Sample records for laser energy optimization

  1. Integrated Energy System Dispatch Optimization

    E-Print Network [OSTI]

    Firestone, Ryan; Stadler, Michael; Marnay, Chris

    2006-01-01T23:59:59.000Z

    Energy System Dispatch Optimization Ryan Firestone, MichaelEnergy System Dispatch Optimization Ryan Firestone - Studentthe real-time dispatch optimization problem for a generic

  2. Specific energy for pulsed laser rock drilling.

    SciTech Connect (OSTI)

    Xu, Z.; Reed, C. B.; Kornecki, G.; Gahan, B. C.; Parker, R. A.; Batarseh, S.; Graves, R. M.; Figueroa, H.; Skinner, N.; Technology Development

    2003-02-01T23:59:59.000Z

    Application of advanced high power laser technology to oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided oil and gas well drilling has many advantages over the conventional rotary drilling, such as high penetration rate, reduction or elimination of tripping, casing, and bit costs, and enhanced well control, perforating and side-tracking capabilities. The energy required to remove a unit volume of rock, namely the specific energy (SE), is a critical rock property data that can be used to determine both the technical and economic feasibility of laser oil and gas well drilling. When a high power laser beam is applied on a rock, it can remove the rock by thermal spallation, melting, or vaporization depending on the applied laser energy and the way the energy is applied. The most efficient rock removal mechanism would be the one that requires the minimum energy to remove a unit volume of rock. Samples of sandstone, shale, and limestone were prepared for laser beam interaction with a 1.6 kW pulsed Nd:yttrium-aluminum-garnet laser beam to determine how the beam size, power, repetition rate, pulse width, exposure time and energy can affect the amount of energy transferred to the rock for the purposes of spallation, melting, and vaporization. The purpose of the laser rock interaction experiment was to determine the optimal parameters required to remove a maximum rock volume from the samples while minimizing energy input. Absorption of radiant energy from the laser beam gives rise to the thermal energy transfer required for the destruction and removal of the rock matrix. Results from the tests indicate that each rock type has a set of optimal laser parameters to minimize specific energy (SE) values as observed in a set of linear track and spot tests. As absorbed energy outpaces heat diffusion by the rock matrix, local temperatures can rise to the melting points of the minerals and quickly increase observed SE values. Tests also clearly identified the spallation and melting zones for shale samples while changing the laser power. The lowest SE values are obtained in the spalling zone just prior to the onset of mineral melt. The laser thermally spalled and saw mechanically cut rocks show similarity of surface microstructure. The study also found that increasing beam repetition rate within the same material removal mechanism would increase the material removal rate, which is believed due to an increase of maximum temperature, thermal cycling frequency, and intensity of laser-driven shock wave within the rock.

  3. Sandia Energy - Wind Plant Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Plant Optimization Home Stationary Power Energy Conversion Efficiency Wind Energy Wind Plant Optimization Wind Plant OptimizationTara Camacho-Lopez2015-05-29T21:33:21+00:00...

  4. Predictive Energy Optimization

    E-Print Network [OSTI]

    Dickinson, P.

    2013-01-01T23:59:59.000Z

    Predictive?Energy?Optimization Peter?Dickinson Phone:?+1?(415)?233?2306 Email:??Peterd@buildingiq.com Twitter:??@Pete_BIQ BuildingIQ?Overview 2 ? Software?to?intelligently?assess?and?control?HVAC? energy for?commercial?building?portfolios...

  5. Nuclear Energy Density Optimization

    E-Print Network [OSTI]

    M. Kortelainen; T. Lesinski; J. Moré; W. Nazarewicz; J. Sarich; N. Schunck; M. V. Stoitsov; S. Wild

    2010-05-27T23:59:59.000Z

    We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov (HFB) theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set UNEDFpre results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.

  6. ADVANCES IN APPLIED PLASMA SCIENCE, Vol.9, 2013 ISAPS '13, Istanbul Design and Optimization of Laser Produced Plasma Devices for

    E-Print Network [OSTI]

    Harilal, S. S.

    of optimization included simulation and benchmarking of LPP devices with single and dual-beam pulses, producing efficient sources showing the highest rate of laser energy conversion to EUV photons output. Several by an initial pre-pulse laser for the following subsequent heating and ionization by the main laser pulse

  7. High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets

    SciTech Connect (OSTI)

    Brenner, C. M. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Robinson, A. P. L.; Markey, K.; Scott, R. H. H.; Lancaster, K. L.; Musgrave, I. O.; Spindloe, C.; Winstone, T.; Wyatt, D.; Neely, D. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Gray, R. J.; McKenna, P. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Rosinski, M.; Badziak, J.; Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, 00-908 Warsaw (Poland); Deppert, O. [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany); Batani, D. [Dipartimento di Fisica G. Occhialini, Universita di Milano Bicocca, 20126 Milan (Italy); Davies, J. R. [Laboratory for Laser Energetics, Fusion Science Center for Extreme States of Matter, University of Rochester, Rochester, New York 14623 (United States); Hassan, S. M.; Tatarakis, M. [Department of Electronics Engineering, Centre for Plasma Physics and Lasers, 73133 Chania, 74100 Rethymno, Crete (Greece); and others

    2014-02-24T23:59:59.000Z

    An all-optical approach to laser-proton acceleration enhancement is investigated using the simplest of target designs to demonstrate application-relevant levels of energy conversion efficiency between laser and protons. Controlled deposition of laser energy, in the form of a double-pulse temporal envelope, is investigated in combination with thin foil targets in which recirculation of laser-accelerated electrons can lead to optimal conditions for coupling laser drive energy into the proton beam. This approach is shown to deliver a substantial enhancement in the coupling of laser energy to 5–30?MeV protons, compared to single pulse irradiation, reaching a record high 15% conversion efficiency with a temporal separation of 1 ps between the two pulses and a 5??m-thick Au foil. A 1D simulation code is used to support and explain the origin of the observation of an optimum pulse separation of ?1 ps.

  8. Energy optimization system

    DOE Patents [OSTI]

    Zhou, Zhi; de Bedout, Juan Manuel; Kern, John Michael; Biyik, Emrah; Chandra, Ramu Sharat

    2013-01-22T23:59:59.000Z

    A system for optimizing customer utility usage in a utility network of customer sites, each having one or more utility devices, where customer site is communicated between each of the customer sites and an optimization server having software for optimizing customer utility usage over one or more networks, including private and public networks. A customer site model for each of the customer sites is generated based upon the customer site information, and the customer utility usage is optimized based upon the customer site information and the customer site model. The optimization server can be hosted by an external source or within the customer site. In addition, the optimization processing can be partitioned between the customer site and an external source.

  9. PARAMETER OPTIMIZATIONS FOR VACUUM LASER ACCELERATION AT ATF...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 times the laser Rayleigh length. Its acceleration length can be defined with simple optics. In order to get the higher energy gain at ATFBNL, the laser parameters and related...

  10. A Roadmap to Laser Fusion Energy

    E-Print Network [OSTI]

    the radioactive environment, for easier maintenance. · No ultra-high vacuum or superconducting magnets. LaserA Roadmap to Laser Fusion Energy Stephen E. Bodner Retired (former head of the NRL laser fusion Energy Systems January 30, 2011 #12;In 1971-1972 LLNL announced that they had an idea for laser fusion

  11. Two-dimensional optimization of free-electron-laser designs

    DOE Patents [OSTI]

    Prosnitz, D.; Haas, R.A.

    1982-05-04T23:59:59.000Z

    Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  12. Two-dimensional optimization of free electron laser designs

    DOE Patents [OSTI]

    Prosnitz, Donald (Walnut Creek, CA); Haas, Roger A. (Pleasanton, CA)

    1985-01-01T23:59:59.000Z

    Off-axis, two-dimensional designs for free electron lasers that maintain correspondence of a light beam with a "synchronous electron" at an optimal transverse radius r>0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  13. Optimization of Geoscience Laser Altimeter System waveform metrics to support vegetation measurements

    E-Print Network [OSTI]

    Lefsky, Michael

    Optimization of Geoscience Laser Altimeter System waveform metrics to support vegetation GLAS Optimization Remote sensing Vegetation structure The Geoscience Laser Altimeter System (GLAS) has optimized a noise coefficient which could be constant or vary according to observation period or noise

  14. DOE Zero Energy Ready Home Webinar: Building Energy Optimization...

    Broader source: Energy.gov (indexed) [DOE]

    Building Energy Optimization (BEopt) Software DOE Zero Energy Ready Home Webinar: Building Energy Optimization (BEopt) Software This webinar was presented on May 15, 2014 and gives...

  15. Energy Optimization (Electric)- Commercial Efficiency Program

    Broader source: Energy.gov [DOE]

    The Energy Optimization Programs, administered by WECC, provides commercial electric incentives for the following Michigan utilities:

  16. Energy Optimization (Electric)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    The Energy Optimization Programs, administered by WECC, provides residential electric incentives for the following Michigan utilities:

  17. Optimization Online - Optimal management and sizing of energy ...

    E-Print Network [OSTI]

    Pavithra Harsha

    2012-07-30T23:59:59.000Z

    Jul 30, 2012 ... Optimal management and sizing of energy storage under dynamic pricing for the efficient integration of renewable energy. Pavithra Harsha ...

  18. Parameter Optimization for Laser Polishing of Niobium for SRF Applications

    SciTech Connect (OSTI)

    Zhao, Liang [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States) and William and Mary College, Williamsburg, VA (United States); Klopf, John Michael [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Kelley, Michael J. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States) and William and Mary College, Williamsburg, VA (United States)

    2013-06-01T23:59:59.000Z

    Surface smoothness is critical to the performance of SRF cavities. As laser technology has been widely applied to metal machining and surface treatment, we are encouraged to use it on niobium as an alternative to the traditional wet polishing process where aggressive chemicals are involved. In this study, we describe progress toward smoothing by optimizing laser parameters on BCP treated niobium surfaces. Results shows that microsmoothing of the surface without ablation is achievable.

  19. Process and Energy Optimization Revitalizes Energy Management at Eastman

    E-Print Network [OSTI]

    Greenwaldt, W. C.

    2007-01-01T23:59:59.000Z

    In 2005, the Eastman-Texas Operations Energy Management Team (EMT), in response to rapidly increasing energy prices, initiated a new energy optimization program to optimize the site’s energy intensity. This new program utilized a process and energy...

  20. Cleanroom Energy Optimization Methods

    E-Print Network [OSTI]

    Naughton, P.; Schrecengost, R.

    2004-01-01T23:59:59.000Z

    significantly to the bottom line. Semiconductor Cleanroom Energy Based upon surveys the Semiconductor industry has over 12,800,000 ft2 (1,190,000 m2) of cleanroom space in the United States varying in cleanliness from Class M1 (ISO Class 3) to Class M6... (ISO Class 9). These cleanrooms have recirculation air handlers moving millions of cubic feet (cubic meters) of air to transport contamination out of the cleanroom and maintain the room?s cleanliness. Whereas, many in the semiconductor industry...

  1. Apparatus for advancing a wellbore using high power laser energy

    DOE Patents [OSTI]

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02T23:59:59.000Z

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  2. Optimization Online - Robust Energy Cost Optimization of Water ...

    E-Print Network [OSTI]

    Alexander Goryashko

    2011-02-21T23:59:59.000Z

    Feb 21, 2011 ... Robust Energy Cost Optimization of Water Distribution System with Uncertain Demand. Alexander Goryashko(ale_gory ***at*** rambler.ru)

  3. Renewable Energy Optimization (REopt) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01T23:59:59.000Z

    REopt is an energy planning platform offering concurrent, multiple technology integration and optimization capabilities to help clients meet their cost savings and energy performance goals.

  4. Specific energy for laser removal of rocks.

    SciTech Connect (OSTI)

    Xu, Z.; Kornecki, G.; Reed, C. B.; Gahan, B. C.; Parker, R. A.; Batarseh, S.; Graves, R. M.

    2001-08-16T23:59:59.000Z

    Application of advanced high power laser technology into oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided oil and gas well drilling has many advantages over the conventional rotary drilling, such as high penetration rate, reduction or elimination of tripping, casing, and bit costs, and enhanced well control, perforating and side-tracking capabilities. The energy required to remove a unit volume of rock, namely the specific energy (SE), is a critical rock property data that can be used to determine both the technical and economic feasibility of laser oil and gas well drilling.

  5. Optimal Real-time Dispatch for Integrated Energy Systems

    E-Print Network [OSTI]

    Firestone, Ryan Michael

    2007-01-01T23:59:59.000Z

    Renewable Energy Laboratory’s Hybrid Optimization Model forRenewable Energy Laboratory’s (NREL) Hybrid Optimization

  6. Novel free-form hohlraum shape design and optimization for laser-driven inertial confinement fusion

    SciTech Connect (OSTI)

    Jiang, Shaoen; Jing, Longfei, E-mail: scmyking-2008@163.com; Ding, Yongkun [Laser Fusion Research Center, China Academy Engineering Physics, Mianyang 621900 (China); Huang, Yunbao, E-mail: huangyblhy@gmail.com [Mechatronics School of Guangdong University of Technology, Guangzhou 510006 (China)

    2014-10-15T23:59:59.000Z

    The hohlraum shape attracts considerable attention because there is no successful ignition method for laser-driven inertial confinement fusion at the National Ignition Facility. The available hohlraums are typically designed with simple conic curves, including ellipses, parabolas, arcs, or Lame curves, which allow only a few design parameters for the shape optimization, making it difficult to improve the performance, e.g., the energy coupling efficiency or radiation drive symmetry. A novel free-form hohlraum design and optimization approach based on the non-uniform rational basis spline (NURBS) model is proposed. In the present study, (1) all kinds of hohlraum shapes can be uniformly represented using NURBS, which is greatly beneficial for obtaining the optimal available hohlraum shapes, and (2) such free-form uniform representation enables us to obtain an optimal shape over a large design domain for the hohlraum with a more uniform radiation and higher drive temperature of the fuel capsule. Finally, a hohlraum is optimized and evaluated with respect to the drive temperature and symmetry at the Shenguang III laser facility in China. The drive temperature and symmetry results indicate that such a free-form representation is advantageous over available hohlraum shapes because it can substantially expand the shape design domain so as to obtain an optimal hohlraum with high performance.

  7. Dual wavelength laser damage testing for high energy lasers.

    SciTech Connect (OSTI)

    Atherton, Briggs W.; Rambo, Patrick K.; Schwarz, Jens; Kimmel, Mark W.

    2010-05-01T23:59:59.000Z

    As high energy laser systems evolve towards higher energies, fundamental material properties such as the laser-induced damage threshold (LIDT) of the optics limit the overall system performance. The Z-Backlighter Laser Facility at Sandia National Laboratories uses a pair of such kiljoule-class Nd:Phosphate Glass lasers for x-ray radiography of high energy density physics events on the Z-Accelerator. These two systems, the Z-Beamlet system operating at 527nm/ 1ns and the Z-Petawatt system operating at 1054nm/ 0.5ps, can be combined for some experimental applications. In these scenarios, dichroic beam combining optics and subsequent dual wavelength high reflectors will see a high fluence from combined simultaneous laser exposure and may even see lingering effects when used for pump-probe configurations. Only recently have researchers begun to explore such concerns, looking at individual and simultaneous exposures of optics to 1064 and third harmonic 355nm light from Nd:YAG [1]. However, to our knowledge, measurements of simultaneous and delayed dual wavelength damage thresholds on such optics have not been performed for exposure to 1054nm and its second harmonic light, especially when the pulses are of disparate pulse duration. The Z-Backlighter Facility has an instrumented damage tester setup to examine the issues of laser-induced damage thresholds in a variety of such situations [2] . Using this damage tester, we have measured the LIDT of dual wavelength high reflectors at 1054nm/0.5ps and 532nm/7ns, separately and spatially combined, both co-temporal and delayed, with single and multiple exposures. We found that the LIDT of the sample at 1054nm/0.5ps can be significantly lowered, from 1.32J/cm{sup 2} damage fluence with 1054/0.5ps only to 1.05 J/cm{sup 2} with the simultaneous presence of 532nm/7ns laser light at a fluence of 8.1 J/cm{sup 2}. This reduction of LIDT of the sample at 1054nm/0.5ps continues as the fluence of 532nm/7ns laser light simultaneously present increases. The reduction of LIDT does not occur when the 2 pulses are temporally separated. This paper will also present dual wavelength LIDT results of commercial dichroic beam-combining optics simultaneously exposed with laser light at 1054nm/2.5ns and 532nm/7ns.

  8. Optimal Energy-Bandwidth Allocation for Energy Harvesting Interference Networks

    E-Print Network [OSTI]

    Fisher, Kathleen

    Optimal Energy-Bandwidth Allocation for Energy Harvesting Interference Networks Zhe Wang, Vaneet@research.att.com Abstract--We develop optimal energy-bandwidth allocation algorithm for the energy harvesting transmitters in interference networks. We assume that both the channel gain and the harvested energy are known for K slots

  9. High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from

    E-Print Network [OSTI]

    in inter- action processes of short and ultra-short laser pulses with matter. Ion generation from laserHigh energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI G. SCHAUMANN,1 M.S. SCHOLLMEIER,1 G. RODRIGUEZ-PRIETO,2 A. BLAZEVIC,2 E

  10. Nonlinear laser energy depletion in laser-plasma accelerators

    E-Print Network [OSTI]

    Shadwick, B.A.

    2009-01-01T23:59:59.000Z

    Nonlinear laser energydepletion in laser-plasma accelerators ? B. A. Shadwick,of intense, short-pulse lasers via excitation of plasma

  11. DOE ZERH Webinar: Building Energy Optimization Tool (BEopt) Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE ZERH Webinar: Building Energy Optimization Tool (BEopt) Training DOE ZERH Webinar: Building Energy Optimization Tool (BEopt) Training The National Renewable Energy Laboratory...

  12. Dichroic beamsplitter for high energy laser diagnostics

    DOE Patents [OSTI]

    LaFortune, Kai N (Livermore, CA); Hurd, Randall (Tracy, CA); Fochs, Scott N (Livermore, CA); Rotter, Mark D (San Ramon, CA); Hackel, Lloyd (Livermore, CA)

    2011-08-30T23:59:59.000Z

    Wavefront control techniques are provided for the alignment and performance optimization of optical devices. A Shack-Hartmann wavefront sensor can be used to measure the wavefront distortion and a control system generates feedback error signal to optics inside the device to correct the wavefront. The system can be calibrated with a low-average-power probe laser. An optical element is provided to couple the optical device to a diagnostic/control package in a way that optimizes both the output power of the optical device and the coupling of the probe light into the diagnostics.

  13. High-Pulse-Energy Ultrafast Laser for

    E-Print Network [OSTI]

    Painter, Kevin

    High-Pulse-Energy Ultrafast Laser for Spectroscopy & Micromachining PROBLEM THIS TECHNOLOGY SOLVES. In addition to the OPO, a custom designed ultrafast pump source, provides high pulse energy (.res.hw.ac.uk Professor Derryck Reid (Principal Investigator) www.ultrafast.hw.ac.uk BENEFITS & APPLICATIONS: · High pulse

  14. High energy laser beam dump

    DOE Patents [OSTI]

    Halpin, John (Tracy, CA)

    2004-09-14T23:59:59.000Z

    The laser beam dump is positioned in a housing. An absorbing glass plate means is operatively connected to the housing. A heat sync means for extracting heat from the absorbing glass plate means is operatively connected to the housing and operatively connected to the absorbing glass plate means.

  15. High Energy Laser for Space Debris Removal

    SciTech Connect (OSTI)

    Barty, C; Caird, J; Erlandson, A; Beach, R; Rubenchik, A

    2009-10-30T23:59:59.000Z

    The National Ignition Facility (NIF) and Photon Science Directorate at Lawrence Livermore National Laboratory (LLNL) has substantial relevant experience in the construction of high energy lasers, and more recently in the development of advanced high average power solid state lasers. We are currently developing new concepts for advanced solid state laser drivers for the Laser Inertial Fusion Energy (LIFE) application, and other high average power laser applications that could become central technologies for use in space debris removal. The debris population most readily addressed by our laser technology is that of 0.1-10 cm sized debris in low earth orbit (LEO). In this application, a ground based laser system would engage an orbiting target and slow it down by ablating material from its surface which leads to reentry into the atmosphere, as proposed by NASA's ORION Project. The ORION concept of operations (CONOPS) is also described in general terms by Phipps. Key aspects of this approach include the need for high irradiance on target, 10{sup 8} to 10{sup 9} W/cm{sup 2}, which favors short (i.e., picoseconds to nanoseconds) laser pulse durations and high energy per pulse ({approx} > 10 kJ). Due to the target's orbital velocity, the potential duration of engagement is only of order 100 seconds, so a high pulse repetition rate is also essential. The laser technology needed for this application did not exist when ORION was first proposed, but today, a unique combination of emerging technologies could create a path to enable deployment in the near future. Our concepts for the laser system architecture are an extension of what was developed for the National Ignition Facility (NIF), combined with high repetition rate laser technology developed for Inertial Fusion Energy (IFE), and heat capacity laser technology developed for military applications. The 'front-end' seed pulse generator would be fiber-optics based, and would generate a temporally, and spectrally tailored pulse designed for high transmission through the atmosphere, as well as efficient ablative coupling to the target. The main amplifier would use either diode-pumped or flashlamp-pumped solid state gain media, depending on budget constraints of the project. A continuously operating system would use the gas-cooled amplifier technology developed for Mercury, while a burst-mode option would use the heat capacity laser technology. The ground-based system that we propose is capable of rapid engagement of targets whose orbits cross over the site, with potential for kill on a single pass. Very little target mass is ablated per pulse so the potential to create additional hazardous orbiting debris is minimal. Our cost estimates range from $2500 to $5000 per J depending on choices for laser gain medium, amplifier pump source, and thermal management method. A flashlamp-pumped, Nd:glass heat-capacity laser operating in the burst mode would have costs at the lower end of this spectrum and would suffice to demonstrate the efficacy of this approach as a prototype system. A diode-pumped, gas-cooled laser would have higher costs but could be operated continuously, and might be desirable for more demanding mission needs. Maneuverability can be incorporated in the system design if the additional cost is deemed acceptable. The laser system would need to be coupled with a target pointing and tracking telescope with guide-star-like wavefront correction capability.

  16. Staging Laser Plasma Accelerators for Increased Beam Energy

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Staging Laser Plasma Accelerators for Increased Beam Energy D. Panasenko, A. J. Shu, C. B., Berkeley, California 94720, USA Abstract. Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies

  17. Energy Harvesting Communication Networks: Optimization and Demonstration

    E-Print Network [OSTI]

    Gesbert, David

    ) and the UK (Imperial College London). Index Terms--energy harvesting; energy packet net- works; Markov models harvesting devices. EH capability can scavenge ambient energy, such as vibrations, thermal gradients or solar1 Energy Harvesting Communication Networks: Optimization and Demonstration (The E-CROPS Project

  18. Plant Energy Cost Optimization Program (PECOP)

    E-Print Network [OSTI]

    Robinson, A. M.

    1980-01-01T23:59:59.000Z

    The Plant Energy Cost Optimization Program (PECOP) is a Management System designed to reduce operating cost in a continuous operating multi product plant by reviewing all cost factors and selecting plant wide production schedules which are most...

  19. Scalable Stochastic Optimization of Complex Energy Systems

    E-Print Network [OSTI]

    Miles Lubin

    2011-04-18T23:59:59.000Z

    Apr 18, 2011 ... Scalable Stochastic Optimization of Complex Energy Systems ... PIPS is applied to a stochastic economic dispatch problem that uses ... Performance Computing, Networking, Storage and Analysis (SC11), November 2011.

  20. Nonlinear laser energy depletion in laser-plasma accelerators

    E-Print Network [OSTI]

    Shadwick, B.A.

    2009-01-01T23:59:59.000Z

    k p k 0 and assume a short laser pulse, k p L ? 2. WithE 0 = mc? p /q. For a short laser pulse, ? ? ? short-pulse lasers via excitation of

  1. Enhancing Compiler Techniques for Memory Energy Optimizations

    E-Print Network [OSTI]

    Kuzmanovic, Aleksandar

    in the total energy consumption equation. 1 Introduction As the market for embedded systems continues to grow for Memory Energy Optimizations 365 tend to increase code size. This increased code size is an important. An increase in instruction memory size, in turn, increases both per access dynamic energy consumption and leak

  2. Automating Energy Optimization with Features Norbert Siegmund

    E-Print Network [OSTI]

    Apel, Sven

    is considered more important than an optimal performance. Moreover, due to increas- ing energy costs, energy power supply [37]. It is expected that energy cost of servers will soon ex- ceed the purchase cost hardware devices and operating systems often increases development time and cost. Business constraints

  3. Laser Fusion Energy The High Average Power

    E-Print Network [OSTI]

    constant Fluctuation due to calorimeter cooling system Electra's main oscillator has produced > 400J foil lifetime @ 5 Hz ·Deflecting laser gas or mist cooling promising Electra progress on Phase I goals Nd:glass Yb:crystals Increased energy storage and efficiency boule slab Gas Vanes Convective cooling

  4. Laser Inertial Fusion Energy Control Systems

    SciTech Connect (OSTI)

    Marshall, C; Carey, R; Demaret, R; Edwards, O; Lagin, L; Van Arsdall, P

    2011-03-18T23:59:59.000Z

    A Laser Inertial Fusion Energy (LIFE) facility point design is being developed at LLNL to support an Inertial Confinement Fusion (ICF) based energy concept. This will build upon the technical foundation of the National Ignition Facility (NIF), the world's largest and most energetic laser system. NIF is designed to compress fusion targets to conditions required for thermonuclear burn. The LIFE control systems will have an architecture partitioned by sub-systems and distributed among over 1000's of front-end processors, embedded controllers and supervisory servers. LIFE's automated control subsystems will require interoperation between different languages and target architectures. Much of the control system will be embedded into the subsystem with well defined interface and performance requirements to the supervisory control layer. An automation framework will be used to orchestrate and automate start-up and shut-down as well as steady state operation. The LIFE control system will be a high parallel segmented architecture. For example, the laser system consists of 384 identical laser beamlines in a 'box'. The control system will mirror this architectural replication for each beamline with straightforward high-level interface for control and status monitoring. Key technical challenges will be discussed such as the injected target tracking and laser pointing feedback. This talk discusses the the plan for controls and information systems to support LIFE.

  5. Optimization of EUV laser and discharge devices for high-volume manufacturing

    E-Print Network [OSTI]

    Harilal, S. S.

    Optimization of EUV laser and discharge devices for high-volume manufacturing A. Hassanein* , V for improving source brightness is to simulate the source environment in order to optimize the EUV output necessitate investigation and optimization not only of power sources but also plasma irradiation parameters

  6. Optimal Scheduling for Energy Harvesting Transmitters with Hybrid Energy Storage

    E-Print Network [OSTI]

    Ulukus, Sennur

    Optimal Scheduling for Energy Harvesting Transmitters with Hybrid Energy Storage Omur Ozel Khurram with an energy harvesting transmitter which has a hybrid energy storage unit composed of a perfectly efficient super-capacitor (SC) and an inefficient battery. The SC has finite space for energy storage while

  7. Nuclear Energy Density Optimization: UNEDF2

    E-Print Network [OSTI]

    M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P. -G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

    2014-10-30T23:59:59.000Z

    The parameters of the UNEDF2 nuclear energy density functional (EDF) model were obtained in an optimization to experimental data consisting of nuclear binding energies, proton radii, odd-even mass staggering data, fission-isomer excitation energies, and single particle energies. In addition to parameter optimization, sensitivity analysis was done to obtain parameter uncertainties and correlations. The resulting UNEDF2 is an all-around EDF. However, the sensitivity analysis also demonstrated that the limits of current Skyrme-like EDFs have been reached and that novel approaches are called for.

  8. Phase conjugation of high energy lasers.

    SciTech Connect (OSTI)

    Bliss, David Emery; Valley, Michael T.; Atherton, Briggs W.; Bigman, Verle; Boye, Lydia Ann; Broyles, Robin Scott; Kimmel, Mark W.; Law, Ryan J.; Yoder, James R.

    2013-01-01T23:59:59.000Z

    In this report we explore claims that phase conjugation of high energy lasers by stimulated Brillouin scattering (SBS) can compensate optical aberrations associated with severely distorted laser amplifier media and aberrations induced by the atmosphere. The SBS media tested was a gas cell pressurized up to 300 psi with SF6 or Xe or both. The laser was a 10 Hz, 3J, Q-switched Nd:YAG with 25 ns wide pulses. Atmospheric aberrations were created with space heaters, helium jets and phase plates designed with a Kolmogorov turbulence spectrum characterized by a Fried parameter, ro , ranging from 0.6 - 6.0 mm. Phase conjugate tests in the laboratory were conducted without amplification. For the strongest aberrations, D/ro ~ 20, created by combining the space heaters with the phase plate, the Strehl ratio was degraded by a factor of ~50. Phase conjugation in SF6 restored the peak focusable intensity to about 30% of the original laser. Phase conjugate tests at the outdoor laser range were conducted with laser amplifiers providing gain in combination with the SBS cell. A large 600,000 BTU kerosene space heater was used to create turbulence along the beam path. An atmospheric structure factor of Cn2 = 5x10-13 m2/3 caused the illumination beam to expand to a diameter 250mm and overfill the receiver. The phase conjugate amplified return could successfully be targeted back onto glints 5mm in diameter. Use of a lenslet arrays to lower the peak focusable intensity in the SBS cell failed to produce a useful phase conjugate beam; The Strehl ratio was degraded with multiple random lobes instead of a single focus. I will review literature results which show how multiple beams can be coherently combined by SBS when a confocal reflecting geometry is used to focus the laser in the SBS cell.

  9. Optimal Real-time Dispatch for Integrated Energy Systems

    E-Print Network [OSTI]

    Firestone, Ryan Michael

    2007-01-01T23:59:59.000Z

    Hybrid Optimization Model for Electric Renewables heating, ventilation, and air conditioning integrated energy system

  10. High-Powered Lasers for Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged3 HanfordHarry|High-Powered Lasers

  11. LPKF Laser Electronics AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNL Energy FlowLODLPKF Laser

  12. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Y.T.; Payne, S.A.; Hayden, J.S.; Campbell, J.H.; Aston, M.K.; Elder, M.L.

    1996-06-11T23:59:59.000Z

    In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.

  13. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Yuiko T. (Clarks Summit, PA); Payne, Stephen A. (Castro Valley, CA); Hayden, Joseph S. (Clarks Summit, PA); Campbell, John H. (Livermore, CA); Aston, Mary Kay (Moscow, PA); Elder, Melanie L. (Dublin, CA)

    1996-01-01T23:59:59.000Z

    In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.

  14. Optimization of Two-photon Excited Fluorescence Enhancement between Tunable and Broadband Femtosecond Laser Pulse Excitations

    E-Print Network [OSTI]

    Wang, Chao

    2012-02-14T23:59:59.000Z

    This project explores optimization of two-photon excited fluorescence (TPEF) enhancement between tunable narrowband and un-tuned broadband femtosecond (fs) laser pulse excitations for two-photon microscopy (TPM). The research is conducted...

  15. Optimizing Manufactured Housing Energy Use

    E-Print Network [OSTI]

    McGinley, W. M.; Jones, A.; Turner, C.; Chandra, S.; Beal, D.; Parker, D. S.; Moyer, N.; McIlvaine, J.

    2004-01-01T23:59:59.000Z

    In partnership with the Florida Solar Energy Center (FSEC), two manufactured homes were located on North Carolina A&T State University's campus in Greensboro, NC and used in a side-by-side energy consumption comparison. One of the homes was built...

  16. Laser Catalyst - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand

  17. Cooling Tower Energy Conservation Optimization

    E-Print Network [OSTI]

    Burger, R.

    Energy conservation strategies involve more than examination of fan horsepower. Colder water and pumping head provide vast savings potentials. What is dollar value of 1°F in your process? What is dollar cost of pumping water to distribution system...

