National Library of Energy BETA

Sample records for larson garnet alkali

  1. Doug Larson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Doug Larson Doug Larson NIF Facility Manager and Chief Engineer, NIF & Photon Science NIF Facility Manager Doug Larson has nearly 30 years of experience in LLNL's fusion programs, ...

  2. Employee Spotlight: Erica Larson Baron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Erica Larson Baron Erica Larson Baron-Fleet feet A top trail-running racer nationally, Erica Erica Baron of Information Systems and Modeling (A-1) often figures out work problems on her daily training runs at the Laboratory. May 31, 2016 Erica Larson Baron Erica Larson Baron Erica Larson Baron Erica Larson Baron Erica has been a runner since junior high, when she figured out she was better at running up and down the basketball court without getting tired than she was with the basketball. Fleet

  3. Employee Spotlight: Erica Larson Baron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Erica Larson Baron May 31, 2016 Fleet feet If you're a runner at a mountain trail race in New Mexico or even beyond, chances are you'll see Erica Larson Baron twice: once as she drops you in the first couple of miles and once at the finish line, cooling off as everyone else trickles in. She's that fast. And she's fast over long distances. The 2012 USA Track & Field 50K trail champion, Erica is a top distance runner with the résumé to prove it. Besides winning the Pikes Peak Marathon a

  4. Larson,Cheryl A * PS-6

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5; Larson,Cheryl A - PS-6; Chalier,Annick E - PFP-6 Subject: FW: proposed contract language re: Tier 2 rates, environmental attributes Attachments: proposed contract language...

  5. QER- Comment of Pat Larson

    Broader source: Energy.gov [DOE]

    First in Massachusetts and other New England states, we need to mount a major campaign to conserve energy. That means getting people and businesses to USE LESS. There are many ways for people to do this. For example, people could use less electricity by shutting off air conditioners and helping cut back electricity use in public buildings such as schools. If we are serious about doing something about the crisis related to climate change, the electric rate system could be re-structured. People who use less pay less, and people who use more (over a certain amount) pay more. Second energy efficiency should be a top priority. We do not need new gas pipelines, such as the proposed Northeast Expansion project in the planning stages by Tennessee Gas Pipeline Co. (owned by Kinder Morgan). This proposed pipeline would cut across protected forests, farmland, and small towns in northern and western parts of Massachusetts. Massachusetts does not need this new proposed gas pipeline. We should fix the leaks in established gas pipelines (Sen. Markey's proposal) to boost efficiency and also use less energy. Continuing to extract fossil fuels such as oil and gas and build new transmission systems is not a good idea at this point in our history as we face a very serious climate change crisis. Patricia Larson

  6. Compound and Elemental Analysis At Seven Mile Hole Area (Larson...

    Open Energy Info (EERE)

    Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Seven Mile Hole...

  7. Isotopic Analysis At San Juan Volcanic Field Area (Larson & Jr...

    Open Energy Info (EERE)

    San Juan Volcanic Field Area (Larson & Jr, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At San Juan Volcanic Field...

  8. Rock Sampling At Seven Mile Hole Area (Larson, Et Al., 2009)...

    Open Energy Info (EERE)

    Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Seven Mile Hole Area (Larson, Et...

  9. Isotopic Analysis At Seven Mile Hole Area (Larson, Et Al., 2009...

    Open Energy Info (EERE)

    Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Seven Mile Hole Area (Larson, Et...

  10. Field Mapping At Seven Mile Hole Area (Larson, Et Al., 2009)...

    Open Energy Info (EERE)

    Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Seven Mile Hole Area (Larson, Et...

  11. Larson,Cheryl A * PS6 From: Roberts,Timothy C - PGL-5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Larson,Cheryl A * PS6 From: Roberts,Timothy C - PGL-5 Sent: Wednesday, October 22, 2008 3:29 PM To: Larson,Cheryl A - PS-6; Barham,Theodore J - PGL-5 Subject: FW: Slice Contract...

  12. Rock Sampling At San Juan Volcanic Field Area (Larson & Jr, 1986...

    Open Energy Info (EERE)

    Juan Volcanic Field Area (Larson & Jr, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At San Juan Volcanic Field Area...

  13. U.S. Energy Secretary Steven Chu, U.S. Representatives Larson and Courtney

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Visit Research Center in East Hartford | Department of Energy Steven Chu, U.S. Representatives Larson and Courtney to Visit Research Center in East Hartford U.S. Energy Secretary Steven Chu, U.S. Representatives Larson and Courtney to Visit Research Center in East Hartford February 3, 2011 - 12:00am Addthis WASHINGTON, DC - Tomorrow, Friday, February 4, U.S. Secretary of Energy Steven Chu will travel to East Hartford, Conn. to visit United Technologies Research Center, which has received

  14. Garnet Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Garnet Wind Facility Garnet Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Azusa Light & Water...

  15. Phase stable rare earth garnets

    SciTech Connect (OSTI)

    Kuntz, Joshua D.; Cherepy, Nerine J.; Roberts, Jeffery J.; Payne, Stephen A.

    2013-06-11

    A transparent ceramic according to one embodiment includes a rare earth garnet comprising A.sub.hB.sub.iC.sub.jO.sub.12, where h is 3.+-.10%, i is 2.+-.10%, and j is 3.+-.10%. A includes a rare earth element or a mixture of rare earth elements, B includes at least one of aluminum, gallium and scandium, and C includes at least one of aluminum, gallium and scandium, where A is at a dodecahedral site of the garnet, B is at an octahedral site of the garnet, and C is at a tetrahedral site of the garnet. In one embodiment, the rare earth garment has scintillation properties. A radiation detector in one embodiment includes a transparent ceramic as described above and a photo detector optically coupled to the rare earth garnet.

