective photodissociation of glyoxal wherein glyoxal is subjected to electromagnetic radiation of a predetermined wavelength such that photon absorption excites and induces dissociation of only those molecules of glyoxal containing the desired isotope.

  3. Standard practice for the ion exchange separation of uranium and plutonium prior to isotopic analysis

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2008-01-01T23:59:59.000Z

    Standard practice for the ion exchange separation of uranium and plutonium prior to isotopic analysis

  4. Separation of the isotopes of boron by chemical exchange reactions

    DOE Patents [OSTI]

    McCandless, F.P.; Herbst, R.S.

    1995-05-30T23:59:59.000Z

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  5. Optically pumped isotopic ammonia laser system

    DOE Patents [OSTI]

    Buchwald, Melvin I. (Santa Fe, NM); Jones, Claude R. (Los Alamos, NM); Nelson, Leonard Y. (Seattle, WA)

    1982-01-01T23:59:59.000Z

    An optically pumped isotopic ammonia laser system which is capable of producing a plurality of frequencies in the middle infrared spectral region. Two optical pumping mechanisms are disclosed, i.e., pumping on R(J) and lasing on P(J) in response to enhancement of rotational cascade lasing including stimulated Raman effects, and, pumping on R(J) and lasing on P(J+2). The disclosed apparatus for optical pumping include a hole coupled cavity and a grating coupled cavity.

  6. Advancement of isotope separation for the production of reference standards

    SciTech Connect (OSTI)

    Jared Horkley; Christopher McGrath; Andrew Edwards; Gaven Knighton; Kevin Carney; Jacob Davies; James Sommers; Jeffrey Giglio

    2012-03-01T23:59:59.000Z

    Idaho National Laboratory (INL) operates a mass separator that is currently producing high purity isotopes for use as internal standards for high precision isotope dilution mass spectrometry (IDMS). In 2008, INL began the revival of the vintage 1970’s era instrument. Advancements thus far include the successful upgrading and development of system components such as the vacuum system, power supplies, ion-producing components, and beam detection equipment. Progress has been made in the separation and collection of isotopic species including those of Ar, Kr, Xe, Sr, and Ba. Particular focuses on ion source improvements and developments have proven successful with demonstrated output beam currents of over 10 micro-amps 138Ba and 350nA 134Ba from a natural abundance source charge (approximately 2.4 percent 134Ba). In order to increase production and collection of relatively high quantities (mg levels) of pure isotopes, several advancements have been made in ion source designs, source material introduction, and beam detection and collection. These advancements and future developments will be presented.

  7. Development of Halide and Oxy-Halides for Isotopic Separations

    SciTech Connect (OSTI)

    Leigh R. Martin; Aaron T. Johnson; Jana Pfeiffer; Martha R. Finck

    2014-10-01T23:59:59.000Z

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  8. NOVEL CONCEPTS FOR ISOTOPIC SEPARATION OF 3HE/4HE

    SciTech Connect (OSTI)

    Roy, L.; Nigg, H.; Watson, H.

    2012-09-04T23:59:59.000Z

    The research outlined below established theoretical proof-of-concept using ab initio calculations that {sup 3}He can be separated from {sup 4}He by taking advantage of weak van der Waals interactions with other higher molecular weight rare gases such as xenon. To the best of our knowledge, this is the only suggested method that exploits the physical differences of the isotopes using a chemical interaction.

  9. Implications of Plutonium isotopic separation on closed fuel cycles and repository design

    SciTech Connect (OSTI)

    Forsberg, C. [Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 20129 (United States)

    2013-07-01T23:59:59.000Z

    Advances in laser enrichment may enable relatively low-cost plutonium isotopic separation. This would have large impacts on LWR closed fuel cycles and waste management. If Pu-240 is removed before recycling plutonium as mixed oxide (MOX) fuel, it would dramatically reduce the buildup of higher plutonium isotopes, Americium, and Curium. Pu-240 is a fertile material and thus can be replaced by U-238. Eliminating the higher plutonium isotopes in MOX fuel increases the Doppler feedback, simplifies reactor control, and allows infinite recycle of MOX plutonium in LWRs. Eliminating fertile Pu-240 and Pu-242 reduces the plutonium content in MOX fuel and simplifies fabrication. Reducing production of Pu-241 reduces production of Am-241 - the primary heat generator in spent nuclear fuels after several decades. Reducing heat generating Am-241 would reduce repository cost and waste toxicity. Avoiding Am- 241 avoids its decay product Np-237, a nuclide that partly controls long-term oxidizing repository performance. Most of these benefits also apply to LWR plutonium recycled into fast reactors. There are benefits for plutonium isotopic separation in fast reactor fuel cycles (particularly removal of Pu-242) but the benefits are less. (author)

  10. Methods for separating medical isotopes using ionic liquids

    DOE Patents [OSTI]

    Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng

    2014-10-21T23:59:59.000Z

    A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).

  11. Nuclear Moments and Differences in Mean Square Charge Radii of Short-Lived Neon Isotopes by Collinear Laser Spectroscopy

    E-Print Network [OSTI]

    Geithner, R W

    2002-01-01T23:59:59.000Z

    The nuclear moments and charge radii of short-lived neon isotopes were measured by the use of collinear laser spectroscopy at the on-line mass separator ISOLDE at CERN. After a general introduction the semiclassical theory of atomic spectra is given and the relevant properties are calculated for neon. The atomic physics section is followed by a description of the experimental setup of the collinear laser spectroscopy experiment at ISOLDE. From the mass separator an isotopically clean ion beam with a kinetic energy of 60 keV is delivered to the experiments. In collinear laser spectroscopy the incoming ion beam from the mass separator is superimposed to a single frequency cw laser beam. The frequency of the atomic transition $\

  12. Separated isotopes: vital tools for science and medicine

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    Deliberations and conclusions of a Workshop on Stable Isotopes and Derived Radioisotopes organized by the Subcommittee on Nuclear and Radiochemistry of the National Research Council's Committee on Chemical Sciences at the request of the Department of Energy (DOE) are summarized. The workshop was jointly supported by the National Institutes of Health and DOE's Office of Basic Energy Sciences. An overview with three recommendations resulting from the Workshop is followed by reports of the four Workshop panels. Background papers were prepared by individuals on the Steering Committee and made available to all participants prior to the Workshop. They are reproduced as Appendixes 3 to 8. Short reports on alternate separation techniques were presented at the Workshop and are reproduced in Appendixes 9 to 11.

  13. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOE Patents [OSTI]

    Rutherford, W.M.

    1985-12-04T23:59:59.000Z

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtained in the prior art.

  14. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    SciTech Connect (OSTI)

    Isselhardt, B H

    2011-09-06T23:59:59.000Z

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of {sup 235}U/{sup 238}U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.

  15. Analysis of gas centrifuge cascade for separation of multicomponent isotopes and optimal feed position

    SciTech Connect (OSTI)

    Chuntong Ying; Hongjiang Wu; Mingsheng Zhou; Yuguang Nie; Guangjun Liu [Tsinghua Univ., Beijing (China)

    1997-10-01T23:59:59.000Z

    Analysis of the concentration distribution in a gas centrifuge cascade for separation of multicomponent isotope mixtures is different from that in a cascade for separation of two-component mixtures. This paper presents the governing equations for a multicomponent isotope separation cascade. Numerically predicted separation factors for the gas centrifuge cascade agree well with the experimental data. A theoretical optimal feed position is derived for a short square cascade for a two-component mixture in a close-separation case. The optimal feed position for a gas centrifuge cascade for separation of multicomponent mixture is discussed.

  16. Packed bed reactor for photochemical sup 196 Hg isotope separation

    SciTech Connect (OSTI)

    Grossman, M.W.; Speer, R.

    1992-03-03T23:59:59.000Z

    This patent describes a photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury comprising a reactor cell and a monoisotopic light source It comprises: a plurality of transparent, straight reactor cell tubes disposed axially within the internal volume of the reactor cell to increase the surface area thereof for production deposition.

  17. Isotopically Enriched Films and Nanostructures by Ultrafast Pulsed Laser Deposition

    SciTech Connect (OSTI)

    Peter Pronko

    2004-12-13T23:59:59.000Z

    This project involved a systematic study to apply newly discovered isotopic enrichment effects in laser ablation plumes to the fabrication of isotopically engineered thin films, superlattices, and nanostructures. The approach to this program involved using ultrafast lasers as a method for generating ablated plasmas that have preferentially structured isotopic content in the body of the ablation plasma plumes. In examining these results we have attempted to interpret the observations in terms of a plasma centrifuge process that is driven by the internal electro-magnetic fields of the plasma itself. The research plan involved studying the following phenomena in regard to the ablation plume and the isotopic mass distribution within it: (1) Test basic equations of steady state centrifugal motion in the ablation plasma. (2) Investigate angular distribution of ions in the ablation plasmas. (3) Examine interactions of plasma ions with self-generated magnetic fields. (3) Investigate ion to neutral ratios in the ablation plasmas. (5) Test concepts of plasma pumping. (6) Fabricate isotopically enriched nanostructures.

  18. Delayed neutron studies of separated isotopes of Br, Rb, I, and Cs

    E-Print Network [OSTI]

    Reeder, R L; Wright, J F

    1976-01-01T23:59:59.000Z

    Discusses delayed neutron studies of separated isotopes of Br, Rb, I, and Cs are currently in progress at the Spectrometer for On-Line Analysis of Radionuclides (SOLAR) facility operated by Battelle, Pacific Northwest Laboratories. (2 refs).

  19. Phase-locked semiconductor laser array with separate contacts

    SciTech Connect (OSTI)

    Katz, J.; Kapon, E.; Lindsey, C.; Margalit, S.; Shreter, U.; Yariv, A.

    1983-09-15T23:59:59.000Z

    A new monolithic phase-locked semiconductor laser array has been fabricated. Employing two-level metallization, each of the eight elements in the array has a separate contact, thus making it possible to compensate for device nonuniformities and control the near-field and far-field patterns. Threshold currents are approximately 60 mA for each 5-..mu..m-wide laser in the array. Phase locking has been observed via the narrowing of the far-field pattern. Experimental results are compared to those obtained from the same arrays operated with all the lasers connected in parallel.

  20. Isotope Enrichment Detection by Laser Ablation - Dual Tunable Diode Laser Absorption Spectrometry

    SciTech Connect (OSTI)

    Anheier, Norman C.; Bushaw, Bruce A.

    2009-07-01T23:59:59.000Z

    The rapid global expansion of nuclear energy is motivating the expedited development of new safeguards technology to mitigate potential proliferation threats arising from monitoring gaps within the uranium enrichment process. Current onsite enrichment level monitoring methods are limited by poor sensitivity and accuracy performance. Offsite analysis has better performance, but this approach requires onsite hand sampling followed by time-consuming and costly post analysis. These limitations make it extremely difficult to implement comprehensive safeguards accounting measures that can effectively counter enrichment facility misuse. In addition, uranium enrichment by modern centrifugation leads to a significant proliferation threat, since the centrifuge cascades can quickly produce a significant quantity of highly enriched uranium (HEU). The Pacific Northwest National Laboratory is developing an engineered safeguards approach having continuous aerosol particulate collection and uranium isotope analysis to provide timely detection of HEU production in a low enriched uranium facility. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy, to characterize the 235U/238U isotopic ratio by subtle differences in atomic absorption wavelengths arising from differences in each isotope’s nuclear mass, volume, and spin (hyperfine structure for 235U). Environmental sampling media is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes a 10 to 20-µm sample diameter. The ejected plasma forms a plume of atomic vapor. A plume for a sample containing uranium has atoms of the 235U and 238U isotopes present. Tunable diode lasers are directed through the plume to selectively excite each isotope and their presence is detected by monitoring absorbance signals on a shot-to-shot basis. Single-shot detection sensitivity approaching the femtogram range and abundance uncertainty less than 10% have been demonstrated with measurements on surrogate materials. In this paper we present measurement results on samples containing background materials (e.g., dust, minerals, soils) laced with micron-sized target particles having isotopic ratios ranging from 1 to 50%.

  1. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    SciTech Connect (OSTI)

    Zisman, M.S.

    1982-01-01T23:59:59.000Z

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes.

  2. Categorical Exclusion 4577: Lithium Isotope Separation & Enrichment Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . CForn1Categorical8/2012Lithium Isotope

  3. High precision analysis of all four stable isotopes of sulfur S) at nanomole levels using a laser fluorination

    E-Print Network [OSTI]

    Long, Bernard

    compositions. This methodology increases the spatial resolution of the laser ablation in situ analysis) at nanomole levels using a laser fluorination isotope-ratio-monitoring gas chromatography­mass spectrometry.V. All rights reserved. Keywords: S-33; S-36; Sulfur isotope; Laser; Isotope analysis; Continuous flow

  4. Isotope Ratio Analysis on Micron-Sized Particles in Complex Matrices by Laser Ablation – Absorption Ratio Spectrometry

    SciTech Connect (OSTI)

    Bushaw, Bruce A.; Anheier, Norman C.

    2009-12-01T23:59:59.000Z

    Laser ablation has been combined with dual tunable diode laser absorption spectrometry to measure 152Gd:160Gd isotope ratios in micron-size particles. The diode lasers are tuned to specific isotopes in two different atomic transitions at 405.9 nm (152Gd) and 413.4 nm (160Gd) and directed collinearly through the laser ablation plume, separated on a diffraction grating, and detected with photodiodes to monitor transient absorption signals on a shot-by-shot basis. The method has been characterized first using Gd metal foil and then with particles of GdCl3?xH20 as binary and ternary mixtures with 152Gd:160Gd isotope ratios ranging from 0.01 to 0.43. These particulate mixtures have been diluted with Columbia River sediment powder (SRM 4350B) to simulate environmental samples and we show the method is capable of detecting a few highly enriched particles in the presence of > 100-fold excess of low-enrichment particles, even when the Gd-bearing particles are a minor component (0.08%) in the SRM powder and widely dispersed (1178 particles detected in 800 000 ablation laser shots). The implications for monitoring 235U:238U enrichment ratios, as related to the nuclear industry, are discussed

  5. Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    SciTech Connect (OSTI)

    Watkins, J.M.; DePaolo, D.J.; Ryerson, F.J.; Peterson, B.

    2011-03-01T23:59:59.000Z

    Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl{sub 2}Si{sub 2}O{sub 8}; denoted AN), albite (NaAlSi{sub 3}O{sub 8}; denoted AB), and diopside (CaMgSi{sub 2}O{sub 6}; denoted DI) were held at 1450°C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB–AN experiment, D{sub Ca}/D{sub Si} ~ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D{sub Ca}/D{sub Si} ~ 1. In the AB–DI experiment, D{sub Ca}/D{sub Si} ~ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB–AN experiment. In the AB–DI experiment, D{sub Mg}/D{sub Si} ~ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity—the ratio of the diffusivity of the cation (D{sub Ca}) to the diffusivity of silicon (D{sub Si}). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D{sub cation}/D{sub Si}. Cations diffusing in aqueous solutions display a similar relationship between isotopic separation efficiency and D{sub cation} =D{sub H 2 O} , although the efficiencies are smaller than in silicate liquids. Our empirical relationship provides a tool for predicting the magnitude of diffusive isotopic effects in many geologic environments and a basis for a more comprehensive theory of isotope separation in liquid solutions. We present a conceptual model for the relationship between diffusivity and liquid structure that is consistent with available data.

  6. Isotope Enrichment Detection by Laser Ablation - Laser Absorption Spectrometry: Automated Environmental Sampling and Laser-Based Analysis for HEU Detection

    SciTech Connect (OSTI)

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-01-01T23:59:59.000Z

    The global expansion of nuclear power, and consequently the uranium enrichment industry, requires the development of new safeguards technology to mitigate proliferation risks. Current enrichment monitoring instruments exist that provide only yes/no detection of highly enriched uranium (HEU) production. More accurate accountancy measurements are typically restricted to gamma-ray and weight measurements taken in cylinder storage yards. Analysis of environmental and cylinder content samples have much higher effectiveness, but this approach requires onsite sampling, shipping, and time-consuming laboratory analysis and reporting. Given that large modern gaseous centrifuge enrichment plants (GCEPs) can quickly produce a significant quantity (SQ ) of HEU, these limitations in verification suggest the need for more timely detection of potential facility misuse. The Pacific Northwest National Laboratory (PNNL) is developing an unattended safeguards instrument concept, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely analysis of enrichment levels within low enriched uranium facilities. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy to characterize the uranium isotopic ratio through subtle differences in atomic absorption wavelengths. Environmental sampling (ES) media from an integrated aerosol collector is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes material from a 10 to 20-µm diameter spot of the surface of the sampling media. The plume of ejected material begins as high-temperature plasma that yields ions and atoms, as well as molecules and molecular ions. We concentrate on the plume of atomic vapor that remains after the plasma has expanded and then cooled by the surrounding cover gas. Tunable diode lasers are directed through this plume and each isotope is detected by monitoring absorbance signals on a shot-to-shot basis. The media is translated by a micron resolution scanning system, allowing the isotope analysis to cover the entire sample surface. We also report, to the best of our knowledge, the first demonstration of laser-based isotopic measurements on individual micron-sized particles that are minor target components in a much larger heterogeneous mix of ‘background’ particles. This composition is consistent with swipe and environmental aerosol samples typically collected for safeguards ES purposes. Single-shot detection sensitivity approaching the femtogram range and relative isotope abundance uncertainty better than 10% has been demonstrated using gadolinium isotopes as surrogate materials.

  7. RAPID COMMUNICATION / COMMUNICATION RAPIDE Validation of Sr isotopes in otoliths by laser

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    RAPID COMMUNICATION / COMMUNICATION RAPIDE Validation of Sr isotopes in otoliths by laser ablation à plasma inductif avec multicollecteur après ablation au laser (LA-MC-ICPMS) et par spectrométrie de ratios using laser abla- tion multicollector inductively coupled plasma mass spectrometry (LA

  8. NATIONAL USES AND NEEDS FOR SEPARATED STABLE ISOTOPES IN PHYSICS, CHEMISTRY, AND GEOSCIENCE RESEARCH

    E-Print Network [OSTI]

    Zisman, M.S.

    2010-01-01T23:59:59.000Z

    of purchasing a low-enrichment isotope and having it furtherfour main areas: of isotopes, marginal enrichment and a highthe allowing isotope much interest enrichment into play, in

  9. RAPID SEPARATION METHOD FOR 237NP AND PU ISOTOPES IN LARGE SOIL SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.; Culligan, B.; Noyes, G.

    2010-07-26T23:59:59.000Z

    A new rapid method for the determination of {sup 237}Np and Pu isotopes in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for large soil samples. The new soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using this two simple precipitations with high chemical recoveries and effective removal of interferences. Vacuum box technology and rapid flow rates are used to reduce analytical time.

  10. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOE Patents [OSTI]

    Yeung, E.S.; Chang, Y.C.

    1999-06-29T23:59:59.000Z

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  11. ISOTOPES

    E-Print Network [OSTI]

    Lederer, C. Michael

    2013-01-01T23:59:59.000Z

    rare (0.017%) isotope 36s at enrichments of 70% at a price32). The enrichment of carbon isotopes by C02-carbamatesulfur isotopes by S02-NaHS03 exchange and the enrichment of

  12. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    SciTech Connect (OSTI)

    Ma, Y., E-mail: yjma@ciae.ac.cn; Cui, B.; Ma, R.; Tang, B.; Chen, L.; Huang, Q.; Jiang, W. [China Institute of Atomic Energy, Beijing 102413 (China)] [China Institute of Atomic Energy, Beijing 102413 (China)

    2014-02-15T23:59:59.000Z

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 ?A], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 ?A], the beam profile scanner will be installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.

  13. Paired, separately controlled, and coupled or uncoupled stripe geometry semiconductor lasers

    SciTech Connect (OSTI)

    Mukai, S.; Kapon, E.; Katz, J.; Margalit, S.; Yariv, A.

    1986-08-19T23:59:59.000Z

    A semiconductor stripe laser structure is described which consists of stripe laser cavities in different active layers separated by an inactive layer, the laser cavities being disposed to emit their beams in an area less than about five microns, and separate contacts for the coupled stripe lasers, one contact for current to one stripe laser, and the other contact for controls current to the other stripe laser. The cavities are arranged so that there is optical coupling between them, and means for controlling the output wavelength spectrum of one of the coupled cavities through variations of the gain and re-fractive index of the other of the coupled cavities by control of current injection thereto below threshold.

  14. The plasma centrifuge: A compact, low cost, stable isotope separator. Phase 2 final technical report, September 15, 1991--September 14, 1995

    SciTech Connect (OSTI)

    Guss, W.

    1996-09-05T23:59:59.000Z

    Enriched stable isotopes are required for production of radionuclides as well as for research and diagnostic uses. Science Research Laboratory (SRL) has developed a plasma centrifuge for moderate throughput of enriched stable isotopes, such as {sup 13}C, {sup 17}O, {sup 18}O, and {sup 203}Tl, for medical as well as other applications. Dwindling isotope stocks have restricted the use of enriched isotopes and their associated labeled organic molecules in medical imaging to very few research facilities because of high costs of isotope separation. With the introduction of the plasma centrifuge separator, the cost per separated gram of even rarely occurring isotopes ({le} 1% natural abundance) is potentially many times lower than with other separation technologies (cryogenic distillation and calutrons). The centrifuge is a simple, robust, pulsed electrical discharge device that has successfully demonstrated isotope separation of small (mg) quantities of {sup 26}Mg. Based on the results of the Phase 2 program, modest enhancements to the power supplies and cooling systems, a centrifuge separator will have high repetition rate (60 pps) and high duty cycle (60%) to produce in one month kilogram quantities of highly enriched stable isotopes. The centrifuge may be used in stand-alone operation or could be used as a high-throughput pre-separation stage with calutrons providing the final separation.

  15. Isotopic Analysis of Uranium in NIST SRM Glass by Femtosecond Laser Ablation

    SciTech Connect (OSTI)

    Duffin, Andrew M.; Hart, Garret L.; Hanlen, Richard C.; Eiden, Gregory C.

    2013-05-19T23:59:59.000Z

    We employed femtosecond Laser Ablation Multicollector Inductively Coupled Mass Spectrometry for the 11 determination of uranium isotope ratios in a series of standard reference material glasses (NIST 610, 612, 614, and 12 616). This uranium concentration in this series of SRM glasses is a combination of isotopically natural uranium in 13 the materials used to make the glass matrix and isotopically depleted uranium added to increase the uranium 14 elemental concentration across the series. Results for NIST 610 are in excellent agreement with literature values. 15 However, other than atom percent 235U, little information is available for the remaining glasses. We present atom 16 percent and isotope ratios for 234U, 235U, 236U, and 238U for all four glasses. Our results show deviations from the 17 certificate values for the atom percent 235U, indicating the need for further examination of the uranium isotopes in 18 NIST 610-616. Our results are fully consistent with a two isotopic component mixing between the depleted 19 uranium spike and natural uranium in the bulk glass.

  16. Isotope shifts of natural Sr+ measured by laser fluorescence in a sympathetically cooled Coulomb crystal

    E-Print Network [OSTI]

    Brice Dubost; Romain Dubessy; Benjamin Szymanski; Samuel Guibal; Jean-Pierre Likforman; Luca Guidoni

    2014-02-14T23:59:59.000Z

    We measured by laser spectroscopy the isotope shifts between naturally-occurring even-isotopes of strontium ions for both the $5s\\,\\,^2S_{1/2}\\to 5p\\,\\,^2P_{1/2}$ (violet) and the $4d\\,\\,^2D_{3/2}\\to 5p\\,\\,^2P_{1/2}$ (infrared) dipole-allowed optical transitions. Fluorescence spectra were taken by simultaneous measurements on a two-component Coulomb crystal in a linear Paul trap containing $10^3$--$10^4$ laser-cooled Sr$^+$ ions. The isotope shifts are extracted from the experimental spectra by fitting the data with the analytical solution of the optical Bloch equations describing a three-level atom in interaction with two laser beams. This technique allowed us to increase the precision with respect to previously reported data obtained by optogalvanic spectroscopy or fast atomic-beam techniques. The results for the $5s\\,\\,^2S_{1/2}\\to 5p\\,\\,^2P_{1/2}$ transition are $\

  17. Practical-scale tests of cryogenic molecular sieve for separating low-concentration hydrogen isotopes from helium

    SciTech Connect (OSTI)

    Willms, R.S.; Taylor, D.J. [Los Alamos National Lab., NM (United States); Enoeda, M. [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan)] [and others

    1994-12-31T23:59:59.000Z

    There are a number of cases in fusion fuel processing where low-concentration hydrogen isotopes need to be separated from helium. Usually the helium is a purge gas used to move hydrogen isotopes from one location to another. One of the most notable applications is associated with removing tritium from a solid ceramic breeder. For some designs which have been considered, helium with about 1 % protium is purged through the ceramic. The protium exchanges with tritium which has been bred in the solid. The resulting gas composed of helium ({approximately}99%), protium ({approximately}1%) and tritium ({approximately}0.01%) flows out of the blanket and, for further processing, requires separation of the hydrogen isotopes and the helium. Earlier bench-scale (about 50 cc of sieve) work at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory examined a number of adsorbents for their suitability for separating low-concentration hydrogen (no tritium) from helium. One of the effective adsorbents was Linde 5A molecular sieve. The purpose of this paper is to report practical-scale experiments including tritium. These tests used existing cryogenic molecular sieve beds (MSB`S) which each contain about 1.6 kg of Linde 5A molecular sieve.

  18. Formation of Light Isotopes by Protons and Deuterons of 3.65 GeV/nucleon on Separated Tin Isotopes

    E-Print Network [OSTI]

    A. R. Balabekyan; A. S. Danagulyan; J. R. Drnoyan; G. H. Hovhannisyan; J. Adam; V. G. Kalinnikov; M. I. Krivopustov; V. S. Pronskikh; V. I. Stegailov; A. A. Solnyshkin; P. Chaloun; V. M. Tsoupko-Sitnikov; S. G. Mashnik; K. K. Gudima

    2005-06-22T23:59:59.000Z

    We measure cross sections for residual nuclide formation in the mass range 6 tin isotopes (112-Sn, 118-Sn, 120-Sn, 124-Sn). The experimental data are compared with calculations by the codes FLUKA, LAHET, CEM03, and LAQGSM03. Scaling behavior is observed for the whole mass region of residual nuclei, showing a possible multifragmentation mechanism for the formation of light products (6 < A < 31). Our analysis of the isoscaling dependence also shows a possible contribution of multifragmentation to the production of heavier nuclides, in the mass region 39 < A < 81.

  19. Laser Transferable Polymer-Ionic Liquid Separator/Electrolytes for Solid-State Rechargeable Lithium-Ion Microbatteries

    E-Print Network [OSTI]

    Arnold, Craig B.

    Laser Transferable Polymer-Ionic Liquid Separator/Electrolytes for Solid-State Rechargeable Lithium-Ion characterized by ac-impedance spectroscopy and in lithium- ion microbatteries. Size and weight percent effects be laser transferred onto a substrate to form a solid separator/electrolyte layer for a lithium ion power

  20. Practical-scale tests of cryogenic molecular sieve for separating low-concentration hydrogen isotopes from helium

    SciTech Connect (OSTI)

    Willms, R.S.; Taylor, D.J. [Los Alamos National Lab., NM (United States); Enoeda, Mikio; Okuno, Kenji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1994-06-01T23:59:59.000Z

    Earlier bench-scale work at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory examined a number of adsorbents for their suitability for separating low-concentration hydrogen (no tritium) from helium. One of the effective adsorbents was Linde 5A molecular sieve. Recently, experiments including tritium were conducted using practical-scale adsorbers. These tests used existing cryogenic molecular sieve beds (CMSB`s) which each contain about 1.6 kg of Linde 5A molecular sieve. They are part of the TSTA integrated tritium processing system. Gas was fed to each CMSB at about 13 SLPM with a nominal composition of 99% He, 0.98% H{sub 2} and 0.02% HT. In all cases, for an extended period of time, the beds allowed no detectable (via Raman spectroscopy) hydrogen isotopes to escape in the bed effluent. Thereafter, the hydrogen isotopes appeared in the bed exit with a relatively sharp breakthrough curve. This work concludes that cryogenic molecular sieve adsorption is an practical and effective means of separating low-concentration hydrogen isotopes from a helium carrier.

  1. Laser Programs Highlight 1995

    SciTech Connect (OSTI)

    Jacobs, R.R.

    1997-01-31T23:59:59.000Z

    Our contributions to laser science and technology and corresponding applications range from concept to design of the National Ignition Facility, transfer of Atomic Vapor Laser Isotope Separation technology to the private sector, and from new initiatives in industry and defense to micro-optics for improving human vision.

  2. ISOTOPES

    E-Print Network [OSTI]

    Lederer, C. Michael

    2013-01-01T23:59:59.000Z

    the columns used to separate UF5, which had a separativeof uranium by dissociation of UF5, by multiple vibrational

  3. Spatially tracking 13C labeled substrate (bicarbonate) accumulation in microbial communities using laser ablation isotope ratio mass spectrometry

    SciTech Connect (OSTI)

    Moran, James J.; Doll, Charles G.; Bernstein, Hans C.; Renslow, Ryan S.; Cory, Alexandra B.; Hutchison, Janine R.; Lindemann, Stephen R.; Fredrickson, Jim K.

    2014-08-25T23:59:59.000Z

    This is a manuscript we would like to submit for publication in Environmental Microbiology Reports. This manuscript contains a description of a laser ablation isotope ratio mass spectrometry methodology developed at PNNL and applied to a microbial system at a PNNL project location – Hot Lake, Washington. I will submit a word document containing the entire manuscript with this Erica input request form.

  4. Strontium isotope evidence of Neanderthal mobility at the site of Lakonis, Greece using laser-ablation PIMMS

    E-Print Network [OSTI]

    Smith, Tanya M.

    Strontium isotope evidence of Neanderthal mobility at the site of Lakonis, Greece using laser-Speleology of Southern Greece, Ardittou 34b, 11636 Athens, Greece Received 31 May 2007; received in revised form 25 July third molar from the site of Lakonis, Greece, dating to ca. 40,000 years ago. The tooth was found

  5. Continuous production of tritium in an isotope-production reactor with a separate circulation system

    DOE Patents [OSTI]

    Cawley, W.E.; Omberg, R.P.

    1982-08-19T23:59:59.000Z

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium is allowed to flow through the reactor in separate loops in order to facilitate the production and removal of tritium.