  18. Multi-objective optimization of laser-welded steel sandwich panels for static loads using a genetic algorithm

    E-Print Network [OSTI]

    Vel, Senthil

    ], or brazing [6]. In comparison, laser welding of the core to the face-sheets in a steel sandwich panel systemMulti-objective optimization of laser-welded steel sandwich panels for static loads using a genetic 2012 Accepted 19 October 2012 Keywords: Structural optimization Laser welding Steel sandwich panels

  19. Optimizing New Dark Energy Experiments

    SciTech Connect (OSTI)

    Tyson, J. Anthony [University of California, Davis

    2013-08-26T23:59:59.000Z

    Next generation “Stage IV” dark energy experiments under design during this grant, and now under construction, will enable the determination of the properties of dark energy and dark matter to unprecedented precision using multiple complementary probes. The most pressing challenge in these experiments is the characterization and understanding of the systematic errors present within any given experimental configuration and the resulting impact on the accuracy of our constraints on dark energy physics. The DETF and the P5 panel in their reports recommended “Expanded support for ancillary measurements required for the long-term program and for projects that will improve our understanding and reduction of the dominant systematic measurement errors.” Looking forward to the next generation Stage IV experiments we have developed a program to address the most important potential systematic errors within these experiments. Using data from current facilities it has been feasible and timely to undertake a detailed investigation of the systematic errors. In this DOE grant we studied of the source and impact of the dominant systematic effects in dark energy measurements, and developed new analysis tools and techniques to minimize their impact. Progress under this grant is briefly reviewed in this technical report. This work was a necessary precursor to the coming generations of wide-deep probes of the nature of dark energy and dark matter. The research has already had an impact on improving the efficiencies of all Stage III and IV dark energy experiments.

  20. Energy Optimizers USA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:EconCompaniesMain Page JumpEnergy

  1. Sandia Energy - Wind Plant Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety HomeWater PowerEnergy Staff HomeWind

  2. Pump Systems Optimization: Energy Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 |ofDepartment ofPart| Department ofPump Systems

  3. Laser wavelength effects on the charge state resolved ion energy distributions from laser-produced Sn plasma

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    Laser wavelength effects on the charge state resolved ion energy distributions from laser of laser wavelength on the charge state resolved ion energy distributions from laser-produced Sn plasma freely expanding into vacuum are investigated. Planar Sn targets are irradiated at laser wavelengths

  4. DOE Announces Webinars on Building Energy Optimization Tool Training...

    Broader source: Energy.gov (indexed) [DOE]

    previously aired videos, slides, and transcripts. May 15: Live Webinar on Building Energy Optimization Tool Training Webinar Sponsor: DOE Zero Energy Ready Home The Energy...

  5. Optimization of process parameters for pulsed laser milling of micro-channels on AISI H13 tool steel

    E-Print Network [OSTI]

    Ozel, Tugrul

    selection Laser milling process a b s t r a c t This paper focuses on understanding the influence of laser. Whenever metals are used, the laser beam heats, melts and vaporizes the metal (metal sublimation), whileOptimization of process parameters for pulsed laser milling of micro-channels on AISI H13 tool

  6. Energy Optimization of Bioethanol Production via Hydrolysis of Switchgrass

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Energy Optimization of Bioethanol Production via Hydrolysis of Switchgrass Mariano Martín Abstract. In this work, we propose the optimal flowsheet for the production of bioethanol from switchgrass, Bioethanol, Mathematical optimization, Hydrolysis, Switchgrass

  7. Analytical solution of the optimal laser control problem in two-level systems

    E-Print Network [OSTI]

    Martin E. Garcia; Ilia Grigorenko

    2003-09-26T23:59:59.000Z

    The optimal control of two-level systems by time-dependent laser fields is studied using a variational theory. We obtain, for the first time, general analytical expressions for the optimal pulse shapes leading to global maximization or minimization of different physical quantities. We present solutions which reproduce and improve previous numerical results.

  8. Optim Energy Marketing LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio:Opower Social Jump to:Open

  9. Optimal Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio:Opower Social Jump to:OpenOptima

  10. Optimization of the Energy Usage at CERN

    E-Print Network [OSTI]

    Burckhart, H J; Caspers, F; Doré, V; Gatignon, L; Martel, C; Nonis, M; Tommasini, D

    2013-01-01T23:59:59.000Z

    Some of the efforts of CERN to optimize its energy usage are presented. Work is proceeding in several areas: campus and infrastructure, accelerators and beam lines, as well as R&D for future accelerators. The existing building stock is being renovated and new buildings apply an integrated energy concept. The energy efficiency of the accelerators and beam lines can be further enhanced by powering more equipment dynamically only during the time it is really needed. For designing new accelerators novel approaches are being investigated to re-use energy which in today’s installations gets dumped thermally.

  11. Effects of Laser Energy and Wavelength on the Analysis of LiFePO4...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Energy and Wavelength on the Analysis of LiFePO4 Using Laser Assisted Atom Probe Tomography. Effects of Laser Energy and Wavelength on the Analysis of LiFePO4 Using Laser...

  12. Optimization of Energy Harvesting MISO Communication Channels

    E-Print Network [OSTI]

    Gesbert, David

    1 Optimization of Energy Harvesting MISO Communication Channels Rajeev Gangula, Student Member-to-point multiple-input single-output (MISO) communication system is con- sidered when both the transmitter (TX bound on the ergodic rate of MISO channel with beamforming and limited feedback. Feedback bit allocation

  13. Optimal Demand Response with Energy Storage Management

    E-Print Network [OSTI]

    Huang, Longbo; Ramchandran, Kannan

    2012-01-01T23:59:59.000Z

    In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

  14. Transactions of NAMRI/SME 39 Volume XXX, 2002 OPTIMAL AND ROBUST DESIGN OF LASER FORMING PROCESS

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Transactions of NAMRI/SME 39 Volume XXX, 2002 OPTIMAL AND ROBUST DESIGN OF LASER FORMING PROCESS parameters, including laser power, beam scanning velocity, beam diameter and #12;Transactions of NAMRI/SME 40

  15. MSc in Plasma Physics & Applications Laser Fusion Energy

    E-Print Network [OSTI]

    Paxton, Anthony T.

    . Thermonuclear fusion provides unlimited energy for all the world which is clean from long lived radioactiveMSc in Plasma Physics & Applications Laser Fusion Energy Why laser fusionDescription of the course fusion for energy production. This unique training scheme involves eight leading European centres

  16. Laser Induced Spectroscopy - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sandLaser Decontamination

  17. Optimal Power Allocation for Renewable Energy Source

    E-Print Network [OSTI]

    Sinha, Abhinav

    2011-01-01T23:59:59.000Z

    Battery powered transmitters face energy constraint, replenishing their energy by a renewable energy source (like solar or wind power) can lead to longer lifetime. We consider here the problem of finding the optimal power allocation under random channel conditions for a wireless transmitter, such that rate of information transfer is maximized. Here a rechargeable battery, which is periodically charged by renewable source, is used to power the transmitter. All of above is formulated as a Markov Decision Process. Structural properties like the monotonicity of the optimal value and policy derived in this paper will be of vital importance in understanding the kind of algorithms and approximations needed in real-life scenarios. The effect of curse of dimensionality which is prevalent in Dynamic programming problems can thus be reduced. We show our results under the most general of assumptions.

  18. Optimal Technologies International Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia GreenThe community EnergyOptimal Technologies

  19. Optimal and Near-Optimal Energy-Efficient Broadcasting in Wireless Networks

    E-Print Network [OSTI]

    Varvarigo, Emmanouel "Manos"

    Optimal and Near-Optimal Energy-Efficient Broadcasting in Wireless Networks Christos A, 26110 Patras, Greece Abstract. In this paper we propose an energy-efficient broadcast algo- rithm on the multicost approach and selects an optimal energy-efficient set of nodes for broadcasting, tak- ing

  20. Traveling-wave laser-produced-plasma energy source for photoionization laser pumping and lasers incorporating said

    DOE Patents [OSTI]

    Sher, Mark H. (Los Altos, CA); Macklin, John J. (Stanford, CA); Harris, Stephen E. (Palo Alto, CA)

    1989-09-26T23:59:59.000Z

    A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.

  1. Starship Sails Propelled by Cost-Optimized Directed Energy

    E-Print Network [OSTI]

    Benford, James

    2011-01-01T23:59:59.000Z

    Microwave propelled sails are a new class of spacecraft using photon acceleration. It is the only method of interstellar flight that has no physics issues. Laboratory demonstrations of basic features of beam-driven propulsion, flight, stability ('beam-riding'), and induced spin, have been completed in the last decade, primarily in the microwave. It offers much lower cost probes after a substantial investment in the launcher. Engineering issues are being addressed by other applications: fusion (microwave, millimeter and laser sources) and astronomy (large aperture antennas). There are many candidate sail materials: carbon nanotubes and microtrusses, graphene, beryllium, etc. For acceleration of a sail, what is the cost-optimum high power system? Here the cost is used to constrain design parameters to estimate system power, aperture and elements of capital and operating cost. From general relations for cost-optimal transmitter aperture and power, system cost scales with kinetic energy and inversely with sail di...

  2. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Yuiko T. (Clarks Summit, PA); Guesto-Barnak, Donna (Dupont, PA)

    1992-01-01T23:59:59.000Z

    A low-or no-silica, low- or no-alkali phosphate glass useful as a laser amplifier in a multiple pass, high energy laser system having a high thermal conductivity, K.sub.90.degree. C. >0.85 W/mK, a low coefficient of thermal expansion, .alpha..sub.20.degree.-300.degree. C. <80.times.10.sup.-7 /.degree.C., low emission cross section, .sigma.<2.5.times.10.sup.-20 cm.sup.2, and a high fluorescence lifetime, .tau.>325 .mu.secs at 3 wt. % Nd doping, consisting essentially of (on an oxide composition basis): wherein Ln.sub.2 O.sub.3 is the sum of lanthanide oxides; .SIGMA.R.sub.2 O is <5, R being Li, Na, K, Cs, and Rb; the sum of Al.sub.2 O.sub.3 and MgO is <24 unless .SIGMA.R.sub.2 O is 0, then the sum of Al.sub.2 O.sub.3 and MgO is <42; and the ratio of MgO to B.sub.2 O.sub.3 is 0.48-4.20.

  3. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect (OSTI)

    Messerly, M J

    2007-11-13T23:59:59.000Z

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  4. High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter High-Energy Laser Diagnostics (HELD) for the Measurement of Diesel Particulate Matter 2004...

  5. Nuclear energy density optimization: Shell structure

    E-Print Network [OSTI]

    M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P. -G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

    2014-04-28T23:59:59.000Z

    Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on the tensor term of the energy density have been lifted, yielding a very general form of the energy density functional up to second order in derivatives of the one-body density matrix. In order to impose constraints on all the parameters of the functional, selected data on single-particle splittings in spherical doubly-magic nuclei have been included into the experimental dataset. The agreement with both bulk and spectroscopic nuclear properties achieved by the resulting UNEDF2 parameterization is comparable with UNEDF1. While there is a small improvement on single-particle spectra and binding energies of closed shell nuclei, the reproduction of fission barriers and fission isomer excitation energies has degraded. As compared to previous UNEDF parameterizations, the parameter confidence interval for UNEDF2 is narrower. In particular, our results overlap well with those obtained in previous systematic studies of the spin-orbit and tensor terms. UNEDF2 can be viewed as an all-around Skyrme EDF that performs reasonably well for both global nuclear properties and shell structure. However, after adding new data aiming to better constrain the nuclear functional, its quality has improved only marginally. These results suggest that the standard Skyrme energy density has reached its limits and significant changes to the form of the functional are needed.

  6. Optimization of the geometrical stability in square ring laser gyroscopes

    E-Print Network [OSTI]

    R. Santagata; A. Beghi; J. Belfi; N. Beverini; D. Cuccato; A. Di Virgilio; A. Ortolan; A. Porzio; S. Solimeno

    2014-11-12T23:59:59.000Z

    Ultra sensitive ring laser gyroscopes are regarded as potential detectors of the general relativistic frame-dragging effect due to the rotation of the Earth: the project name is GINGER (Gyroscopes IN GEneral Relativity), a ground-based triaxial array of ring lasers aiming at measuring the Earth rotation rate with an accuracy of 10^-14 rad/s. Such ambitious goal is now within reach as large area ring lasers are very close to the necessary sensitivity and stability. However, demanding constraints on the geometrical stability of the laser optical path inside the ring cavity are required. Thus we have started a detailed study of the geometry of an optical cavity, in order to find a control strategy for its geometry which could meet the specifications of the GINGER project. As the cavity perimeter has a stationary point for the square configuration, we identify a set of transformations on the mirror positions which allows us to adjust the laser beam steering to the shape of a square. We show that the geometrical stability of a square cavity strongly increases by implementing a suitable system to measure the mirror distances, and that the geometry stabilization can be achieved by measuring the absolute lengths of the two diagonals and the perimeter of the ring.

  7. High energy XeBr electric discharge laser

    DOE Patents [OSTI]

    Sze, Robert C. (Santa Fe, NM); Scott, Peter B. (Los Alamos, NM)

    1981-01-01T23:59:59.000Z

    A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.

  8. A Smart Energy System: Distributed Resource Management, Control and Optimization

    E-Print Network [OSTI]

    Beigl, Michael

    A Smart Energy System: Distributed Resource Management, Control and Optimization Yong Ding, Student of distributed energy resource and consumption management, which proposes to design a networked and embedded platform for realizing a dynamic energy mix and optimizing the energy consumption dy- namically. Based

  9. Actes JFPC 2012 Optimal Allocation of Renewable Energy Parks

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Actes JFPC 2012 Optimal Allocation of Renewable Energy Parks: A Two-stage Optimization Model-economical study of renewable energy on the other hand, investigates gradual implantation of Renewable Energy (RE of energy demand, available resources, anticipated renewable engineering cost re- ductions [13]. However

  10. Microbunching Instability Effect Studies and Laser Heater Optimization for the SPARX FEL Accelerator

    SciTech Connect (OSTI)

    Vaccarezza, C.; Chiadroni, E.; Ferrario, M.; Giannessi, L.; Quattromini, M.; Ronsivalle, C.; Venturini, C.; Migliorati, M.; Dattoli, G.

    2010-05-23T23:59:59.000Z

    The effects of microbunching instability for the SPARX accelerator have been analyzed by means of numerical simulations. The laser heater counteracting action has been addressed in order to optimize the parameters of the compression system, either hybrid RF plus magnetic chicane or only magnetic, and possibly enhance the FEL performance.

  11. Untangling the contributions of image charge and laser profile for optimal photoemission of high-brightness electron beams

    SciTech Connect (OSTI)

    Portman, J.; Zhang, H.; Makino, K.; Ruan, C. Y.; Berz, M.; Duxbury, P. M. [Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824 (United States)

    2014-11-07T23:59:59.000Z

    Using our model for the simulation of photoemission of high brightness electron beams, we investigate the virtual cathode physics and the limits to spatio-temporal and spectroscopic resolution originating from the image charge on the surface and from the profile of the exciting laser pulse. By contrasting the effect of varying surface properties (leading to expanding or pinned image charge), laser profiles (Gaussian, uniform, and elliptical), and aspect ratios (pancake- and cigar-like) under different extraction field strengths and numbers of generated electrons, we quantify the effect of these experimental parameters on macroscopic pulse properties such as emittance, brightness (4D and 6D), coherence length, and energy spread. Based on our results, we outline optimal conditions of pulse generation for ultrafast electron microscope systems that take into account constraints on the number of generated electrons and on the required time resolution.

  12. Cache Energy Optimization Techniques For Modern Processors

    SciTech Connect (OSTI)

    Mittal, Sparsh [ORNL] ORNL

    2013-01-01T23:59:59.000Z

    Modern multicore processors are employing large last-level caches, for example Intel's E7-8800 processor uses 24MB L3 cache. Further, with each CMOS technology generation, leakage energy has been dramatically increasing and hence, leakage energy is expected to become a major source of energy dissipation, especially in last-level caches (LLCs). The conventional schemes of cache energy saving either aim at saving dynamic energy or are based on properties specific to first-level caches, and thus these schemes have limited utility for last-level caches. Further, several other techniques require offline profiling or per-application tuning and hence are not suitable for product systems. In this book, we present novel cache leakage energy saving schemes for single-core and multicore systems; desktop, QoS, real-time and server systems. Also, we present cache energy saving techniques for caches designed with both conventional SRAM devices and emerging non-volatile devices such as STT-RAM (spin-torque transfer RAM). We present software-controlled, hardware-assisted techniques which use dynamic cache reconfiguration to configure the cache to the most energy efficient configuration while keeping the performance loss bounded. To profile and test a large number of potential configurations, we utilize low-overhead, micro-architecture components, which can be easily integrated into modern processor chips. We adopt a system-wide approach to save energy to ensure that cache reconfiguration does not increase energy consumption of other components of the processor. We have compared our techniques with state-of-the-art techniques and have found that our techniques outperform them in terms of energy efficiency and other relevant metrics. The techniques presented in this book have important applications in improving energy-efficiency of higher-end embedded, desktop, QoS, real-time, server processors and multitasking systems. This book is intended to be a valuable guide for both newcomers and veterans in the field of cache power management. It will help graduate students, CAD tool developers and designers in understanding the need of energy efficiency in modern computing systems. Further, it will be useful for researchers in gaining insights into algorithms and techniques for micro-architectural and system-level energy optimization using dynamic cache reconfiguration. We sincerely believe that the ``food for thought'' presented in this book will inspire the readers to develop even better ideas for designing ``green'' processors of tomorrow.

  13. Optimization of extreme ultraviolet photons emission and collection in mass-limited laser produced plasmas for lithography application

    E-Print Network [OSTI]

    Harilal, S. S.

    Optimization of extreme ultraviolet photons emission and collection in mass-limited laser produced in DPP or with pre-pulsing in LPP provide wide area for optimization in regards to conversion efficiency and collection as well as calculating photons source location and size. We optimized several parameters of dual

  14. Valuation of Energy Storage: An Optimal Switching Rene Carmona

    E-Print Network [OSTI]

    Carmona, Rene

    Valuation of Energy Storage: An Optimal Switching Approach Ren´e Carmona Department of Operations://www.pstat.ucsb.edu/faculty/ludkovski We consider the valuation of energy storage facilities within the framework of stochastic control;Carmona and Ludkovski: Optimal Switching for Energy Storage 2 in the commodity financial markets. Storage

  15. Optimal Energy Storage Control Policies for the Smart Power Grid

    E-Print Network [OSTI]

    Koutsopoulos, Iordanis

    Optimal Energy Storage Control Policies for the Smart Power Grid Iordanis Koutsopoulos Vassiliki Center for Research and Technology Hellas (CERTH), Greece Abstract--Electric energy storage devices the optimal energy storage control problem from the side of the utility operator. The operator controller

  16. Energy and Switch Area Optimizations for FPGA Global Routing Architectures

    E-Print Network [OSTI]

    Fainman, Yeshaiahu

    13 Energy and Switch Area Optimizations for FPGA Global Routing Architectures YI ZHU, YUANFANG HU and wire style optimization, to reduce the energy and switch area of FPGA global routing architectures achieve up to 10% to 15% energy savings and up to 20% switch area savings in average for a set of seven

  17. Finite-Horizon Optimal Transmission Policies for Energy Harvesting Sensors

    E-Print Network [OSTI]

    Jagannathan, Krishna

    Finite-Horizon Optimal Transmission Policies for Energy Harvesting Sensors Rahul Vaze School: krishnaj@ee.iitm.ac.in Abstract--In this paper, we derive optimal transmission poli- cies for energy harvesting sensors to maximize the utility obtained over a finite horizon. First, we consider a single energy

  18. Low Power/Energy Compiler Optimizations Ulrich Kremer

    E-Print Network [OSTI]

    Kremer, Ulrich

    35 Low Power/Energy Compiler Optimizations Ulrich Kremer Department of Computer Science Rutgers, Power/Energy vs. Performance, Summary 35.4 List of Optimizations Dynamic Voltage and Frequency Scaling for compilation and operating strategies to reduce power dissipation and energy usage, at the potential cost

  19. Optimal Energy Allocation and Admission Control for Communications Satellites

    E-Print Network [OSTI]

    Modiano, Eytan

    Initiative. input and output of energy relatively static, such a satellite may not require a sophisticated1 Optimal Energy Allocation and Admission Control for Communications Satellites Alvin Fu, Eytan Modiano, and John Tsitsiklis Abstract--We address the issue of optimal energy alloca- tion and admission

  20. Energy Optimization in Wireless Medical Systems Using Physiological Behavior

    E-Print Network [OSTI]

    Potkonjak, Miodrag

    Energy Optimization in Wireless Medical Systems Using Physiological Behavior Hyduke Noshadi, Foad pressure sen- sors placed in each shoe, which cover the bottom of the entire foot, resulting in energy, Algorithm, Performance Keywords Wearable Medical Systems, Energy Optimization, Sensor Se- Permission to make

  1. Optimization of Energy and Water Consumption in Cornbased Ethanol Plants

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Optimization of Energy and Water Consumption in Corn­based Ethanol Plants Elvis Ahmetovi). First, we review the major alternatives in the optimization of energy consumption and its impact for the water streams. We show that minimizing energy consumption leads to process water networks with minimum

  2. Channels of energy redistribution in short-pulse laser interactions with metal targets

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Channels of energy redistribution in short-pulse laser interactions with metal targets Leonid V The kinetics and channels of laser energy redistribution in a target irradiated by a short, 1 ps, laser pulse of a target irradiated by a short laser pulse as well as on the characteristics of laser-induced phase

  3. Method and apparatus for optimizing the efficiency and quality of laser material processing

    DOE Patents [OSTI]

    Susemihl, Ingo (Norderstedt, DE)

    1990-01-01T23:59:59.000Z

    The efficiency of laser welding and other laser material processing is optimized according to this invention by rotating the plane of polarization of a linearly polarized laser beam in relation to a work piece of the material being processed simultaneously and in synchronization with steering the laser beam over the work piece so as to keep the plane of polarization parallel to either the plane of incidence or the direction of travel of the beam in relation to the work piece. Also, depending to some extent on the particular processing being accomplished, such as welding or fusing, the angle of incidence of the laser beam on the work piece is kept at or near the polarizing or Brewster's angle. The combination of maintaining the plane of polarization parallel to plane of incidence while also maintaining the angle of incidence at or near the polarizing or Brewster's angle results in only minimal, if any, reflection losses during laser welding. Also, coordinating rotation of the plane of polarization with the translation or steering of a work piece under a laser cutting beam maximizes efficiency and kerf geometry, regardless of the direction of cut.

  4. Method and apparatus for optimizing the efficiency and quality of laser material processing

    DOE Patents [OSTI]

    Susemihl, I.

    1990-03-13T23:59:59.000Z

    The efficiency of laser welding and other laser material processing is optimized according to this invention by rotating the plane of polarization of a linearly polarized laser beam in relation to a work piece of the material being processed simultaneously and in synchronization with steering the laser beam over the work piece so as to keep the plane of polarization parallel to either the plane of incidence or the direction of travel of the beam in relation to the work piece. Also, depending to some extent on the particular processing being accomplished, such as welding or fusing, the angle of incidence of the laser beam on the work piece is kept at or near the polarizing or Brewster's angle. The combination of maintaining the plane of polarization parallel to plane of incidence while also maintaining the angle of incidence at or near the polarizing or Brewster's angle results in only minimal, if any, reflection losses during laser welding. Also, coordinating rotation of the plane of polarization with the translation or steering of a work piece under a laser cutting beam maximizes efficiency and kerf geometry, regardless of the direction of cut. 7 figs.

  5. High energy KrCl electric discharge laser

    DOE Patents [OSTI]

    Sze, Robert C. (Santa Fe, NM); Scott, Peter B. (Los Alamos, NM)

    1981-01-01T23:59:59.000Z

    A high energy KrCl laser for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr.sub.M * to form KrCl.

  6. The global optimization of Morse clusters by potential energy ...

    E-Print Network [OSTI]

    Jon P. K. Doye

    2003-07-15T23:59:59.000Z

    Jul 15, 2003 ... The global optimization of Morse clusters by potential energy transformations. Jon P. K. Doye (jpkd1 ***at*** cam.ac.uk) Robert H. Leary (leary ...

  7. Central Networks Low Carbon Hub Optimizing renewable energy resources...

    Open Energy Info (EERE)

    (Smart Grid Project) Jump to: navigation, search Project Name Central Networks Low Carbon Hub Optimizing renewable energy resources in Lincolnshire Country United Kingdom...

  8. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Y.T.; Guesto-Barnak, D.

    1992-12-22T23:59:59.000Z

    Disclosed is a low-or no-silica, low- or no-alkali phosphate glass useful as a laser amplifier in a multiple pass, high energy laser system having a high thermal conductivity, K[sub 90 C] >0.85 W/mK, a low coefficient of thermal expansion, [alpha][sub 20-300 C] <80[times]10[sup [minus]7]/C, low emission cross section, [sigma]<2.5[times]10[sup [minus]20] cm[sup 2], and a high fluorescence lifetime, [tau]>325 [mu]secs at 3 wt. % Nd doping, consisting essentially of (on an oxide composition basis): (Mole %) P[sub 2]O[sub 5], (52-72); Al[sub 2]O[sub 3], (0-<20); B[sub 2]O[sub 3], (>0-25); ZnO, (0-31); Li[sub 2]O, (0-5); K[sub 2]O, (0-5); Na[sub 2]O, (0-5); Cs[sub 2]O, (0-5); Rb[sub 2]O, (0-5); MgO, (>0-<30); CaO, (0-20); BaO, (0-20); SrO, (0-<20); Sb[sub 2]O[sub 3], (0-<1); As[sub 2]O[sub 3], (0-<1); Nb[sub 2]O[sub 5], (0-<1); Ln[sub 2]O[sub 3], (up to 6.5); PbO, (0-<5); and SiO[sub 2], (0-3); wherein Ln[sub 2]O[sub 3] is the sum of lanthanide oxides; [Sigma]R[sub 2]O is <5, R being Li, Na, K, Cs, and Rb; the sum of Al[sub 2]O[sub 3] and MgO is <24 unless [Sigma]R[sub 2]O is 0, then the sum of Al[sub 2]O[sub 3] and MgO is <42; and the ratio of MgO to B[sub 2]O[sub 3] is 0.48-4.20. 7 figs.

  9. National Renewable Energy Laboratory (NREL) researchers enhanced this building energy optimization tool to analyze

    E-Print Network [OSTI]

    National Renewable Energy Laboratory (NREL) researchers enhanced this building energy optimization levels at the lowest possible cost. A new version of NREL's Building Energy Optimization (BEopt) software targeting zero net energy--the new version identifies cost- optimal residential building designs at various

  10. Renewable Energy Planning: Multiparametric Cost Optimization; Preprint

    SciTech Connect (OSTI)

    Walker, A.

    2008-05-01T23:59:59.000Z

    This paper describes a method for determining the combination of renewable energy technologies that minimize life-cycle cost at a facility, often with a specified goal regarding percent of energy use from renewable sources. Technologies include: photovoltaics (PV); wind; solar thermal heat and electric; solar ventilation air preheating; solar water heating; biomass heat and electric (combustion, gasification, pyrolysis, anaerobic digestion); and daylighting. The method rests upon the National Renewable Energy Laboratory's (NREL's) capabilities in characterization of technology cost and performance, geographic information systems (GIS) resource assessment, and life-cycle cost analysis. The paper discusses how to account for the way candidate technologies interact with each other, and the solver routine used to determine the combination that minimizes life-cycle cost. Results include optimal sizes of each technology, initial cost, operating cost, and life-cycle cost, including incentives from utilities or governments. Results inform early planning to identify and prioritize projects at a site for subsequent engineering and economic feasibility study.

  11. Mode-Locked Fibre Lasers with High-Energy Pulses

    E-Print Network [OSTI]

    Turitsyn, Sergei K.

    , including generation of ultra-short and high-energy pulses. Since the invention of the laser researchers, technological, medical, and other applications. High energies and ultra-short pulse durations are both resonators. In addition, the path to high-energy ultra-short pulses is, typically, further complicated

  12. Control and Optimization Meet the Smart Power Grid: Scheduling of Power Demands for Optimal Energy

    E-Print Network [OSTI]

    Koutsopoulos, Iordanis

    Control and Optimization Meet the Smart Power Grid: Scheduling of Power Demands for Optimal Energy technologies to enforce sensible use of energy through effective demand load management. We envision a scenario con- sumer power demand requests with different power require- ments, durations, and deadlines

  13. Optimal mixing and optimal stirring for fixed energy, fixed power or fixed palenstrophy flows

    E-Print Network [OSTI]

    Novikov, Alexei

    Optimal mixing and optimal stirring for fixed energy, fixed power or fixed palenstrophy flows-time perfect mixing with a finite energy constraint on the stirring flow. On the other hand, using techniques, University of Michigan, Ann Arbor, MI 48109 (Dated: 31 March 2012) We consider passive scalar mixing

  14. Optimal Green Energy Utilization in MIMO Systems with Hybrid Energy Supplies

    E-Print Network [OSTI]

    1 Optimal Green Energy Utilization in MIMO Systems with Hybrid Energy Supplies Congshi Hu, Jie Gong, it is feasible for BSs to be powered by green energy, such as solar energy and wind energy. For instance

  15. Predictive control and thermal energy storage for optimizing a multi-energy district boiler

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Predictive control and thermal energy storage for optimizing a multi- energy district boiler Julien energy storage. 1. Introduction Managing energy demand, promoting renewable energy and finding ways of the OptiEnR research project, the present paper deals with optimizing the multi-energy district boiler

  16. Robust Energy Cost Optimization of Water Distribution System with ...

    E-Print Network [OSTI]

    2011-02-21T23:59:59.000Z

    Energy cost optimization of a water-supply network is a very important practical .... nonlinear equations for energy conservation. .... [water balance equations] ...... Israel Institute of Technology, Technion, Technion City, Haifa 32000, Israel.

  17. Energy Optimization of Bioethanol Production via Gasification of Switchgrass

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Energy Optimization of Bioethanol Production via Gasification of Switchgrass Mariano Martín Abstract. In this paper, we address the conceptual design of the bioethanol process from switchgrass via of $0.41/gal Keywords: Energy; Biofuels; Bioethanol; Process synthesis

  18. Continuously Optimized Reliable Energy (CORE) Microgrid: Models & Tools (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01T23:59:59.000Z

    This brochure describes Continuously Optimized Reliable Energy (CORE), a trademarked process NREL employs to produce conceptual microgrid designs. This systems-based process enables designs to be optimized for economic value, energy surety, and sustainability. Capabilities NREL offers in support of microgrid design are explained.

  19. Optimal Power Cost Management Using Stored Energy in Data Centers

    E-Print Network [OSTI]

    Giles, C. Lee

    Optimal Power Cost Management Using Stored Energy in Data Centers Rahul Urgaonkar, Bhuvan Urgaonkar of uninterrupted power supply (UPS) units as energy storage devices. This rep- resents a deviation from the usual average electric utility bill in a data center. Us- ing the technique of Lyapunov optimization, we develop

  20. Mapping the Energy Landscape of Non-Convex Optimization Problems

    E-Print Network [OSTI]

    Zhu, Song Chun

    Mapping the Energy Landscape of Non-Convex Optimization Problems Maira Pavlovskaia1 , Kewei Tu2@shanghaitech.edu.cn Abstract. An energy landscape map (ELM) characterizes and visualizes an energy function with a tree the barrier between adjacent energy basins. We demonstrate the utility of ELMs in analyzing non-convex energy

  1. Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing maximizing thermal efficiency and optimizing energy management through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems.

  2. Optimized Kalpha x-ray flashes from femtosecond-laser-irradiated foils

    SciTech Connect (OSTI)

    Lu, W.; Nicoul, M.; Shymanovich, U.; Tarasevitch, A.; Zhou, P.; Sokolowski-Tinten, K.; Linde, D. von der; Masek, M.; Gibbon, P.; Teubner, U. [Institut fuer Experimentelle Physik, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany); Institute of Physics, Academy of Sciences of the Czech Republic, Prague (Czech Republic); Institute for Advanced Simulation, Juelich Supercomputing Centre, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany); Fachbereich Technik, Abt. Naturwiss. Technik, Bereich Photonik, Fachhochschule Oldenburg/Ostfriesland/Wilhelmshaven, University of Applied Sciences, Constantiaplatz 4, 26723 Emden (Germany) and Institut fuer Physik, Carl von Ossietzky Universitaet Oldenburg, 26111 Oldenburg (Germany)

    2009-08-15T23:59:59.000Z

    We investigate the generation of ultrashort Kalpha pulses from plasmas produced by intense femtosecond p-polarized laser pulses on Copper and Titanium targets. Particular attention is given to the interplay between the angle of incidence of the laser beam on the target and a controlled prepulse. It is observed experimentally that the Kalpha yield can be optimized for correspondingly different prepulse and plasma scale-length conditions. For steep electron-density gradients, maximum yields can be achieved at larger angles. For somewhat expanded plasmas expected in the case of laser pulses with a relatively poor contrast, the Kalpha yield can be enhanced by using a near-normal-incidence geometry. For a certain scale-length range (between 0.1 and 1 times a laser wavelength) the optimized yield is scale-length independent. Physically this situation arises because of the strong dependence of collisionless absorption mechanisms - in particular resonance absorption - on the angle of incidence and the plasma scale length, giving scope to optimize absorption and hence the Kalpha yield. This qualitative description is supported by calculations based on the classical resonance absorption mechanism and by particle-in-cell simulations. Finally, the latter simulations also show that even for initially steep gradients, a rapid profile expansion occurs at oblique angles in which ions are pulled back toward the laser by hot electrons circulating at the front of the target. The corresponding enhancement in Kalpha yield under these conditions seen in the present experiment represents strong evidence for this suprathermal shelf formation effect.

