National Library of Energy BETA

Sample records for laser energy optimization

  1. Laser energy control circuit

    SciTech Connect (OSTI)

    Howie, J.B.; Mcleod, J.

    1982-08-17

    A laser energy control circuit for a gas-discharge excited laser includes an energy source psu to supply energy to the gas discharge. First circuit means tr1, tr2 operate to limit the energy supplied to a first value for a first time interval, after which second circuit means a1, a2 allow the energy to rise to a maximum value and then decrease gradually to a second value over a second time interval. Subsequently, third circuit means including amplifiers a3 to a6 operate to maintain the light output of the laser at a desired value.

  2. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    SciTech Connect (OSTI)

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  3. Laser scribe optimization study. Final report

    SciTech Connect (OSTI)

    Wannamaker, A.L.

    1996-09-01

    The laser scribe characterization/optimization project was initiated to better understand what factors influence response variables of the laser marking process. The laser marking system is utilized to indelibly identify weapon system components. Many components have limited field life, and traceability to production origin is critical. In many cases, the reliability of the weapon system and the safety of the users can be attributed to individual and subassembly component fabrication processes. Laser beam penetration of the substrate material may affect product function. The design agency for the DOE had requested that Federal Manufacturing and Technologies characterize the laser marking process and implement controls on critical process parameters.

  4. Energy Optimizers USA | Open Energy Information

    Open Energy Info (EERE)

    Optimizers USA Jump to: navigation, search Name: Energy Optimizers USA Address: 6 S. 3rd Street Place: Tipp City, Ohio Zip: 45371 Sector: Biomass, Carbon, Geothermal energy,...

  5. Stabilizing laser energy density on a target during pulsed laser...

    Office of Scientific and Technical Information (OSTI)

    Patent: Stabilizing laser energy density on a target during pulsed laser deposition of thin films Citation Details In-Document Search Title: Stabilizing laser energy density on a ...

  6. ENERGY SIGNATURES ENERGY SIGNATURES Optimizing Production and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SIGNATURES ENERGY SIGNATURES Optimizing Production and Mitigating Impacts Los Alamos National Laboratory's Science of Signatures 2 Advanced Science for Energy Signatures Energy in ...

  7. Optim Energy Marketing LLC | Open Energy Information

    Open Energy Info (EERE)

    Optim Energy Marketing LLC Jump to: navigation, search Name: Optim Energy Marketing LLC Place: Texas References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861...

  8. Sandia Energy - Optimizing Engines for Alternative Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimizing Engines for Alternative Fuels Home Energy Transportation Energy CRF Facilities News News & Events Research & Capabilities Sensors & Optical Diagnostics Optimizing...

  9. Energy optimization system

    DOE Patents [OSTI]

    Zhou, Zhi; de Bedout, Juan Manuel; Kern, John Michael; Biyik, Emrah; Chandra, Ramu Sharat

    2013-01-22

    A system for optimizing customer utility usage in a utility network of customer sites, each having one or more utility devices, where customer site is communicated between each of the customer sites and an optimization server having software for optimizing customer utility usage over one or more networks, including private and public networks. A customer site model for each of the customer sites is generated based upon the customer site information, and the customer utility usage is optimized based upon the customer site information and the customer site model. The optimization server can be hosted by an external source or within the customer site. In addition, the optimization processing can be partitioned between the customer site and an external source.

  10. Pump Systems Optimization: Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pump Systems Optimization: Energy Efficiency and Bottom-Line Savings Host this one-day course to help participants learn how to identify and reduce hidden operation and energy costs. Participants will: * Identify energy savings * Increase profitability * Increase reliability * Earn seven PDH credits Attendees of the "Pump Systems Optimization" one-day course will gain valuable new skills to help them improve centrifugal pump system efficiency to reduce energy and operating costs while

  11. Energy Optimization Standard

    Broader source: Energy.gov [DOE]

    In October 2008, Michigan enacted the Clean, Renewable, and Efficient Energy Act, Public Act 295, requiring the state's investor-owned utilities, alternative retail suppliers, electric cooperatives...

  12. Compact, high energy gas laser

    DOE Patents [OSTI]

    Rockwood, Stephen D.; Stapleton, Robert E.; Stratton, Thomas F.

    1976-08-03

    An electrically pumped gas laser amplifier unit having a disc-like configuration in which light propagation is radially outward from the axis rather than along the axis. The input optical energy is distributed over a much smaller area than the output optical energy, i.e., the amplified beam, while still preserving the simplicity of parallel electrodes for pumping the laser medium. The system may thus be driven by a comparatively low optical energy input, while at the same time, owing to the large output area, large energies may be extracted while maintaining the energy per unit area below the threshold of gas breakdown.

  13. NREL-Renewable Energy Optimization Presentation | Open Energy...

    Open Energy Info (EERE)

    Renewable Energy Optimization Presentation (Redirected from Renewable Energy Optimization Presentation) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy...

  14. DPSS Laser Beam Quality Optimization Through Pump Current Tuning

    SciTech Connect (OSTI)

    Omohundro, Rob; Callen, Alice; Sukuta, Sydney; /San Jose City Coll.

    2012-03-30

    The goal of this study is to demonstrate how a DPSS laser beam's quality parameters can be simultaneously optimized through pump current tuning. Two DPSS lasers of the same make and model were used where the laser diode pump current was first varied to ascertain the lowest RMS noise region. The lowest noise was found to be 0.13% in this region and the best M{sup 2} value of 1.0 and highest laser output power were simultaneously attained at the same current point. The laser manufacturer reported a M{sup 2} value of 1.3 and RMS noise value of .14% for these lasers. This study therefore demonstrates that pump current tuning a DPSS laser can simultaneously optimize RMS Noise, Power and M{sup 2} values. Future studies will strive to broaden the scope of the beam quality parameters impacted by current tuning.

  15. Home Energy Management System - Stochastic Optimal Scheduling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Search Home Energy Management System - Stochastic Optimal Scheduling of Residential Appliances with Renewable Energy Sources National Renewable Energy Laboratory Contact ...

  16. Data Center Optimization Plan | Department of Energy

    Energy Savers [EERE]

    Data Center Optimization Plan Data Center Optimization Plan The Department of Energy (DOE) is committed to the overall reduction in the number of its data centers, consolidation of ...

  17. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    SciTech Connect (OSTI)

    Deri, R J

    2011-01-03

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and

  18. Two-dimensional optimization of free electron laser designs

    DOE Patents [OSTI]

    Prosnitz, Donald; Haas, Roger A.

    1985-01-01

    Off-axis, two-dimensional designs for free electron lasers that maintain correspondence of a light beam with a "synchronous electron" at an optimal transverse radius r>0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  19. Two-dimensional optimization of free-electron-laser designs

    DOE Patents [OSTI]

    Prosnitz, D.; Haas, R.A.

    1982-05-04

    Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  20. Integrated Energy System Dispatch Optimization

    SciTech Connect (OSTI)

    Firestone, Ryan; Stadler, Michael; Marnay, Chris

    2006-06-16

    On-site cogeneration of heat and electricity, thermal and electrical storage, and curtailing/rescheduling demand options are often cost-effective to commercial and industrial sites. This collection of equipment and responsive consumption can be viewed as an integrated energy system(IES). The IES can best meet the sites cost or environmental objectives when controlled in a coordinated manner. However, continuously determining this optimal IES dispatch is beyond the expectations for operators of smaller systems. A new algorithm is proposed in this paper to approximately solve the real-time dispatch optimization problem for a generic IES containing an on-site cogeneration system subject to random outages, limited curtailment opportunities, an intermittent renewable electricity source, and thermal storage. An example demonstrates how this algorithm can be used in simulation to estimate the value of IES components.

  1. Renewable Energy Optimization (REopt) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01

    REopt is an energy planning platform offering concurrent, multiple technology integration and optimization capabilities to help clients meet their cost savings and energy performance goals.

  2. Parameter Optimization for Laser Polishing of Niobium for SRF Applications

    SciTech Connect (OSTI)

    Zhao, Liang; Klopf, John Michael; Reece, Charles E.; Kelley, Michael J.

    2013-06-01

    Surface smoothness is critical to the performance of SRF cavities. As laser technology has been widely applied to metal machining and surface treatment, we are encouraged to use it on niobium as an alternative to the traditional wet polishing process where aggressive chemicals are involved. In this study, we describe progress toward smoothing by optimizing laser parameters on BCP treated niobium surfaces. Results shows that microsmoothing of the surface without ablation is achievable.

  3. DOE Zero Energy Ready Home Webinar: Building Energy Optimization (BEopt)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Software | Department of Energy Building Energy Optimization (BEopt) Software DOE Zero Energy Ready Home Webinar: Building Energy Optimization (BEopt) Software This webinar was presented on May 15, 2014 and gives an overview of the BEopt software tool. DOE ZERH Technical Webinar_BEopt.pdf (1.18 MB) More Documents & Publications DOE ZERH Webinar: Building Energy Optimization Tool (BEopt) Training Building America Webinar: BEopt Optimization Tool and National Residential Efficiency

  4. Laser Catalyst - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Laser Catalyst Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's Laser Catalyst is a method for ...

  5. CBERD: Cost Optimization of Energy Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Optimization of Energy Efficiency CBERD: Cost Optimization of Energy Efficiency Triple bottomline framework being utilized for the CBERD Cost Optimization of Energy Efficiency cross-cutting activity. Triple bottomline framework being utilized for the CBERD Cost Optimization of Energy Efficiency cross-cutting activity. Lead performer: Carnegie Mellon University - Pittsburgh PA Partner: --Centre for Environmental Planning and Technology - Ahmedabad, India FY16 DOE Funding: $50,000 per year

  6. Energy Optimized Desalination Technology Development Workshop...

    Broader source: Energy.gov (indexed) [DOE]

    hosted a workshop on Energy Optimized Desalination Technology Development on November ... This 2-day workshop brought together technical experts in desalination to analyze ways in ...

  7. Apparatus for advancing a wellbore using high power laser energy

    DOE Patents [OSTI]

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  8. Reverse Osmosis Optimization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reverse Osmosis Optimization Reverse Osmosis Optimization Report assesses techniques for optimizing reverse osmosis (RO) systems to increase RO system performance and water efficiency. It provides a general description of RO systems, the influence of RO systems on water use, and key areas where RO systems can be optimized to reduce water and energy consumption. This report is intended to help facility managers at Federal sites understand the basic concepts of the RO process and system

  9. Extreme dynamic compression with a low energy laser pulse (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Extreme dynamic compression with a low energy laser pulse Citation Details In-Document Search Title: Extreme dynamic compression with a low energy laser pulse You ...

  10. Financing Tribal Energy Infrastructure & Energy Optimization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization Infrastructure (EOI) www.projectseastar.org WHERE WHAT Tribe's role? * Entrepreneur * Investor * Government WHO Want's the money: * Private Entity * Public Entity * ...

  11. Optimal Power Flow Pursuit - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Optimal Power Flow Pursuit National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary The desire to improve grid resiliency and enable a sustainable capacity expansion has led to the growth of distributed energy resources (DERs) and the utilization of renewable energy sources. DER allows for smaller amounts of aggregate energy to meet

  12. BuildingIQ Inc: Predictive Energy Optimization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BuildingIQ Inc: Predictive Energy Optimization BuildingIQ Inc: Predictive Energy Optimization BuildingIQ Inc: Predictive Energy Optimization Lead Performer: BuildingIQ Inc. - Foster City, California Partners: Department of General Services - Washington, DC DOE Funding: $1,767,138 Cost Share: $1,767,138 Project Term: October 2014 - September 2016 Funding Opportunity: Funding Opportunity Announcement Number DE-FOA-0001084 Project Objective BuildingIQ offers an innovative, scalable, and low-cost

  13. New High-Power Laser Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Power Laser Technology New High-Power Laser Technology December 10, 2013 - 10:38am Addthis Foro Energy partners with Dept of Energy to commercialize high power lasers for the ...

  14. High energy chemical laser system

    DOE Patents [OSTI]

    Gregg, D.W.; Pearson, R.K.

    1975-12-23

    A high energy chemical laser system is described wherein explosive gaseous mixtures of a reducing agent providing hydrogen isotopes and interhalogen compounds are uniformly ignited by means of an electrical discharge, flash- photolysis or an electron beam. The resulting chemical explosion pumps a lasing chemical species, hydrogen fluoride or deuterium fluoride which is formed in the chemical reaction. The generated lasing pulse has light frequencies in the 3- micron range. Suitable interhalogen compounds include bromine trifluoride (BrF$sub 3$), bromine pentafluoride (BrF$sub 5$), chlorine monofluoride (ClF), chlorine trifluoride (ClF$sub 3$), chlorine pentafluoride (ClF$sub 5$), iodine pentafluoride (IF$sub 5$), and iodine heptafluoride (IF$sub 7$); and suitable reducing agents include hydrogen (H$sub 2$), hydrocarbons such as methane (CH$sub 4$), deuterium (D$sub 2$), and diborane (B$sub 2$H$sub 6$), as well as combinations of the gaseous compound and/or molecular mixtures of the reducing agent.

  15. Laser Drills Could Relight Geothermal Energy Dreams

    Broader source: Energy.gov [DOE]

    Commercial-grade laser technology is trying to punch holes in hard igneous rocks, a feat that would change the mathematics of low-carbon energy and could significantly decrease well costs by...

  16. Optimizing Native Files in Energy.gov

    Broader source: Energy.gov [DOE]

    For native files in Energy.gov, following these best practices will result in better search results in commercial search engines. To learn how to optimize PDFs, see the PDF requirements.

  17. High-Powered Lasers for Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    highpowered lasers High-Powered Lasers for Clean Energy Eli-Beamlines Architectural Design Architect's Rendering of the exterior of the Eli-Beamlines facility now under construction in the Czech Republic. Fusion is the process by which the Sun and other stars convert or "burn" hydrogen (the lightest element) and produce helium (the next lightest element). The fusion of hydrogen releases immense amounts of energy. Conditions needed to burn fusion fuel include extremely high temperatures

  18. Renewable Energy Cost Optimization Spreadsheet

    Energy Science and Technology Software Center (OSTI)

    2007-12-31

    The Software allow users to determine the optimum combination of renewable energy technologies to minimize life cycle cost for a facility by employing various algorithms which calculate initial and operating cost, energy delivery, and other attributes associated with each technology as a function of size.

  19. Novel free-form hohlraum shape design and optimization for laser-driven inertial confinement fusion

    SciTech Connect (OSTI)

    Jiang, Shaoen; Jing, Longfei Ding, Yongkun; Huang, Yunbao

    2014-10-15

    The hohlraum shape attracts considerable attention because there is no successful ignition method for laser-driven inertial confinement fusion at the National Ignition Facility. The available hohlraums are typically designed with simple conic curves, including ellipses, parabolas, arcs, or Lame curves, which allow only a few design parameters for the shape optimization, making it difficult to improve the performance, e.g., the energy coupling efficiency or radiation drive symmetry. A novel free-form hohlraum design and optimization approach based on the non-uniform rational basis spline (NURBS) model is proposed. In the present study, (1) all kinds of hohlraum shapes can be uniformly represented using NURBS, which is greatly beneficial for obtaining the optimal available hohlraum shapes, and (2) such free-form uniform representation enables us to obtain an optimal shape over a large design domain for the hohlraum with a more uniform radiation and higher drive temperature of the fuel capsule. Finally, a hohlraum is optimized and evaluated with respect to the drive temperature and symmetry at the Shenguang III laser facility in China. The drive temperature and symmetry results indicate that such a free-form representation is advantageous over available hohlraum shapes because it can substantially expand the shape design domain so as to obtain an optimal hohlraum with high performance.

  20. Optimizing New Dark Energy Experiments

    SciTech Connect (OSTI)

    Tyson, J. Anthony

    2013-08-26

    Next generation “Stage IV” dark energy experiments under design during this grant, and now under construction, will enable the determination of the properties of dark energy and dark matter to unprecedented precision using multiple complementary probes. The most pressing challenge in these experiments is the characterization and understanding of the systematic errors present within any given experimental configuration and the resulting impact on the accuracy of our constraints on dark energy physics. The DETF and the P5 panel in their reports recommended “Expanded support for ancillary measurements required for the long-term program and for projects that will improve our understanding and reduction of the dominant systematic measurement errors.” Looking forward to the next generation Stage IV experiments we have developed a program to address the most important potential systematic errors within these experiments. Using data from current facilities it has been feasible and timely to undertake a detailed investigation of the systematic errors. In this DOE grant we studied of the source and impact of the dominant systematic effects in dark energy measurements, and developed new analysis tools and techniques to minimize their impact. Progress under this grant is briefly reviewed in this technical report. This work was a necessary precursor to the coming generations of wide-deep probes of the nature of dark energy and dark matter. The research has already had an impact on improving the efficiencies of all Stage III and IV dark energy experiments.

  1. FEMP Completes 2000th Renewable Energy Optimization Screening...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FEMP Completes 2000th Renewable Energy Optimization Screening FEMP Completes 2000th Renewable Energy Optimization Screening July 23, 2015 - 12:03pm Addthis REopt models the complex ...

  2. Optimal Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Energy Systems Place: Torrance, California Zip: 90505 Product: Manufacturer of flywheel power system, specialising in aerospace and defence sector. Coordinates: 40.417285,...

  3. Energy Department Selects Global Laser Enrichment for Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Laser Enrichment for Future Operations at Paducah Site Energy Department Selects Global Laser Enrichment for Future Operations at Paducah Site November 27, 2013 - 12:00pm ...

  4. Energy optimization in flash smelting

    SciTech Connect (OSTI)

    Partelpoeg, E.H.

    1985-01-01

    The copper smelting industry has been replacing old reverberatory furnaces with energy-efficient flash furnaces. While this in itself has been a significant move towards reduced energy costs, there is yet no industry consensus as to which mode of flash smelting is optimum. It is possible to model copper smelting, the ensuring converting step, and acid production with linear equations and inequalities. These equations include mass and heat balances, and energy and cost equations. The matrix of equations and inequalities can be entered into a linear programming routine to determine minimum costs. Such a model was developed and the results indicate that optimum smelting parameters include the following. (1) The grade of matte is 65% Cu. (2) The flash furnace operates autogenously with no air preheat. The flash furnace air is oxygen enriched to approximately 40 volume % O/sub 2/. (3) Total energy cost (1985 dollars and prices) for smelting, converting, and acid production is approximately $10 per tonne concentrate. The general model employed to obtain these optimum conditions can be modified to represent unique smelting conditions.