  6. Isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation Peer ReviewIronNuclear Physics » Isotopes

  7. Selective photoionisation of lutetium isotopes

    SciTech Connect (OSTI)

    D'yachkov, Aleksei B; Kovalevich, S K; Labozin, Valerii P; Mironov, Sergei M; Panchenko, Vladislav Ya; Firsov, Valerii A; Tsvetkov, G O; Shatalova, G G [National Research Centre 'Kurchatov Institute', Moscow (Russian Federation)

    2012-10-31T23:59:59.000Z

    A three-stage laser photoionisation scheme intended for enriching the {sup 176}Lu isotope from natural lutetium was considered. An investigation was made of the hyperfine structure of the second excited state 5d6s7s {yields} {sup 4}D{sub 3/2} with an energy of 37194 cm{sup -1} and the autoionisation state with an energy of 53375 cm{sup -1} of the {sup 176}Lu and {sup 175}Lu isotopes. The total electron momentum of the autoionisation level and the constant A of hyperfine magnetic interaction were determined. Due to a small value of the isotopic shift between {sup 176}Lu and {sup 175}Lu, appreciable selectivity of their separation may be achieved with individual hyperfine structure components. The first tentative enrichment of the 176Lu isotope was performed to a concentration of 60 % - 70 %. (laser applications and other topics in quantum electronics)

  8. Recent developments of the ion sources at Tri University Meson Factory/Isotope Separator and ACcelerator Facility

    SciTech Connect (OSTI)

    Bricault, P. G.; Ames, F.; Dombsky, M.; Labrecque, F.; Lassen, J.; Mjos, A.; Minor, G. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Tigelhoefer, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Department Of Physics, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

    2012-02-15T23:59:59.000Z

    This paper describes the recent progresses concerning the on-line ion source at the Tri University Meson Factory/Isotope Separator and ACcelerator (TRIUMF/ISAC) Radioactive Ion-Beam Facility; description of the new design of the surface-ion-source for improved stability of the beam intensity, description of the transport path to the east target station at ISAC, description of the new brazing techniques that solved recurrent problems with water leaks on the target/ion source assembly in the vacuum system, finally, recent developments concerning the Forced Electron Beam Induced Arc Discharge (FEBIAD) ion source are reported. In particular, a study on the effect of the plasma chamber volume on the ionization efficiency was completed.

  9. Characterization of Diesel Fuel by Chemical Separation Combined with Capillary Gas Chromatography (GC) Isotope Ratio Mass Spectrometry (IRMS)

    SciTech Connect (OSTI)

    Harvey, Scott D.; Jarman, Kristin H.; Moran, James J.; Sorensen, Christina M.; Wright, Bob W.

    2011-09-15T23:59:59.000Z

    The purpose of this study was to perform a preliminary investigation of compound-specific isotope analysis (CSIA) of diesel fuels to evaluate whether the technique could distinguish between the diesel samples from different sources/locations. The ability to differentiate or correlate diesel samples could be valuable for detecting fuel tax evasion schemes. Two fractionation techniques were used to isolate the n-alkanes from the fuel. Both ?13C and ?D values for the n-alkanes were then determined by CSIA in each sample. Plots of ?D versus ?13C with sample n-alkane points connected in order of increasing carbon number gave well separated clusters with characteristic shapes for each sample. Principal components analysis (PCA) with ?13C, ?D, or combined ?13C and ?D data on the yielded scores plots that could clearly differentiate the samples, thereby demonstrating the potential of this approach for fingerprinting fuel samples using the ?13C and ?D values.

  10. Measurement of isotope separation factors in the palladium-hydrogen system using a thermistor technique

    SciTech Connect (OSTI)

    Ortiz, T.M.

    1998-05-01T23:59:59.000Z

    The range of available data on separation factors in the palladium-hydrogen/deuterium system has been extended. A matched pair of glass-coated bead thermistors was used to measure gas phase compositions. The compositions of the input gas--assumed also to be the solid phase composition--were measured independently be mass spectrometry as being within 0.5 mole% of the values used to calibrate the thermistors. This assumption is based on the fact that > 99% of the input gas is absorbed into the solid. Separation factors were measured for 175 K {le} T {le} 389 K and for 0.195 {le} x{sub H} {le} 0.785.

  11. Isotopic imaging via nuclear resonance fluorescence with laser-based Thomson radiation

    DOE Patents [OSTI]

    Barty, Christopher P. J. (Hayward, CA); Hartemann, Frederic V. (San Ramon, CA); McNabb, Dennis P. (Alameda, CA); Pruet, Jason A. (Brentwood, CA)

    2009-07-21T23:59:59.000Z

    The present invention utilizes novel laser-based, high-brightness, high-spatial-resolution, pencil-beam sources of spectrally pure hard x-ray and gamma-ray radiation to induce resonant scattering in specific nuclei, i.e., nuclear resonance fluorescence. By monitoring such fluorescence as a function of beam position, it is possible to image in either two dimensions or three dimensions, the position and concentration of individual isotopes in a specific material configuration. Such methods of the present invention material identification, spatial resolution of material location and ability to locate and identify materials shielded by other materials, such as, for example, behind a lead wall. The foundation of the present invention is the generation of quasimonochromatic high-energy x-ray (100's of keV) and gamma-ray (greater than about 1 MeV) radiation via the collision of intense laser pulses from relativistic electrons. Such a process as utilized herein, i.e., Thomson scattering or inverse-Compton scattering, produces beams having diameters from about 1 micron to about 100 microns of high-energy photons with a bandwidth of .DELTA.E/E of approximately 10E.sup.-3.

  12. Brief history of the Los Alamos laser programs

    SciTech Connect (OSTI)

    Boyer, K.

    1983-01-01T23:59:59.000Z

    The laser programs at Los Alamos began in 1969 to investigate the feasibility of laser-induced fusion. However, within a year they had been expanded to include a number of other applications including laser isotope separation. These programs now compose a substantial part of the Laboratory's research programs.

  13. A Mass Spectrometry Study of Isotope Separation in the Laser Plume

    E-Print Network [OSTI]

    Suen, Timothy Wu

    2012-01-01T23:59:59.000Z

    Gamma Ray Spectrometry . . . . . . . . . . . . . . . . . . .29, 30] Gamma Ray Spectrometry Gamma ray spectrometry willare measured by gamma spectrometry and compared to model

  14. A Mass Spectrometry Study of Isotope Separation in the Laser Plume

    E-Print Network [OSTI]

    Suen, Timothy Wu

    2012-01-01T23:59:59.000Z

    Enriched Uranium Particles”, Analytical Chemistry 71, 2616 (Uranium Oxide Microparticles: A Nuclear Forensic Diagnostic”, Analytical Chemistry

  15. A Mass Spectrometry Study of Isotope Separation in the Laser Plume

    E-Print Network [OSTI]

    Suen, Timothy Wu

    2012-01-01T23:59:59.000Z

    quantities of natural or depleted uranium [8]. Plutonium, on235 U abundance in depleted uranium. The sample was ablatedsuch as 235 U in depleted uranium [64] or short-lived

  16. I CALCULATIONS ON ISOTOPE SEPARATION BY LASER INDUCED PHOTODISSOCIATION OF POLYATOMIC MOLECULES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen andHypernuclei in Hall C High2 - _ I - .Ii; .

  17. Dual Chamber Laser Ion Source at Lisol

    E-Print Network [OSTI]

    Yu. Kudryavtsev; T. E. Cocolios; J. Gentens; M. Huyse; O. Ivanov; D. Pauwels; T. Sonoda; P. Van den Bergh; P. Van Duppen

    2009-04-23T23:59:59.000Z

    A new type of the gas cell for the resonance ionization laser ion source at the Leuven Isotope Separator On Line (LISOL) has been developed and tested at off-line and on-line conditions. Two-step selective laser ionization is applied to produce purified beams of radioactive isotopes. The selectivity of the ion source has been increased by more than one order of magnitude by separation of the stopping and laser ionization regions. This allows to use electrical fields for further ion purification.

  18. Ultralow threshold graded-index separate-confinement heterostructure single quantum well (Al,Ga)As lasers

    SciTech Connect (OSTI)

    Derry, P.L.; Chen, H.Z.; Morkoc, H.; Yariv, A.; Lau, K.Y.; Bar-Chaim, N.; Lee, K.; Rosenberg, J.

    1988-03-01T23:59:59.000Z

    Broad area graded-index separate-confinement heterostructure single quantum well lasers grown by molecular-beam epitaxy (MBE) with threshold current density as low as 93 A/cm/sup 2/ (520 ..mu..m long) have been fabricated. Buried lasers formed from similarly structured MBE material with liquid phase epitaxy regrowth had threshold currents at submilliampere levels when high reflectivity coatings were applied to the end facets. A cw threshold current of 0.55 mA was obtained for a laser with facet reflectivities of approx.80%, a cavity length of 120 ..mu..m, and an active region stripe width of 1 ..mu..m. These devices driven directly with logic level signals have switch-on delays <50 ps without any current prebias. Such lasers permit fully on--off switching while at the same time obviating the need for bias monitoring and feedback control.

  19. Analysis of hydrogen isotope mixtures

    DOE Patents [OSTI]

    Villa-Aleman, Eliel (Aiken, SC)

    1994-01-01T23:59:59.000Z

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  20. Improved time control on Cretaceous coastal deposits: new results from Sr isotope measurements using laser ablation

    E-Print Network [OSTI]

    Gilli, Adrian

    using laser ablation Stefan Burla,1 Felix Oberli,2 Ulrich Heimhofer,3 Uwe Wiechert4 and Helmut Weissert5 that laser ablation (LA) combined with multi-collector inductively cou- pled plasma mass spectrometry (MC

  1. Application of copper vapour lasers for controlling activity of uranium isotopes

    SciTech Connect (OSTI)

    Barmina, E V; Sukhov, I A; Lepekhin, N M; Priseko, Yu S; Filippov, V G; Simakin, Aleksandr V; Shafeev, Georgii A

    2013-06-30T23:59:59.000Z

    Beryllium nanoparticles are generated upon ablation of a beryllium target in water by a copper vapour laser. The average size of single crystalline nanoparticles is 12 nm. Ablation of a beryllium target in aqueous solutions of uranyl chloride leads to a significant (up to 50 %) decrease in the gamma activity of radionuclides of the uranium-238 and uranium-235 series. Data on the recovery of the gamma activity of these nuclides to new steady-state values after laser irradiation are obtained. The possibility of application of copper vapour lasers for radioactive waste deactivation is discussed. (laser applications and other topics in quantum electronics)

  2. Laser program annual report, 1980

    SciTech Connect (OSTI)

    Coleman, L.W.; Krupke, W.F.; Strack, J.R. (eds.) [eds.

    1981-06-01T23:59:59.000Z

    Volume 3 is comprised of three sections, beginning with Section 8 on Advanced Lasers. Both theoretical and experimental research and development activities on advanced laser systems are presented here. Section 9 contains the results of studies in areas of energy and military applications, including those relating to electrical energy production by inertial confinement fusion systems. Finally, Section 10 presents results from selected activities in the Advanced Isotope Separation Program.

  3. Ultralow-threshold graded-index separate-confinement single quantum well buried heterostructure (Al,Ga)As lasers with high reflectivity coatings

    SciTech Connect (OSTI)

    Derry, P.L.; Yariv, A.; Lau, K.Y.; Bar-Chaim, N.; Lee, K.; Rosenberg, J.

    1987-06-22T23:59:59.000Z

    Unlike conventional semiconductor lasers, single quantum well lasers with high reflectively coatings have dramatically reduced threshold currents as a result of the smaller volume of the (active) quantum well region. A cw threshold current of 0.95 mA was obtained for a buried graded-index separate-confinement heterostructure single quantum well laser with facet reflectivities of --70%, a cavity length of 250 ..mu..m, and an active region stripe width of 1 ..mu..m.

  4. Ultra-fast Laser Synthesis of Nanopore Arrays in Silicon for Bio-molecule Separation and Detection

    SciTech Connect (OSTI)

    Tringe, J W; Ileri, N; Letant, S E; Stroeve, P; Shirk, M; Zaidi, S; Balhorn, R L; Siders, C W

    2008-02-07T23:59:59.000Z

    We demonstrate that interference of ultra-fast pulses of laser light can create regular patterns in thin silicon membranes that are compatible with the formation of a uniform array of nanopores. The spacing and size of these pores can be tuned by changing the laser energy, wavelength and number of ultra-short pulses. Short pulses and wavelengths ({approx}550 nm and smaller) are needed to define controllable nanoscale features in silicon. Energy must be localized in time and space to produce the etching, ablation or amorphization effects over the {approx}100 nm length scales appropriate for definition of single pores. Although in this brief study pattern uniformity was limited by laser beam quality, a complementary demonstration reported here used continuous-wave interferometric laser exposure of photoresist to show the promise of the ultra-fast approach for producing uniform pore arrays. The diameters of these interferometrically-defined features are significantly more uniform than the diameters of pores in state-of-the-art polycarbonate track etch membranes widely used for molecular separations.

  5. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    E-Print Network [OSTI]

    Isselhardt, Brett Hallen

    2011-01-01T23:59:59.000Z

    Isotope Ratios from U 3 O 8 Standards of Varying Enrichmentprobability. Enrichment of the odd isotope compared to 238 Ufrom an enrichment of the lighter isotope of almost 40 %

  6. Control of Electron Excitation and Localization in the Dissociation of H2 and Its Isotopes Using Two Sequential Ultrashort Laser Pulses

    E-Print Network [OSTI]

    Becker, Andreas

    ]. The advent of carrier-envelope phase-locked few-cycle pulses and single subfemtosecond pulses [2­4] has-cycle phase-locked pulses [6,7] have been addressed but separately. Below, we consider the combined controlControl of Electron Excitation and Localization in the Dissociation of H2 and Its Isotopes Using

  7. Measurements of Nucleon-Induced Fission Cross-Sections of Separated Tungsten Isotopes and Natural Tungsten in the 50-200 MeV Energy Region

    E-Print Network [OSTI]

    V. P. Eismont; N. P. Filatov; A. N. Smirnov; S. M. Soloviev; J. Blomgren; H. Conde; A. V. Prokofiev; S. G. Mashnik

    2005-07-07T23:59:59.000Z

    Neutron- and proton-induced fission cross-sections of separated isotopes of tungsten (182W, 183W, 184W, and 186W) and natural tungsten relative to 209Bi have been measured in the incident nucleon energy region 50-200 MeV using fission chambers based on thin-film breakdown counters (TFBC) at quasi-monoenergetic neutrons from the 7Li(p,n) reaction and at the proton beams of The Svedberg Laboratory (TSL), Uppsala University (Uppsala, Sweden). The preliminary experimental data are presented in comparison with the recent data for nuclei in the lead-bismuth region, as well as with predictions by the CEM03.01 event generator.

  8. Laser spectroscopy of francium isotopes at the borders of the region of reflection asymmetry

    E-Print Network [OSTI]

    I. Budin?evi?; J. Billowes; M. L. Bissell; T. E. Cocolios; R. P. de Groote; S. De Schepper; V. N. Fedosseev; K. T. Flanagan; S. Franchoo; R. F. Garcia Ruiz; H. Heylen; K. M. Lynch; B. A. Marsh; G. Neyens; T. J. Procter; R. E. Rossel; S. Rothe; I. Strashnov; H. H. Stroke; K. D. A. Wendt

    2014-07-02T23:59:59.000Z

    The magnetic dipole moments and changes in mean-square charge radii of the neutron-rich $^{218m,219,229,231}\\text{Fr}$ isotopes were measured with the newly-installed Collinear Resonance Ionization Spectroscopy (CRIS) beam line at ISOLDE, CERN, probing the $7s~^{2}S_{1/2}$ to $8p~^{2}P_{3/2}$ atomic transition. The $\\delta\\langle r^{2}\\rangle^{A,221}$ values for $^{218m,219}\\text{Fr}$ and $^{229,231}\\text{Fr}$ follow the observed increasing slope of the charge radii beyond $N~=~126$. The charge radii odd-even staggering in this neutron-rich region is discussed, showing that $^{220}\\text{Fr}$ has a weakly inverted odd-even staggering while $^{228}\\text{Fr}$ has normal staggering. This suggests that both isotopes reside at the borders of a region of inverted staggering, which has been associated with reflection-asymmetric shapes. The $g(^{219}\\text{Fr}) = +0.69(1)$ value supports a $\\pi 1h_{9/2}$ shell model configuration for the ground state. The $g(^{229,231}\\text{Fr})$ values support the tentative $I^{\\pi}(^{229,231}\\text{Fr}) = (1/2^{+})$ spin, and point to a $\\pi s_{1/2}^{-1}$ intruder ground state configuration.

  9. Very high resolution saturation spectroscopy of lutetium isotopes via c-w single-frequency laser resonance ionization mass spectrometry

    SciTech Connect (OSTI)

    Fearey, B.L.; Parent, D.C.; Keller, R.A.; Miller, C.M.

    1987-01-01T23:59:59.000Z

    In this paper, we discuss the use of Resonance Ionization Mass Spectrometry (RIMS) to perform isotopically selective saturation spectroscopy of lutetium isotopes. Utilizing this technique, it is shown that accurate measurements of the relative frequencies of hyperfine (HF) components for different isotopes easily can be made without the need for an isotopically enriched sample. The precision with which the HF splitting constants can be determined is estimated to be approx.5 times greater than in previous work.

  10. Dominant deuteron acceleration with a high-intensity laser for isotope production and neutron generation

    SciTech Connect (OSTI)

    Maksimchuk, A.; Raymond, A.; Yu, F.; Dollar, F.; Willingale, L.; Zulick, C.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Petrov, G. M.; Davis, J. [Naval Research Laboratory, Plasma Physics Division, Washington, DC 20375 (United States)] [Naval Research Laboratory, Plasma Physics Division, Washington, DC 20375 (United States)

    2013-05-13T23:59:59.000Z

    Experiments on the interaction of an ultra-short pulse laser with heavy-water, ice-covered copper targets, at an intensity of 2 Multiplication-Sign 10{sup 19} W/cm{sup 2}, were performed demonstrating the generation of a 'pure' deuteron beam with a divergence of 20 Degree-Sign , maximum energy of 8 MeV, and a total of 3 Multiplication-Sign 10{sup 11} deuterons with energy above 1 MeV-equivalent to a conversion efficiency of 1.5%{+-} 0.2%. Subsequent experiments on irradiation of a {sup 10}B sample with deuterons and neutron generation from d-d reactions in a pitcher-catcher geometry, resulted in the production of {approx}10{sup 6} atoms of the positron emitter {sup 11}C and a neutron flux of (4{+-}1) Multiplication-Sign 10{sup 5} neutrons/sterad, respectively.

  11. Nucleon-induced fission cross-sections of tantalum and separated tungsten isotopes and "compound nucleus" effect in intermediate energy region

    E-Print Network [OSTI]

    A. N. Smirnov; O. I. Batenkov; V. P. Eismont; N. P. Filatov; J. Blomgren; H. Conde; A. V. Prokofiev; S. G. Mashnik

    2007-05-21T23:59:59.000Z

    Neutron- and proton-induced fission cross-sections of separated isotopes of tungsten (182W, 183W, 184W, and 186W) and 181Ta relative to 209Bi have been measured in the incident nucleon energy region 50 - 200 MeV using fission chambers based on thin-film breakdown counters (TFBC) using quasi-monoenergetic neutrons from the 7Li(p,n) reaction and at the proton beams of The Svedberg Laboratory (TSL), Uppsala University (Uppsala, Sweden). The results are compared with predictions by the CEM03.01 event generator, as well as with the recent data for nuclei in the lead-bismuth region. The effect of "compound nucleus" in the intermediate energy region is discussed, displaying in exponential dependence of nucleon-induced fission cross-sections on the parameter Z^2/A of the composite system (projectile+target nucleus), and in other characteristics of the fission process for which parameter Z^2/A plays a role similar to the one of the usual liquid-drop parameter Z^2/A of compound nuclei.

  12. Isotope Development & Production | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Medical Radioisotope Radiochemical Separation & Processing Strategic Isotope Production Super Heavy Element Discovery Nuclear Security Science & Technology Nuclear Systems...

  13. Laser program annual report, 1979

    SciTech Connect (OSTI)

    Coleman, L.W.; Strack, J.R. (eds.)

    1980-03-01T23:59:59.000Z

    Volume 3 comprises three sections, beginning with Section 7 on advanced quantum electronics. Both theoretical and experimental research and development activities on advanced laser concepts in the quest for high efficiency and high repetition rate are presented. Section 8 contains the results of studies by the Energy and Military Applications group. Section 9 presents results from some of the activities of the advanced isotope separation program. (MOW)

  14. ORIGINAL PAPER Crystal scale anatomy of a dying supervolcano: an isotope

    E-Print Network [OSTI]

    Bindeman, Ilya N.

    determined by ion microprobe, and sanidine Pb isotope ratios determined by laser ablation, to investigate

  15. Safety approaches for high power modular laser operation

    SciTech Connect (OSTI)

    Handren, R.T.

    1993-03-01T23:59:59.000Z

    Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest has been the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program has progressed to the point where a plant-scale facility to demonstrate commercial feasibility has been built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a >90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities ({approximately}3000 gal) of ethanol dye solutions. The Laboratory`s safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

  16. High efficiency single quantum well graded-index separate-confinement heterostructure lasers fabricated with MeV oxygen ion implantation

    SciTech Connect (OSTI)

    Xiong, F.; Tombrello, T.A.; Wang, H.; Chen, T.R.; Chen, H.Z.; Morkoc, H.; Yariv, A.

    1989-02-20T23:59:59.000Z

    Single quantum well AlGaAs/GaAs graded-index separate-confinement heterostructure lasers have been fabricated using MeV oxygen ion implantation plus optimized subsequent thermal annealing. A high differential quantum efficiency of 85% has been obtained in a 360-..mu..m-long and 10-..mu..m-wide stripe geometry device. The results have also demonstrated that excellent electrical isolation (breakdown voltage of over 30 V) and low threshold currents (22 mA) can be obtained with MeV oxygen ion isolation. It is suggested that oxygen ion implantation induced selective carrier compensation and compositional disordering in the quantum well region as well as radiation-induced lattice disordering in Al/sub x/Ga/sub 1-//sub x/As/GaAs may be mostly responsible for the buried layer modification in this fabrication process.

  17. Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    of zircon crystallization. The advent of laser-ablation Lu­Hf isotope analysis of igneous and detrital

  18. ORIGINAL PAPER Zircon Hf isotope perspective on the origin of granitic rocks

    E-Print Network [OSTI]

    Siebel, Wolfgang

    Ó Springer-Verlag 2009 Abstract The petrogenetic potential of in situ laser ablation Hf isotope data Bohemian Massif Á Granitoid Á Hafnium isotopes Á Laser ablation ICP-MS Á Variscan Á Zircon Introduction the Hf isotopic composition of individual zircons in situ by laser ablation ICP-MS (Thirlwall and Walder

  19. Integration of the AVLIS (atomic vapor laser isotopic separation) process into the nuclear fuel cycle. [Effect of AVLIS feed requirements on overall fuel cycle

    SciTech Connect (OSTI)

    Hargrove, R.S.; Knighton, J.B.; Eby, R.S.; Pashley, J.H.; Norman, R.E.

    1986-08-01T23:59:59.000Z

    AVLIS RD and D efforts are currently proceeding toward full-scale integrated enrichment demonstrations in the late 1980's and potential plant deployment in the mid 1990's. Since AVLIS requires a uranium metal feed and produces an enriched uranium metal product, some change in current uranium processing practices are necessitated. AVLIS could operate with a UF/sub 6/-in UF/sub 6/-out interface with little effect to the remainder of the fuel cycle. This path, however, does not allow electric utility customers to realize the full potential of low cost AVLIS enrichment. Several alternative processing methods have been identified and evaluated which appear to provide opportunities to make substantial cost savings in the overall fuel cycle. These alternatives involve varying levels of RD and D resources, calendar time, and technical risk to implement and provide these cost reduction opportunities. Both feed conversion contracts and fuel fabricator contracts are long-term entities. Because of these factors, it is not too early to start planning and making decisions on the most advantageous options so that AVLIS can be integrated cost effectively into the fuel cycle. This should offer economic opportunity to all parties involved including DOE, utilities, feed converters, and fuel fabricators. 10 refs., 11 figs., 2 tabs.

  20. Method and apparatus for separation of heavy and tritiated water

    DOE Patents [OSTI]

    Lee, Myung W. (late of North Augusta, SC)

    2001-01-01T23:59:59.000Z

    The present invention is a bi-thermal membrane process for separating and recovering hydrogen isotopes from a fluid containing hydrogen isotopes, such as water and hydrogen gas. The process in accordance with the present invention provides counter-current cold and hot streams of the fluid separated with a thermally insulating and chemically transparent proton exchange membrane (PEM). The two streams exchange hydrogen isotopes through the membrane: the heavier isotopes migrate into the cold stream, while the lighter isotopes migrate into the hot stream. The heavy and light isotopes are continuously withdrawn from the cold and hot streams respectively.

  1. Stable isotope fractionation by thermal diffusion through partially molten wet and dry silicate rocks

    E-Print Network [OSTI]

    Bindeman, Ilya N.

    isotope redistribution by thermal diffusion leading to enrichment of light isotopes at the hot endStable isotope fractionation by thermal diffusion through partially molten wet and dry silicate 2012 Editor: T.M. Harrison Keywords: thermal diffusion hydrogen isotope separation oxygen isotopes

  2. Laser device

    DOE Patents [OSTI]

    Scott, Jill R. (Idaho Falls, ID); Tremblay, Paul L. (Idaho Falls, ID)

    2007-07-10T23:59:59.000Z

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  3. BNL | Nd:YAG Laser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nd:YAG Laser The Nd:YAG laser is located in a class 1000 clean room (the YAG Room) near the electron gun end of the ATF accelerator. The clean area also includes a separate laser...

  4. Short wavelength laser

    DOE Patents [OSTI]

    Hagelstein, P.L.

    1984-06-25T23:59:59.000Z

    A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

  5. Laser ignition

    DOE Patents [OSTI]

    Early, James W.; Lester, Charles S.

    2004-01-13T23:59:59.000Z

    Sequenced pulses of light from an excitation laser with at least two resonator cavities with separate output couplers are directed through a light modulator and a first polarzing analyzer. A portion of the light not rejected by the first polarizing analyzer is transported through a first optical fiber into a first ignitor laser rod in an ignitor laser. Another portion of the light is rejected by the first polarizing analyzer and directed through a halfwave plate into a second polarization analyzer. A first portion of the output of the second polarization analyzer passes through the second polarization analyzer to a second, oscillator, laser rod in the ignitor laser. A second portion of the output of the second polarization analyzer is redirected by the second polarization analyzer to a second optical fiber which delays the beam before the beam is combined with output of the first ignitor laser rod. Output of the second laser rod in the ignitor laser is directed into the first ignitor laser rod which was energized by light passing through the first polarizing analyzer. Combined output of the first ignitor laser rod and output of the second optical fiber is focused into a combustible fuel where the first short duration, high peak power pulse from the ignitor laser ignites the fuel and the second long duration, low peak power pulse directly from the excitation laser sustains the combustion.

  6. Y-12 begins to separate lithium isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    now rapidly expanding nuclear weapons program. Unlike previous atomic weapons, these new thermonuclear weapons derived their explosive force from both fission and fusion of...

  7. Electromagnetic Isotope Separation Lab (EMIS) | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseC Supports - Energy InnovationVehicles

  8. Stable Isotope Enrichment Capabilities at ORNL

    SciTech Connect (OSTI)

    Egle, Brian [ORNL; Aaron, W Scott [ORNL; Hart, Kevin J [ORNL

    2013-01-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) and the US Department of Energy Nuclear Physics Program have built a high-resolution Electromagnetic Isotope Separator (EMIS) as a prototype for reestablishing a US based enrichment capability for stable isotopes. ORNL has over 60 years of experience providing enriched stable isotopes and related technical services to the international accelerator target community, as well as medical, research, industrial, national security, and other communities. ORNL is investigating the combined use of electromagnetic and gas centrifuge isotope separation technologies to provide research quantities (milligram to several kilograms) of enriched stable isotopes. In preparation for implementing a larger scale production facility, a 10 mA high-resolution EMIS prototype has been built and tested. Initial testing of the device has simultaneously collected greater than 98% enriched samples of all the molybdenum isotopes from natural abundance feedstock.

  9. Atom trap trace analysis of krypton isotopes

    SciTech Connect (OSTI)

    Bailey, K.; Chen, C. Y.; Du, X.; Li, Y. M.; Lu, Z.-T.; O'Connor, T. P.; Young, L.

    1999-11-17T23:59:59.000Z

    A new method of ultrasensitive isotope trace analysis has been developed. This method, based on the technique of laser manipulation of neutral atoms, has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton gas sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. This method is free of contamination from other isotopes and elements and can be applied to several different isotope tracers for a wide range of applications. The demonstrated detection efficiency is 1 x 10{sup {minus}7}. System improvements could increase the efficiency by many orders of magnitude.

  10. The Laser Ion Source Trap (LIST) coupled to a gas cell catcher

    E-Print Network [OSTI]

    T. Sonoda; T. E. Cocolios; J. Gentens; M. Huyse; O. Ivanov; Yu. Kudryavtsev; D. Pauwels; P. Van den Bergh; P. Van Duppen

    2009-06-18T23:59:59.000Z

    The proof of principle of the Laser Ion Source Trap (LIST) coupled to a gas cell catcher system has been demonstrated at the Leuven Isotope Separator On-Line (LISOL). The experiments were carried out by using the modified gas cell-based laser ion source and the SextuPole Ion Guide (SPIG). Element selective resonance laser ionization of neutral atoms was taking place inside the cold jet expanding out of the gas cell catcher. The laser path was oriented in longitudinal as well as transverse geometries with respect to the atoms flow. The enhancement of beam purity and the feasibility for in-source laser spectroscopy were investigated in off-line and on-line conditions.

  11. Accelerated alpha-decay of 232U isotope achieved by exposure of its aqueous solution with gold nanoparticles to laser radiation

    E-Print Network [OSTI]

    A. V. Simakin; G. A. Shafeev

    2011-12-29T23:59:59.000Z

    Experimental results are presented on laser-induced accelerated alpha-decay of Uranium-232 nuclei under laser exposure of Au nanoparticles in aqueous solutions of its salt. It is demonstrated that the decrease of alpha-activity strongly depends on the peak intensity of the laser radiation in the liquid and is highest at several terawatt per square centimeter. The decrease of alpha-activity of the exposed solutions is accompanied by the deviation of gamma-activities of daughter nuclides of Uranium-232 from their equilibrium values. Possible mechanisms of the laser influence on the alpha-activity are discussed on the basis of the amplification of the electric field of laser wave on metallic nanoparticles.