  3. Method for Determining Optimal Residential Energy Efficiency Retrofit Packages

    SciTech Connect (OSTI)

    Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.

    2011-04-01T23:59:59.000Z

    Businesses, government agencies, consumers, policy makers, and utilities currently have limited access to occupant-, building-, and location-specific recommendations for optimal energy retrofit packages, as defined by estimated costs and energy savings. This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location. Energy savings and incremental costs are calculated relative to a minimum upgrade reference scenario, which accounts for efficiency upgrades that would occur in the absence of a retrofit because of equipment wear-out and replacement with current minimum standards.

  4. Searching for optimal mitigation geometries for laser-resistant multilayer high-reflector coatings

    SciTech Connect (OSTI)

    Qiu, S. Roger; Wolfe, Justin E.; Monterrosa, Anthony M.; Feit, Michael D.; Pistor, Thomas V.; Stolz, Christopher J.

    2011-03-20T23:59:59.000Z

    Growing laser damage sites on multilayer high-reflector coatings can limit mirror performance. One of the strategies to improve laser damage resistance is to replace the growing damage sites with predesigned benign mitigation structures. By mitigating the weakest site on the optic, the large-aperture mirror will have a laser resistance comparable to the intrinsic value of the multilayer coating. To determine the optimal mitigation geometry, the finite-difference time-domain method was used to quantify the electric-field intensification within the multilayer, at the presence of different conical pits. We find that the field intensification induced by the mitigation pit is strongly dependent on the polarization and the angle of incidence (AOI) of the incoming wave. Therefore, the optimal mitigation conical pit geometry is application specific. Furthermore, our simulation also illustrates an alternative means to achieve an optimal mitigation structure by matching the cone angle of the structure with the AOI of the incoming wave, except for the p-polarized wave at a range of incident angles between 30 deg. and 45 deg.

  5. Optimization of field-free molecular alignment by phase-shaped laser pulses E. Hertz, A. Rouzee, S. Guerin, B. Lavorel, and O. Faucher

    E-Print Network [OSTI]

    Boyer, Edmond

    with a single ultra-short laser pulse is known to be intrinsically limited, recent efforts have concentratedOptimization of field-free molecular alignment by phase-shaped laser pulses E. Hertz, A. Rouz´ee, S the optimization of field-free molecular alignment by phase-shaped femtosecond laser pulses. The effect is assessed

  6. Evaluation of weld porosity in laser beam seam welds: optimizing continuous wave and square wave modulated processes.

    SciTech Connect (OSTI)

    Ellison, Chad M. (Honeywell FM& T, Kansas City, MO); Perricone, Matthew; Faraone, Kevin M. (Honeywell FM& T, Kansas City, MO); Roach, Robert Allen; Norris, Jerome T.

    2007-02-01T23:59:59.000Z

    Nd:YAG laser joining is a high energy density (HED) process that can produce high-speed, low-heat input welds with a high depth-to-width aspect ratio. This is optimized by formation of a ''keyhole'' in the weld pool resulting from high vapor pressures associated with laser interaction with the metallic substrate. It is generally accepted that pores form in HED welds due to the instability and frequent collapse of the keyhole. In order to maintain an open keyhole, weld pool forces must be balanced such that vapor pressure and weld pool inertia forces are in equilibrium. Travel speed and laser beam power largely control the way these forces are balanced, as well as welding mode (Continuous Wave or Square Wave) and shielding gas type. A study into the phenomenon of weld pool porosity in 304L stainless steel was conducted to better understand and predict how welding parameters impact the weld pool dynamics that lead to pore formation. This work is intended to aid in development and verification of a finite element computer model of weld pool fluid flow dynamics being developed in parallel efforts and assist in weld development activities for the W76 and future RRW programs.

  7. Single-crystal YAG fiber optics for the transmission of high energy laser energy

    E-Print Network [OSTI]

    Single-crystal YAG fiber optics for the transmission of high energy laser energy X.S. Zhua , James. Thus, it is reasonable to assume that YAG fibers will have high laser damage thresholds. The optical of YAG fiber grown has been about 60 cm. Keywords: Infrared fiber optics, single-crystal fibers, oxide

  8. Systems Modeling For The Laser Fusion-Fission Energy (LIFE) Power Plant

    SciTech Connect (OSTI)

    Meier, W R; Abbott, R; Beach, R; Blink, J; Caird, J; Erlandson, A; Farmer, J; Halsey, W; Ladran, T; Latkowski, J; MacIntyre, A; Miles, R; Storm, E

    2008-10-02T23:59:59.000Z

    A systems model has been developed for the Laser Inertial Fusion-Fission Energy (LIFE) power plant. It combines cost-performance scaling models for the major subsystems of the plant including the laser, inertial fusion target factory, engine (i.e., the chamber including the fission and tritium breeding blankets), energy conversion systems and balance of plant. The LIFE plant model is being used to evaluate design trade-offs and to identify high-leverage R&D. At this point, we are focused more on doing self consistent design trades and optimization as opposed to trying to predict a cost of electricity with a high degree of certainty. Key results show the advantage of large scale (>1000 MWe) plants and the importance of minimizing the cost of diodes and balance of plant cost.

  9. HypoEnergy: Hybrid supercapacitor-battery power-supply optimization for Energy efficiency

    E-Print Network [OSTI]

    HypoEnergy: Hybrid supercapacitor-battery power-supply optimization for Energy efficiency Azalia the hybrid battery-supercapacitor power supply life- time. HypoEnergy combines high energy density and supercapacitors' charging overhead. HypoEnergy-KI studies the hybrid supply lifetime optimization

  10. Energy Optimal Transmission Scheduling in Wireless Sensor Networks

    E-Print Network [OSTI]

    Koksal, Can Emre

    1 Energy Optimal Transmission Scheduling in Wireless Sensor Networks Rahul Srivastava, Student networks is energy efficient communication of time-critical data. Energy wastage can be caused by failed. INTRODUCTION Energy efficient communication is one of the key concerns in the design of wireless sensor

  11. Energy-Efficient Capacity Optimization in Wireless Networks

    E-Print Network [OSTI]

    Wang, Yu

    Energy-Efficient Capacity Optimization in Wireless Networks Lu Liu, Xianghui Cao, Yu Cheng, Lili Du capacity in the most energy-efficient manner over a general large-scale wireless network, say, a multi numerical results demonstrate the energy efficiency improvement by the proposed energy-efficient

  12. Interface module for transverse energy input to dye laser modules

    DOE Patents [OSTI]

    English, R.E. Jr.; Johnson, S.A.

    1994-10-11T23:59:59.000Z

    An interface module for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams in the form of illumination bar to the lasing zone of a dye laser device, in particular to a dye laser amplifier. The preferred interface module includes an optical fiber array having a plurality of optical fibers arrayed in a co-planar fashion with their distal ends receiving coherent laser energy from an enhancing laser source, and their proximal ends delivered into a relay structure. The proximal ends of the optical fibers are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array delivered from the optical fiber array is acted upon by an optical element array to produce an illumination bar which has a cross section in the form of a elongated rectangle at the position of the lasing window. The illumination bar is selected to have substantially uniform intensity throughout. 5 figs.

  13. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01T23:59:59.000Z

    Rio de Janeiro, Brazil Optimal Control of Distributed EnergyRio de Janeiro, Brazil Optimal Control of Distributed EnergyRio de Janeiro, Brazil Optimal Control of Distributed Energy

  14. Energy limitation of laser-plasma electron accelerators

    E-Print Network [OSTI]

    Cardenas, D E; Xu, J; Hofmann, L; Buck, A; Schmid, K; Sears, C M S; Rivas, D E; Shen, B; Veisz, L

    2015-01-01T23:59:59.000Z

    We report on systematic and high-precision measurements of dephasing, an effect that fundamentally limits the performance of laser wakefield accelerators. Utilizing shock-front injection, a technique providing stable, tunable and high-quality electron bunches, acceleration and deceleration of few-MeV quasi-monoenergetic beams were measured with sub-5-fs and 8-fs laser pulses. Typical density dependent electron energy evolution with 65-300 micrometers dephasing length and 6-20 MeV peak energy was observed and is well described with a simple model.

  15. MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES

    E-Print Network [OSTI]

    Pope, W.L.

    2011-01-01T23:59:59.000Z

    at the Susanville Geothermal Energy Converence, July 1976.and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.

  16. MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES

    E-Print Network [OSTI]

    Pope, W.L.

    2011-01-01T23:59:59.000Z

    and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.for Recovery of Energy from Geothermal Hot Brine Deposits."

  17. Optimal Power Policy for Energy Harvesting Transmitters with Inefficient Energy Storage

    E-Print Network [OSTI]

    Yener, Aylin

    1 Optimal Power Policy for Energy Harvesting Transmitters with Inefficient Energy Storage Kaya with an inefficient energy storage device, i.e., battery or capacitor, is considered, where a fraction of the stored for optimal power allocations with energy harvesting transmitters, it is observed that storage losses

  18. Optimizing Feedback in Energy Harvesting MISO Communication Channels

    E-Print Network [OSTI]

    Gesbert, David

    Optimizing Feedback in Energy Harvesting MISO Communication Channels Rajeev Gangula1 , David.gunduz@imperial.ac.uk Abstract--In this work,1 we consider the optimization of feedback in a point-to-point MISO channel in the context of a simple multiple antenna system, namely MISO channel, where feedback can be used to improve

  19. Characterization and Optimization of a Powder Feed Nozzle for High Deposition Laser Cladding

    E-Print Network [OSTI]

    Omiecinski, Curtis

    Abstract Laser cladding is a process for depositing corrosion resistant and wear resistant materials on structural components and is widely used in the maritime, oil and gas exploration, and energy industries materials are widely used in a range of components that are subjected to severe corrosion and wear

  20. High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of Reciprocating Engine PM Emissions High-Energy, Pulsed-Laser Diagnostics for Real-Time Measurements of...

  1. Optimization of time-based rates in forward energy markets

    E-Print Network [OSTI]

    Wang, J.

    This paper presents a new two-step design approach of Time-Based Rate (TBR) programs for markets with a high penetration of variable energy sources such as wind power. First, an optimal market time horizon must be determined ...

  2. Online Modeling in the Process Industry for Energy Optimization

    E-Print Network [OSTI]

    Alexander, J.

    "This paper discusses how steady state models are being used in the process industry to perform online energy optimization of steam and electrical systems. It presents process demands commonly found in the processing industry in terms of steam...

  3. REopt: A Platform for Energy System Integration and Optimization: Preprint

    SciTech Connect (OSTI)

    Simpkins, T.; Cutler, D.; Anderson, K.; Olis, D.; Elgqvist, E.; Callahan, M.; Walker, A.

    2014-08-01T23:59:59.000Z

    REopt is NREL's energy planning platform offering concurrent, multi-technology integration and optimization capabilities to help clients meet their cost savings and energy performance goals. The REopt platform provides techno-economic decision-support analysis throughout the energy planning process, from agency-level screening and macro planning to project development to energy asset operation. REopt employs an integrated approach to optimizing a site?s energy costs by considering electricity and thermal consumption, resource availability, complex tariff structures including time-of-use, demand and sell-back rates, incentives, net-metering, and interconnection limits. Formulated as a mixed integer linear program, REopt recommends an optimally-sized mix of conventional and renewable energy, and energy storage technologies; estimates the net present value associated with implementing those technologies; and provides the cost-optimal dispatch strategy for operating them at maximum economic efficiency. The REopt platform can be customized to address a variety of energy optimization scenarios including policy, microgrid, and operational energy applications. This paper presents the REopt techno-economic model along with two examples of recently completed analysis projects.

  4. Energy-Optimized Lossless Compression: Rate-Variability Tradeoff

    E-Print Network [OSTI]

    Wu, Yihong

    is larger in this case. This motivates the problem of designing efficient compressors to minimize total Alto, CA 94304 Email: marcelo.weinberger@hp.com Abstract--We pose the problem of energy energy consumption. Such energy-optimized compressors could prove useful for embedded systems

  5. Optimizing Ballast Design of Wave Energy Converters Using Evolutionary Algorithms

    E-Print Network [OSTI]

    Tumer, Kagan

    Optimizing Ballast Design of Wave Energy Converters Using Evolutionary Algorithms Mitch Colby, 97331 kagan.tumer@oregonstate.edu ABSTRACT Wave energy converters promise to be a viable alternative the ballast geometry of a wave energy genera- tor using a two step process. First, we generate a function

  6. Optimal Energy Management Strategy including Battery Health through Thermal

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Optimal Energy Management Strategy including Battery Health through Thermal Management for Hybrid: Energy management strategy, Plug-in hybrid electric vehicles, Li-ion battery aging, thermal management, Pontryagin's Minimum Principle. 1. INTRODUCTION The interest for energy management strategy (EMS) of Hybrid

  7. Minimizing Energy Consumption in Body Sensor Networks via Convex Optimization

    E-Print Network [OSTI]

    Poovendran, Radha

    energy consumption while limiting the latency in data transfer. In this paper, we focus on pollingMinimizing Energy Consumption in Body Sensor Networks via Convex Optimization Sidharth Nabar energy consumption and latency. We show that this problem can be posed as a geometric program, which

  8. Circuit Area Optimization in Energy Temporal Sparse Scenarios for

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Circuit Area Optimization in Energy Temporal Sparse Scenarios for Multiple Harvester Powered.alarcon@upc.edu Abstract--Multi-source energy harvesters are gaining interest as a robust alternative to power wireless sensors, since the sensor node can maintain its operation regardless of the fact that one of its energy

  9. Speculative Software Management of Datapath-width for Energy Optimization

    E-Print Network [OSTI]

    Seznec, André

    Speculative Software Management of Datapath-width for Energy Optimization Gilles Pokam gpokam accommodate the execution of a program on a narrower datapath-width in or- der to save energy the width of the register file to be dynamically recon- figured, providing both static and dynamic energy

  10. Optimal Control of Residential Energy Storage Under Price Fluctuations

    E-Print Network [OSTI]

    Optimal Control of Residential Energy Storage Under Price Fluctuations Peter van de ven Department.hegde,laurent.massoulie,theodoros.salonidis}@technicolor.com Abstract--An increasing number of retail energy markets exhibit price fluctuations and provide home users the oppor- tunity to buy energy at lower than average prices. However, such cost savings are hard to realize

  11. GLOBAL OPTIMIZATION AND ANALYSIS FOR THE GIBBS FREE ENERGY FUNCTION

    E-Print Network [OSTI]

    Neumaier, Arnold

    GLOBAL OPTIMIZATION AND ANALYSIS FOR THE GIBBS FREE ENERGY FUNCTION USING THE UNIFAC, WILSON equilibrium involves two important problems: (i) the minimization of the Gibbs free energy, and (ii of the Gibbs free energy. However, a drawback of all previous approaches is that they could not provide

  12. Hybrid Heuristics for Optimizing Energy Consumption in Embedded Systems

    E-Print Network [OSTI]

    Schott, René - Institut de Mathématiques �lie Cartan, Université Henri Poincaré

    Hybrid Heuristics for Optimizing Energy Consumption in Embedded Systems Maha IDRISSI AOUAD1 , Ren energy reduction becomes crucial for many embed- ded systems designers. In this paper, we propose Hybrid to BEH). Keywords: Energy consumption reduction, Genetic algorithms, hybrid heuristics, memory allocation

  13. Optimal Power Cost Management Using Stored Energy in Data Centers

    E-Print Network [OSTI]

    Urgaonkar, Bhuvan

    the aver- age price of 1 MW-Hour of electricity. Consequently, mini- mization of energy consumption needOptimal Power Cost Management Using Stored Energy in Data Centers Rahul Urgaonkar, Bhuvan Urgaonkar that arise by the use of uninterrupted power supply (UPS) units as energy storage devices. This rep- resents

  14. Optimizing Communication Energy Consumption in Perpetual Wireless Nanosensor Networks

    E-Print Network [OSTI]

    Weigle, Michele

    Optimizing Communication Energy Consumption in Perpetual Wireless Nanosensor Networks Shahram}@cs.odu.edu Abstract--This paper investigates the effect of various param- eters of energy consumption. Finding the optimum combination of parameters to minimize energy consumption while satisfying the Qo

  15. Realistic Industrial Scale Energy Optimization: Part I - Organizing and Executing Energy Conservation Projects

    E-Print Network [OSTI]

    Jones, W. T.

    1982-01-01T23:59:59.000Z

    With increased cost and reduced availability of energy, plant managers are reviewing their options to optimize energy utilization to reduce operating costs. This paper deals with the organization and execution of an energy conservation program which...

  16. Intelligent Building Energy Information and Control Systems for Low-Energy Operations and Optimal Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2014-01-01T23:59:59.000Z

    Systems for  Energy Management and Demand Response in 7.  Linking energy efficiency and demand response.   In for Low-Energy Operations and Optimal Demand Response Mary

  17. Optimization of energy parameters in buildings

    E-Print Network [OSTI]

    Jain, Ruchi V

    2007-01-01T23:59:59.000Z

    When designing buildings, energy analysis is typically done after construction has been completed, but making the design decisions while keeping energy efficiency in mind, is one way to make energy-efficient buildings. The ...

  18. MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES

    E-Print Network [OSTI]

    Pope, W.L.

    2011-01-01T23:59:59.000Z

    and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.and J. W. Tester, Geothermal Energy as a Source of Electric

  19. Optimal Energy Savings in Cellular Access Networks

    E-Print Network [OSTI]

    , for a holistic approach to energy efficient networking. In this paper we tackle the issue of energy-aware manage customer premises networking equipment. This situation, coupled with increasing energy costs, has generated

  20. Building Energy Optimization Tool (BEopt) Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tool (BEopt) 2 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov The Home of the Future....Today 3 | INNOVATION & INTEGRATION:...

  1. Laser Spark Distribution and Ignition System - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sandLaserLaser SeedingVehicles and

  2. Efficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy, and spatial-

    E-Print Network [OSTI]

    Cao, Jianshu

    Efficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization of efficient and robust energy transfer in light-harvesting systems provides new insights for the optimal the efficiency and maintain its stability. With the Haken-Strobl model, the maximal energy transfer efficiency

  3. Laser-Material Interactions: A Study of Laser Energy Coupling with Solids

    E-Print Network [OSTI]

    Shannon, M.A.

    2009-01-01T23:59:59.000Z

    1971) Effects of High-Power Laser Radiation, Academic Presin Effects of High-Power Laser Radiation, (Academic Press,for modeling gas discharge lasers", Boulder, Colo. : Univ.

  4. Optimizing Process Loads in Industrial Cogeneration Energy Systems

    E-Print Network [OSTI]

    Ahner, D. J.; Babson, P. E.

    processes. AUTOMATION REQUIREMENTS The Operations energy Management System (OEMS) can require on-line operation using current measurements (e.g. flow, powers, temperatures, etc.), and calculating optimum energy purchase and equipment dispatch within...kW., A.. kW >- kW OPTIMIZING PROCESS LOADS IN INDUSTRIAL COGENERAnON ENERGY SYSTEMS DJ. Ahner Manager, Generation Technology Power Tecbnologies, Inc. Schenectady, New York ABSTRACT Optimum dispatcb of energy supply systems can...

  5. Laser Light Engines | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy Development JumpLars Enviro JumpLas

  6. Acro Solar Lasers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/Curium Vitrification4th DayANVAblampAWEPL Jump to:

  7. MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES

    E-Print Network [OSTI]

    Pope, W.L.

    2011-01-01T23:59:59.000Z

    Energy Conversion Study for EPRI." The Ben Holt Company andPower Research Institute (EPRI) and ERDA-DGE, respectively,

  8. Stochastic Optimization in Energy ISO New England

    E-Print Network [OSTI]

    Powell, Warren B.

    Oct Nov Dec #12;Slide 9 Energy from wind 30 days Wind from all PJM wind farms #12;Solar energy;Solar from PSE&G solar farms Solar from a single solar farm Solar energy from a single solar farm showing significant variations due to clouds. Slide 12 #12;Solar from PSE&G solar farms Solar from all

  9. Valuation of Energy Storage: An Optimal Switching Mike Ludkovski

    E-Print Network [OSTI]

    Ludkovski, Mike

    Valuation of Energy Storage: An Optimal Switching Approach Mike Ludkovski Department of Mathematics University, Princeton, NJ 08544 rcarmona@princeton.edu, We consider the valuation of energy storage facilities within the framework of stochastic control. Our two main examples are natural gas dome storage

  10. Application Level Optimizations for Energy Efficiency and Thermal Stability

    E-Print Network [OSTI]

    Coskun, Ayse

    -efficiency, and (ii) the effect of temperature optimization on system-level energy consumption. 1. INTRODUCTION Recent]. A closely related issue is ther- mal management: High power consumption not only increases opera- tional challenges--Performance, Energy, and Temperature (PET)--solely through novel hardware design. We know

  11. PET: Reducing Database Energy Cost via Query Optimization

    E-Print Network [OSTI]

    Tu, Yicheng

    PET: Reducing Database Energy Cost via Query Optimization Zichen Xu The Ohio State University xuz@ece.osu.edu Yi-Cheng Tu The University of South Florida ytu@cse.usf.edu Xiaorui Wang The Ohio State University xwang@ece.osu.edu ABSTRACT Energy conservation is a growing important issue in designing mod- ern

  12. Energy Optimal Routing in Radio Networks Using Geometric Data Structures ?

    E-Print Network [OSTI]

    Schmitt, Peter H.

    batteries or power from solar panels, a prime optimization criterion is the energy consumption. We model the transmission cost be­ tween two sites is the square of their Euclidean distance plus a constant offset. We give C u +juvj 2 . The cost offset C u accounts for distance independent energy consumption like

  13. Optimization of the design and mode of operation of a QD laser for reducing the heat-to-bitrate ratio

    SciTech Connect (OSTI)

    Zhukov, A. E., E-mail: zhukale@gmail.com; Savelyev, A. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation); Maximov, M. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Kryzhanovskaya, N. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation); Gordeev, N. Yu.; Shernyakov, Yu. M. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Payusov, A. S.; Nadtochiy, A. M.; Zubov, F. I.; Korenev, V. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)

    2013-08-15T23:59:59.000Z

    Heat dissipation under the high-speed modulation of quantum dot edge-emitting lasers is considered. It is shown that, for a given laser diode, there is a bias current at which the heat-to-bitrate ratio is minimized. Moreover, there exists a certain optimal optical loss of the laser cavity at which the lowest heat-to-bitrate ratio is provided for any design of edge-emitting lasers that can be fabricated from an epitaxial structure. The heat-to-bitrate ratio and the corresponding bitrate are numerically calculated and analytical expressions are derived. It is demonstrated that the heat-to-bitrate ratio of quantum dot edge-emitting lasers can be less than 0.4 pJ/bit at a bitrate exceeding 10 Gbit/s.

  14. Midaz Lasers Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickey HotVII, Cologne,Caldera,MidMissouri

  15. Ultra-low repetition rate mode-locked fiber laser with high-energy pulses

    E-Print Network [OSTI]

    Kobtsev, Sergei M.

    to ultra-short record high-energy pulses out of laser oscillators," Phys. Lett. A 372, 3124­3128 (2008). 5Ultra-low repetition rate mode-locked fiber laser with high-energy pulses Sergey Kobtsev* , Sergey Kukarin, Yurii Fedotov Laser Systems Laboratory, Novosibirsk State University,Pirigova 2, Novosibirsk

  16. Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect (OSTI)

    Latkowski, J F; Abbott, R P; Aceves, S; Anklam, T; Badders, D; Cook, A W; DeMuth, J; Divol, L; El-Dasher, B; Farmer, J C; Flowers, D; Fratoni, M; ONeil, R G; Heltemes, T; Kane, J; Kramer, K J; Kramer, R; Lafuente, A; Loosmore, G A; Morris, K R; Moses, G A; Olson, B; Pantano, C; Reyes, S; Rhodes, M; Roe, K; Sawicki, R; Scott, H; Spaeth, M; Tabak, M; Wilks, S

    2010-11-30T23:59:59.000Z

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. The present work focuses on the pure fusion option. A key component of a LIFE engine is the fusion chamber subsystem. It must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated design that meets all of these requirements is described herein.

  17. Annual Energy Consumption Analysis and Energy Optimization of a Solar-Assisted Heating Swimming Pool 

    E-Print Network [OSTI]

    Zuo, Z.; Hu, W.; Meng, O.

    2006-01-01T23:59:59.000Z

    This paper is concerned with the energy efficiency calculations and optimization for an indoor solar-assisted heating swimming pool in GuangZhou. The heating energy requirements for maintaining the pool constant temperature were investigated, which...

  18. Annual Energy Consumption Analysis and Energy Optimization of a Solar-Assisted Heating Swimming Pool

    E-Print Network [OSTI]

    Zuo, Z.; Hu, W.; Meng, O.

    2006-01-01T23:59:59.000Z

    This paper is concerned with the energy efficiency calculations and optimization for an indoor solar-assisted heating swimming pool in GuangZhou. The heating energy requirements for maintaining the pool constant temperature were investigated, which...

  19. Montonic convergent optimal control theory to modulate bandwidth limited laser pulses in linear and non-linear optical processes

    E-Print Network [OSTI]

    Caroline Gollub; Markus Kowalewski; Regina de Vivie-Riedle

    2008-01-25T23:59:59.000Z

    We present a modified optimal control scheme based on the Krotov method, which allows for strict limitations on the spectrum of the optimized laser fields, without losing monotonic convergence of the algorithm. The method guarantees a close link to learning loop control experiments and is demonstrated for the challenging control of non-resonant Raman transitions, which are used to implement a set of global quantum gates for molecular vibrational qubits.

  20. Method for optimizing output in ultrashort-pulse multipass laser amplifiers with selective use of a spectral filter

    DOE Patents [OSTI]

    Backus, Sterling J. (Erie, CO); Kapteyn, Henry C. (Boulder, CO)

    2007-07-10T23:59:59.000Z

    A method for optimizing multipass laser amplifier output utilizes a spectral filter in early passes but not in later passes. The pulses shift position slightly for each pass through the amplifier, and the filter is placed such that early passes intersect the filter while later passes bypass it. The filter position may be adjust offline in order to adjust the number of passes in each category. The filter may be optimized for use in a cryogenic amplifier.

  1. High energy laser optics manufacturing: a preliminary study

    SciTech Connect (OSTI)

    Baird, E.D.

    1980-07-01T23:59:59.000Z

    This report presents concepts and methods, major conclusions, and major recommendations concerning the fabrication of high energy laser optics (HELO) that are to be machined by the Large Optics Diamond Turning Machine (LODTM) at the Lawrence Livermore National Laboratory (LLNL). Detailed discussions of concepts and methods proposed for metrological operations, polishing of reflective surfaces, mounting of optical components, construction of mirror substrates, and applications of coatings are included.

  2. Reverse Osmosis Optimization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofitting Doors on OpenRevenue FromReverse

  3. Plant Optimization Technologies | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCO OCHCOControlGuide to aEnergyPlanning andof

  4. Biotrans: Cost Optimization Model | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyons

  5. Building Energy Optimization (BEopt) Software | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    costs in year from 0-2,500 on the vertical axis. The horizontal axis displays energy savings in % from 0-100. There's a curved line representing cash flow with four points...

  6. Optimize Parallel Pumping Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy

  7. Sandia Energy - Optimizing Engines for Alternative Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReport Postednanorod light

  8. Han s Laser Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoodsGuangzhou,GuizhouGuyana:HaeHalcyonHan s Laser

  9. Optimization of Industrial Enzymes - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and Biofuels Biomass and Biofuels Find More Like This Return

  10. Effects of laser energy and wavelength on the analysis of LiFePO? using laser assisted atom probe tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Santhanagopalan, Dhamodaran [Univ. of California, San Diego, CA (United States); Khalifah, Peter [Stony Brook Univ., NY (United States); Brookhaven National Lab., Upton, NY (United States); Schreiber, Daniel K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Perea, Daniel E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martens, Richard L. [Univ. of Alabama, Tuscaloosa, AL (United States); Janssen, Yuri [Stony Brook Univ., NY (United States); Meng, Ying Shirley [Univ. of California, San Diego, CA (United States)

    2015-01-01T23:59:59.000Z

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO? by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygen concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of ¹?O?? ions. Green laser assisted field evaporation led to the selective loss of Li (33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO?. Plotting of multihit events on Saxey plots also revealed a strong neutral O? loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency.

  11. Effects of laser energy and wavelength on the analysis of LiFePO? using laser assisted atom probe tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Santhanagopalan, Dhamodaran; Khalifah, Peter; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Richard L.; Janssen, Yuri; Meng, Ying Shirley

    2015-01-01T23:59:59.000Z

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO? by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygenmore »concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of ¹?O?? ions. Green laser assisted field evaporation led to the selective loss of Li (33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO?. Plotting of multihit events on Saxey plots also revealed a strong neutral O? loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency.« less

  12. Diss. ETH No. 21036 Optimal Energy Management

    E-Print Network [OSTI]

    Lygeros, John

    Federal Office of Energy and Siemens Schweiz AG for the co-funding of my project. I am further indebted for their support and helpful discussions, namely Ivan L¨otscher, Markus Gwerder and Bruno Illi of Siemens Building and operating constraints are transformed into mixed-integer linear in- equalities to integrate them

  13. Energy optimization of Hydrogen production from biomass

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    production cost 0.67 $/kg. Keywords: Energy, Biofuels, Alternative fuels, Fuel cells, Water of the fabric that covered the airship. In 1950's the first practical fuel cell was presented by Francis T. Bacon. Current developments on fuel cell technology for both stationary generation of electricity

  14. Method for controlling energy density for reliable pulsed laser deposition of thin films

    SciTech Connect (OSTI)

    Dowden, P. C., E-mail: dowden@lanl.gov, E-mail: qxjia@lanl.gov; Bi, Z.; Jia, Q. X., E-mail: dowden@lanl.gov, E-mail: qxjia@lanl.gov [Center for Integrated Nanotechnologies, Division of Materials Physics and Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-02-15T23:59:59.000Z

    We have established a methodology to stabilize the laser energy density on a target surface in pulsed laser deposition of thin films. To control the focused laser spot on a target, we have imaged a defined aperture in the beamline (so called image-focus) instead of focusing the beam on a target based on a simple “lens-focus.” To control the laser energy density on a target, we have introduced a continuously variable attenuator between the output of the laser and the imaged aperture to manipulate the energy to a desired level by running the laser in a “constant voltage” mode to eliminate changes in the lasers’ beam dimensions. This methodology leads to much better controllability/reproducibility for reliable pulsed laser deposition of high performance electronic thin films.

  15. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01T23:59:59.000Z

    77 5.2 Wind Energy Conversion System . . . . .Optimization and Control in Wind Energy Conversion SystemsAC matrix con- verter for wind energy conversion system,” in

  16. Best Practice for Energy Efficient Cleanrooms: Cooling tower and condenser water optimization

    E-Print Network [OSTI]

    Xu, Tengfang

    2005-01-01T23:59:59.000Z

    for Energy Efficient Cleanrooms: Cooling Tower and Condenserfor Energy Efficient Cleanrooms: Cooling tower and condensertower and condenser water optimization Summary Cleanroom energy

  17. Optimal Energy Management for a Hybrid Energy Storage System Combining Batteries and Double

    E-Print Network [OSTI]

    Paderborn, Universität

    Optimal Energy Management for a Hybrid Energy Storage System Combining Batteries and Double Layer storage for operation. High demands concerning power and energy density, small volume and weight is to combine storage technologies with complementary characteristics as a hybrid energy storage system. Thus

  18. Optimal Energy Management for a Hybrid Energy Storage System for Electric Vehicles Based on

    E-Print Network [OSTI]

    Paderborn, Universität

    Optimal Energy Management for a Hybrid Energy Storage System for Electric Vehicles Based are used as energy storage. The size of the battery depends not only on the driving range, but also Deterministic Dynamic Programming. To determine an energy management to control the power flows to the storage

  19. OpenEI:Projects/Search Engine Optimization | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio: EnergyProjects/Search Engine Optimization

  20. Cooling Tower Considerations for Energy Optimizations

    E-Print Network [OSTI]

    Burger, R.