  5. High energy laser beam dump

    SciTech Connect (OSTI)

    Halpin, John

    2004-09-14

    The laser beam dump is positioned in a housing. An absorbing glass plate means is operatively connected to the housing. A heat sync means for extracting heat from the absorbing glass plate means is operatively connected to the housing and operatively connected to the absorbing glass plate means.

  6. Dichroic beamsplitter for high energy laser diagnostics

    DOE Patents [OSTI]

    LaFortune, Kai N; Hurd, Randall; Fochs, Scott N; Rotter, Mark D; Hackel, Lloyd

    2011-08-30

    Wavefront control techniques are provided for the alignment and performance optimization of optical devices. A Shack-Hartmann wavefront sensor can be used to measure the wavefront distortion and a control system generates feedback error signal to optics inside the device to correct the wavefront. The system can be calibrated with a low-average-power probe laser. An optical element is provided to couple the optical device to a diagnostic/control package in a way that optimizes both the output power of the optical device and the coupling of the probe light into the diagnostics.

  7. Building Energy Optimization (BEopt) Software | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings » Building America » Building Energy Optimization (BEopt) Software Building Energy Optimization (BEopt) Software BEopt 2.4 Now Available! With the release of BEopt Version 2.4 Beta, users can now perform modeling analysis on multifamily buildings! Other new options for input include: heat pump clothes dryers; electric/gas clothes dryers; condensing tank water heaters; door construction and area; window areas defined by façade-specific WWRs; and 2013 ASHRAE 62.2

  8. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    DOE Patents [OSTI]

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  9. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Y.T.; Payne, S.A.; Hayden, J.S.; Campbell, J.H.; Aston, M.K.; Elder, M.L.

    1996-06-11

    In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.

  10. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Yuiko T.; Payne, Stephen A.; Hayden, Joseph S.; Campbell, John H.; Aston, Mary Kay; Elder, Melanie L.

    1996-01-01

    In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.

  11. Oneida Tribe of Indians of Wisconsin- 2011 Energy Optimization Project

    Broader source: Energy.gov [DOE]

    The creation of this Oneida Nation Energy Optimization (ONEO) model is the next stage in the living document known as the Oneida Energy Security Plan.

  12. FEMP Completes 2000th Renewable Energy Optimization Screening

    Broader source: Energy.gov [DOE]

    NREL's Renewable Energy Optimization (REopt) tool, developed through FEMP funding, is a screening tool that identifies and prioritizes cost-effective renewable energy opportunities at a single site...

  13. Cache Energy Optimization Techniques For Modern Processors

    SciTech Connect (OSTI)

    Mittal, Sparsh ORNL

    2013-01-01

    and veterans in the field of cache power management. It will help graduate students, CAD tool developers and designers in understanding the need of energy efficiency in modern computing systems. Further, it will be useful for researchers in gaining insights into algorithms and techniques for micro-architectural and system-level energy optimization using dynamic cache reconfiguration. We sincerely believe that the ``food for thought'' presented in this book will inspire the readers to develop even better ideas for designing ``green'' processors of tomorrow.

  14. Designing and optimizing highly efficient grating for high-brightness laser based on spectral beam combining

    SciTech Connect (OSTI)

    Yang, Ying-Ying E-mail: yangyy@semi.ac.cn; Zhao, Ya-Ping; Wang, Li-Rong; Zhang, Ling; Lin, Xue-Chun E-mail: yangyy@semi.ac.cn

    2015-03-14

    A highly efficient nano-periodical grating is theoretically investigated for spectral beam combining (SBC) and is experimentally implemented for attaining high-brightness laser from a diode laser array. The rigorous coupled-wave analysis with the S matrix method is employed to optimize the parameters of the grating. According the optimized parameters, the grating is fabricated and plays a key role in SBC cavity. The diffraction efficiency of this grating is optimized to 95% for the output laser which is emitted from the diode laser array. The beam parameter product of 3.8 mm mrad of the diode laser array after SBC is achieved at the output power of 46.3 W. The optical-to-optical efficiency of SBC cavity is measured to be 93.5% at the maximum operating current in the experiment.

  15. A Method for Determining Optimal Residential Energy Efficiency Packages

    SciTech Connect (OSTI)

    Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.

    2011-04-01

    This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location.

  16. Laser fusion experiment yields record energy at NIF | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser fusion experiment yields record energy at NIF | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  17. Extreme dynamic compression with a low energy laser pulse (Conference...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Presented at: Extreme dynamic compression with a low energy laser pulse, Tampa, FL, United States, Jun 15 - Jun 19, 2015 Research Org: Lawrence ...

  18. Renewable Energy Planning: Multiparametric Cost Optimization

    SciTech Connect (OSTI)

    Walker, A.

    2008-01-01

    This paper describes a method for determining the combination of renewable energy technologies that minimize life-cycle cost at a facility, often with a specified goal regarding percent of energy use from renewable sources. Technologies include: photovoltaics (PV); wind; solar thermal heat and electric; solar ventilation air preheating; solar water heating; biomass heat and electric (combustion, gasification, pyrolysis, anaerobic digestion); and daylighting. The method rests upon the National Renewable Energy Laboratory's (NREL's) capabilities in characterization of technology cost and performance, geographic information systems (GIS) resource assessment, and life-cycle cost analysis. The paper discusses how to account for the way candidate technologies interact with each other, and the solver routine used to determine the combination that minimizes life-cycle cost. Results include optimal sizes of each technology, initial cost, operating cost, and life-cycle cost, including incentives from utilities or governments. Results inform early planning to identify and prioritize projects at a site for subsequent engineering and economic feasibility study.

  19. Renewable Energy Planning: Multiparametric Cost Optimization; Preprint

    SciTech Connect (OSTI)

    Walker, A.

    2008-05-01

    This paper describes a method for determining the combination of renewable energy technologies that minimize life-cycle cost at a facility, often with a specified goal regarding percent of energy use from renewable sources. Technologies include: photovoltaics (PV); wind; solar thermal heat and electric; solar ventilation air preheating; solar water heating; biomass heat and electric (combustion, gasification, pyrolysis, anaerobic digestion); and daylighting. The method rests upon the National Renewable Energy Laboratory's (NREL's) capabilities in characterization of technology cost and performance, geographic information systems (GIS) resource assessment, and life-cycle cost analysis. The paper discusses how to account for the way candidate technologies interact with each other, and the solver routine used to determine the combination that minimizes life-cycle cost. Results include optimal sizes of each technology, initial cost, operating cost, and life-cycle cost, including incentives from utilities or governments. Results inform early planning to identify and prioritize projects at a site for subsequent engineering and economic feasibility study.

  20. Laser Light Engines | Open Energy Information

    Open Energy Info (EERE)

    Laser Light Engines Jump to: navigation, search Name: Laser Light Engines Place: Salem, New Hampshire Zip: NH 03079 Sector: Efficiency Product: Salem-based, designs, develops and...

  1. Laser Induced Spectroscopy - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Induced Spectroscopy Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's Laser Induced Spectroscopy technology detects and measures ...

  2. Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse

    SciTech Connect (OSTI)

    Chen, Anmin; Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130012 ; Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Ding, Dajun; Shao, Junfeng; Wang, Tingfeng; Huang, Xuri; Jin, Mingxing; State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033

    2013-10-15

    In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.

  3. Optimization of Nd: YAG Laser Marking of Alumina Ceramic Using RSM And ANN

    SciTech Connect (OSTI)

    Peter, Josephine; Doloi, B.; Bhattacharyya, B.

    2011-01-17

    The present research papers deals with the artificial neural network (ANN) and the response surface methodology (RSM) based mathematical modeling and also an optimization analysis on marking characteristics on alumina ceramic. The experiments have been planned and carried out based on Design of Experiment (DOE). It also analyses the influence of the major laser marking process parameters and the optimal combination of laser marking process parametric setting has been obtained. The output of the RSM optimal data is validated through experimentation and ANN predictive model. A good agreement is observed between the results based on ANN predictive model and actual experimental observations.

  4. DOE ZERH Webinar: Building Energy Optimization Tool (BEopt) Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This webinar will provide an overview of the powerful but easy-to-use BEopt (Building Energy Optimization) tool. Scott Horowitz and Craig Christensen will focus on opportunities ...

  5. Optimizing minimum free-energy crossing points in solution: Linear...

    Office of Scientific and Technical Information (OSTI)

    Optimizing minimum free-energy crossing points in solution: Linear-response free energyspin-flip density functional theory approach Citation Details In-Document Search Title:...

  6. Optimizing Cluster Heads for Energy Efficiency in Large-Scale...

    Office of Scientific and Technical Information (OSTI)

    Optimizing Cluster Heads for Energy Efficiency in Large-Scale Heterogeneous Wireless Sensor Networks Gu, Yi; Wu, Qishi; Rao, Nageswara S. V. Hindawi Publishing Corporation None...

  7. Optimizing New Dark Energy Experiments - Final Scientific Report

    SciTech Connect (OSTI)

    Jeffrey A. Newman

    2012-06-08

    This is the final scientific report for the University of Pittsburgh portion of the collaborative grant, 'Optimizing New Dark Energy Experiments'

  8. Biotrans: Cost Optimization Model | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentbiotrans-cost-optimization-model,http Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration &...

  9. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Yuiko T.; Guesto-Barnak, Donna

    1992-01-01

    A low-or no-silica, low- or no-alkali phosphate glass useful as a laser amplifier in a multiple pass, high energy laser system having a high thermal conductivity, K.sub.90.degree. C. >0.85 W/mK, a low coefficient of thermal expansion, .alpha..sub.20.degree.-300.degree. C. <80.times.10.sup.-7 /.degree.C., low emission cross section, .sigma.<2.5.times.10.sup.-20 cm.sup.2, and a high fluorescence lifetime, .tau.>325 .mu.secs at 3 wt. % Nd doping, consisting essentially of (on an oxide composition basis): wherein Ln.sub.2 O.sub.3 is the sum of lanthanide oxides; .SIGMA.R.sub.2 O is <5, R being Li, Na, K, Cs, and Rb; the sum of Al.sub.2 O.sub.3 and MgO is <24 unless .SIGMA.R.sub.2 O is 0, then the sum of Al.sub.2 O.sub.3 and MgO is <42; and the ratio of MgO to B.sub.2 O.sub.3 is 0.48-4.20.

  10. Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing maximizing thermal efficiency and optimizing energy management through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems.

  11. Maximizing Thermal Efficiency and Optimizing Energy Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... energy systems. * Research Space: 11,000 sq. ft * Advanced HVAC Laboratory enables rapid, ... of the U.S. Department of Energy Office of Energy Efficiency and Renewable ...

  12. Building Energy Optimization Analysis Method (BEopt) - Building America Top

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation | Department of Energy Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic from BEopt software. To achieve Building America's ambitious energy-efficiency goals, it becomes increasingly important that researchers can identify the most cost-effective, high-performance improvements. This Top Innovation profile describes BEopt, which has proven to be an

  13. Traveling-wave laser-produced-plasma energy source for photoionization laser pumping and lasers incorporating said

    DOE Patents [OSTI]

    Sher, Mark H.; Macklin, John J.; Harris, Stephen E.

    1989-09-26

    A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.

  14. Course Overview Pump Systems Matter Optimization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Course Overview Pump Systems Matter Optimization Course Overview Pump Systems Matter Optimization Attendees of the "Pump Systems Optimization" one-day course will gain valuable new skills to help them improve centrifugal pump system efficiency to reduce energy and operating costs while earning seven professional development hour (PDH) credits from the Hydraulic Institute. H_Course_ Overview_Pump_Systems_Matter_Optimization.pdf (632.71 KB) More Documents & Publications Summary of

  15. Plant Optimization Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation Clean Coal Crosscutting Research Plant Optimization Technologies Plant ... which has not been used in pulverized coal-fired power generation plants. ...

  16. High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter 2004 Diesel ...

  17. Continuously Optimized Reliable Energy (CORE) Microgrid: Models & Tools (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    This brochure describes Continuously Optimized Reliable Energy (CORE), a trademarked process NREL employs to produce conceptual microgrid designs. This systems-based process enables designs to be optimized for economic value, energy surety, and sustainability. Capabilities NREL offers in support of microgrid design are explained.

  18. Optimizing PDFs for Search Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDFs » Optimizing PDFs for Search Engines Optimizing PDFs for Search Engines For search engine optimization (SEO), follow the Office of Energy Efficiency and Renewable Energy (EERE) best practices for adding metadata to PDFs. Title Fields The title field contains the title of the PDF. This information is searched by commercial search engines such as Google, Yahoo, and Bing. Use the title as it appears in the document as the PDF's title field. When search engines list your PDF in search results,

  19. Optimizing Web Pages for Search Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Web Writing » Optimizing Web Pages for Search Engines Optimizing Web Pages for Search Engines For search engine optimization (SEO), follow these best practices when writing content for Office of Energy Efficiency and Renewable Energy (EERE) websites and applications. Understand How Search Engines Work Search engines visit Web pages, index the words on those pages, and put the pages into a database. When a user does a search, the search engine compares the user's search terms against the pages

  20. Optimizing Your Motor-Driven System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Your Motor-Driven System Optimizing Your Motor-Driven System This fact sheet presents an overview of electric drive systems and highlights common ways you can improve motor system efficiency and reliability. By optimizing the efficiency of your motor-driven systems, you can increase productivity while saving significant amounts of energy and money. Optimizing Your Motor Driven System (September 1996) (86.29 KB) More Documents & Publications When to Purchase Premium Efficiency Motors Energy

  1. Method for Determining Optimal Residential Energy Efficiency Retrofit Packages

    SciTech Connect (OSTI)

    Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.

    2011-04-01

    Businesses, government agencies, consumers, policy makers, and utilities currently have limited access to occupant-, building-, and location-specific recommendations for optimal energy retrofit packages, as defined by estimated costs and energy savings. This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location. Energy savings and incremental costs are calculated relative to a minimum upgrade reference scenario, which accounts for efficiency upgrades that would occur in the absence of a retrofit because of equipment wear-out and replacement with current minimum standards.

  2. Characterizing and Optimizing Photocathode Laser Distributions for Ultra-low Emittance Electron Beam Operations

    SciTech Connect (OSTI)

    Zhou, F.; Bohler, D.; Ding, Y.; Gilevich, S.; Huang, Z.; Loos, H.; Ratner, D.; Vetter, S.

    2015-12-07

    Photocathode RF gun has been widely used for generation of high-brightness electron beams for many different applications. We found that the drive laser distributions in such RF guns play important roles in minimizing the electron beam emittance. Characterizing the laser distributions with measurable parameters and optimizing beam emittance versus the laser distribution parameters in both spatial and temporal directions are highly desired for high-brightness electron beam operation. In this paper, we report systematic measurements and simulations of emittance dependence on the measurable parameters represented for spatial and temporal laser distributions at the photocathode RF gun systems of Linac Coherent Light Source. The tolerable parameter ranges for photocathode drive laser distributions in both directions are presented for ultra-low emittance beam operations.

  3. Energy Department Selects Global Laser Enrichment for Future Operations at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paducah Site | Department of Energy Global Laser Enrichment for Future Operations at Paducah Site Energy Department Selects Global Laser Enrichment for Future Operations at Paducah Site November 27, 2013 - 12:00pm Addthis Workers inspect cylinders containing depleted uranium hexafluoride. Workers inspect cylinders containing depleted uranium hexafluoride. Media Contact (202) 586-4940 Washington, D.C. - The U.S. Department of Energy announced today that it will open negotiations with Global

  4. High energy XeBr electric discharge laser

    DOE Patents [OSTI]

    Sze, Robert C.; Scott, Peter B.

    1981-01-01

    A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.

  5. High energy XeBr electric discharge laser

    DOE Patents [OSTI]

    Sze, R.C.; Scott, P.B.

    A high energy XeBr laser for producing coherent radiation at 282 nm is disclosed. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr, is used as the halogen donor which undergoes harpooning reactions with Xe/sub M/ to form XeBr.

  6. Program optimizations: The interplay between power, performance, and energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leon, Edgar A.; Karlin, Ian; Grant, Ryan E.; Dosanjh, Matthew

    2016-05-16

    Practical considerations for future supercomputer designs will impose limits on both instantaneous power consumption and total energy consumption. Working within these constraints while providing the maximum possible performance, application developers will need to optimize their code for speed alongside power and energy concerns. This paper analyzes the effectiveness of several code optimizations including loop fusion, data structure transformations, and global allocations. A per component measurement and analysis of different architectures is performed, enabling the examination of code optimizations on different compute subsystems. Using an explicit hydrodynamics proxy application from the U.S. Department of Energy, LULESH, we show how code optimizationsmore » impact different computational phases of the simulation. This provides insight for simulation developers into the best optimizations to use during particular simulation compute phases when optimizing code for future supercomputing platforms. Here, we examine and contrast both x86 and Blue Gene architectures with respect to these optimizations.« less

  7. Energy Optimization (Electric)- Commercial Efficiency Program

    Broader source: Energy.gov [DOE]

    The "Michigan Public Clean, Renewable, and Efficient Energy Act" (Public Act 295 passed in 2008) provided original authorization to create utility energy efficiency programs across the state. Com...

  8. Optimal Technologies International Inc | Open Energy Information

    Open Energy Info (EERE)

    offers supply-side and demand-side management solutions targeted at the end-to-end optimization of power networks. Coordinates: 38.05241, -122.152539 Show Map Loading map......

  9. Automated Multivariate Optimization Tool for Energy Analysis: Preprint

    SciTech Connect (OSTI)

    Ellis, P. G.; Griffith, B. T.; Long, N.; Torcellini, P. A.; Crawley, D.