  12. Ultracapacitor separator

    DOE Patents [OSTI]

    Wei, Chang (Niskayuna, NY); Jerabek, Elihu Calvin (Glenmont, NY); LeBlanc, Jr., Oliver Harris (Schenectady, NY)

    2001-03-06T23:59:59.000Z

    An ultracapacitor includes two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. The electrolyte is a polar aprotic organic solvent and a salt. The porous separator comprises a wet laid cellulosic material.

  13. Optical isotope shift and hyperfine structure measurements in preparation of the ultra-sensitive detection of krypton atoms using stepwise laser excitation and field ionization

    E-Print Network [OSTI]

    Lassen, Jens

    1996-01-01T23:59:59.000Z

    fit to the hyperfine structure data when evaluating the hyperfine structure constants A and B. The results are the hyperfinestructure constants and isotope shifts in two transitions from the 5s'[1/2]0' , IS3 , and three transitions from the 5s[3...

  14. Tandem coupled cavity lasers with separate current control and high parasitic resistance between them for bistability and negative resistance characteristics and use thereof for optical disc readout

    SciTech Connect (OSTI)

    Yariv, A.; Harder, C.; Lau, K. L.

    1985-12-31T23:59:59.000Z

    A two-segment contact buried heterostructure (BH) laser is pumped by a current applied to its absorber contact from a source of high impedance on the order of 100K..cap omega.. or more. The parasitic resistance between the absorber contact and the gain contact is high on the order of 10K..cap omega... For a given absorber (bias) current the laser exhibits a relatively wide hysteresis on the order of 1 mA or more in the light vs. gain contact current. Such a laser is highly useful as a bistable optical element. The laser is also bistable with selected pump gain and absorber currents to exhibit a wide hysteresis of voltage across the absorber contact vs. relative amounts of light which is reflected back to the laser as feedback. The laser serve both as a light source and as a detector for reading out binary information stored as light reflective spots on a medium, e.g. a video disk.

  15. from Isotope Production Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium 2:32 Isotope cancer treatment...

  16. The influence of kinetics on the oxygen isotope composition of calcium carbonate

    E-Print Network [OSTI]

    Watkins, Jim

    The influence of kinetics on the oxygen isotope composition of calcium carbonate James M. Watkins a and calcium carbonate. Although oxygen isotope separation is expected on theoretical grounds, the temperature on equilibrium fractionation of oxygen isotopes between calcium carbonate and water. Equili- brium oxygen isotope

  17. Lead isotope study of the late Archean Lac des Iles palladium deposit, Canada: enrichment of platinum

    E-Print Network [OSTI]

    ARTICLE Lead isotope study of the late Archean Lac des Iles palladium deposit, Canada: enrichment Lead isotopic compositions of mineral separates are presented from the mineralized zones (Roby Province of Canada. Plagioclase separates show Pb isotope ratios similar to those of the late Archean

  18. Isotopically controlled semiconductors

    E-Print Network [OSTI]

    Haller, Eugene E.

    2006-01-01T23:59:59.000Z

    16 Isotopically Controlled Semiconductors Eugene E. Hallerof isotopically engineered semiconductors; for outstandingisotopically controlled semiconductor crystals. This article

  19. Optical isotope shift and hyperfine structure measurements in preparation of the ultra-sensitive detection of krypton atoms using stepwise laser excitation and field ionization 

    E-Print Network [OSTI]

    Lassen, Jens

    1996-01-01T23:59:59.000Z

    of the laser and a Gaussian distribution the numerical value of the time of flight bmadening differs slightly [I 8]. T A ?& ? f d t[E, exp( ? 2r / d) cos(to, t)] exp( ? i mt) 0 I(?& ? AA* = C*expI ? (fo ? m, )d/(2v~2)' J E:=E, cos(fo, t) Svfa~-:5. 6...

  20. Lateral coupled cavity semiconductor laser

    SciTech Connect (OSTI)

    Salzman, J.; Lang, R.J.; Yariv, A.

    1987-06-16T23:59:59.000Z

    This patent describes a monolithic lateral-coupled laser array comprised of at least two stripe laser cavities of different effective length in close parallel proximity to each other for coupling of radiation. The longer of the stripe laser cavities is cleaved to provide separate parts, and the parts are cleaved coupled to form one strip laser cavity lateral coupled to the shorter laser cavity. A separate stripe contact varies the relative currents supplied to each laser cavity, including the cleaved coupled cavities of the longer of the stripe laser cavities.

  1. Coupled parallel waveguide semiconductor laser

    SciTech Connect (OSTI)

    Mukai, S.; Kapon, E.; Katz, J.; Lindsey, C.; Rav-Noy, Z.; Margalit, S.; Yariv, A.

    1984-03-01T23:59:59.000Z

    The operation of a new type of tunable laser, where the two separately controlled individual lasers are placed vertically in parallel, has been demonstrated. One of the cavities (''control'' cavity) is operated below threshold and assists the longitudinal mode selection and tuning of the other laser. With a minor modification, the same device can operate as an independent two-wavelength laser source.

  2. Short wavelength laser

    DOE Patents [OSTI]

    Hagelstein, Peter L. (Livermore, CA)

    1986-01-01T23:59:59.000Z

    A short wavelength laser (28) is provided that is driven by conventional-laser pulses (30, 31). A multiplicity of panels (32), mounted on substrates (34), are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path (42). When the panels (32) are illuminated by the conventional-laser pulses (30, 31), single pass EUV or soft x-ray laser pulses (44, 46) are produced.

  3. System and method for high precision isotope ratio destructive analysis

    DOE Patents [OSTI]

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02T23:59:59.000Z

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  4. Laser cooling with ultrafast pulse trains

    E-Print Network [OSTI]

    David Kielpinski

    2003-06-14T23:59:59.000Z

    We propose a new laser cooling method for atomic species whose level structure makes traditional laser cooling difficult. For instance, laser cooling of hydrogen requires vacuum-ultraviolet laser light, while multielectron atoms need laser light at many widely separated frequencies. These restrictions can be eased by laser cooling on two-photon transitions with ultrafast pulse trains. Laser cooling of hydrogen, antihydrogen, and carbon appears feasible, and extension of the technique to molecules may be possible.

  5. Process for recovery of daughter isotopes from a source material

    DOE Patents [OSTI]

    Tranter, Troy J.; Todd, Terry A.; Lewis, Leroy C.; Henscheid, Joseph P.

    2005-10-04T23:59:59.000Z

    The invention includes a method of separating isotopes from a mixture containing at least two isotopes in a solution. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the precipitate. The precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. The invention also includes a system for producing an actinium-225/bismuth-213 product.

  6. Measurement of isotope ratio of Ca{sup +} ions in a linear Paul Trap

    SciTech Connect (OSTI)

    Hashimoto, Y.; Minamino, K.; Nagamoto, D.; Hasegawa, S. [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2009-03-17T23:59:59.000Z

    Measurement of isotope ratios of Calcium is very useful in many fields. So we demonstrated the measurement of isotope ratios of {sup 40}Ca{sup +}(abundance 96.4%) to {sup 44}Ca{sup +}(2.09%) ions in a linear Paul trap with several laser lights tuning to the isotope shifts. And we found that the experimental parameters had large influences on the measurement of the isotope ratios.

  7. Separation processes using expulsion from dilute supercritical solutions

    DOE Patents [OSTI]

    Cochran, Jr., Henry D. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    A process for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.

  8. Separation processes using expulsion from dilute supercritical solutions

    DOE Patents [OSTI]

    Cochran, H.D. Jr.

    1993-04-20T23:59:59.000Z

    A process is described for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.

  9. Laser-based proton acceleration on ultra-thin foil with a 100 TW class high intensity laser system

    E-Print Network [OSTI]

    Marjoribanks, Robin S.

    of electromagnetic fields in plasma, isotopes production or hadron therapy. The 100 TW class laser systemLaser-based proton acceleration on ultra-thin foil with a 100 TW class high intensity laser system. To characterize the plasma expansion, we monitor it with an imaging technique using a femtosecond laser probe

  10. Method and apparatus for noble gas atom detection with isotopic selectivity

    DOE Patents [OSTI]

    Hurst, G. Samuel (Oak Ridge, TN); Payne, Marvin G. (Harriman, TN); Chen, Chung-Hsuan (Knoxville, TN); Parks, James E. (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    Apparatus and methods of operation are described for determining, with isotopic selectivity, the number of noble gas atoms in a sample. The analysis is conducted within an evacuated chamber which can be isolated by a valve from a vacuum pumping system capable of producing a pressure of 10.sup.-8 Torr. Provision is made to pass pulses of laser beams through the chamber, these pulses having wavelengths appropriate for the resonance ionization of atoms of the noble gas under analysis. A mass filter within the chamber selects ions of a specific isotope of the noble gas, and means are provided to accelerate these selected ions sufficiently for implantation into a target. Specific types of targets are discussed. An electron measuring device produces a signal relatable to the number of ions implanted into the target and thus to the number of atoms of the selected isotope of the noble gas removed from the gas sample. The measurement can be continued until a substantial fraction, or all, of the atoms in the sample have been counted. Furthermore, additional embodiments of the apparatus are described for bunching the atoms of a noble gas for more rapid analysis, and for changing the target for repetitive cycling of the gas in the chamber. The number of repetitions of the cyclic steps depend upon the concentration of the isotope of interest, the separative efficiency of the mass filter, etc. The cycles are continued until a desired selectivity is achieved. Also described are components and a method of operation for a pre-enrichment operation for use when an introduction of a total sample would elevate the pressure within the chamber to levels in excess of those for operation of the mass filter, specifically a quadrupole mass filter. Specific examples of three noble gas isotope analyses are described.

  11. Isotope Science and Production

    E-Print Network [OSTI]

    Isotope Science and Production 35 years of experience in isotope production, processing, and applications. Llllll Committed to the safe and reliable production of radioisotopes, products, and services nuclear materials in trucks and cargo containers. Isotopes for Threat Reduction Isotope production at Los

  12. Stable isotope studies

    SciTech Connect (OSTI)

    Ishida, T.

    1992-01-01T23:59:59.000Z

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

  13. High-precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source

    E-Print Network [OSTI]

    High-precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source A precision laser spectrometer for the detection of CO2 isotopes is reported. The spectrometer measures the fundamental absorption signatures of 13 C and 12 C isotopes in CO2 at 4.32 m using a tunable mid-IR laser

  14. Fabrication of Separator Demonstration Facility process vessel

    SciTech Connect (OSTI)

    Oberst, E.F.

    1985-01-15T23:59:59.000Z

    The process vessel system is the central element in the Separator Development Facility (SDF). It houses the two major process components, i.e., the laser-beam folding optics and the separators pods. This major subsystem is the critical-path procurement for the SDF project. Details of the vaious parts of the process vessel are given.

  15. Lateral coupled cavity semiconductor laser

    SciTech Connect (OSTI)

    Salzman, J.; Lang, R.; Yariv, A.

    1985-08-01T23:59:59.000Z

    We report the fabrication and operation of a lateral coupled cavity semiconductor laser that consists of two phase-locked parallel lasers of different lengths and with separate electrical contacts. Mode selectivity that results from the interaction between the two supermodes is investigated experimentally. Frequency selectivity and tunability are obtained by controlling the current to each laser separately. Highly stable single mode operation is also demonstrated.

  16. Isotopic abundance in atom trap trace analysis

    DOE Patents [OSTI]

    Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter

    2014-03-18T23:59:59.000Z

    A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.

  17. Particle separation

    DOE Patents [OSTI]

    Moosmuller, Hans (Reno, NV); Chakrabarty, Rajan K. (Reno, NV); Arnott, W. Patrick (Reno, NV)

    2011-04-26T23:59:59.000Z

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  18. MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980

    E-Print Network [OSTI]

    Searcy, Alan W.

    2010-01-01T23:59:59.000Z

    of trans­ uranium organometallic chemistry, particularlyfor Uranium Isotope Separation," Chemistry Division, IsotopeOlander, "Uranium Enrichment by Laser," Chemistry Division,

  19. Method for sequential injection of liquid samples for radioisotope separations

    DOE Patents [OSTI]

    Egorov, Oleg B. (Richland, WA); Grate, Jay W. (West Richland, WA); Bray, Lane A. (Richland, WA)

    2000-01-01T23:59:59.000Z

    The present invention is a method of separating a short-lived daughter isotope from a longer lived parent isotope, with recovery of the parent isotope for further use. Using a system with a bi-directional pump and one or more valves, a solution of the parent isotope is processed to generate two separate solutions, one of which contains the daughter isotope, from which the parent has been removed with a high decontamination factor, and the other solution contains the recovered parent isotope. The process can be repeated on this solution of the parent isotope. The system with the fluid drive and one or more valves is controlled by a program on a microprocessor executing a series of steps to accomplish the operation. In one approach, the cow solution is passed through a separation medium that selectively retains the desired daughter isotope, while the parent isotope and the matrix pass through the medium. After washing this medium, the daughter is released from the separation medium using another solution. With the automated generator of the present invention, all solution handling steps necessary to perform a daughter/parent radionuclide separation, e.g. Bi-213 from Ac-225 "cow" solution, are performed in a consistent, enclosed, and remotely operated format. Operator exposure and spread of contamination are greatly minimized compared to the manual generator procedure described in U.S. patent application Ser. No. 08/789,973, now U.S. Pat. No. 5,749,042, herein incorporated by reference. Using 16 mCi of Ac-225 there was no detectable external contamination of the instrument components.

  20. High average power magnetic modulator for copper lasers

    SciTech Connect (OSTI)

    Cook, E.G.; Ball, D.G.; Birx, D.L.; Branum, J.D.; Peluso, S.E.; Langford, M.D.; Speer, R.D.; Sullivan, J.R.; Woods, P.G.

    1991-06-14T23:59:59.000Z

    Magnetic compression circuits show the promise of long life for operation at high average powers and high repetition rates. When the Atomic Vapor Laser Isotope Separation (AVLIS) Program at Lawrence Livermore National Laboratory needed new modulators to drive their higher power copper lasers in the Laser Demonstration Facility (LDF), existing technology using thyratron switched capacitor inversion circuits did not meet the goal for long lifetimes at the required power levels. We have demonstrated that magnetic compression circuits can achieve this goal. Improving thyratron lifetime is achieved by increasing the thyratron conduction time, thereby reducing the effect of cathode depletion. This paper describes a three stage magnetic modulator designed to provide a 60 kV pulse to a copper laser at a 4. 5 kHz repetition rate. This modulator operates at 34 kW input power and has exhibited MTBF of {approx}1000 hours when using thyratrons and even longer MTBFs with a series of stack of SCRs for the main switch. Within this paper, the electrical and mechanical designs for the magnetic compression circuits are discussed as are the important performance parameters of lifetime and jitter. Ancillary circuits such as the charge circuit and reset circuit are shown. 8 refs., 5 figs., 1 tab.

  1. Laser Programs, the first 25 years, 1972-1997

    SciTech Connect (OSTI)

    Campbell, E.M.

    1998-03-04T23:59:59.000Z

    Welcome to Laser Programs. I am pleased that you can share in the excitement of 25 years of history since we began as a small program of 125 people to our current status as a world premier laser and applied science research team of over 1700 members. It is fitting that this program, which was founded on the dream of developing inertial confinement fusion technology, should celebrate this anniversary the same year that the ground is broken for the National Ignition Facility (NIF). Also at the same time, we are feeling the excitement of moving forward the Atomic Vapor Laser Isotope Separation (AVLIS) technology toward private sector use and developing many alternate scientific applications and technologies derived from our core programs. It is through the hard work of many dedicated scientists, engineers, technicians, and administrative team members that we have been able to accomplish the remarkable internationally recognized achievements highlighted here. I hope this brochure will help you enjoy the opportunity to share in the celebration and pride of our scientific accomplishments; state-of-the-art facilities; and diligent, dedicated people that together make our Laser Programs and Lawrence Livermore National Laboratory the best in the world.

  2. Precise overgrowth composition during biomineral culture and inorganic precipitation Alexander C. Gagnon a,b,

    E-Print Network [OSTI]

    Adkins, Jess F.

    spectrometry (SIMS) and laser ablation mass spectrometry. Since the method separates isotopically labeled

  3. Oxygen isotope heterogeneity and disequilibria of olivine crystals in large volume Holocene basalts from Iceland: Evidence

    E-Print Network [OSTI]

    Bindeman, Ilya N.

    and compositional zoning in selected grains, and subtle to severe D18 O (melt-olivine) and D18 O (plagioclase isotope laser fluorination analyses of 55 individual and bulk olivine crystals, coexisting individual different lavas, and variable core-to-rim oxygen isotopic zoning is present in selected olivine grains. Many

  4. Laser and gas centrifuge enrichment

    SciTech Connect (OSTI)

    Heinonen, Olli [Senior Fellow, Belfer Center for Science and International Affairs, Harvard Kennedy School, Cambridge, Massachusetts (United States)

    2014-05-09T23:59:59.000Z

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  5. Laser Program annual report 1984

    SciTech Connect (OSTI)

    Rufer, M.L.; Murphy, P.W. (eds.)

    1985-06-01T23:59:59.000Z

    The Laser Program Annual Report is part of the continuing series of reports documenting the progress of the unclassified Laser Fusion Program at the Lawrence Livermore National Laboratory (LLNL). As in previous years, the report is organized programmatically. The first section is an overview of the basic goals and directions of the LLNL Inertial Confinement Fusion (ICF) Program, and highlights the year's important accomplishments. Sections 2 through 7 provide the detailed information on the various program elements: Laser Systems and Operations, Target Design, Target Fabrication, Laser Experiments and Advanced Diagnostics, Advanced Laser Development, and Applications of Inertial Confinement Fusion. Individual sections will be indexed separately. 589 refs., 333 figs., 25 tabs.

  6. Isotope shifts in francium isotopes Fr 206 - 213 and Fr 221

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Collister, R.; Gwinner, G.; Tandecki, M.; Behr, J. A.; Pearson, M. R.; Zhang, J.; Orozco, L. A.; Aubin, S.; Gomez, E.; FrPNC Collaboration

    2014-11-01T23:59:59.000Z

    We present the isotope shifts of the 7s1/2 to 7p1/2 transition for francium isotopes ²???²¹³Fr with reference to ²²¹Fr collected from two experimental periods. The shifts are measured on a sample of atoms prepared within a magneto-optical trap by a fast sweep of radio-frequency sidebands applied to a carrier laser. King plot analysis, which includes literature values for 7s1/2 to 7p3/2 isotope shifts, provides a field shift constant ratio of 1.0520(10) and a difference between the specific mass shift constants of 170(100) GHz amu between the D? and D? transitions, of sufficient precision to differentiate between ab initio calculations.

  7. Stable isotope enrichment

    ScienceCinema (OSTI)

    Egle, Brian

    2014-07-15T23:59:59.000Z

    Brian Egle is working to increase the nation's capacity to produce stable isotopes for use including medicine, industry and national security.

  8. Isotopically controlled semiconductors

    E-Print Network [OSTI]

    Haller, E.E.

    2004-01-01T23:59:59.000Z

    and phonons in semiconductors,” J. Non-Cryst. Solids 141 (LVM) Spectroscopy of Semiconductors,” Mat. Res. Soc. Symp.Isotopically Engineered Semiconductors – New Media for the

  9. Stable isotope enrichment

    SciTech Connect (OSTI)

    Egle, Brian

    2014-07-14T23:59:59.000Z

    Brian Egle is working to increase the nation's capacity to produce stable isotopes for use including medicine, industry and national security.

  10. Discovery of the Tungsten Isotopes

    E-Print Network [OSTI]

    A. Fritsch; J. Q. Ginepro; M. Heim; A. Schuh; A. Shore; M. Thoennessen

    2009-03-25T23:59:59.000Z

    Thirty-five tungsten isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  11. Discovery of the Titanium Isotopes

    E-Print Network [OSTI]

    D. Meierfrankenfeld; M. Thoennessen

    2010-09-08T23:59:59.000Z

    Twentyfive titanium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  12. Discovery of the Tin Isotopes

    E-Print Network [OSTI]

    S. Amos; M. Thoennessen

    2010-09-08T23:59:59.000Z

    Thirty-eight tin isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  13. Discovery of the tungsten isotopes

    SciTech Connect (OSTI)

    Fritsch, A.; Ginepro, J.Q.; Heim, M.; Schuh, A.; Shore, A. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Thoennessen, M. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)], E-mail: thoennessen@nscl.msu.edu

    2010-05-15T23:59:59.000Z

    Thirty-five tungsten isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  14. Discovery of the Tungsten Isotopes

    E-Print Network [OSTI]

    Fritsch, A; Heim, M; Schuh, A; Shore, A; Thoennessen, M

    2009-01-01T23:59:59.000Z

    Thirty-five tungsten isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  15. Isotope and Nuclear Chemistry Division annual report, FY 1983

    SciTech Connect (OSTI)

    Heiken, J.H.; Lindberg, H.A. (eds.)

    1984-05-01T23:59:59.000Z

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  16. Apparatus and method for monitoring of gas having stable isotopes

    DOE Patents [OSTI]

    Clegg, Samuel M; Fessenden-Rahn, Julianna E

    2013-03-05T23:59:59.000Z

    Gas having stable isotopes is monitored continuously by using a system that sends a modulated laser beam to the gas and collects and transmits the light not absorbed by the gas to a detector. Gas from geological storage, or from the atmosphere can be monitored continuously without collecting samples and transporting them to a lab.

  17. Noise suppressing capillary separation system

    DOE Patents [OSTI]

    Yeung, E.S.; Xue, Y.

    1996-07-30T23:59:59.000Z

    A noise-suppressing capillary separation system for detecting the real-time presence or concentration of an analyte in a sample is provided. The system contains a capillary separation means through which the analyte is moved, a coherent light source that generates a beam which is split into a reference beam and a sample beam that irradiate the capillary, and a detector for detecting the reference beam and the sample beam light that transmits through the capillary. The laser beam is of a wavelength effective to be absorbed by a chromophore in the capillary. The system includes a noise suppressing system to improve performance and accuracy without signal averaging or multiple scans. 13 figs.

  18. Elemental and isotopic separation by diffusion in geological liquids

    E-Print Network [OSTI]

    Watkins, James Mervin

    2010-01-01T23:59:59.000Z

    J. , 1974. Igneous Petrology. McGraw-Hill, New York, 739to Mineralogy and Petrology 101, Newman, S. , Stolper, E. ,Contributions to Mineralogy and Petrology 80, 83–87. Watson,

  19. Y-12 plant prepares to separate lithium isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    patterned after "Fat Man," because the Soviets were now on equal footing with a thermonuclear weapon capability -- and Y-12 was charged with increasing production and adapting...

  20. Packed bed reactor for photochemical .sup.196 Hg isotope separation

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA)

    1992-01-01T23:59:59.000Z

    Straight tubes and randomly oriented pieces of tubing having been employed in a photochemical mercury enrichment reactor and have been found to improve the enrichment factor (E) and utilization (U) compared to a non-packed reactor. One preferred embodiment of this system uses a moving bed (via gravity) for random packing.

  1. Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca, California: Energy Resources Jump

  2. (Carbon isotope fractionation inplants)

    SciTech Connect (OSTI)

    O'Leary, M.H.

    1990-01-01T23:59:59.000Z

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  3. Isotope production and distribution Programs Fiscal Year (FY) 1995 Financial Statement Audit (ER-FC-96-01)

    SciTech Connect (OSTI)

    NONE

    1996-02-12T23:59:59.000Z

    The charter of the Department of Energy (DOE) Isotope Production and Distribution Program (Isotope Program) covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials such as lithium and deuterium, and related isotope services. Services provided include, but are not limited to, irradiation services, target preparation and processing, source encapsulation and other special preparations, analyses, chemical separations, and leasing of stable isotopes for research purposes. Isotope Program products and services are sold worldwide for use in a wide variety of research, development, biomedical, and industrial applications. The Isotope Program reports to the Director of the Office of Nuclear Energy, Science and Technology. The Isotope Program operates under a revolving fund, as established by the Fiscal Year 1990 Energy and Water Appropriations Act (Public Law 101-101). The Fiscal Year 1995 Appropriations Act (Public Law 103-316) modified predecessor acts to allow prices charged for Isotope Program products and services to be based on production costs, market value, the needs of the research community, and other factors. Prices set for small-volume, high-cost isotopes that are needed for research may not achieve full-cost recovery. Isotope Program costs are financed by revenues from the sale of isotopes and associated services and through payments from the isotope support decision unit, which was established in the DOE fiscal year 1995 Energy, Supply, Research, and Development appropriation. The isotope decision unit finances the production and processing of unprofitable isotopes that are vital to the national interest.

  4. RESOLUTION OF URANIUM ISOTOPES WITH KINETIC PHOSPHORESCENCE ANALYSIS

    SciTech Connect (OSTI)

    Miley, Sarah M.; Hylden, Anne T.; Friese, Judah I.

    2013-04-01T23:59:59.000Z

    This study was conducted to test the ability of the Chemchek™ Kinetic Phosphorescence Analyzer Model KPA-11 with an auto-sampler to resolve the difference in phosphorescent decay rates of several different uranium isotopes, and therefore identify the uranium isotope ratios present in a sample. Kinetic phosphorescence analysis (KPA) is a technique that provides rapid, accurate, and precise determination of uranium concentration in aqueous solutions. Utilizing a pulsed-laser source to excite an aqueous solution of uranium, this technique measures the phosphorescent emission intensity over time to determine the phosphorescence decay profile. The phosphorescence intensity at the onset of decay is proportional to the uranium concentration in the sample. Calibration with uranium standards results in the accurate determination of actual concentration of the sample. Different isotopes of uranium, however, have unique properties which should result in different phosphorescence decay rates seen via KPA. Results show that a KPA is capable of resolving uranium isotopes.

  5. Unattended Monitoring of HEU Production in Gaseous Centrifuge Enrichment Plants using Automated Aerosol Collection and Laser-based Enrichment Assay

    SciTech Connect (OSTI)

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-08-11T23:59:59.000Z

    Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward low carbon energy production. Pivotal to the global nuclear power renaissance is the development and deployment of robust safeguards instrumentation that allows the limited resources of the IAEA to keep pace with the expansion of the nuclear fuel cycle. Undeclared production of highly enriched uranium (HEU) remains a primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs), due to their massive separative work unit (SWU) processing power and comparably short cascade equilibrium timescale. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely detection of HEU production within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. Our prior investigation demonstrated single-shot detection sensitivity approaching the femtogram range and relative isotope ratio uncertainty better than 10% using gadolinium as a surrogate for uranium. In this paper we present measurement results on standard samples containing traces of depleted, natural, and low enriched uranium, as well as measurements on aerodynamic size uranium particles mixed in background materials (e.g., dust, minerals, soils). Improvements and optimizations in the detection electronics, signal timing, calibration, and laser alignment have lead to significant improvements in detection sensitivity and enrichment accuracy, contributing to an overall reduction in the false alarm probability. The sample substrate media was also found to play a significant role in facilitating laser-induced vaporization and the production of energetic plasma conditions, resulting in ablation optimization and further improvements in the isotope abundance sensitivity.

  6. Experimental studies of the transfer phenomena of tritium in an isotope exchange column for recovery tritium

    E-Print Network [OSTI]

    Experimental studies of the transfer phenomena of tritium in an isotope exchange column for recovery tritium Anisia Bornea, Ion Cristescu, Marius Zamfirache, Carmen Varlam National Institute of R processes for tritium separation, is the catalyst isotope exchange water-hydrogen. The main problem

  7. Understanding denitrification with stable isotope measurements of N2: proof of concept study

    E-Print Network [OSTI]

    Downer, Roswell Curtis

    2004-01-01T23:59:59.000Z

    The biologically mediated removal of nitrogen from estuarine and shallow coastal waters was investigated using a new method for the determination of N? isotope ratios. This method employs the use of a chromatographic separation technique to purify...

  8. System for recovery of daughter isotopes from a source material

    SciTech Connect (OSTI)

    Tranter, Troy J. (Idaho Falls, ID) [Idaho Falls, ID; Todd, Terry A. (Aberdeen, ID) [Aberdeen, ID; Lewis, Leroy C. (Idaho Falls, ID) [Idaho Falls, ID; Henscheid, Joseph P. (Idaho Falls, ID) [Idaho Falls, ID

    2009-08-04T23:59:59.000Z

    A method of separating isotopes from a mixture containing at least two isotopes in a solution is disclosed. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material containing thorium-229 and thorium-232, and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the thorium iodate precipitate. The thorium iodate precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid, which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. A system for producing an actinium-225/bismuth-213 product is also disclosed.

  9. On the origin of the lightest Molybdenum isotopes

    E-Print Network [OSTI]

    Jacob Lund Fisker; Robert D. Hoffman; Jason Pruet

    2009-01-15T23:59:59.000Z

    We discuss implications of recent precision measurements for the Rh93 proton separation energy for the production of the lightest molybdenum isotopes in proton-rich type II supernova ejecta. It has recently been shown that a novel neutrino-induced process makes these ejecta a promising site for the production of the light molybdenum isotopes and other "p-nuclei" with atomic mass near 100. The origin of these isotopes has long been uncertain. A distinguishing feature of nucleosynthesis in neutrino-irradiated outflows is that the relative production of Mo92 and Mo94 is set by a competition governed by the proton separation energy of Rh93. We use detailed nuclear network calculations and the recent experimental results for this proton separation energy to place constraints on the outflow characteristics that produce the lightest molybdenum isotopes in their solar proportions. It is found that for the conditions calculated in recent two-dimensional supernova simulations, and also for a large range of outflow characteristics around these conditions, the solar ratio of Mo92 to Mo94 cannot be achieved. This suggests that either proton-rich winds from type II supernova do not exclusively produce both isotopes, or that these winds are qualitatively different than calculated in today's supernova models.

  10. Design and component specifications for high average power laser optical systems

    SciTech Connect (OSTI)

    O'Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01T23:59:59.000Z

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs.

  11. High-purity, isotopically enriched bulk silicon

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    Russia. The stated isotope enrichments are summarized inenrichments >99% have been achieved for each isotope andthe enrichment is highest, are presented. isotope at. % nat.