    1986-01-01T23:59:59.000Z

    accumulat- ing in the strainers and tubes. The California Redwood Institute states that the service life of thin section Redwood used in cooling towers .is a'pproximately 15 to 20 years. Therefore, in these older-type towers the fill Is usually... of the art cellular film fill packing. Figure 6. Eight cell blow-thru tower where rebuilding lowered the water temperature 4OF greatly reducing compressor head pressures and temperatures thereby lowering energy consumption throughout the system...

  1. Optimal Privacy-Preserving Energy Management for Smart Meters

    E-Print Network [OSTI]

    Reisslein, Martin

    Optimal Privacy-Preserving Energy Management for Smart Meters Lei Yang, Xu Chen, Junshan Zhang Abstract--Smart meters, designed for information collection and system monitoring in smart grid, report a tradeoff between the smart meter data privacy and the electricity bill. In general, a major challenge

  2. Optimizing potential energy functions for maximal intrinsic hyperpolarizability

    SciTech Connect (OSTI)

    Zhou Juefei; Szafruga, Urszula B.; Kuzyk, Mark G. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Watkins, David S. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Department of Mathematics, Washington State University, Pullman, Washington 99164-3113 (United States)

    2007-11-15T23:59:59.000Z

    We use numerical optimization to study the properties of (1) the class of one-dimensional potential energy functions and (2) systems of point nuclei in two dimensions that yield the largest intrinsic hyperpolarizabilities, which we find to be within 30% of the fundamental limit. In all cases, we use a one-electron model. It is found that a broad range of optimized potentials, each of very different character, yield the same intrinsic hyperpolarizability ceiling of 0.709. Furthermore, all optimized potential energy functions share common features such as (1) the value of the normalized transition dipole moment to the dominant state, which forces the hyperpolarizability to be dominated by only two excited states and (2) the energy ratio between the two dominant states. All optimized potentials are found to obey the three-level ansatz to within about 1%. Many of these potential energy functions may be implementable in multiple quantum well structures. The subset of potentials with undulations reaffirm that modulation of conjugation may be an approach for making better organic molecules, though there appear to be many others. Additionally, our results suggest that one-dimensional molecules may have larger diagonal intrinsic hyperpolarizability {beta}{sub xxx}{sup int} than higher-dimensional systems.

  3. OPTIMIZATION OF THE PARAMETERS OF A STORAGE RING FOR A HIGH POWER XUV FREE ELECTRON LASER

    E-Print Network [OSTI]

    Jackson, A.

    2010-01-01T23:59:59.000Z

    A.M. Sessler. 'free Electron Laser . LBL -l 8905 (JanuaryFOR A HIGH POWER XUV FREE ELECTRON LASER. A. Jackson, J.for a High Power XUV Free Electron Laser," (LBL'19771, June,

  4. Terawatt x-ray free-electron-laser optimization by transverse electron distribution shaping

    E-Print Network [OSTI]

    Emma, C; Wu, J; Fang, K; Chen, S; Serkez, S; Pellegrini, C

    2014-01-01T23:59:59.000Z

    33rd International Free Electron Laser Conference, Shanghai,TERAWATT X-RAY FREE-ELECTRON-LASER … Phys. Rev. ST Accel.23rd International Free Electron Laser Conference and 8th

  5. Data Center Optimization Plan | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPMMilestone | DepartmentEA

  6. E85 Optimized Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrew Bittner About UsDurable,Presentation from the

  7. E85 Optimized Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrew Bittner About UsDurable,Presentation from the2009

  8. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    1.1.3.2 Fusion Energy . . . . . . . . . 1.1.3.3 Fission-Laser Inertial Fusion-based Energy 2.1 Potentialaspects of magnetic fusion energy, September 1989. 1.1.3.2 [

  9. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    SciTech Connect (OSTI)

    Pollock, B

    2012-03-19T23:59:59.000Z

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 10{sup 18} cm{sup -3} in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a limited, defined region. Using this technique a 460 MeV electron beam was produced with an energy spread of 5%. This technique is directly scalable to multi-GeV electron beam generation with sub-percent energy spreads.

  10. Genetic algorithm applied to the optimization of quantum cascade lasers with second harmonic generation

    SciTech Connect (OSTI)

    Gaji?, A. [School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade (Serbia); Telekom Srbija, a.d., Takovska 2, 11000 Belgrade (Serbia); Radovanovi?, J., E-mail: radovanovic@etf.bg.ac.rs; Milanovi?, V. [School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade (Serbia); Indjin, D.; Ikoni?, Z. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2014-02-07T23:59:59.000Z

    A computational model for the optimization of the second order optical nonlinearities in GaInAs/AlInAs quantum cascade laser structures is presented. The set of structure parameters that lead to improved device performance was obtained through the implementation of the Genetic Algorithm. In the following step, the linear and second harmonic generation power were calculated by self-consistently solving the system of rate equations for carriers and photons. This rate equation system included both stimulated and simultaneous double photon absorption processes that occur between the levels relevant for second harmonic generation, and material-dependent effective mass, as well as band nonparabolicity, were taken into account. The developed method is general, in the sense that it can be applied to any higher order effect, which requires the photon density equation to be included. Specifically, we have addressed the optimization of the active region of a double quantum well In{sub 0.53}Ga{sub 0.47}As/Al{sub 0.48}In{sub 0.52}As structure and presented its output characteristics.

  11. Stochastic Modeling and Optimization for Energy Management in Multi-Core Systems

    E-Print Network [OSTI]

    Tasiran, Serdar

    1 Stochastic Modeling and Optimization for Energy Management in Multi-Core Systems: A Video and optimization framework which leads to effective energy management policies. At the heart of this framework lie to obtain optimal energy management policies. These policies minimize the average energy consumption using

  12. ENERGY LEVEL EFFECTS ON DEFORMATION MECHANISM IN MICRO-SCALE LASER PEEN FORMING

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    forming, is a flexible rapid prototyping and low- volume manufacturing process, which uses laser) show the potential of laser peen forming for becoming a flexible manufacturing process with desirableENERGY LEVEL EFFECTS ON DEFORMATION MECHANISM IN MICRO-SCALE LASER PEEN FORMING Youneng Wang, Yajun

  13. Optimization and integration of renewable energy sources on a community scale using Artificial Neural Networks and Genetic Algorithms

    E-Print Network [OSTI]

    Davis, Bron

    2011-01-01T23:59:59.000Z

    building design optimization." Building and Environment (programming model for optimization of the electrical energySimulated Evolutionary Optimization." IEEE TRANSACTIONS ON

  14. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    Micro-engineered first wall tungsten armor for high average power laser fusion energy systems is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first is a coordinated effort to develop laser inertial fusion energy [1]. The first stage of the HAPL program

  15. Laser spark distribution and ignition system - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced...

  16. Method for reducing energy losses in laser crystals

    DOE Patents [OSTI]

    Atherton, L.J.; DeYoreo, J.J.; Roberts, D.H.

    1992-03-24T23:59:59.000Z

    A process for reducing energy losses in crystals is disclosed which comprises: a. heating a crystal to a temperature sufficiently high as to cause dissolution of microscopic inclusions into the crystal, thereby converting said inclusions into point-defects, and b. maintaining said crystal at a given temperature for a period of time sufficient to cause said point-defects to diffuse out of said crystal. Also disclosed are crystals treated by the process, and lasers utilizing the crystals as a source of light. 12 figs.

  17. Injection of a Phase Modulated Source into the Z-Beamlet Laser for Increased Energy Extraction.

    SciTech Connect (OSTI)

    Rambo, Patrick K.; Armstrong, Darrell J.; Schwarz, Jens; Smith, Ian C; Shores, Jonathon; Speas, Christopher; Porter, John L.

    2014-11-01T23:59:59.000Z

    The Z-Beamlet laser has been operating at Sandia National Laboratories since 2001 to provide a source of laser-generated x-rays for radiography of events on the Z-Accelerator. Changes in desired operational scope have necessitated the increase in pulse duration and energy available from the laser system. This is enabled via the addition of a phase modulated seed laser as an alternative front-end. The practical aspects of deployment are discussed here.

  18. Emissions and Energy: An Integral Approach Using an Online Energy Management and Optimization Model

    E-Print Network [OSTI]

    Ruiz, D.; Ruiz, C.; Santollani, O.; Reitmeier, T.

    2010-01-01T23:59:59.000Z

    examples and results corresponding to the application of such systems to refineries will be discussed. In addition, the integration of CO2 emission costs and constraints into the online energy system models and their optimization is also explained....

  19. HAWAII NATURAL ENERGY INSTITUTEE CS 2004 Meeting www.hnei.hawaii.edu Optimization ofOptimization of

    E-Print Network [OSTI]

    HAWAII NATURAL ENERGY INSTITUTEE CS 2004 Meeting www.hnei.hawaii.edu Optimization ofOptimization manufacture #12;HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu 5 E CS 2004 Meeting The HybridThe Hybrid of HybridHybrid PhotoelectrodePhotoelectrode forfor Solar WaterSolar Water--SplittingSplitting Bjorn Marsen

  20. Improving ac motor efficiency with fuzzy logic energy optimizer

    SciTech Connect (OSTI)

    Spiegel, R.J.; Chappell, P.J.; Cleland, J.G.

    1994-08-01T23:59:59.000Z

    The paper discusses EPA's research program to develop fuzzy-logic-based energy optimizers for alternating-current (AC) induction motors driven by Adjustable Speed Drives (ASDs). The technical goals of the program are to increase the efficiency of ASD/motor combinations (especially when operating at off-rated torque/speed conditions), develop a generic controller for energy optimization that can be applied to a wide range of motors and ASDs regardless of size and application, and develop a controller for energy optimization that can eliminate the requirement for tachometer or encoder feedback, and still maintain the stability and response of closed-loop control. Electric motors use over 60% of the electrical power generated in the U.S. The U.S. population of approximately 1 billion motors use over 1700 billion kWh per year. Over 140 million new motors are sold each year. A review of the U.S. motor population reveals that 90% of the motors are less than 1 hp (fractional motors) in size, but use less than 10% of the electricity consumed by motors. More that 80% of the electricity used by motors is consumed by less than 1% of the motor population (motors greater than 20 hp). Thus, it is clear that large energy savings from improvement in motor efficiency could be achieved from a relatively small motor population.

  1. Laser propagation and energy absorption by an argon spark C. V. Bindhu, S. S. Harilal,a)

    E-Print Network [OSTI]

    Tillack, Mark

    Laser propagation and energy absorption by an argon spark C. V. Bindhu, S. S. Harilal,a) M. S The laser propagation and energy absorption of an argon spark induced by a laser at different pressures is investigated. 8 ns pulses from a frequency-doubled Q-switched Nd:YAG laser are used to create the spark

  2. Optimal Control of Distributed Energy Resources using Model Predictive Control

    SciTech Connect (OSTI)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Elizondo, Marcelo A.; Zhang, Wei; Lu, Shuai; Samaan, Nader A.; Butler-Purry, Karen

    2012-07-22T23:59:59.000Z

    In an isolated power system (rural microgrid), Distributed Energy Resources (DERs) such as renewable energy resources (wind, solar), energy storage and demand response can be used to complement fossil fueled generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation. The problem is formulated as a multi-objective optimization problem with the goals of minimizing fuel costs and changes in power output of diesel generators, minimizing costs associated with low battery life of energy storage and maintaining system frequency at the nominal operating value. Two control modes are considered for controlling the energy storage to compensate either net load variability or wind variability. Model predictive control (MPC) is used to solve the aforementioned problem and the performance is compared to an open-loop look-ahead dispatch problem. Simulation studies using high and low wind profiles, as well as, different MPC prediction horizons demonstrate the efficacy of the closed-loop MPC in compensating for uncertainties in wind and demand.

  3. Optimizing Architectural and Structural Aspects of Buildings towards Higher Energy Efficiency

    E-Print Network [OSTI]

    Boyer, Edmond

    Optimizing Architectural and Structural Aspects of Buildings towards Higher Energy Efficiency, intelligent building design, energy efficiency, construction costs, multi-objective optimization. 1 for the optimization of buildings, in terms of sustainable development, is the reduction of energy use (while also

  4. TIMELY DELIVERY OF LASER INERTIAL FUSION ENERGY (LIFE)

    SciTech Connect (OSTI)

    Dunne, A M

    2010-11-30T23:59:59.000Z

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. A key goal of the NIF is to demonstrate fusion ignition for the first time in the laboratory. Its flexibility allows multiple target designs (both indirect and direct drive) to be fielded, offering substantial scope for optimization of a robust target design. In this paper we discuss an approach to generating gigawatt levels of electrical power from a laser-driven source of fusion neutrons based on these demonstration experiments. This 'LIFE' concept enables rapid time-to-market for a commercial power plant, assuming success with ignition and a technology demonstration program that links directly to a facility design and construction project. The LIFE design makes use of recent advances in diode-pumped, solid-state laser technology. It adopts the paradigm of Line Replaceable Units utilized on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. A demonstration LIFE plant based on these design principles is described, along with the areas of technology development required prior to plant construction. A goal-oriented, evidence-based approach has been proposed to allow LIFE power plant rollout on a time scale that meets policy imperatives and is consistent with utility planning horizons. The system-level delivery builds from our prior national investment over many decades and makes full use of the distributed capability in laser technology, the ubiquity of semiconductor diodes, high volume manufacturing markets, and U.S. capability in fusion science and nuclear engineering. The LIFE approach is based on the ignition evidence emerging from NIF and adopts a line-replaceable unit approach to ensure high plant availability and to allow evolution from available technologies and materials. Utilization of a proven physics platform for the ignition scheme is an essential component of an acceptably low-risk solution. The degree of coupling seen on NIF between driver and target performance mandates that little deviation be adopted from the NIF geometry and beamline characteristics. Similarly, the strong coupling between subsystems in an operational power plant mandates that a self-consistent solution be established via an integrated facility delivery project. The benefits of separability of the subsystems within an IFE plant (driver, chamber, targets, etc.) emerge in the operational phase of a power plant rather than in its developmental phase. An optimized roadmap for IFE delivery needs to account for this to avoid nugatory effort and inconsistent solutions. For LIFE, a system design has been established that could lead to an operating power plant by the mid-2020s, drawing from an integrated subsystem development program to demonstrate the required technology readiness on a time scale compatible with the construction plan. Much technical development work still remains, as does alignment of key stakeholder groups to this newly emerging development option. If the required timeline is to be met, then preparation of a viable program is required alongside the demonstration of ignition on NIF. This will enable timely analysis of the technical and economic case and establishment of the appropriate delivery partnership.

  5. Optimization of a hybrid solar energy collector system 

    E-Print Network [OSTI]

    Shinkman, Alan M.

    1981-01-01T23:59:59.000Z

    OPTIMIZATION OF A HYBRID SOLAR ENERGY COLLECTOR SYSTEM A Thesis by ALAN M. SHI NEMAN Submitted to the Graduate College of Texas A&N University in partial fulfillment of the requirement for the degree MASTER OF SCIENCE May 1981 Major Subject... the investment tax credit for farm and ranch operations, 5) establishing a progressive property tax, 6) making certain forms of vertical integration in agriculture a violation of anti-trust laws, 7) prohibiting foreign ownership of farmland, and 8) limiting...

  6. Optimization of a hybrid solar energy collector system

    E-Print Network [OSTI]

    Shinkman, Alan M.

    1981-01-01T23:59:59.000Z

    OPTIMIZATION OF A HYBRID SOLAR ENERGY COLLECTOR SYSTEM A Thesis by ALAN M. SHI NEMAN Submitted to the Graduate College of Texas A&N University in partial fulfillment of the requirement for the degree MASTER OF SCIENCE May 1981 Major Subject...: (Chairman of Committee) (Member) (Member) (Me et) (Head o Department) May 1981 wmezg ABSTRACT The Structural Impact of Commodity Farm Programs on Farms in the Southern Texas High Plains. (May 1981) Christina Ray Shirley, B. S. , Illinois State...

  7. Method and apparatus for delivering high power laser energy over long distances

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2013-08-20T23:59:59.000Z

    Systems, devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser drilling of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates.

  8. The Relationship between Water and Energy: Optimizing Water and Energy 

    E-Print Network [OSTI]

    Finley, T.; Fennessey, K.; Light, R.

    2007-01-01T23:59:59.000Z

    In an effort to conserve water, drought-proof operating plants and control costs, the critical relationship of water and energy is clearly exposed. Five years of effort has transpired into countless studies, more than 100 projects and a clear...

  9. The Relationship between Water and Energy: Optimizing Water and Energy

    E-Print Network [OSTI]

    Finley, T.; Fennessey, K.; Light, R.

    2007-01-01T23:59:59.000Z

    understanding that the highest value opportunities for water conservation usually exist where there is the strongest interaction of water and energy. Steam management systems, process cooling, high quality water production and waste water treatment represent...

  10. Proceedings of the International Conference on Lasers `95, eds. V.J. Corcoran and T.A. Goldman, STS Press, McLean VA, 1996, pp. 225-231. OPTIMIZING HIGH PRESSURE CHEMICAL OXYGEN-IODINE LASERS

    E-Print Network [OSTI]

    Carroll, David L.

    Press, McLean VA, 1996, pp. 225-231. OPTIMIZING HIGH PRESSURE CHEMICAL OXYGEN-IODINE LASERS David L laser model was baselined to existing oxygen-iodine research assessment and device improvement chemical(1) generator. It may be possible to improve high pressure RADICL performance by increasing the number of large

  11. Optimized Pump Systems Save Coal Preparation Plant Money and Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy8 * October 2006 OptimizeINDUSTRIAL

  12. Optimizing Your Motor-Driven System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy8 * OctoberDepartmentOPTIMIZING

  13. Laser Drills Could Relight Geothermal Energy Dreams | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLEDControlDepartment

  14. Renewable Energy Optimization Report for Naval Station Newport

    SciTech Connect (OSTI)

    Robichaud, R.; Mosey, G.; Olis, D.

    2012-02-01T23:59:59.000Z

    In 2008, the U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage the development of renewable energy (RE) on potentially contaminated land and mine sites. As part of this effort, EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island. NREL's Renewable Energy Optimization (REO) tool was utilized to identify RE technologies that present the best opportunity for life-cycle cost-effective implementation while also serving to reduce energy-related carbon dioxide emissions and increase the percentage of RE used at NAVSTA Newport. The technologies included in REO are daylighting, wind, solar ventilation preheating (SVP), solar water heating, photovoltaics (PV), solar thermal (heating and electric), and biomass (gasification and cogeneration). The optimal mix of RE technologies depends on several factors including RE resources; technology cost and performance; state, utility, and federal incentives; and economic parameters (discount and inflation rates). Each of these factors was considered in this analysis. Technologies not included in REO that were investigated separately per NAVSTA Newport request include biofuels from algae, tidal power, and ground source heat pumps (GSHP).

  15. Optimizing the FLASH code: preparing for Mira BG/Q and improving the laser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize carbon dioxide

  16. Overview of High Energy Lasers: Past, Present, and Future? D. L. Carroll1

    E-Print Network [OSTI]

    Carroll, David L.

    at high energy laser systems and their effects, respectively. Einstein published the concept of stimulated for a problem" and this needed to be addressed. Weapon-type "ray guns" were commonly envisioned (and liberally) to be a daunting challenge, especially so for handheld weapon systems. Still, several impressive high energy laser

  17. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    DOE Patents [OSTI]

    Zhang, Shukui

    2013-06-18T23:59:59.000Z

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  18. Building Energy Optimization (BEopt) Software | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSiding RetrofitforCamberlyDepartment BEopt 2.4 Now

  19. BuildingIQ, Inc: Predictive Energy Optimization | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState and localStudy - PPLBuildingBuildingIQ,

  20. Building Energy Optimization (BEopt) Software | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartmentDavidDepartment ofAmirBuilding

  1. NREL-Renewable Energy Optimization Presentation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/Ames GlobalViewLCI

  2. NREL-Renewable Energy Optimization Presentation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/Ames GlobalViewLCI(Redirected from

  3. Steam distribution and energy delivery optimization using wireless sensors

    SciTech Connect (OSTI)

    Olama, Mohammed M [ORNL; Allgood, Glenn O [ORNL; Kuruganti, Phani Teja [ORNL; Sukumar, Sreenivas R [ORNL; Djouadi, Seddik M [ORNL; Lake, Joe E [ORNL

    2011-01-01T23:59:59.000Z

    The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  4. Predictive energy Optimization: The Next Generation of Energy Management 

    E-Print Network [OSTI]

    Dickinson, P.

    2013-01-01T23:59:59.000Z

    energy management systems. A quantum leap in building intelligence is required to close the gap between the current state of building operations and the needs of smart grids and smart cities. Unfortunately for the building HVAC controls industry... information and other information and make informed decisions. These informed decisions present the quantum leap required to bridge the gap between buildings run on rules of thumb to the smart buildings required by smart grids and smart cities. Figure...

  5. Predictive energy Optimization: The Next Generation of Energy Management

    E-Print Network [OSTI]

    Dickinson, P.

    2013-01-01T23:59:59.000Z

    energy management systems. A quantum leap in building intelligence is required to close the gap between the current state of building operations and the needs of smart grids and smart cities. Unfortunately for the building HVAC controls industry... information and other information and make informed decisions. These informed decisions present the quantum leap required to bridge the gap between buildings run on rules of thumb to the smart buildings required by smart grids and smart cities. Figure...

  6. Optimal allocation of International Atomic Energy Agency inspection resources

    SciTech Connect (OSTI)

    Markin, J.T.

    1987-12-01T23:59:59.000Z

    The Safeguards Department of the International Atomic Energy Agency (IAEA) conducts inspections to assure the peaceful use of a state's nuclear materials and facilities. Because of limited resources for conducting inspections, the careful disposition of inspection effort among these facilities is essential if the IAEA is to attain its safeguards goals. This report describes an optimization procedure for assigning an inspection effort to maximize attainment of IAEA goals. The procedure does not require quantitative estimates of safeguards effectiveness, material value, or facility importance. Instead, the optimization is based on qualitative, relative prioritizations of inspection activities and materials to be safeguarded. This allocation framework is applicable to an arbitrary group of facilities such as a state's fuel cycle, the facilities inspected by an operations division, or all of the facilities inspected by the IAEA.

  7. Monte Carlo study for optimal conditions in single-shot imaging with femtosecond x-ray laser pulses

    SciTech Connect (OSTI)

    Park, Jaehyun; Ishikawa, Tetsuya; Song, Changyong [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan)] [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Joti, Yasumasa [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)] [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2013-12-23T23:59:59.000Z

    Intense x-ray pulses from x-ray free electron lasers (XFELs) enable the unveiling of atomic structure in material and biological specimens via ultrafast single-shot exposures. As the radiation is intense enough to destroy the sample, a new sample must be provided for each x-ray pulse. These single-particle delivery schemes require careful optimization, though systematic study to find such optimal conditions is still lacking. We have investigated two major single-particle delivery methods: particle injection as flying objects and membrane-mount as fixed targets. The optimal experimental parameters were searched for via Monte Carlo simulations to discover that the maximum single-particle hit rate achievable is close to 40%.

  8. DOE Zero Energy Ready Home Webinar: Building Energy Optimization (BEopt)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of EnergyCustom Home|PV-ReadySoftware | Department

  9. Sandia Energy - Current Energy Converter Array Optimization Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's SequimReactors To Receive UpinCumminsCurrent

  10. Optimizing the Energy Delivery via V2G Systems based on Stochastic Inventory Theory

    E-Print Network [OSTI]

    Zhuang, Weihua

    1 Optimizing the Energy Delivery via V2G Systems based on Stochastic Inventory Theory Hao Liang, Fellow, IEEE Abstract--In this paper, we study the optimal energy delivery problem from viewpoints formulate the optimization problem based on a general plug- in hybrid electric vehicle (PHEV) model, taking

  11. Optimizing the Output of a Human-Powered Energy Harvesting System with Miniaturization and Integrated Control

    E-Print Network [OSTI]

    Potkonjak, Miodrag

    1 Optimizing the Output of a Human-Powered Energy Harvesting System with Miniaturization mechanical energy from human foot-strikes and explore its configuration and control towards optimized energy output. Dielectric Elastomers (DEs) are high-energy density, soft, rubber-like material

  12. Self-Optimization Energy Management Considering Stochastic Influences for a Hybrid

    E-Print Network [OSTI]

    Paderborn, Universität

    Self-Optimization Energy Management Considering Stochastic Influences for a Hybrid Energy Storage--Electric and hybrid-electric vehicles place high de- mands for peak power, energy content and efficiency on the en management, hybrid energy storage system, self-optimization I. INTRODUCTION TODAY'S electric and hybrid

  13. Components for Optimized SCR Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational|ofSeptember 3, 2013 Leotek:for Optimized SCR

  14. Addressing Control of Hazardous Energy (COHE) Requirements in a Laser Safety Program

    SciTech Connect (OSTI)

    Woods, Michael; /SLAC

    2012-02-15T23:59:59.000Z

    OSHA regulation 29CFR1910.147 specifies control of hazardous energy requirements for 'the servicing and maintenance of machines and equipment in which the unexpected energization or start up of the machines or equipment, or release of stored energy could cause injury to employees.' Class 3B and Class 4 laser beams must be considered hazardous energy sources because of the potential for serious eye injury; careful consideration is therefore needed to safely de-energize these lasers. This paper discusses and evaluates control of hazardous energy principles in this OSHA regulation, in ANSI Z136.1 ''Safe Use of Lasers,'' and in ANSI Z244.1 ''Control of Hazardous Energy, Lockout/Tagout and Alternative Methods.'' Recommendations are made for updating and improving CoHE (control of hazardous energy) requirements in these standards for their applicability to safe laser operations.

  15. Weather forecast-based optimization of integrated energy systems.

    SciTech Connect (OSTI)

    Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

    2009-03-01T23:59:59.000Z

    In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

  16. Optimal operation and design of solar-thermal energy storage systems

    E-Print Network [OSTI]

    Lizarraga-García, Enrique

    2012-01-01T23:59:59.000Z

    The present thesis focuses on the optimal operation and design of solar-thermal energy storage systems. First, optimization of time-variable operation to maximize revenue through selling and purchasing electricity to/from ...

  17. A comparison of global optimization algorithms with standard benchmark functions and real-world applications using Energy Plus

    E-Print Network [OSTI]

    Kamph, Jerome Henri

    2010-01-01T23:59:59.000Z

    hybrid PSO/HJ, in minimizing standard benchmark functions and real-world building energy optimization

  18. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOE Patents [OSTI]

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11T23:59:59.000Z

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  19. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOE Patents [OSTI]

    Albrecht, Georg (Livermore, CA); George, E. Victor (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sooy, Walter (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

    1996-01-01T23:59:59.000Z

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

  20. Optimal Real-time Dispatch for Integrated Energy Systems

    E-Print Network [OSTI]

    Firestone, Ryan Michael

    2007-01-01T23:59:59.000Z

    the optimization of cogeneration dispatch in a deregulatedcomprised of on-site cogeneration of heat and electricity,of optimal control to a cogeneration system over current,

  1. Effects of plasma spatial profile on conversion efficiency of laser-produced plasma

    E-Print Network [OSTI]

    Harilal, S. S.

    -produced plasma DPP , and hybrid devices need to be optimized to achieve sufficient brightness with mini- mum the main laser pulse.8­10 The optimization of target geometry for efficient laser energy absorption to be developed using the High Energy Interac- tion with General Heterogeneous Target Systems HEIGHTS computer

  2. Optimal Power Control for Energy Harvesting Transmitters in an Interference Channel

    E-Print Network [OSTI]

    Yener, Aylin

    water- filling algorithm. A practical distributed algorithm requiring only local energy harvestingOptimal Power Control for Energy Harvesting Transmitters in an Interference Channel Kaya harvesting transmit- ters and two corresponding receivers are considered. Energy harvesting transmitters have

  3. Neutronics Assessment of Blanket Options for the HAPL Laser Inertial Fusion Energy Chamber

    E-Print Network [OSTI]

    Raffray, A. René

    -cooled lithium blanket, a helium-cooled solid breeder blanket, and a dual-coolant lithium lead blanket of the reference blanket. Keywords-Laser fusion; lithium blanket; solid breeder; lithium lead; tritium breedingNeutronics Assessment of Blanket Options for the HAPL Laser Inertial Fusion Energy Chamber M

  4. Proton scattering on carbon nuclei in bichromatic laser field at moderate energies

    E-Print Network [OSTI]

    I. F. Barna; S. Varró

    2015-06-05T23:59:59.000Z

    We present the general theory for proton nuclei scattering in a bichromatic laser field. As a physical example we consider proton collision on carbon twelve at 49 MeV/amu moderate energies in the field of a titan sapphire laser with its second harmonic.

  5. Geometry of attosecond laser pulses and photon-photon scattering at high energies

    E-Print Network [OSTI]

    Tuchin, Kirill

    2009-01-01T23:59:59.000Z

    We derive the total cross section for scattering of a photon on an ultra-short laser pulse at high energies. We take into account all multi-photon interactions. We argue that the nonlinear effects due to these interactions become important at very high intensities of the laser pulse. We demonstrate however, that these intensities are significantly lower than the Schwinger critical value.

  6. Demontration of Integrated Optimization Software at the Baldwin Energy Complex

    SciTech Connect (OSTI)

    Rob James; John McDermott; Sanjay Patnaik; Steve Piche`

    2009-01-07T23:59:59.000Z

    This project encompassed the design, development, and demonstration of integrated online optimization systems at Dynegy Midwest Generation's Baldwin Energy Complex (BEC) located in Baldwin, Illinois. The overall project objective was to improve coal-based generation's emission profile, efficiency, maintenance requirements and plant asset life in order to enhance the long-term viability of the United States abundant coal resources. Five separate but integrated optimization products were developed, addressing combustion, sootblowing, SCR operations, overall unit thermal performance, and plant-wide availability optimization. Optimization results are inherently unit-specific and cannot be known for a particular generating unit in advance. However, NeuCo believed that the following were reasonable targets for the completed, integrated set of products: Furnace NOx reduction improvement by 5%, Heat rate improvement by 1.5%, Increase of annual Available MWh by 1.5%, Commensurate reductions in greenhouse gases, mercury, and particulates; and Commensurate increases in profitability from lower costs, improved reliability, and greater commercial availability. The goal during Phase I was to establish each system and demonstrate their integration in unified plant optimization. Efforts during Phase I focused on: (1) developing, deploying, integrating, and testing prototypes for each of the five products; (2) identifying and addressing issues required for the products to integrate with plant operations; and (3) systematically collecting and assimilating feedback to improve subsequent product releases. As described in the Phase II continuation application NeuCo successfully achieved the goal for Phase I. The goal of Phase II was to improve upon the products installed and tested in Phase I and to quantify the benefits of the integrated system. As this report documents, NeuCo has also successfully achieved the goal for Phase II. The overall results of the project, compared with the project goals, are: (1) NOx Reduction: The 5% target for NOx reduction was exceeded with average CEMS and SCR Inlet (furnace) NOx reduction of between 12% and 14%. (2) Heat Rate Improvement: The optimization systems delivered an average heat rate improvement of between 0.67% and 0.7%. This falls short of the 1.5% heat rate improvement target largely because Cyclone Stability (availability) and CEMS and SCR Inlet NOx were prioritized over heat rate in the event they needed to be traded-off with one another. A different prioritization of objectives could have driven a different balance, thereby meeting the target of 1.5% improvement. There were also several factors that could have been masking greater heat rate improvements such as the decrease in fuel density over the course of the project and the impact of actions taken as a result of advice provided by the optimizers that are difficult to quantify. (3) Increased Annual Available MWh: Although difficult to measure precisely, the target of increasing available MWh's by 1.5% was met by providing prioritized alerts and knowledge-based diagnostics for a wide array of plant equipment and process anomalies; helping the plant to move from high sulfur, high Btu Illinois coal to PRB and run that fuel at low stoichiometries without derates; and improved management of cyclone flame quality as well as improved vigilance with respect to cyclone conditions which avoided some degree of temporary de-rate due to cyclone slag build up. (4) Commensurate Reductions in Greenhouse Gases, Mercury, and Particulates: Reductions in all three of these indices can be associated directly with the optimization leverage observed in the heat rate and NOx reductions. (5) Commensurate Increases in Profitability from Lower Costs, Improved Reliability, and Greater Commercial Availability: Commensurate improvements in costs, reliability and availability resulted from the previously described benefits. Also playing a role were the sustained operation of the cyclones while using more available, less expensive but off-design fuel; more effective catal

  7. Oneida Tribe of Indians of Wisconsin Energy Optimization Model

    SciTech Connect (OSTI)

    Troge, Michael [Project Manager

    2014-12-30T23:59:59.000Z

    Oneida Nation is located in Northeast Wisconsin. The reservation is approximately 96 square miles (8 miles x 12 miles), or 65,000 acres. The greater Green Bay area is east and adjacent to the reservation. A county line roughly splits the reservation in half; the west half is in Outagamie County and the east half is in Brown County. Land use is predominantly agriculture on the west 2/3 and suburban on the east 1/3 of the reservation. Nearly 5,000 tribally enrolled members live in the reservation with a total population of about 21,000. Tribal ownership is scattered across the reservation and is about 23,000 acres. Currently, the Oneida Tribe of Indians of Wisconsin (OTIW) community members and facilities receive the vast majority of electrical and natural gas services from two of the largest investor-owned utilities in the state, WE Energies and Wisconsin Public Service. All urban and suburban buildings have access to natural gas. About 15% of the population and five Tribal facilities are in rural locations and therefore use propane as a primary heating fuel. Wood and oil are also used as primary or supplemental heat sources for a small percent of the population. Very few renewable energy systems, used to generate electricity and heat, have been installed on the Oneida Reservation. This project was an effort to develop a reasonable renewable energy portfolio that will help Oneida to provide a leadership role in developing a clean energy economy. The Energy Optimization Model (EOM) is an exploration of energy opportunities available to the Tribe and it is intended to provide a decision framework to allow the Tribe to make the wisest choices in energy investment with an organizational desire to establish a renewable portfolio standard (RPS).