    2006-07-01

    Building energy simulations are often used for trial-and-error evaluation of ''what-if'' options in building design--a limited search for an optimal solution, or ''optimization''. Computerized searching has the potential to automate the input and output, evaluate many options, and perform enough simulations to account for the complex interactions among combinations of options. This paper describes ongoing efforts to develop such a tool. The optimization tool employs multiple modules, including a graphical user interface, a database, a preprocessor, the EnergyPlus simulation engine, an optimization engine, and a simulation run manager. Each module is described and the overall application architecture is summarized.

  10. Midaz Lasers Ltd | Open Energy Information

    Open Energy Info (EERE)

    Startup developing diode-pumped solid state (DPSS) lasers with potential applications to solar cell manufacture. Coordinates: 51.506325, -0.127144 Show Map Loading map......

  11. Acro Solar Lasers | Open Energy Information

    Open Energy Info (EERE)

    Acro Solar Lasers Place: El Paso, Texas Zip: 79936 Sector: Solar Product: Makes solar water heating devices based on parabolic dish concentrators. References: Acro Solar...

  12. Untangling the contributions of image charge and laser profile for optimal photoemission of high-brightness electron beams

    SciTech Connect (OSTI)

    Portman, J.; Zhang, H.; Makino, K.; Ruan, C. Y.; Berz, M.; Duxbury, P. M.

    2014-11-07

    Using our model for the simulation of photoemission of high brightness electron beams, we investigate the virtual cathode physics and the limits to spatio-temporal and spectroscopic resolution originating from the image charge on the surface and from the profile of the exciting laser pulse. By contrasting the effect of varying surface properties (leading to expanding or pinned image charge), laser profiles (Gaussian, uniform, and elliptical), and aspect ratios (pancake- and cigar-like) under different extraction field strengths and numbers of generated electrons, we quantify the effect of these experimental parameters on macroscopic pulse properties such as emittance, brightness (4D and 6D), coherence length, and energy spread. Based on our results, we outline optimal conditions of pulse generation for ultrafast electron microscope systems that take into account constraints on the number of generated electrons and on the required time resolution.

  13. Renewable Energy Optimization (REopt) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    m o d e l s & t o o l s Renewable Energy Optimization (REopt) REopt is an energy planning platform offering concurrent, multiple technology integration and optimization capabilities to help clients meet their cost savings and energy performance goals. Key Features * Integration. REopt models the complex interactions of multiple thermal and electrical technologies operating concurrently. * Optimization. The REopt solver engine is based on a mixed integer linear program that provides optimal,

  14. Fusion Technologies for Laser Inertial Fusion Energy (LIFE) ...

    Office of Scientific and Technical Information (OSTI)

    Title: Fusion Technologies for Laser Inertial Fusion Energy (LIFE) Authors: Kramer, K J ; Latkowski, J F ; Abbott, R P ; Anklam, T P ; Dunne, A M ; El-Dasher, B S ; Flowers, D L ; ...

  15. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Y.T.; Guesto-Barnak, D.

    1992-12-22

    Disclosed is a low-or no-silica, low- or no-alkali phosphate glass useful as a laser amplifier in a multiple pass, high energy laser system having a high thermal conductivity, K[sub 90 C] >0.85 W/mK, a low coefficient of thermal expansion, [alpha][sub 20-300 C] <80[times]10[sup [minus]7]/C, low emission cross section, [sigma]<2.5[times]10[sup [minus]20] cm[sup 2], and a high fluorescence lifetime, [tau]>325 [mu]secs at 3 wt. % Nd doping, consisting essentially of (on an oxide composition basis): (Mole %) P[sub 2]O[sub 5], (52-72); Al[sub 2]O[sub 3], (0-<20); B[sub 2]O[sub 3], (>0-25); ZnO, (0-31); Li[sub 2]O, (0-5); K[sub 2]O, (0-5); Na[sub 2]O, (0-5); Cs[sub 2]O, (0-5); Rb[sub 2]O, (0-5); MgO, (>0-<30); CaO, (0-20); BaO, (0-20); SrO, (0-<20); Sb[sub 2]O[sub 3], (0-<1); As[sub 2]O[sub 3], (0-<1); Nb[sub 2]O[sub 5], (0-<1); Ln[sub 2]O[sub 3], (up to 6.5); PbO, (0-<5); and SiO[sub 2], (0-3); wherein Ln[sub 2]O[sub 3] is the sum of lanthanide oxides; [Sigma]R[sub 2]O is <5, R being Li, Na, K, Cs, and Rb; the sum of Al[sub 2]O[sub 3] and MgO is <24 unless [Sigma]R[sub 2]O is 0, then the sum of Al[sub 2]O[sub 3] and MgO is <42; and the ratio of MgO to B[sub 2]O[sub 3] is 0.48-4.20. 7 figs.

  16. Building Energy Optimization Analysis Method (BEopt) - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moreover, many BEopt algorithms have been adopted by private-sector HERS software tools that have helped improve the energy efficiency of tens-of-thousands of ENERGY STAR-certified ...

  17. High energy KrCl electric discharge laser

    DOE Patents [OSTI]

    Sze, Robert C.; Scott, Peter B.

    1981-01-01

    A high energy KrCl laser for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr.sub.M * to form KrCl.

  18. High energy KrCl electric discharge laser

    DOE Patents [OSTI]

    Sze, R.C.; Scott, P.B.

    A high energy KrCl laser is presented for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr/sub M/ to form KrCl.

  19. REopt: A Platform for Energy System Integration and Optimization: Preprint

    SciTech Connect (OSTI)

    Simpkins, T.; Cutler, D.; Anderson, K.; Olis, D.; Elgqvist, E.; Callahan, M.; Walker, A.

    2014-08-01

    REopt is NREL's energy planning platform offering concurrent, multi-technology integration and optimization capabilities to help clients meet their cost savings and energy performance goals. The REopt platform provides techno-economic decision-support analysis throughout the energy planning process, from agency-level screening and macro planning to project development to energy asset operation. REopt employs an integrated approach to optimizing a site?s energy costs by considering electricity and thermal consumption, resource availability, complex tariff structures including time-of-use, demand and sell-back rates, incentives, net-metering, and interconnection limits. Formulated as a mixed integer linear program, REopt recommends an optimally-sized mix of conventional and renewable energy, and energy storage technologies; estimates the net present value associated with implementing those technologies; and provides the cost-optimal dispatch strategy for operating them at maximum economic efficiency. The REopt platform can be customized to address a variety of energy optimization scenarios including policy, microgrid, and operational energy applications. This paper presents the REopt techno-economic model along with two examples of recently completed analysis projects.

  20. Method and apparatus for optimizing the efficiency and quality of laser material processing

    DOE Patents [OSTI]

    Susemihl, Ingo

    1990-01-01

    The efficiency of laser welding and other laser material processing is optimized according to this invention by rotating the plane of polarization of a linearly polarized laser beam in relation to a work piece of the material being processed simultaneously and in synchronization with steering the laser beam over the work piece so as to keep the plane of polarization parallel to either the plane of incidence or the direction of travel of the beam in relation to the work piece. Also, depending to some extent on the particular processing being accomplished, such as welding or fusing, the angle of incidence of the laser beam on the work piece is kept at or near the polarizing or Brewster's angle. The combination of maintaining the plane of polarization parallel to plane of incidence while also maintaining the angle of incidence at or near the polarizing or Brewster's angle results in only minimal, if any, reflection losses during laser welding. Also, coordinating rotation of the plane of polarization with the translation or steering of a work piece under a laser cutting beam maximizes efficiency and kerf geometry, regardless of the direction of cut.

  1. Method and apparatus for optimizing the efficiency and quality of laser material processing

    DOE Patents [OSTI]

    Susemihl, I.

    1990-03-13

    The efficiency of laser welding and other laser material processing is optimized according to this invention by rotating the plane of polarization of a linearly polarized laser beam in relation to a work piece of the material being processed simultaneously and in synchronization with steering the laser beam over the work piece so as to keep the plane of polarization parallel to either the plane of incidence or the direction of travel of the beam in relation to the work piece. Also, depending to some extent on the particular processing being accomplished, such as welding or fusing, the angle of incidence of the laser beam on the work piece is kept at or near the polarizing or Brewster's angle. The combination of maintaining the plane of polarization parallel to plane of incidence while also maintaining the angle of incidence at or near the polarizing or Brewster's angle results in only minimal, if any, reflection losses during laser welding. Also, coordinating rotation of the plane of polarization with the translation or steering of a work piece under a laser cutting beam maximizes efficiency and kerf geometry, regardless of the direction of cut. 7 figs.

  2. Optimization of Energy Transfer Processes in Photosynthetic Systems |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MIT-Harvard Center for Excitonics Optimization of Energy Transfer Processes in Photosynthetic Systems December 7, 2010 at 3pm/36-428 Jianshu Cao Massachusetts Institute of Technology jianshu abstract: Excitation energy transfer (EET) in photosynthetic systems can be highly efficient and robust. In this talk, I will discuss the optimization of both natural and artificial systems: A simple scaling theory is used to examine the interplay of quantum coherence, dynamic noise, and static disorder

  3. Maximizing Thermal Efficiency and Optimizing Energy Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enhancement. Research results are delivered to industry in order to accelerate adoption of best practices and technologies. In this way, building owners can manage energy...

  4. Maximizing Thermal Efficiency and Optimizing Energy Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... gas, electric, and solar hot water evaluation * Energy Storage Laboratory is home to the world's most accurate battery calorimeters of their kind, thermal imaging, battery ...

  5. Optimization of Industrial Enzymes - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Optimization of Industrial Enzymes A Breakthrough for Greater Enzyme Efficiency Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary Enzymes are highly efficient naturally occurring catalysts that are used in a wide range of applications from industrial processes to new drug development. Conventional mechanism for understanding the mechanisms of enzyme functions are costly and

  6. Optimization of Complex Energy System Under Uncertainty | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility Optimization of Complex Energy System Under Uncertainty PI Name: Mihai Anitescu PI Email: anitescu@mcs.anl.gov Institution: Argonne National Laboratory Allocation Program: INCITE Allocation Hours at ALCF: 10,000,000 Year: 2012 Research Domain: Energy Technologies The U.S. electrical power system is at a crossroads between its mission to deliver cheap and safe electrical energy, a strategic aim to increase the penetration of renewable energy, an increased

  7. An Optimization Framework for Dynamic Hybrid Energy Systems

    SciTech Connect (OSTI)

    Wenbo Du; Humberto E Garcia; Christiaan J.J. Paredis

    2014-03-01

    A computational framework for the efficient analysis and optimization of dynamic hybrid energy systems (HES) is developed. A microgrid system with multiple inputs and multiple outputs (MIMO) is modeled using the Modelica language in the Dymola environment. The optimization loop is implemented in MATLAB, with the FMI Toolbox serving as the interface between the computational platforms. Two characteristic optimization problems are selected to demonstrate the methodology and gain insight into the system performance. The first is an unconstrained optimization problem that optimizes the dynamic properties of the battery, reactor and generator to minimize variability in the HES. The second problem takes operating and capital costs into consideration by imposing linear and nonlinear constraints on the design variables. The preliminary optimization results obtained in this study provide an essential step towards the development of a comprehensive framework for designing HES.

  8. Building Energy Optimization Tool (BEopt) Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outline * Background * Design Analysis o Geometry Screen o Options Screen o Site Screen o ... Humanity Zero Energy Home 6 BEopt GUI Geometry Site Options Input Output Run 7 Live ...

  9. Biorefinery Optimization Workshop | Department of Energy

    Energy Savers [EERE]

    Ma r c h 2 0 1 5 B I OE N E R G Y T E C H N OL OG I E S OF F I C E M u l t i - Y e a r P r o g r a m P l a n EXECUTIVE SUMMARY The Bioenergy Technologies Office is one of the 10 technology development offices within the Office of Energy Efficiency and Renewable Energy at the U.S. Department of Energy. This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office (the Office). It identifies the research, development, and demonstration (RD&D), and

  10. NREL-Renewable Energy Optimization Presentation | Open Energy...

    Open Energy Info (EERE)

    Organization: National Renewable Energy Laboratory Resource Type: Presentation, Training materials Website: www1.eere.energy.govfemppdfsrewg051909walker.pdf References:...

  11. Sandia Energy - Current Energy Converter Array Optimization Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The CEC array optimization framework was applied to Cobscook Bay, Maine, the first deployment site of the Ocean Renewable Power Company's (ORPC) TidGen(tm) CEC device. The...

  12. OPCPA front end and contrast optimization for the OMEGA EP kilojoule, picosecond laser

    SciTech Connect (OSTI)

    Dorrer, C.; Consentino, A.; Irwin, D.; Qiao, J.; Zuegel, J. D.

    2015-09-01

    OMEGA EP is a large-scale laser system that combines optical parametric amplification and solid-state laser amplification on two beamlines to deliver high-intensity, high-energy optical pulses. The temporal contrast of the output pulse is limited by the front-end parametric fluorescence and other features that are specific to parametric amplification. The impact of the two-crystal parametric preamplifier, pump-intensity noise, and pump-signal timing is experimentally studied. The implementation of a parametric amplifier pumped by a short pump pulse before stretching, further amplification, and recompression to enhance the temporal contrast of the high-energy short pulse is described.

  13. REopt: A Platform for Energy System Integration and Optimization: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REopt: A Platform for Energy System Integration and Optimization Preprint T. Simpkins, D. Cutler, K. Anderson, D. Olis, E. Elgqvist, M. Callahan, and A. Walker Presented at the 8th International Conference on Energy and Sustainability (ES2014) Boston, Massachusetts June 20 - July 2, 2014 Conference Paper NREL/CP-7A40-61783 August 2014 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under

  14. Optimization of doubly Q-switched lasers with both an acousto-optic modulator and a GaAs saturable absorber

    SciTech Connect (OSTI)

    Li Dechun; Zhao Shengzhi; Li Guiqiu; Yang Kejian

    2007-08-20

    A doubly Q-switched laser with both an acousto-optic (AO) modulator and a GaAs saturable absorber can obtain a more symmetric and shorter pulse with high pulse peak power, which has been experimentally proved. The key parameters of an optimally coupled doubly Q-switched laser with both an AO modulator and a GaAs saturable absorber are determined, and a group of general curves are generated for what we believe is the first time, when the single-photon absorption (SPA) and two-photon absorption (TPA) processes of GaAs are combined, and the Gaussian spatial distributions of the intracavity photon density and the initial population-inversion density as well as the influence of the AO Q-switch are considered. These key parameters include the optimal normalized coupling parameter, the optimal normalized GaAs saturable absorber parameters, and the normalized parameters of the AO Q-switch, which can maximize the output energy. Meanwhile, the corresponding normalized energy, the normalized peak power, and the normalized pulse width are given. The curves clearly show the dependence of the optimal key parameters on the parameters of the gain medium, the GaAs saturable absorber,the AO Q-switch, and the resonator. Sample calculations for a diode-pumpedNd3+:YVO4 laser with both an AO modulator and a GaAs saturable absorber are presented to demonstrate the use of the curves and the relevant formulas.

  15. Interface module for transverse energy input to dye laser modules

    DOE Patents [OSTI]

    English, R.E. Jr.; Johnson, S.A.

    1994-10-11

    An interface module for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams in the form of illumination bar to the lasing zone of a dye laser device, in particular to a dye laser amplifier. The preferred interface module includes an optical fiber array having a plurality of optical fibers arrayed in a co-planar fashion with their distal ends receiving coherent laser energy from an enhancing laser source, and their proximal ends delivered into a relay structure. The proximal ends of the optical fibers are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array delivered from the optical fiber array is acted upon by an optical element array to produce an illumination bar which has a cross section in the form of a elongated rectangle at the position of the lasing window. The illumination bar is selected to have substantially uniform intensity throughout. 5 figs.

  16. Interface module for transverse energy input to dye laser modules

    DOE Patents [OSTI]

    English, Jr., Ronald E.; Johnson, Steve A.

    1994-01-01

    An interface module (10) for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams (36) in the form of illumination bar (54) to the lasing zone (18) of a dye laser device, in particular to a dye laser amplifier (12). The preferred interface module (10) includes an optical fiber array (30) having a plurality of optical fibers (38) arrayed in a co-planar fashion with their distal ends (44) receiving coherent laser energy from an enhancing laser source (46), and their proximal ends (4) delivered into a relay structure (3). The proximal ends (42) of the optical fibers (38) are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array (36) delivered from the optical fiber array (30) is acted upon by an optical element array (34) to produce an illumination bar (54) which has a cross section in the form of a elongated rectangle at the position of the lasing window (18). The illumination bar (54) is selected to have substantially uniform intensity throughout.

  17. Detecting Energy Modulation in a Dielectric Laser Accelerator

    SciTech Connect (OSTI)

    Lukaczyk, Louis

    2015-08-21

    The Dielectric Laser Acceleration group at SLAC uses micro-fabricated dielectric grating structures and conventional infrared lasers to accelerator electrons. These structures have been estimated to produce an accelerating gradient up to 2 orders of magnitude greater than that produced by conventional RF accelerators. The success of the experiment depends on both the laser damage threshold of the structure and the timing overlap of femtosecond duration laser pulses with the electron bunch. In recent dielectric laser acceleration experiments, the laser pulse was shorter both temporally and spatially than the electron bunch. As a result, the laser is theorized to have interacted with only a small portion of the electron bunch. The detection of this phenomenon, referred to as partial population modulation, required a new approach to the data analysis of the electron energy spectra. A fitting function was designed to separate the accelerated electron population from the un-accelerated electron population. The approach was unsuccessful in detecting acceleration in the partial population modulation data. However, the fitting functions provide an excellent figure of merit for previous data known to contain signatures of acceleration.

  18. On the feasibility of increasing the energy of laser-accelerated protons by using low-density targets

    SciTech Connect (OSTI)

    Brantov, A. V. Bychenkov, V. Yu.

    2015-06-15

    Optimal regimes of proton acceleration in the interaction of short high-power laser pulses with thin foils and low-density targets are determined by means of 3D numerical simulation. It is demonstrated that the maximum proton energy can be increased by using low-density targets in which ions from the front surface of the target are accelerated most efficiently. It is shown using a particular example that, for the same laser pulse, the energy of protons accelerated from a low-density target can be increased by one-third as compared to a solid-state target.