  16. Alkali metal nitrate purification

    DOE Patents [OSTI]

    Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  17. Alkali metal ionization detector

    DOE Patents [OSTI]

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  18. Garnet VRX sro | Open Energy Information

    Open Energy Info (EERE)

    VRX sro Jump to: navigation, search Name: Garnet VRX sro Place: esk Budjovice, Czech Republic Zip: 371 36 Product: Czech developer operating a 1.5MW PV plant in the Czech...

  19. Alkali metal ion battery with bimetallic electrode

    DOE Patents [OSTI]

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  20. Methods of recovering alkali metals

    SciTech Connect (OSTI)

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  1. Hydrothermal alkali metal recovery process

    DOE Patents [OSTI]

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  2. PROCESS OF RECOVERING ALKALI METALS

    DOE Patents [OSTI]

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  3. Purification of alkali metal nitrates

    DOE Patents [OSTI]

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  4. Upgrading platform using alkali metals

    SciTech Connect (OSTI)

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  5. Hydrothermal alkali metal catalyst recovery process

    DOE Patents [OSTI]

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  6. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    DOE Patents [OSTI]

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  7. Structure and thermodynamics of uranium-containing iron garnets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K.; Engelhard, Mark H.; Lanzirotti, Antonio; Newville, Matthew; Ilton, Eugene S.; Sutton, Stephen R.; Xu, Hongwu

    2016-06-14

    Use of crystalline garnet as a waste form phase appears to be advantageous for accommodating actinides from nuclear waste. Previous studies show that large amounts of uranium (U) and its analogues such as cerium (Ce) and thorium (Th) can be incorporated into the garnet structure. In this study, we synthesized U loaded garnet phases, Ca3UxZr2–xFe3O12 (x = 0.5–0.7), along with the endmember phase, Ca3(Zr2)SiFe3+2O12, for comparison. The oxidation states of U were determined by X-ray photoelectron and absorption spectroscopies, revealing the presence of mixed pentavalent and hexavalent uranium in the phases with x = 0.6 and 0.7. The oxidation statesmore » and coordination environments of Fe were measured using transmission 57Fe-Mössbauer spectroscopy, which shows that all iron is tetrahedrally coordinated Fe3+. U substitution had a significant effect on local environments, the extent of U substitution within this range had a minimal effect on the structure, and unlike in the x = 0 sample, Fe exists in two different environments in the substituted garnets. The enthalpies of formation of garnet phases from constituent oxides and elements were first time determined by high temperature oxide melt solution calorimetry. The results indicate that these substituted garnets are thermodynamically stable under reducing conditions. Furthermore, our structural and thermodynamic analysis further provides explanation for the formation of natural uranium garnet, elbrusite-(Zr), and supports the potential use of Ca3UxZr2–xFe3O12 as viable waste form phases for U and other actinides.« less

  8. Alkali metal/sulfur battery

    DOE Patents [OSTI]

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  9. Trace-element zoning in garnets from sheared mantle xenoliths

    SciTech Connect (OSTI)

    Griffin, W.L.; Cousens, D.R.; Ryan, C.G.; Sie, S.H.; Suter, G.F. ); Smith, D. ); Boyd, F.R. )

    1989-02-01

    Proton-microprobe analyses of garnets from sheared high-temperature ultramafic xenoliths reveal marked zonation of trace elements, paralleling trends in major and minor elements. Garnet rims (600-1,000 {mu}m wide) are enriched in Fe, Ti, Zr, Y and Ga, and either enriched or depleted in Cr, relative to cores. Zoning profiles for Ti and Zr are S-shaped and extend further into the grains than the Cr and Ga gradients. The profiles are consistent with the formation of Ti, Zr, Y-enriched garnet overgrowths, followed by diffusive equilibration between rim and core over years to hundreds of years. This enrichment in Fe, Ca, Al and incompatible elements is ascribed to melt infiltration and consequent melt-crystal exchange and garnet growth, shortly before eruption. Zr/Y is 1 to 2 in garnet cores but 4 to 5 in rims, and so the infiltrating melt may have been relatively alkalic. Major and trace element concentrations in such high-temperature sheared xenoliths are not likely to resemble those of primitive mantle or of residual mantle depleted by melt extraction.

  10. Regenerable activated bauxite adsorbent alkali monitor probe

    DOE Patents [OSTI]

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  11. Regenerable activated bauxite adsorbent alkali monitor probe

    DOE Patents [OSTI]

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  12. Diamond films treated with alkali-halides

    DOE Patents [OSTI]

    Anderson, D.F.; Kwan, S.W.

    1997-04-08

    A secondary electron emitter is provided and includes a substrate with a diamond film, the diamond film is treated or coated with an alkali-halide. 5 figs.

  13. Diamond films treated with alkali-halides

    DOE Patents [OSTI]

    Anderson, David F.; Kwan, Simon W.

    1997-01-01

    A secondary electron emitter is provided and includes a substrate with a diamond film, the diamond film is treated or coated with an alkali-halide.