  12. Transportation of medical isotopes

    SciTech Connect (OSTI)

    Nielsen, D.L.

    1997-11-19T23:59:59.000Z

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  13. Selective Rotational Excitation of Molecular Isotopes and Nuclear Spin Isomers

    E-Print Network [OSTI]

    Sharly Fleischer; Ilya. Sh. Averbukh; Yehiam Prior

    2007-02-15T23:59:59.000Z

    Following excitation by a strong ultra-short laser pulse, molecules develop coordinated rotational motion, exhibiting transient alignment along the direction of the laser electric field, followed by periodic full and fractional revivals that depend on the molecular rotational constants. In mixtures, the different species undergo similar rotational dynamics, all starting together but evolving differently with each demonstrating its own periodic revival cycles. For a bimolecular mixture of linear molecules, at predetermined times, one species may attain a maximally aligned state while the other is anti-aligned (i.e. molecular axes are confined in a plane perpendicular to the laser electric field direction). By a properly timed second laser pulse, the rotational excitation of the undesired species may be almost completely removed leaving only the desired species to rotate and periodically realign, thus facilitating further selective manipulations by polarized light. In this paper, such double excitation schemes are demonstrated for mixtures of molecular isotopes (isotopologues) and for nuclear spin isomers.

  14. Ground-State Electromagnetic Moments of Calcium Isotopes

    E-Print Network [OSTI]

    Ruiz, R F Garcia; Blaum, K; Frommgen, N; Hammen, M; Holt, J D; Kowalska, M; Kreim, K; Menendez, J; Neugart, R; Neyens, G; Nortershauser, W; Nowacki, F; Papuga, J; Poves, A; Schwenk, A; Simonis, J; Yordanov, D T

    2015-01-01T23:59:59.000Z

    High-resolution bunched-beam collinear laser spectroscopy was used to measure the optical hyperfine spectra of the $^{43-51}$Ca isotopes. The ground state magnetic moments of $^{49,51}$Ca and quadrupole moments of $^{47,49,51}$Ca were measured for the first time, and the $^{51}$Ca ground state spin $I=3/2$ was determined in a model-independent way. Our results provide a critical test of modern nuclear theories based on shell-model calculations using phenomenological as well as microscopic interactions. The results for the neutron-rich isotopes are in excellent agreement with predictions using interactions derived from chiral effective field theory including three-nucleon forces, while lighter isotopes illustrate the presence of particle-hole excitations of the $^{40}$Ca core in their ground state.

  15. Ground-State Electromagnetic Moments of Calcium Isotopes

    E-Print Network [OSTI]

    R. F. Garcia Ruiz; M. L. Bissell; K. Blaum; N. Frommgen; M. Hammen; J. D. Holt; M. Kowalska; K. Kreim; J. Menendez; R. Neugart; G. Neyens; W. Nortershauser; F. Nowacki; J. Papuga; A. Poves; A. Schwenk; J. Simonis; D. T. Yordanov

    2015-04-17T23:59:59.000Z

    High-resolution bunched-beam collinear laser spectroscopy was used to measure the optical hyperfine spectra of the $^{43-51}$Ca isotopes. The ground state magnetic moments of $^{49,51}$Ca and quadrupole moments of $^{47,49,51}$Ca were measured for the first time, and the $^{51}$Ca ground state spin $I=3/2$ was determined in a model-independent way. Our results provide a critical test of modern nuclear theories based on shell-model calculations using phenomenological as well as microscopic interactions. The results for the neutron-rich isotopes are in excellent agreement with predictions using interactions derived from chiral effective field theory including three-nucleon forces, while lighter isotopes illustrate the presence of particle-hole excitations of the $^{40}$Ca core in their ground state.

  16. 7, 1271512750, 2007 Hydrogen isotope

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    imply that there must be a very strong concomitant isotopic enrichment in the radical channel (CH2O + hACPD 7, 12715­12750, 2007 Hydrogen isotope fractionation in the photolysis of formaldehyde T. S a Creative Commons License. Atmospheric Chemistry and Physics Discussions Hydrogen isotope fractionation

  17. USABC Battery Separator Development

    Broader source: Energy.gov (indexed) [DOE]

    Derma Patches Gas Diffusion Food Packaging Specialty Medical Membranes Dialysis Plasma Separation Oxygenation O2 & CO2 Removal Food & Beverage Ink Processing Industrial Page...

  18. Voluntary Separation Programs

    Broader source: Energy.gov (indexed) [DOE]

    than that to which the employee would otherwise be entitled upon separation from employment. Waivers are mandatory bargaining subjects. Therefore, if the affected employees are...

  19. Ion Mobility Mass Spectrometry Direct Isotope Abundance Analysis

    SciTech Connect (OSTI)

    Manuel J. Manard, Stephan Weeks, Kevin Kyle

    2010-05-27T23:59:59.000Z

    The nuclear forensics community is currently engaged in the analysis of illicit nuclear or radioactive material for the purposes of non-proliferations and attribution. One technique commonly employed for gathering nuclear forensics information is isotope analysis. At present, the state-of-the-art methodology for obtaining isotopic distributions is thermal ionization mass spectrometry (TIMS). Although TIMS is highly accurate at determining isotope distributions, the technique requires an elementally pure sample to perform the measurement. The required radiochemical separations give rise to sample preparation times that can be in excess of one to two weeks. Clearly, the nuclear forensics community is in need of instrumentation and methods that can expedite their decision making process in the event of a radiological release or nuclear detonation. Accordingly, we are developing instrumentation that couples a high resolution IM drift cell to the front end of a MS. The IM cell provides a means of separating ions based upon their collision cross-section and mass-to-charge ratio (m/z). Two analytes with the same m/z, but with different collision cross-sections (shapes) would exit the cell at different times, essentially enabling the cell to function in a similar manner to a gas chromatography (GC) column. Thus, molecular and atomic isobaric interferences can be effectively removed from the ion beam. The mobility selected chemical species could then be introduced to a MS for high-resolution mass analysis to generate isotopic distributions of the target analytes. The outcome would be an IM/MS system capable of accurately measuring isotopic distributions while concurrently eliminating isobaric interferences and laboratory radiochemical sample preparation. The overall objective of this project is developing instrumentation and methods to produce near real-time isotope distributions with a modular mass spectrometric system that performs the required gas-phase chemistry and separations. The system couples a high-resolution ion mobility (IM) drift cell to the front end of a mass spectrometer (MS) allowing for chemical separation prior to isotope distribution analyses. This will yield isotope ratio measurement capabilities with minimal sample preparation.

  20. Continuous flow system for controlling phases separation near ? transition

    SciTech Connect (OSTI)

    Chorowski, M.; Poli?ski, J. [Wroc?aw University of Technology, Wybrze?e Wyspia?skiego 27,50-560 Wroc?aw (Poland); Kempi?ski, W.; Trybu?a, Z.; ?o?, Sz. [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17,60-179 Pozna? (Poland); Cho?ast, K.; Kociemba, A. [Polish Oil and Gas Company, Odolanow, ul. Krotoszynska 148, 63-430 Odolanow (Poland)

    2014-01-29T23:59:59.000Z

    As demands on 3He are increasing and conventional 3He production through tritium decay is decreasing, alternative 3He production methods are becoming economically viable. One such possibility is to use entropy filters for extraction of the 3He isotope from natural gas. According to the phase diagram of the 3He, its solidification is impossible by only lowering of the temperature. Hence during the cooling process at stable pressure we can reach ?-point and pass to the special phase - He II. The total density of HeII is a sum of the two phases: normal the superfluid ones. It is possible to separate these two phases with an entropy filter - the barrier for the classically-behaving normal phase. This barrier can also be used to separate the two main isotopes of He: 4He and 3He, because at temperatures close to the 4He-?-point the 3He isotope is part of the normal phase. The paper presents continuous flow schemes of different separation methods of 3He from helium commodity coming from natural gas cryogenic processing. An overall thermodynamic efficiency of the 3He/4He separation process is presented. A simplified model of continuous flow HeI -HeII recuperative heat exchanger is given. Ceramic and carbon porous plugs have been tested in entropy filter applications.

  1. Page 1Laser Safety Training Laser Institute of America Laser Safety Laser Institute of America

    E-Print Network [OSTI]

    Farritor, Shane

    Page 1Laser Safety Training © Laser Institute of America 1 Laser Safety © Laser Institute of America Laser Safety: Hazards, Bioeffects, and Control Measures Laser Institute of America Gus Anibarro Education Manager 2Laser Safety © Laser Institute of America Laser Safety Overview Laser Safety Accidents

  2. Substituted polyacetylene separation membrane

    DOE Patents [OSTI]

    Pinnau, Ingo (Palo Alto, CA); Morisato, Atsushi (Tokyo, JP)

    1998-01-13T23:59:59.000Z

    A separation membrane useful for gas separation, particularly separation of C.sub.2+ hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula: ##STR1## wherein R.sub.1 is chosen from the group consisting of C.sub.1 -C.sub.4 alkyl and phenyl, and wherein R.sub.2 is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) ›PMP!. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations.

  3. Substituted polyacetylene separation membrane

    DOE Patents [OSTI]

    Pinnau, I.; Morisato, Atsushi

    1998-01-13T23:59:59.000Z

    A separation membrane is described which is useful for gas separation, particularly separation of C{sub 2+} hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula shown in the accompanying diagram, wherein R{sub 1} is chosen from the group consisting of C{sub 1}-C{sub 4} alkyl and phenyl, and wherein R{sub 2} is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) [PMP]. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations. 4 figs.

  4. Separators for flywheel rotors

    DOE Patents [OSTI]

    Bender, D.A.; Kuklo, T.C.

    1998-07-07T23:59:59.000Z

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors. 10 figs.

  5. Separators for flywheel rotors

    DOE Patents [OSTI]

    Bender, Donald A. (Dublin, CA); Kuklo, Thomas C. (Oakdale, CA)

    1998-01-01T23:59:59.000Z

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors.

  6. Laser Telecommunication timeLaser beam

    E-Print Network [OSTI]

    La Rosa, Andres H.

    Laser Telecommunication Experiment Laser time Laser beam intensity timeLaser beam Laser battery Laser connected to a circuit without a modulator. Bottom graph illustrates what happen when a modulating signal is superimposed to the DC voltage driving the laser Laser beam intensity DC Input voltage DC

  7. Unattended Environmental Sampling and Laser-based Enrichment Assay for Detection of Undeclared HEU Production in Enrichment Plants

    SciTech Connect (OSTI)

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-04-15T23:59:59.000Z

    Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward carbon neutral energy production. Accompanying the growth in nuclear power is the requirement for increased nuclear fuel production, including a significant expansion in uranium enrichment capacity. Essential to the success of the nuclear energy renaissance is the development and implementation of sustainable, proliferation-resistant nuclear power generation. Unauthorized production of highly enriched uranium (HEU) remains the primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs). While to date there has been no indication of declared, safeguarded GCEPs producing HEU, the massive separative work unit (SWU) processing power of modern GCEPs presents a significant latent risk of nuclear breakout and suggests the need for more timely detection of potential facility misuse. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely HEU detection within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. We demonstrate enrichment assay, with relative isotope abundance uncertainty <5%, on individual micron-sized particles that are trace components within a mixture ‘background’ particles

  8. Vector dark domain wall solitons in a fiber ring laser

    E-Print Network [OSTI]

    H. Zhang; D. Y. Tang; L. M. Zhao; R. J. Knize

    2009-10-15T23:59:59.000Z

    We observe a novel type of vector dark soliton in a fiber ring laser. The vector dark soliton consists of stable localized structures separating the two orthogonal linear polarization eigenstates of the laser emission and is visible only when the total laser emission is measured. Moreover, polarization domain splitting and moving polarization domain walls (PDWs) were also experimentally observed.

  9. Laser microphone

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    2000-11-14T23:59:59.000Z

    A microphone for detecting sound pressure waves includes a laser resonator having a laser gain material aligned coaxially between a pair of first and second mirrors for producing a laser beam. A reference cell is disposed between the laser material and one of the mirrors for transmitting a reference portion of the laser beam between the mirrors. A sensing cell is disposed between the laser material and one of the mirrors, and is laterally displaced from the reference cell for transmitting a signal portion of the laser beam, with the sensing cell being open for receiving the sound waves. A photodetector is disposed in optical communication with the first mirror for receiving the laser beam, and produces an acoustic signal therefrom for the sound waves.

  10. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    SciTech Connect (OSTI)

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01T23:59:59.000Z

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  11. Water isotopes and the general circulation

    E-Print Network [OSTI]

    Noone, David

    is depleted. #12;Distillation: vapor and condensate Isotopic fractionation -35 -30 -25 -20 -15 -10 -5 0 5 0 0 of idealized isotopic fractionation Expression of isotopic fractionation in nature Attributing signals" 18 = (R/Rstandard-1)x1000 R = moles of H2 18O/moles of H2 16O #12;Isotopic fractionation Isotopic

  12. USABC Battery Separator Development

    Broader source: Energy.gov (indexed) [DOE]

    Separator Development P.I. - Ron Smith Presenter - Kristoffer Stokes, Ph.D. Celgard, LLC Project ID ES007 May 10, 2011 This presentation does not contain any proprietary,...

  13. Microsystem capillary separations

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E [Kennewick, WA; Wegeng, Robert S [Richland, WA; Whyatt, Greg A [West Richland, WA; Stenkamp, Victoria S [Richland, WA; Gauglitz, Phillip A [Richland, WA

    2003-12-23T23:59:59.000Z

    Laminated, multiphase separators and contactors having wicking structures and gas flow channels are described. Some preferred embodiments are combined with microchannel heat exchange. Integrated systems containing these components are also part of the present invention.

  14. Molten salt electrolyte separator

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1996-01-01T23:59:59.000Z

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  15. Hydrogen separation process

    DOE Patents [OSTI]

    Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

    2011-05-24T23:59:59.000Z

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  16. Membrane Separations Research

    E-Print Network [OSTI]

    Fair, J. R.

    applicabilily of separation mel hods for the removal of carbon dioxide frum gas streams. Another application of hybrid systems deals with hydrogen recovery. As discussed earlier, this separation may be made by membrane petmeation, but classically it has also... box; altemate schemes have this sequence reversed. Sal6S gas Feed Membrane ~ Acid gas Amine conlactor Acid gas Amine stripper Figure 7. Hybrid system for the removal of acid gases from nalural gas. MEMBRANE UNIT COLD BOX HYDROGEN PRODUCT...

  17. Development of high through-put Sr isotope analysis for monitoring reservoir integrity for CO{sub 2} storage.

    SciTech Connect (OSTI)

    Wall, Andy; Jain, Jinesh; Stewart, Brian; Capo, Rosemary; Hakala, Alexandra J.; Hammack, Richard; Guthrie, George

    2012-01-01T23:59:59.000Z

    Recent innovations in multi-collector ICP-mass spectrometry (MC-ICP-MS) have allowed for rapid and precise measurements of isotope ratios in geological samples. Naturally occurring Sr isotopes has the potential for use in Monitoring, Verification, and Accounting (MVA) associated with geologic CO2 storage. Sr isotopes can be useful for: Sensitive tracking of brine migration; Determining seal rock leakage; Studying fluid/rock reactions. We have optimized separation chemistry procedures that will allow operators to prepare samples for Sr isotope analysis off site using rapid, low cost methods.

  18. Evolution of isotopic composition of reprocessed uranium during the multiple recycling in light water reactors with natural uranium feed

    SciTech Connect (OSTI)

    Smirnov, A. Yu., E-mail: a.y.smirnoff@rambler.ru; Sulaberidze, G. A. [National Research Nuclear University MEPhI (Russian Federation); Alekseev, P. N.; Dudnikov, A. A.; Nevinitsa, V. A., E-mail: neva@dhtp.kiae.ru; Proselkov, V. N.; Chibinyaev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

    2012-12-15T23:59:59.000Z

    A complex approach based on the consistent modeling of neutron-physics processes and processes of cascade separation of isotopes is applied for analyzing physical problems of the multiple usage of reprocessed uranium in the fuel cycle of light water reactors. A number of scenarios of multiple recycling of reprocessed uranium in light water reactors are considered. In the process, an excess absorption of neutrons by the {sup 236}U isotope is compensated by re-enrichment in the {sup 235}U isotope. Specific consumptions of natural uranium for re-enrichment of the reprocessed uranium depending on the content of the {sup 232}U isotope are obtained.

  19. Laser ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    2003-01-01T23:59:59.000Z

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

  20. Vacuum barrier for excimer lasers

    DOE Patents [OSTI]

    Shurter, R.P.

    1992-09-15T23:59:59.000Z

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput. 3 figs.

  1. Vacuum barrier for excimer lasers

    DOE Patents [OSTI]

    Shurter, Roger P. (Jemez Springs, NM)

    1992-01-01T23:59:59.000Z

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput.

  2. Free-Electron Laser FLASH Injector Laser

    E-Print Network [OSTI]

    FLASH. Free-Electron Laser in Hamburg FLASH Injector Laser Laser 1 Laser 2 Next steps Siegfried | FLASH Meeting | 16-Nov-2009 FLASH. Free-Electron Laser in Hamburg Laser 1 System Overview fround trip A 541 (2005) 467­477 #12;Siegfried Schreiber | FLASH Meeting | 16-Nov-2009 FLASH. Free-Electron Laser

  3. Dialysis membrane for separation on microchips

    DOE Patents [OSTI]

    Singh, Anup K. (San Francisco, CA); Kirby, Brian J. (San Francisco, CA); Shepodd, Timothy J. (Livermore, CA)

    2010-07-13T23:59:59.000Z

    Laser-induced phase-separation polymerization of a porous acrylate polymer is used for in-situ fabrication of dialysis membranes inside glass microchannels. A shaped 355 nm laser beam is used to produce a porous polymer membrane with a thickness of about 15 .mu.m, which bonds to the glass microchannel and forms a semi-permeable membrane. Differential permeation through a membrane formed with pentaerythritol triacrylate was observed and quantified by comparing the response of the membrane to fluorescein and fluorescently tagging 200 nm latex microspheres. Differential permeation was observed and quantified by comparing the response to rhodamine 560 and lactalbumin protein in a membrane formed with SPE-methylene bisacrylamide. The porous membranes illustrate the capability for the present technique to integrate sample cleanup into chip-based analysis systems.

  4. Separative power of an optimised concurrent gas centrifuge

    E-Print Network [OSTI]

    Bogovalov, S V

    2015-01-01T23:59:59.000Z

    The problem of separation of uranium isotopes in a concurrent gas centrifuge is solved analytically. Separative power of the optimized concurrent gas centrifuges equals to $\\delta U=12.7(V/700~{\\rm m/s})^2 (300 ~{\\rm K}/T)L, ~{\\rm kg ~SWU/yr}$, where $L$ and $V$ are the length and linear velocity of the rotor of the gas centrifuge, $T$ is the temperature. This formula well agrees with an empirical separative power of counter current gas centrifuges. The optimal value of the separative power is not unique on the plane $(p_w,v_z)$, where $p_w$ is pressure at the wall of the rotor and $v_z$ is axial velocity of the gas. This value is constant on a line defined by the equation $p_wv_z=constant$. Equations defining the mass flux and the electric power necessary to support the rotation of the gas centrifuge are obtained.

  5. Novel Isotope Effects and Organic Reaction Mechanisms

    E-Print Network [OSTI]

    Kelly, Kelmara K.

    2010-07-14T23:59:59.000Z

    to account for the observed isotope effects. In the dimerization of cyclopentadiene, novel "dynamic" isotope effects are observed on the 13C distribution in the product, and a method for the prediction of these isotope effects is developed here...

  6. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    SciTech Connect (OSTI)

    Heiken, J.H. (ed.)

    1987-06-01T23:59:59.000Z

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

  7. Organic Separation Test Results

    SciTech Connect (OSTI)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-09-22T23:59:59.000Z

    Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations, could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.

  8. Boron isotopic variations in NW USA rhyolites: Yellowstone, Snake River Plain, Eastern Oregon

    E-Print Network [OSTI]

    Lee, Cin-Ty Aeolus

    multiplier laser ablation-ICP-MS. 11 B values are systematically lighter in SRPY rhyolites (-5.6 to -8, and could reflect melting of juvenile basalt-derived protoliths in the crust. B isotope ratios of low-18 O originally metasediments, it is likely that bulk B and 11 B were selectively removed by metamorphic

  9. MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980

    E-Print Network [OSTI]

    Searcy, Alan W.

    2010-01-01T23:59:59.000Z

    for Uranium Isotope Separation," Chemistry Division, Isotopeof trans­ uranium organometallic chemistry, particularlyOlander, "Uranium Enrichment by Laser," Chemistry Division,

  10. Membrane separation of hydrocarbons

    DOE Patents [OSTI]

    Chang, Y. Alice (Des Plaines, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL); Funk, Edward W. (Highland Park, IL)

    1986-01-01T23:59:59.000Z

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

  11. ARM - Measurement - Isotope ratio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow,ice particleSizegovMeasurementsIsotope ratio

  12. The marine biogeochemistry of zinc isotopes

    E-Print Network [OSTI]

    John, Seth G

    2007-01-01T23:59:59.000Z

    Zinc (Zn) stable isotopes can record information about important oceanographic processes. This thesis presents data on Zn isotopes in anthropogenic materials, hydrothermal fluids and minerals, cultured marine phytoplankton, ...

  13. Stable Isotope Fractionations in Biogeochemical Reactive Transport

    E-Print Network [OSTI]

    Druhan, Jennifer Lea

    2012-01-01T23:59:59.000Z

    characteristic of stable isotope enrichment. The values of !isotope ratios of sulfur in these sulfate samples demonstrated a clear enrichmentisotope ( 34 S) (Canfield, 2001). The characteristic enrichment

  14. Strategic Isotope Production | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Isotope Production SHARE Strategic Isotope Production Typical capsules used in the transport of 252Cf source material inside heavily shielded shipping casks. ORNL's...

  15. Isotopic Trends in Production of Superheavies

    SciTech Connect (OSTI)

    Antonenko, N.V. [Institut fuer Theoretische Physik der Justus-Liebig-Universitaet, D-35392 Giessen (Germany); Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Adamian, G.G.; Zubov, A.S. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Scheid, W. [Institut fuer Theoretische Physik der Justus-Liebig-Universitaet, D-35392 Giessen (Germany)

    2005-11-21T23:59:59.000Z

    The isotopic trends are discussed for cold and hot fusion reactions leading to superheavies. The possibilities of production of new isotopes in incomplete fusion reactions are treated.

  16. Separators for electrochemical cells

    DOE Patents [OSTI]

    Carlson, Steven Allen; Anakor, Ifenna Kingsley

    2014-11-11T23:59:59.000Z

    Provided are separators for use in an electrochemical cell comprising (a) an inorganic oxide and (b) an organic polymer, wherein the inorganic oxide comprises organic substituents. Preferably, the inorganic oxide comprises an hydrated aluminum oxide of the formula Al.sub.2O.sub.3.xH.sub.2O, wherein x is less than 1.0, and wherein the hydrated aluminum oxide comprises organic substituents, preferably comprising a reaction product of a multifunctional monomer and/or organic carbonate with an aluminum oxide, such as pseudo-boehmite and an aluminum oxide. Also provided are electrochemical cells comprising such separators.

  17. Isotope Research 229 Th production

    E-Print Network [OSTI]

    Isotope Research ­ 229 Th production We recently completed an ARRA-funded project of this type on 229 Th production reactions [Str11]. This long-lived isotope is important as a precursor to 225 Ac of accelerator production of 229 Th via the 230 Th(p,2n)229 Pa reaction. The 229 Pa decays primarily by electron

  18. Biocavity Lasers

    SciTech Connect (OSTI)

    Gourley, P.L.; Gourley, M.F.

    2000-10-05T23:59:59.000Z

    Laser technology has advanced dramatically and is an integral part of today's healthcare delivery system. Lasers are used in the laboratory analysis of human blood samples and serve as surgical tools that kill, burn or cut tissue. Recent semiconductor microtechnology has reduced the size o f a laser to the size of a biological cell or even a virus particle. By integrating these ultra small lasers with biological systems, it is possible to create micro-electrical mechanical systems that may revolutionize health care delivery.

  19. Laser ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    2002-01-01T23:59:59.000Z

    In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

  20. Molten salt electrolyte separator

    DOE Patents [OSTI]

    Kaun, T.D.

    1996-07-09T23:59:59.000Z

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  1. Polymide gas separation membranes

    DOE Patents [OSTI]

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14T23:59:59.000Z

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  2. NEAMS safeguards and separations

    SciTech Connect (OSTI)

    Sadasivan, Pratap [Los Alamos National Laboratory; De Paoli, David W [ORNL

    2011-01-25T23:59:59.000Z

    This presentation provides a program management update on the Safeguards and Separations Integrated Performance and Safety Code (IPSC) program in the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS). It provides an overview of FY11 work packages at multiple DOE Labs and includes material on challenge problem definitions for the IPSC effort.

  3. Means and method of detection in chemical separation procedures

    DOE Patents [OSTI]

    Yeung, Edward S. (Ames, IA); Koutny, Lance B. (Ames, IA); Hogan, Barry L. (Ames, IA); Cheung, Chan K. (Ames, IA); Ma, Yinfa (Ames, IA)

    1993-03-09T23:59:59.000Z

    A means and method for indirect detection of constituent components of a mixture separated in a chemical separation process. Fluorescing ions are distributed across the area in which separation of the mixture will occur to provide a generally uniform background fluorescence intensity. For example, the mixture is comprised of one or more charged analytes which displace fluorescing ions where its constituent components separate to. Fluorescing ions of the same charge as the charged analyte components cause a displacement. The displacement results in the location of the separated components having a reduced fluorescence intensity to the remainder of the background. Detection of the lower fluorescence intensity areas can be visually, by photographic means and methods, or by automated laser scanning.

  4. Future works The Ion trap -Laser cooling technique has the ad-

    E-Print Network [OSTI]

    Hensinger, Winfried

    Future works The Ion trap - Laser cooling technique has the ad- vantages to easily manipulate apparatus for trace isotope analysis. Guidance of the ion beams to the trap Laser cooling of ions with this apparatus Realization of trapping ions from ICP-MS Optimization of the experimental system for detecting

  5. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    pathway for li6 isotope enrichment. Applied Physics B, 87(explored various enrichment schemes including laser isotopeisotope production con- tinues past the point of full power, but is controlled via 6 Li coolant enrichment

  6. Compact hydrogen/helium isotope mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM); Scime, Earl E. (Morgantown, WV)

    1996-01-01T23:59:59.000Z

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  7. Ultrashort pulse laser deposition of thin films

    DOE Patents [OSTI]

    Perry, Michael D. (Livermore, CA); Banks, Paul S. (Livermore, CA); Stuart, Brent C. (Fremont, CA)

    2002-01-01T23:59:59.000Z

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  8. doi:10.1016/j.gca.2003.12.008 Nd-, O-, and H-isotopic evidence for complex, closed-system fluid evolution of the

    E-Print Network [OSTI]

    Siebel, Wolfgang

    , Eberhard-Karls-Universita¨t, Wilhelmstra e 56, D-72074 Tu¨bingen, Germany 2 Institut de Mine´ralogie et Ge, clinopyroxene, and olivine separates ( 5.2 to 5.7 relative to VSMOW) and neodymium isotope compositions ( Nd. In contrast to the homogeneous oxygen and neodymium isotopic data, D values for hand-picked amphibole

  9. Steam separator latch assembly

    DOE Patents [OSTI]

    Challberg, R.C.; Kobsa, I.R.

    1994-02-01T23:59:59.000Z

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

  10. Advanced Separation Consortium

    SciTech Connect (OSTI)

    NONE

    2006-01-01T23:59:59.000Z

    The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

  11. Steam separator latch assembly

    DOE Patents [OSTI]

    Challberg, Roy C. (Livermore, CA); Kobsa, Irvin R. (San Jose, CA)

    1994-01-01T23:59:59.000Z

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

  12. Membrane separation of hydrocarbons

    DOE Patents [OSTI]

    Funk, Edward W. (Highland Park, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL); Chang, Y. Alice (Des Plaines, IL)

    1986-01-01T23:59:59.000Z

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture over a polymeric membrane which comprises a polymer capable of maintaining its integrity in the presence of hydrocarbon compounds at temperature ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psi. The membranes which possess pore sizes ranging from about 10 to about 500 Angstroms are cast from a solvent solution and recovered.

  13. Innovative Separations Technologies

    SciTech Connect (OSTI)

    J. Tripp; N. Soelberg; R. Wigeland

    2011-05-01T23:59:59.000Z

    Reprocessing used nuclear fuel (UNF) is a multi-faceted problem involving chemistry, material properties, and engineering. Technology options are available to meet a variety of processing goals. A decision about which reprocessing method is best depends significantly on the process attributes considered to be a priority. New methods of reprocessing that could provide advantages over the aqueous Plutonium Uranium Reduction Extraction (PUREX) and Uranium Extraction + (UREX+) processes, electrochemical, and other approaches are under investigation in the Fuel Cycle Research and Development (FCR&D) Separations Campaign. In an attempt to develop a revolutionary approach to UNF recycle that may have more favorable characteristics than existing technologies, five innovative separations projects have been initiated. These include: (1) Nitrogen Trifluoride for UNF Processing; (2) Reactive Fluoride Gas (SF6) for UNF Processing; (3) Dry Head-end Nitration Processing; (4) Chlorination Processing of UNF; and (5) Enhanced Oxidation/Chlorination Processing of UNF. This report provides a description of the proposed processes, explores how they fit into the Modified Open Cycle (MOC) and Full Recycle (FR) fuel cycles, and identifies performance differences when compared to 'reference' advanced aqueous and fluoride volatility separations cases. To be able to highlight the key changes to the reference case, general background on advanced aqueous solvent extraction, advanced oxidative processes (e.g., volumetric oxidation, or 'voloxidation,' which is high temperature reaction of oxide UNF with oxygen, or modified using other oxidizing and reducing gases), and fluorination and chlorination processes is provided.

  14. Compelling Research Opportunities using Isotopes

    SciTech Connect (OSTI)

    None

    2009-04-23T23:59:59.000Z

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine, pharmaceuticals, and biology, (2) physical sciences and engineering, and (3) national security and other applications. In each area, compelling research opportunities were considered and the subcommittee as a whole determined the final priorities for research opportunities as the foundations for the recommendations. While it was challenging to prioritize across disciplines, our order of recommendations reflect the compelling research prioritization along with consideration of time urgency for action as well as various geopolitical market issues. Common observations to all areas of research include the needs for domestic availability of crucial stable and radioactive isotopes and the education of the skilled workforce that will develop new advances using isotopes in the future. The six recommendations of NSACI reflect these concerns and the compelling research opportunities for potential new discoveries. The science case for each of the recommendations is elaborated in the respective chapters.