  19. A unified model to determine the energy partitioning between target and plasma in nanosecond laser ablation of silicon

    SciTech Connect (OSTI)

    Galasso, G.; Kaltenbacher, M.; Tomaselli, A.; Scarpa, D.

    2015-03-28

    In semiconductor industry, pulsed nanosecond lasers are widely applied for the separation of silicon wafers. Here, the high intensities employed activate a cascade of complex multi-physical and multi-phase mechanisms, which finally result in the formation of a laser induced plasma, shielding the target from the incoming laser beam. Such induced plasma plume, by preventing the laser to effectively reach the target, reduces the overall efficiency and controllability of the ablation process. Modelling can be a useful tool in the optimization of industrial laser applications, allowing a deeper understanding of the way the laser energy distributes between target and induced plasma. Nevertheless, the highly multi-physical character of laser ablation poses serious challenges on the implementation of the various mechanisms underlying the process within a common modelling framework. A novel strategy is here proposed in order to simulate in a simplified, yet physically consistent way, a typical industrial application as laser ablation of silicon wafers. Reasonable agreement with experimental findings is obtained. Three fundamental mechanisms have been identified as the main factors influencing the accuracy of the numerical predictions: the transition from evaporative to volumetric mass removal occurring at critical temperature, the collisional and radiative processes underlying the initial plasma formation stage and the increased impact of the liquid ejection mechanism when a sub-millimeter laser footprint is used.

  20. Method for Determining Optimal Residential Energy Efficiency Retrofit Packages

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Method for Determining Optimal Residential Energy Efficiency Retrofit Packages B. Polly, M. Gestwick, M. Bianchi, R. Anderson, S. Horowitz, C. Christensen, and R. Judkoff National Renewable Energy Laboratory April 2011 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

  1. Stochastic Optimal Scheduling of Residential Appliances with Renewable Energy Sources

    SciTech Connect (OSTI)

    Wu, Hongyu; Pratt, Annabelle; Chakraborty, Sudipta

    2015-07-03

    This paper proposes a stochastic, multi-objective optimization model within a Model Predictive Control (MPC) framework, to determine the optimal operational schedules of residential appliances operating in the presence of renewable energy source (RES). The objective function minimizes the weighted sum of discomfort, energy cost, total and peak electricity consumption, and carbon footprint. A heuristic method is developed for combining different objective components. The proposed stochastic model utilizes Monte Carlo simulation (MCS) for representing uncertainties in electricity price, outdoor temperature, RES generation, water usage, and non-controllable loads. The proposed model is solved using a mixed integer linear programming (MILP) solver and numerical results show the validity of the model. Case studies show the benefit of using the proposed optimization model.

  2. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    SciTech Connect (OSTI)

    Schaefer, Bastian; Goedecker, Stefan; Alireza Ghasemi, S.; Roy, Shantanu

    2015-01-21

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods.

  3. Optimizing potential energy functions for maximal intrinsic hyperpolarizability

    SciTech Connect (OSTI)

    Zhou Juefei; Szafruga, Urszula B.; Kuzyk, Mark G.; Watkins, David S.

    2007-11-15

    We use numerical optimization to study the properties of (1) the class of one-dimensional potential energy functions and (2) systems of point nuclei in two dimensions that yield the largest intrinsic hyperpolarizabilities, which we find to be within 30% of the fundamental limit. In all cases, we use a one-electron model. It is found that a broad range of optimized potentials, each of very different character, yield the same intrinsic hyperpolarizability ceiling of 0.709. Furthermore, all optimized potential energy functions share common features such as (1) the value of the normalized transition dipole moment to the dominant state, which forces the hyperpolarizability to be dominated by only two excited states and (2) the energy ratio between the two dominant states. All optimized potentials are found to obey the three-level ansatz to within about 1%. Many of these potential energy functions may be implementable in multiple quantum well structures. The subset of potentials with undulations reaffirm that modulation of conjugation may be an approach for making better organic molecules, though there appear to be many others. Additionally, our results suggest that one-dimensional molecules may have larger diagonal intrinsic hyperpolarizability {beta}{sub xxx}{sup int} than higher-dimensional systems.

  4. High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of Reciprocating Engine PM Emissions High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of Reciprocating ...

  5. Electron energy spectrum in circularly polarized laser irradiated overdense plasma

    SciTech Connect (OSTI)

    Liu, C. S.; Tripathi, V. K.; Shao, Xi; Kumar, Pawan

    2014-10-15

    A circularly polarized laser normally impinged on an overdense plasma thin foil target is shown to accelerate the electrons in the skin layer towards the rear, converting the quiver energy into streaming energy exactly if one ignores the space charge field. The energy distribution of electrons is close to Maxwellian with an upper cutoff ?{sub max}=mc{sup 2}[(1+a{sub 0}{sup 2}){sup 1/2}?1], where a{sub 0}{sup 2}=(1+(2?{sup 2}/?{sub p}{sup 2})|a{sub in}|{sup 2}){sup 2}?1, |a{sub in}| is the normalized amplitude of the incident laser of frequency ?, and ?{sub p} is the plasma frequency. The energetic electrons create an electrostatic sheath at the rear and cause target normal sheath acceleration of protons. The energy gain by the accelerated ions is of the order of ?{sub max}.

  6. Design optimization and transverse coherence analysis for an x-ray free electron laser driven by SLAC LINAC

    SciTech Connect (OSTI)

    Xie, M.

    1995-12-31

    I present a design study for an X-ray Free Electron Laser driven by the SLAC linac, the Linac Coherent Light Source (LCLS). The study assumes the LCLS is based on Self-Amplified Spontaneous Emission (SASE). Following a brief review of the fundamentals of SASE, I will provide without derivation a collection of formulas relating SASE performance to the system parameters. These formulas allow quick evaluation of FEL designs and provide powerful tools for optimization in multi-dimensional parameter space. Optimization is carried out for the LCLS over all independent system parameters modeled, subjected to a number of practical constraints. In addition to the optimizations concerning gain and power, another important consideration for a single pass FEL starting from noise is the transverse coherence property of the amplified radiation, especially at short wavelength. A widely used emittance criteria for FELs requires that the emittance is smaller than the radiation wavelength divided by 4{pi}. For the LCLS the criteria is violated by a factor of 5, at a normalized emittance of 1.5 mm-mrad, wavelength of 1.5 {angstrom}, and beam energy of 15 GeV. Thus it is important to check quantitatively the emittance effect on the transverse coherence. I will examine the emittance effect on transverse coherence by analyzing different transverse modes and show that full transverse coherence can be obtained even at the LCLS parameter regime.

  7. Optimized Bose-Einstein-condensate production in a dipole trap based on a 1070-nm multifrequency laser: Influence of enhanced two-body loss on the evaporation process

    SciTech Connect (OSTI)

    Lauber, T.; Kueber, J.; Wille, O.; Birkl, G.

    2011-10-15

    We present an optimized strategy for the production of tightly confined Bose-Einstein condensates (BEC) of {sup 87}Rb in a crossed dipole trap with direct loading from a magneto-optical trap. The dipole trap is created with light of a multifrequency fiber laser with a center wavelength of 1070 nm. Evaporative cooling is performed by ramping down the laser power only. A comparison of the resulting atom number in an almost pure BEC to the initial atom number and the value for the gain in phase space density per atom lost confirm that this straightforward strategy is very efficient. We observe that the temporal characteristics of evaporation sequence are strongly influenced by power-dependent two-body losses resulting from enhanced optical pumping to the higher-energy hyperfine state. We characterize these losses and compare them to results obtained with a single-frequency laser at 1030 nm.

  8. Optimizing laser produced plasmas for efficient extreme ultraviolet and soft X-ray light sources

    SciTech Connect (OSTI)

    Sizyuk, Tatyana; Hassanein, Ahmed [Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-08-15

    Photon sources produced by laser beams with moderate laser intensities, up to 10{sup 14?}W/cm{sup 2}, are being developed for many industrial applications. The performance requirements for high volume manufacture devices necessitate extensive experimental research supported by theoretical plasma analysis and modeling predictions. We simulated laser produced plasma sources currently being developed for several applications such as extreme ultraviolet lithography using 13.5%??1% nm bandwidth, possibly beyond extreme ultraviolet lithography using 6. nm wavelengths, and water-window microscopy utilizing 2.48?nm (La-?) and 2.88?nm (He-?) emission. We comprehensively modeled plasma evolution from solid/liquid tin, gadolinium, and nitrogen targets as three promising materials for the above described sources, respectively. Results of our analysis for plasma characteristics during the entire course of plasma evolution showed the dependence of source conversion efficiency (CE), i.e., laser energy to photons at the desired wavelength, on plasma electron density gradient. Our results showed that utilizing laser intensities which produce hotter plasma than the optimum emission temperatures allows increasing CE for all considered sources that, however, restricted by the reabsorption processes around the main emission region and this restriction is especially actual for the 6.?nm sources.

  9. Parallel Harmony Search Based Distributed Energy Resource Optimization

    SciTech Connect (OSTI)

    Ceylan, Oguzhan; Liu, Guodong; Tomsovic, Kevin

    2015-01-01

    This paper presents a harmony search based parallel optimization algorithm to minimize voltage deviations in three phase unbalanced electrical distribution systems and to maximize active power outputs of distributed energy resources (DR). The main contribution is to reduce the adverse impacts on voltage profile during a day as photovoltaics (PVs) output or electrical vehicles (EVs) charging changes throughout a day. The IEEE 123- bus distribution test system is modified by adding DRs and EVs under different load profiles. The simulation results show that by using parallel computing techniques, heuristic methods may be used as an alternative optimization tool in electrical power distribution systems operation.

  10. Laser-Plasma Interactions in High-Energy-Density Plasmas

    SciTech Connect (OSTI)

    Baldis, H

    2006-10-17

    High temperature hohlraums (HTH) are designed to reach high radiation temperatures by coupling a maximum amount of laser energy into a small target in a short time. These 400-800 {micro}m diameter gold cylinders rapidly fill with hot plasma during irradiation with multiple beams in 1ns laser pulses. The high-Z plasmas are dense, (electron density, n{sub e}/n{sub c} {approx} 0.1-0.4), hot (electron temperature, T{sub e} {approx} 10keV) and are bathed in a high-temperature radiation field (radiation temperature, T{sub rad} {approx} 300eV). Here n{sub c}, the critical density, equals 9 x 10{sup 21}/cm{sup 3}. The laser beams heating this plasma are intense ({approx} 10{sup 15} - 10{sup 17} W/cm{sup 2}). The coupling of the laser to the plasma is a rich regime for Laser-Plasma Interaction (LPI) physics. The LPI mechanisms in this study include beam deflection and forward scattering. In order to understand the LPI mechanisms, the plasma parameters must be known. An L-band spectrometer is used to measure the and electron temperature. A ride-along experiment is to develop the x-radiation emitted by the thin back wall of the half-hohlraum into a thermal radiation source.

  11. Optimal Control of Distributed Energy Resources using Model Predictive Control

    SciTech Connect (OSTI)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Elizondo, Marcelo A.; Zhang, Wei; Lu, Shuai; Samaan, Nader A.; Butler-Purry, Karen

    2012-07-22

    In an isolated power system (rural microgrid), Distributed Energy Resources (DERs) such as renewable energy resources (wind, solar), energy storage and demand response can be used to complement fossil fueled generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation. The problem is formulated as a multi-objective optimization problem with the goals of minimizing fuel costs and changes in power output of diesel generators, minimizing costs associated with low battery life of energy storage and maintaining system frequency at the nominal operating value. Two control modes are considered for controlling the energy storage to compensate either net load variability or wind variability. Model predictive control (MPC) is used to solve the aforementioned problem and the performance is compared to an open-loop look-ahead dispatch problem. Simulation studies using high and low wind profiles, as well as, different MPC prediction horizons demonstrate the efficacy of the closed-loop MPC in compensating for uncertainties in wind and demand.

  12. WORKSHOP: Energy Optimized Desalination Technology Development – Nov 5-6

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy Office of Energy Efficiency and Renewable Energy; and Office of Fossil Energy will host a workshop on Energy Optimized Desalination Technology Development. The workshop...

  13. Han s Laser Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    s Laser Technology Co Ltd Jump to: navigation, search Name: Han's Laser Technology Co., Ltd Place: Shenzhen, Guangdong Province, China Zip: 518057 Product: China-based laser cutter...

  14. Optimal Real-time Dispatch for Integrated Energy Systems

    SciTech Connect (OSTI)

    Firestone, Ryan Michael

    2007-05-31

    This report describes the development and application of a dispatch optimization algorithm for integrated energy systems (IES) comprised of on-site cogeneration of heat and electricity, energy storage devices, and demand response opportunities. This work is intended to aid commercial and industrial sites in making use of modern computing power and optimization algorithms to make informed, near-optimal decisions under significant uncertainty and complex objective functions. The optimization algorithm uses a finite set of randomly generated future scenarios to approximate the true, stochastic future; constraints are included that prevent solutions to this approximate problem from deviating from solutions to the actual problem. The algorithm is then expressed as a mixed integer linear program, to which a powerful commercial solver is applied. A case study of United States Postal Service Processing and Distribution Centers (P&DC) in four cities and under three different electricity tariff structures is conducted to (1) determine the added value of optimal control to a cogeneration system over current, heuristic control strategies; (2) determine the value of limited electric load curtailment opportunities, with and without cogeneration; and (3) determine the trade-off between least-cost and least-carbon operations of a cogeneration system. Key results for the P&DC sites studied include (1) in locations where the average electricity and natural gas prices suggest a marginally profitable cogeneration system, optimal control can add up to 67% to the value of the cogeneration system; optimal control adds less value in locations where cogeneration is more clearly profitable; (2) optimal control under real-time pricing is (a) more complicated than under typical time-of-use tariffs and (b) at times necessary to make cogeneration economic at all; (3) limited electric load curtailment opportunities can be more valuable as a compliment to the cogeneration system than alone; and

  15. Renewable Energy Optimization Report for Naval Station Newport

    SciTech Connect (OSTI)

    Robichaud, R.; Mosey, G.; Olis, D.

    2012-02-01

    In 2008, the U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage the development of renewable energy (RE) on potentially contaminated land and mine sites. As part of this effort, EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island. NREL's Renewable Energy Optimization (REO) tool was utilized to identify RE technologies that present the best opportunity for life-cycle cost-effective implementation while also serving to reduce energy-related carbon dioxide emissions and increase the percentage of RE used at NAVSTA Newport. The technologies included in REO are daylighting, wind, solar ventilation preheating (SVP), solar water heating, photovoltaics (PV), solar thermal (heating and electric), and biomass (gasification and cogeneration). The optimal mix of RE technologies depends on several factors including RE resources; technology cost and performance; state, utility, and federal incentives; and economic parameters (discount and inflation rates). Each of these factors was considered in this analysis. Technologies not included in REO that were investigated separately per NAVSTA Newport request include biofuels from algae, tidal power, and ground source heat pumps (GSHP).

  16. Security classification of information concerning high-energy lasers. Instruction

    SciTech Connect (OSTI)

    MacCallum, J.

    1981-09-18

    The Instruction reissues Department of Defense (DoD) Instruction 5210.61, April 7, 1977, to update policy and guidance, and establishes uniform criteria for the security classification of information concerning DoD programs and projects involving the research, development, test and evaluation (RDT E), application, production, and operational use of high-energy lasers (HEL), and their application for military purposes, whether as weapons or in other military systems.

  17. Steam distribution and energy delivery optimization using wireless sensors

    SciTech Connect (OSTI)

    Olama, Mohammed M; Allgood, Glenn O; Kuruganti, Phani Teja; Sukumar, Sreenivas R; Djouadi, Seddik M; Lake, Joe E

    2011-01-01

    The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  18. Classifier-Guided Sampling for Complex Energy System Optimization

    SciTech Connect (OSTI)

    Backlund, Peter B.; Eddy, John P.

    2015-09-01

    This report documents the results of a Laboratory Directed Research and Development (LDRD) effort enti tled "Classifier - Guided Sampling for Complex Energy System Optimization" that was conducted during FY 2014 and FY 2015. The goal of this proj ect was to develop, implement, and test major improvements to the classifier - guided sampling (CGS) algorithm. CGS is type of evolutionary algorithm for perform ing search and optimization over a set of discrete design variables in the face of one or more objective functions. E xisting evolutionary algorithms, such as genetic algorithms , may require a large number of o bjecti ve function evaluations to identify optimal or near - optimal solutions . Reducing the number of evaluations can result in significant time savings, especially if the objective function is computationally expensive. CGS reduce s the evaluation count by us ing a Bayesian network classifier to filter out non - promising candidate designs , prior to evaluation, based on their posterior probabilit ies . In this project, b oth the single - objective and multi - objective version s of the CGS are developed and tested on a set of benchm ark problems. As a domain - specific case study, CGS is used to design a microgrid for use in islanded mode during an extended bulk power grid outage.

  19. Optimizing Native Files in Energy.gov for Search Engines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Optimizing Native Files in Energy.gov for Search Engines Optimizing Native Files in Energy.gov for Search Engines For native files in Energy.gov on Office of Energy Efficiency and Renewable Energy (EERE) websites, follow these best practices to help them rank higher in commercial search engine results. To learn how to optimize PDFs, see the PDF requirements. Title Fields Adding title metadata to native files creates more meaningful search result captions in commercial search engines

  20. High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reciprocating Engine PM Emissions | Department of Energy Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of Reciprocating Engine PM Emissions High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of Reciprocating Engine PM Emissions 2002 DEER Conference Presentation: Sandia National Laboratories 2002_deer_witze.pdf (3.85 MB) More Documents & Publications High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter TG-1: Portable Instrument

  1. EERE Success Story-FEMP Completes 2000th Renewable Energy Optimization...

    Broader source: Energy.gov (indexed) [DOE]

    NREL's Renewable Energy Optimization (REopt) tool, developed through FEMP funding, is a ... The Federal Energy Management Program (FEMP) works with key individuals to accomplish ...