  14. Process for the disposal of alkali metals

    DOE Patents [OSTI]

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  15. Method of handling radioactive alkali metal waste

    DOE Patents [OSTI]

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  16. Method of handling radioactive alkali metal waste

    DOE Patents [OSTI]

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  17. Ward Co. Dunn Co. McLean Co. McHenry Co. Mountrail Co. McKenzie Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    WHISKEY JOE WHITE ASH SPRING COULEE DES LACS MAGPIE HARTLAND BEICEGEL CREEK RANCH COULEE WINNER CRAZY MAN CREEK GROS VENTRE BANK W BULLSNAKE UPLAND COULEE REFUGE LARSON GARNET ALKALI CREEK PLUMER RATTLESNAKE POINT ELLSWORTH CHURCH BORDER HANSON GROVER HULSE COULEE SAKAKAWEA AURELIA ROUND TOP BUTTE GORHAM BUTTE W MARMON MANITOU SHEALEY CLAYTON SERGIS N SADDLE BUTTE HAYLAND CEDAR COULEE BOWLINE LITTLE BUTTE LONG CREEK RHOADES HEDBERG FILLMORE EIDSVOLD FAIRFIELD WOLF BAY TOBACCO GARDEN N SPRING

  18. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  19. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  20. Sublattice Magnetic Relaxation in Rare Earth Iron Garnets

    SciTech Connect (OSTI)

    McCloy, John S.; Walsh, Brian

    2013-07-08

    The magnetic properties of rare earth garnets make them attractive materials for applications ranging from optical communications to magnetic refrigeration. The purpose of this research was to determine the AC magnetic properties of several rare earth garnets, in order to ascertain the contributions of various sublattices. Gd3Fe5O¬12, Gd3Ga5O12, Tb3Fe5O12, Tb3Ga5O12, and Y3Fe5O12 were synthesized by a solid state reaction of their oxides and verified by x-ray diffraction. Frequency-dependent AC susceptibility and DC magnetization were measured versus temperature (10 – 340 K). Field cooling had little effect on AC susceptibility, but large effect on DC magnetization, increasing magnetization at the lowest temperature and shifting the compensation point to lower temperatures. Data suggest that interaction of the two iron lattices results in the two frequency dependent magnetic relaxations in the iron garnets, which were fit using the Vogel-Fulcher and Arrhenius laws.

  1. Thermal Expansion in the Garnet-Type Solid Electrolyte

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Li7-xAlx/3)La3Zr2O12 as a Function of Al Content - Joint Center for Energy Storage Research September 25, 2015, Research Highlights Thermal Expansion in the Garnet-Type Solid Electrolyte (Li7-xAlx/3)La3Zr2O12 as a Function of Al Content Evolution of the lattice constant as a function of temperature with the evolution of the (211) peak of cubic (Li6.1Al0.3)La3Zr2O12 during heating (inset). Scientific Achievement The study identified the lattice expansion lithium lanthanum zirconium oxide

  2. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Wednesday, 29 March 2006 00:00 Turning a...

  3. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOE Patents [OSTI]

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  4. Salts of alkali metal anions and process of preparing same

    DOE Patents [OSTI]

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  5. METATHESIS OF PLUTONIUM CARRIER LANTHANUM FLUORIDE PRECIPITATE WITH AN ALKALI

    DOE Patents [OSTI]

    Duffield, R.B.

    1960-04-01

    A plutonium fluoride precipitate is converted to plutonium hydroxide by digesting the precipitate with an aqueous alkali metal hydroxide solution.

  6. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    DOE Patents [OSTI]

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  7. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that aremore » currently of the most commercial interest.« less

  8. Alkali metal recovery from carbonaceous material conversion process

    DOE Patents [OSTI]

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  9. Removal of Retired Alkali Metal Test Systems

    SciTech Connect (OSTI)

    BREHM, W.F.

    2003-01-01

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  10. Alkali metal protective garment and composite material

    DOE Patents [OSTI]

    Ballif, III, John L.; Yuan, Wei W.

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  11. Method for the safe disposal of alkali metal

    DOE Patents [OSTI]

    Johnson, Terry R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.

  12. Jidong Chlorine and Alkali Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Place: Tangshan, Hebei Province, China Zip: 63021 Sector: Hydro Product: Chinese chemical products manufacturer whose products including chlorine, alkali, hydrochloric acid...

  13. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOE Patents [OSTI]

    Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.

    1986-01-01

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  14. Diode-Pumped Alkali Laser: A New Combination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser-Compton Light Source Technology Short-Pulse Lasers High-Powered Lasers Journal Articles home science photon science directed energy Diode-Pumped Alkali Laser: A ...

  15. Effect of furnace operating conditions on alkali vaporization...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; ALKALI METALS; EVAPORATION; FURNACES; ...

  16. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOE Patents [OSTI]

    Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.

    1985-07-10

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  17. Evaluation of alkali concentration in conditions relevant to...

    Office of Scientific and Technical Information (OSTI)

    Conference: Evaluation of alkali concentration in conditions relevant to oxygennatural gas glass furnaces by laser-induced breakdown spectroscopy. Citation Details In-Document ...

  18. Cathode architectures for alkali metal / oxygen batteries

    SciTech Connect (OSTI)

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  19. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOE Patents [OSTI]

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  20. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOE Patents [OSTI]

    Soung, Wen Y.

    1984-01-01

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  1. Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets

    DOE Patents [OSTI]

    Duncan, Paul G.

    2002-01-01

    Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

  2. Controlled in-situ dissolution of an alkali metal

    DOE Patents [OSTI]

    Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald

    2012-09-11

    A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.

  3. Increasing Class C fly ash reduces alkali silica reactivity

    SciTech Connect (OSTI)

    Hicks, J.K.