  8. Optimal strategies for operating energy storage in an arbitrage Lisa Flatley

    E-Print Network [OSTI]

    Sengun, Mehmet Haluk

    Optimal strategies for operating energy storage in an arbitrage market Lisa Flatley Robert S Mac, energy storage, optimal localized algorithm. AMS subject classifications. 49K30, 93C10 1 Introduction [0, T], for an energy store which is trading in an arbitrage market. Our theory allows for leakage

  9. Modeling Zero Energy Building: technical and economical optimization Maria Ferrara1-2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Modeling Zero Energy Building: technical and economical optimization Maria Ferrara1-2 , Joseph by the recast of Energy Performance of Buildings. The aim of this work is to provide a useful method to deal combines the use of TRNSYS, building energy simulation program, with GenOpt, Generic Optimization program

  10. Secure Distributed Solution for Optimal Energy Consumption Scheduling in Smart Grid

    E-Print Network [OSTI]

    Shehab, Mohamed

    Secure Distributed Solution for Optimal Energy Consumption Scheduling in Smart Grid Mohammad Emails: {mrahman4, lbai2, mshehab, ealshaer}@uncc.edu Abstract--The demand-side energy management is crucial to optimize the energy usage with its production cost, so that the price paid by the users

  11. Optimization Intensive Energy Harvesting Mahsan Rofouei, Mohammad Ali Ghodrat, Miodrag Potkonjak

    E-Print Network [OSTI]

    Potkonjak, Miodrag

    Optimization Intensive Energy Harvesting Mahsan Rofouei, Mohammad Ali Ghodrat, Miodrag Potkonjak of primary limiting factors of MSs is their energy sensitivity. In order to overcome this limitation, we have developed an optimization intensive approach for energy harvesting. Our goal is to size and position

  12. An Energy Management Controller to Optimally Trade Off Fuel Economy and Drivability for Hybrid Vehicles

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    An Energy Management Controller to Optimally Trade Off Fuel Economy and Drivability for Hybrid Abstract--Hybrid Vehicle fuel economy performance is highly sensitive to the energy management strategy used to regulate power flow among the various energy sources and sinks. Optimal non-causal solutions

  13. EAC: A Compiler Framework for High-Level Energy Estimation and Optimization

    E-Print Network [OSTI]

    Sivasubramaniam, Anand

    University University Park, PA, 16802, USA Abstract This paper presents a novel Energy-Aware Compilation (EAC) framework that can estimate and optimize energy consumption of a given code taking as input the architec on the system power consumption. In order to develop and evaluate new energy-conscious compiler optimizations

  14. Risk-sensitive optimal switching and applications to district energy systems

    E-Print Network [OSTI]

    Glendinning, Paul

    Risk-sensitive optimal switching and applications to district energy systems Jhonny Gonzalez School. Cost optimisation of energy system assets has typically been carried out under the assumption of risk-sensitive control, storage, risk measures, op- timal switching, district energy systems. I. INTRODUCTION The optimal

  15. Energy management of HEV to optimize fuel consumption and pollutant emissions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    AVEC'12 Energy management of HEV to optimize fuel consumption and pollutant emissions Pierre Michel, several energy management strategies are proposed to optimize jointly the fuel consumption and pollutant-line strategy are given. Keywords: Hybrid Electric Vehicle (HEV), energy management, pollution, fuel consumption

  16. Electron energy boosting in laser-wake-field acceleration with external magnetic field Bapprox1 T and laser prepulses

    SciTech Connect (OSTI)

    Hosokai, Tomonao [Photon Pioneers Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan and Japan Science and Technology Agency (JST), CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Zhidkov, Alexei [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan); Yamazaki, Atsushi [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan); Mizuta, Yoshio [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Uesaka, Mitsuru [Graduate School of Engineering, University of Tokyo, 22-2 Shirane-shirakata, Tokai, Naka, Ibaraki 319-1188 (Japan); Kodama, Ryosuke [Photon Pioneers Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan) and Japan Science and Technology Agency (JST), CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2010-03-22T23:59:59.000Z

    Hundred-mega-electron-volt electron beams with quasi-monoenergetic distribution, and a transverse geometrical emittance as small as approx0.02 pi mm mrad are generated by low power (7 TW, 45 fs) laser pulses tightly focused in helium gas jets in an external static magnetic field, Bapprox1 T. Generation of monoenergetic beams strongly correlates with appearance of a straight, at least 2 mm length plasma channel in a short time before the main laser pulse and with the energy of copropagating picosecond pedestal pulses (PPP). For a moderate energy PPP, the multiple or staged electron self-injection in the channel gives several narrow peaks in the electron energy distribution.

  17. 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. HIGH-ACCURACY LASER POWER AND ENERGY METER CALIBRATION SYSTEM . . . . . . . . 2

    E-Print Network [OSTI]

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. HIGH-ACCURACY LASER POWER AND ENERGY METER CALIBRATION SYSTEM . . . . . . . . 2 2.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 High-Accuracy Calibration System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.1 Basic cryogenic radiometer operating principal

  18. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    SciTech Connect (OSTI)

    Bakeman, M.S.; Van Tilborg, J.; Nakamura, K.; Gonsalves, A.; Osterhoff, J.; Sokollik, T.; Lin, C.; Robinson, K.E.; Schroeder, C.B.; Toth, Cs.; Weingartner, R.; Gruner, F.; Esarey, E.; Leemans, W.P.

    2010-06-01T23:59:59.000Z

    The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.

  19. Essays on the Economics of Environmental Issues: The Environmental Kuznets Curve to Optimal Energy Portfolios

    E-Print Network [OSTI]

    Meininger, Aaron G.

    2012-01-01T23:59:59.000Z

    Issues: The Environmental Kuznets Curve to Optimal EnergyE. (2005), “An environmental kuznets curve analysis of u.s.proach to environmental kuznets curves using the ecological

  20. X-ray lasers and methods utilizing two component driving illumination provided by optical laser means of relatively low energy and small physical size

    DOE Patents [OSTI]

    Rosen, Mordecai D. (Berkeley, CA); Matthews, Dennis L. (El Granada, CA)

    1991-01-01T23:59:59.000Z

    An X-ray laser (10), and related methodology, are disclosed wherein an X-ray laser target (12) is illuminated with a first pulse of optical laser radiation (14) of relatively long duration having scarcely enough energy to produce a narrow and linear cool plasma of uniform composition (38). A second, relatively short pulse of optical laser radiation (18) is uniformly swept across the length, from end to end, of the plasma (38), at about the speed of light, to consecutively illuminate continuously succeeding portions of the plasma (38) with optical laser radiation having scarcely enough energy to heat, ionize, and invert them into the continuously succeeding portions of an X-ray gain medium. This inventive double pulse technique results in a saving of more than two orders of magnitude in driving optical laser energy, when compared to the conventional single pulse approach.

  1. Stochastic Optimization for Collision Selection in High Energy Physics

    E-Print Network [OSTI]

    S. Whiteson; D. Whiteson

    2006-07-10T23:59:59.000Z

    The underlying structure of matter can be deeply probed via precision measurements of the mass of the \\emph{top quark}, the most massive observed fundamental particle. Top quarks can be produced and studied only in collisions at high energy particle accelerators. Most collisions, however, do not produce top quarks; making precise measurements requires culling these collisions into a sample that is rich in collisions producing top quarks (\\emph{signal}) and spare in collisions producing other particles (\\emph{background}). Collision selection is typically performed with heuristics or supervised learning methods. However, such approaches are suboptimal because they assume that the selector with the highest classification accuracy will yield a mass measurement with the smallest statistical uncertainty. In practice, however, the mass measurement is more sensitive to some backgrounds than others. Hence, this paper presents a new approach that uses stochastic optimization techniques to directly search for selectors that minimize statistical uncertainty in the top quark mass measurement. Empirical results confirm that stochastically optimized selectors have much smaller uncertainty. This new approach contributes substantially to our knowledge of the top quark's mass, as the new selectors are currently in use selecting real collisions.

  2. Optical fiber configurations for transmission of laser energy over great distances

    DOE Patents [OSTI]

    Rinzler, Charles C; Zediker, Mark S

    2013-10-29T23:59:59.000Z

    There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.

  3. Optical fiber configurations for transmission of laser energy over great distances

    DOE Patents [OSTI]

    Rinzler, Charles C; Zediker, Mark S

    2014-11-04T23:59:59.000Z

    There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.

  4. A Composite Energy Function Based Sub-optimal Learning Control Approach for Nonlinear Systems with

    E-Print Network [OSTI]

    Sontag, Eduardo

    A Composite Energy Function Based Sub-optimal Learning Control Approach for Nonlinear Systems with nonlinear sub-optimal control to enhance control performance for a class of nonlinear system with time optimal control [1-4]. However it would be difficult to apply these methods in the presence of system

  5. A Relaxation Strategy for the Optimization of Airborne Wind Energy Sebastien Gros, M. Zanon and Moritz Diehl

    E-Print Network [OSTI]

    A Relaxation Strategy for the Optimization of Airborne Wind Energy Systems S´ebastien Gros, M. Zanon and Moritz Diehl Abstract-- Optimal control is recognized by the Airborne Wind Energy (AWE problem. Keywords : airborne wind energy, optimal control, non- convex optimization, flight control I

  6. Optimal energy-preserving conversions of quantum coherence

    E-Print Network [OSTI]

    Yuxiang Yang; Giulio Chiribella

    2015-03-05T23:59:59.000Z

    Quantum mechanics owes its name to the fact that certain physical quantities, like the energy of a hydrogen atom or the spin of an electron, are discrete. But even more distinctive is the existence of coherent superpositions, which provide an invaluable resource for quantum information processing and quantum technologies. The characterization, quantification, and manipulation of this resource are currently the object of intense research and are expected to contribute to the design of new high-performance quantum devices. In this paper we address the search for the best evolution that converts a given quantum superposition of energy eigenstates into another without exchang- ing energy with the surrounding environment. We consider both deterministic and probabilistic evolutions, obtained by measuring the environment and postselecting a subset of the outcomes. In both cases, we characterize the process that maximizes the fidelity with the target superposition. This characterization is used to design a branching sequence of probabilistic filters that increase the probability of success while reaching maximum fidelity at each iteration. We then show that a coherent superposition of different histories generated by such branching allows one to construct efficient approximations of the optimal fidelity-probability tradeoff, via a technique dubbed coherent coarse-graining. The benefits of our construction are illustrated in a number of applications to phase estimation, quantum cloning, coherent state amplification, and ancilla-driven computation.

  7. Laser ablation of electronic materials including the effects of energy coupling and plasma interactions

    SciTech Connect (OSTI)

    Zeng, Xianzhong

    2004-12-10T23:59:59.000Z

    Many laser ablation applications such as laser drilling and micromachining generate cavity structures. The study of laser ablation inside a cavity is of both fundamental and practical significance. In this dissertation, cavities with different aspect ratios (depth/diameter) were fabricated in fused silica by laser micromachining. Pulsed laser ablation in the cavities was studied and compared with laser ablation on a flat surface. The formation of laser-induced plasmas in the cavities and the effects of the cavities on the ablation processes were investigated. The temperatures and electron number densities of the resulting laser-induced plasmas in the cavities were determined from spectroscopic measurements. Reflection and confinement effects by the cavity walls and plasma shielding were discussed to explain the increased temperature and electron number density with respect to increasing cavity aspect ratio. The temporal variations of the plasma temperature and electron number density inside the cavity decreased more rapidly than outside the cavity. The effect of laser energy on formation of a plasma inside a cavity was also investigated. Propagation of the shock wave generated during pulsed laser ablation in cavities was measured using laser shadowgraph imaging and compared with laser ablation on a flat surface. It is found that outside the cavity, after about 30 ns the radius of the expanding shock wave was proportional to t2/5, which corresponds to a spherical blast wave. The calculated pressures and temperatures of the shocked air outside of the cavities were higher than those obtained on the flat surface. Lasers with femtosecond pulse duration are receiving much attention for direct fabrication of microstructures due to their capabilities of high-precision ablation with minimal damage to the sample. We have also performed experimental studies of pulsed femtosecond laser ablation on the flat surface of silicon samples and compared results with pulsed nanosecond laser ablation at a ultraviolet wavelength (266 nm). Crater depth measurements indicated that ablation efficiency was enhanced for UV femtosecond laser pulses. The electron number densities and temperatures of femtosecond-pulse plasmas decreased faster than nanosecond-pulse plasmas due to different energy deposition mechanisms. Plasma expansion in both the perpendicular and the lateral directions were studied.

  8. Design, optimization, and applications of few-cycle Ti:Sapphire lasers

    E-Print Network [OSTI]

    880-01 Chen, Li jin

    2012-01-01T23:59:59.000Z

    Ti:Sapphire mode-locked lasers are a unique technology that enables a wide variety of applications. Owing to the ultrabroadband nature of the Ti:sapphire crystal and the invention of precisely engineered dispersion-compensating ...

  9. Methods and apparatus for delivering high power laser energy to a surface

    DOE Patents [OSTI]

    Faircloth, Brian O; Zediker, Mark S; Rinzler, Charles C; Koblick, Yeshaya; Moxley, Joel F

    2013-04-23T23:59:59.000Z

    There is provided a system, apparatus and methods for providing a laser beam to borehole surface in a predetermined and energy deposition profile. The predetermined energy deposition profiles may be uniform or tailored to specific downhole applications. Optic assemblies for obtaining these predetermined energy deposition profiles are further provided.

  10. Microbunching Instability Effect Studies and Laser Heater Optimization for the SPARX FEL Accelerator

    E-Print Network [OSTI]

    Vaccarezza, C.

    2010-01-01T23:59:59.000Z

    OPTIMIZATION FOR THE SPARX FEL ACCELERATOR * C. Vaccarezza,and possibly enhance the FEL performance. delivered to theinstability effect for the SPARX FEL. Table 1: Electron beam

  11. Optimal Energy Management of a PHEV Using Trip Information

    Broader source: Energy.gov (indexed) [DOE]

    on Each section - Speed limits Optimal Parameters for Controller Route Estimation Optimization Unit 0 10 20 30 0 20 40 60 Miles mph Road schedule 2012 DOE VT Merit Review -...

  12. Timely Delivery of Laser Inertial Fusion Energy Presentation prepared for

    E-Print Network [OSTI]

    list) Cost of electricity Rate and cost of build Licensing simplicity Reliability, Availability to 1-5 years Modular laser, optics and processing equipment enables maintenance without plant shutdown

  13. Computational model for high-energy laser-cutting process

    SciTech Connect (OSTI)

    Kim, M.J.; Majumdar, P. [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Mechanical Engineering

    1995-06-01T23:59:59.000Z

    A computational model for the simulation of a laser-cutting process has been developed using a finite element method. A transient heat transfer model is considered that deals with the material-cutting process using a Gaussian continuous wave laser beam. Numerical experimentation is carried out for mesh refinements and the rate of convergence in terms of groove shape and temperature. Results are also presented for the prediction of groove depth with different moving speeds.

  14. Applications of Optimal Building Energy System Selection and Operation

    SciTech Connect (OSTI)

    Marnay, Chris; Stadler, Michael; Siddiqui, Afzal; DeForest, Nicholas; Donadee, Jon; Bhattacharya, Prajesh; Lai, Judy

    2011-04-01T23:59:59.000Z

    Berkeley Lab has been developing the Distributed Energy Resources Customer Adoption Model (DER-CAM) for several years. Given load curves for energy services requirements in a building microgrid (u grid), fuel costs and other economic inputs, and a menu of available technologies, DER-CAM finds the optimum equipment fleet and its optimum operating schedule using a mixed integer linear programming approach. This capability is being applied using a software as a service (SaaS) model. Optimisation problems are set up on a Berkeley Lab server and clients can execute their jobs as needed, typically daily. The evolution of this approach is demonstrated by description of three ongoing projects. The first is a public access web site focused on solar photovoltaic generation and battery viability at large commercial and industrial customer sites. The second is a building CO2 emissions reduction operations problem for a University of California, Davis student dining hall for which potential investments are also considered. And the third, is both a battery selection problem and a rolling operating schedule problem for a large County Jail. Together these examples show that optimization of building u grid design and operation can be effectively achieved using SaaS.

  15. Performance/Energy Optimization of DSP Transforms on the XScale Processor

    E-Print Network [OSTI]

    Franchetti, Franz

    Performance/Energy Optimization of DSP Transforms on the XScale Processor Paolo D'Alberto, Markus P). To do this, we use SPIRAL, a program generation and optimization system for signal processing transforms energy; this is especially important for devices operating on limited power sources such as batteries

  16. Optimization of Parameters in Macromolecular Potential Energy Functions by Conformational Space Annealing

    E-Print Network [OSTI]

    Lee, Jooyoung

    Optimization of Parameters in Macromolecular Potential Energy Functions by Conformational Space´sk, Sobieskiego 18, 80-952 Gdan´sk, Poland ReceiVed: March 22, 2001; In Final Form: June 4, 2001 A general protocol for refining the parameters of macromolecular potential energy functions by optimizing criteria

  17. Calculation of Protein Conformation by Global Optimization of a Potential Energy Function

    E-Print Network [OSTI]

    Lee, Jooyoung

    Calculation of Protein Conformation by Global Optimization of a Potential Energy Function Jooyoung of Gdan´sk, Gdan´sk, Poland 3Cornell Theory Center, Ithaca, New York ABSTRACT A novel hierarchical- vided by CASP3. The approach is based exclusively on the global optimization of a potential energy

  18. A Simple Asymptotically Optimal Joint Energy Allocation and Routing Scheme in Rechargeable

    E-Print Network [OSTI]

    Sinha, Prasun

    1 A Simple Asymptotically Optimal Joint Energy Allocation and Routing Scheme in Rechargeable Sensor problem for a sensor network with energy replenishment. Each sensor node consumes energy in its battery be replenished from renewable energy sources, the energy allocation should be carefully designed in order

  19. Towards Optimal Energy Store-Carry-and-Deliver for PHEVs via V2G System

    E-Print Network [OSTI]

    Zhuang, Weihua

    technology is incorporated to facilitate the energy delivery by providing electricity pricing and energy energy flow, non- stationary energy demand, battery characteristics, and TOU elec- tricity price. WeTowards Optimal Energy Store-Carry-and-Deliver for PHEVs via V2G System Hao Liang, Bong Jun Choi

  20. New Perspectives in Thermoelectric Energy Recovery System Design Optimization

    SciTech Connect (OSTI)

    Hendricks, Terry J.; Karri, Naveen K.; Hogan, Tim; Cauchy, Charles J.

    2013-02-12T23:59:59.000Z

    Abstract: Large amounts of waste heat are generated worldwide in industrial processes, automotive transportation, diesel engine exhaust, military generators, and incinerators because 60-70% of the fuel energy is typically lost in these processes. There is a strong need to develop technologies that recover this waste heat to increase fuel efficiency and minimize fuel requirements in these industrial processes, automotive and heavy vehicle engines, diesel generators, and incinerators. There are additional requirements to reduce CO2 production and environmental footprints in many of these applications. Recent work with the Strategic Environmental Research and Development Program office has investigated new thermoelectric (TE) materials and systems that can operate at higher performance levels and show a viable pathway to lightweight, small form-factor, advanced thermoelectric generator (TEG) systems to recover waste heat in many of these applications. New TE materials include nano-composite materials such as lead-antimony-silver-telluride (LAST) and lead-antimony-silver-tin-telluride (LASTT) compounds. These new materials have created opportunities for high-performance, segmented-element TE devices. New higher-performance TE devices segmenting LAST/LASTT materials with bismuth telluride have been designed and fabricated. Sectioned TEG systems using these new TE devices and materials have been designed. Integrated heat exchanger/TE device system analyses of sectioned TE system designs have been performed creating unique efficiency-power maps that provide better understandings and comparisons of design tradeoffs and nominal and off-nominal system performance conditions. New design perspectives in optimization of sectioned TE design approaches are discussed that provide insight on how to optimize such sectioned TE systems. System performance analyses using ANSYS® TE modeling capabilities have integrated heat exchanger performance models with ANSYS® TE models to extend its analysis capabilities beyond simple constant hot-side and cold-side temperature conditions . Analysis results portray external resistance effects, matched load conditions, maximum power vs. maximum efficiency points simultaneously.

  1. Lasers in Surgery and Medicine 36:281288 (2005) Influence of Laser Wavelength and Pulse Duration on

    E-Print Network [OSTI]

    Choi, Bernard

    ; laser heated blood; methemoglobin production; port wine stains; selective photothermolysis INTRODUCTION) such as port wine stain (PWS)birthmarks [1­3],telangiectasias [4], and hemangiomas [5]. PDL parameters of selectively absorbed radiant energy into thermal energy [6]. Laser wavelength, l is chosen to achieve optimal

  2. 3872 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 8, AUGUST 2013 On Optimizing Green Energy Utilization for

    E-Print Network [OSTI]

    Ansari, Nirwan

    . With the development of green energy technologies, BSs are able to be powered by green energy in order to reduce the on cellular networks are powered by both on-grid energy and green energy. We optimize the energy utilization in such networks by maximizing the utilization of green energy, and thus saving on-grid energy. The optimal usage

  3. Grazing incidence liquid metal mirrors (GILMM) for radiation hardened final optics for laser inertial fusion energy power plants*

    E-Print Network [OSTI]

    California at Los Angeles, University of

    1 Grazing incidence liquid metal mirrors (GILMM) for radiation hardened final optics for laser final optics in a laser inertial fusion energy (IFE) power plant. The amount of laser light the GILMM substrate, adaptive (deformable) optics, surface tension and low Reynolds number, laminar flow in the film

  4. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker

    E-Print Network [OSTI]

    Han Zhang; Qiaoliang Bao; Dingyuan Tang; Luming Zhao; Kianping Loh

    2009-09-30T23:59:59.000Z

    Due to its unique electronic property and the Pauli Blocking Principle, atomic layer graphene possesses wavelength-independent ultrafast saturable absorption, which can be exploited for the ultrafast photonics application. Through chemical functionalization, a graphene-polymer nanocomposite membrane was fabricated and firstly used to mode lock a fiber laser. Stable mode locked solitons with 3 nJ pulse energy, 700 fs pulse width at the 1590 nm wavelength have been directly generated from the laser. We show that graphene-polymer nanocomposites could be an attractive saturable absorber for high power fiber laser mode locking.

  5. Generation of high-energy-density ion bunches by ultraintense laser-cone-target interaction

    SciTech Connect (OSTI)

    Yang, X. H.; Zhuo, H. B., E-mail: hongbin.zhuo@gmail.com; Ma, Y. Y.; Zou, D. B.; Yu, T. P.; Ge, Z. Y.; Yin, Y.; Shao, F. Q. [College of Science, National University of Defense Technology, Changsha 410073 (China); Yu, W. [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Xu, H., E-mail: xuhanemail@gmail.com [State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073 (China); Borghesi, M., E-mail: m.borghesi@qub.ac.uk [School of Mathematics and Physics, Queen's University of Belfast, Belfast BT7 1NN (United Kingdom); Institute of Physics of the ASCR, ELI-Beamlines Project, Na Slovance 2, 18221 Prague (Czech Republic)

    2014-06-15T23:59:59.000Z

    A scheme in which carbon ion bunches are accelerated to a high energy and density by a laser pulse (?10{sup 21}?W/cm{sup 2}) irradiating cone targets is proposed and investigated using particle-in-cell simulations. The laser pulse is focused by the cone and drives forward an ultrathin foil located at the cone's tip. In the course of the work, best results were obtained employing target configurations combining a low-Z cone with a multispecies foil transversely shaped to match the laser intensity profile.

  6. Fermi energy dependence of linewidth enhancement factor of GaAlAs buried heterostructure lasers

    SciTech Connect (OSTI)

    Arakawa, Y.; Yariv, A.

    1985-11-01T23:59:59.000Z

    The linewidth enhancement factor ..cap alpha.. is measured in a number of GaAlAs lasers with different internal losses. It is found that ..cap alpha.. decreases monotonically with the increase of the loss (Fermi energy level) in agreement with the theoretical prediction. On the basis of these results the design of cavity length and mirror reflection in order to reduce the spectral linewidth of the laser output is discussed.

  7. Optimization of the baseline and the parent muon energy for a low energy neutrino factory

    E-Print Network [OSTI]

    Amol Dighe; Srubabati Goswami; Shamayita Ray

    2012-10-05T23:59:59.000Z

    We discuss the optimal setup for a low energy neutrino factory in order to achieve a 5\\sigma-discovery of a nonzero mixing angle \\theta_{13}, a nonzero CP phase \\delta_{CP}, and the mass hierarchy. We explore parent muon energies in the range 5--16 GeV, and baselines in the range 500--5000 km. We present the results in terms of the reach in sin^2\\theta_{13}, emphasizing the dependence of the optimal baseline on the true value of \\delta_{CP}. We show that the sensitivity of a given setup typically increases with parent muon energy, reaching saturation for higher energies. The saturation energy is larger for longer baselines; we present an estimate of this dependence. In the light of the recent indications of a large \\theta_{13}, we also determine how these preferences would change if indeed a large \\theta_{13} is confirmed. In such a case, the baselines ~2500 km (~1500 km) may be expected to lead to hierarchy determination (\\delta_{CP} discovery) with the minimum exposure.

  8. Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation

    E-Print Network [OSTI]

    Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave) Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave pulse cleaning over a wide range of input energies (from 0.1 to >10 mJ) and is successfully qualified

  9. Computational Research Challenges and Opportunities for the Optimization of Fossil Energy Power Generation System

    SciTech Connect (OSTI)

    Zitney, S.E.

    2007-06-01T23:59:59.000Z

    Emerging fossil energy power generation systems must operate with unprecedented efficiency and near-zero emissions, while optimizing profitably amid cost fluctuations for raw materials, finished products, and energy. To help address these challenges, the fossil energy industry will have to rely increasingly on the use advanced computational tools for modeling and simulating complex process systems. In this paper, we present the computational research challenges and opportunities for the optimization of fossil energy power generation systems across the plant lifecycle from process synthesis and design to plant operations. We also look beyond the plant gates to discuss research challenges and opportunities for enterprise-wide optimization, including planning, scheduling, and supply chain technologies.

  10. Laser assisted proton collision on light nuclei at moderate energies

    E-Print Network [OSTI]

    I. F Barna; S. Varro

    2014-06-24T23:59:59.000Z

    We present analytic angular differential cross section model for laser assisted proton nucleon scattering on a Woods-Saxon optical potential where the nth-order photon absorption is taken into account simultaneously. As a physical example we calculate cross sections for proton - $^{12}$C collision at 49 MeV in the laboratory frame where the laser intensity is in the range of $ 10^{7} - 10^{21}$ W/cm$^2$ at optical frequencies. The upper intensity limit is slightly below the relativistic regime.

  11. The CCDiode: An optimal detector for laser confocal microscopes J. Pawley, M. Blouke* and J. Janesick*

    E-Print Network [OSTI]

    Pawley, James

    by increasing the input laser power. In #12;practice, photobleaching of the dye, and in studies of living cells information can be derived from the specimen, saturation of the fluorophor, photobleaching of the dye but as its sensitive area is smaller than that of a PMT, it will require auxiliary optics when used with any

  12. Realistic Industrial Scale Energy Optimization: Part II - Analytic Techniques

    E-Print Network [OSTI]

    Kleinschrodt, F. J., III

    1982-01-01T23:59:59.000Z

    such as distillation path optimization, reaction path optimization and heat exchange optimization. These techniques are being supported by other workers in the area of efficiency measurement, availability analysis and exergy analysis which will serve to guide... and exergy analysis are all examples of targeting tech niques. They are all effective at describing where your process lies in the efficiency domain but do not really help you in telling you where you should be going. These techniques are being discussed...

  13. Low-energy x-ray and electron physics and applications to diagnostics development for laser-produced plasma research. Final report, April 30, 1980-April 29, 1981

    SciTech Connect (OSTI)

    Henke, B.L.

    1981-08-01T23:59:59.000Z

    This final report describes a collaborative extension of an ongoing research program in low-energy x-ray and electron physics into particular areas of immediate need for the diagnostics of plasmas as involved in laser-produced fusion research. It has been for the continued support for one year of a post-doctoral research associate and for three student research assistants who have been applied to the following specific efforts: (1) the continuation of our research on the absolute characterization of x-ray photocathode systems for the 0.1 to 10 keV photon energy region. The research results were applied collaboratively to the design, construction and calibration of photocathodes for time-resolved detection with the XRD and the streak and framing cameras; (2) the design, construction and absolute calibration of optimized, bolt-on spectrographs for the absolute measurement of laser-produced plasma spectra.