  2. EERE Success Story—FEMP Completes 2000th Renewable Energy Optimization Screening

    Broader source: Energy.gov [DOE]

    NREL's Renewable Energy Optimization (REopt) tool, developed through FEMP funding, is a screening tool that identifies and prioritizes cost-effective renewable energy opportunities at a single site...

  3. Method for optimizing output in ultrashort-pulse multipass laser amplifiers with selective use of a spectral filter

    DOE Patents [OSTI]

    Backus, Sterling J.; Kapteyn, Henry C.

    2007-07-10

    A method for optimizing multipass laser amplifier output utilizes a spectral filter in early passes but not in later passes. The pulses shift position slightly for each pass through the amplifier, and the filter is placed such that early passes intersect the filter while later passes bypass it. The filter position may be adjust offline in order to adjust the number of passes in each category. The filter may be optimized for use in a cryogenic amplifier.

  4. Laser energy deposition and its dynamic uniformity for direct-drive capsules

    SciTech Connect (OSTI)

    Xu, Yan; Wu, SiZhong; Zheng, WuDi

    2015-04-15

    The total laser energy deposition of multi-laser-beam irradiation is not only associated with the dynamic behavior of capsule but also the time-dependent angular distribution of the energy deposition of each beam around its axis. The dynamic behavior of laser energy deposition does not linearly respond to the dynamic behavior of laser irradiation. The laser energy deposition uniformity determines the symmetry of implosion. The dynamic behavior of laser energy deposition non-uniformity in OMEGA for laser with square beam shape intensity profile is investigated. In the case of smaller laser spot, the initial non-uniformity caused by laser beam overlap is very high. The shell asymmetry caused by the high initial laser irradiation non-uniformity is estimated by the extent of distortion of shock front which is not as severe as expected before the shock driven by main pulse arrives. This suggests that the large initial non-uniformity due to smaller laser spot is one of the elements that seed disturbance before the main pulse. The rms of laser energy deposition during the main pulse remains above 2%. Since the intensity of main driving pulse usually is several times higher than that of picket pulses, the non-uniformity in main pulse period may jeopardize the symmetrical implosion. When dynamic behavior of capsule is considered, the influence of beam pointing error, the target positioning error, and beam-to-beam power unbalance is quite different for the case of static capsule.

  5. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    SciTech Connect (OSTI)

    Pollock, Bradley Bolt

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  6. Investigation Of Plasma Produced By High-Energy Low-Intensity Laser Pulses For Implantation Of Ge Ions Into Si And Sio2 Substrates

    SciTech Connect (OSTI)

    Rosinski, M.; Wolowski, J.; Badziak, J.; Parys, P.; Boody, F. P.; Gammino, S.; Krasa, J.; Laska, L.; Pfeifer, M.; Rohlena, K.; Ullschmied, J.; Mezzasalma, A.; Torrisi, L.

    2006-01-15

    The development of implantation techniques requires investigation of laser plasma as a potential source of multiply charged ions. The laser ion source delivers ions with kinetic energy and a charge state dependent on the irradiated target material and the parameters of the laser radiation used. By the focusing the laser beam on the solid target the higher current densities of ions than by using other currently available ion sources can be produced. The crucial issue for efficiency of the ion implantation technology is selection of proper laser beam characteristics. Implantation of different kinds of laser-produced ions into metals and organic materials were performed recently at the PALS Research Center in Prague, in cooperative experiments using 0.4-ns iodine laser pulses having energies up to 750 J at wavelength of 1315 nm or up to 250 J at wavelength of 438 nm. In this contribution we describe the characterization and optimization of laser-produced Ge ion streams as well as analysis of the direct implantation of these ions into Si and SiO2 substrates. The Ge target was irradiated with the use of laser pulses of energy up to 50 J at radiation intensities of {approx}1011 W/cm2 and {approx}2'1013 W/cm2. The implanted samples were placed along the target normal at distances of 17, 31 and 83 cm from the target surface. The ion stream parameters were measured using the time-of-fight method. The depth of ion implantation was determined by the Rutherford backscattering method (RBS). The maximum depth of implantation of Ge ions was {approx}450 nm. These investigations were carried out for optimization of low and medium energy laser-generated Ge ion streams, suitable for specific implantation technique, namely for fabrication of semiconductor nanostructures within the SRAP 'SEMINANO' project.

  7. OpenEI:Projects/Search Engine Optimization | Open Energy Information

    Open Energy Info (EERE)

    the owners of other energy-related websites, bloggers, etc. Targeted Keywords General Renewable Energy Energy Efficiency Green Energy Alternative Energy Energy Data Energy...

  8. Weather forecast-based optimization of integrated energy systems.

    SciTech Connect (OSTI)

    Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

    2009-03-01

    In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

  9. Effects of laser energy and wavelength on the analysis of LiFePO₄ using laser assisted atom probe tomography

    SciTech Connect (OSTI)

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Richard L.; Janssen, Yuri; Khalifah, Peter; Meng, Ying Shirley

    2014-09-21

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO₄ by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygen concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of ¹⁶O₂⁺ ions. Green laser assisted field evaporation led to the selective loss of Li (33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO₄. Plotting of multihit events on Saxey plots also revealed a strong neutral O₂ loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency.

  10. Effects of laser energy and wavelength on the analysis of LiFePO? using laser assisted atom probe tomography

    SciTech Connect (OSTI)

    Santhanagopalan, Dhamodaran; Khalifah, Peter; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Richard L.; Janssen, Yuri; Meng, Ying Shirley

    2015-01-01

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO? by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygen concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of ?O?? ions. Green laser assisted field evaporation led to the selective loss of Li (33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO?. Plotting of multihit events on Saxey plots also revealed a strong neutral O? loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency.

  11. Effects of laser energy and wavelength on the analysis of LiFePO₄ using laser assisted atom probe tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Richard L.; Janssen, Yuri; Khalifah, Peter; Meng, Ying Shirley

    2014-09-21

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO₄ by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygenmore » concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of ¹⁶O₂⁺ ions. Green laser assisted field evaporation led to the selective loss of Li (33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO₄. Plotting of multihit events on Saxey plots also revealed a strong neutral O₂ loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency.« less

  12. Oneida Tribe of Indians of Wisconsin Energy Optimization Model

    SciTech Connect (OSTI)

    Troge, Michael

    2014-12-01

    Oneida Nation is located in Northeast Wisconsin. The reservation is approximately 96 square miles (8 miles x 12 miles), or 65,000 acres. The greater Green Bay area is east and adjacent to the reservation. A county line roughly splits the reservation in half; the west half is in Outagamie County and the east half is in Brown County. Land use is predominantly agriculture on the west 2/3 and suburban on the east 1/3 of the reservation. Nearly 5,000 tribally enrolled members live in the reservation with a total population of about 21,000. Tribal ownership is scattered across the reservation and is about 23,000 acres. Currently, the Oneida Tribe of Indians of Wisconsin (OTIW) community members and facilities receive the vast majority of electrical and natural gas services from two of the largest investor-owned utilities in the state, WE Energies and Wisconsin Public Service. All urban and suburban buildings have access to natural gas. About 15% of the population and five Tribal facilities are in rural locations and therefore use propane as a primary heating fuel. Wood and oil are also used as primary or supplemental heat sources for a small percent of the population. Very few renewable energy systems, used to generate electricity and heat, have been installed on the Oneida Reservation. This project was an effort to develop a reasonable renewable energy portfolio that will help Oneida to provide a leadership role in developing a clean energy economy. The Energy Optimization Model (EOM) is an exploration of energy opportunities available to the Tribe and it is intended to provide a decision framework to allow the Tribe to make the wisest choices in energy investment with an organizational desire to establish a renewable portfolio standard (RPS).

  13. Method for reducing energy losses in laser crystals

    DOE Patents [OSTI]

    Atherton, L.J.; DeYoreo, J.J.; Roberts, D.H.

    1992-03-24

    A process for reducing energy losses in crystals is disclosed which comprises: a. heating a crystal to a temperature sufficiently high as to cause dissolution of microscopic inclusions into the crystal, thereby converting said inclusions into point-defects, and b. maintaining said crystal at a given temperature for a period of time sufficient to cause said point-defects to diffuse out of said crystal. Also disclosed are crystals treated by the process, and lasers utilizing the crystals as a source of light. 12 figs.

  14. Method for reducing energy losses in laser crystals

    DOE Patents [OSTI]

    Atherton, L. Jeffrey; DeYoreo, James J.; Roberts, David H.

    1992-01-01

    A process for reducing energy losses in crystals is disclosed which comprises: a. heating a crystal to a temperature sufficiently high as to cause dissolution of microscopic inclusions into the crystal, thereby converting said inclusions into point-defects, and b. maintaining said crystal at a given temperature for a period of time sufficient to cause said point-defects to diffuse out of said crystal. Also disclosed are crystals treated by the process, and lasers utilizing the crystals as a source of light.

  15. Numerical models analysis of energy conversion process in air-breathing laser propulsion

    SciTech Connect (OSTI)

    Hong Yanji; Song Junling; Cui Cunyan; Li Qian

    2011-11-10

    Energy source was considered as a key essential in this paper to describe energy conversion process in air-breathing laser propulsion. Some secondary factors were ignored when three independent modules, ray transmission module, energy source term module and fluid dynamic module, were established by simultaneous laser radiation transportation equation and fluid mechanics equation. The incidence laser beam was simulated based on ray tracing method. The calculated results were in good agreement with those of theoretical analysis and experiments.

  16. Sandia Energy - Four-color laser white illuminant demonstrating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    laser white illuminant demonstrating high color-rendering quality Home Solid-State Lighting News Four-color laser white illuminant demonstrating high color-rendering quality...

  17. Laser Spark Distribution and Ignition System - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Laser Spark Distribution and Ignition System A method ... Contact NETL About This Technology Publications: PDF Document Publication Laser Spark ...

  18. OneidaTribe of Indians Energy Optimization Model Development and Energy Audits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Optimization Model Development & Energy Audits U.S. DOE - Tribal Energy Program - 11/14/12 2 12/13/2012 where is it? Overview ► Reservation size of 65,430 acres (roughly 8 x 12 miles) with Oneida ownership of approximately 24,173 acres ► Membership of 16,877 with 7,360 members living on the Reservation or in immediate area ► Repurchase and restoration of lands a priority since casino started in 1993 ► Surburban sprawl from Green Bay and rising land prices Energy Team ►

  19. DOE Science Showcase - Free-Electron Lasers | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Free-Electron Lasers Free-Electron Lasers absorb and release energy at any wavelength and can be controlled more precisely than conventional lasers by producing intense powerful light in brief bursts with extreme precision. This innovative technology has opened doors to a vast array of possibilities for manufacturing and for basic research. Read more in the white paper In OSTI Collections: Free-Electron Lasers by Dr. William Watson, Physicist,

  20. Injection of a Phase Modulated Source into the Z-Beamlet Laser for Increased Energy Extraction.

    SciTech Connect (OSTI)

    Rambo, Patrick K.; Armstrong, Darrell J.; Schwarz, Jens; Smith, Ian C; Shores, Jonathon; Speas, Christopher; Porter, John L.

    2014-11-01

    The Z-Beamlet laser has been operating at Sandia National Laboratories since 2001 to provide a source of laser-generated x-rays for radiography of events on the Z-Accelerator. Changes in desired operational scope have necessitated the increase in pulse duration and energy available from the laser system. This is enabled via the addition of a phase modulated seed laser as an alternative front-end. The practical aspects of deployment are discussed here.

  1. Co-Optimization of Fuels and Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization of Fuels and Engines Co-Optimization of Fuels and Engines Co-Optimization of Fuels and Engines presentation for SAE High Efficiency Internal Combustion Engine Symposium on April 10-11, 2016. farrell_co-optimization_sae_heice_ symposium_2016.pdf (14.01 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2016: Co-Optimization of Fuels and Engines (Co-Optima)-Fuel Properties and Chemical Kinetics and Thrust I Engine Projects Vehicle Technologies Office Merit

  2. Method and apparatus for delivering high power laser energy over long distances

    SciTech Connect (OSTI)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-04-07

    Systems, devices and methods for the transmission and delivery of high power laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser drilling of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates.

  3. Method and apparatus for delivering high power laser energy over long distances

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2013-08-20

    Systems, devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser drilling of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates.

  4. TIMELY DELIVERY OF LASER INERTIAL FUSION ENERGY (LIFE)

    SciTech Connect (OSTI)

    Dunne, A M

    2010-11-30

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. A key goal of the NIF is to demonstrate fusion ignition for the first time in the laboratory. Its flexibility allows multiple target designs (both indirect and direct drive) to be fielded, offering substantial scope for optimization of a robust target design. In this paper we discuss an approach to generating gigawatt levels of electrical power from a laser-driven source of fusion neutrons based on these demonstration experiments. This 'LIFE' concept enables rapid time-to-market for a commercial power plant, assuming success with ignition and a technology demonstration program that links directly to a facility design and construction project. The LIFE design makes use of recent advances in diode-pumped, solid-state laser technology. It adopts the paradigm of Line Replaceable Units utilized on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. A demonstration LIFE plant based on these design principles is described, along with the areas of technology development required prior to plant construction. A goal-oriented, evidence-based approach has been proposed to allow LIFE power plant rollout on a time scale that meets policy imperatives and is consistent with utility planning horizons. The system-level delivery builds from our prior national investment over many decades and makes full use of the distributed capability in laser technology, the ubiquity of semiconductor diodes, high volume manufacturing markets, and U.S. capability in fusion science and nuclear engineering. The LIFE approach is based on the ignition evidence emerging from NIF and adopts a line-replaceable unit approach to ensure high plant availability and to allow evolution from available technologies and materials. Utilization of a proven physics platform for the ignition

  5. Applications of Optimal Building Energy System Selection and Operation

    SciTech Connect (OSTI)

    Marnay, Chris; Stadler, Michael; Siddiqui, Afzal; DeForest, Nicholas; Donadee, Jon; Bhattacharya, Prajesh; Lai, Judy

    2011-04-01

    Berkeley Lab has been developing the Distributed Energy Resources Customer Adoption Model (DER-CAM) for several years. Given load curves for energy services requirements in a building microgrid (u grid), fuel costs and other economic inputs, and a menu of available technologies, DER-CAM finds the optimum equipment fleet and its optimum operating schedule using a mixed integer linear programming approach. This capability is being applied using a software as a service (SaaS) model. Optimisation problems are set up on a Berkeley Lab server and clients can execute their jobs as needed, typically daily. The evolution of this approach is demonstrated by description of three ongoing projects. The first is a public access web site focused on solar photovoltaic generation and battery viability at large commercial and industrial customer sites. The second is a building CO2 emissions reduction operations problem for a University of California, Davis student dining hall for which potential investments are also considered. And the third, is both a battery selection problem and a rolling operating schedule problem for a large County Jail. Together these examples show that optimization of building u grid design and operation can be effectively achieved using SaaS.

  6. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    DOE Patents [OSTI]

    Zhang, Shukui

    2013-06-18

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  7. Demontration of Integrated Optimization Software at the Baldwin Energy Complex

    SciTech Connect (OSTI)

    Rob James; John McDermott; Sanjay Patnaik; Steve Piche`

    2009-01-07

    This project encompassed the design, development, and demonstration of integrated online optimization systems at Dynegy Midwest Generation's Baldwin Energy Complex (BEC) located in Baldwin, Illinois. The overall project objective was to improve coal-based generation's emission profile, efficiency, maintenance requirements and plant asset life in order to enhance the long-term viability of the United States abundant coal resources. Five separate but integrated optimization products were developed, addressing combustion, sootblowing, SCR operations, overall unit thermal performance, and plant-wide availability optimization. Optimization results are inherently unit-specific and cannot be known for a particular generating unit in advance. However, NeuCo believed that the following were reasonable targets for the completed, integrated set of products: Furnace NOx reduction improvement by 5%, Heat rate improvement by 1.5%, Increase of annual Available MWh by 1.5%, Commensurate reductions in greenhouse gases, mercury, and particulates; and Commensurate increases in profitability from lower costs, improved reliability, and greater commercial availability. The goal during Phase I was to establish each system and demonstrate their integration in unified plant optimization. Efforts during Phase I focused on: (1) developing, deploying, integrating, and testing prototypes for each of the five products; (2) identifying and addressing issues required for the products to integrate with plant operations; and (3) systematically collecting and assimilating feedback to improve subsequent product releases. As described in the Phase II continuation application NeuCo successfully achieved the goal for Phase I. The goal of Phase II was to improve upon the products installed and tested in Phase I and to quantify the benefits of the integrated system. As this report documents, NeuCo has also successfully achieved the goal for Phase II. The overall results of the project, compared with the

  8. AUDIT REPORT Lawrence Livermore National Laboratory's Laser Inertial Fusion Energy Endeavor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laser Inertial Fusion Energy Endeavor OAI-M-16-13 July 2016 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 July 7, 2016 MEMORANDUM FOR THE ADMINISTRATOR, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: George W. Collard Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on the "Lawrence Livermore National Laboratory's Laser Inertial Fusion Energy

  9. New Perspectives in Thermoelectric Energy Recovery System Design Optimization

    SciTech Connect (OSTI)

    Hendricks, Terry J.; Karri, Naveen K.; Hogan, Tim; Cauchy, Charles J.