    2007-07-01

    Contrary to earlier studies, it has been found that incremental additions of Class C fly ash do reduce alkali silica reactivity (ASR), in highly reactive, high alkali concrete mixes. AST can be further reduced by substituting 5% metakaolin or silica fume for the aggregate in concrete mixes with high (more than 30%) Class C fly ash substitution. The paper reports results of studies using Class C fly ash from the Labadie Station plant in Missouri which typically has between 1.3 and 1.45% available alkalis by ASTM C311. 7 figs.

  4. Electrochemical cell utilizing molten alkali metal electrode-reactant

    DOE Patents [OSTI]

    Virkar, Anil V.; Miller, Gerald R.

    1983-11-04

    An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.

  5. Method for intercalating alkali metal ions into carbon electrodes

    DOE Patents [OSTI]

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  6. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or...

  7. Method for intercalating alkali metal ions into carbon electrodes

    DOE Patents [OSTI]

    Doeff, M.M.; Ma, Y.; Visco, S.J.; DeJonghe, L.

    1995-08-22

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  8. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Wednesday, 29 March 2006 00:00 Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic properties is possible by exploiting strongly interacting or "correlated" electrons.

  9. Electrochemical cell having an alkali-metal-nitrate electrode

    DOE Patents [OSTI]

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  10. Solvation Structure and Transport Properties of Alkali Cations in Dimethyl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sulfoxide Under Exogenous Static Electric Fields - Joint Center for Energy Storage Research June 14, 2015, Research Highlights Solvation Structure and Transport Properties of Alkali Cations in Dimethyl Sulfoxide Under Exogenous Static Electric Fields Top: Snapshots of molecular dynamics simulations of alkali ions in DMSO at 298 K and zero-applied electric field: (left) Li+ and (right) Cs+. Sulfur atoms are shown in yellow, oxygen atoms in red, and methyl groups in gray. Graph: Average

  11. Characterization of Selective Binding of Alkali Cations with Carboxylate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Selective Binding of Alkali Cations with Carboxylate Characterization of Selective Binding of Alkali Cations with Carboxylate Print Wednesday, 24 September 2008 00:00 During its lifetime, a cell spends a considerable fraction of its energy pumping sodium and calcium out and potassium in. This balancing process is similar to that found in the coils of the DNA double helix, where specific ions nestle and help stabilize this macromolecule. These are only two examples of

  12. Alkali metal yttrium neo-pentoxide double alkoxide precursors to alkali metal yttrium oxide nanomaterials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boyle, Timothy J.; Neville, Michael L.; Sears, Jeremiah Matthew; Cramer, Roger

    2016-03-15

    In this study, a series of alkali metal yttrium neo-pentoxide ([AY(ONep)4]) compounds were developed as precursors to alkali yttrium oxide (AYO2) nanomaterials. The reaction of yttrium amide ([Y(NR2)3] where R=Si(CH3)3) with four equivalents of H-ONep followed by addition of [A(NR2)] (A=Li, Na, K) or Ao (Ao=Rb, Cs) led to the formation of a complex series of AnY(ONep)3+n species, crystallographically identified as [Y2Li3(μ3-ONep)(μ3-HONep)(μ-ONep)5(ONep)3(HONep)2] (1), [YNa2(μ3-ONep)4(ONep)]2 (2), {[Y2K3(μ3-ONep)3(μ-ONep)4(ONep)2(ηξ-tol)2][Y4K2(μ4-O)(μ3-ONep)8(ONep)4]•ηx-tol]} (3), [Y4K2(μ4-O)(μ3-ONep)8(ONep)4] (3a), [Y2Rb3(μ4-ONep)3(μ-ONep)6] (4), and [Y2Cs4(μ6-O)(μ3-ONep)6(μ3-HONep)2(ONep)2(ηx-tol)4]•tol (5). Compounds 1–5 were investigated as single source precursors to AYOx nanomaterials following solvothermal routes (pyridine, 185 °C for 24h). The final products after thermal processing weremore » found by powder X-ray diffraction experiments to be Y2O3 with variable sized particles based on transmission electron diffraction. Energy dispersive X-ray spectroscopy studies indicated that the heavier alkali metal species were present in the isolated nanomaterials.« less

  13. Temperature evolution of electromotive force from Pt on yttrium-iron-garnet under ferromagnetic resonance

    SciTech Connect (OSTI)

    Ohshima, Ryo; Emoto, Hiroyuki; Shinjo, Teruya; Ando, Yuichiro; Shiraishi, Masashi

    2015-05-07

    Temperature evolution of electromotive force from Pt due to the inverse spin Hall effect is studied. Pure spin current is injected from yttrium-iron-garnet by using spin pumping technique. The electromotive force from the Pt monotonically decreases with decreasing temperature, and it is showed that there is a deviation between the measured and the calculated electromotive forces.

  14. Two-phase alkali-metal experiments in reduced gravity

    SciTech Connect (OSTI)

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.

  15. Hybrid yttrium iron garnet-ferromagnet structures for spin-wave devices

    SciTech Connect (OSTI)

    Papp, A.; Porod, W. Csaba, G.