  15. Physics with isotopically controlled semiconductors

    SciTech Connect (OSTI)

    Haller, E. E., E-mail: eehaller@lbl.gov [University of California at Berkeley, Department of Materials Science and Engineering (United States)

    2010-07-15T23:59:59.000Z

    This paper is based on a tutorial presentation at the International Conference on Defects in Semiconductors (ICDS-25) held in Saint Petersburg, Russia in July 2009. The tutorial focused on a review of recent research involving isotopically controlled semiconductors. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, is the most prominent effect for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples.

  16. Laser goniometer

    DOE Patents [OSTI]

    Fairer, George M. (Boulder, CO); Boernge, James M. (Lakewood, CO); Harris, David W. (Lakewood, CO); Campbell, DeWayne A. (Littleton, CO); Tuttle, Gene E. (Littleton, CO); McKeown, Mark H. (Golden, CO); Beason, Steven C. (Lakewood, CO)

    1993-01-01T23:59:59.000Z

    The laser goniometer is an apparatus which permits an operator to sight along a geologic feature and orient a collimated lamer beam to match the attitude of the feature directly. The horizontal orientation (strike) and the angle from horizontal (dip), are detected by rotary incremental encoders attached to the laser goniometer which provide a digital readout of the azimuth and tilt of the collimated laser beam. A microprocessor then translates the square wave signal encoder outputs into an ASCII signal for use by data recording equipment.

  17. Cyclic membrane separation process

    DOE Patents [OSTI]

    Nemser, Stuart M.

    2005-05-03T23:59:59.000Z

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.

  18. Cyclic membrane separation process

    DOE Patents [OSTI]

    Bowser, John

    2004-04-13T23:59:59.000Z

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In one of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the other part, the membrane is inoperative while gas pressure rises in the ullage. Ambient air is charged to the membrane separation unit during the latter part of the cycle.

  19. Isotopic generator for bismuth-212 and lead-212 from radium

    DOE Patents [OSTI]

    Atcher, Robert W. (Kensington, MD); Friedman, Arnold M. (Park Forest, IL); Hines, John (Glen Ellyn, IL)

    1987-01-01T23:59:59.000Z

    A method and apparatus for providing radionuclides of bismuth-212 and lead-212. Thorium-228 and carrier solution starting material is input to a radiologically contained portion of an isotopic generator system, and radium-224 is separated from thorium-228 which is retained by a strongly basic anion exchange column. The separated radium-224 is transferred to an accessible, strongly acidic cationic exchange column. The cationic column retains the radium-224, and natural radioactive decay generates bismuth-212 and lead-212. The cationic exchange column can also be separated from the contained portion of the system and utilized without the extraordinary safety measures necessary in the contained portion. Furthermore, the cationic exchange column provides over a relatively long time period the short lived lead-212 and bismuth-212 radionuclides which are useful for a variety of medical therapies.

  20. Isotope production facility produces cancer-fighting actinium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer therapy gets a boost from new isotope Isotope production facility produces cancer-fighting actinium A new medical isotope project shows promise for rapidly producing major...

  1. Laser Program annual report, 1985

    SciTech Connect (OSTI)

    Rufer, M.L.; Murphy, P.W. (eds.)

    1986-11-01T23:59:59.000Z

    This volume presents the unclassified activities and accomplishments of the Inertial Confinement Fusion and Advanced Laser Development elements of the Laser Program at the Lawrence Livermore National Laboratory for the calendar year 1985. This report has been organized into major sections that correspond to our principal technical activities. Section 1 provides an overview. Section 2 comprises work in target theory, design, and code development. Target development and fabrication and the related topics in materials science are contained in Section 3. Section 4 presents work in experiments and diagnostics and includes developments in data acquisition and management capabilities. In Section 5 laser system (Nova) operation and maintenance are discussed. Activities related to supporting laser and optical technologies are described in Section 6. Basic laser research and development is reported in Section 7. Section 8 contains the results of studies in ICF applications where the work reported deals principally with the production of electric power with ICF. Finally, Section 9 is a comprehensive discussion of work to date on solid state lasers for average power applications. Individual sections, two through nine, have been cataloged separately.

  2. Enhanced membrane gas separations

    SciTech Connect (OSTI)

    Prasad, R.

    1993-07-13T23:59:59.000Z

    An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

  3. Laser Optomechanics

    E-Print Network [OSTI]

    Yang, Weijian; Ng, Kar Wei; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J

    2015-01-01T23:59:59.000Z

    Cavity optomechanics explores the coupling between the optical field and the mechanical oscillation to induce cooling and regenerative oscillation in a mechanical oscillator. So far, optomechanics relies on the detuning between the cavity and an external pump laser, where the laser acts only as a power supply. Here, we report a new scheme with mutual coupling between a mechanical oscillator that supports a mirror of a vertical-cavity surface-emitting laser (VCSEL) and the optical field, greatly enhancing the light-matter energy transfer. In this work, we used an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror in a VCSEL, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity with > 550 nm self-oscillation amplitude of the micro-mechanical oscillator, two to three orders of magnitude larger than typical. This new scheme not only offers an efficient approach for high-...

  4. Laser barometer

    SciTech Connect (OSTI)

    Abercrombie, K.R.; Shiels, D.; Rash, T.

    1998-04-01T23:59:59.000Z

    This paper describes an invention of a pressure measuring instrument which uses laser radiation to sense the pressure in an enclosed environment by means of measuring the change in refractive index of a gas - which is pressure dependent.

  5. Isotope effects in the CO dimer: Millimeter wave spectrum and rovibrational calculations of ,,12

    E-Print Network [OSTI]

    . M. Vissers Department of Chemistry, The Ohio State University, Columbus, Ohio 43210 A. van der. The isotopic dependence of the A+ /A- energy splitting, the intermolecular separation R, and the energy in understanding the previously mysteri- ous spectra of the carbon monoxide dimer as well as its energy level

  6. Chromatographic Separations of Enantiomers and Underivatized Oligosaccharides

    SciTech Connect (OSTI)

    Ying Liu

    2004-12-19T23:59:59.000Z

    My graduate research has focused on separation science and bioanalytical analysis, which emphasized in method development. It includes three major areas: enantiomeric separations using high performance liquid chromatography (HPLC), Super/subcritical fluid chromatography (SFC), and capillary electrophoresis (CE); drug-protein binding behavior studies using CE; and carbohydrate analysis using liquid chromatograph-electrospray ionization mass spectrometry (LC-ESI-MS). Enantiomeric separations continue to be extremely important in the pharmaceutical industry. An in-depth evaluation of the enantiomeric separation capabilities of macrocyclic glycopeptides CSPs with SFC mobile phases was investigated using a set of over 100 chiral compounds. It was found that the macrocyclic based CSPs were able to separate enantiomers of various compounds with different polarities and functionalities. Seventy percent of all separations were achieved in less than 4 min due to the high flow rate (4.0 ml/min) that can be used in SFC. Drug-protein binding is an important process in determining the activity and fate of a drug once it enters the body. Two drug/protein systems have been studied using frontal analysis CE method. More sensitive fluorescence detection was introduced in this assay, which overcame the problem of low sensitivity that is common when using UV detection for drug-protein studies. In addition, the first usage of an argon ion laser with 257 nm beam coupled with CCD camera as a frontal analysis detection method enabled the simultaneous observation of drug fluorescence as well as the protein fluorescence. LC-ESI-MS was used for the separation and characterization of underivatized oligosaccharide mixtures. With the limits of detection as low as 50 picograms, all individual components of oligosaccharide mixtures (up to 11 glucose-units long) were baseline resolved on a Cyclobond I 2000 column and detected using ESI-MS. This system is characterized by high chromatographic resolution, high column stability, and high sensitivity. In addition, this method showed potential usefulness for the sensitive and quick analysis of hydrolysis products of polysaccharides, and for trace level analysis of individual oligosaccharides or oligosaccharide isomers from biological systems.

  7. Dual wavelength laser damage testing for high energy lasers.

    SciTech Connect (OSTI)

    Atherton, Briggs W.; Rambo, Patrick K.; Schwarz, Jens; Kimmel, Mark W.

    2010-05-01T23:59:59.000Z

    As high energy laser systems evolve towards higher energies, fundamental material properties such as the laser-induced damage threshold (LIDT) of the optics limit the overall system performance. The Z-Backlighter Laser Facility at Sandia National Laboratories uses a pair of such kiljoule-class Nd:Phosphate Glass lasers for x-ray radiography of high energy density physics events on the Z-Accelerator. These two systems, the Z-Beamlet system operating at 527nm/ 1ns and the Z-Petawatt system operating at 1054nm/ 0.5ps, can be combined for some experimental applications. In these scenarios, dichroic beam combining optics and subsequent dual wavelength high reflectors will see a high fluence from combined simultaneous laser exposure and may even see lingering effects when used for pump-probe configurations. Only recently have researchers begun to explore such concerns, looking at individual and simultaneous exposures of optics to 1064 and third harmonic 355nm light from Nd:YAG [1]. However, to our knowledge, measurements of simultaneous and delayed dual wavelength damage thresholds on such optics have not been performed for exposure to 1054nm and its second harmonic light, especially when the pulses are of disparate pulse duration. The Z-Backlighter Facility has an instrumented damage tester setup to examine the issues of laser-induced damage thresholds in a variety of such situations [2] . Using this damage tester, we have measured the LIDT of dual wavelength high reflectors at 1054nm/0.5ps and 532nm/7ns, separately and spatially combined, both co-temporal and delayed, with single and multiple exposures. We found that the LIDT of the sample at 1054nm/0.5ps can be significantly lowered, from 1.32J/cm{sup 2} damage fluence with 1054/0.5ps only to 1.05 J/cm{sup 2} with the simultaneous presence of 532nm/7ns laser light at a fluence of 8.1 J/cm{sup 2}. This reduction of LIDT of the sample at 1054nm/0.5ps continues as the fluence of 532nm/7ns laser light simultaneously present increases. The reduction of LIDT does not occur when the 2 pulses are temporally separated. This paper will also present dual wavelength LIDT results of commercial dichroic beam-combining optics simultaneously exposed with laser light at 1054nm/2.5ns and 532nm/7ns.

  8. FREE ELECTRON LASERS

    E-Print Network [OSTI]

    Colson, W.B.

    2008-01-01T23:59:59.000Z

    1984). Colson, W. B. , "Free electron laser theory," Ph.D.aspects of the free electron laser," Laser Handbook i,Quant. Elect. Bendor Free Electron Laser Conference, Journal

  9. Laser ablation in analytical chemistry - A review

    SciTech Connect (OSTI)

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10T23:59:59.000Z

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  10. High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets

    SciTech Connect (OSTI)

    Brenner, C. M. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Robinson, A. P. L.; Markey, K.; Scott, R. H. H.; Lancaster, K. L.; Musgrave, I. O.; Spindloe, C.; Winstone, T.; Wyatt, D.; Neely, D. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Gray, R. J.; McKenna, P. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Rosinski, M.; Badziak, J.; Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, 00-908 Warsaw (Poland); Deppert, O. [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany); Batani, D. [Dipartimento di Fisica G. Occhialini, Universita di Milano Bicocca, 20126 Milan (Italy); Davies, J. R. [Laboratory for Laser Energetics, Fusion Science Center for Extreme States of Matter, University of Rochester, Rochester, New York 14623 (United States); Hassan, S. M.; Tatarakis, M. [Department of Electronics Engineering, Centre for Plasma Physics and Lasers, 73133 Chania, 74100 Rethymno, Crete (Greece); and others

    2014-02-24T23:59:59.000Z

    An all-optical approach to laser-proton acceleration enhancement is investigated using the simplest of target designs to demonstrate application-relevant levels of energy conversion efficiency between laser and protons. Controlled deposition of laser energy, in the form of a double-pulse temporal envelope, is investigated in combination with thin foil targets in which recirculation of laser-accelerated electrons can lead to optimal conditions for coupling laser drive energy into the proton beam. This approach is shown to deliver a substantial enhancement in the coupling of laser energy to 5–30?MeV protons, compared to single pulse irradiation, reaching a record high 15% conversion efficiency with a temporal separation of 1 ps between the two pulses and a 5??m-thick Au foil. A 1D simulation code is used to support and explain the origin of the observation of an optimum pulse separation of ?1 ps.

  11. Nickel isotopes in stellar matter

    E-Print Network [OSTI]

    Jameel-Un Nabi

    2014-08-19T23:59:59.000Z

    Isotopes of nickel play a key role during the silicon burning phase up to the presupernova phase of massive stars. Electron capture rates on these nickel isotopes are also important during the phase of core contraction. I present here the microscopic calculation of ground and excited states Gamow-Teller (GT) strength distributions for key nickel isotopes. The calculation is performed within the frame-work of pn-QRPA model. A judicious choice of model parameters, specially of the Gamow-Teller strength parameters and the deformation parameter, resulted in a much improved calculation of GT strength functions. The excited state GT distributions are much different from the corresponding ground-state distributions resulting in a failure of the Brink's hypothesis. The electron capture and positron decay rates on nickel isotopes are also calculated within the framework of pn-QRPA model relevant to the presupernova evolution of massive stars. The electron capture rates on odd-A isotopes of nickel are shown to have dominant contributions from parent excited states during as early as silicon burning phases. Comparison is being made with the large scale shell model calculation. During the silicon burning phases of massive stars the electron capture rates on $^{57,59}$Ni are around an order of magnitude bigger than shell model rates and can bear consequences for core-collapse simulators.

  12. Mechanistic studies using kinetic isotope effects

    E-Print Network [OSTI]

    Schulmeier, Brian E.

    1999-01-01T23:59:59.000Z

    Understanding reaction mechanisms is an important aspect of chemistry. A now convenient way to study reaction mechanisms is kinetic isotope effects at natural abundance. This technique circumvents the cumbersome methods of traditional isotope effect...

  13. Organic contaminant separator

    DOE Patents [OSTI]

    Del Mar, P.

    1993-12-28T23:59:59.000Z

    A process is presented of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube. The solvent is capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus is presented for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium. The apparatus includes a composite tube comprised of a blend of a polyolefin and a polyester. The composite tube has an internal diameter of from about 0.1 to about 2.0 millimeters and has sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube. 2 figures.

  14. Online Catalog of Isotope Products from DOE's National Isotope Development Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. The Isotope subprogram supports the production, and the development of production techniques of radioactive and stable isotopes that are in short supply for research and applications. Isotopes are high-priority commodities of strategic importance for the Nation and are essential for energy, medical, and national security applications and for basic research; a goal of the program is to make critical isotopes more readily available to meet domestic U.S. needs. This subprogram is steward of the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL), the Brookhaven Linear Isotope Producer (BLIP) facility at BNL, and hot cell facilities for processing isotopes at ORNL, BNL and LANL. The subprogram also coordinates and supports isotope production at a suite of university, national laboratory, and commercial accelerator and reactor facilities throughout the Nation to promote a reliable supply of domestic isotopes. The National Isotope Development Center (NIDC) at ORNL coordinates isotope production across the many facilities and manages the business operations of the sale and distribution of isotopes.

  15. Laser barometer

    DOE Patents [OSTI]

    Abercrombie, Kevin R. (Westminster, CO); Shiels, David (Thornton, CO); Rash, Tim (Aurora, CO)

    2001-02-06T23:59:59.000Z

    A pressure measuring instrument that utilizes the change of the refractive index of a gas as a function of pressure and the coherent nature of a laser light to determine the barometric pressure within an environment. As the gas pressure in a closed environment varies, the index of refraction of the gas changes. The amount of change is a function of the gas pressure. By illuminating the gas with a laser light source, causing the wavelength of the light to change, pressure can be quantified by measuring the shift in fringes (alternating light and dark bands produced when coherent light is mixed) in an interferometer.

  16. Separation of Transmutation - and Fission-Produced Radioisotopes from Irradiated Beryllium

    SciTech Connect (OSTI)

    Troy J. Tranter; RIchard D. Tillotson; Nick R. Mann; Glen R. Longhurst

    2011-11-01T23:59:59.000Z

    The primary objective of this study was to test the effectiveness of a two-step solvent extraction-precipitation process for separating transmutation and fission products from irradiated beryllium. Beryllium metal was dissolved in nitric and fluoroboric acids. Isotopes of 241Am, 239Pu, 85Sr, 60Co, and 137Cs were then added to make a surrogate beryllium waste solution. A series of batch contacts was performed with the spiked simulant using chlorinated cobalt dicarbollide and polyethylene glycol diluted with sulfone to extract the isotopes of Cs and Sr. Another series of batch contacts was performed using a combination of octyl (phenyl)-N,Ndiisobutylcarbamoylmethylphosphine oxide in tributyl phosphate diluted with dodecane for extracting the isotopes of Pu and Am. The 60Co was separated by first forming a cobalt complex and then selectively precipitating the beryllium as a hydroxide. The results indicate that greater than 99.9% removal can be achieved for each radionuclide. Transuranic isotope contamination levels are reduced to less than 100 nCi/g, and sources of high beta-gamma radiation (60Co, 137Cs, and 90Sr) are reduced to levels that will allow the beryllium to be contact handled. The separation process may be applicable to a recycle or waste disposition scenario.

  17. Atomic-scale characterization of germanium isotopic multilayers by atom probe tomography

    SciTech Connect (OSTI)

    Shimizu, Y.; Takamizawa, H.; Toyama, T.; Inoue, K.; Nagai, Y. [Oarai Center, Institute for Materials Research, Tohoku University, 2145-2 Narita, Oarai, Ibaraki 311-1313 (Japan); Kawamura, Y.; Uematsu, M.; Itoh, K. M. [School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Haller, E. E. [University of California at Berkeley and Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2013-01-14T23:59:59.000Z

    We report comparison of the interfacial sharpness characterization of germanium (Ge) isotopic multilayers between laser-assisted atom probe tomography (APT) and secondary ion mass spectrometry (SIMS). An alternating stack of 8-nm-thick naturally available Ge layers and 8-nm-thick isotopically enriched {sup 70}Ge layers was prepared on a Ge(100) substrate by molecular beam epitaxy. The APT mass spectra consist of clearly resolved peaks of five stable Ge isotopes ({sup 70}Ge, {sup 72}Ge, {sup 73}Ge, {sup 74}Ge, and {sup 76}Ge). The degree of intermixing at the interfaces between adjacent layers was determined by APT to be around 0.8 {+-} 0.1 nm which was much sharper than that obtained by SIMS.

  18. Plasma Cavity Ringdown Spectrometer for Elemental and Isotopic Measurements: Past, Present, and Future

    SciTech Connect (OSTI)

    Wang, Chuji; Winstead, Christopher B.; Duan, Yixiang; Scherrer, Susan T.; Koirala, Sudip P.; Jang, Ping-Rey; Miller, George P.; Mazzotti, Fabio J.

    2004-03-31T23:59:59.000Z

    Recent studies using Plasma Cavity Ringdown Spectroscopy (plasma-CRDS) show much promise of this newly developed technique for ultra-sensitive elemental/isotopic measurements. Plasma-CRDS, since its introduction in 1997, has experienced three major stages: (i) the early stage demonstration of the technical feasibility, (ii) the recent advancement on its technical improvements and extensive applications for elemental/isotopic measurements as well as plasma diagnostics and (iii) the most recent progress on the improvement of the instrument configurations based on a diode laser-compact microwave plasma-CRDS. Research and development in many aspects of this technique is vigorously under processing in our laboratories. This paper reports a brief review on the plasma-CRDS technique, its applications and the most recent advancement. Discussions on future developments toward a new generation of plasma- CRDS-based spectrometers for ultra-sensitive elemental/isotopic measurements are also presented.

  19. Oxygen isotope constraints on the origin of impact glasses from the cretaceous-tertiary boundary

    SciTech Connect (OSTI)

    Blum, J.D.; Chamberlain, C.P. (Dartmouth Coll, Hanover, NH (United States))

    1992-08-21T23:59:59.000Z

    Laser-extraction oxygen isotope and major element analyses of individual glass spherules from Haitian Cretaceous-Tertiary boundary sediments demonstrate that the glasses fall on a mixing line between an isotopically heavy ({delta}{sup 18}O = 14 per mil) high-calcium composition and an isotopically light ({delta}{sup 18}O = 6 per mil) high-silicon composition. This trend can be explained by melting of heterogeneous source rocks during the impact of an asteroid (or comet) {approximately}65 million years ago. The data indicate that the glasses are a mixture of carbonate and silicate rocks and exclude derivation of the glasses either by volcanic processes or as mixtures of sulfate-high evaporate and silicate rocks.

  20. Ultimate Isotope Precision for Carbonates Thermo Scientific

    E-Print Network [OSTI]

    Lachniet, Matthew S.

    Ultimate Isotope Precision for Carbonates Thermo Scientific KIEL IV Carbonate Device Part of Thermo integration cycle Ultimate Isotope Precision for Carbonates The Thermo Scientific KIEL IV Carbonate DeviceV Thermo Scientific MAT 253 or the 3-kV DELTA V isotope ratio mass spectrometer meets the requirements

  1. Isotope Cancer Treatment Research at LANL

    ScienceCinema (OSTI)

    Weidner, John; Nortier, Meiring

    2014-06-02T23:59:59.000Z

    Los Alamos National Laboratory has produced medical isotopes for diagnostic and imaging purposes for more than 30 years. Now LANL researchers have branched out into isotope cancer treatment studies. New results show that an accelerator-based approach can produce clinical trial quantities of actinium-225, an isotope that has promise as a way to kill tumors without damaging surrounding healthy cells.

  2. Separation process using microchannel technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Dublin, OH); Perry, Steven T. (Galloway, OH); Arora, Ravi (Dublin, OH); Qiu, Dongming (Bothell, WA); Lamont, Michael Jay (Hilliard, OH); Burwell, Deanna (Cleveland Heights, OH); Dritz, Terence Andrew (Worthington, OH); McDaniel, Jeffrey S. (Columbus, OH); Rogers, Jr.; William A. (Marysville, OH); Silva, Laura J. (Dublin, OH); Weidert, Daniel J. (Lewis Center, OH); Simmons, Wayne W. (Dublin, OH); Chadwell, G. Bradley (Reynoldsburg, OH)

    2009-03-24T23:59:59.000Z

    The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.

  3. Separators - Technology review: Ceramic based separators for secondary batteries

    SciTech Connect (OSTI)

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Meyer, Dirk C. [Technische Universität Bergakademie Freiberg, Institut für Experimentelle Physik, Leipziger Str. 23, 09596 Freiberg (Germany); Schilm, Jochen [Fraunhofer-Institut für Keramische Technologien und Systeme IKTS, Winterbergstraße 28, 01277 Dresden (Germany); Leisegang, Tilmann [Fraunhofer-Technologiezentrum Halbleitermaterialien THM, Am St.-Niclas-Schacht 13, 09599 Freiberg (Germany)

    2014-06-16T23:59:59.000Z

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ('Energiewende') was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators. Two prominent examples, the lithium-ion and sodium-sulfur battery, are described to show the current stage of development. New routes are presented as promising technologies for safe and long-life electrochemical storage cells.

  4. Gas separation membrane module assembly

    DOE Patents [OSTI]

    Wynn, Nicholas P (Palo Alto, CA); Fulton, Donald A. (Fairfield, CA)

    2009-03-31T23:59:59.000Z

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  5. Separation Membrane Development (Separation Using Encapsulated Metal Hydride)

    E-Print Network [OSTI]

    Separation Membrane Development (Separation Using Encapsulated Metal Hydride) L. Kit Heung Savannah: The first is to produce a sol-gel encapsulated metal hydride packing material that will a) absorbs hydrogen may be that hydrogen must come from multiple sources. These sources will include renewable (solar

  6. Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach

    SciTech Connect (OSTI)

    Klaus, Julian [Luxembourg Institute of Science and Technology (LIST), Dept. Environmental Research and Innovation, Belvaux (Luxembourg)

    2015-01-01T23:59:59.000Z

    The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA.

  7. Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Klaus, Julian

    2015-01-01T23:59:59.000Z

    The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA.

  8. Isotopes Tell Origin and Operation of the Sun

    E-Print Network [OSTI]

    O. Manuel; Sumeet A. Kamat; Michael Mozina

    2005-09-28T23:59:59.000Z

    The Iron Sun formed on the collapsed core of a supernova and now acts as a magnetic plasma diffuser, as did the precursor star, separating ions by mass. This process covers the solar surface with lightweight elements and with lighter isotopes of each element. Running difference images expose rigid, iron-rich structures below the fluid photosphere made of lightweight elements. The energy source for the Sun and ordinary stars seems to be neutron-emission and neutron-decay, with partial fusion of the decay product, rather than simple fusion of hydrogen into helium or heavier elements. Neutron-emission from the solar core and neutron-decay generate about sixty five percent of solar luminosity and H-fusion generates about thirty-five percent. The upward flow of H ions maintains mass-separation in the Sun. Only about one percent of this neutron decay product survives its upward journey to depart as solar-wind hydrogen.

  9. Tools for quantum optics : pulsed polarization-maintaining Er-doped fiber laser and spatial mode manipulation in spontaneous parametric downconversion

    E-Print Network [OSTI]

    Venkatraman, Dheera

    2007-01-01T23:59:59.000Z

    Two separate projects were undertaken to improve technology for entangled photon sources, useful for quantum optics. In one project, a pulsed, mode-locked erbium-doped fiber laser, designed to be used as a seed laser for ...

  10. Separator material for electrochemical cells

    DOE Patents [OSTI]

    Cieslak, W.R.; Storz, L.J.

    1991-03-26T23:59:59.000Z

    An electrochemical cell is characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.

  11. Separator material for electrochemical cells

    DOE Patents [OSTI]

    Cieslak, Wendy R. (1166 Laurel Loop NE., Albuquerque, NM 87122); Storz, Leonard J. (2215 Ambassador NE., Albuquerque, NM 87112)

    1991-01-01T23:59:59.000Z

    An electrochemical cell characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.

  12. Three phase downhole separator process

    DOE Patents [OSTI]

    Cognata, Louis John (Baytown, TX)

    2008-06-24T23:59:59.000Z

    Three Phase Downhole Separator Process (TPDSP) is a process which results in the separation of all three phases, (1) oil, (2) gas, and (3) water, at the downhole location in the well bore, water disposal injection downhole, and oil and gas production uphole.

  13. Entrepreneurial separation to transfer technology.

    SciTech Connect (OSTI)

    Fairbanks, Richard R.

    2010-09-01T23:59:59.000Z

    Entrepreneurial separation to transfer technology (ESTT) program is that entrepreneurs terminate their employment with Sandia. The term of the separation is two years with the option to request a third year. Entrepreneurs are guaranteed reinstatement by Sandia if they return before ESTT expiration. Participants may start up or helpe expand technology businesses.

  14. BNL | CO2 Laser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 Laser The ATF is one of the only two facilities worldwide operating picosecond, terawatt-class CO2 lasers. Our laser system consists of a picoseconds pulse-injector based on...

  15. FREE-ELECTRON LASERS

    E-Print Network [OSTI]

    Sessler, A.M.

    2008-01-01T23:59:59.000Z

    Variable-Wiggler Free-Electron-Laser Oscillat.ion. Phys. :_.The Los Alamos Free Electron Laser: Accelerator Perfoemance.First Operation of a Free-Electron Laser. Phys . __ Rev~.

  16. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23T23:59:59.000Z

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  17. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

    1997-01-01T23:59:59.000Z

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  18. Efficient separations & processing crosscutting program

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The Efficient Separations and Processing Crosscutting Program (ESP) was created in 1991 to identify, develop, and perfect chemical and physical separations technologies and chemical processes which treat wastes and address environmental problems throughout the DOE complex. The ESP funds several multiyear tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R & D) leading to the demonstration or use of these separations technologies by other organizations within the Department of Energy (DOE), Office of Environmental Management.

  19. Apparatus, system, and method for laser-induced breakdown spectroscopy

    DOE Patents [OSTI]

    Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R

    2014-11-18T23:59:59.000Z

    In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.

  20. Laser Safety Management Policy Statement ............................................................................................................1

    E-Print Network [OSTI]

    Davidson, Fordyce A.

    Laser Safety Management Policy Statement...........................................................2 Laser Users.............................................................................................................2 Unit Laser Safety Officer (ULSO

  1. VAPOR PRESSURE ISOTOPE EFFECTS IN THE MEASUREMENT OF ENVIRONMENTAL TRITIUM SAMPLES.

    SciTech Connect (OSTI)

    Kuhne, W.

    2012-12-03T23:59:59.000Z

    Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The magnitude of the vapor pressure isotope effect is characterized as functions of the amount of water distilled from the sample aliquot and the heat settings for the distillation process. The tritium concentration in the distillate is higher than the tritium concentration in the sample early in the distillation process, it then sharply decreases due to the vapor pressure isotope effect and becomes lower than the tritium concentration in the sample, until the high tritium concentration retained in the boiling flask is evaporated at the end of the process. At that time, the tritium concentration in the distillate again overestimates the sample tritium concentration. The vapor pressure isotope effect is more pronounced the slower the evaporation and distillation process is conducted; a lower heat setting during the evaporation of the sample results in a larger bias in the tritium measurement. The experimental setup used and the fact that the current study allowed for an investigation of the relative change in vapor pressure isotope effect in the course of the distillation process distinguish it from and extend previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.034 {+-} 0.033, 1.052 {+-} 0.025, and 1.066 {+-} 0.037, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples, this implies that the tritium concentration could be underestimated by 3 - 6%.

  2. Laser programs highlights 1994

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report provides highlights of the Lawrence Livermore National Laboratories` laser programs. Laser uses and technology assessment and utilization are provided.

  3. BNL | ATF Laser Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be continuously escorted by someone who has such training: The training consists of an eye exam, BNL general laser safety lecture, and formal ATF laser familiarization. Untrained...

  4. Laser satellite power systems

    SciTech Connect (OSTI)

    Walbridge, E.W.