    2013-02-12

    Abstract: Large amounts of waste heat are generated worldwide in industrial processes, automotive transportation, diesel engine exhaust, military generators, and incinerators because 60-70% of the fuel energy is typically lost in these processes. There is a strong need to develop technologies that recover this waste heat to increase fuel efficiency and minimize fuel requirements in these industrial processes, automotive and heavy vehicle engines, diesel generators, and incinerators. There are additional requirements to reduce CO2 production and environmental footprints in many of these applications. Recent work with the Strategic Environmental Research and Development Program office has investigated new thermoelectric (TE) materials and systems that can operate at higher performance levels and show a viable pathway to lightweight, small form-factor, advanced thermoelectric generator (TEG) systems to recover waste heat in many of these applications. New TE materials include nano-composite materials such as lead-antimony-silver-telluride (LAST) and lead-antimony-silver-tin-telluride (LASTT) compounds. These new materials have created opportunities for high-performance, segmented-element TE devices. New higher-performance TE devices segmenting LAST/LASTT materials with bismuth telluride have been designed and fabricated. Sectioned TEG systems using these new TE devices and materials have been designed. Integrated heat exchanger/TE device system analyses of sectioned TE system designs have been performed creating unique efficiency-power maps that provide better understandings and comparisons of design tradeoffs and nominal and off-nominal system performance conditions. New design perspectives in optimization of sectioned TE design approaches are discussed that provide insight on how to optimize such sectioned TE systems. System performance analyses using ANSYS TE modeling capabilities have integrated heat exchanger performance models with ANSYS TE models to extend

  10. Co-Optimization of Fuels & Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Co-Optimization of Fuels & Engines Co-Optimization of Fuels & Engines As part of the Co-Optimization of Fuels & Engines initiative, researchers are exploring synergies among new bio-based fuels, engines, powertrains, and fueling infrastructure. Image by Loren Stacks, Sandia National Laboratories. As part of the Co-Optimization of Fuels & Engines initiative, researchers are exploring synergies among new bio-based fuels, engines, powertrains, and fueling infrastructure. Image by

  11. Co-Optimization of Fuels and Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Co-Optimization of Fuels and Vehicles Co-Optimization of Fuels and Vehicles Plenary IV: Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines Co-Optimization of Fuels and Vehicles James E. Anderson, Technical Expert, Ford Motor Company anderson_bioenergy_2015.pdf (217.53 KB) More Documents & Publications A Vehicle Manufacturer's Perspective on Higher-Octane Fuels Co-Optima Stakeholder Listening Day Summary Report Vehicle Technologies Office Merit Review 2016: Overview of

  12. FREE ELECTRON LASERS AND HIGH-ENERGY ELECTRON COOLING.

    SciTech Connect (OSTI)

    LITVINENKO,V.N.

    2007-08-31

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation of such beams is too feeble to provide significant cooling: even in the Large Hadron Collider (LHC) with 7 TeV protons, the longitudinal damping time is about thirteen hours. Decrements of traditional electron cooling decrease rapidly as the high power of beam energy, and an effective electron cooling of protons or antiprotons at energies above 100 GeV seems unlikely. Traditional stochastic cooling still cannot catch up with the challenge of cooling high-intensity bunched proton beams--to be effective, its bandwidth must be increased by about two orders-of-magnitude. Two techniques offering the potential to cool high-energy hadron beams are optical stochastic cooling (OSC) and coherent electron cooling (CEC)--the latter is the focus of this paper. In the early 1980s, CEC was suggested as a possibility for using various instabilities in an electron beam to enhance its interaction with hadrons (i.e., cooling them). The capabilities of present-day accelerator technology, Energy Recovery Linacs (ERLs), and high-gain Free-Electron Lasers (FELs), finally caught up with the idea and provided the all necessary ingredients for realizing such a process. In this paper, we discuss the principles, and the main limitations of the CEC process based on a high-gain FEL driven by an ERL. We also present, and summarize in Table 1, some numerical examples of CEC for ions and protons in RHIC and the LHC.

  13. Pulse energy measurement at the hard x-ray laser in Japan

    SciTech Connect (OSTI)

    Kato, M.; Tanaka, T.; Saito, N.; Kurosawa, T.; Richter, M.; Sorokin, A. A.; Tiedtke, K.; Kudo, T.; Yabashi, M.; Tono, K.; Ishikawa, T.

    2012-07-09

    The pulse energies of a free electron laser have accurately been measured in the hard x-ray spectral range. In the photon energy regime from 4.4 keV to 16.8 keV, pulse energies up to 100 {mu}J were obtained at the hard x-ray laser facility SACLA (SPring-8 Angstrom Compact free-electron LAser). Two independent methods, using a cryogenic radiometer and a gas monitor detector, were applied and agreement within 3.3% was achieved. Based on our validated pulse energy measurement, a SACLA online monitor detector could be calibrated for all future experiments.

  14. Co-Optimization of Fuels & Engines for Tomorrow's Energy-Efficient Vehicles (Fact Sheet), U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization of Fuels & Engines FOR TOMORROW'S ENERGY-EFFICIENT VEHICLES CO-OPTIMIZATION FOR NEAR- AND LONG-TERM TRANSPORTATION SOLUTIONS A new U.S. Department of Energy (DOE) initiative is accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) is designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance.

  15. Addressing Control of Hazardous Energy (COHE) Requirements in a Laser Safety Program

    SciTech Connect (OSTI)

    Woods, Michael; /SLAC

    2012-02-15

    OSHA regulation 29CFR1910.147 specifies control of hazardous energy requirements for 'the servicing and maintenance of machines and equipment in which the unexpected energization or start up of the machines or equipment, or release of stored energy could cause injury to employees.' Class 3B and Class 4 laser beams must be considered hazardous energy sources because of the potential for serious eye injury; careful consideration is therefore needed to safely de-energize these lasers. This paper discusses and evaluates control of hazardous energy principles in this OSHA regulation, in ANSI Z136.1 ''Safe Use of Lasers,'' and in ANSI Z244.1 ''Control of Hazardous Energy, Lockout/Tagout and Alternative Methods.'' Recommendations are made for updating and improving CoHE (control of hazardous energy) requirements in these standards for their applicability to safe laser operations.

  16. Heavy Vehicle Systems Optimization Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy Vehicle Systems Optimization Peer Review Heavy Vehicle Systems Optimization Peer Review This report is a summary and analysis of comments from the Review Panel at the FY 2006 DOE Heavy Vehicle Systems Optimization Merit Review and Peer Evaluation, held April 18-20, 2006. Merit Review and Peer Evaluation (876.09 KB) More Documents & Publications Advanced Combustion Engine R&D and Fuels Technology Merit Review 2013 Annual Merit Review Results Report 2013 Annual Merit Review Results

  17. Similarity criteria in calculations of the energy characteristics of a cw oxygen - iodine laser

    SciTech Connect (OSTI)

    Mezhenin, A V; Azyazov, V N

    2012-12-31

    The calculated and experimental data on the energy efficiency of a cw oxygen - iodine laser (OIL) are analysed based on two similarity criteria, namely, on the ratio of the residence time of the gas mixture in the resonator to the characteristic time of extraction of the energy stored in singlet oxygen td and on the gain-to-loss ratio {Pi}. It is shown that the simplified two-level laser model satisfactorily predicts the output characteristics of OILs with a stable resonator at {tau}{sub d} {<=} 7. Efficient energy extraction from the OIL active medium is achieved in the case of {tau}{sub d} = 5 - 7, {Pi} = 4 - 8. (lasers)

  18. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOE Patents [OSTI]

    Albrecht, Georg; George, E. Victor; Krupke, William F.; Sooy, Walter; Sutton, Steven B.

    1996-01-01

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

  19. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOE Patents [OSTI]

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  20. Beam-energy and laser beam-profile monitor at the BNL LINAC

    SciTech Connect (OSTI)

    Connolly, R.; Briscoe, B.; Degen, C.; DeSanto, L.; Meng, W.; Minty, M.; Nayak, S.; Raparia, D.; Russo, T.

    2010-05-02

    We are developing a non-interceptive beam profile and energy monitor for H{sup -} beams in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. Electrons that are removed from the beam ions either by laser photodetachment or stripping by background gas are deflected into a Faraday cup. The beam profile is measured by stepping a narrow laser beam across the ion beam and measuring the electron charge vs. transverse laser position. There is a grid in front of the collector that can be biased up to 125kV. The beam energy spectrum is determined by measuring the electron charge vs. grid voltage. Beam electrons have the same velocity as the beam and so have an energy of 1/1836 of the beam protons. A 200MeV H{sup -} beam yields 109keV electrons. Energy measurements can be made with either laser-stripped or gas-stripped electrons.

  1. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    SciTech Connect (OSTI)

    Kramer, Kevin James

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles

  2. Computational Research Challenges and Opportunities for the Optimization of Fossil Energy Power Generation System

    SciTech Connect (OSTI)

    Zitney, S.E.

    2007-06-01

    Emerging fossil energy power generation systems must operate with unprecedented efficiency and near-zero emissions, while optimizing profitably amid cost fluctuations for raw materials, finished products, and energy. To help address these challenges, the fossil energy industry will have to rely increasingly on the use advanced computational tools for modeling and simulating complex process systems. In this paper, we present the computational research challenges and opportunities for the optimization of fossil energy power generation systems across the plant lifecycle from process synthesis and design to plant operations. We also look beyond the plant gates to discuss research challenges and opportunities for enterprise-wide optimization, including planning, scheduling, and supply chain technologies.

  3. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    SciTech Connect (OSTI)

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E., II; Rochau, Gary Eugene

    2009-09-01

    The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink{reg_sign}, an extension of MATLAB{reg_sign}, is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub

  4. Raman beam combining for laser brightness enhancement

    SciTech Connect (OSTI)

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  5. Raman beam combining for laser brightness enhancement

    DOE Patents [OSTI]

    Dawson, Jay W; Allen, Grahan S; Pax, Paul H; Heebner, John E; Sridharan, Arun K; Rubenchik, Alexander M; Barty, Christopher B.J

    2015-11-05

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  6. Webinar: Building Energy Optimization Tool (BEopt)Training

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Zero Energy Ready Home (ZERH) Program represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings,...

  7. Effects of Laser Energy and Wavelength on the Analysis of LiFePO4 Using Laser Assisted Atom Probe Tomography

    SciTech Connect (OSTI)

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Rich; Janssen, Yuri; Kalifah, Peter; Meng, Ying S.

    2015-01-21

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative accuracy of atom probe tomography (APT) examinations of LiFePO4 (LFP) are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted APT of LFP has revealed distinctly different behaviors. With the use of UV laser the major issue was identified as the preferential loss of oxygen (up to 10 at. %) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ increased the observed oxygen concentration to near its correct stoichiometry and was well correlated with systematically higher concentrations of 16O2+ ions. This observation supports the premise that lower laser energies lead to a higher probability of oxygen molecule ionization. Conversely, at higher laser energies the resultant lower effective electric field reduces the probability of oxygen molecule ionization. Green laser assisted field evaporation led to the selective loss of Li (~50% deficiency) and correct ratios of the remaining elements, including the oxygen concentration. The loss of Li is explained by selective dc evaporation of lithium between laser pulses and relatively negligible oxygen loss as neutrals during green-laser pulsing. Lastly, plotting of multihit events on a Saxey plot for the straight-flight path data (green laser only) revealed a surprising dynamic recombination process for some molecular ions mid-flight.

  8. dlCC Opt: Optimization Software for Renewable Energy Projects...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search dlCC Opt: Optimization ... Many existing programs require the user to enter the size ... Because the algorithm was built in terms of analytics ...

  9. Forecourt and Gas Infrastructure Optimization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Gas Infrastructure Optimization Forecourt and Gas Infrastructure Optimization Presentation by Bruce Kelly of Nexant at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 deliv_analysis_kelly.pdf (113.91 KB) More Documents & Publications H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results - Interim Report H2A Delivery Components Model and Analysis Hydrogen Delivery Analysis Models

  10. Building America Webinar: Building Energy Optimization (BEopt) Software

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tool | Department of Energy 2_1.0.wmv (48.72

  11. Building America Webinar: Building Energy Optimization (BEopt) Software

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tool | Department of Energy 1_1.0.wmv (48.38

  12. Optical fiber configurations for transmission of laser energy over great distances

    DOE Patents [OSTI]

    Rinzler, Charles C; Zediker, Mark S

    2013-10-29

    There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.

  13. Optical fiber configurations for transmission of laser energy over great distances

    DOE Patents [OSTI]

    Rinzler, Charles C; Zediker, Mark S

    2014-11-04

    There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.

  14. Methods and apparatus for delivering high power laser energy to a surface

    DOE Patents [OSTI]

    Faircloth, Brian O; Zediker, Mark S; Rinzler, Charles C; Koblick, Yeshaya; Moxley, Joel F

    2013-04-23

    There is provided a system, apparatus and methods for providing a laser beam to borehole surface in a predetermined and energy deposition profile. The predetermined energy deposition profiles may be uniform or tailored to specific downhole applications. Optic assemblies for obtaining these predetermined energy deposition profiles are further provided.

  15. High power laser energy distribution patterns, apparatus and methods for creating wells

    DOE Patents [OSTI]

    Faircloth, Brian O.; Zediker, Mark S.; Rinzler, Charles C.; Koblick, Yeshaya; Moxley, Joel F.

    2016-03-15

    There is provided a system, apparatus and methods for providing a laser beam to borehole surface in a predetermined and energy deposition profile. The predetermined energy deposition profiles may be uniform or tailored to specific downhole applications. Optic assemblies for obtaining these predetermined energy deposition profiles are further provided.

  16. Optimal planning and design of a renewable energy based supply system for microgrids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hafez, Omar; Bhattacharya, Kankar

    2012-03-03

    This paper presents a technique for optimal planning and design of hybrid renewable energy systems for microgrid applications. The Distributed Energy Resources Customer Adoption Model (DER-CAM) is used to determine the optimal size and type of distributed energy resources (DERs) and their operating schedules for a sample utility distribution system. Using the DER-CAM results, an evaluation is performed to evaluate the electrical performance of the distribution circuit if the DERs selected by the DER-CAM optimization analyses are incorporated. Results of analyses regarding the economic benefits of utilizing the optimal locations identified for the selected DER within the system are alsomore » presented. The actual Brookhaven National Laboratory (BNL) campus electrical network is used as an example to show the effectiveness of this approach. The results show that these technical and economic analyses of hybrid renewable energy systems are essential for the efficient utilization of renewable energy resources for microgird applications.« less

  17. Influence of pulse duration, energy, and focusing on laser-assisted water condensation

    SciTech Connect (OSTI)

    Petit, Y.; Henin, S.; Kasparian, J.; Wolf, J. P.; Rohwetter, P.; Stelmaszczyk, K.; Hao, Z. Q.; Nakaema, W. M.; Woeste, L.; Vogel, A.; Pohl, T.; Weber, K.

    2011-01-24

    We investigate the influence of laser parameters on laser-assisted water condensation in the atmosphere. Pulse energy is the most critical parameter. Nanoparticle generation depends linearly on energy beyond the filamentation threshold. Shorter pulses are more efficient than longer ones with saturation at {approx}1.5 ps. Multifilamenting beams appear more efficient than strongly focused ones in triggering the condensation and growth of submicronic particles, while polarization has a negligible influence on the process. The data suggest that the initiation of laser-assisted condensation relies on the photodissociation of the air molecules rather than on their photoionization.

  18. DOE ZERH Webinar: Building Energy Optimization Tool (BEopt) Training

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) is DOE’s primary lab for renewable energy and efficiency R&D.  Through the Building America Program, NREL has developed free software to help...

  19. Energy Optimized Desalination Technology Development Workshop- November 5-6, 2015

    Broader source: Energy.gov [DOE]

    The Department of Energy Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy hosted a workshop on Energy Optimized Desalination Technology Development on November 5-6, 2015 at the Hilton San Francisco Union Square, in San Francisco, CA. This 2-day workshop brought together technical experts in desalination to analyze ways in which to increase research, development and deployment of promising desalination approaches for fresh-water at lower energetic, economic and environmental costs comparable to existing technologies.

  20. X-ray lasers and methods utilizing two component driving illumination provided by optical laser means of relatively low energy and small physical size

    DOE Patents [OSTI]

    Rosen, Mordecai D.; Matthews, Dennis L.

    1991-01-01

    An X-ray laser (10), and related methodology, are disclosed wherein an X-ray laser target (12) is illuminated with a first pulse of optical laser radiation (14) of relatively long duration having scarcely enough energy to produce a narrow and linear cool plasma of uniform composition (38). A second, relatively short pulse of optical laser radiation (18) is uniformly swept across the length, from end to end, of the plasma (38), at about the speed of light, to consecutively illuminate continuously succeeding portions of the plasma (38) with optical laser radiation having scarcely enough energy to heat, ionize, and invert them into the continuously succeeding portions of an X-ray gain medium. This inventive double pulse technique results in a saving of more than two orders of magnitude in driving optical laser energy, when compared to the conventional single pulse approach.

  1. Novel Laser and Diagnostic Technologies for the OMEGA EP High-Energy Petawatt Laser

    SciTech Connect (OSTI)

    Zuegel, J.D.; Bahk, S.-W.; Bromage, J.; Dorrer, C.; Earley, R.; Kessler, T.J.; Kruschwitz, B.J.; Morse, S.F.B.; Maywar, D.N.; Oliver, J.B.; Qiao, J.; Rigatti, A.L.; Schmid, A.W.; Shoup III, M.J.; Waxer, L.J.; Kelly, J.H.

    2009-06-10

    OMEGA EP (extended performance) is a petawatt-class laser facility that includes two NIF-like beamlines designed to operate in a chirped-pulse-amplifi cation mode to produce up to 2.6 kJ in a pulsewidth range of <1 to 100 ps at 1,053 nm. The OMEGA EP performance and the laser engineering of enabling technologies required to meet these goals are discussed.

  2. Novel high-energy physics studies using intense lasers and plasmas

    SciTech Connect (OSTI)

    Leemans, Wim P.; Bulanov, Stepan; Esarey, Eric; Schroeder, Carl

    2015-06-29

    In the framework of the project “Novel high-energy physics studies using intense lasers and plasmas” we conducted the study of ion acceleration and “flying mirrors” with high intensity lasers in order to develop sources of ion beams and high frequency radiation for different applications. Since some schemes of laser ion acceleration are also considered a good source of “flying mirrors”, we proposed to investigate the mechanisms of “mirror” formation. As a result we were able to study the laser ion acceleration from thin foils and near critical density targets. We identified several fundamental factors limiting the acceleration in the RPA regime and proposed the target design to compensate these limitations. In the case of near critical density targets, we developed a concept for the laser driven ion source for the hadron therapy. Also we studied the mechanism of “flying mirror” generation during the intense laser interaction with thin solid density targets. As for the laser-based positron creation and capture we initially proposed to study different regimes of positron beam generation and positron beam cooling. Since the for some of these schemes a good quality electron beam is required, we studied the generation of ultra-low emittance electron beams. In order to understand the fundamental physics of high energy electron beam interaction with high intensity laser pulses, which may affect the efficient generation of positron beams, we studied the radiation reaction effects.