    2015-05-07

    We study coupled ferromagnetic layers, which could facilitate low loss, sub 100 nm wavelength spin-wave propagation and manipulation. One of the layers is a low-loss garnet film (such as yttrium iron garnet (YIG)) that enables long-distance, coherent spin-wave propagation. The other layer is made of metal-based (Permalloy, Co, and CoFe) magnetoelectronic structures that can be used to generate, manipulate, and detect the spin waves. Using micromagnetic simulations, we analyze the interactions between the spin waves in the YIG and the metallic nanomagnet structures and demonstrate the components of a scalable spin-wave based signal processing device. We argue that such hybrid-metallic ferromagnet structures can be the basis of potentially high-performance, ultra low-power computing devices.

  16. Observation of spin rectification in Pt/yttrium iron garnet bilayer

    SciTech Connect (OSTI)

    Rao, Jinwei; Fan, Xiaolong Zhou, Hengan; Zhao, Xiaobing; Zhao, Jing; Zhang, Fengzhen; Xue, Desheng; Ma, Li; Zhou, Shiming

    2015-05-07

    We used the ferromagnetic resonance (FMR) to study the dc voltage generation in Pt 20 nm layer deposited on yttrium iron garnet. Although the main contribution to the FMR voltage comes from the inverse spin Hall effect associated with spin pumping, the spin rectification would also contribute the resonance signal via the “new” magnetoresistance effect in Pt layer. Based on a symmetry consideration, we can separate those two effects through angular dependent resonance amplitude.

  17. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    SciTech Connect (OSTI)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  18. Magnetic states of the two-leg-ladder alkali metal iron selenides...

    Office of Scientific and Technical Information (OSTI)

    states of the two-leg-ladder alkali metal iron selenides AFe2Se3 Prev Next Title: Magnetic states of the two-leg-ladder alkali metal iron selenides AFe2Se3 Authors: Luo, ...

  19. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    DOE Patents [OSTI]

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  20. Method of assembling and sealing an alkali metal battery

    DOE Patents [OSTI]

    Elkins, P.E.; Bell, J.E.; Harlow, R.A.; Chase, G.G.

    1983-03-01

    A method of initially assembling and then subsequently hermetically sealing a container portion of an alkali metal battery to a ceramic portion of such a battery is disclosed. Sealing surfaces are formed respectively on a container portion and a ceramic portion of an alkali metal battery. These sealing surfaces are brought into juxtaposition and a material is interposed there between. This interposed material is one which will diffuse into sealing relationship with both the container portion and the ceramic portion of the alkali metal battery at operational temperatures of such a battery. A pressure is applied between these sealing surfaces to cause the interposed material to be brought into intimate physical contact with such juxtaposed surfaces. A temporary sealing material which will provide a seal against a flow of alkali metal battery reactants there through at room temperatures and is applied over the juxtaposed sealing surfaces and material interposed there between. The entire assembly is heated to an operational temperature so that the interposed material diffuses into the container portion and the ceramic portion to form a hermetic seal there between. The pressure applied to the juxtaposed sealing surfaces is maintained in order to ensure the continuation of the hermetic seal. 4 figs.

  1. Method of assembling and sealing an alkali metal battery

    DOE Patents [OSTI]

    Elkins, Perry E.; Bell, Jerry E.; Harlow, Richard A.; Chase, Gordon G.

    1983-01-01

    A method of initially assembling and then subsequently hermetically sealing a container portion of an alkali metal battery to a ceramic portion of such a battery is disclosed. Sealing surfaces are formed respectively on a container portion and a ceramic portion of an alkali metal battery. These sealing surfaces are brought into juxtaposition and a material is interposed therebetween. This interposed material is one which will diffuse into sealing relationship with both the container portion and the ceramic portion of the alkali metal battery at operational temperatures of such a battery. A pressure is applied between these sealing surfaces to cause the interposed material to be brought into intimate physical contact with such juxtaposed surfaces. A temporary sealing material which will provide a seal against a flow of alkali metal battery reactants therethrough at room temperatures and is applied over the juxtaposed sealing surfaces and material interposed therebetween. The entire assembly is heated to an operational temperature so that the interposed material diffuses into the container portion and the ceramic portion to form a hermetic seal therebetween. The pressure applied to the juxtaposed sealing surfaces is maintained in order to ensure the continuation of the hermetic seal.

  2. High capacity nickel battery material doped with alkali metal cations

    DOE Patents [OSTI]

    Jackovitz, John F.; Pantier, Earl A.

    1982-05-18

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  3. Modeling of alkali aggregate reaction effects in concrete dams

    SciTech Connect (OSTI)

    Capra, B.; Bournazel, J.P.; Bourdarot, E.

    1995-12-31

    Alkali Aggregate Reactions (AAR) are difficult to model due to the random distribution of the reactive sites and the imperfect knowledge of these chemical reactions. A new approach, using fracture mechanics and probabilities, capable to describe the anisotropic swelling of a structure is presented.

  4. PVC waterproofing membranes and alkali-aggregated reaction in dams

    SciTech Connect (OSTI)

    Scuero, A.M.

    1995-12-31

    A waterproofing polyvinylchloride (PVC) based geocomposite was installed on two dams subject to alkali-aggregate reaction, to eliminate water intrusion and to protect the facing from further deterioration. The installation system allows drainage of the infiltrated water, thus accomplishing dehydration of the dam body. On one dam, the membrane also provided protection for future slot cutting.

  5. Spin-wave excitation and propagation in microstructured waveguides of yttrium iron garnet/Pt bilayers

    SciTech Connect (OSTI)

    Pirro, P.; Chumak, A. V.; Lägel, B.; Leven, B.; Hillebrands, B.; Brächer, T.; Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern ; Dubs, C.; Surzhenko, O.; Görnert, P.