    1980-01-01T23:59:59.000Z

    A laser satellite power system (SPS) converts solar power captured by earth-orbiting satellites into electrical power on the earth's surface, the satellite-to-ground transmission of power being effected by laser beam. The laser SPS may be an alternative to the microwave SPS. Microwaves easily penetrate clouds while laser radiation does not. Although there is this major disadvantage to a laser SPS, that system has four important advantages over the microwave alternative: (1) land requirements are much less, (2) radiation levels are low outside the laser ground stations, (3) laser beam sidelobes are not expected to interfere with electromagnetic systems, and (4) the laser system lends itself to small-scale demonstration. After describing lasers and how they work, the report discusses the five lasers that are candidates for application in a laser SPS: electric discharge lasers, direct and indirect solar pumped lasers, free electron lasers, and closed-cycle chemical lasers. The Lockheed laser SPS is examined in some detail. To determine whether a laser SPS will be worthy of future deployment, its capabilities need to be better understood and its attractiveness relative to other electric power options better assessed. First priority should be given to potential program stoppers, e.g., beam attenuation by clouds. If investigation shows these potential program stoppers to be resolvable, further research should investigate lasers that are particularly promising for SPS application.

  5. Fluorine separation and generation device

    DOE Patents [OSTI]

    The Regents of the University of California (Oakland, CA)

    2008-12-23T23:59:59.000Z

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  6. Fluorine separation and generation device

    DOE Patents [OSTI]

    Jacobson, Craig P. (Moraga, CA); Visco, Steven J. (Berkeley, CA); DeJonghe, Lutgard C. (Lafayette, CA); Stefan, Constantin I. (Hayward, CA)

    2010-03-02T23:59:59.000Z

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  7. Continuous magnetic separator and process

    DOE Patents [OSTI]

    Oder, Robin R. (Export, PA); Jamison, Russell E. (Lower Burrell, PA)

    2008-04-22T23:59:59.000Z

    A continuous magnetic separator and process for separating a slurry comprising magnetic particles into a clarified stream and a thickened stream. The separator has a container with a slurry inlet, an overflow outlet for the discharge of the clarified slurry stream, and an underflow outlet for the discharge of a thickened slurry stream. Magnetic particles in the slurry are attracted to, and slide down, magnetic rods within the container. The slurry is thus separated into magnetic concentrate and clarified slurry. Flow control means can be used to control the ratio of the rate of magnetic concentrate to the rate of clarified slurry. Feed control means can be used to control the rate of slurry feed to the slurry inlet.

  8. SEPARATION FROM EMPLOYMENT RESIGNATION & RETIREMENT

    E-Print Network [OSTI]

    Su, Xiao

    payment of wages. Faculty members participating in the Faculty Early Retirement Program (FERPSEPARATION FROM EMPLOYMENT RESIGNATION & RETIREMENT HUMAN RESOURCES POLICY Human Resources | One SUBJECT: SEPARATION FROM EMPLOYMENT - RESIGNATION & RETIREMENT DATE: March 2007 I. PURPOSE / DESCRIPTION

  9. Stable Isotope Signatures for Microbial Forensics

    SciTech Connect (OSTI)

    Kreuzer, Helen W.

    2012-01-03T23:59:59.000Z

    The isotopic distribution of the atoms composing the molecules of microorganisms is a function of the substrates used by the organisms. The stable isotope content of an organism is fixed so long as no further substrate consumption and biosynthesis occurs, while the radioactive isotopic content decays over time. The distribution of stable isotopes of C, N, O and H in heterotrophic microorganisms is a direct function of the culture medium, and therefore the stable isotope composition can be used to associate samples with potential culture media and also with one another. The 14C content depends upon the 14C content, and therefore the age, of the organic components of the culture medium, as well as on the age of the culture itself. Stable isotope signatures can thus be used for sample matching, to associate cultures with specific growth media, and to predict characteristics of growth media.

  10. Fiber Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours, Programs and EventsFiber Lasers NIF

  11. Laser Faraday

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sandLaser Decontamination ofFaraday

  12. Delivering pump light to a laser gain element while maintaining access to the laser beam

    DOE Patents [OSTI]

    Beach, Raymond J. (Livermore, CA); Honea, Eric C. (Sunol, CA); Payne, Stephen A. (Castro Valley, CA)

    2001-01-01T23:59:59.000Z

    A lens duct is used for pump delivery and the laser beam is accessed through an additional component called the intermediate beam extractor which can be implemented as part of the gain element, part of the lens duct or a separate component entirely.

  13. Isotope effect in tunnelling ionization of neutral hydrogen molecules

    E-Print Network [OSTI]

    Wang, X; Atia-Tul-Noor, A; Hu, B T; Kielpinski, D; Sang, R T; Litvinyuk, I V

    2015-01-01T23:59:59.000Z

    It has been recently predicted theoretically that due to nuclear motion light and heavy hydrogen molecules exposed to strong electric field should exhibit substantially different tunneling ionization rates (O.I. Tolstikhin, H.J. Worner and T. Morishita, Phys. Rev. A 87, 041401(R) (2013) [1]). We studied that isotope effect experimentally by measuring relative ionization yields for each species in a mixed H2/D2 gas jet interacting with intense femtosecond laser pulses. In a reaction microscope apparatus we detected ionic fragments from all contributing channels (single ionization, dissociation, and sequential double ionization) and determined the ratio of total single ionization yields for H2 and D2. The measured ratio agrees quantitatively with the prediction of the generalized weak-field asymptotic theory in an apparent failure of the frozen-nuclei approximation.

  14. Development of matrix assisted laser desorption ionization-ion mobility-orthogonal time-of-flight mass spectrometry as a tool for proteomics

    E-Print Network [OSTI]

    Ruotolo, Brandon Thomas

    2005-08-29T23:59:59.000Z

    typical of cellular protein complements. In this work, matrix assisted laser desorption-ionization is coupled with ion mobility (IM) separation for the analysis of biological molecules. The utility of liquid-phase separations coupled to MS lies...

  15. Stable Isotope Protocols: Sampling and Sample Processing

    E-Print Network [OSTI]

    Levin, Lisa A; Currin, Carolyn

    2012-01-01T23:59:59.000Z

    plants, benthic microalgae [BMI], benthic macroalgae) andin a dessicator, prior to analysis. A.2 Benthic microalgaeBenthic microalgae (BMI) can be collected for isotope

  16. EIS-0249: Medical Isotopes Production Project

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to establish a production capability for molybdenum-99 (Mo-99) and related medical isotopes.

  17. Integration of Nontraditional Isotopic Systems Into Reaction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water-Rock Interaction, and Impacts of Water Chemistry on Reservoir Sustainability Integration of Nontraditional Isotopic Systems Into Reaction-Transport Models of EGS For...

  18. Stable Isotope Fractionations in Biogeochemical Reactive Transport

    E-Print Network [OSTI]

    Druhan, Jennifer Lea

    2012-01-01T23:59:59.000Z

    34 S fractionation . Summary A mesoscale study of isotopicion exchange and ! 44 Ca . A mesoscale study of isotopicmodeling and ! 34 S . A mesoscale study of isotopic

  19. Method for isotope enrichment by photoinduced chemiionization

    DOE Patents [OSTI]

    Dubrin, James W. (Walnut Creek, CA)

    1985-01-01T23:59:59.000Z

    Isotope enrichment, particularly .sup.235 U enrichment, is achieved by irradiating an isotopically mixed vapor feed with radiant energy at a wavelength or wavelengths chosen to selectively excite the species containing a desired isotope to a predetermined energy level. The vapor feed if simultaneously reacted with an atomic or molecular reactant species capable of preferentially transforming the excited species into an ionic product by a chemiionization reaction. The ionic product, enriched in the desired isotope, is electrostatically or electromagnetically extracted from the reaction system.

  20. O isotopic composition of CaCO3 measured by continuous ow isotope ratio mass spectrometry

    E-Print Network [OSTI]

    d13 C and d18 O isotopic composition of CaCO3 measured by continuous ¯ow isotope ratio mass. This new method streamlines the classical phosphoric acid/calcium carbonate (H3PO4/CaCO3) reaction method XL continuous flow isotope ratio mass spectrometer. Conditions for which the H3PO4/CaCO3 reaction

  1. Laser-induced nonresonant nuclear excitation in muonic atoms

    E-Print Network [OSTI]

    A. Shahbaz; C. Müller; T. J. Buervenich; C. H. Keitel

    2008-12-13T23:59:59.000Z

    Coherent nuclear excitation in strongly laser-driven muonic atoms is calculated. The nuclear transition is caused by the time-dependent Coulomb field of the oscillating charge density of the bound muon. A closed-form analytical expression for electric multipole transitions is derived and applied to various isotopes; the excitation probabilities are in general very small. We compare the process with other nuclear excitation mechanisms through coupling with atomic shells and discuss the prospects to observe it in experiment.

  2. RAPID FUSION METHOD FOR DETERMINATION OF PLUTONIUM ISOTOPES IN LARGE RICE SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.

    2013-03-01T23:59:59.000Z

    A new rapid fusion method for the determination of plutonium in large rice samples has been developed at the Savannah River National Laboratory (Aiken, SC, USA) that can be used to determine very low levels of plutonium isotopes in rice. The recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid, reliable radiochemical analyses for radionuclides in environmental and food samples. Public concern regarding foods, particularly foods such as rice in Japan, highlights the need for analytical techniques that will allow very large sample aliquots of rice to be used for analysis so that very low levels of plutonium isotopes may be detected. The new method to determine plutonium isotopes in large rice samples utilizes a furnace ashing step, a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a column separation process with TEVA Resin? cartridges. The method can be applied to rice sample aliquots as large as 5 kg. Plutonium isotopes can be determined using alpha spectrometry or inductively-coupled plasma mass spectrometry (ICP-MS). The method showed high chemical recoveries and effective removal of interferences. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory plutonium particles are effectively digested. The MDA for a 5 kg rice sample using alpha spectrometry is 7E-5 mBq g{sup -1}. The method can easily be adapted for use by ICP-MS to allow detection of plutonium isotopic ratios.

  3. Discovery of Isotopes of Elements with Z $\\ge$ 100

    E-Print Network [OSTI]

    M. Thoennessen

    2012-03-09T23:59:59.000Z

    Currently, 163 isotopes of elements with Z $\\ge$ 100 have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  4. Gamma Spectrum from Neutron Capture on Tungsten Isotopes

    E-Print Network [OSTI]

    Hurst, Aaron

    2011-01-01T23:59:59.000Z

    FROM NEUTRON CAPTURE ON TUNGSTEN ISOTOPES A. M. HURST ?1,2 ,capture on the stable tungsten isotopes is presented, withknown decay schemes of the tungsten isotopes from neutron

  5. Tropical Pacific nutrient dynamics in the modern and pleistocene ocean : insights from the nitrogen isotope system

    E-Print Network [OSTI]

    Rafter, Patrick Anthony

    2009-01-01T23:59:59.000Z

    nitrogen isotopes, an enrichment that is conventionallyisotopes upon denitrification also imparts a strong isotopic enrichment

  6. Longitudinal discharge laser baffles

    DOE Patents [OSTI]

    Warner, B.E.; Ault, E.R.

    1994-06-07T23:59:59.000Z

    The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam. 1 fig.

  7. Narrow gap laser welding

    DOE Patents [OSTI]

    Milewski, John O. (Santa Fe, NM); Sklar, Edward (Santa Fe, NM)

    1998-01-01T23:59:59.000Z

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

  8. Narrow gap laser welding

    DOE Patents [OSTI]

    Milewski, J.O.; Sklar, E.

    1998-06-02T23:59:59.000Z

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

  9. Two photon absorption laser induced fluorescence measurements of neutral density in a helicon plasma

    SciTech Connect (OSTI)

    Galante, M. E.; Magee, R. M.; Scime, E. E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States)] [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States)

    2014-05-15T23:59:59.000Z

    We have developed a new diagnostic based on two-photon absorption laser induced fluorescence (TALIF). We use a high intensity (5?MW/cm{sup 2}), narrow bandwidth (0.1?cm{sup ?1}) laser to probe the ground state of neutral hydrogen, deuterium and krypton with spatial resolution better than 0.2?cm, a time resolution of 10?ns, and a measurement cadence of 20?Hz. Here, we describe proof-of-principle measurements in a helicon plasma source that demonstrate the TALIF diagnostic is capable of measuring neutral densities spanning four orders of magnitude; comparable to the edge neutral gradients predicted in the DIII-D tokamak pedestal. The measurements are performed in hydrogen and deuterium plasmas and absolute calibration is accomplished through TALIF measurements in neutral krypton. The optical configuration employed is confocal, i.e., both light injection and collection are accomplished with a single lens through a single optical port in the vacuum vessel. The wavelength resolution of the diagnostic is sufficient to separate hydrogen and deuterium spectra and we present measurements from mixed hydrogen and deuterium plasmas that demonstrate isotopic abundance measurements are feasible. Time resolved measurements also allow us to explore the evolution of the neutral hydrogen density and temperature and effects of wall recycling. We find that the atomic neutral density grows rapidly at the initiation of the discharge, reaching the steady-state value within 1?ms. Additionally, we find that neutral hydrogen atoms are born with 0.08?eV temperatures, not 2?eV as is typically assumed.

  10. Spatial periphery of lithium isotopes

    SciTech Connect (OSTI)

    Galanina, L. I., E-mail: galan_lidiya@mail.ru; Zelenskaja, N. S. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2013-12-15T23:59:59.000Z

    The spatial structure of lithium isotopes is studied with the aid of the charge-exchange and (t, p) reactions on lithium nuclei. It is shown that an excited isobaric-analog state of {sup 6}Li (0{sup +}, 3.56MeV) has a halo structure formed by a proton and a neutron, that, in the {sup 9}Li nucleus, there is virtually no neutron halo, and that {sup 11}Li is a Borromean nucleus formed by a {sup 9}Li core and a two-neutron halo manifesting itself in cigar-like and dineutron configurations.

  11. Isotopic Scaling in Nuclear Reactions

    E-Print Network [OSTI]

    M. B. Tsang; W. A. Friedman; C. K. Gelbke; W. G. Lynch; G. Verde; H. Xu

    2001-03-26T23:59:59.000Z

    A three parameter scaling relationship between isotopic distributions for elements with Z$\\leq 8$ has been observed that allows a simple description of the dependence of such distributions on the overall isospin of the system. This scaling law (termed iso-scaling) applies for a variety of reaction mechanisms that are dominated by phase space, including evaporation, multifragmentation and deeply inelastic scattering. The origins of this scaling behavior for the various reaction mechanisms are explained. For multifragmentation processes, the systematics is influenced by the density dependence of the asymmetry term of the equation of state.

  12. Stable carbon and nitrogen isotope enrichment in primate tissues

    E-Print Network [OSTI]

    Crowley, Brooke E.; Carter, Melinda L.; Karpanty, Sarah M.; Zihlman, Adrienne L.; Koch, Paul L.; Dominy, Nathaniel J.

    2010-01-01T23:59:59.000Z

    carbon and nitrogen isotope enrichment in primate tissuesfactor (a) and isotope enrichment values (e), which provideisotope values from different modern primate tissues. Additionally, using these mean apparent enrichment

  13. CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope...

    Broader source: Energy.gov (indexed) [DOE]

    Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR...

  14. CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope...

    Broader source: Energy.gov (indexed) [DOE]

    Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G...

  15. aluminium isotopes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CERN Preprints Summary: Currently, 31 actinium, 31 thorium, 28 protactinium, and 23 uranium isotopes have so far been observed; the discovery of these isotopes is discussed. For...

  16. americium isotopes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CERN Preprints Summary: Currently, 31 actinium, 31 thorium, 28 protactinium, and 23 uranium isotopes have so far been observed; the discovery of these isotopes is discussed. For...

  17. activated bismuth isotopes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CERN Preprints Summary: Currently, 31 actinium, 31 thorium, 28 protactinium, and 23 uranium isotopes have so far been observed; the discovery of these isotopes is discussed. For...

  18. astatine isotopes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CERN Preprints Summary: Currently, 31 actinium, 31 thorium, 28 protactinium, and 23 uranium isotopes have so far been observed; the discovery of these isotopes is discussed. For...

  19. A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...

    Open Energy Info (EERE)

    Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Helium Isotope...

  20. Isotopic Analysis- Fluid At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    geothermal resources with deep, fault hosted permeable fluid flow pathways and the helium Isotopic composition of the surface fluids. The authors suggest that helium isotopes...

  1. Fractionation of Oxygen Isotopes in Phosphate during its Interactions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fractionation of Oxygen Isotopes in Phosphate during its Interactions with Iron Oxides. Fractionation of Oxygen Isotopes in Phosphate during its Interactions with Iron Oxides....

  2. applied isotope techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. 22 Applied Radiation and Isotopes 55 (2001) 707713 Bronchial dosimeter for radon progeny Biology and Medicine Websites Summary: Applied Radiation and Isotopes 55 (2001)...

  3. Phosphazene membranes for gas separations

    DOE Patents [OSTI]

    Stewart, Frederick F.; Harrup, Mason K.; Orme, Christopher J.; Luther, Thomas A.

    2006-07-11T23:59:59.000Z

    A polyphosphazene having a glass transition temperature ("Tg") of approximately -20.degree. C. or less. The polyphosphazene has at least one pendant group attached to a backbone of the polyphosphazene, wherein the pendant group has no halogen atoms. In addition, no aromatic groups are attached to an oxygen atom that is bound to a phosphorus atom of the backbone. The polyphosphazene may have a Tg ranging from approximately -100.degree. C. to approximately -20.degree. C. The polyphosphazene may be selected from the group consisting of poly[bis-3-phenyl-1-propoxy)phosphazene], poly[bis-(2-phenyl-1-ethoxy)phosphazene], poly[bis-(dodecanoxypolyethoxy)-phosphazene], and poly[bis-(2-(2-(2-.omega.-undecylenyloxyethoxy)ethoxy)ethoxy)phosphazene]. The polyphosphazene may be used in a separation membrane to selectively separate individual gases from a gas mixture, such as to separate polar gases from nonpolar gases in the gas mixture.

  4. Nonlinear laser energy depletion in laser-plasma accelerators

    E-Print Network [OSTI]

    Shadwick, B.A.

    2009-01-01T23:59:59.000Z

    Nonlinear laser energydepletion in laser-plasma accelerators ? B. A. Shadwick,of intense, short-pulse lasers via excitation of plasma

  5. Single photon excimer laser photodissociation of highly vibrationally excited polyatomic molecules

    SciTech Connect (OSTI)

    Tiee, J.J.; Wampler, F.B.; Rice, W.W.

    1980-01-01T23:59:59.000Z

    The ir + uv photodissociation of SF/sub 6/ has been performed using CO/sub 2/ and ArF lasers. The two-color photolysis significantly enhances the photodissociation process over ArF irradiation alone and is found to preserve the initial isotopic specificity of the ir excitation process.

  6. Laser Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured VideosTechnologies | BlandineSeparation

  7. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    SciTech Connect (OSTI)

    Chastagner, P.

    2001-08-01T23:59:59.000Z

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  8. Positive and inverse isotope effect on superconductivity

    E-Print Network [OSTI]

    Tian De Cao

    2009-09-04T23:59:59.000Z

    This article improves the BCS theory to include the inverse isotope effect on superconductivity. An affective model can be deduced from the model including electron-phonon interactions, and the phonon-induced attraction is simply and clearly explained on the electron Green function. The focus of this work is on how the positive or inverse isotope effect occurs in superconductors.

  9. MARK E. CONRAD Center for Isotope Geochemistry

    E-Print Network [OSTI]

    Ajo-Franklin, Jonathan

    with stable isotopes, fate and transport of groundwater contaminants, vadose zone hydrology, metal uptake by lichens, paleoclimatic patterns in California and stable isotope systematics of clay minerals. Geologist of gold property in the Mother Lode of California. Exploration Geologist (Anaconda Minerals Company; 6

  10. The Quest for the Heaviest Uranium Isotope

    E-Print Network [OSTI]

    S. Schramm; D. Gridnev; D. V. Tarasov; V. N. Tarasov; W. Greiner

    2012-01-17T23:59:59.000Z

    We study Uranium isotopes and surrounding elements at very large neutron number excess. Relativistic mean field and Skyrme-type approaches with different parametrizations are used in the study. Most models show clear indications for isotopes that are stable with respect to neutron emission far beyond N=184 up to the range of around N=258.

  11. [Carbon isotope fractionation inplants]. Final report

    SciTech Connect (OSTI)

    O`Leary, M.H.

    1990-12-31T23:59:59.000Z

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  12. Electromagnetic separation of isotopes at Oak Ridge ? L.O. Love...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a lot to ship it back. This routine went on until 1968. "By that time the Laboratory"s Thermonuclear division had emerged as the sole conceivable future user of the coils (for...

  13. Automated product recovery in a Hg-196 photochemical isotope separation process

    DOE Patents [OSTI]

    Grossman, M.W.; Speer, R.

    1992-07-21T23:59:59.000Z

    A method of removing deposited product from a photochemical reactor used in the enrichment of [sup 196]Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out. 2 figs.

  14. Automated product recovery in a HG-196 photochemical isotope separation process

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA)

    1992-01-01T23:59:59.000Z

    A method of removing deposited product from a photochemical reactor used in the enrichment of .sup.196 Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out.

  15. Isotopic Analysis At Separation Creek Area (Van Soest, Et Al., 2002) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy JumpIremNot2007) | Open EnergyOpenEnergy

  16. Hydrogen Isotope Separation From Noble Gasses in Plasma Exhausts and Other

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel CellFew-LayerGas Streams ---

  17. Ionic Liquids as New Solvents for Improved Separation of Medical Isotopes -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation Peer Review 2012 May20108899Energy Innovation

  18. Hybrid Membranes for Light Gas Separations

    E-Print Network [OSTI]

    Liu, Ting

    2012-07-16T23:59:59.000Z

    separations, especially olefin/paraffin separations. This thesis focuses on the designing dendrimer-based hybrid membranes on mesoporous alumina for reverse-selective separations, synthesizing Cu(I)-dendrimer hybrid membrane to facilitate olefin...

  19. Three-Dimensional Laser Cooling

    E-Print Network [OSTI]

    Okamato, H.

    2008-01-01T23:59:59.000Z

    Three-Dimensional Laser Cooling H. Okamoto, A.M. Sessler,effective transverse laser cooling simultaneously withlongitudinal laser cooling, two possibilities are

  20. PALM - Laser Capture Microdissection | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PALM - Laser Capture Microdissection PALM - Laser Capture Microdissection This Laser Capture Microdissection system is equipped with 100 x objective lens for enriching distinct...

  1. Separable Optical Potentials for (d,p) Reactions

    E-Print Network [OSTI]

    Ch. Elster; L. Hlophe; V. Eremenko; F. M. Nunes; G. Arbanas; J. E. Escher; I. J. Thompson

    2014-10-05T23:59:59.000Z

    An important ingredient for applications of nuclear physics to e.g. astrophysics or nuclear energy are the cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not possible, indirect methods like (d,p) reactions must be used instead. Those (d,p) reactions may be viewed as effective three-body reactions and described with Faddeev techniques. An additional challenge posed by (d,p) reactions involving heavier nuclei is the treatment of the Coulomb force. To avoid numerical complications in dealing with the screening of the Coulomb force, recently a new approach using the Coulomb distorted basis in momentum space was suggested. In order to implement this suggestion, one needs not only to derive a separable representation of neutron- and proton-nucleus optical potentials, but also compute the Coulomb distorted form factors in this basis.

  2. Station Footprint: Separation Distances, Storage Options, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station Footprint: Separation Distances, Storage Options, and Pre-Cooling Station Footprint: Separation Distances, Storage Options, and Pre-Cooling This presentation by Aaron...

  3. THE GENESIS SOLAR WIND CONCENTRATOR TARGET: MASS FRACTIONATION CHARACTERISED BY NE ISOTOPES

    SciTech Connect (OSTI)

    WIENS, ROGER C. [Los Alamos National Laboratory; OLINGER, C. [Los Alamos National Laboratory; HEBER, V.S. [Los Alamos National Laboratory; REISENFELD, D.B. [Los Alamos National Laboratory; BURNETT, D.S. [Los Alamos National Laboratory; ALLTON, J.H. [Los Alamos National Laboratory; BAUR, H. [Los Alamos National Laboratory; WIECHERT, U. [Los Alamos National Laboratory; WIELER, R. [Los Alamos National Laboratory

    2007-01-02T23:59:59.000Z

    The concentrator on Genesis provides samples of increased fluences of solar wind ions for precise determination of the oxygen isotopic composition of the solar wind. The concentration process caused mass fractionation as function of the radial target position. They measured the fractionation using Ne released by UV laser ablation along two arms of the gold cross from the concentrator target to compare measured Ne with modeled Ne. The latter is based on simulations using actual conditions of the solar wind during Genesis operation. Measured Ne abundances and isotopic composition of both arms agree within uncertainties indicating a radial symmetric concentration process. Ne data reveal a maximum concentration factor of {approx} 30% at the target center and a target-wide fractionation of Ne isotopes of 3.8%/amu with monotonously decreasing {sup 20}Ne/{sup 22}Ne ratios towards the center. The experimentally determined data, in particular the isotopic fractionation, differ from the modeled data. They discuss potential reasons and propose future attempts to overcome these disagreements.

  4. Gas Separations using Ceramic Membranes

    SciTech Connect (OSTI)

    Paul KT Liu

    2005-01-13T23:59:59.000Z

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  5. Separations innovative concepts: Project summary

    SciTech Connect (OSTI)

    Lee, V.E. (ed.)

    1988-05-01T23:59:59.000Z

    This project summary includes the results of 10 innovations that were funded under the US Department's Innovative Concept Programs. The concepts address innovations that can substantially reduce the energy used in industrial separations. Each paper describes the proposed concept, and discusses the concept's potential energy savings, market applications, technical feasibility, prior work and state of the art, and future development needs.

  6. Electrified Separation Processes in Industry

    E-Print Network [OSTI]

    Appleby, A. J.

    1983-01-01T23:59:59.000Z

    distillation, in the chemical and related industries is very considerable. The majority of the energy used for these separations is thermal input in the form of the low heating-value of oil or gas. From the national viewpoint, it would be advantageous...

  7. 33rd Actinide Separations Conference

    SciTech Connect (OSTI)

    McDonald, L M; Wilk, P A

    2009-05-04T23:59:59.000Z

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  8. ISOTOPES

    E-Print Network [OSTI]

    Lederer, C. Michael

    2013-01-01T23:59:59.000Z

    constructed to enrich liquid UF6 slightly as feed for thej) b. Optimum a. s: .X. UF6 feed, (kg per year) XBL 7912 -

  9. ISOTOPES

    E-Print Network [OSTI]

    Lederer, C. Michael

    2013-01-01T23:59:59.000Z

    lithium hydroxide (56, 14), A plant utilizing this reaction to produce 1000 kg per year of 99.99% 7Li at a price

  10. ISOTOPES

    E-Print Network [OSTI]

    Lederer, C. Michael

    2013-01-01T23:59:59.000Z

    §fissile materials in fast breeder reactors currently underwater reactor, FBR = fast breeder reactor. The band belowinc 1 udes heavy-water reactors, fast breeders, and 11

  11. ISOTOPES

    E-Print Network [OSTI]

    Lederer, C. Michael

    2013-01-01T23:59:59.000Z

    1978). United States Gas Centrifuge Program for 72. Energy~~;h)radius in a gas centrifuge with va 400 m/s. P 0 and U68,14) of a gas centrifuge with radius = 0.09145 m, length=

  12. Low-energy monopole strength in exotic Nickel isotopes

    E-Print Network [OSTI]

    E. Khan; N. Paar; D. Vretenar

    2011-10-13T23:59:59.000Z

    Low-energy strength is predicted for the isoscalar monopole response of neutron-rich Ni isotopes, in calculations performed using the microscopic Skyrme HF+RPA and relativistic RHB+RQRPA models. Both models, although based on different energy density functionals, predict the occurrence of pronounced monopole states in the energy region between 10 MeV and 15 MeV, well separated from the isoscalar GMR. The analysis of transition densities and corresponding particle-hole configurations shows that these states represent almost pure neutron single hole-particle excitations. Even though their location is not modified with respect to the corresponding unperturbed states, their (Q)RPA strength is considerably enhanced by the residual interaction. The theoretical analysis predicts the gradual enhancement of low-energy monopole strength with neutron excess.

  13. - and -delayed neutron- decay of neutron-rich copper isotopes

    SciTech Connect (OSTI)

    Korgul, A. [University of Warsaw; Rykaczewski, Krzysztof Piotr [ORNL; Winger, J. A. [Oak Ridge Associated Universities (ORAU); Ilyushkin, S. [Mississippi State University (MSU); Gross, Carl J [ORNL; Batchelder, J. C. [Oak Ridge Associated Universities (ORAU); Bingham, C. R. [University of Tennessee, Knoxville (UTK); Borzov, Ivan N [ORNL; Goodin, C. [Vanderbilt University; Grzywacz, Robert Kazimierz [ORNL; Hamilton, Joseph H [ORNL; Krolas, W. [Joint Institute for Heavy Ion Research, Oak Ridge; Liddick, S. N. [Oak Ridge Associated Universities (ORAU); Mazzocchi, C. [University of Warsaw; Nelson, C. [Vanderbilt University; Nowacki, F. [Institut Pluridisciplinaire Hubert Curien, Strasbourg, France; Padgett, Stephen [University of Tennessee, Knoxville (UTK); Piechaczek, A. [Louisiana State University; Rajabali, M. M. [University of Tennessee, Knoxville (UTK); Shapira, Dan [ORNL; Sieja, K. [Technische Universitat Darmstadt, Germany; Zganjar, E. F. [Louisiana State University

    2012-01-01T23:59:59.000Z

    The {beta}-decay properties of neutron-rich Cu isotopes produced in proton-induced fission of {sup 238}U were studied at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. The data were collected using high-resolution online mass separation, reacceleration, and digital {beta}-{gamma} spectroscopy methods. An improved decay scheme of N = 49 {sup 78}Cu and the first observation of N = 50 {sup 79}Cu {beta}-delayed neutron decay followed by a gamma transition are reported. Spin and parity (5{sup -}) are deduced for {sup 78gs}Cu. The {beta}-delayed neutron branching ratios (P{sub {beta}n}) for the {sup 77}Cu and {sup 79}Cu precursors are analyzed with the help of nuclear structure models.

  14. Determination of the theoretical feasibility for the transmutation of europium isotopes from high flux isotope reactor control cylinders

    SciTech Connect (OSTI)

    Elam, K.R.; Reich, W.J.