  3. Fan System Optimization Improves Production and Saves Energy at Ash Grove Cement Plant

    SciTech Connect (OSTI)

    2002-05-01

    This case study describes an optimization project implemented on a fan system at Ash Grove Cement Company, which led to annual energy and maintenance savings of $16,000 and 175,000 kilowatt-hours (kWh).

  4. Optimizing Irregular Applications for Energy and Performance on the Tilera Many-core Architecture

    SciTech Connect (OSTI)

    Chavarría-Miranda, Daniel; Panyala, Ajay R.; Halappanavar, Mahantesh; Manzano Franco, Joseph B.; Tumeo, Antonino

    2015-05-20

    Optimizing applications simultaneously for energy and performance is a complex problem. High performance, parallel, irregular applications are notoriously hard to optimize due to their data-dependent memory accesses, lack of structured locality and complex data structures and code patterns. Irregular kernels are growing in importance in applications such as machine learning, graph analytics and combinatorial scientific computing. Performance- and energy-efficient implementation of these kernels on modern, energy efficient, multicore and many-core platforms is therefore an important and challenging problem. We present results from optimizing two irregular applications { the Louvain method for community detection (Grappolo), and high-performance conjugate gradient (HPCCG) { on the Tilera many-core system. We have significantly extended MIT's OpenTuner auto-tuning framework to conduct a detailed study of platform-independent and platform-specific optimizations to improve performance as well as reduce total energy consumption. We explore the optimization design space along three dimensions: memory layout schemes, compiler-based code transformations, and optimization of parallel loop schedules. Using auto-tuning, we demonstrate whole node energy savings of up to 41% relative to a baseline instantiation, and up to 31% relative to manually optimized variants.

  5. Optimized Pump Systems Save Coal Preparation Plant Money and Energy

    Broader source: Energy.gov [DOE]

    This case study describes how Peabody Holding Company was able to improve the performance of a coal slurry pumping system at its Randolph Coal Preparation plant. Using a systematic approach, three energy-saving opportunities were identified involving the motor, belt drive, and pump components of the pumping system. The modifications saved 87,184 kWh of electricity, equivalent to $5,231 in annual energy cost savings, and overall energy consumption of the pumping system decreased by approximately 15 percent.

  6. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Generated climate datasets needed for sustainability ... Energy Crops in SWAT SWAT requires about 25 crop growth ... temperature ( o C) * Daily solar radiation (x0.5 determined ...

  7. Optimizing Cluster Heads for Energy Efficiency in Large-Scale...

    Office of Scientific and Technical Information (OSTI)

    clustering is generally considered as an efficient and scalable way to facilitate the management and operation of such large-scale networks and minimize the total energy...

  8. Future Lighting Systems: The Path to Optimized Energy Performance

    Energy Savers [EERE]

    ... * Closed-loop control or verification of compliance with utility (peak and other) demand response incentives * Support engagement in transactive energy markets 15 Data driven ...

  9. Co-Optimization of Fuels & Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Co-Optima Program Overview, John Farrell, Laboratory Program Manager, Vehicle Technologies, National Renewable Energy Laboratory Co-Optima: Low Greenhouse Gas Fuels, Blake Simmons, ...

  10. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    SciTech Connect (OSTI)

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E., II; Rochau, Gary Eugene

    2010-10-01

    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.

  11. Free Flow Energy (TRL 1 2 3 Component)- Design and Development of a Cross-Platform Submersible Generator Optimized for the Conditions of Current Energy Conversion

    Broader source: Energy.gov [DOE]

    Free Flow Energy (TRL 1 2 3 Component) - Design and Development of a Cross-Platform Submersible Generator Optimized for the Conditions of Current Energy Conversion

  12. Optimal Combination of Distributed Energy System in an Eco-Campusof Japan

    SciTech Connect (OSTI)

    Yang, Yongwen; Gao, Weijun; Zhou, Nan; Marnay, Chris

    2006-06-14

    In this study, referring to the Distributed Energy Resources Customer Adoption Model (DER-CAM) which was developed by the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), E-GAMS programmer is developed with a research of database of energy tariffs, DER (Distributed Energy Resources) technology cost and performance characteristics, and building energy consumption in Japan. E-GAMS is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills. In this research, by using E-GAMS, we present a tool to select the optimal combination of distributed energy system for an Ecological-Campus, Kitakyushu, Science and Research Park (KSRP). We discuss the effects of the combination of distributed energy technologies on the energy saving, economic efficiency and environmental benefits.

  13. Searching for the Optimal Mix of Solar and Efficiency in Zero Net Energy Buildings

    SciTech Connect (OSTI)

    Horowitz, S.; Christensen, C.; Anderson, R.

    2008-01-01

    Zero net energy (ZNE) buildings employ efficiency to reduce energy consumption and solar technologies to produce as much energy on site as is consumed on an annual basis. Such buildings leverage utility grids and net-metering agreements to reduce solar system costs and maintenance requirements relative to off-grid photovoltaic (PV)-powered buildings with batteries. The BEopt software was developed to efficiently identify cost-optimal building designs using detailed hour-by-hour energy simulation programs to evaluate the user-selected options. A search technique identifies optimal and near-optimal building designs (based on energy-related costs) at various levels of energy savings along the path from a reference building to a ZNE design. In this paper, we describe results based on use of the BEopt software to develop cost-optimal paths to ZNE for various climates. Comparing the different cases shows optimal building design characteristics, percent energy savings and cash flows at key points along the path, including the point at which investments shift from building improvements to purchasing PV, and PV array sizes required to achieve ZNE. From optimizations using the BEopt software for a 2,000-ft{sup 2} house in 4 climates, we conclude that, relative to a code-compliant (IECC 2006) reference house, the following are achievable: (1) minimum cost point: 22 to 38% source energy savings and 15 to 24% annual cash flow savings; (2) PV start point: 40 to 49% source energy savings at 10 to 12% annual cash flow savings; (3) break-even point: 43 to 53% source energy savings at 0% annual cash flow savings; and (4) ZNE point: 100% source energy savings with 4.5 to 8.1 kW{sub DC} PV arrays and 76 to 169% increase in cash flow.

  14. BEopt: Software for Identifying Optimal Building Designs on the Path to Zero Net Energy; Preprint

    SciTech Connect (OSTI)

    Christensen, C.; Horowitz, S.; Givler, T.; Courtney, A.; Barker, G.

    2005-04-01

    A zero net energy (ZNE) building produces as much energy on-site as it uses on an annual basis--using a grid-tied, net-metered photovoltaic (PV) system and active solar. The optimal path to ZNE extends from a base case to the ZNE building through a series of energy-saving building designs with minimal energy-related owning and operating costs. BEopt is a computer program designed to find optimal building designs along the path to ZNE. A user selects from among predefined options in various categories to specify options to be considered in the optimization. Energy savings are calculated relative to a reference. The reference can be either a user-defined base-case building or a climate-specific Building America Benchmark building automatically generated by BEopt. The user can also review and modify detailed information on all available options and the Building America Benchmark in a linked options library spreadsheet.

  15. Model Predictive Control-based Optimal Coordination of Distributed Energy Resources

    SciTech Connect (OSTI)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming; Elizondo, Marcelo A.

    2013-01-07

    Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive control (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.

  16. Model Predictive Control-based Optimal Coordination of Distributed Energy Resources

    SciTech Connect (OSTI)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming; Elizondo, Marcelo A.

    2013-04-03

    Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive control (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.

  17. Laser diagnostics of the energy spectrum of Rydberg states of the lithium-7 atom

    SciTech Connect (OSTI)

    Zelener, B. B. Saakyan, S. A.; Sautenkov, V. A.; Manykin, E. A.; Zelener, B. V.; Fortov, V. E.

    2015-12-15

    The spectra of excited lithium-7 atoms prepared in a magneto-optical trap are studied using a UV laser. The laser diagnostics of the energy of Rydberg atoms is developed based on measurements of the change in resonance fluorescence intensity of ultracold atoms as the exciting UV radiation frequency passes through the Rydberg transition frequency. The energies of various nS configurations are obtained in a broad range of the principal quantum number n from 38 to 165. The values of the quantum defect and ionization energy obtained in experiments and predicted theoretically are discussed.

  18. Kansas City Power & Light- Energy Optimizer Programmable Thermostat Program

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) offers a free programmable thermostat and free installation to qualifying customers to manage energy usage. Only residential and small commercial customers...

  19. Control and Room Temperature Optimization of Energy Efficient Buildings

    SciTech Connect (OSTI)

    Djouadi, Seddik M; Kuruganti, Phani Teja

    2012-01-01

    The building sector consumes a large part of the energy used in the United States and is responsible for nearly 40% of greenhouse gas emissions. It is therefore economically and environmentally important to reduce the building energy consumption to realize massive energy savings. In this paper, a method to control room temperature in buildings is proposed. The approach is based on a distributed parameter model represented by a three dimensional (3D) heat equation in a room with heater/cooler located at ceiling. The latter is resolved using finite element methods, and results in a model for room temperature with thousands of states. The latter is not amenable to control design. A reduced order model of only few states is then derived using Proper Orthogonal Decomposition (POD). A Linear Quadratic Regulator (LQR) is computed based on the reduced model, and applied to the full order model to control room temperature.

  20. Array detector for high energy laser based on diffuse transmission sampling

    SciTech Connect (OSTI)

    Pang, Miao; Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, 621900 China; Key Laboratory of High Energy Laser, CAEP, Mianyang 621900 ; Rong, Jian; Zhou, Shan; Wu, Juan; Zhang, Wei; Hu, Xiaoyang; Fan, Guobin

    2014-01-15

    In order to improve the ability and accuracy of measuring the temporal–spatial distribution of the intensity of a large-size, high-energy laser beam, a novel array detecting method based on diffuse transmission sampling is proposed. The measurement principle and the design of the sampling and attenuating unit are presented. High-temperature-resistant diffuse transmission material is used to sample and attenuate a high energy laser beam. Pure copper, whose surface is first sand-blasted and then gold-plated, is applied to scatter the incident high-energy laser beam. The formula for the attenuation ratio was derived in detail. We developed two large-aperture array detectors with spatial resolution of 5 mm, spatial duty ratio of 20%, and useable angle range of ±30° without varying the responsivity, the non-uniformity in the laser profile measurement is below 1%, and the repeatability error in the laser power measurement is approximately 1%. The maximal energy density that the array detector can endure is more than 10 kJ/cm{sup 2}.

  1. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demands

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demands March 23, 2015 Analysis and Sustainability Peer Review Drs. Indrajeet Chaubey and Ben Gramig Purdue University This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement 2 * Overall goal is to conduct a watershed-scale sustainability assessment of multiple energy crops and removal of crop residues * Assessment conducted in two watersheds representative of Upper Midwest - Wildcat Creek watershed - St. Joseph River watershed 3 Quad

  2. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    SciTech Connect (OSTI)

    Cardoso, Goncalo; Stadler, Michael; Bozchalui, Mohammed C.; Sharma, Ratnesh; Marnay, Chris; Barbosa-Povoa, Ana; Ferrao, Paulo

    2013-12-06

    The large scale penetration of electric vehicles (EVs) will introduce technical challenges to the distribution grid, but also carries the potential for vehicle-to-grid services. Namely, if available in large enough numbers, EVs can be used as a distributed energy resource (DER) and their presence can influence optimal DER investment and scheduling decisions in microgrids. In this work, a novel EV fleet aggregator model is introduced in a stochastic formulation of DER-CAM [1], an optimization tool used to address DER investment and scheduling problems. This is used to assess the impact of EV interconnections on optimal DER solutions considering uncertainty in EV driving schedules. Optimization results indicate that EVs can have a significant impact on DER investments, particularly if considering short payback periods. Furthermore, results suggest that uncertainty in driving schedules carries little significance to total energy costs, which is corroborated by results obtained using the stochastic formulation of the problem.

  3. Cathode spot energy transfer simulated by a focused laser beam

    SciTech Connect (OSTI)

    Vogel, N.; Hoft, H. )

    1989-10-01

    Minimum conditions for the formation of surface craters by laser irradiation have been studied experimentally and theoretically for various metals. The critical power density for crater formation within 20 ns was about 10{sup 11}W/m{sup 2}. It is therefore concluded that crater formation by ion bombardment will require an ion current density of the order of 10{sup 10}A/m{sup 2}.

  4. Apparatus for the Laser Ablative Synthesis of Carbon Nanotubes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Apparatus for the Laser Ablative Synthesis of Carbon Nanotubes Thomas Jefferson National Accelerator Facility Contact TJNAF About This Technology Technology Marketing SummaryThis invention can produce copious quantities of carbon nanotubes at rates near grams per hour.DescriptionIt is an RF-induction heated side-pumped synthesis chamber for the production of carbon nanotubes. Such an apparatus concurrently provides a simplified apparatus that allows for greatly reduced heat

  5. Detecting Partial Energy Modulation in a Dielectric Laser Accelerator - Oral Presentation

    SciTech Connect (OSTI)

    Lukaczyk, Louis

    2015-08-24

    The Dielectric Laser Acceleration group at SLAC uses micro-fabricated dielectric grating structures and conventional infrared lasers to accelerator electrons. These structures have been estimated to produce an accelerating gradient up to 2 orders of magnitude greater than that produced by conventional RF accelerators. The success of the experiment depends on both the laser damage threshold of the structure and the timing overlap of femtosecond duration laser pulses with the electron bunch. In recent dielectric laser acceleration experiments, the laser pulse was shorter both temporally and spatially than the electron bunch. As a result, the laser is theorized to have interacted with only a small portion of the electron bunch. The detection of this phenomenon, referred to as partial population modulation, required a new approach to the data analysis of the electron energy spectra. A fitting function was designed to separate the accelerated electron population from the unaccelerated electron population. The approach was unsuccessful in detecting acceleration in the partial population modulation data. However, the fitting functions provide an excellent figure of merit for previous data known to contain signatures of acceleration.

  6. Science on high-energy lasers: From today to the NIF

    SciTech Connect (OSTI)

    Lee, R.W.; Petrasso, R.; Falcone, R.W.

    1995-01-01

    This document presents both a concise definition of the current capabilities of high energy lasers and a description of capabilities of the NIF (National Ignition Facility). Five scientific areas are discussed (Astrophysics, Hydrodynamics, Material Properties, Plasma Physics, Radiation Sources, and Radiative Properties). In these five areas we project a picture of the future based on investigations that are being carried on today. Even with this very conservative approach we find that the development of new higher energy lasers will make many extremely exciting areas accessible to us.

  7. HOT ELECTRON ENERGY DISTRIBUTIONS FROM ULTRA-INTENSE LASER SOLID INTERACTIONS

    SciTech Connect (OSTI)

    Chen, H; Wilks, S C; Kruer, W; Patel, P; Shepherd, R

    2008-10-08

    Measurements of electron energy distributions from ultra-intense (>10{sup 19} W/cm{sup 2}) laser-solid interactions using an electron spectrometer are presented. These measurements were performed on the Vulcan petawatt laser at Rutherford Appleton Laboratory and the Callisto laser at Lawrence Livermore National Laboratory. The effective hot electron temperatures (T{sub hot}) have been measured for laser intensities (I{lambda}{sup 2}) from 10{sup 18} W/cm{sup 2} {micro}m{sup 2} to 10{sup 21} W/cm{sup 2} {micro}m{sup 2} for the first time, and T{sub hot} is found to increase as (I{lambda}{sup 2}){sup 0.34} {+-} 0.4. This scaling agrees well with the empirical scaling published by Beg et al. (1997), and is explained by a simple physical model that gives good agreement with experimental results and particle-in-cell simulations.

  8. Passive tailoring of laser-accelerated ion beam cut-off energy by using double foil assembly

    SciTech Connect (OSTI)

    Chen, S. N. Brambrink, E.; Mancic, A.; Romagnani, L.; Audebert, P.; Fuchs, J.; Robinson, A. P. L.; Antici, P.; Dipartimento SBAI, Università di Roma « La Sapienza », Via Scarpa 14-16, 00165 Roma; INRS-Énergie et Matériaux, 1650 bd. L. Boulet, Varennes, J3X1S2 Québec ; D'Humières, E.; Centre de Physique Théorique, CNRS-Ecole Polytechnique, 91128 Palaiseau; University of Bordeaux—CNRS—CEA, CELIA, UMR5107, 33405 Talence ; Gaillard, S.; Grismayer, T.; Mora, P.; Pépin, H.

    2014-02-15

    A double foil assembly is shown to be effective in tailoring the maximum energy produced by a laser-accelerated proton beam. The measurements compare favorably with adiabatic expansion simulations, and particle-in-cell simulations. The arrangement proposed here offers for some applications a simple and passive way to utilize simultaneously highest irradiance lasers that have best laser-to-ion conversion efficiency while avoiding the production of undesired high-energy ions.

  9. Near optimal energy selective x-ray imaging system performance with simple detectors

    SciTech Connect (OSTI)

    Alvarez, Robert E.