    2014-01-06

    We present an experimental study of spin-wave excitation and propagation in microstructured waveguides consisting of a 100 nm thick yttrium iron garnet/platinum (Pt) bilayer. The life time of the spin waves is found to be more than an order of magnitude higher than in comparably sized metallic structures, despite the fact that the Pt capping enhances the Gilbert damping. Utilizing microfocus Brillouin light scattering spectroscopy, we reveal the spin-wave mode structure for different excitation frequencies. An exponential spin-wave amplitude decay length of 31 μm is observed which is a significant step towards low damping, insulator based micro-magnonics.

  6. Unidirectional anisotropy in the spin pumping voltage in yttrium iron garnet/platinum bilayers

    SciTech Connect (OSTI)

    Vilela-Leao, L. H.; Salvador, C.; Azevedo, A.; Rezende, S. M.

    2011-09-05

    Detailed measurements of the dc voltage generated in a thin Pt layer deposited on films of yttrium iron garnet (YIG) have been carried out to study the spin pumping effect produced by magnetostatic (MS) modes excited by a microwave field. In relatively thick YIG films the modes are far apart so that one can identify clearly the spin pumping voltage in V{sub SP} produced by each MS mode. We have discovered that when the sputter deposition of the thin Pt layer is made on the YIG film magnetized by a static magnetic field, V{sub SP} exhibits a strong unidirectional anisotropy.

  7. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    SciTech Connect (OSTI)

    Ostafiychuk, B. K.; Yaremiy, I. P. Yaremiy, S. I.; Fedoriv, V. D.; Tomyn, U. O.; Umantsiv, M. M.; Fodchuk, I. M.; Kladko, V. P.

    2013-12-15

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He{sup +} ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  8. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    DOE Patents [OSTI]

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  9. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic properties is possible by exploiting strongly interacting or "correlated" electrons. Now a team of researchers from the University of Kiel in Germany and the ALS has found a novel,

  10. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic properties is possible by exploiting strongly interacting or "correlated" electrons. Now a team of researchers from the University of Kiel in Germany and the ALS has found a novel,

  11. Lithological influence of aggregate in the alkali-carbonate reaction

    SciTech Connect (OSTI)

    Lopez-Buendia, A.M. . E-mail: angel.lopez@aidico.es; Climent, V. . E-mail: vcliment@grupogla.com; Verdu, P.

    2006-08-15

    The reactivity of carbonate rock with the alkali content of cement, commonly called alkali-carbonate reaction (ACR), has been investigated. Alkali-silica reaction (ASR) can also contribute in the alkali-aggregate reaction (AAR) in carbonate rock, mainly due to micro- and crypto-crystalline quartz or clay content in carbonate aggregate. Both ACR and ASR can occur in the same system, as has been also evidenced on this paper. Carbonate aggregate samples were selected using lithological reactivity criteria, taking into account the presence of dedolomitization, partial dolomitization, micro- and crypto-crystalline quartz. Selected rocks include calcitic dolostone with chert (CDX), calcitic dolostone with dedolomitization (CDD), limestone with chert (LX), marly calcitic dolostone with partial dolomitization (CD), high-porosity ferric dolostone with clays (FD). To evaluate the reactivity, aggregates were studied using expansion tests following RILEM AAR-2, AAR-5, a modification using LiOH AAR-5Li was also tested. A complementary study was done using petrographic monitoring with polarised light microscopy on aggregates immersed in NaOH and LiOH solutions after different ages. SEM-EDAX has been used to identify the presence of brucite as a product of dedolomitization. An ACR reaction showed shrinkage of the mortar bars in alkaline solutions explained by induced dedolomitization, while an ASR process typically displayed expansion. Neither shrinkage nor expansion was observed when mortar bars were immersed in solutions of lithium hydroxide. Carbonate aggregate classification with AAR pathology risk has been elaborated based on mechanical behaviours by expansion and shrinkage. It is proposed to be used as a petrographic method for AAR diagnosis to complement the RILEM AAR1 specifically for carbonate aggregate. Aggregate materials can be classified as I (non-reactive), II (potentially reactive), and III (probably reactive), considering induced dedolomitization ACR

  12. Characterization of Selective Binding of Alkali Cations with Carboxylate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Selective Binding of Alkali Cations with Carboxylate Print During its lifetime, a cell spends a considerable fraction of its energy pumping sodium and calcium out and potassium in. This balancing process is similar to that found in the coils of the DNA double helix, where specific ions nestle and help stabilize this macromolecule. These are only two examples of selective ion interactions in biology; there are many others also vital to life. The existence of these interactions

  13. Characterization of Selective Binding of Alkali Cations with Carboxylate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Selective Binding of Alkali Cations with Carboxylate Print During its lifetime, a cell spends a considerable fraction of its energy pumping sodium and calcium out and potassium in. This balancing process is similar to that found in the coils of the DNA double helix, where specific ions nestle and help stabilize this macromolecule. These are only two examples of selective ion interactions in biology; there are many others also vital to life. The existence of these interactions

  14. Characterization of Selective Binding of Alkali Cations with Carboxylate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Selective Binding of Alkali Cations with Carboxylate Print During its lifetime, a cell spends a considerable fraction of its energy pumping sodium and calcium out and potassium in. This balancing process is similar to that found in the coils of the DNA double helix, where specific ions nestle and help stabilize this macromolecule. These are only two examples of selective ion interactions in biology; there are many others also vital to life. The existence of these interactions