  14. Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries for maximization of energy density

    E-Print Network [OSTI]

    Subramanian, Venkat

    of energy density. optimization of design parameters. such as implantable cardiovascular defibrillators (ICDs) to high power/high energy applications such as hybrid carsModel-based simultaneous optimization of multiple design parameters for lithium-ion batteries

  15. Online Capable Optimized Planning of Power Split in a Hybrid Energy Storage System

    E-Print Network [OSTI]

    Paderborn, Universität

    Online Capable Optimized Planning of Power Split in a Hybrid Energy Storage System Karl Stephan, D-33095 Paderborn (Germany) {stille,romaus,boecker}@lea.upb.de Abstract--A hybrid energy storage system is an energy storage consisting of more than one type of energy storages combining

  16. Charge Migration Efficiency Optimization in Hybrid Electrical Energy Storage (HEES) Systems

    E-Print Network [OSTI]

    Pedram, Massoud

    Charge Migration Efficiency Optimization in Hybrid Electrical Energy Storage (HEES) Systems the excessive electric energy in the electrical energy storage (EES) rather than converting into a different) are typically not balanced with each other. Storage of excessive en- ergy and compensation of the energy

  17. Energy Management for an Onboard Storage System Based on Multi-Objective Optimization

    E-Print Network [OSTI]

    Paderborn, Universität

    Energy Management for an Onboard Storage System Based on Multi-Objective Optimization Tobias Knoke an onboard energy storage, the overhead line peak power and energy consumption can be reduced. The storage. This can be achieved by using an onboard energy storage, which recuperates the power during the braking

  18. OPTIMIZATION OF RUNNING STRATEGIES BASED ON ANAEROBIC ENERGY AND VARIATIONS OF VELOCITY

    E-Print Network [OSTI]

    OPTIMIZATION OF RUNNING STRATEGIES BASED ON ANAEROBIC ENERGY AND VARIATIONS OF VELOCITY AMANDINE extend this analysis, based on the equation of motion and aerobic energy, to include a balance of anaerobic energy (or accumulated oxygen deficit) and an energy recreation term when the speed decreases. We

  19. Incorporating Drivability Metrics into Optimal Energy Management Strategies for Hybrid Vehicles

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    Incorporating Drivability Metrics into Optimal Energy Management Strategies for Hybrid Vehicles fuel economy performance is highly sensitive to the energy management strategy used to select among are characterized by multiple energy sources; the control strategy to select among these multiple energy sources

  20. Models for Optimization of Energy Consumption of Pumps in a Wastewater Processing Plant

    E-Print Network [OSTI]

    Kusiak, Andrew

    ; Energy consumption; Data collection; Neural networks; Dynamic models; Statics; Water treatment plants. Author keywords: Wastewater pump models; Energy consumption; Pump energy; Data mining; Head influenceModels for Optimization of Energy Consumption of Pumps in a Wastewater Processing Plant Zijun Zhang

  1. High energy electrons and nuclear phenomena in petawatt laser-solid experiments

    SciTech Connect (OSTI)

    Cowan, T. E.; Ditmire, T.; Hatchett, S.; Pennington, D. M.; Perry, M. D.; Phillips, T. W.; Wilks, S. C.; Young, P. E. [Lawrence Livermore National Laboratory, Livermore, California (United States); Dong, B.; Takahashi, Y. [University of Alabama, Huntsville, Alabama (United States); Fountain, W.; Parnell, T. [Marshall Space Flight Center, Huntsville, Alabama (United States); Hunt, A. W. [Harvard University, Cambridge, Massachusetts (United States); Johnson, J. [University Space Research Association, Huntsville, Alabama (United States); Kuehl, T. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)

    1999-07-12T23:59:59.000Z

    The Petawatt laser at LLNL has opened a new regime of laser-matter interactions in which the quiver motion of plasma electrons is fully relativistic with energies extending well above the threshold for nuclear processes. We have developed broad-band magnetic spectrometers to measure the spectrum of high-energy electrons produced in laser-solid target experiments at the Petawatt, and have found that in addition to the expected flux of {approx}few MeV electrons characteristic of the ponderomotive potential, there is a high energy component extending to {approx}100 MeV apparently from plasma acceleration in the underdense pre-formed plasma. The generation of hard bremsstrahlung, photo-nuclear reactions, and preliminary evidence for positron-electron pair production will be discussed.

  2. High energy electrons and nuclear phenomena in petawatt laser-solid experiments

    SciTech Connect (OSTI)

    Cowan, T.E.; Ditmire, T.; Hatchett, S.; Pennington, D.M.; Perry, M.D.; Phillips, T.W.; Wilks, S.C.; Young, P.E. [Lawrence Livermore National Laboratory, Livermore, California (United States)] Dong, B. [University of Alabama, Huntsville, Alabama (United States); Parnell, T.; Takahashi, Y. [Marshall Space Flight Center, Huntsville, Alabama (United States)] Hunt, A.W. [Harvard University, Cambridge, Massachusetts (United States)] Johnson, J. [University Space Research Association, Huntsville, Alabama (United States)] Kuehl, T. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)

    1999-07-01T23:59:59.000Z

    The Petawatt laser at LLNL has opened a new regime of laser-matter interactions in which the quiver motion of plasma electrons is fully relativistic with energies extending well above the threshold for nuclear processes. We have developed broad-band magnetic spectrometers to measure the spectrum of high-energy electrons produced in laser-solid target experiments at the Petawatt, and have found that in addition to the expected flux of {approximately}few MeV electrons characteristic of the ponderomotive potential, there is a high energy component extending to {approximately}100 MeV apparently from plasma acceleration in the underdense pre-formed plasma. The generation of hard bremsstrahlung, photo-nuclear reactions, and preliminary evidence for positron-electron pair production will be discussed. {copyright} {ital 1999 American Institute of Physics.}

  3. HOT ELECTRON ENERGY DISTRIBUTIONS FROM ULTRA-INTENSE LASER SOLID INTERACTIONS

    SciTech Connect (OSTI)

    Chen, H; Wilks, S C; Kruer, W; Patel, P; Shepherd, R

    2008-10-08T23:59:59.000Z

    Measurements of electron energy distributions from ultra-intense (>10{sup 19} W/cm{sup 2}) laser-solid interactions using an electron spectrometer are presented. These measurements were performed on the Vulcan petawatt laser at Rutherford Appleton Laboratory and the Callisto laser at Lawrence Livermore National Laboratory. The effective hot electron temperatures (T{sub hot}) have been measured for laser intensities (I{lambda}{sup 2}) from 10{sup 18} W/cm{sup 2} {micro}m{sup 2} to 10{sup 21} W/cm{sup 2} {micro}m{sup 2} for the first time, and T{sub hot} is found to increase as (I{lambda}{sup 2}){sup 0.34} {+-} 0.4. This scaling agrees well with the empirical scaling published by Beg et al. (1997), and is explained by a simple physical model that gives good agreement with experimental results and particle-in-cell simulations.

  4. Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses

    SciTech Connect (OSTI)

    Fourmaux, S.; Gnedyuk, S.; Lassonde, P.; Payeur, S.; Pepin, H.; Kieffer, J. C. [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Buffechoux, S.; Albertazzi, B. [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Capelli, D.; Antici, P. [LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Dipartimento SBAI, Sapienza, Universita di Roma, Via Scarpa 16, 00161 Roma (Italy); Levy, A.; Fuchs, J. [LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Lecherbourg, L.; Marjoribanks, R. S. [Department of Physics and Institute for Optical Sciences, University of Toronto, Toronto, Ontario M5S 1A7 (Canada)

    2013-01-15T23:59:59.000Z

    We report optimization of laser-driven proton acceleration, for a range of experimental parameters available from a single ultrafast Ti:sapphire laser system. We have characterized laser-generated protons produced at the rear and front target surfaces of thin solid targets (15 nm to 90 {mu}m thicknesses) irradiated with an ultra-intense laser pulse (up to 10{sup 20} W Dot-Operator cm{sup -2}, pulse duration 30 to 500 fs, and pulse energy 0.1 to 1.8 J). We find an almost symmetric behaviour for protons accelerated from rear and front sides, and a linear scaling of proton energy cut-off with increasing pulse energy. At constant laser intensity, we observe that the proton cut-off energy increases with increasing laser pulse duration, then roughly constant for pulses longer than 300 fs. Finally, we demonstrate that there is an optimum target thickness and pulse duration.

  5. Optimal Real-time Dispatch for Integrated Energy Systems

    E-Print Network [OSTI]

    Firestone, Ryan Michael

    2007-01-01T23:59:59.000Z

    not release detailed energy consumption data, and in generalof access to actual energy consumption data limits the scopeand simulations. Energy consumption data were collected from

  6. IBM and Energy Efficiency: Systems Recommisiong and Optimization

    E-Print Network [OSTI]

    Veilleux, Y.; Boulianne, J. P.; Lefebvre, P.

    2013-01-01T23:59:59.000Z

    for optimal operation ? HVAC motor fans: Vriable speed drives (VFD) installation on air supply and return fans. Humidification System OptimizationBefore After TEMP-HUM:M2:2-46-545.pv % HR HVAC:M2-RDC-PLA:VLV-HUM.pv % SPECS HUMIDIT? MINIMUM.Value Plot... instruments added to meet control requirements. PID control loop tuning was performed for optimal operation. Measures resulted in reducing the cooling and heating required for the systems as well as the electrical load on the fan motors. Some operational...

  7. Passive tailoring of laser-accelerated ion beam cut-off energy by using double foil assembly

    SciTech Connect (OSTI)

    Chen, S. N., E-mail: sophia.chen@polytechnique.edu; Brambrink, E.; Mancic, A.; Romagnani, L.; Audebert, P.; Fuchs, J., E-mail: julien.fuchs@polytechnique.fr [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-École Polytechnique-Université Paris VI, Palaiseau (France); Robinson, A. P. L. [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)] [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Antici, P. [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-École Polytechnique-Université Paris VI, Palaiseau (France) [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-École Polytechnique-Université Paris VI, Palaiseau (France); Dipartimento SBAI, Università di Roma « La Sapienza », Via Scarpa 14-16, 00165 Roma (Italy); INRS-Énergie et Matériaux, 1650 bd. L. Boulet, Varennes, J3X1S2 Québec (Canada); D'Humières, E. [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States) [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States); Centre de Physique Théorique, CNRS-Ecole Polytechnique, 91128 Palaiseau (France); University of Bordeaux—CNRS—CEA, CELIA, UMR5107, 33405 Talence (France); Gaillard, S. [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States)] [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States); Grismayer, T.; Mora, P. [Centre de Physique Théorique, CNRS-Ecole Polytechnique, 91128 Palaiseau (France)] [Centre de Physique Théorique, CNRS-Ecole Polytechnique, 91128 Palaiseau (France); Pépin, H. [INRS-Énergie et Matériaux, 1650 bd. L. Boulet, Varennes, J3X1S2 Québec (Canada)] [INRS-Énergie et Matériaux, 1650 bd. L. Boulet, Varennes, J3X1S2 Québec (Canada)

    2014-02-15T23:59:59.000Z

    A double foil assembly is shown to be effective in tailoring the maximum energy produced by a laser-accelerated proton beam. The measurements compare favorably with adiabatic expansion simulations, and particle-in-cell simulations. The arrangement proposed here offers for some applications a simple and passive way to utilize simultaneously highest irradiance lasers that have best laser-to-ion conversion efficiency while avoiding the production of undesired high-energy ions.

  8. Tuning the electron energy by controlling the density perturbation position in laser plasma accelerators

    SciTech Connect (OSTI)

    Brijesh, P.; Thaury, C.; Phuoc, K. T.; Corde, S.; Lambert, G.; Malka, V. [Laboratoire d'Optique Appliquee, ENSTA ParisTech, CNRS UMR7639, Ecole Polytechnique, 91761 Palaiseau (France); Mangles, S. P. D.; Bloom, M.; Kneip, S. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)

    2012-06-15T23:59:59.000Z

    A density perturbation in an underdense plasma was used to improve the quality of electron bunches produced in the laser-plasma wakefield acceleration scheme. Quasi-monoenergetic electrons were generated by controlled injection in the longitudinal density gradients of the density perturbation. By tuning the position of the density perturbation along the laser propagation axis, a fine control of the electron energy from a mean value of 60 MeV to 120 MeV has been demonstrated with a relative energy-spread of 15 {+-} 3.6%, divergence of 4 {+-} 0.8 mrad, and charge of 6 {+-} 1.8 pC.

  9. Multidimensional Simulation and Optimization of Hybrid Laser and Discharge Plasma Devices for EUV Lithography

    E-Print Network [OSTI]

    Harilal, S. S.

    brightness with minimum debris generation to support the throughput requirements of High-Volume Manufacturing. In addition, optimization of source parameters, combination magnetic fields and gas jet parameters for high-volume manufacturing [1] and SEMATECH's EUV Source Program goal [2], the EUV source is required

  10. Analysis and optimization of a free-electron laser with an irregular waveguide

    E-Print Network [OSTI]

    V. A. Goryashko

    2010-04-08T23:59:59.000Z

    Using a time-dependent approach the analysis and optimization of a planar FEL-amplifier with an axial magnetic field and an irregular waveguide is performed. By applying methods of nonlinear dynamics three-dimensional equations of motion and the excitation equation are partly integrated in an analytical way. As a result, a self-consistent reduced model of the FEL is built in special phase space. The reduced model is the generalization of the Colson-Bonifacio model and takes into account the intricate dynamics of electrons in the pump magnetic field and the intramode scattering in the irregular waveguide. The reduced model and concepts of evolutionary computation are used to find optimal waveguide profiles. The numerical simulation of the original non-simplified model is performed to check the effectiveness of found optimal profiles. The FEL parameters are chosen to be close to the parameters of the experiment (S. Cheng et al. IEEE Trans. Plasma Sci. 1996, vol. 24, p. 750), in which a sheet electron beam with the moderate thickness interacts with the TE01 mode of a rectangular waveguide. The results strongly indicate that one can improve the efficiency by a factor of five or six if the FEL operates in the magnetoresonance regime and if the irregular waveguide with the optimized profile is used.

  11. ON-LINE OPTIMIZATION, ENERGY ANALYSIS AND ENVIRONMENTAL IMPACT ASSESSMENT OF SULFURIC ACID CATALYZED ALKYLATION

    E-Print Network [OSTI]

    Pike, Ralph W.

    reduction through technology modification in reactions and separations, energy conservation (pinch analysis Enterprises Refinery in Convent, Louisiana. Using the flowsheeting, on-line optimization, pinch analysis-line optimization and pinch analysis programs, and the EPA pollution index methodology. Visual Basic was used

  12. Dynamic Ping Optimization for Surveillance in Multistatic Sonar Buoy Networks with Energy Constraints

    E-Print Network [OSTI]

    Amir, Yair

    Dynamic Ping Optimization for Surveillance in Multistatic Sonar Buoy Networks with Energy optimization of ping schedule in an active sonar buoy network deployed to provide persistent surveillance management of power consumption for pinging is important to support the required lifetime of the network

  13. Energy Optimizations for Mobile Terminals via Computation Offloading

    E-Print Network [OSTI]

    Stojmenovic, Ivan

    design trends of energy efficient mobile applications. Index Terms--Mobile terminal, energy, computation result demonstrates that although energy consumption widely varies drastically depending upon to reduce the energy consumption of computation ­ remote execution. One can offload computational tasks

  14. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    SciTech Connect (OSTI)

    Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Rodriguez, Salvador B.; Ames, David E., II (Texas A& M University, College Station, TX); Rochau, Gary Eugene

    2009-09-01T23:59:59.000Z

    The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink{reg_sign}, an extension of MATLAB{reg_sign}, is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub-models for overall analysis of the system. It also provides control over key user input parameters and the ability to effectively consolidate vital output results for uncertainty/sensitivity analysis and optimization procedures. The preliminary analysis has shown promising advanced fuel cycle scenarios that include Pressure Water Reactors Pressurized Water Reactors (PWRs), Very High Temperature Reactors (VHTRs) and dedicated HEST waste incineration facilities. If deployed, these scenarios may substantially reduce nuclear waste inventories approaching environmentally benign nuclear energy system characteristics. Additionally, a spent fuel database of the isotopic compositions for multiple design and control parameters has been created for the VHTR-HEST input fuel streams. Computational approaches, analysis metrics, and benchmark strategies have been established for future detailed studies.

  15. A Framework for the Optimization of Integrated Energy Systems...

    Open Energy Info (EERE)

    Member 15 November, 2012 - 14:19 Literature Review The author proposed a generalized, control-oriented, exergy-based objective function for optimizing the ESI. It was generalized...

  16. Optimization of Energy Transfer Processes in Photosynthetic Systems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficient and robust. In this talk, I will discuss the optimization of both natural and artificial systems: A simple scaling theory is used to examine the interplay of quantum...

  17. Optimal Real-time Dispatch for Integrated Energy Systems

    E-Print Network [OSTI]

    Firestone, Ryan Michael

    2007-01-01T23:59:59.000Z

    approximately to heat- or load-follow. Where there was awas approximately to heat- or load-follow. As in Baltimore,and performance. no DG load-follow heat-follow optimal load-

  18. Simulation Models to Optimize the Energy Consumption of Buildings 

    E-Print Network [OSTI]

    Burhenne, S.; Jacob, D.

    2008-01-01T23:59:59.000Z

    In practice, building operation systems are only adjusted during commissioning. This is done manually and leads to failure-free but often inefficient operation. This work deals with the development of simulation models to describe and optimize...

  19. Local energy management through mathematical modeling and optimization

    E-Print Network [OSTI]

    Craft David (David Loren), 1973-

    2004-01-01T23:59:59.000Z

    (cont.) Extensions to the core TOTEM model include a demand charge model, used for making daily optimal control decisions when the electric bill includes a charge based on the monthly maximum power draw. The problem of ...

  20. ICREPQ (Intern. Conf. On Renewable Energies and Power Quality) 2003, Vigo (Spain) 9-11 april 2003. ECONOMIC FORMALISM FOR OPTIMIZING THE DESIGN AND ENERGY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . ECONOMIC FORMALISM FOR OPTIMIZING THE DESIGN AND ENERGY MANAGEMENT OF A HYBRID WIND/PHOTOVOLTAIC SYSTEM O@bretagne.ens-cachan.fr Abstract: The objective herein is to establish a set of rules and tools for optimizing both energy, design optimization 1. Introduction Our aim is to satisfy the energy-related demand of the consumer

  1. Optimal Real-time Dispatch for Integrated Energy Systems

    E-Print Network [OSTI]

    Firestone, Ryan Michael

    2007-01-01T23:59:59.000Z

    National Renewable Energy Laboratory’s Hybrid Optimizationas the National Renewable Energy Laboratory’s (NREL) Hybrid

  2. Energy-optimal schedules of real-time jobs with hard deadlines

    E-Print Network [OSTI]

    George, John Vijoe

    2005-11-01T23:59:59.000Z

    In this thesis, we develop algorithms that make optimal use of frequency scaling to schedule jobs with real??time requirements. Dynamic voltage scaling is a technique used to reduce energy consumption in wide variety of systems. Reducing supply...

  3. Monitoring and Optimization of Building Operations of a Low-Energy School Building

    E-Print Network [OSTI]

    Koenigsdorff, R.; Heinrich, S.; Baumann, O.; Reiser, C.

    consumption was almost met during the second year of operation in 2006 and finally achieved in 2007, due to well-working optimization measures, which were identified through monitoring of the building operation. Heating and cooling energy is mainly provided...

  4. Commissioning to Meet Space Qualification Criteria vs. Energy Consumption Optimization Focused Commissioning

    E-Print Network [OSTI]

    Sellers, D.; Irvine, L.

    2001-01-01T23:59:59.000Z

    In many cases, the commissioning process is driven by space quality criteria rather than by energy consumption and optimization criteria. This is especially true for the HVAC systems serving clean rooms in the semi-conductor and pharmaceuticals...

  5. Application Study of the Pump Water Flow Station for Building Energy Consumption Monitoring and Control Optimization

    E-Print Network [OSTI]

    Liu, G.; Liu, M.

    2006-01-01T23:59:59.000Z

    This paper presents a new building energy monitoring and pump speed control method. The pump speed is controlled to maintain the system resistance at an optimized value to approach the best pump efficiency and save pump power. The system resistance...

  6. Towards optimal energy-quality tradeoff in tracking via sensor Alessio Benavoli and Luigi Chisci

    E-Print Network [OSTI]

    Chisci, Luigi

    proportional to the number of active sensors, energy efficiency calls for the implementation, inside about the current sensor energy status. This is certainly efficient in terms of tracking qualityTowards optimal energy-quality tradeoff in tracking via sensor networks Alessio Benavoli and Luigi

  7. Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing

    E-Print Network [OSTI]

    Boutaba, Raouf

    Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing Jin Xiao, Jae--In this paper, we present demand-side energy manage- ment under real-time demand-response pricing as a task, demand-response, energy management I. INTRODUCTION The growing awareness of global climate change has

  8. Optimal Traffic-Oblivious Energy-Aware Routing For Multihop Wireless Networks

    E-Print Network [OSTI]

    Holte, Robert

    constraints. If the power supply is renewable, it is desirable that the energy consumption rate is less than the renewal rate. Lin et al. [15] study power-aware routing with renewable energy sources. Some previous workOptimal Traffic-Oblivious Energy-Aware Routing For Multihop Wireless Networks Yuxi Li Janelle Harms

  9. RETROFIT: A SOFTWARE TO SOLVE OPTIMIZATION AND IDENTIFICATION PROBLEMS APPLIED TO BUILDING ENERGY

    E-Print Network [OSTI]

    Boyer, Edmond

    RETROFIT: A SOFTWARE TO SOLVE OPTIMIZATION AND IDENTIFICATION PROBLEMS APPLIED TO BUILDING ENERGY the software ReTrofiT that specifically treats this kind of problems applied to building energy performance mod, inverse problems. INTRODUCTION Energy management systems in buildings greatly contribute

  10. Optimal Integration of Renewable Energy Resources in Data Centers with Behind-the-Meter Renewable Generator

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    1 Optimal Integration of Renewable Energy Resources in Data Centers with Behind-the-Meter Renewable-- Renewable energy resources, such as wind and solar power, are rapidly becoming generation technologies-temporal variations, the integration of renewable energy resources is usually very challenging. Some of the previously

  11. Optimal Strategies for Communication and Remote Estimation with an Energy Harvesting Sensor

    E-Print Network [OSTI]

    Teneketzis, Demosthenis

    1 Optimal Strategies for Communication and Remote Estimation with an Energy Harvesting Sensor A strategies. Communication problems with energy harvesting transmitters have been studied recently (see [1 with an energy harvesting sensor and a remote estimator. The sensor observes the state of a discrete-time source

  12. Keller's model Variable energy recreation Bounding the derivative of f Optimization of running strategies based on

    E-Print Network [OSTI]

    Boyer, Edmond

    strategies based on anaerobic energy and variations of velocity J. Fr´ed´eric Bonnans Inria-Saclay and CMAP of running strategies hal-01024231,version1-15Jul2014 #12;Keller's model Variable energy recreation Bounding.F. Bonnans, Optimization of running strategies based on anaerobic energy and variations of velocity. SIAM J

  13. SmartTecO: Context-Based Ambient Sensing and Monitoring for Optimizing Energy Consumption

    E-Print Network [OSTI]

    Beigl, Michael

    SmartTecO: Context-Based Ambient Sensing and Monitoring for Optimizing Energy Consumption Yong Ding networks and a context awareness system, the acquired data will be interpreted into different energy the actuation mod- ule a certain context, which allows managing and saving the energy consumption of home

  14. ENERGY OPTIMIZATION OF ALGEBRAIC MULTIGRID BASES \\Lambda JAN MANDEL y , MARIAN BREZINA z , AND PETR VAN

    E-Print Network [OSTI]

    Brezina, Marian

    ], we have proposed an alternative set of objectives, which includes ffl minimization of energyENERGY OPTIMIZATION OF ALGEBRAIC MULTIGRID BASES \\Lambda JAN MANDEL y , MARIAN BREZINA z , AND PETR coarse basis functions in algebraic multigrid by minimizing the sum of their energies, subject

  15. Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under

    E-Print Network [OSTI]

    Boutaba, Raouf

    Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under Real-time Demand of appliance specific adapters. Designed and implemented GHS Modeled the demand-side energy management problem (NP-hard) Designed a scheduling algorithm for demand side energy management Showed that our

  16. Optimal Sleep-Wake Policies for an Energy Harvesting Sensor Node

    E-Print Network [OSTI]

    Sharma, Vinod

    devices are solar cells, wind turbines and piezo-electric cells, which extract energy from the environmentOptimal Sleep-Wake Policies for an Energy Harvesting Sensor Node Vinay Joseph, Vinod Sharma with an energy harvesting source. In any slot, the sensor node is in one of two modes: Wake or Sleep

  17. OPTIMAL OPERATION OF AN INTEGRATED ENERGY PARK INCLUDING FOSSIL FUEL POWER GENERATION,

    E-Print Network [OSTI]

    Stanford University

    OPTIMAL OPERATION OF AN INTEGRATED ENERGY PARK INCLUDING FOSSIL FUEL POWER GENERATION, CO2 CAPTURE AND WIND A THESIS SUBMITTED TO THE DEPARTMENT OF ENERGY RESOURCES ENGINEERING OF STANFORD UNIVERSITY of Master of Science in Energy Resources Engineering. (Louis J. Durlofsky) Principal Co-Adviser I certify

  18. Cost Optimal Operation of Thermal Energy Storage System with Real-Time Prices

    E-Print Network [OSTI]

    Cost Optimal Operation of Thermal Energy Storage System with Real-Time Prices Toru Kashima, Member of the result [4]. The same can be said for time varying real-time prices. Real-time energy pricing is not yet such as chillers. Energy resources such as electricity or natural gas are bought from suppliers at certain prices

  19. Representing Energy Price Variability in Long-and Medium-term Hydropower Optimization

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    1 Representing Energy Price Variability in Long- and Medium- term Hydropower Optimization Marcelo A Resources Planning and Management, 2012, in press ABSTRACT Representing peak and off-peak energy prices and examines the reliability of an existing approximate method to incorporate hourly energy price information

  20. An Optimal Approximate Dynamic Programming Algorithm for the Energy Dispatch Problem with Grid-

    E-Print Network [OSTI]

    Powell, Warren B.

    dispatch and energy allocation decisions in the presence of grid-level storage. The model makes it possible the economic behavior of energy allocation and electric power dispatch. Linear pro- gramming has been usedAn Optimal Approximate Dynamic Programming Algorithm for the Energy Dispatch Problem with Grid

  1. An Energy and Deadline Aware Resource Provisioning, Scheduling and Optimization Framework for Cloud Systems

    E-Print Network [OSTI]

    Pedram, Massoud

    An Energy and Deadline Aware Resource Provisioning, Scheduling and Optimization Framework for Cloud demand for low-cost, high performance, and energy-efficient computing. In this large-scale, heterogeneous the sense of lowering operation costs by maximizing energy efficiency, while satisfying user deadlines

  2. An Optimal Resource Control Scheme under Fidelity and Energy Constraints in Sensor Networks

    E-Print Network [OSTI]

    Zhang, Yanyong

    1 An Optimal Resource Control Scheme under Fidelity and Energy Constraints in Sensor Networks control under the fidelity and energy constraints, we present a resource increase and decrease algorithm networks, Resource control, Fidelity, Energy efficiency I. INTRODUCTION As the technologies in MEMS

  3. On downstream hydraulic geometry and optimal energy expenditure: case study of the Ashley and Taieri Rivers

    E-Print Network [OSTI]

    Ramírez, Jorge A.

    On downstream hydraulic geometry and optimal energy expenditure: case study of the Ashley Abstract The downstream distribution of channel geometry and of the rate of energy expenditure per unit the network. We look at energy expenditure from two perspectives. (1) In the context of downstream hydraulic

  4. Optimal Control of Multi-battery Energy-aware Systems Tao Wang and Christos G. Cassandras

    E-Print Network [OSTI]

    Cassandras, Christos G.

    Optimal Control of Multi-battery Energy-aware Systems Tao Wang and Christos G. Cassandras Division or connecting to the grid for electric vehicles adds an extra level of flexibility and power control. Energy-aware Battery Model (KBM) [12], [13]. Since an efficient battery model in energy-aware systems requires not only

  5. Dynamic online optimization of a house heating system in a fluctuating energy price

    E-Print Network [OSTI]

    Skogestad, Sigurd

    production should cover the demand at any given time. One possible approach to overcome this, is demand side and weather forecasts. The dynamic energy pricing for demand load management is in itself a non of the energy consumption in a building with energy storage capabilities. The goal is to find optimal policies

  6. Dynamic online optimization of a house heating system in a fluctuating energy price

    E-Print Network [OSTI]

    Skogestad, Sigurd

    at any given time. One possible approach to overcome this drawback is de- mand side load management. Here to demand information and weather forecasts. The dynamic energy pricing for demand load management of the energy consumption in a building with energy storage capabilities. The goal is to find optimal policies

  7. Reducing Building Energy Costs Using Optimized Operation Strategies for Constant Volume Air Handling Systems

    E-Print Network [OSTI]

    Liu, M.; Athar, A.; Reddy, A.; Claridge, D. E.; Haberl, J. S.; White, E.

    1994-01-01T23:59:59.000Z

    , building energy consumption can be further reduced even after these traditional O&M measures are applied. This involves optimal adjusting of cold deck and hot deck settings according to the ambient temperature and organizing cold deck settings properly... where more than one cold deck is present (Extended O&M Measures). The cold deck and hot deck settings can be adjusted continuously by the Energy Management and Control Systems without additional investment. The optimized cold deck settings can...

  8. Webinar: Building Energy Optimization Tool (BEopt)Training

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Zero Energy Ready Home (ZERH) Program represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings,...

  9. Determination of energy thresholds on an artificial retina using a multiple-pulsed laser 

    E-Print Network [OSTI]

    Stephenson, Albert David

    1999-01-01T23:59:59.000Z

    This study is focused on determining single and multiple pulse ED?? for laser pulses of 200 ns duration. Energy thresholds in this experiment were determined on an artificial retina, for a variety of pulse widths and spot sizes. Due to numerous...

  10. Solar Energy Materials & Solar Cells 88 (2005) 6573 Investigation of pulsed non-melt laser annealing

    E-Print Network [OSTI]

    Anderson, Timothy J.

    Solar Energy Materials & Solar Cells 88 (2005) 65­73 Investigation of pulsed non-melt laser annealing on the film properties and performance of Cu(In,Ga)Se2 solar cells Xuege Wanga , Sheng S. Lia,�, C time to modify near- surface defects and related junction properties in Cu(In,Ga)Se2 (CIGS) solar cells

  11. Improving engine efficiency by extracting laser energy from hot exhaust gas RID A-1272-2007

    E-Print Network [OSTI]

    Rostovtsev, Y. V.; Matsko, A. B.; Nayak, N.; Zubairy, M. Suhail; Scully, Marlan O.

    2003-01-01T23:59:59.000Z

    1050-2947/2003/67~5!/053811~8!/$20.00 67 0538 g laser energy from hot exhaust gas ,1 M. S. Zubairy,1,2 and M. O. Scully 1,3,4 , Texas A&M University, Texas 77843-4242, USA m University, Islamabad, Pakistan s A&M University, Texas 77843, USA , D...

  12. Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level

    E-Print Network [OSTI]

    Keller, Ursula

    length to a total of 37 m. The nearly transform-limited pulses at 45 W of average output power have atmosphere to eliminate the air nonlinearity inside the resonator that previously limited the pulse energy for Diode-Pumped High-Power Solid-State Lasers," Appl. Phys. B 58, 365-372 (1994). 4. U. Keller, D. A. B

  13. Determination of energy thresholds on an artificial retina using a multiple-pulsed laser

    E-Print Network [OSTI]

    Stephenson, Albert David

    1999-01-01T23:59:59.000Z

    This study is focused on determining single and multiple pulse ED?? for laser pulses of 200 ns duration. Energy thresholds in this experiment were determined on an artificial retina, for a variety of pulse widths and spot sizes. Due to numerous...

  14. FEASIBILITY OF HYDROGEN PRODUCTION USING LASER INERTIAL FUSION AS THE PRIMARY ENERGY SOURCE

    SciTech Connect (OSTI)

    Gorensek, M

    2006-11-03T23:59:59.000Z

    The High Average Power Laser (HAPL) program is developing technology for Laser IFE with the goal of producing electricity from the heat generated by the implosion of deuterium-tritium (DT) targets. Alternatively, the Laser IFE device could be coupled to a hydrogen generation system where the heat would be used as input to a water-splitting process to produce hydrogen and oxygen. The production of hydrogen in addition to electricity would allow fusion energy plants to address a much wider segment of energy needs, including transportation. Water-splitting processes involving direct and hybrid thermochemical cycles and high temperature electrolysis are currently being developed as means to produce hydrogen from high temperature nuclear fission reactors and solar central receivers. This paper explores the feasibility of this concept for integration with a Laser IFE plant, and it looks at potential modifications to make this approach more attractive. Of particular interest are: (1) the determination of the advantages of Laser IFE hydrogen production compared to other hydrogen production concepts, and (2) whether a facility of the size of FTF would be suitable for hydrogen production.

  15. Optimization of running strategies based on anaerobic energy and ...

    E-Print Network [OSTI]

    Amandine Aftalion

    2013-08-13T23:59:59.000Z

    Aug 13, 2013 ... We extend this analysis, based on the equation of motion and aerobic energy, to include a balance of anaerobic energy (or accumulated ...