    2010-02-15

    Purpose: This article describes a method to achieve near optimal performance with low energy resolution detectors. Tapiovaara and Wagner [Phys. Med. Biol. 30, 519-529 (1985)] showed that an energy selective x-ray system using a broad spectrum source can produce images with a larger signal to noise ratio (SNR) than conventional systems using energy integrating or photon counting detectors. They showed that there is an upper limit to the SNR and that it can be achieved by measuring full spectrum information and then using an optimal energy dependent weighting. Methods: A performance measure is derived by applying statistical detection theory to an abstract vector space of the line integrals of the basis set coefficients of the two function approximation to the x-ray attenuation coefficient. The approach produces optimal results that utilize all the available energy dependent data. The method can be used with any energy selective detector and is applied not only to detectors using pulse height analysis (PHA) but also to a detector that simultaneously measures the total photon number and integrated energy, as discussed by Roessl et al. [Med. Phys. 34, 959-966 (2007)]. A generalization of this detector that improves the performance is introduced. A method is described to compute images with the optimal SNR using projections in a ''whitened'' vector space transformed so the noise is uncorrelated and has unit variance in both coordinates. Material canceled images with optimal SNR can also be computed by projections in this space. Results: The performance measure is validated by showing that it provides the Tapiovaara-Wagner optimal results for a detector with full energy information and also a conventional detector. The performance with different types of detectors is compared to the ideal SNR as a function of x-ray tube voltage and subject thickness. A detector that combines two bin PHA with a simultaneous measurement of integrated photon energy provides near ideal

  10. Lasers

    SciTech Connect (OSTI)

    1995-01-01

    The scope of our research in laser and related technologies has grown over the years and has attracted a broad user base for applications within DOE, DOD, and private industry. Within the next few years, we expect to begin constructing the National Ignition Facility, to make substantial progress in deploying AVLIS technology for uranium and gadolinium enrichment, and to develop new radar sensing techniques to detect underwater objects. Further, we expect to translate LLNL patent ideas in microlithography into useful industrial products and to successfully apply high-power, diode-based laser technology to industrial and government applications.

  11. Energy deposition, heat flow, and rapid solidification during laser and electron beam irradiation of materials

    SciTech Connect (OSTI)

    White, C.W.; Aziz, M.J.

    1985-10-01

    The fundamentals of energy deposition, heat flow, and rapid solidification during energy deposition from lasers and electron beams is reviewed. Emphasis is placed on the deposition of energy from pulsed sources (10 to 100 ns pulse duration time) in order to achieve high heating and cooling rates (10/sup 8/ to 10/sup 10/ /sup 0/C/s) in the near surface region. The response of both metals and semiconductors to pulsed energy deposition is considered. Guidelines are presented for the choice of energy source, wavelength, and pulse duration time.

  12. Laser damage in silicon: Energy absorption, relaxation, and transport

    SciTech Connect (OSTI)

    Rämer, A. Rethfeld, B.; Osmani, O.

    2014-08-07

    Silicon irradiated with an ultrashort 800 nm-laser pulse is studied theoretically using a two temperature description that considers the transient free carrier density during and after irradiation. A Drude model is implemented to account for the highly transient optical parameters. We analyze the importance of considering these density-dependent parameters as well as the choice of the Drude collision frequency. In addition, degeneracy and transport effects are investigated. The importance of each of these processes for resulting calculated damage thresholds is studied. We report damage thresholds calculations that are in very good agreement with experimental results over a wide range of pulse durations.

  13. A path to practical Solar Pumped Lasers via Radiative Energy Transfer

    SciTech Connect (OSTI)

    Reusswig, Philip D.; Nechayev, Sergey; Scherer, Jennifer M.; Hwang, Gyu Weon; Bawendi, Moungi G.; Baldo, Marc. A.; Rotschild, Carmel

    2015-10-05

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd 3+ -doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CW solar lasing threshold of 23 W-cm-2, or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns.

  14. A path to practical Solar Pumped Lasers via Radiative Energy Transfer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reusswig, Philip D.; Nechayev, Sergey; Scherer, Jennifer M.; Hwang, Gyu Weon; Bawendi, Moungi G.; Baldo, Marc. A.; Rotschild, Carmel

    2015-10-05

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd 3+ -doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CWmore » solar lasing threshold of 23 W-cm-2, or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns.« less

  15. Multiphase Nano-Composite Coatings for Achieving Energy Optimization

    SciTech Connect (OSTI)

    Dr. Jose Nainaparampil

    2012-03-26

    UES Inc. and ANL teamed in this work to develop novel coating systems for the protection of surfaces from thermal degradation mainly in two applications; Machining and Die casting. These coatings were specifically designed for the purpose by incorporating required material phases and the overall architecture, which led to reduce the energy usage and increase efficiency of the operations. Following the UES/ANL'?s feasibility work, the coatings were developed utilizing High power impulse magnetron sputtering (HiPMS) and Large area filtered arc deposition (LAFAD) techniques. Toughness, hardness and oxidation resistance: contrasting qualities have been mixed in the right proportion to attain the suitable material characteristic for the cause. Hafnium diboride (HfB2) based materials provided such a system and its properties were tamed to attain the right combination of toughness and hardness by working on the microstructure and architecture of coatings. An effective interfacing material (graded concentrations of topcoat) was also achieved in this work to provide the required adhesion between the substrate and the coating. Combination of an appropriate bond coat and a functional top coat provided the present thermal degradation resistant coating for cutting tools and die-casting applications. Laboratory level performance tests and industrial level application tests by partner companies (Beta Site Testing) were used for the development of these coatings.

  16. Optimizing High-Z Coatings for Inertial Fusion Energy Shells

    SciTech Connect (OSTI)

    Stephens, Elizabeth H.; Nikroo, Abbas; Goodin, Daniel T.; Petzoldt, Ronald W.

    2003-05-15

    Inertial fusion energy (IFE) reactors require shells with a high-Z coating that is both permeable, for timely filling with deuterium-tritium, and reflective, for survival in the chamber. Previously, gold was deposited on shells while they were agitated to obtain uniform, reproducible coatings. However, these coatings were rather impermeable, resulting in unacceptably long fill times. We report here on an initial study on Pd coatings on shells in the same manner. We have found that these palladium-coated shells are substantially more permeable than gold. Pd coatings on shells remained stable on exposure to deuterium. Pd coatings had lower reflectivity compared to gold that leads to a lower working temperature, and efficiency, of the proposed fusion reactor. Seeking to combine the permeability of Pd coatings and high reflectivity of gold, AuPd-alloy coatings were produced using a cosputtering technique. These alloys demonstrated higher permeability than Au and higher reflectivity than Pd. However, these coatings were still less reflective than the gold coatings. To improve the permeability of gold's coatings, permeation experiments were performed at higher temperatures. With the parameters of composition, thickness, and temperature, we have the ability to comply with a large target design window.

  17. Solar Pumped Laser Microthruster

    SciTech Connect (OSTI)

    Rubenchik, A. M.; Beach, R.; Dawson, J.; Siders, C. W.

    2010-10-08

    The development of microsatellites requires the development of engines to modify their orbit. It is natural to use solar energy to drive such engines. For an unlimited energy source the optimal thruster must use a minimal amount of expendable material to minimize launch costs. This requires the ejected material to have the maximal velocity and, hence, the ejected atoms must be as light as possible and be ejected by as high an energy density source as possible. Such a propulsion can be induced by pulses from an ultra-short laser. The ultra-short laser provides the high-energy concentration and high-ejected velocity. We suggest a microthruster system comprised of an inflatable solar concentrator, a solar panel, and a diode-pumped fiber laser. We will describe the system design and give weight estimates.

  18. SOLAR PUMPED LASER MICROTHRUSTER

    SciTech Connect (OSTI)

    Rubenchik, A M; Beach, R; Dawson, J; Siders, C W

    2010-02-05

    The development of microsatellites requires the development of engines to modify their orbit. It is natural to use solar energy to drive such engines. For an unlimited energy source the optimal thruster must use a minimal amount of expendable material to minimize launch costs. This requires the ejected material to have the maximal velocity and, hence, the ejected atoms must be as light as possible and be ejected by as high an energy density source as possible. Such a propulsion can be induced by pulses from an ultra-short laser. The ultra-short laser provides the high-energy concentration and high-ejected velocity. We suggest a microthruster system comprised of an inflatable solar concentrator, a solar panel, and a diode-pumped fiber laser. We will describe the system design and give weight estimates.

  19. Assessment of grid-friendly collective optimization framework for distributed energy resources

    SciTech Connect (OSTI)

    Pensini, Alessandro; Robinson, Matthew; Heine, Nicholas; Stadler, Michael; Mammoli, Andrea

    2015-11-04

    Distributed energy resources have the potential to provide services to facilities and buildings at lower cost and environmental impact in comparison to traditional electric-gridonly services. The reduced cost could result from a combination of higher system efficiency and exploitation of electricity tariff structures. Traditionally, electricity tariffs are designed to encourage the use of ‘off peak’ power and discourage the use of ‘onpeak’ power, although recent developments in renewable energy resources and distributed generation systems (such as their increasing levels of penetration and their increased controllability) are resulting in pressures to adopt tariffs of increasing complexity. Independently of the tariff structure, more or less sophisticated methods exist that allow distributed energy resources to take advantage of such tariffs, ranging from simple pre-planned schedules to Software-as-a-Service schedule optimization tools. However, as the penetration of distributed energy resources increases, there is an increasing chance of a ‘tragedy of the commons’ mechanism taking place, where taking advantage of tariffs for local benefit can ultimately result in degradation of service and higher energy costs for all. In this work, we use a scheduling optimization tool, in combination with a power distribution system simulator, to investigate techniques that could mitigate the deleterious effect of ‘selfish’ optimization, so that the high-penetration use of distributed energy resources to reduce operating costs remains advantageous while the quality of service and overall energy cost to the community is not affected.

  20. ARRAY OPTIMIZATION FOR TIDAL ENERGY EXTRACTION IN A TIDAL CHANNEL A NUMERICAL MODELING ANALYSIS

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea

    2014-04-18

    This paper presents an application of a hydrodynamic model to simulate tidal energy extraction in a tidal dominated estuary in the Pacific Northwest coast. A series of numerical experiments were carried out to simulate tidal energy extraction with different turbine array configurations, including location, spacing and array size. Preliminary model results suggest that array optimization for tidal energy extraction in a real-world site is a very complex process that requires consideration of multiple factors. Numerical models can be used effectively to assist turbine siting and array arrangement in a tidal turbine farm for tidal energy extraction.

  1. Energy optimization of water and wastewater management for municipal and industrial applications conference

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    These proceedings document the presentations given at the Energy Optimization of Water and Wastewater Management for Municipal and Industrial Applications Conference, sponsored by the Department of Energy (DOE). The conference was organized and coordinated by Argonne National Laboratory. The conference focused on energy use and conservation in water and wastewater. The General Session also reflects DOE's commitment to the support and development of waste and wastewater systems that are environmentally acceptable. The conference proceedings are divided into two volumes. Volume 1 contains the General Session and Sessions 1 to 5. Volume 2 covers Sessions 6 to 12. Separate abstracts are prepared for each item within the scope of the Energy Data Base.

  2. Energy optimization of water and wastewater management for municipal and industrial applications conference

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    These proceedings document the presentations given at the Energy Optimization of Water and Wastewater Management for Municipal and Industrial Applications, Conference, sponsored by the Department of Energy (DOE). The conference was organized and coordinated by Argonne National Laboratory. The conference focused on energy use on conservation in water and wastewater. The General Session also reflects DOE's commitment to the support and development of waste and wastewater systems that are environmentally acceptable. The conference proceedings are divided into two volumes. Volume 1 contains the General Session and Sessions 1 to 5. Volume 2 covers Sessions 6 to 12. Separate abstracts are prepared for each item within the scope of the Energy Data Base.

  3. Generation of very low energy-spread electron beams using low-intensity laser pulses in a low-density plasma

    SciTech Connect (OSTI)

    Upadhyay, Ajay K.; Samant, Sushil Arun; Sarkar, Deepangkar; Krishnagopal, Srinivas; Jha, Pallavi

    2011-03-15

    The possibility of obtaining high-energy electron beams of high quality by using a low-density homogeneous plasma and a low-intensity laser (just above the self-injection threshold in the bubble regime) has been explored. Three-dimensional simulations are used to demonstrate, for the first time, an energy-spread of less than 1%, from self-trapping. More specifically, for a plasma density of 2x10{sup 18} cm{sup -3} and a laser intensity of a{sub 0}=2, a high-energy (0.55 GeV), ultrashort (1.4 fs) electron beam with very low energy-spread (0.55%) and high current (3 kA) is obtained. These parameters satisfy the requirements for drivers of short-wavelength free-electron lasers. It is also found that the quality of the electron beam depends strongly on the plasma length, which therefore needs to be optimized carefully to get the best performance in the experiments.

  4. FEASIBILITY OF HYDROGEN PRODUCTION USING LASER INERTIAL FUSION AS THE PRIMARY ENERGY SOURCE

    SciTech Connect (OSTI)

    Gorensek, M

    2006-11-03

    The High Average Power Laser (HAPL) program is developing technology for Laser IFE with the goal of producing electricity from the heat generated by the implosion of deuterium-tritium (DT) targets. Alternatively, the Laser IFE device could be coupled to a hydrogen generation system where the heat would be used as input to a water-splitting process to produce hydrogen and oxygen. The production of hydrogen in addition to electricity would allow fusion energy plants to address a much wider segment of energy needs, including transportation. Water-splitting processes involving direct and hybrid thermochemical cycles and high temperature electrolysis are currently being developed as means to produce hydrogen from high temperature nuclear fission reactors and solar central receivers. This paper explores the feasibility of this concept for integration with a Laser IFE plant, and it looks at potential modifications to make this approach more attractive. Of particular interest are: (1) the determination of the advantages of Laser IFE hydrogen production compared to other hydrogen production concepts, and (2) whether a facility of the size of FTF would be suitable for hydrogen production.

  5. Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2013-10-01

    Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

  6. Role of suprathermal electrons during nanosecond laser energy deposit in fused silica

    SciTech Connect (OSTI)

    Grua, P.; Hébert, D.; Lamaignère, L.; Rullier, J.-L.

    2014-08-25

    An accurate description of interaction between a nanosecond laser pulse and a wide band gap dielectric, such as fused silica, requires the understanding of energy deposit induced by temperature changes occurring in the material. In order to identify the fundamental processes involved in laser-matter interaction, we have used a 1D computational model that allows us to describe a wide set of physical mechanisms and intended for comparison with specially designed “1D experiments.” We have pointed out that suprathermal electrons are very likely implicated in heat conduction, and this assumption has allowed the model to reproduce the experiments.

  7. Intracavity terahertz generation inside a high-energy ultrafast soliton fiber laser

    SciTech Connect (OSTI)

    Matthaeus, Gabor; Ortac, Buelend; Limpert, Jens; Nolte, Stefan; Hohmuth, Rico; Voitsch, Martin; Richter, Wolfgang; Pradarutti, Boris; Tuennermann, Andreas

    2008-12-29

    Intracavity terahertz emission inside a high-energy ultrafast Yb-doped fiber laser is presented. The terahertz radiation is generated by a transient photocurrent induced at the surface of a saturable InGaAs multiquantum well grown by molecular beam epitaxy on top of a semiconductor Bragg reflector. This device simultaneously works as the saturable absorber mirror for initiating and managing the passive mode locking required for the ultrashort pulse operation of the laser system. The maximum terahertz average power achieved is 4.2 {mu}W, which reveals a net conversion efficiency of 3.1x10{sup -5}.

  8. Flight Experiments On Energy Scaling For In-Space Laser Propulsion

    SciTech Connect (OSTI)

    Scharring, Stefan; Eckel, Hans-Albert; Wollenhaupt, Eric; Roeser, Hans-Peter

    2010-05-06

    As a preparatory study on space-borne laser propulsion, flight experiments with a parabolic thruster were carried out on an air cushion table. The thruster was mounted like a sail on a puck, allowing for laser-driven motion in three degrees of freedom (3 DOF) in artificial weightlessness. Momentum coupling is derived from point explosion theory for various parabolic thruster geometries with respect to energy scaling issues. The experimental data are compared with theoretical predictions and with results from vertical free flights. Experimental results for the air-breakdown threshold and POM ablation inside the thruster are compared with fluence data from beam propagation modeling.

  9. Enhancing the energy of terahertz radiation from plasma produced by intense femtosecond laser pulses

    SciTech Connect (OSTI)

    Jahangiri, Fazel; Laser and Plasma Research Institute, Shahid Beheshti University, Tehran ; Hashida, Masaki; Tokita, Shigeki; Sakabe, Shuji; Department of Physics, GSS, Kyoto University, Kyoto ; Nagashima, Takeshi; Hangyo, Masanori; Institute of Laser Engineering, Osaka University, Osaka

    2013-05-13

    Terahertz (THz) radiation from atomic clusters illuminated by intense femtosecond laser pulses is investigated. By studying the angular distribution, polarization properties and energy dependence of THz waves, we aim to obtain a proper understanding of the mechanism of THz generation. The properties of THz waves measured in this study differ from those predicted by previously proposed mechanisms. To interpret these properties qualitatively, we propose that the radiation is generated by time-varying quadrupoles, which are produced by the ponderomotive force of the laser pulse.

  10. Diagnosis of energy transport in iron buried layer targets using an extreme ultraviolet laser

    SciTech Connect (OSTI)

    Shahzad, M.; Culfa, O.; Rossall, A. K.; Tallents, G. J.; Wilson, L. A.; Guilbaud, O.; Kazamias, S.; Delmas, O.; Demailly, J.; Maitrallain, A.; Pittman, M.; Baynard, E.; Farjardo, M.

    2015-02-15

    We demonstrate the use of extreme ultra-violet (EUV) laboratory lasers in probing energy transport in laser irradiated solid targets. EUV transmission through targets containing a thin layer of iron (50 nm) encased in plastic (CH) after irradiation by a short pulse (35 fs) laser focussed to irradiances 3 × 10{sup 16} Wcm{sup −2} is measured. Heating of the iron layer gives rise to a rapid decrease in EUV opacity and an increase in the transmission of the 13.9 nm laser radiation as the iron ionizes to Fe{sup 5+} and above where the ion ionisation energy is greater than the EUV probe photon energy (89 eV). A one dimensional hydrodynamic fluid code HYADES has been used to simulate the temporal variation in EUV transmission (wavelength 13.9 nm) using IMP opacity values for the iron layer and the simulated transmissions are compared to measured transmission values. When a deliberate pre-pulse is used to preform an expanding plastic plasma, it is found that radiation is important in the heating of the iron layer while for pre-pulse free irradiation, radiation transport is not significant.