  15. Characterization of Selective Binding of Alkali Cations with Carboxylate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Selective Binding of Alkali Cations with Carboxylate Print During its lifetime, a cell spends a considerable fraction of its energy pumping sodium and calcium out and potassium in. This balancing process is similar to that found in the coils of the DNA double helix, where specific ions nestle and help stabilize this macromolecule. These are only two examples of selective ion interactions in biology; there are many others also vital to life. The existence of these interactions

  16. Characterization of Selective Binding of Alkali Cations with Carboxylate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Selective Binding of Alkali Cations with Carboxylate Print During its lifetime, a cell spends a considerable fraction of its energy pumping sodium and calcium out and potassium in. This balancing process is similar to that found in the coils of the DNA double helix, where specific ions nestle and help stabilize this macromolecule. These are only two examples of selective ion interactions in biology; there are many others also vital to life. The existence of these interactions

  17. Yttrium aluminium garnet under pressure: Structural, elastic, and vibrational properties from ab initio studies

    SciTech Connect (OSTI)

    Monteseguro, V.; Rodríguez-Hernández, P.; Muñoz, A.

    2015-12-28

    The structural, elastic, and vibrational properties of yttrium aluminum garnet Y{sub 3}Al{sub 5}O{sub 12} are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet is mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y{sub 3}Al{sub 5}O{sub 12} and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa.

  18. Origin of high Li⁺ conduction in doped Li₇La₃Zr₂O₁₂ garnets

    SciTech Connect (OSTI)

    Chen, Yan; Rangasamy, Ezhiylmurugan; Liang, Chengdu; An, Ke

    2015-08-06

    Substitution of a native ion in the crystals with a foreign ion that differs in valence (aliovalent doping) has been widely attempted to upgrade solid-state ionic conductors for various charge carriers including O²⁻, H⁺, Li⁺, Na⁺, etc. The doping helps promote the high-conductive framework and dredge the tunnel for fast ion transport. The garnet-type Li₇La₃Zr₂O₁₂ (LLZO) is a fast Li⁺ solid conductor, which received much attention as an electrolyte candidate for all-solid-state lithium ion batteries, showing great potential to offer high energy density and minimize battery safety concerns to meet extensive applications in large energy storage systems such as those for electric vehicles and aerospace. In the Li-stuffed garnet framework of LLZO, the 3D pathway formed by the incompletely occupied tetrahedral sites bridged by a single octahedron enables the superior Li⁺ conductivity. For optimal performance, many aliovalent-doping efforts have been made throughout metal elements (Al³⁺, Ta⁵⁺) and metalloid elements (Ga³⁺, Te⁶⁺) in the periodic table with various valences to stabilize the high-conductive phase and increase the Li vacancy concentration.

  19. Origin of high Li⁺ conduction in doped Li₇La₃Zr₂O₁₂ garnets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Yan; Rangasamy, Ezhiylmurugan; Liang, Chengdu; An, Ke

    2015-08-06

    Substitution of a native ion in the crystals with a foreign ion that differs in valence (aliovalent doping) has been widely attempted to upgrade solid-state ionic conductors for various charge carriers including O²⁻, H⁺, Li⁺, Na⁺, etc. The doping helps promote the high-conductive framework and dredge the tunnel for fast ion transport. The garnet-type Li₇La₃Zr₂O₁₂ (LLZO) is a fast Li⁺ solid conductor, which received much attention as an electrolyte candidate for all-solid-state lithium ion batteries, showing great potential to offer high energy density and minimize battery safety concerns to meet extensive applications in large energy storage systems such as thosemore » for electric vehicles and aerospace. In the Li-stuffed garnet framework of LLZO, the 3D pathway formed by the incompletely occupied tetrahedral sites bridged by a single octahedron enables the superior Li⁺ conductivity. For optimal performance, many aliovalent-doping efforts have been made throughout metal elements (Al³⁺, Ta⁵⁺) and metalloid elements (Ga³⁺, Te⁶⁺) in the periodic table with various valences to stabilize the high-conductive phase and increase the Li vacancy concentration.« less

  20. Crystallized alkali-silica gel in concrete from the late 1890s

    SciTech Connect (OSTI)

    Peterson, Karl . E-mail: cee@mtu.edu; Gress, David . E-mail: dlgress@unh.edu; Van Dam, Tom . E-mail: cee@mtu.edu; Sutter, Lawrence . E-mail: cee@mtu.edu

    2006-08-15

    The Elon Farnsworth Battery, a concrete structure completed in 1898, is in an advanced state of disrepair. To investigate the potential for rehabilitation, cores were extracted from the battery. Petrographic examination revealed abundant deposits of alkali silica reaction products in cracks associated with the quartz rich metasedimentary coarse aggregate. The products of the alkali silica reaction are variable in composition and morphology, including both amorphous and crystalline phases. The crystalline alkali silica reaction products are characterized by quantitative X-ray energy dispersive spectrometry (EDX) and X-ray diffraction (XRD). The broad extent of the reactivity is likely due to elevated alkali levels in the cements used.

  1. Alkali-lead-iron phosphate glass and associated method

    DOE Patents [OSTI]

    Boatner, Lynn A.; Sales, Brian C.; Franco, Sofia C. S.

    1994-01-01

    A glass composition and method of preparation utilizes a mixture consisting of phosphorus oxide within the range of about 40 to 49 molar percent, lead oxide within the range of about 10 to 25 molar percent, iron oxide within the range of about 10 to 17 molar percent and an alkali oxide within the range of about 23 to 30 molar percent. The glass resulting from the melting and subsequent solidifying of the mixture possesses a high degree of durability and a coefficient of thermal expansion as high as that of any of a number of metals. Such features render this glass highly desirable in glass-to-metal seal applications.