    1995-09-01T23:59:59.000Z

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) is a 100 MWth light-water research reactor designed and built in the 1960s primarily for the production of transuranic isotopes. The HFIR is equipped with two concentric cylindrical blade assemblies, known as control cylinders, that are used to control reactor power. These control cylinders, which become highly radioactive from neutron exposure, are periodically replaced as part of the normal operation of the reactor. The highly radioactive region of the control cylinders is composed of europium oxide in an aluminum matrix. The spent HFIR control cylinders have historically been emplaced in the ORNL Waste Area Grouping (WAG) 6. The control cylinders pose a potential radiological hazard due to the long lived radiotoxic europium isotopes {sup 152}Eu, {sup 154}Eu, and {sup 155}Eu. In a 1991 health evaluation of WAG 6 (ERD 1991) it was shown that these cylinders were a major component of the total radioactivity in WAG 6 and posed a potential exposure hazard to the public in some of the postulated assessment scenarios. These health evaluations, though preliminary and conservative in nature, illustrate the incentive to investigate methods for permanent destruction of the europium radionuclides. When the cost of removing the control cylinders from WAG 6, performing chemical separations and irradiating the material in HFIR are factored in, the option of leaving the control cylinders in place for decay must be considered. Other options, such as construction of an engineered barrier around the disposal silos to reduce the chance of migration, should also be analyzed.

  15. Isotopic composition of Silurian seawater

    SciTech Connect (OSTI)

    Knauth, L.P.; Kealy, S.; Larimer, S.

    1985-01-01T23:59:59.000Z

    Direct isotopic analyses of 21 samples of the Silurian hydrosphere preserved as fluid inclusions in Silurian halite deposits in the Michigan Basin Salina Group yield delta/sup 18/O, deltaD ranging from 0.2 to +5.9 and -26 to -73, respectively. delta/sup 18/O has the same range as observed for modern halite facies evaporite waters and is a few per thousand higher than 100 analyses of fluid inclusions in Permian halite. deltaD is about 20 to 30 per thousand lower than modern and Permian examples. The trajectory of evaporating seawater on a deltaD-delta/sup 18/O diagram initially has a positive slope of 3-6, but hooks strongly downward to negative values, the shape of the hook depending upon humidity. Halite begins to precipitate at delta values similar to those observed for the most /sup 18/O rich fluid inclusions. Subsequent evaporation yields progressively more negative delta values as observed for the fluid inclusions. The fluid inclusion data can be readily explained in terms of evaporating seawater and are consistent with the degree of evaporation deduced from measured bromide profiles. These data are strongly inconsistent with arguments that Silurian seawater was 5.5 per thousand depleted in /sup 18/O. delta/sup 18/O for evaporite waters is systematically related to that of seawater, and does not show a -5.5 per thousand shift in the Silurian, even allowing for variables which affect the isotope evaporation trajectory. The lower deltaD may indicate a component of gypsum dehydration waters or may suggest a D-depleted Silurian hydrosphere.

  16. Supported liquid membrane electrochemical separators

    DOE Patents [OSTI]

    Pemsler, J. Paul (Lexington, MA); Dempsey, Michael D. (Revere, MA)

    1986-01-01T23:59:59.000Z

    Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

  17. Lateral coherence properties of broad-area semiconductor quantum-well lasers

    SciTech Connect (OSTI)

    Larsson, A.; Salzman, J.; Mittelstein, M.; Yariv, A.

    1986-07-01T23:59:59.000Z

    The lateral coherence of broad-area lasers fabricated form a GaAs/GaAlAs graded index waveguide separate confinement and single quantum-well heterostructure grown by molecular beam epitaxy was investigated. These lasers exhibit a high degree of coherence along the junction plane, thus producing a stable and very narrow far-field intensity distribution.

  18. Lateral coherence properties of broad-area semiconductor quantum well lasers

    SciTech Connect (OSTI)

    Larsson, A.; Salzman, J.; Mittelstein, M.; Yariv, A.

    1986-07-01T23:59:59.000Z

    The lateral coherence of broad-area lasers fabricated from a GaAs/GaAlAs graded index waveguide separate confinement and single quantum well heterostructure grown by molecular-beam epitaxy was investigated. These lasers exhibit a high degree of coherence along the junction plane, thus producing a stable and very narrow far field intensity distribution.

  19. Apparatus and method for separating constituents

    DOE Patents [OSTI]

    Maronde, Carl P. (McMurray, PA); Killmeyer, Jr., Richard P. (Pittsburgh, PA)

    1992-01-01T23:59:59.000Z

    A centrifugal separator apparatus and method for improving the efficiency of the separation of constituents in a fluid stream. A cyclone separator includes an assembly for separately discharging both constituents through the same end of the separator housing. A rotary separator includes a rotary housing having a baffle disposed therein for minimizing the differential rotational velocities of the constituents in the housing, thereby decreasing turbulence, and increasing efficiency. The intensity of the centrifugal force and the time which the constituents reside within the housing can be independently controlled to improve efficiency of separation.

  20. Comparison of isotopic transmutation modelling codes

    E-Print Network [OSTI]

    Beard, Carl Allen

    1990-01-01T23:59:59.000Z

    . Numerical solutions to the equations that govern isotopic transmutation can be obtained in several ways. Each method possesses a certain amount of intrinsic error which is inherent in the solution scheme, but which can also vary depending upon... of the removed nuclide if it falls between two long-lived isotopes, or by adding the initial concentration of the short-lived isotope to the first long-lived nuclide which occurs in the production chain. In this second case, the final contribution from...

  1. Theory of the helium isotope shift

    E-Print Network [OSTI]

    Yerokhin, Vladimir A

    2015-01-01T23:59:59.000Z

    Theory of the isotope shift of the centroid energies of light few-electron atoms is reviewed. Numerical results are presented for the isotope shift of the $2^3P$-$2^3S$ and $2^1S$-$2^3S$ transition energies of $^3$He and $^4$He. By comparing theoretical predictions for the isotope shift with the experimental results, the difference of the squares of the nuclear charge radii of $^3$He and $^4$He, $\\delta R^2$, is determined with high accuracy.

  2. Enhancement of muonium emission rate from silica aerogel with a laser ablated surface

    E-Print Network [OSTI]

    Beer, G A; Hirota, S; Ishida, K; Iwasaki, M; Kanda, S; Kawai, H; Kawamura, N; Kitamura, R; Lee, S; Marshall, W Lee G M; Mibe, T; Miyake, Y; Okada, S; Olchanski, K; Olin, A; Oishi, Y; Onishi, H; Otani, M; Saito, N; Shimomura, K; Strasser, P; Tabata, M; Tomono, D; Ueno, K; Yokoyama, K; Won, E

    2014-01-01T23:59:59.000Z

    Emission of muonium ($\\mu^+e^-$) atoms from a laser-processed aerogel surface into vacuum was studied for the first time. Laser ablation was used to create hole-like regions with diameter of about 270$~\\mu$m in a triangular pattern with hole separation in the range of 300--500$~\\mu$m. The emission probability for the laser-processed aerogel sample is at least eight times higher than for a uniform one.

  3. Enhancement of muonium emission rate from silica aerogel with a laser ablated surface

    E-Print Network [OSTI]

    G. A. Beer; Y. Fujiwara; S. Hirota; K. Ishida; M. Iwasaki; S. Kanda; H. Kawai; N. Kawamura; R. Kitamura; S. Lee; W. Lee G. M. Marshall; T. Mibe; Y. Miyake; S. Okada; K. Olchanski; A. Olin; Y. Oishi; H. Onishi; M. Otani; N. Saito; K. Shimomura; P. Strasser; M. Tabata; D. Tomono; K. Ueno; K. Yokoyama; E. Won

    2014-07-31T23:59:59.000Z

    Emission of muonium ($\\mu^+e^-$) atoms from a laser-processed aerogel surface into vacuum was studied for the first time. Laser ablation was used to create hole-like regions with diameter of about 270$~\\mu$m in a triangular pattern with hole separation in the range of 300--500$~\\mu$m. The emission probability for the laser-processed aerogel sample is at least eight times higher than for a uniform one.

  4. Helium isotopes in historical lavas from Mount Vesuvius Comment on `Noble gas isotopic ratios from historical lavas

    E-Print Network [OSTI]

    Graham, David W.

    Discussion Helium isotopes in historical lavas from Mount Vesuvius Comment on `Noble gas isotopic. Introduction Helium isotope results recently published by Tedesco et al. [1] appear to show a decrease in 3 He. Results Helium isotope results from our laboratory are reported in Table 1. The 3 He/4 He ratio has been

  5. Multi-MeV electron acceleration by sub-terawatt laser pulses

    E-Print Network [OSTI]

    Goers, A J; Feder, L; Miao, B; Salehi, F; Milchberg, H M

    2015-01-01T23:59:59.000Z

    We demonstrate laser-plasma acceleration of high charge electron beams to the ~10 MeV scale using ultrashort laser pulses with as little energy as 10 mJ. This result is made possible by an extremely dense and thin hydrogen gas jet. Total charge up to ~0.5 nC is measured for energies >1 MeV. Acceleration is correlated to the presence of a relativistically self-focused laser filament accompanied by an intense coherent broadband light flash, associated with wavebreaking, which can radiate more than ~3% of the laser energy in a sub-femtosecond bandwidth consistent with half-cycle optical emission. Our results enable truly portable applications of laser-driven acceleration, such as low dose radiography, ultrafast probing of matter, and isotope production.

  6. Laser preheat enhanced ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A method for enhancing fuel ignition performance by preheating the fuel with laser light at a wavelength that is absorbable by the fuel prior to ignition with a second laser is provided.

  7. Laser-assisted electrochemistry

    SciTech Connect (OSTI)

    Glenn, D.F.

    1995-05-01T23:59:59.000Z

    The effect of laser irradiation on electrodeposition processes has been investigated. These studies demonstrated that the addition of laser irradiation to an electroplating process can dramatically enhance plating rates and current efficiencies, as well as improve the morphology of the resultant electrodeposit. During the course of these investigations, the mechanism for the laser enhancement of electrodeposition processes was determined. Experimental evidence was obtained to show that laser irradiation of the substrate results in increased metal ion concentrations at the surface of the electrode due to a laser-induced Soret effect. The laser-induced Soret effect has important implications for laser-assisted electrochemical processing. The increase in the surface concentration of ions allows efficient electrodeposition from dilute solutions. As such, laser- assisted electrodeposition may develop into an environmentally conscious manufacturing process by reducing waste and limiting worker exposure to toxic chemicals.

  8. Laser EYE SURGERY LASIK and Excimer Lasers

    E-Print Network [OSTI]

    Fygenson, Deborah Kuchnir

    Laser EYE SURGERY LASIK and Excimer Lasers Michael Hutchins #12;The PROBLEM opia - near sightedness. ically corrected with concave #12;THE PROBLEM eropia - far sightedness sed by a flat cornea or ort eye from different focal points in different nes of the eye. used by non-uniform curvature of the cornea

  9. Degradation of Isotopic Lactate and Acetate

    E-Print Network [OSTI]

    Aronoff, S.

    2010-01-01T23:59:59.000Z

    prescribed, BaC03 from the degradation of Ba acetnte co~~above procedure by the degradation of sjnthetic radio-lacticNo. W-7405-Eng o -48 DEGRADATION OF ISOTOPIC LACTATE AND

  10. The Isotopic Abundances of Magnesium in Stars

    E-Print Network [OSTI]

    Pamela Gay; David L. Lambert

    1999-11-11T23:59:59.000Z

    Isotopic abundance ratios 24^Mg:25^Mg:26^Mg are derived for 20 stars from high- resolution spectra of the MgH A-X 0-0 band at 5140AA. With the exception of the weak g-band giant HR 1299, the stars are dwarfs that sample the metallicity range -1.8 < [Fe/H] <0.0. The abundance of 25^Mg amd 26^Mg relative to the dominant isotope 24^Mg decreases with decreasing [Fe/H] in fair accord with predictions from a recent model of galactic chemical evolution in which the Mg isotopes are synthesised by massive stars. Several stars appear especially enriched in the heavier Mg isotopes suggesting contamination by material from the envelopes of intermediate-mass AGB stars.

  11. Nonequilibrium clumped isotope signals in microbial methane

    E-Print Network [OSTI]

    Wang, David T.

    Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its ...

  12. A SUPERCONDUCTING-SOLENOID ISOTOPE SPECTROMETER

    E-Print Network [OSTI]

    O'Donnell, Tom

    A SUPERCONDUCTING-SOLENOID ISOTOPE SPECTROMETER FOR PRODUCTION OF NEUTRON-RICH NUCLEI ( 136 Xe Superconducting Cyclotron Laboratory's weekly \\Green Sheet," 30 July 1999 #12; c Thomas W. O'Donnell 2000 All

  13. The role of an interface on Ni film removal and surface roughness after irradiation by femtosecond laser pulses

    SciTech Connect (OSTI)

    Murphy, Ryan D. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, Ben [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Yalisove, Steven M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2013-05-06T23:59:59.000Z

    We have observed thin film removal from glass substrates after the irradiation of Ni films with femtosecond laser pulses in air. It was found that the material removal threshold and laser-induced morphology are dependent on film thickness. With decreasing thickness, material removal transitions from intra-film separation to removal at the Ni-glass interface. The Gaussian energy distribution of the laser pulse allows for intra-film separation in the annular region of the crater and interface separation in the center. We propose a model to explain these data as well as the observed increased surface roughness in the interfacial removal regions.

  14. Iodine-129 separation and determination by neutron activation analysis

    SciTech Connect (OSTI)

    Bate, L.C.; Stokely, J.R.

    1981-01-01T23:59:59.000Z

    A method is described for analysis of /sup 129/I in fission product mixtures originating from fuel reprocessing studies and low-level wastes. The method utilizes conventional iodine valence adjustment and solvent extraction techniques to chemically separate /sup 129/I from most fission products. The /sup 129/I is determined by neutron irradiation and measurement of the 12.4 h /sup 130/I produced by the neutron capture reaction. Special techniques were devised for neutron irradiation of /sup 129/I samples in the pneumatic tube irradiation facilities at the High Flux Isotope (HFIR) and Oak Ridge Research (ORR) Reactors. Chemically separated /sup 129/I is adsorbed on an anion exchange resin column made from an irradiation container. The loaded resin is then irradiated in either of the pneumatic facilities to produce /sup 130/I. Sensitivity of the analysis with the HFIR facility (flux: 5 x 10/sup 14/ n/cm/sup 2//sec) and a 100-second irradiation time is approximately 0.03 nanograms. Samples up to 250 ml in volume can be easily processed.

  15. Transmyocardial Laser Revascularization

    E-Print Network [OSTI]

    Fygenson, Deborah Kuchnir

    Transmyocardial Laser Revascularization Max Wiedmann #12;What is TMR? · TMR is used to improve blood flow to heart muscle tissue (myocardial tissue). · This is done using a laser to create small with bypass surgery so no additional opening is required. · The surgeon uses the laser to create 20 to 40 1mm

  16. Laser bottom hole assembly

    DOE Patents [OSTI]

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14T23:59:59.000Z

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  17. LaserFest Celebration

    SciTech Connect (OSTI)

    Dr. Alan Chodos; Elizabeth A. Rogan

    2011-08-25T23:59:59.000Z

    LaserFest was the yearlong celebration, during 2010, of the 50th anniversary of the demonstration of the first working laser. The goals of LaserFest were: to highlight the impact of the laser in its manifold commercial, industrial and medical applications, and as a tool for ongoing scientific research; to use the laser as one example that illustrates, more generally, the route from scientific innovation to technological application; to use the laser as a vehicle for outreach, to stimulate interest among students and the public in aspects of physical science; to recognize and honor the pioneers who developed the laser and its many applications; to increase awareness among policymakers of the importance of R&D funding as evidenced by such technology as lasers. One way in which LaserFest sought to meet its goals was to encourage relevant activities at a local level all across the country -- and also abroad -- that would be identified with the larger purposes of the celebration and would carry the LaserFest name. Organizers were encouraged to record and advertise these events through a continually updated web-based calendar. Four projects were explicitly detailed in the proposals: 1) LaserFest on the Road; 2) Videos; 3) Educational material; and 4) Laser Days.

  18. Carbon isotope fractionation in autotrophic Chromatium

    E-Print Network [OSTI]

    Wong, William Wai-Lun

    1974-01-01T23:59:59.000Z

    CARSON ISOTOPE FRACTIONATION IN AUTOTPOPHIC CHROYATIUN A Thesis 'JILLIAJJ J JAI LJJN BONG Submitted to the Graduate College of Texas A&H University in partial fulfillment of the requirenent for the degree of PLASTER OF SCIENCE August 1974...) August 1974 ABSTRACT Carbon Isotope Fractionation in Autotrophic Chromatium (August 1974) blilliam Wai-Lun Wang, B. S. , Texas Lutheran College Co-Chairmen of Advisory Committee: Dr. Isilliam N. Sackett Dr. Chauncey P. . Benedict Bacterial cells...

  19. Mass Parameterizations and Predictions of Isotopic Observables

    E-Print Network [OSTI]

    S. R. Souza; P. Danielewicz; S. Das Gupta; R. Donangelo; W. A. Friedman; W. G. Lynch; W. P. Tan; M. B. Tsang

    2003-03-24T23:59:59.000Z

    We discuss the accuracy of mass models for extrapolating to very asymmetric nuclei and the impact of such extrapolations on the predictions of isotopic observables in multifragmentation. We obtain improved mass predictions by incorporating measured masses and extrapolating to unmeasured masses with a mass formula that includes surface symmetry and Coulomb terms. We find that using accurate masses has a significant impact on the predicted isotopic observables.

  20. Isotopic generator for bismuth-212 and lead-212 based on radium

    DOE Patents [OSTI]

    Hines, J.J.; Atcher, R.W.; Friedman, A.M.

    1985-01-30T23:59:59.000Z

    Disclosed are method and apparatus for providing radionuclides of bismuth-212 and lead-212. Thorium-228 and carrier solution starting material is input to a radiologically contained portion of an isotopic generator system, and radium-224 is separated from thorium-228 which is retained by a strongly basic anion exchange column. The separated radium-224 is transferred to an accessible, strongly acidic cationic exchange column. The cationic column retains the radium-224, and natural radioactive decay generates bismuth-212 and lead-212. The cationic exchange column can also be separated from the contained portion of the system and utilized without the extraordinary safety measures necessary in the contained portion. Furthermore, the cationic exchange column provides over a relatively long time period the short lived lead-212 and bismuth-212 radionuclides which are useful for a variety of medical therapies.

  1. Separation of actinides from lanthanides

    DOE Patents [OSTI]

    Smith, B.F.; Jarvinen, G.D.; Ryan, R.R.

    1988-03-31T23:59:59.000Z

    An organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form is described. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4- dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  2. Separation of actinides from lanthanides

    DOE Patents [OSTI]

    Smith, Barbara F. (Los Alamos, NM); Jarvinen, Gordon D. (Los Alamos, NM); Ryan, Robert R. (Los Alamos, NM)

    1989-01-01T23:59:59.000Z

    An organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  3. Ion desolvation as a mechanism for kinetic isotope fractionation in aqueous systems

    E-Print Network [OSTI]

    Hofmann, A.E.

    2014-01-01T23:59:59.000Z

    equilibrium light?isotope  enrichment is a key unknown in of light?isotope  enrichment  during  precipitation.  possible light? isotope enrichment from diffusion?limited 

  4. Oxygen isotope fractionation in the vacuum ultraviolet photodissociation of carbon monoxide: Wavelength, pressure and temperature dependency.

    E-Print Network [OSTI]

    Chakraborty, Subrata

    2013-01-01T23:59:59.000Z

    Oxygen isotope fractionation in the vacuum ultravioletmeasurement of the associated oxygen isotopic composition ofwavelength dependency of the oxygen isotopic composition in

  5. Evaluating separator performance for hydrocarbon streams

    SciTech Connect (OSTI)

    Barker, W.F.

    1982-12-27T23:59:59.000Z

    The goal for ideal separator selection and design is to separate the hydrocarbon stream into liquid-free gas and gasfree liquid. Separators are mechanical devices for removing and collecting liquids from natural gas. Verticle, horizontal, and spherical separators and their respective capabilities are described. Coalescing gas separators are designed specifically for the removal of mists, oil fogs, rust, and dust from the gas stream. A table lists estimated fabrication and installation cost, performance rating, and time requirements for each filter-coalescer liquid separator based on gas pressure (psig) and gas volumes (MMcfd).

  6. X-ray laser

    DOE Patents [OSTI]

    Nilsen, Joseph (Livermore, CA)

    1991-01-01T23:59:59.000Z

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  7. Separations and safeguards model integration.

    SciTech Connect (OSTI)

    Cipiti, Benjamin B.; Zinaman, Owen

    2010-09-01T23:59:59.000Z

    Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

  8. Fiber optic laser-induced breakdown spectroscopy sensor for molten material analysis

    DOE Patents [OSTI]

    Zhang, Hansheng; Rai, Awadesh K.; Singh, Jagdish P.; Yueh, Fang-Yu

    2004-07-13T23:59:59.000Z

    A fiber optic laser-induced breakdown spectroscopy (LIBS) sensor, including a laser light source, a harmonic separator for directing the laser light, a dichroic mirror for reflecting the laser light, a coupling lens for coupling the laser light at an input of a multimode optical fiber, a connector for coupling the laser light from an output of the multimode optical fiber to an input of a high temperature holder, such as a holder made of stainless steel, and a detector portion for receiving emission signal and analyzing LIBS intensities. In one variation, the multimode optical fiber has silica core and silica cladding. The holder includes optical lenses for collimating and focusing the laser light in a molten alloy to produce a plasma, and for collecting and transmitting an emission signal to the multimode optical fiber.

  9. Isotope loss from exhaled moisture and correlation of multifrequency bioelectrical impedance to body fluid compartments measured by intravenous deuterium oxide and sodium bromide dilution in dogs

    E-Print Network [OSTI]

    Witten, Tiffani Tipton

    2000-01-01T23:59:59.000Z

    for this route of isotope loss was necessary. Sodium bromide concentrations at 90 minutes and 180 minutes were tested for statistical equivalency to determine if NaBr had equilibrated by 90 minutes. Finally, impedance measured with electrodes separated by 2...

  10. Isotope effect evidence for the zinc hydroxide mechanism of carbonic anhydrase catalyst

    SciTech Connect (OSTI)

    Paneth, P.; O'Leary, M.H.

    1987-03-24T23:59:59.000Z

    The carbon kinetic isotope effect on the enzymatic dehydration of HCO/sub 3//sup -/ ion is k/sup 12//k/sup 13/ = 1.011 and is independent, within experimental error, of the addition of sucrose, substitution of D/sub 2/O for H/sub 2/O, and substitution of enzyme-bound Zn/sup 2 +/ by Co/sup 2 +/. These results are consistent with a ping-pong mechanism in which proton transfer between enzyme and solvent is separated from HCO/sub 3//sup -/ dehydration. For the dehydration half-reaction, diffusional processes are severalfold faster than dehydration, and the rate-determining step is the dehydration itself. The intrinsic isotope effect is approximately 1.011, indicating that hydration of CO/sub 2/ occurs by reaction of zinc-bound OH/sup -/, rather than zinc-bound H/sub 2/O.

  11. Isotope effect evidence for the zinc hydroxide mechanism of carbonic anhydrase catalysis

    SciTech Connect (OSTI)

    Paneth, P.; O'Leary, M.H.

    1987-03-24T23:59:59.000Z

    The carbon kinetic isotope effect on the enzymatic dehydration of HCO/sub 3/- ion is k12/k13 = 1.011 and is independent, within experimental error, of the addition of sucrose, substitution of D/sub 2/O for H/sub 2/O, and substitution of enzyme-bound Zn/sup 2 +/ by Co/sup 2 +/. These results are consistent with a ping-pong mechanism in which proton transfer between enzyme and solvent is separated from HCO/sub 3/- dehydration. For the dehydration half-reaction, diffusional processes are severalfold faster than dehydration, and the rate-determining step is the dehydration itself. The intrinsic isotope effect is approximately 1.011, indicating that hydration of CO/sub 2/ occurs by reaction of zinc-bound OH-, rather than zinc-bound H/sub 2/O.

  12. Sheathless Size-Based Acoustic Particle Separation

    E-Print Network [OSTI]

    Guldiken, Rasim

    Particle separation is of great interest in many biological and biomedical applications. Flow-based methods have been used to sort particles and cells. However, the main challenge with flow based particle separation systems ...

  13. Separation Processes CHE 485, 3 Credits

    E-Print Network [OSTI]

    Fuchs, Alan

    such as: vapor pressure, solubility, adsorptivity and diffusivity. Examples of separations processes based and multistage equilibrium chemical processes ­ product recovery, purity and separation power, azeotropic systems Phenomena (CHE 374). Computer Usage CHEMCAD simulation software for design of unit operations processes

  14. Laser Safety Training Notes for URI Laser Users

    E-Print Network [OSTI]

    Rhode Island, University of

    ;URI Radiation Safety Office 11 Laser Output · Continuous Wave (steady output) · Pulsed (short time extremely short laser pulses (typically a few nanoseconds in duration). The Q-switch may use a rotatingLaser Safety Training Notes for URI Laser Users #12;URI Radiation Safety Office 2 Laser The word

  15. Laser system using ultra-short laser pulses

    DOE Patents [OSTI]

    Dantus, Marcos (Okemos, MI); Lozovoy, Vadim V. (Okemos, MI); Comstock, Matthew (Milford, MI)

    2009-10-27T23:59:59.000Z

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  16. The Theta Laser A Low Noise Chirped Pulse Laser

    E-Print Network [OSTI]

    Van Stryland, Eric

    · Increased laser coherence · Ultra-low noise lasersOC ISO SOA #12;8 Approach Semiconductor-Based FrequencyThe Theta Laser A Low Noise Chirped Pulse Laser Dimitrios Mandridis dmandrid@creol.ucf.edu April 29, 2011 CREOL Affiliates Day 2011 #12;2 Objective: Frequency Swept (FM) Mode-locked Laser · Develop

  17. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    SciTech Connect (OSTI)

    Ribic, B.; DebRoy, T. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Burgardt, P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2011-04-15T23:59:59.000Z

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  18. Precision laser surveying instrument using atmospheric turbulence compensation by determining the absolute displacement between two laser beam components

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    1993-01-01T23:59:59.000Z

    Atmospheric effects on sighting measurements are compensated for by adjusting any sighting measurements using a correction factor that does not depend on atmospheric state conditions such as temperature, pressure, density or turbulence. The correction factor is accurately determined using a precisely measured physical separation between two color components of a light beam (or beams) that has been generated using either a two-color laser or two lasers that project different colored beams. The physical separation is precisely measured by fixing the position of a short beam pulse and measuring the physical separation between the two fixed-in-position components of the beam. This precisely measured physical separation is then used in a relationship that includes the indexes of refraction for each of the two colors of the laser beam in the atmosphere through which the beam is projected, thereby to determine the absolute displacement of one wavelength component of the laser beam from a straight line of sight for that projected component of the beam. This absolute displacement is useful to correct optical measurements, such as those developed in surveying measurements that are made in a test area that includes the same dispersion effects of the atmosphere on the optical measurements. The means and method of the invention are suitable for use with either single-ended systems or a double-ended systems.

  19. Device for hydrogen separation and method

    DOE Patents [OSTI]

    Paglieri, Stephen N. (White Rock, NM); Anderson, Iver E. (Ames, IA); Terpstra, Robert L. (Ames, IA)

    2009-11-03T23:59:59.000Z

    A device for hydrogen separation has a porous support and hydrogen separation material on the support. The support is prepared by heat treatment of metal microparticles, preferably of iron-based or nickel-based alloys that also include aluminum and/or yttrium. The hydrogen separation material is then deposited on the support. Preferred hydrogen separation materials include metals such as palladium, alloys, platinum, refractory metals, and alloys.

  20. Resolving the stellar sources of isotopically rare presolar silicate grains through Mg and Fe isotopic analyses

    SciTech Connect (OSTI)

    Nguyen, Ann N.; Messenger, Scott, E-mail: lan-anh.n.nguyen@nasa.gov [Robert M. Walker Laboratory for Space Science, Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, Houston, TX 77058 (United States)

    2014-04-01T23:59:59.000Z

    We conducted multi-element isotopic analyses of 11 presolar silicate grains from the Acfer 094 meteorite having unusual O isotopic compositions. Eight grains are {sup 18}O-rich, one is {sup 16}O-rich, and two are extremely {sup 17}O-rich. We constrained the grains' stellar sources by measuring their Si and Mg isotopic ratios, and also the {sup 54}Fe/{sup 56}Fe and {sup 57}Fe/{sup 56}Fe ratios for five grains. The Mg and Fe isotopic measurements were conducted after surrounding matrix grains were removed for more accurate ratios. Most of the {sup 18}O-rich silicates had anomalous Mg isotopic ratios, and their combined isotopic constraints are consistent with origins in low-mass Type II supernovae (SNe II) rather than high-metallicity stars. The isotopic ratios of the {sup 16}O-rich silicate are also consistent with an SN origin. Mixing small amounts of interior stellar material with the stellar envelope replicated all measured isotopic ratios except for {sup 29}Si/{sup 28}Si and {sup 54}Fe/{sup 56}Fe in some grains. The {sup 29}Si/{sup 28}Si ratios of all SN-derived grains are matched by doubling the {sup 29}Si yield in the Ne- and Si-burning zones. The {sup 54}Fe/{sup 56}Fe ratios of the grains imply elemental fractionation in the Si/S zone, or introduction of isotopically solar Fe by secondary processing. The two highly {sup 17}O-rich silicates exhibited significant {sup 25}Mg and/or {sup 26}Mg enrichments and their isotopic ratios are best explained by strong dilution of 1.15 M {sub ?} CO nova matter. We estimate that ?12% and 1% of presolar silicates have SN and nova origins, respectively, similar to presolar SiC and oxides. This implies that asymptotic giant branch stars are the dominant dust producers in the galaxy.

  1. Discovering Mercury Protein Modifications in Whole Proteomes Using Natural Isotope Distributions Observed in Liquid Chromatography-Tandem Mass Spectrometry

    SciTech Connect (OSTI)

    Polacco, Benjamin J.; Purvine, Samuel O.; Zink, Erika M.; LaVoie, Stephen P.; Lipton, Mary S.; Summers, Anne O.; Miller, Susan M.