  16. Neutronics Design of a Thorium-Fueled Fission Blanket for LIFE (Laser Inertial Fusion-based Energy)

    SciTech Connect (OSTI)

    Powers, J; Abbott, R; Fratoni, M; Kramer, K; Latkowski, J; Seifried, J; Taylor, J

    2010-03-08T23:59:59.000Z

    The Laser Inertial Fusion-based Energy (LIFE) project at LLNL includes development of hybrid fusion-fission systems for energy generation. These hybrid LIFE engines use high-energy neutrons from laser-based inertial confinement fusion to drive a subcritical blanket of fission fuel that surrounds the fusion chamber. The fission blanket contains TRISO fuel particles packed into pebbles in a flowing bed geometry cooled by a molten salt (flibe). LIFE engines using a thorium fuel cycle provide potential improvements in overall fuel cycle performance and resource utilization compared to using depleted uranium (DU) and may minimize waste repository and proliferation concerns. A preliminary engine design with an initial loading of 40 metric tons of thorium can maintain a power level of 2000 MW{sub th} for about 55 years, at which point the fuel reaches an average burnup level of about 75% FIMA. Acceptable performance was achieved without using any zero-flux environment 'cooling periods' to allow {sup 233}Pa to decay to {sup 233}U; thorium undergoes constant irradiation in this LIFE engine design to minimize proliferation risks and fuel inventory. Vast reductions in end-of-life (EOL) transuranic (TRU) inventories compared to those produced by a similar uranium system suggest reduced proliferation risks. Decay heat generation in discharge fuel appears lower for a thorium LIFE engine than a DU engine but differences in radioactive ingestion hazard are less conclusive. Future efforts on development of thorium-fueled LIFE fission blankets engine development will include design optimization, fuel performance analysis work, and further waste disposal and nonproliferation analyses.

  17. Department of Energy Announces Completion of World's Largest Laser |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal Nuclear Energy

  18. Searching for the Optimal Mix of Solar and Efficiency in Zero Net Energy Buildings

    SciTech Connect (OSTI)

    Horowitz, S.; Christensen, C.; Anderson, R.

    2008-01-01T23:59:59.000Z

    Zero net energy (ZNE) buildings employ efficiency to reduce energy consumption and solar technologies to produce as much energy on site as is consumed on an annual basis. Such buildings leverage utility grids and net-metering agreements to reduce solar system costs and maintenance requirements relative to off-grid photovoltaic (PV)-powered buildings with batteries. The BEopt software was developed to efficiently identify cost-optimal building designs using detailed hour-by-hour energy simulation programs to evaluate the user-selected options. A search technique identifies optimal and near-optimal building designs (based on energy-related costs) at various levels of energy savings along the path from a reference building to a ZNE design. In this paper, we describe results based on use of the BEopt software to develop cost-optimal paths to ZNE for various climates. Comparing the different cases shows optimal building design characteristics, percent energy savings and cash flows at key points along the path, including the point at which investments shift from building improvements to purchasing PV, and PV array sizes required to achieve ZNE. From optimizations using the BEopt software for a 2,000-ft{sup 2} house in 4 climates, we conclude that, relative to a code-compliant (IECC 2006) reference house, the following are achievable: (1) minimum cost point: 22 to 38% source energy savings and 15 to 24% annual cash flow savings; (2) PV start point: 40 to 49% source energy savings at 10 to 12% annual cash flow savings; (3) break-even point: 43 to 53% source energy savings at 0% annual cash flow savings; and (4) ZNE point: 100% source energy savings with 4.5 to 8.1 kW{sub DC} PV arrays and 76 to 169% increase in cash flow.

  19. Optimal Real-time Dispatch for Integrated Energy Systems

    E-Print Network [OSTI]

    Firestone, Ryan Michael

    2007-01-01T23:59:59.000Z

    xliii Demand Side Management152 Demand Side Managementdemand response demand-side management energy efficiency

  20. BEopt: Software for Identifying Optimal Building Designs on the Path to Zero Net Energy; Preprint

    SciTech Connect (OSTI)

    Christensen, C.; Horowitz, S.; Givler, T.; Courtney, A.; Barker, G.

    2005-04-01T23:59:59.000Z

    A zero net energy (ZNE) building produces as much energy on-site as it uses on an annual basis--using a grid-tied, net-metered photovoltaic (PV) system and active solar. The optimal path to ZNE extends from a base case to the ZNE building through a series of energy-saving building designs with minimal energy-related owning and operating costs. BEopt is a computer program designed to find optimal building designs along the path to ZNE. A user selects from among predefined options in various categories to specify options to be considered in the optimization. Energy savings are calculated relative to a reference. The reference can be either a user-defined base-case building or a climate-specific Building America Benchmark building automatically generated by BEopt. The user can also review and modify detailed information on all available options and the Building America Benchmark in a linked options library spreadsheet.

  1. Optimal Real-time Dispatch for Integrated Energy Systems

    E-Print Network [OSTI]

    Firestone, Ryan Michael

    2007-01-01T23:59:59.000Z

    electric utilities, distributed generation investmentDistributed Power Generation: Planning and Evaluation Marcel Dekker, New York. Appendix A. UTILITYDistributed Generation Investment Optimization With the recent advent of small (100s of kW to several MW) DG that is cost competitive with utility

  2. Enhancing the energy of terahertz radiation from plasma produced by intense femtosecond laser pulses

    SciTech Connect (OSTI)

    Jahangiri, Fazel [Advanced Research Center for Beam Science, ICR, Kyoto University, Kyoto (Japan) [Advanced Research Center for Beam Science, ICR, Kyoto University, Kyoto (Japan); Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Hashida, Masaki; Tokita, Shigeki; Sakabe, Shuji [Advanced Research Center for Beam Science, ICR, Kyoto University, Kyoto (Japan) [Advanced Research Center for Beam Science, ICR, Kyoto University, Kyoto (Japan); Department of Physics, GSS, Kyoto University, Kyoto (Japan); Nagashima, Takeshi; Hangyo, Masanori [Department of Physics, GSS, Kyoto University, Kyoto (Japan) [Department of Physics, GSS, Kyoto University, Kyoto (Japan); Institute of Laser Engineering, Osaka University, Osaka (Japan)

    2013-05-13T23:59:59.000Z

    Terahertz (THz) radiation from atomic clusters illuminated by intense femtosecond laser pulses is investigated. By studying the angular distribution, polarization properties and energy dependence of THz waves, we aim to obtain a proper understanding of the mechanism of THz generation. The properties of THz waves measured in this study differ from those predicted by previously proposed mechanisms. To interpret these properties qualitatively, we propose that the radiation is generated by time-varying quadrupoles, which are produced by the ponderomotive force of the laser pulse.

  3. Role of suprathermal electrons during nanosecond laser energy deposit in fused silica

    SciTech Connect (OSTI)

    Grua, P.; Hébert, D.; Lamaignère, L.; Rullier, J.-L. [CEA, DAM, CESTA, F-33114 Le Barp (France)

    2014-08-25T23:59:59.000Z

    An accurate description of interaction between a nanosecond laser pulse and a wide band gap dielectric, such as fused silica, requires the understanding of energy deposit induced by temperature changes occurring in the material. In order to identify the fundamental processes involved in laser-matter interaction, we have used a 1D computational model that allows us to describe a wide set of physical mechanisms and intended for comparison with specially designed “1D experiments.” We have pointed out that suprathermal electrons are very likely implicated in heat conduction, and this assumption has allowed the model to reproduce the experiments.

  4. Optimal Combination of Distributed Energy System in an Eco-Campusof Japan

    SciTech Connect (OSTI)

    Yang, Yongwen; Gao, Weijun; Zhou, Nan; Marnay, Chris

    2006-06-14T23:59:59.000Z

    In this study, referring to the Distributed Energy Resources Customer Adoption Model (DER-CAM) which was developed by the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), E-GAMS programmer is developed with a research of database of energy tariffs, DER (Distributed Energy Resources) technology cost and performance characteristics, and building energy consumption in Japan. E-GAMS is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills. In this research, by using E-GAMS, we present a tool to select the optimal combination of distributed energy system for an Ecological-Campus, Kitakyushu, Science and Research Park (KSRP). We discuss the effects of the combination of distributed energy technologies on the energy saving, economic efficiency and environmental benefits.

  5. Energy exchange between a laser beam and charged particles using inverse transition radiation and method for its use

    DOE Patents [OSTI]

    Kimura, Wayne D. (Bellevue, WA); Romea, Richard D. (Seattle, WA); Steinhauer, Loren C. (Bothell, WA)

    1998-01-01T23:59:59.000Z

    A method and apparatus for exchanging energy between relativistic charged particles and laser radiation using inverse diffraction radiation or inverse transition radiation. The beam of laser light is directed onto a particle beam by means of two optical elements which have apertures or foils through which the particle beam passes. The two apertures or foils are spaced by a predetermined distance of separation and the angle of interaction between the laser beam and the particle beam is set at a specific angle. The separation and angle are a function of the wavelength of the laser light and the relativistic energy of the particle beam. In a diffraction embodiment, the interaction between the laser and particle beams is determined by the diffraction effect due to the apertures in the optical elements. In a transition embodiment, the interaction between the laser and particle beams is determined by the transition effect due to pieces of foil placed in the particle beam path.

  6. Developing high energy mode-locked fiber laser at 2 micron

    E-Print Network [OSTI]

    Huang, C; Shang, W; Tang, Y; Xu, J

    2015-01-01T23:59:59.000Z

    While dissipative soliton operation has successfully improved the pulse energy of 1 {\\mu}m and 1.5 {\\mu}m fiber lasers to tens of nanojoules, it is still hard to scale the pulse energy of dissipative solitons at 2 {\\mu}m due to the anomalous dispersion of the gain fiber. Based on theoretical simulation, we analyze intracavity dynamics of dissipative solitons (DSs) and propose that gain fiber should be condensed to short length in order to scale the pulse energy of 2 {\\mu}m DSs. The simulation predicts pulse energy of over 10 nJ for 2 {\\mu}m dissipative solitons, comparable to that achieved in the 1 {\\mu}m and 1.5 {\\mu}m regimes. Experimental operation generates stable 2 {\\mu}m DSs from a linear cavity with pulse energy of 4.9 nJ and dechirped pulse duration of 579 fs. These results advance our understanding of mode-locked fiber laser at different wavelengths and lay an important step in achieving high energy ultrafast laser pulses from anomalous dispersion gain media at 2 {\\mu}m.

  7. Electromagnetic cascade in high energy electron, positron, and photon interactions with intense laser pulses

    E-Print Network [OSTI]

    S. S. Bulanov; C. B. Schroeder; E. Esarey; W. P. Leemans

    2013-06-05T23:59:59.000Z

    The interaction of high energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when 3D effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high energy e-beam interacting with a counter-streaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  8. A New Approach for Determining Optimal Air Compressor Location in A Manufacturing Facility to Increase Energy Efficiency

    E-Print Network [OSTI]

    Zahlan, J.; Avci, M.; Asfour, S.

    2014-01-01T23:59:59.000Z

    An approach is proposed to determine the optimal air compressor location in a manufacturing facility. The optimization strategy is based on an objective function that minimizes the total energy consumption of the air compressor -thereby decreasing...

  9. Study of laser megajoule calorimeter's thermal behaviour for energy measurement uncertainty optimisation

    SciTech Connect (OSTI)

    Crespy, Charles; Villate, Denis; Lobios, Olivier [CEA, Cesta, BP 2, 33114 Le Barp (France)

    2013-01-15T23:59:59.000Z

    For laser megajoule (LMJ) facility, an accurate procedure for laser pulse energy measurement is a crucial requirement. In this study, the influence of measurement procedure on LMJ calorimeter uncertainty is experimentally and numerically investigated. To this end, a 3D thermal model is developed and two experimental techniques are implemented. The metrological characteristics of both techniques are presented. As a first step, the model is validated by comparing numerical and experimental results. Then, the influence of a large number of parameters considered as likely uncertainty sources on calorimeter response is investigated: wavelength, pulse duration, ambient temperature, laser beam diameter Horizontal-Ellipsis . The post processing technique procedure is also examined. The paper provides some of the parameters required to allow a robust and efficient calibration procedure to be produced.

  10. Online Modeling in the Process Industry for Energy Optimization 

    E-Print Network [OSTI]

    Alexander, J.

    1988-01-01T23:59:59.000Z

    and electricity. It further discusses the methods of providing this energy for refineries, petrochemical plants, and other processing plants - chemical, paper, and metal. A typical system flow diagram is used to highlight the energy system network and describe...

  11. Optimizing Production of Hydroquinone Achieves Increased Yield and Energy Efficiency 

    E-Print Network [OSTI]

    Gross, S.

    2010-01-01T23:59:59.000Z

    2009 production to model of the old production strategy ? Amount of HQ produced in one year ? Year end inventory ? Energy Savings: compared 2009 electricity and steam usage to that of 2008 ? Manufacturing Cost Reporting (SAP) Results ? Energy...

  12. IBM and Energy Efficiency: Systems Recommisiong and Optimization 

    E-Print Network [OSTI]

    Veilleux, Y.; Boulianne, J. P.; Lefebvre, P.

    2013-01-01T23:59:59.000Z

    technologie 5 Environmental Policy Verification Corrective Actions Management Review Execution Planning Environmental Management System Bromont Groupe Syst?mes et technologie 6 IBM Bromont: Energy Efficency Results Energy Conservation...

  13. Optimal Real-time Dispatch for Integrated Energy Systems

    E-Print Network [OSTI]

    Firestone, Ryan Michael

    2007-01-01T23:59:59.000Z

    IES. Demand Response xxxii Studies of utility and buildingDemand Response and Energy Management in Commercial Buildings”

  14. Drag Reduction by Laser-Plasma Energy Addition in Hypersonic Flow

    SciTech Connect (OSTI)

    Oliveira, A. C. [Instituto Nacional de Pesquisas Espaciais, 12630-000 Cachoeira Paulista (Brazil); Instituto de Estudos Avancados, 12228-001 Sao Jose dos Campos (Brazil); Minucci, M. A. S.; Toro, P. G. P.; Chanes, J. B. Jr [Instituto de Estudos Avancados, 12228-001 Sao Jose dos Campos (Brazil); Myrabo, L. N. [Rensselaer Polytechnic Institute, Troy, New York 12180-3590 (United States)

    2008-04-28T23:59:59.000Z

    An experimental study was conducted to investigate the drag reduction by laser-plasma energy addition in a low density Mach 7 hypersonic flow. The experiments were conducted in a shock tunnel and the optical beam of a high power pulsed CO{sub 2} TEA laser operating with 7 J of energy and 30 MW peak power was focused to generate the plasma upstream of a hemispherical model installed in the tunnel test section. The non-intrusive schlieren optical technique was used to visualize the effects of the energy addition to hypersonic flow, from the plasma generation until the mitigation of the shock wave profile over the model surface. Aside the optical technique, a piezoelectric pressure transducer was used to measure the impact pressure at stagnation point of the hemispherical model and the pressure reduction could be observed.

  15. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    SciTech Connect (OSTI)

    Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Rodriguez, Salvador B.; Ames, David E., II (Texas A& M University, College Station, TX); Rochau, Gary Eugene

    2010-10-01T23:59:59.000Z

    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.

  16. Energy-Optimal Collaborative GPS Localization with Short Range Communication

    E-Print Network [OSTI]

    Cai, Ying

    accuracy. In this paper, we show that the collaboration among proxy devices is helpful to energy-efficiently campuses. Next, we contemplate what is the best method for selfish mobile users to collaborate for energy-efficient localization, and suggest an energy-efficient and/or user fairness localization framework. Next, we develop

  17. IEEE INFOCOM 2002 1 Optimal Energy Allocation and Admission Control

    E-Print Network [OSTI]

    Modiano, Eytan

    with lower energy requirements requires a smaller energy source (solar panel, reactor, etc.) and a lighter continuous sunshine for its solar cells except for brief periods of eclipse, while demand for energy generally consists of power from solar cells [10]. The quantity and timing of the input are known and can

  18. Survey of Laser Markets Relevant to Inertial Fusion Energy Drivers, information for National Research Council

    SciTech Connect (OSTI)

    Bayramian, A J; Deri, R J; Erlandson, A C

    2011-02-24T23:59:59.000Z

    Development of a new technology for commercial application can be significantly accelerated by leveraging related technologies used in other markets. Synergies across multiple application domains attract research and development (R and D) talent - widening the innovation pipeline - and increases the market demand in common components and subsystems to provide performance improvements and cost reductions. For these reasons, driver development plans for inertial fusion energy (IFE) should consider the non-fusion technology base that can be lveraged for application to IFE. At this time, two laser driver technologies are being proposed for IFE: solid-state lasers (SSLs) and KrF gas (excimer) lasers. This document provides a brief survey of organizations actively engaged in these technologies. This is intended to facilitate comparison of the opportunities for leveraging the larger technical community for IFE laser driver development. They have included tables that summarize the commercial organizations selling solid-state and KrF lasers, and a brief summary of organizations actively engaged in R and D on these technologies.

  19. Optimization of Feedback in a MISO Downlink with Energy Harvesting Users

    E-Print Network [OSTI]

    Uysal-Biyikoglu, Elif

    Optimization of Feedback in a MISO Downlink with Energy Harvesting Users Mahdi Shakiba channel states) in order to maximize certain throughput goals. While the MISO chan- nel capacity from to the energy budget of the users. Note that in the Multi Input Single Output (MISO) channel (with m antennas

  20. Optimal Operation of a Petlyuk Distillation Column: Energy Savings by Over-fractionating

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Optimal Operation of a Petlyuk Distillation Column: Energy Savings by Over-fractionating Vidar Trondheim, Norway Keywords: Distillation, Petlyuk, Divided-wall, Minimum energy Abstract This paper shows the unexpected result that over-fractionating one of the product streams in a Petlyuk distillation column may

  1. Microprocessor Energy Characterization and Optimization through Fast, Accurate, and Flexible Simulation

    E-Print Network [OSTI]

    Microprocessor Energy Characterization and Optimization through Fast, Accurate, and Flexible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Arthur C. Smith Chairman, Department Committee on Graduate Students #12;2 #12;Microprocessor Energy dissipation is emerging as a key constraint for both high-performance and embed- ded microprocessor designs

  2. Improvement of the Energy Resolution via an Optimized Digital Signal Processing in GERDA Phase I

    E-Print Network [OSTI]

    M. Agostini; M. Allardt; A. M. Bakalyarov; M. Balata; I. Barabanov; N. Barros; L. Baudis; C. Bauer; N. Becerici-Schmidt; E. Bellotti; S. Belogurov; S. T. Belyaev; G. Benato; A. Bettini; L. Bezrukov; T. Bode; D. Borowicz; V. Brudanin; R. Brugnera; D. Budjáš; A. Caldwell; C. Cattadori; A. Chernogorov; V. D'Andrea; E. V. Demidova; A. di Vacri; A. Domula; E. Doroshkevich; V. Egorov; R. Falkenstein; O. Fedorova; K. Freund; N. Frodyma; A. Gangapshev; A. Garfagnini; P. Grabmayr; V. Gurentsov; K. Gusev; A. Hegai; M. Heisel; S. Hemmer; G. Heusser; W. Hofmann; M. Hult; L. V. Inzhechik; J. Janicskó Csáthy; J. Jochum; M. Junker; V. Kazalov; T. Kihm; I. V. Kirpichnikov; A. Kirsch; A. Klimenko; K. T. Knöpfle; O. Kochetov; V. N. Kornoukhov; V. V. Kuzminov; M. Laubenstein; A. Lazzaro; V. I. Lebedev; B. Lehnert; H. Y. Liao; M. Lindner; I. Lippi; A. Lubashevskiy; B. Lubsandorzhiev; G. Lutter; C. Macolino; B. Majorovits; W. Maneschg; E. Medinaceli; M. Misiaszek; P. Moseev; I. Nemchenok; D. Palioselitis; K. Panas; L. Pandola; K. Pelczar; A. Pullia; S. Riboldi; N. Rumyantseva; C. Sada; M. Salathe; C. Schmitt; B. Schneider; S. Schönert; J. Schreiner; A. -K. Schütz; O. Schulz; B. Schwingenheuer; O. Selivanenko; M. Shirchenko; H. Simgen; A. Smolnikov; L. Stanco; M. Stepaniuk; C. A. Ur; L. Vanhoefer; A. A. Vasenko; A. Veresnikova; K. von Sturm; V. Wagner; M. Walter; A. Wegmann; T. Wester; H. Wilsenach; M. Wojcik; E. Yanovich; P. Zavarise; I. Zhitnikov; S. V. Zhukov; D. Zinatulina; K. Zuber; G. Zuzel

    2015-02-15T23:59:59.000Z

    An optimized digital shaping filter has been developed for the GERDA experiment which searches for neutrinoless double beta decay in 76Ge. The GERDA Phase I energy calibration data have been reprocessed and an average improvement of 0.3 keV in energy resolution (FWHM) at the 76Ge Q value for 0\

  3. Optimizing the LU Factorization for Energy Efficiency on a Many-Core Architecture

    E-Print Network [OSTI]

    Gao, Guang R.

    .S.A. {egarcia@,jaime@,rspavel@,ggao@capsl.}udel.edu Abstract. Power consumption and energy efficiency have become a ma- jor bottleneck in the design of new systems for high performance com- puting. The path the use of scalable models for energy consumption and the reorientation of optimization techniques

  4. Pipeline Strategy for Improving Optimal Energy Efficiency in Ultra-Low Voltage Design

    E-Print Network [OSTI]

    Kambhampati, Subbarao

    Pipeline Strategy for Improving Optimal Energy Efficiency in Ultra-Low Voltage Design Mingoo Seok for the ultra low voltage regime. Based on an analytical model and simulations, we propose a pipelining technique that provides higher energy effi- ciency and performance than conventional approaches to ultra low

  5. On optimizing energy consumption: An adaptative authentication level in wireless sensor networks

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    On optimizing energy consumption: An adaptative authentication level in wireless sensor networks-hungry. As energy is a scarce resource in wireless sensor networks, we propose a new approach that consists or third-party nodes. I. INTRODUCTION Wireless sensor networks (WSNs) are used in several fields

  6. Optimization of the Energy Efficiency of a Hybrid Broadcast/Unicast Network

    E-Print Network [OSTI]

    Boyer, Edmond

    Optimization of the Energy Efficiency of a Hybrid Broadcast/Unicast Network Nicolas Cornillet previously defined, we propose a new operating mode for the hybrid network that can improve the energy a particular attention. In [1], a model for a hybrid network is introduced. This network consists in the inter

  7. Incorporating Drivability Metrics into Optimal Energy Management Strategies for Hybrid Vehicles Part 1: Model, Methods, and

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    Incorporating Drivability Metrics into Optimal Energy Management Strategies for Hybrid Vehicles-parallel configuration considered here. Hybrid vehicles are characterized by multiple energy sources; the strategy Gillespie, Jeffrey A. Cook, and J.W. Grizzle Abstract--Hybrid Vehicle fuel economy performance is highly

  8. Improvement of the Energy Resolution via an Optimized Digital Signal Processing in GERDA Phase I

    E-Print Network [OSTI]

    Agostini, M; Bakalyarov, A M; Balata, M; Barabanov, I; Barros, N; Baudis, L; Bauer, C; Becerici-Schmidt, N; Bellotti, E; Belogurov, S; Belyaev, S T; Benato, G; Bettini, A; Bezrukov, L; Bode, T; Borowicz, D; Brudanin, V; Brugnera, R; Budjáš, D; Caldwell, A; Cattadori, C; Chernogorov, A; D'Andrea, V; Demidova, E V; di Vacri, A; Domula, A; Doroshkevich, E; Egorov, V; Falkenstein, R; Fedorova, O; Freund, K; Frodyma, N; Gangapshev, A; Garfagnini, A; Grabmayr, P; Gurentsov, V; Gusev, K; Hegai, A; Heisel, M; Hemmer, S; Heusser, G; Hofmann, W; Hult, M; Inzhechik, L V; Csáthy, J Janicskó; Jochum, J; Junker, M; Kazalov, V; Kihm, T; Kirpichnikov, I V; Kirsch, A; Klimenko, A; Knöpfle, K T; Kochetov, O; Kornoukhov, V N; Kuzminov, V V; Laubenstein, M; Lazzaro, A; Lebedev, V I; Lehnert, B; Liao, H Y; Lindner, M; Lippi, I; Lubashevskiy, A; Lubsandorzhiev, B; Lutter, G; Macolino, C; Majorovits, B; Maneschg, W; Medinaceli, E; Misiaszek, M; Moseev, P; Nemchenok, I; Palioselitis, D; Panas, K; Pandola, L; Pelczar, K; Pullia, A; Riboldi, S; Rumyantseva, N; Sada, C; Salathe, M; Schmitt, C; Schneider, B; Schönert, S; Schreiner, J; Schütz, A -K; Schulz, O; Schwingenheuer, B; Selivanenko, O; Shirchenko, M; Simgen, H; Smolnikov, A; Stanco, L; Stepaniuk, M; Ur, C A; Vanhoefer, L; Vasenko, A A; Veresnikova, A; von Sturm, K; Wagner, V; Walter, M; Wegmann, A; Wester, T; Wilsenach, H; Wojcik, M; Yanovich, E; Zavarise, P; Zhitnikov, I; Zhukov, S V; Zinatulina, D; Zuber, K; Zuzel, G

    2015-01-01T23:59:59.000Z

    An optimized digital shaping filter has been developed for the GERDA experiment which searches for neutrinoless double beta decay in 76Ge. The GERDA Phase I energy calibration data have been reprocessed and an average improvement of 0.3 keV in energy resolution (FWHM) at the 76Ge Q value for 0\

  9. Simulation for the Optimal Design of a Biped Robot: Analysis of Energy Consumption

    E-Print Network [OSTI]

    Gini, Giuseppina

    Simulation for the Optimal Design of a Biped Robot: Analysis of Energy Consumption Federico Moro1 at Chicago, USA 3 University of Belgrade, Institute Mihajlo Pupin, Robotics Laboratory, Serbia Abstract. Our first aim is to develop a systematic method to estimate energy consumption of bipedal locomotion

  10. Optimal Electron Energies for Driving Chromospheric Evaporation in Solar Flares

    E-Print Network [OSTI]

    Reep, Jeffrey; Alexander, David

    2015-01-01T23:59:59.000Z

    In the standard model of solar flares, energy deposition by a beam of electrons drives strong chromospheric evaporation leading to a significantly denser corona and much brighter emission across the spectrum. Chromospheric evaporation was examined in great detail by Fisher, Canfield, & McClymont (1985a,b,c), who described a distinction between two different regimes, termed explosive and gentle evaporation. In this work, we examine the importance of electron energy and stopping depths on the two regimes and on the atmospheric response. We find that with explosive evaporation, the atmospheric response does not depend strongly on electron energy. In the case of gentle evaporation, lower energy electrons are significantly more efficient at heating the atmosphere and driving up-flows sooner than higher energy electrons. We also find that the threshold between explosive and gentle evaporation is not fixed at a given beam energy flux, but also depends strongly on the electron energy and duration of heating. Furt...

  11. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    SciTech Connect (OSTI)

    Center for Energy and Innovative Technologies; NEC Laboratories America Inc.; Cardoso, Goncalo; Stadler, Michael; Bozchalui, Mohammed C.; Sharma, Ratnesh; Marnay, Chris; Barbosa-Povoa, Ana; Ferrao, Paulo

    2013-10-27T23:59:59.000Z

    The large scale penetration of electric vehicles (EVs) will introduce technical challenges to the distribution grid, but also carries the potential for vehicle-to-grid services. Namely, if available in large enough numbers, EVs can be used as a distributed energy resource (DER) and their presence can influence optimal DER investment and scheduling decisions in microgrids. In this work, a novel EV fleet aggregator model is introduced in a stochastic formulation of DER-CAM [1], an optimization tool used to address DER investment and scheduling problems. This is used to assess the impact of EV interconnections on optimal DER solutions considering uncertainty in EV driving schedules. Optimization results indicate that EVs can have a significant impact on DER investments, particularly if considering short payback periods. Furthermore, results suggest that uncertainty in driving schedules carries little significance to total energy costs, which is corroborated by results obtained using the stochastic formulation of the problem.

  12. Laser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERNLandLargeforLaspolarimetric

  13. Laser-Mechanical Drilling for Geothermal Energy: Low-Contact Drilling Technology to Enable Economical EGS Wells

    SciTech Connect (OSTI)

    None

    2010-01-15T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energy’s laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, making them an effective way to access the U.S. energy resources currently locked under hard rock formations.

  14. Effects of laser energy fluence on the onset and growth of the Rayleigh-Taylor instabilities and its influence on the topography of the Fe thin film grown in pulsed laser deposition facility

    SciTech Connect (OSTI)

    Mahmood, S. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Department of Physics, University of Karachi, Karachi 75270 (Pakistan); Rawat, R. S.; Wang, Y.; Lee, S.; Tan, T. L.; Springham, S. V.; Lee, P. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Zakaullah, M. [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan)

    2012-10-15T23:59:59.000Z

    The effect of laser energy fluence on the onset and growth of Rayleigh-Taylor (RT) instabilities in laser induced Fe plasma is investigated using time-resolved fast gated imaging. The snow plow and shock wave models are fitted to the experimental results and used to estimate the ablation parameters and the density of gas atoms that interact with the ablated species. It is observed that RT instability develops during the interface deceleration stage and grows for a considerable time for higher laser energy fluence. The effects of RT instabilities formation on the surface topography of the Fe thin films grown in pulsed laser deposition system are investigated (i) using different laser energy fluences for the same wavelength of laser radiation and (ii) using different laser wavelengths keeping the energy fluence fixed. It is concluded that the deposition achieved under turbulent condition leads to less smooth deposition surfaces with bigger sized particle agglomerates or network.

  15. Optimization Online - Radio Planning of Energy-Aware Cellular ...

    E-Print Network [OSTI]

    Silvia Boiardi

    2010-11-03T23:59:59.000Z

    Nov 3, 2010 ... ... tries to limit energy consumption while guaranteeing connection quality constraints for every user and minimizes operators Capex and Opex.

  16. On Optimal Information Capture by Energy-Constrained Mobile ...

    E-Print Network [OSTI]

    2009-09-27T23:59:59.000Z

    mobile sensors often run on limited batteries. When they .... We assume that the mobile sensor runs on limited battery and is therefore energy constrained. The.

  17. Optimization and homotopy methods for the Gibbs free energy of ...

    E-Print Network [OSTI]

    Andrea Cassioli

    2011-05-31T23:59:59.000Z

    May 31, 2011 ... Abstract: In this paper we consider a mathematical model for magmatic mixtures based on the Gibbs free energy. Different reformulations of the ...

  18. Energy Security: a robust optimization approach to design a robust ...

    E-Print Network [OSTI]

    2010-06-11T23:59:59.000Z

    curity of, respectively, natural gas supply and electricity supply), the current proposals for new .... The CO2, CH4 and N2O emissions related to the energy.

  19. DOE Announces Webinars on Building Energy Optimization Tool Training,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergy ThisStandards | Department of EnergyBenchmarking,

  20. Laser fusion experiment yields record energy at NIF | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov OfficeAdministrationSecurityimpacts |SecuritySecurity

  1. Photo of the Week: Laser Beats Rock | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum Reserves Vision,4 Photo of the13, 2012June

  2. Sandia Energy - Four-color laser white illuminant demonstrating high

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailure Mode andFinance

  3. TruePeak Process Laser Analyzer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarch 4; RSVP by Feb.Department of Energy 0

  4. Optimization of Dispersed Energy Supply -Stochastic Programming with Recombining

    E-Print Network [OSTI]

    Römisch, Werner

    plant park can hardly be saved. In this context, electrical energy storage offers a possibility of storages have to be valued against market prices as established at the energy exchanges. Also the operation, seasonal, and other cyclic patterns in demand, supply, and prices, which require a valuation of storage

  5. Optimization of Oxygen Purity for Coal Conversion Energy Reduction 

    E-Print Network [OSTI]

    Baker, C. R.; Pike, R. A.

    1982-01-01T23:59:59.000Z

    %. Oxygen is a major tonnage chemical which is also highly energy intensive. The current United States capacity of about 80 thousand tons per day places it in the top five of basic chemicals, and its energy requirement of 350 to 450 kilowatt hours per ton...

  6. Monitoring and optimization of energy consumption of base transceiver stations

    E-Print Network [OSTI]

    Spagnuolo, Antonio; Vetromile, Carmela; Formosi, Roberto; Lubritto, Carmine

    2015-01-01T23:59:59.000Z

    The growth and development of the mobile phone network has led to an increased demand for energy by the telecommunications sector, with a noticeable impact on the environment. Monitoring of energy consumption is a great tool for understanding how to better manage this consumption and find the best strategy to adopt in order to maximize reduction of unnecessary usage of electricity. This paper reports on a monitoring campaign performed on six Base Transceiver Stations (BSs) located central Italy, with different technology, typology and technical characteristics. The study focuses on monitoring energy consumption and environmental parameters (temperature, noise, and global radiation), linking energy consumption with the load of telephone traffic and with the air conditioning functions used to cool the transmission equipment. Moreover, using experimental data collected, it is shown, with a Monte Carlo simulation based on power saving features, how the BS monitored could save energy.

  7. Nonlinear pair production in scattering of photons on ultra-short laser pulses at high energy

    E-Print Network [OSTI]

    Tuchin, Kirill

    2009-01-01T23:59:59.000Z

    We consider scattering of a photon on a short intense laser pulse at high energy. We argue that for ultra-short laser pulses the interaction is coherent over the entire length of the pulse. At low pulse intensity $I$ the total cross section for electron-positron pair production is proportional to $I$. However, at pulse intensities higher than the characteristic value $I_s$, the total cross section saturates -- it becomes proportional to the logarithm of intensity. This nonlinear effect is due to multi-photon interactions. We derive the total cross section for pair production at high energies by resuming the multi-photon amplitudes to all orders in intensity. We calculate the saturation intensity $I_s$ and show that it is significantly lower than the Schwinger's critical value. We discuss possible experimental tests.

  8. Nonlinear pair production in scattering of photons on ultra-short laser pulses at high energy

    E-Print Network [OSTI]

    Kirill Tuchin

    2010-02-15T23:59:59.000Z

    We consider scattering of a photon on a short intense laser pulse at high energy. We argue that for ultra-short laser pulses the interaction is coherent over the entire length of the pulse. At low pulse intensity $I$ the total cross section for electron-positron pair production is proportional to $I$. However, at pulse intensities higher than the characteristic value $I_s$, the total cross section saturates -- it becomes proportional to the logarithm of intensity. This nonlinear effect is due to multi-photon interactions. We derive the total cross section for pair production at high energies by resuming the multi-photon amplitudes to all orders in intensity. We calculate the saturation intensity $I_s$ and show that it is significantly lower than the Schwinger's critical value. We discuss possible experimental tests.

  9. Course Overview Pump Systems Matter Optimization | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluorControlsEnergy Copyin Salt |Course Overview

  10. BuildingIQ, Inc: Predictive Energy Optimization - 2015 Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of EnergyRolandBuilding the Basic

  11. FEMP Completes 2000th Renewable Energy Optimization Screening | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of Energy 088:EnergyFAR27.pdfFE DOCKETFEDERALFEMAof

  12. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demands

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02ReportWaste-to-Energy andAprilWater andWatershed Scale

  13. Advanced Vacuum Clean Equipment Optimizer Ltd AVACO | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki HomeASNAddGlobe JumpRenewables LLCATDC

  14. Optimal design and operation of energy polygeneration systems

    E-Print Network [OSTI]

    Chen, Yang, Ph. D. Massachusetts Institute of Technology. Department of Chemical Engineering

    2013-01-01T23:59:59.000Z

    Polygeneration is a concept where multiple energy products are generated in a single plant by tightly integrating multiple processes into one system. Compared to conventional single-product systems, polygeneration systems ...

  15. 1 A Centralized Optimal Energy Management System for Microgrids

    E-Print Network [OSTI]

    Daniel E. Olivares; Claudio A. Cañizares; Mehrdad Kazerani; Senior Member

    Abstract — The issue of controlled and reliable integration of distributed energy resources into microgrids and large power grids has recently gained considerable attention. The microgrid concept, which basically corresponds to the coordinated operation of a cluster of loads, distributed generators

  16. Kansas City Power & Light- Energy Optimizer Programmable Thermostat Program

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) offers a free programmable thermostat and free installation to qualifying customers to manage energy usage. Only residential and small commercial customers...

  17. Kansas City Power and Light- Energy Optimizer Programmable Thermostat Program

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) offers a free Honeywell programmable thermostat, worth $300, and free installation to qualifying customers to manage energy usage. Only residential and small...

  18. Optimization of Oxygen Purity for Coal Conversion Energy Reduction

    E-Print Network [OSTI]

    Baker, C. R.; Pike, R. A.

    1982-01-01T23:59:59.000Z

    The conversion of coal into gaseous and liquid fuels and chemical feedstock will require large quantities of oxygen. This oxygen will be produced in large multi-train air separation plants which will consume about 350 kilowatt hours of energy...

  19. Optimized Alumina Coagulants for Water Purification - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and Biofuels Biomass and Biofuels Find MoreRod

  20. 2012 ARPA-E Energy Innovation Summit: Profiling Foro Energy: High Power Lasers - Long Distances (Performer Video)

    ScienceCinema (OSTI)

    None Available

    2012-03-21T23:59:59.000Z

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These 'performer videos' highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video from Foro Energy are Joel Moxley, Founder and CEO, Mark Zediker, Founder and CTO, and Paul Deutch, President and COO. Steven Chu, Secretary of Energy, also appears briefly in this video to praise the accomplishment of a high powered laser that can transmit that power long distances for faster and more powerful drilling of geothermal, oil, and gas wells.

  1. 2012 ARPA-E Energy Innovation Summit: Profiling Foro Energy: High Power Lasers - Long Distances (Performer Video)

    SciTech Connect (OSTI)

    None Available

    2012-02-28T23:59:59.000Z

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These 'performer videos' highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video from Foro Energy are Joel Moxley, Founder and CEO, Mark Zediker, Founder and CTO, and Paul Deutch, President and COO. Steven Chu, Secretary of Energy, also appears briefly in this video to praise the accomplishment of a high powered laser that can transmit that power long distances for faster and more powerful drilling of geothermal, oil, and gas wells.

  2. Optimal Integration of Intermittent Energy Sources Using Distributed Multi-Step Optimization

    E-Print Network [OSTI]

    Li, Xin

    --The integration of renewable energy sources such as wind and solar into the electric power grid is a coveted yet such as wind power, but these sources are intermittent and non-dispatchable. An- other challenge is addressed as well, as storage also allows balancing the intermittent power output from the renewable

  3. Prospects for Combining Energy and Environmental Objectives in Hydropower Optimization Brennan T. Smith and Henriette I. Jager

    E-Print Network [OSTI]

    Jager, Henriette I.

    1 Prospects for Combining Energy and Environmental Objectives in Hydropower Optimization Brennan T, we review studies that derived rules for hydropower operation by solving optimization problems driven be compatible with hydropower optimization. Given the increasing value placed on the ecological sustainability

  4. Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density

    SciTech Connect (OSTI)

    Bake, Muhammad Ali; Xie Baisong [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Shan Zhang [Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Hong Xueren [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Hongyu [Department of Physics, Anshan Normal University, Anshan 114005 (China); Shanghai Bright-Tech Information Technology Co. Ltd, Shanghai 200136 (China)

    2012-08-15T23:59:59.000Z

    The combinational laser radiation pressure and plasma bubble fields to accelerate protons are researched through theoretical analysis and numerical simulations. The dephasing length of the accelerated protons bunch in the front of the bubble and the density gradient effect of background plasma on the accelerating phase are analyzed in detail theoretically. The radiation damping effect on the accelerated protons energy is also considered. And it is demonstrated by two-dimensional particle-in-cell simulations that the protons bunch energy can be increased by using the background plasma with negative density gradient. However, radiation damping makes the maximal energy of the accelerated protons a little reduction.

  5. A laser-wire beam-energy and beam-profile monitor at the BNL linac

    SciTech Connect (OSTI)

    Connolly, R.; Degen, C.; DeSanto, L.; Meng, W.; Michnoff, R.; Minty, M.; Nayak, S.

    2011-03-28T23:59:59.000Z

    In 2009 a beam-energy monitor was installed in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. This device measures the energies of electrons stripped from the 40mA H{sup -} beam by background gas. Electrons are stripped by the 2.0x10{sup -7}torr residual gas at a rate of {approx}1.5x10{sup -8}/cm. Since beam electrons have the same velocities as beam protons, the beam proton energy is deduced by multiplying the electron energy by m{sub p}/m{sub e}=1836. A 183.6MeV H{sup -} beam produces 100keV electrons. In 2010 we installed an optics plates containing a laser and scanning optics to add beam-profile measurement capability via photodetachment. Our 100mJ/pulse, Q-switched laser neutralizes 70% of the beam during its 10ns pulse. This paper describes the upgrades to the detector and gives profile and energy measurements.

  6. Energy Department Selects Global Laser Enrichment for Future Operations at

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergy Policy Act of 2005 | Department of

  7. Lasers, Electron Beams and New Years Resolutions | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -

  8. Apparatus for the Laser Ablative Synthesis of Carbon Nanotubes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3 Tableimpurity

  9. World's Largest Laser Sets New Records | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads|ofEventsWorkshop Report:WorkshopsDepartment

  10. New High-Power Laser Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREof Energy InvestigatesEnvironment |of

  11. Control and Room Temperature Optimization of Energy Efficient Buildings

    SciTech Connect (OSTI)

    Djouadi, Seddik M [ORNL] [ORNL; Kuruganti, Phani Teja [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    The building sector consumes a large part of the energy used in the United States and is responsible for nearly 40% of greenhouse gas emissions. It is therefore economically and environmentally important to reduce the building energy consumption to realize massive energy savings. In this paper, a method to control room temperature in buildings is proposed. The approach is based on a distributed parameter model represented by a three dimensional (3D) heat equation in a room with heater/cooler located at ceiling. The latter is resolved using finite element methods, and results in a model for room temperature with thousands of states. The latter is not amenable to control design. A reduced order model of only few states is then derived using Proper Orthogonal Decomposition (POD). A Linear Quadratic Regulator (LQR) is computed based on the reduced model, and applied to the full order model to control room temperature.

  12. Building America Webinar: Building Energy Optimization (BEopt) Software

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic HeatingManagementCrawlspaces thatTool |

  13. Building America Webinar: Building Energy Optimization (BEopt) Software

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic HeatingManagementCrawlspaces thatTool |Tool |

  14. Building Energy Optimization Analysis Method (BEopt) - Building America Top

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartmentDavidDepartment

  15. Flex Fuel Optimized SI and HCCI Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen and Fuel Cells Program and

  16. Flex Fuel Optimized SI and HCCI Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen and Fuel Cells Program and1 DOE

  17. Flex Fuel Optimized SI and HCCI Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen and Fuel Cells Program and1 DOE0

  18. Forecourt and Gas Infrastructure Optimization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen andMeetingonup

  19. Central Networks Low Carbon Hub Optimizing renewable energy resources in

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest, NewCenterville,Lincolnshire (Smart Grid

  20. Optimization of Storage vs. Compression Capacity | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartmentGas and Oil ResearchEnergyOnHSSOpti-MN Impact

  1. Sandia Energy - Optima: Co-Optimization of Fuels and Engines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows JerryNuclear

  2. Optimizing Low Temperature Diesel Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy8 * OctoberDepartment ofProjects

  3. Sensor Placement + Optimization Software (SPOT) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAir JumpCalifornia |SemikronSener SASGPLSensor

  4. Charged-particle acceleration and energy loss in laser-produced plasmas D. G. Hicks,a)

    E-Print Network [OSTI]

    Charged-particle acceleration and energy loss in laser-produced plasmas D. G. Hicks,a) C. K. Li, F, particle energy shifts were dominated by acceleration effects. Using a simple model for the accelerating T. R. Boehly et al., Opt. Commun. 133, 495 1997 . Comparing the energy shifts of four particle types

  5. ENERGY AND WATER OPTIMIZATION IN BIOFUEL PLANTS Ignacio E. Grossmann*

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    in the production of bioethanol from corn and switchgrass. We show that in order for these manufacturing processes in bioethanol plants can be significantly improved. Specifically, under some circumstances energy can even that can be implemented in the short-term [5]. Thus, bioethanol and biodiesel have become the most

  6. Optimal Routing and Scheduling in Multihop Wireless Renewable Energy Networks

    E-Print Network [OSTI]

    Sarkar, Saswati

    to solar panels. In addition to solar, energy harvested from the wind through the use of micro-turbines [3 harvested from renewable sources could range from the order of tens of watts as with solar panels, to milli constraints. For example, a solar panel (with several square feet of panel area) may be more appropriate

  7. Process Control on Workplace Level - User Comfort Energy Optimalization

    E-Print Network [OSTI]

    Verhaart, J.; Zeiler, W.; Boxem, G.

    2013-01-01T23:59:59.000Z

    . But to really reduce energy load of the building, the challenge of providing the best comfort for all people present in an office is a combined effort between ICS and building climate installation. The system should cooperate in a multi-agent system within a...

  8. Path Placement Optimization of Manipulators Based on Energy Consumption

    E-Print Network [OSTI]

    Boyer, Edmond

    utilisant la consommation ´energ´etique comme crit`ere. Ce travail propose une mthodologie pour d´es: Placement de trajectoires, Consommation ´energ´etique, Optimisation, Manipu- lateur parall`eles. hal to perform a given operation more efficiently with respect to the energy consumed. The path placement problem

  9. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    SciTech Connect (OSTI)

    Kramer, K

    2010-04-08T23:59:59.000Z

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 {micro}m of tungsten to mitigate x-ray damage. The first wall is cooled by Li{sub 17}Pb{sub 83} eutectic, chosen for its neutron multiplication and good heat transfer properties. The {sub 17}Pb{sub 83} flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li{sub 17}Pb{sub 83}, separated from the Li{sub 17}Pb{sub 83} by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF{sub 2}), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by the same radial flibe flow that travels through perforated ODS walls to the reflector blanket. This reflector blanket is 75 cm thick comprised of 2 cm diameter graphite pebbles cooled by flibe. The flibe extraction plenum surrounds the reflector bed. Detailed neutronics designs studies are performed to arrive at the described design. The LFFH engine thermal power is controlled using a technique of adjusting the {sup 6}Li/{sup 7}Li enrichment in the primary and secondary coolants. The enrichment adjusts system thermal power in the design by increasing tritium production while reducing fission. To perform the simulations and design of the LFFH engine, a new software program named LFFH Nuclear Control (LNC) was developed in C++ to extend the functionality of existing neutron transport and depletion software programs. Neutron transport calculations are performed with MCNP5. Depletion calculations are performed using Monteburns 2.0, which utilizes ORIGEN 2.0 and MCNP5 to perform a burnup calculation. LNC supports many design parameters and is capable of performing a full 3D system simulation from initial startup to full burnup. It is able to iteratively search for coolant {sup 6}Li enrichments and resulting material compositions that meet user defined performance criteria. LNC is utilized throughout this study for time dependent simulation of the LFFH engine. Two additional methods were developed to improve the computation efficiency of LNC calculations. These methods, termed adaptive time stepping and adaptive mesh refinement were incorporated into a separate stand alone C++ library name the Adaptive Burnup Library (ABL). The ABL allows for other client codes to call and utilize its functionality. Adaptive time stepping is useful for automatically maximizing the size of the depletion time step while maintaining a desired level of accuracy. Adaptive meshing allows for analysis of fixed fuel configurations that would normally require a computationally burdensome number of depletion zones. Alternatively, Adaptive M

  10. Light incoherence theory revisited by Heisenberg time-energy uncertainty challenges solar cell optimization

    E-Print Network [OSTI]

    Herman, Aline; Deparis, Olivier

    2014-01-01T23:59:59.000Z

    Optimization of the efficiency of solar cells is a major challenge for renewable energies. Using a rigorous theoretical approach, we show that the photocurrent generated in a solar cell depends strongly on the degree of coherence of the incident light. In accordance with Heisenberg uncertainty time-energy, incoherent light at photons of carrier energy lower than the active material bandgap can be absorbed whereas coherent light at the same carrier energy cannot. We identify cases where incoherence does enhance efficiency. This result has a dramatical impact on the way solar cells must be optimized regarding sunlight. As an illustration, surface-corrugated GaAs and c-Si thin-film solar cells are considered.

  11. Energy optimization of water and wastewater management for municipal and industrial applications conference

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    These proceedings document the presentations given at the Energy Optimization of Water and Wastewater Management for Municipal and Industrial Applications Conference, sponsored by the Department of Energy (DOE). The conference was organized and coordinated by Argonne National Laboratory. The conference focused on energy use and conservation in water and wastewater. The General Session also reflects DOE's commitment to the support and development of waste and wastewater systems that are environmentally acceptable. The conference proceedings are divided into two volumes. Volume 1 contains the General Session and Sessions 1 to 5. Volume 2 covers Sessions 6 to 12. Separate abstracts are prepared for each item within the scope of the Energy Data Base.

  12. Energy optimization of water and wastewater management for municipal and industrial applications conference

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    These proceedings document the presentations given at the Energy Optimization of Water and Wastewater Management for Municipal and Industrial Applications, Conference, sponsored by the Department of Energy (DOE). The conference was organized and coordinated by Argonne National Laboratory. The conference focused on energy use on conservation in water and wastewater. The General Session also reflects DOE's commitment to the support and development of waste and wastewater systems that are environmentally acceptable. The conference proceedings are divided into two volumes. Volume 1 contains the General Session and Sessions 1 to 5. Volume 2 covers Sessions 6 to 12. Separate abstracts are prepared for each item within the scope of the Energy Data Base.

  13. An Optimal Wake-Up Scheduling Algorithm for Minimizing Energy Consumption while Limiting

    E-Print Network [OSTI]

    Cohen, Reuven

    are not within each other's transmission range. However, in large mesh networks, global synchronization1 An Optimal Wake-Up Scheduling Algorithm for Minimizing Energy Consumption while Limiting Maximum Delay in a Mesh Sensor Network Reuven Cohen and Boris Kapchits Department of Computer Science Technion

  14. Optimal operation of a Petlyuk Distillation Column: Energy Savings by Over-fractionation

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Optimal operation of a Petlyuk Distillation Column: Energy Savings by Over-fractionation · The Petlyuk distillation column, see Figure 1(a), with a pre-fractionator (C1) and a main column (C21 and C22) N-7465 Trondheim, Norway Abstract This work shows the unexpected result that over-fractionating one

  15. Understanding optimal data gathering in the energy and latency domains of a wireless sensor network

    E-Print Network [OSTI]

    Melodia, Tommaso

    of city districts. In typical applications, sensors monitor their neighboring area, extract informationUnderstanding optimal data gathering in the energy and latency domains of a wireless sensor network Telekommunikation Wien (ftw.), Donau City Strae 1, 1220 Wien, Austria Received 14 October 2005; received in revised

  16. OPTIMIZATION WITH ENERGY MANAGEMENT OF PV BATTERY STAND-ALONE SYSTEMS OVER THE ENTIRE LIFE CYCLE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of both the installed PV power and storage capacity (lead-acid battery technology for purposes). Keywords: Battery storage and control, Lifetime simulation, PV system. 1. INTRODUCTION Given the sizableOPTIMIZATION WITH ENERGY MANAGEMENT OF PV BATTERY STAND-ALONE SYSTEMS OVER THE ENTIRE LIFE CYCLE

  17. An Evolutionary Multi-objective Approach for Speed Tuning Optimization with Energy Saving

    E-Print Network [OSTI]

    management, Optimization I. INTRODUCTION For recent years, the concern due to pollution and global warming point of view. Indeed, global energy saving is becoming the new challenge of the transportation systems including railway. Works have been led for analytically computing ST solu- tions according to several levels

  18. Energy Efficient DSL via Heterogeneous Sleeping States: Optimization Structures and Operation

    E-Print Network [OSTI]

    transitions is lower both in energy and time. The power consumption at L3 is zero but the switching cost for LEnergy Efficient DSL via Heterogeneous Sleeping States: Optimization Structures and Operation University, USA, 2 ESAT-SCD, KU Leuven, Belgium, 3 ASSIA, Inc., USA Abstract--Switching off a DSL line

  19. Fast Energy Optimal Routing in Radio Networks Using Geometric Data Structures

    E-Print Network [OSTI]

    Beier, René

    often only limited energy reserves from batteries or power from solar panels, a prime optimization such algorithms for the important case where the transmission cost between two nodes is the square of the problem. We also outline generalizations for the case of limited ranges, di#11;erent cost functions

  20. PASI 2011: Process Modeling and Optimization for Energy and Sustainability Mineral Process Design for

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    in Asia. Asia will have a strong impact on the global trends in key metals consumption Takashi NishiyamaPASI 2011 PASI 2011: Process Modeling and Optimization for Energy and Sustainability Mineral;Balance between global consumption and the available production Motivation PSE at CICITEM Models

  1. Multiobjective Optimization Techniques: A Study Of The Energy Minimization Method And Its Application To The

    E-Print Network [OSTI]

    Coello, Carlos A. Coello

    Multiobjective Optimization Techniques: A Study Of The Energy Minimization Method And Its, Rio de Janeiro, RJ, Brazil, 22453-900 Rio de Janeiro, RJ, Brazil, 22453-900 +55-21-529-9433 +55@brain.jpl.nasa.gov Rua Marques de S. Vicente, 225, Gavea, Rio de Janeiro, RJ, Brazil, 22453-900 +55-21-529-9445 marley

  2. A parametric building energy cost optimization tool based on a genetic algorithm

    E-Print Network [OSTI]

    Tan, Xiaowei

    2007-09-17T23:59:59.000Z

    Sheng-Jen Hsieh Donald R. Smith Coordinator, College of Engineering, N. K. Anand May 2006 Major Subject: Engineering iii ABSTRACT A Parametric Building Energy Cost Optimization Tool Based on a Genetic Algorithm. (May 2006) Xiaowei Tan, B.......................................................................................5 III.1. Project Origin.............................................................................................5 III.2. Applicable Models .....................................................................................7 III.3. Input...

  3. Control and Optimization Meet the Smart Power Grid - Scheduling of Power Demands for Optimal Energy Management

    E-Print Network [OSTI]

    Koutsopoulos, Iordanis

    2010-01-01T23:59:59.000Z

    The smart power grid aims at harnessing information and communication technologies to enhance reliability and enforce sensible use of energy. Its realization is geared by the fundamental goal of effective management of demand load. In this work, we envision a scenario with real-time communication between the operator and consumers. The grid operator controller receives requests for power demands from consumers, with different power requirement, duration, and a deadline by which it is to be completed. The objective is to devise a power demand task scheduling policy that minimizes the grid operational cost over a time horizon. The operational cost is a convex function of instantaneous power consumption and reflects the fact that each additional unit of power needed to serve demands is more expensive as demand load increases.First, we study the off-line demand scheduling problem, where parameters are fixed and known. Next, we devise a stochastic model for the case when demands are generated continually and sched...

  4. Energy Optimization Management in a Petrochemical Plant: A Self-Development Case

    E-Print Network [OSTI]

    Magalhaes, E.

    2014-01-01T23:59:59.000Z

    Eduardo Magalhães| may 21, 2014 Energy Optimization Management in a Petrochemical Plant: A Self-Development Case ESL-IE-14-05-26 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 EXTRACTION... Feedstocks 1ST GENERATION Basic Petrochemicals 2ND GENERATION Thermoplastic Resins 3RD GENERATION Plastics Manufacturers PE PP PVC COMPETITIVE INTEGRATION PETROCHEMICAL INDUSTRY 2 2 ETHYLENE PROPYLENE CHLORINE SODA ALKALI NAPHTHA NATURAL GAS ETHANOL SALT ESL...

  5. ExxonMobil Baton Rouge Chemicals: Energy Optimization in a Turndown Environment

    E-Print Network [OSTI]

    Geier, E.; Panaev, L.; Waite, R.; Eiklor, L.

    events, demographic changes, and other factors discussed herein (and in Item 1 of ExxonMobil?s latest report on Form 10-K). This material is not to be reproduced without the permission of Exxon Mobil Corporation. ExxonMobil Baton Rouge Chemicals...: Energy Optimization in a Turndown Environment 2010 Industrial Energy Technology Conference New Orleans, Louisiana May 21, 2010 2 Overview ? Scene Set ? 2009 ExxonMobil Baton Rouge Chemicals ACC Awards ? Exceptional Merit 1: Elastomers Block...

  6. High-energy D/sub 2/O submillimeter laser for plasma diagnostics

    SciTech Connect (OSTI)

    Semet, A.; Johnson, L.C.; Mansfield, D.K.

    1983-01-01T23:59:59.000Z

    A narrow line optically pumped D/sub 2/O laser operating at 385 ..mu..m has delivered more than 5 J in pulses longer than 3 ..mu..sec using a large aperture unstable resonator cavity design. Pulse levels which are > 1 J and 1 ..mu..sec are necessary for a single shot ion temperature measurement by Thomson scattering in large tokamaks. Experiments have, for the most part, been conducted at a 360 J, 5 ..mu..sec CO/sub 2/ laser pump level where high efficiency (approx. 2.5 J at 385 ..mu..m) has been obtained. These are the highest energies reported to date in the far infrared. In addition, the pulse length has been extended beyond the vibrational relaxation time.

  7. The slingshot effect: a possible new laser-driven high energy acceleration mechanism for electrons

    E-Print Network [OSTI]

    Gaetano Fiore; Renato Fedele; Umberto de Angelis

    2014-11-14T23:59:59.000Z

    We show that under appropriate conditions the impact of a very short and intense laser pulse onto a plasma causes the expulsion of surface electrons with high energy in the direction opposite to the one of propagation of the pulse. This is due to the combined effects of the ponderomotive force and the huge longitudinal field arising from charge separation ("slingshot effect"). The effect should also be present with other states of matter, provided the pulse is sufficiently intense to locally cause complete ionization. An experimental test seems to be feasible and, if confirmed, would provide a new extraction and acceleration mechanism for electrons, alternative to traditional radio-frequency-based or Laser-Wake-Field ones.

  8. Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2013-10-01T23:59:59.000Z

    Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

  9. A Simple Optimal Power Flow Model with Energy Storage K. Mani Chandy, Steven H. Low, Ufuk Topcu and Huan Xu

    E-Print Network [OSTI]

    Xu , Huan

    A Simple Optimal Power Flow Model with Energy Storage K. Mani Chandy, Steven H. Low, Ufuk Topcu and Huan Xu Abstract-- The integration of renewable energy generation, such as wind power how storage allows optimization of power generation across multiple time periods. The model

  10. Compliance of SLAC_s Laser Safety Program with OSHA Requirements for the Control of Hazardous Energy

    SciTech Connect (OSTI)

    Woods, Michael; /SLAC

    2009-01-15T23:59:59.000Z

    SLAC's COHE program requires compliance with OSHA Regulation 29CFR1910.147, 'The control of hazardous energy (lockout/tagout)'. This regulation specifies lockout/tagout requirements during service and maintenance of equipment in which the unexpected energization or start up of the equipment, or release of stored energy, could cause injury to workers. Class 3B and Class 4 laser radiation must be considered as hazardous energy (as well as electrical energy in associated equipment, and other non-beam energy hazards) in laser facilities, and therefore requires careful COHE consideration. This paper describes how COHE is achieved at SLAC to protect workers against unexpected Class 3B or Class 4 laser radiation, independent of whether the mode of operation is normal, service, or maintenance.

  11. Course Overview Pump Systems Matter Optimization | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact Us ContactPractices inCostsCourse Overview Pump

  12. DOE Announces Webinars on Building Energy Optimization Tool Training,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department of Energy -State Efficiency,ofofofRFI

  13. Optimization of Energy Transfer Processes in Photosynthetic Systems |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest and

  14. Slippage effect on energy modulation in seeded free-electron lasers with frequency chirped seed laser pulses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Chao; Deng, Haixiao; Wang, Guanglei; Wang, Dong; Zhao, Zhentang; Xiang, Dao

    2013-06-01T23:59:59.000Z

    Free-electron lasers (FELs) seeded with external lasers hold great promise for generating high power radiation with nearly transform-limited bandwidth in the soft x-ray region. However, it has been pointed out that the initial seed laser phase error will be amplified by the frequency up-conversion process, which may degrade the quality of the output radiation produced by a harmonic generation scheme. In this paper, theoretical and simulation studies on frequency chirp amplification in seeded FEL schemes with slippage effect taken into account are presented. It is found that the seed laser imperfection experienced by the electron beam can be significantly smoothed by the slippage effect in the modulator when the slippage length is comparable to the seed laser pulse length. This smoothing effect allows one to preserve the excellent temporal coherence of seeded FELs in the presence of large frequency chirp in the seed laser. Our studies show that the tolerance on frequency chirp in the seed laser for generating nearly transform-limited soft x-ray pulses in seeded FELs is much looser than previously thought and fully coherent radiation at nanometer wavelength may be reached with current technologies.

  15. Intelligent Building Energy Information and Control Systems for Low-Energy Operations and Optimal Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2014-01-01T23:59:59.000Z

    As  we  develop low?energy buildings, the need for models Building Energy Information and Control Systems for Low-Building  Energy  Information  and  Control  Systems  for  Low­

  16. Formalism for Simulation-based Optimization of Measurement Errors in High Energy Physics

    E-Print Network [OSTI]

    Yuehong Xie

    2009-04-29T23:59:59.000Z

    Miminizing errors of the physical parameters of interest should be the ultimate goal of any event selection optimization in high energy physics data analysis involving parameter determination. Quick and reliable error estimation is a crucial ingredient for realizing this goal. In this paper we derive a formalism for direct evaluation of measurement errors using the signal probability density function and large fully simulated signal and background samples without need for data fitting and background modelling. We illustrate the elegance of the formalism in the case of event selection optimization for CP violation measurement in B decays. The implication of this formalism on choosing event variables for data analysis is discussed.

  17. Optimal energy-harvesting cycles for load-driven dielectric generators in plane strain

    E-Print Network [OSTI]

    R. Springhetti; E. Bortot; G. deBotton; M. Gei

    2014-03-13T23:59:59.000Z

    The performances of energy harvesting generators based on dielectric elastomers are investigated. The configuration is of a thin dielectric film coated by stretchable electrodes at both sides. The film is first stretched, then charged and subsequently, afterwards it is released, and finally the charge is harvested at a higher electric potential. The amount of energy extracted by this cycle is bounded by the electric breakdown and the ultimate stretch ratio of the film as well as by structural instabilities due to loss of tension. To identify the optimal cycle that complies with these limits we formulate a constraint optimization problem and solve it with a dedicated solver for two typical classes of elastic dielectrics. As anticipated, we find that the performance of the generator depends critically on the ultimate stretch ratio of the film. However, more surprising is our finding of a universal limit on the dielectric strength of the film beyond which the optimal cycle is independent of this parameter. Thus, we reveal that, regardless of how large the dielectric strength of the material is, there is an upper bound on the amount of harvested energy that depends only on the ultimate stretch ratio. We conclude the work with detailed calculations of the optimal cycles for two commercially available elastic dielectrics.

  18. Utility Accrual Real-Time Scheduling with Energy Bounds In this paper, we consider timeliness and energy optimization in battery-powered, dynamic

    E-Print Network [OSTI]

    Ravindran, Binoy

    . An important technique used for optimizing the energy consumption of real-time embedded systems is dynamic in the physical world). Further, they are energy-critical, as they must operate on battery, with finite energy and minimizing the system's energy consumption, and not just the CPU's energy consumption. Moreover, such systems

  19. Influence and optimization of the electrodes position in a piezoelectric energy harvesting flag

    E-Print Network [OSTI]

    Piñeirua, Miguel; Michelin, Sébastien

    2015-01-01T23:59:59.000Z

    Fluttering piezoelectric plates may harvest energy from a fluid flow by converting the plate's mechanical deformation into electric energy in an output circuit. This work focuses on the influence of the arrangement of the piezoelectric electrodes along the plate's surface on the energy harvesting efficiency of the system, using a combination of experiments and numerical simulations. A weakly non-linear model of a plate in axial flow, equipped with a discrete number of piezoelectric patches is derived and confronted to experimental results. Numerical simulations are then used to optimize the position and dimensions of the piezoelectric electrodes. These optimal configurations can be understood physically in the limit of small and large electromechanical coupling.

  20. Decentralized Delay Optimal Control for Interference Networks with Limited Renewable Energy Storage

    E-Print Network [OSTI]

    Huang, Huang

    2012-01-01T23:59:59.000Z

    In this paper, we consider delay minimization for interference networks with renewable energy source, where the transmission power of a node comes from both the conventional utility power (AC power) and the renewable energy source. We assume the transmission power of each node is a function of the local channel state, local data queue state and local energy queue state only. In turn, we consider two delay optimization formulations, namely the decentralized partially observable Markov decision process (DEC-POMDP) and Non-cooperative partially observable stochastic game (POSG). In DEC-POMDP formulation, we derive a decentralized online learning algorithm to determine the control actions and Lagrangian multipliers (LMs) simultaneously, based on the policy gradient approach. Under some mild technical conditions, the proposed decentralized policy gradient algorithm converges almost surely to a local optimal solution. On the other hand, in the non-cooperative POSG formulation, the transmitter nodes are non-cooperat...