    2011-08-01T23:59:59.000Z

    The identification of peptides that result from post-translational modifications is critical for understanding normal pathways of cellular regulation as well as identifying damage from, or exposures to xenobiotics, i.e. the exposome. However, because of their low abundance in proteomes, effective detection of modified peptides by mass spectrometry (MS) typically requires enrichment to eliminate false identifications. We present a new method for confidently identifying peptides with mercury (Hg)-containing adducts that is based on the influence of mercury’s seven stable isotopes on peptide isotope distributions detected by high-resolution MS. Using a pure protein and E. coli cultures exposed to phenyl mercuric acetate, we show the pattern of peak heights in isotope distributions from primary MS single scans efficiently identified Hg adducts in data from chromatographic separation coupled with tandem mass spectrometry with sensitivity and specificity greater than 90%. Isotope distributions are independent of peptide identifications based on peptide fragmentation (e.g. by SEQUEST), so both methods can be combined to eliminate false positives. Summing peptide isotope distributions across multiple scans improved specificity to 99.4% and sensitivity above 95%, affording identification of an unexpected Hg modification. We also illustrate the theoretical applicability of the method for detection of several less common elements including the essential element, selenium, as selenocysteine in peptides.

  2. Cyclone separator having boundary layer turbulence control

    DOE Patents [OSTI]

    Krishna, Coimbatore R. (Mt. Sinai, NY); Milau, Julius S. (Port Jefferson, NY)

    1985-01-01T23:59:59.000Z

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  3. Center for Gas Separations Relevant to

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Center for Gas Separations Relevant to Clean Energy Technologies #12;Director Berend Smit Jeffrey, metal-organic framework. © 2013 EFRC Center for Gas Separation Relevant to Clean Energy Technology. All the current separation technology, developed over sixty years ago, requires 25-35% more coal to produce

  4. Ultrafast magneto-photocurrents in GaAs: Separation of surface and bulk contributions

    E-Print Network [OSTI]

    Schmidt, Christian B; Tarasenko, Sergey A; Bieler, Mark

    2015-01-01T23:59:59.000Z

    We induce ultrafast magneto-photocurrents in a GaAs crystal employing interband excitation with femtosecond laser pulses at room temperature and non-invasively separate surface and bulk contributions to the overall current response. The separation between the different symmetry contributions is achieved by measuring the simultaneously emitted terahertz radiation for different sample orientations. Excitation intensity and photon energy dependences of the magneto-photocurrents for linearly and circularly polarized excitations reveal an involvement of different microscopic origins, one of which we believe is the inverse Spin-Hall effect. Our experiments are important for a better understanding of the complex momentum-space carrier dynamics in magnetic fields.

  5. Composition analysis by scanning femtosecond laser ultraprobing (CASFLU).

    DOE Patents [OSTI]

    Ishikawa, Muriel Y. (Livermore, CA); Wood, Lowell L. (Simi Valley, CA); Campbell, E. Michael (Danveille, CA); Stuart, Brent C. (Livermore, CA); Perry, Michael D. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    The composition analysis by scanning femtosecond ultraprobing (CASFLU) technology scans a focused train of extremely short-duration, very intense laser pulses across a sample. The partially-ionized plasma ablated by each pulse is spectrometrically analyzed in real time, determining the ablated material's composition. The steering of the scanned beam thus is computer directed to either continue ablative material-removal at the same site or to successively remove nearby material for the same type of composition analysis. This invention has utility in high-speed chemical-elemental, molecular-fragment and isotopic analyses of the microstructure composition of complex objects, e.g., the oxygen isotopic compositions of large populations of single osteons in bone.

  6. Method and apparatus for producing durationally short ultraviolet or X-ray laser pulses

    DOE Patents [OSTI]

    MacGowan, Brian J. (Livermore, CA); Matthews, Dennis L. (El Granada, CA); Trebes, James E. (Livermore, CA)

    1988-01-01T23:59:59.000Z

    A method and apparatus is disclosed for producing ultraviolet or X-ray laser pulses of short duration (32). An ultraviolet or X-ray laser pulse of long duration (12) is progressively refracted, across the surface of an opaque barrier (28), by a streaming plasma (22) that is produced by illuminating a solid target (16, 18) with a pulse of conventional line focused high power laser radiation (20). The short pulse of ultraviolet or X-ray laser radiation (32), which may be amplified to high power (40, 42), is separated out by passage through a slit aperture (30) in the opaque barrier (28).

  7. Longitudinal-mode control in integrated semiconductor laser phased arrays by phase velocity matching

    SciTech Connect (OSTI)

    Kapon, E.; Katz, J.; Margalit, S.; Yariv, A.

    1984-01-15T23:59:59.000Z

    The spectrum of semiconductor laser arrays with separate contacts is investigated. It is demonstrated that the individual laser currents can be selected such that the array operates in a single longitudinal mode in contrast to the multimode nature of its individual constituents. Moreover, it is possible to tune the lasing frequency by varying the laser currents. Wavelength tuning range of approx.50 A, with tuning rate of approx.5 A/mA, is demonstrated. It is suggested that these spectral features, characteristic of lasers which are coupled in parallel, result from the strong frequency dependence of their spatial mode pattern near the phase-matching frequency of their coupled waveguides.

  8. Method and apparatus for producing durationally short ultraviolet or x-ray laser pulses

    DOE Patents [OSTI]

    MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.

    1987-05-05T23:59:59.000Z

    A method and apparatus is disclosed for producing ultraviolet or x- ray laser pulses of short duration. An ultraviolet or x-ray laser pulse of long duration is progressively refracted, across the surface of an opaque barrier, by a streaming plasma that is produced by illuminating a solid target with a pulse of conventional line focused high power laser radiation. The short pulse of ultraviolet or x-ray laser radiation, which may be amplified to high power, is separated out by passage through a slit aperture in the opaque barrier.

  9. Laser Heater and seeded Free Electron Laser

    E-Print Network [OSTI]

    Dattoli, G; Sabia, E

    2014-01-01T23:59:59.000Z

    In this paper we consider the effect of laser heater on a seeded Free Electron Laser. We develop a model embedding the effect of the energy modulation induced by the heater with those due to the seeding. The present analysis is compatible with the experimental results obtained at FERMI displaying secondary maxima with increasing heater intensity. The treatment developed in the paper confirms and extends previous analyses and put in evidence further effects which can be tested in future experiments.

  10. Design, construction, and operation of a laboratory scale reactor for the production of high-purity, isotopically enriched bulk silicon

    E-Print Network [OSTI]

    Ager III, J.W.; Beeman, J.W.; Hansen, W.L.; Haller, E.E.

    2004-01-01T23:59:59.000Z

    Russia. The stated isotope enrichments are summarized inenrichments >99% have been achieved for each isotope and

  11. Centrifugal separator devices, systems and related methods

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID); Law, Jack D. (Pocatello, ID); Garn, Troy G. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Macaluso, Lawrence L. (Carson City, NV)

    2012-03-20T23:59:59.000Z

    Centrifugal separator devices, systems and related methods are described. More particularly, fluid transfer connections for a centrifugal separator system having support assemblies with a movable member coupled to a connection tube and coupled to a fixed member, such that the movable member is constrained to movement along a fixed path relative to the fixed member are described. Also, centrifugal separator systems including such fluid transfer connections are described. Additionally, methods of installing, removing and/or replacing centrifugal separators from centrifugal separator systems are described.

  12. Making Relativistic Positrons Using Ultra-Intense Short Pulse Lasers

    SciTech Connect (OSTI)

    Chen, H; Wilks, S; Bonlie, J; Chen, C; Chen, S; Cone, K; Elberson, L; Gregori, G; Liang, E; Price, D; Van Maren, R; Meyerhofer, D D; Mithen, J; Murphy, C V; Myatt, J; Schneider, M; Shepherd, R; Stafford, D; Tommasini, R; Beiersdorfer, P

    2009-08-24T23:59:59.000Z

    This paper describes a new positron source produced using ultra-intense short pulse lasers. Although it has been studied in theory since as early as the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets were detected. The targets were illuminated with short ({approx}1 ps) ultra-intense ({approx}1 x 10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process, and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser based positron source with its unique characteristics may complements the existing sources using radioactive isotopes and accelerators.

  13. Laser-PlasmaWakefield Acceleration with Higher Order Laser Modes

    E-Print Network [OSTI]

    Geddes, C.G.R.

    2011-01-01T23:59:59.000Z

    Design considerations for a laser-plasma linear collider,"E.Esarey, and W.P.Leemans, "Free-electron laser driven bythe LBNL laser-plasma accelerator," in Proc. Adv. Acc. Con.

  14. Nonlinear laser energy depletion in laser-plasma accelerators

    E-Print Network [OSTI]

    Shadwick, B.A.

    2009-01-01T23:59:59.000Z

    k p k 0 and assume a short laser pulse, k p L ? 2. WithE 0 = mc? p /q. For a short laser pulse, ? ? ? short-pulse lasers via excitation of

  15. Photoinduced charge separation in a porphyrin-tetraviologen supramolecular array

    SciTech Connect (OSTI)

    Batteas, J.D.; Harriman, A. (Univ. of Texas, Austin (USA)); Kanda, Yu.; Mataga, Noboru (Osaka Univ. (Japan)); Nowak, A.K. (Royal Institution, London (England))

    1990-01-03T23:59:59.000Z

    A porphyrin-tetraviologen supramolecule P-V{sub 4}, in which a viologen molecule is appended to each of the porphyrin meso positions via a 1,3-propanoxy-4-phenyl chain, has been studied by picosecond and nanosecond laser flash photolysis techniques. In DMSO solution, rapid charge separation (CS) occurs from the first excited singlet state of the porphyrin, giving rise to long-lived redox products. These products recombine via first-order kinetics ({tau} = 6.4 {plus minus} 0.7 {mu}s) to restore the ground-state reactants. Similar, but much slower, CS takes place from the porphyrin triplet excited state, which is formed in competition to CS from the singlet state. Quantum yields for formation of redox products and rates of both CS and charge recombination (CR) are solvent dependent, protic solvents favoring rapid CR.

  16. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    SciTech Connect (OSTI)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

    2011-07-15T23:59:59.000Z

    Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

  17. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    SciTech Connect (OSTI)

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05T23:59:59.000Z

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg equivalents. AMS provides an sensitive, accurate and precise method of measuring drug compounds in biological matrices.

  18. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-05-08T23:59:59.000Z

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using, a metal hydride.

  19. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1993-01-01T23:59:59.000Z

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  20. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-03-30T23:59:59.000Z

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  1. Precision laser aiming system

    DOE Patents [OSTI]

    Ahrens, Brandon R. (Albuquerque, NM); Todd, Steven N. (Rio Rancho, NM)

    2009-04-28T23:59:59.000Z

    A precision laser aiming system comprises a disrupter tool, a reflector, and a laser fixture. The disrupter tool, the reflector and the laser fixture are configurable for iterative alignment and aiming toward an explosive device threat. The invention enables a disrupter to be quickly and accurately set up, aligned, and aimed in order to render safe or to disrupt a target from a standoff position.

  2. Excimer laser chemical problems

    SciTech Connect (OSTI)

    Tennant, R.; Peterson, N.

    1982-01-01T23:59:59.000Z

    Techniques need to be developed to maintain XeF and XeCl laser performance over long periods of time without degradation resulting from chemical processes occurring within the laser. The dominant chemical issues include optical damage, corrosions of laser materials, gas contamination, and control of halogen concentration. Each of these issues are discussed and summarized. The methods of minimizing or controlling the chemical processes involved are presented.

  3. Isotope effects in methanol synthesis and the reactivity of copper...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope effects in methanol synthesis and the reactivity of copper formates on a CuSiO2 catalyst. Isotope effects in methanol synthesis and the reactivity of copper formates on a...

  4. Hydrogen isotope fractionation during lipid biosynthesis by Haloarcula marismortui

    E-Print Network [OSTI]

    Hydrogen isotope fractionation during lipid biosynthesis by Haloarcula marismortui Sitindra S studied the controls on the fractionation of hydrogen isotopes during lipid biosynthesis by Haloarcula marismortui, a halophilic archaea, in pure culture experiments by varying organic substrate, the hydrogen

  5. Oxygen isotope records of carboniferous seasonality on the Russian platform

    E-Print Network [OSTI]

    Wang, Huayu

    1998-01-01T23:59:59.000Z

    Seven isotopic and eight trace element (TE) profiles across shell growth lines are presented, based on over 1000 stable isotope and electron microprobe analyses on six brachiopod shells (Gigantoproductus), to quantify seasonal temperature change...

  6. Physiology of multiple sulfur isotope fractionation during microbial sulfate reduction

    E-Print Network [OSTI]

    Sim, Min Sub

    2012-01-01T23:59:59.000Z

    Microbial sulfate reduction (MSR) utilizes sulfate as an electron acceptor and produces sulfide that is depleted in heavy isotopes of sulfur relative to starting sulfate. The fractionation of S-isotopes is commonly used ...

  7. Delayed neutron measurements from fast fission of actinide waste isotopes

    E-Print Network [OSTI]

    Charlton, William S.

    1997-01-01T23:59:59.000Z

    A study was performed to determine the delayed neutron emission properties from fast fission of several actinide waste isotopes. The specific isotopes evaluated were U-235, Np-237, and Am-243. A calculational technique based on the microscopic...

  8. High Flux Isotope Reactor named Nuclear Historic Landmark | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Flux Isotope Reactor named Nuclear Historic Landmark The High Flux Isotope Reactor vessel at Oak Ridge National Laboratory resides in a pool of water illuminated by the blue...

  9. Energy exchange between a laser beam and charged particles using inverse transition radiation and method for its use

    DOE Patents [OSTI]

    Kimura, Wayne D. (Bellevue, WA); Romea, Richard D. (Seattle, WA); Steinhauer, Loren C. (Bothell, WA)

    1998-01-01T23:59:59.000Z

    A method and apparatus for exchanging energy between relativistic charged particles and laser radiation using inverse diffraction radiation or inverse transition radiation. The beam of laser light is directed onto a particle beam by means of two optical elements which have apertures or foils through which the particle beam passes. The two apertures or foils are spaced by a predetermined distance of separation and the angle of interaction between the laser beam and the particle beam is set at a specific angle. The separation and angle are a function of the wavelength of the laser light and the relativistic energy of the particle beam. In a diffraction embodiment, the interaction between the laser and particle beams is determined by the diffraction effect due to the apertures in the optical elements. In a transition embodiment, the interaction between the laser and particle beams is determined by the transition effect due to pieces of foil placed in the particle beam path.

  10. Blind Source Separation 2 Understanding Two Simultaneous Speeches by Blind Source Separation

    E-Print Network [OSTI]

    Ikeda, Shiro

    Blind Source Separation 2 Understanding Two Simultaneous Speeches by Blind Source Separation) to segregate speech streams from a mixture of sounds, while the other ex- ploits Blind Source Separation the performance of Blind Source Separation by using the same three benchmarks of 500 mix- ture of two speeches

  11. Novel fluorinated laser dyes

    DOE Patents [OSTI]

    Hammond, Peter R. (Livermore, CA); Feeman, James F. (Wyomissing, PA)

    1991-01-01T23:59:59.000Z

    A novel class of dye is disclosed which is particularly efficient and stable for dye laser applications, lasing between 540 and 570 nm.

  12. Laser Desorption Analysis | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mounted on standardized EMSL platens and attached to a vacuum manipulator. Several excitation, or pump, nanosecond and femtosecond lasers are available in the laboratory for...

  13. ATF CO2 LASER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    *Operate at low pressure <<1 atm *Bandwidth P (10 atm supports a picosecond pulse) 4 Ultrafast gas lasers require high pressure Inverse Fourier Transform for discrete spectrum...

  14. Laser Desorption Analysis | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and TOF mass spectrometers; neutral particle detection using a second multiphoton ionization or REMPI laser system; and UHV surface diagnostic equipment (AES, LEED, XPS)....

  15. Fusion reactor pumped laser

    DOE Patents [OSTI]

    Jassby, Daniel L. (Princeton, NJ)

    1988-01-01T23:59:59.000Z

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  16. Process for strontium-82 separation

    DOE Patents [OSTI]

    Heaton, R.C.; Jamriska, D.J. Sr.; Taylor, W.A.

    1992-12-01T23:59:59.000Z

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed. 1 fig.

  17. Process for strontium-82 separation

    DOE Patents [OSTI]

    Heaton, Richard C. (Los Alamos, NM); Jamriska, Sr., David J. (Los Alamos, NM); Taylor, Wayne A. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed.

  18. BNL | CFN Laser System Qualifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lasers. This standard requires each Class 3B and 4 laser user to have a pre-assignment eye examination by an ophthalmologist, which is recorded on Part B of the Laser Medical...

  19. Laser Program annual report 1987

    SciTech Connect (OSTI)

    O'Neal, E.M.; Murphy, P.W.; Canada, J.A.; Kirvel, R.D.; Peck, T.; Price, M.E.; Prono, J.K.; Reid, S.G.; Wallerstein, L.; Wright, T.W. (eds.)

    1989-07-01T23:59:59.000Z

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies.

  20. Shape mixing and beta-decay properties of neutron-deficient Kr and Sr isotopes

    E-Print Network [OSTI]

    P. Sarriguren

    2009-03-31T23:59:59.000Z

    Gamow-Teller strength distributions and beta-decay half-lives in neutron-deficient Kr and Sr isotopes are investigated within a deformed quasiparticle random phase approximation. The approach is based on a selfconsistent Skyrme Hartree-Fock mean field with pairing correlations and residual separable particle-hole and particle-particle forces. A simple two-level model is used to mix the nuclear shapes into the physical ground state. Good agreement with experiment is found with shape mixing coefficients which are consistent with those obtained phenomenologically from mixing of rotational bands.

  1. Beta-decay properties of Zr and Mo neutron-rich isotopes

    E-Print Network [OSTI]

    P. Sarriguren; J. Pereira

    2010-06-08T23:59:59.000Z

    Gamow-Teller strength distributions, beta-decay half-lives, and beta-delayed neutron emission are investigated in neutron-rich Zr and Mo isotopes within a deformed quasiparticle random-phase approximation. The approach is based on a self-consistent Skyrme Hartree-Fock mean field with pairing correlations and residual separable particle-hole and particle-particle forces. Comparison with recent measurements of half-lives stresses the important role that nuclear deformation plays in the description of beta-decay properties in this mass region.

  2. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area (Phillips, 2004)...

  3. Isotopic Analysis At Lassen Volcanic National Park Area (Janik...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity...

  4. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area (Ito & Tanaka, 1995)...

  5. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito & Tanaka, 1995) Exploration...

  6. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Valles Caldera - Redondo Geothermal Area (Phillips, 2004) Exploration Activity...

  7. Stable carbon and nitrogen isotope enrichment in primate tissues

    E-Print Network [OSTI]

    Crowley, Brooke E.; Carter, Melinda L.; Karpanty, Sarah M.; Zihlman, Adrienne L.; Koch, Paul L.; Dominy, Nathaniel J.

    2010-01-01T23:59:59.000Z

    of sample treatment and diagenesis on the isotopic integrityHare PE (1986) Effects of diagenesis on strontium, carbon,

  8. Diffusion in silicon isotope heterostructures

    SciTech Connect (OSTI)

    Silvestri, Hughes Howland

    2004-05-14T23:59:59.000Z

    The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and {sup 28}Si enriched layers, enables the observation of {sup 30}Si self-diffusion from the natural layers into the {sup 28}Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly positively charged P species. Additionally, the temperature dependence of the diffusion coefficient of Si in Ge was measured over the temperature range of 550 C to 900 C using a buried Si layer in an epitaxially grown Ge layer.

  9. Isotope Research Materials Laboratory | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation Peer ReviewIron isIsIsotope ProgramIsotope

  10. Hydrogen isotope fractionation during lipid biosynthesis by Tetrahymena thermophila

    E-Print Network [OSTI]

    Hydrogen isotope fractionation during lipid biosynthesis by Tetrahymena thermophila Sitindra S Accepted 7 September 2013 Available online 16 September 2013 a b s t r a c t Hydrogen isotope ratio values from recording the hydrogen isotope composition of ambient water, dD values of lipids also depend

  11. ORIGINAL RESEARCH Hydrogen and carbon isotope fractionation during

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , enrichment in 13 C of untransformed CH3Cl was also observed, and similar isotope enrichment factors (e) of ÀORIGINAL RESEARCH Hydrogen and carbon isotope fractionation during degradation of chloromethane-Meitner-Weg 1, 55128 Mainz, Germany Keywords Carbon isotope fractionation, chloromethane biodegradation

  12. Research Article Peculiarities in the stable isotope composition of organisms

    E-Print Network [OSTI]

    Rasmussen, Joseph

    that dietary N content can affect trophic level 15 N enrichment. The anomalies in stable isotope concen; dietary N; 15 N enrichment. Introduction Over the last decade, stable isotopes have been used inResearch Article Peculiarities in the stable isotope composition of organisms from an alpine lake

  13. Discovery of the actinium, thorium, protactinium, and uranium isotopes

    E-Print Network [OSTI]

    C. Fry; M. Thoennessen

    2012-03-06T23:59:59.000Z

    Currently, 31 actinium, 31 thorium, 28 protactinium, and 23 uranium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  14. Discovery of dysprosium, holmium, erbium, thulium, and ytterbium isotopes

    SciTech Connect (OSTI)

    Fry, C.; Thoennessen, M., E-mail: thoennessen@nscl.msu.edu

    2013-09-15T23:59:59.000Z

    Currently, thirty-one dysprosium, thirty-two holmium, thirty-two erbium, thirty-three thulium, and thirty-one ytterbium isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  15. Discovery of palladium, antimony, tellurium, iodine, and xenon isotopes

    SciTech Connect (OSTI)

    Kathawa, J.; Fry, C.; Thoennessen, M., E-mail: thoennessen@nscl.msu.edu

    2013-01-15T23:59:59.000Z

    Currently, thirty-eight palladium, thirty-eight antimony, thirty-nine tellurium, thirty-eight iodine, and forty xenon isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  16. Discovery of the astatine, radon, francium, and radium isotopes

    SciTech Connect (OSTI)

    Fry, C.; Thoennessen, M., E-mail: thoennessen@nscl.msu.edu

    2013-09-15T23:59:59.000Z

    Thirty-nine astatine, thirty-nine radon, thirty-five francium, and thirty-four radium isotopes have so far been observed; the discovery of these isotopes is described. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  17. Discovery of samarium, europium, gadolinium, and terbium isotopes

    SciTech Connect (OSTI)

    May, E.; Thoennessen, M., E-mail: thoennessen@nscl.msu.edu

    2013-01-15T23:59:59.000Z

    Currently, thirty-four samarium, thirty-four europium, thirty-one gadolinium, and thirty-one terbium isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  18. Discovery of Yttrium, Zirconium, Niobium, Technetium, and Ruthenium Isotopes

    E-Print Network [OSTI]

    A. Nystrom; M. Thoennessen

    2011-02-11T23:59:59.000Z

    Currently, thirty-four yttrium, thirty-five zirconium, thirty-four niobium, thirty-five technetium, and thirty-eight ruthenium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  19. Discovery of Yttrium, Zirconium, Niobium, Technetium, and Ruthenium Isotopes

    E-Print Network [OSTI]

    Nystrom, A

    2011-01-01T23:59:59.000Z

    Currently, thirty-four yttrium, thirty-five zirconium, thirty-four niobium, thirty-five technetium, and thirty-eight ruthenium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  20. Discovery of Scandium, Titanium, Mercury, and Einsteinium Isotopes

    E-Print Network [OSTI]

    D. Meierfrankenfeld; A. Bury; M. Thoennessen

    2010-09-08T23:59:59.000Z

    Currently, twenty-three scandium, twenty-five titanium, forty mercury and seventeen einsteinium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  1. Discovery of Samarium, Europium, Gadolinium, and Terbium Isotopes

    E-Print Network [OSTI]

    E. May; M. Thoennessen

    2012-01-19T23:59:59.000Z

    Currently, thirty-four samarium, thirty-four europium, thirty-one gadolinium, and thirty-one terbium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  2. Discovery of Samarium, Europium, Gadolinium, and Terbium Isotopes

    E-Print Network [OSTI]

    May, E

    2012-01-01T23:59:59.000Z

    Currently, thirty-four samarium, thirty-four europium, thirty-one gadolinium, and thirty-one terbium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  3. The effects of laser scanning on the characteristics of a p-n junction diode in dislocated silicon 

    E-Print Network [OSTI]

    Michael, Mark Wayne

    1984-01-01T23:59:59.000Z

    , copper, and silver. Contacts were formed between the metal and the silicon substrate separated by a layer of oxide with thicknesses of 700 to 2700 Angstroms. The laser pulses melt the metal, then vaporise the oxide layer, and melt a portion...:YAG laser was used to anneal phosphorus implanted silicon [5]. Different models have been presented describing laser absorption, heating, melting, and This thesis is written in the style oi' IEEE Transactions on Electron Devices. crystalline regrowth...

  4. Laser Micromachining: Advantages of Liquid Environments

    E-Print Network [OSTI]

    Petta, Jason

    Laser Micromachining: Advantages of Liquid Environments Marc J. Palmeri Princeton University Arnold Lab #12;Outline · Motivation ­ Applications of laser micromachining ­ Problems with laser micromachining · How do lasers work? · What is laser micromachining? · Micromachining assembly · Methods

  5. LANL | Physics | Trident Laser Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery science at Trident Laser Facility Several important discoveries and first observations have been made at the Trident Laser Facility, a unique three-beam neodymium-glass...

  6. A review of stable water isotopeA review of stable water isotope modellingmodelling

    E-Print Network [OSTI]

    Sturm, Christophe "Kristof"

    fractionation · Kinetic fractionation 2. Modelling the stable water isotope cycle · Rayleigh distillation model Institution of Oceanography) Harald SODEMANN (Norwegian Institute for Air Research) Kristof 18Ovapour=-40 18Oocean=0 18Osnow=-3018Orain=-2 Equilibrium fractionationEquilibrium fractionation

  7. Isotopically selective, Doppler-free, saturation spectroscopy of lutetium isotopes via resonance ionization mass spectrometry

    SciTech Connect (OSTI)

    Fearey, B.L.; Parent, D.C.; Keller, R.A.; Miller, C.M.

    1988-01-01T23:59:59.000Z

    A new technique utilizing RIMS to obtain very high resolution atomic spectra with isotopic selectivity has been demonstrated. This technique allows the precise determination of HF splitting constants, limited only by the transition's natural linewidth. In addition, it is also feasible with this technique to accurately determine atomic isotope shifts. The exact determination of HF component line positions provides data for isotopically selective ionization which, in turn, will increase RIMS' dynamic range. Future work includes the incorporation of a /open quotes/vibrating/close quotes/ mirror and the study of rarer isotopes, i.e., /sup 174/Lu, /sup 173/Lu, /sup 172/Lu, /sup 171/Lu, and possibly, /sup 170/Lu. 13 refs., 3 figs.

  8. O Isotopic Composition of CaCO3 Measured by Continuous Flow Isotope Ratio Mass Spectrometry: Statistical Evaluation and

    E-Print Network [OSTI]

    d13 C and d18 O Isotopic Composition of CaCO3 Measured by Continuous Flow Isotope Ratio Mass method streamlines the classical phosphoric acid ­ calcium carbonate (H3 PO4 ­ CaCO3 ) reaction method XL continuous flow isotope ratio mass spectrometer. Conditions for which the H3 PO4 ­ CaCO3 reaction

  9. Titan Laser Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Titan Titan is a two-beam laser platform. The nanosecond "long-pulse" beam is one of the Janus lasers, up to 1 kJ at 1.053 m. The "short-pulse" beam is 1-to-10 ps and energies up...

  10. Explosively pumped laser light

    DOE Patents [OSTI]

    Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

    1991-01-01T23:59:59.000Z

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  11. Longitudinal discharge laser electrodes

    DOE Patents [OSTI]

    Warner, B.E.; Miller, J.L.; Ault, E.R.

    1994-08-23T23:59:59.000Z

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window. 2 figs.

  12. Dye laser amplifier

    DOE Patents [OSTI]

    Moses, E.I.

    1992-12-01T23:59:59.000Z

    An improved dye laser amplifier is disclosed. The efficiency of the dye laser amplifier is increased significantly by increasing the power of a dye beam as it passes from an input window to an output window within the dye chamber, while maintaining the intensity of the dye beam constant. 3 figs.

  13. Drive laser Photocathode

    E-Print Network [OSTI]

    Anlage, Steven

    Drive laser Gun cavity Scale 2" 3"0 1" Photocathode Schematic Overview of a Free Electron Laser Steel Sleeve Compressed Cs2CrO4:Ti Pellet (0.725g) 1.27 cm Nickel-Assisted Hermetic Braze #12;Foundation

  14. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1994-02-15T23:59:59.000Z

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  15. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1993-12-28T23:59:59.000Z

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  16. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01T23:59:59.000Z

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  17. Review of hydrogen isotope permeability through materials

    SciTech Connect (OSTI)

    Steward, S.A.

    1983-08-15T23:59:59.000Z

    This report is the first part of a comprehensive summary of the literature on hydrogen isotope permeability through materials that do not readily form hydrides. While we mainly focus on pure metals with low permeabilities because of their importance to tritium containment, we also give data on higher-permeability materials such as iron, nickel, steels, and glasses.

  18. Trace Element and Isotopic Fluxes/ Subducted Slab

    E-Print Network [OSTI]

    Bebout, Gray E.

    3.20.7.2.1 Devolatilization 34 3.20.7.2.2 Boron and lithium isotopes 35 3.20.7.3 Carbon and Nitrogen forearcs. In addi- tion, subduction erosion from the forearc hanging walls can impact geochemical evolut

  19. 5, 547577, 2008 Isotope hydrology of

    E-Print Network [OSTI]

    Boyer, Edmond

    HESSD 5, 547­577, 2008 Isotope hydrology of cave dripwaters L. Fuller et al. Title Page Abstract.hydrol-earth-syst-sci-discuss.net/5/547/2008/ © Author(s) 2008. This work is licensed under a Creative Commons License. Hydrology and Earth System Sciences Discussions Papers published in Hydrology and Earth System Sciences Discussions

  20. Radioactive isotopes in Danish drinking water

    E-Print Network [OSTI]

    Radioactive isotopes in Danish drinking water Sven P. Nielsen Risø National Laboratory Working OF INVESTIGATION 11 3 DESCRIPTION OF INVESTIGATION 12 4 RADIOACTIVITY IN DRINKING WATER 13 5 SAMPLING 15 6 27 #12;4 #12;5 Preface This project for investigation of radioactivity in drinking water shall