  2. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tulane University: 2016 Energy Expo Tulane University: 2016 Energy Expo September 9, 2016 9:00AM to 5:00PM EDT Location: 1200 Louisiana Street, Houston, TX 77002 Attendees: Morgan McKnight

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic

  3. Alkali-lead-iron phosphate glass and associated method

    DOE Patents [OSTI]

    Boatner, L.A.; Sales, B.C.; Franco, S.C.S.

    1994-03-29

    A glass composition and method of preparation utilizes a mixture consisting of phosphorus oxide within the range of about 40 to 49 molar percent, lead oxide within the range of about 10 to 25 molar percent, iron oxide within the range of about 10 to 17 molar percent and an alkali oxide within the range of about 23 to 30 molar percent. The glass resulting from the melting and subsequent solidifying of the mixture possesses a high degree of durability and a coefficient of thermal expansion as high as that of any of a number of metals. Such features render this glass highly desirable in glass-to-metal seal applications. 6 figures.

  4. Cubic Ionic Conductor Ceramics for Alkali Ion Batteries - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cuban Missile Crisis Cuban Missile Crisis Cuba Reconnaissance reveals Soviet missiles in Cuba. The United States blockades Cuba for 13 days until the Soviet Union agrees to remove its missiles Portal

    Advanced Materials Advanced Materials Find More Like This Return to Search Cubic Ionic Conductor Ceramics for Alkali Ion Batteries Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Ionic conduction in cubic Na3TiP3O9N, a secondary Na-ion

  5. Pressure effect on elastic anisotropy of crystals from ab initio simulations: The case of silicate garnets

    SciTech Connect (OSTI)

    Mahmoud, A.; Erba, A. Dovesi, R.; Doll, K.

    2014-06-21

    A general methodology has been devised and implemented into the solid-state ab initio quantum-mechanical CRYSTAL program for studying the evolution under geophysical pressure of the elastic anisotropy of crystalline materials. This scheme, which fully exploits both translational and point symmetry of the crystal, is developed within the formal frame of one-electron Hamiltonians and atom-centered basis functions. Six silicate garnet end-members, among the most important rock-forming minerals of the Earth's mantle, are considered, whose elastic anisotropy is fully characterized under high hydrostatic compressions, up to 60 GPa. The pressure dependence of azimuthal anisotropy and shear-wave birefringence of seismic wave velocities for these minerals are accurately simulated and compared with available single-crystal measurements.

  6. Nonlinear dynamics of three-magnon process driven by ferromagnetic resonance in yttrium iron garnet

    SciTech Connect (OSTI)

    Cunha, R. O.; Holanda, J.; Azevedo, A.; Rezende, S. M.; Vilela-Leo, L. H.; Rodrguez-Surez, R. L.

    2015-05-11

    We report an investigation of the dynamics of the three-magnon splitting process associated with the ferromagnetic resonance (FMR) in films of the insulating ferrimagnet yttrium iron garnet (YIG). The experiments are performed with a 6??m thick YIG film close to a microstrip line fed by a microwave generator operating in the 26?GHz range. The magnetization precession is driven by the microwave rf magnetic field perpendicular to the static magnetic field, and its dynamics is observed by monitoring the amplitude of the FMR absorption peak. The time evolution of the amplitude reveals that if the frequency is lowered below a critical value of 3.3?GHz, the FMR mode pumps two magnons with opposite wave vectors that react back on the FMR, resulting in a nonlinear dynamics of the magnetization. The results are explained by a model with coupled nonlinear equations describing the time evolution of the magnon modes.

  7. Integration of nonlinear dielectric barium strontium titanate with polycrystalline yttrium iron garnet

    SciTech Connect (OSTI)

    Jia, Q.X.; Groves, J.R.; Arendt, P.; Fan, Y.; Findikoglu, A.T.; Foltyn, S.R.; Jiang, H.; Miranda, F.A.

    1999-03-01

    Biaxially oriented nonlinear dielectric Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (BST) films have been grown on polycrystalline ferrite yttrium iron garnet (YIG) substrates. We use a structurally and chemically compatible MgO buffer to improve the crystallinity of the BST on polycrystalline YIG substrates, where the biaxially oriented MgO is deposited by an ion-beam assisted-deposition technique. The biaxially oriented BST has a dielectric loss of less than 0.01 and a capacitance tunability of greater than 25{percent} at a direct current bias voltage of 40 V at room temperature. {copyright} {ital 1999 American Institute of Physics.}

  8. Spin valve effect of the interfacial spin accumulation in yttrium iron garnet/platinum bilayers

    SciTech Connect (OSTI)

    Jin, Lichuan; Zhang, Dainan; Zhang, Huaiwu Tang, Xiaoli; Bai, Feiming; Zhong, Zhiyong; Fan, Xin; Xiao, John Q.

    2014-09-29

    We report the spin valve effect in yttrium iron garnet/platinum (YIG/Pt) bilayers. The spin Hall effect (SHE) generates spin accumulation at the YIG/Pt interface and can be opened/closed by magnetization switching in the electrical insulator YIG. The interfacial spin accumulation was measured in both YIG/Pt and YIG/Cu/Pt structures using a planar Hall configuration. The spin valve effect remained, even after a 2 nm thick Cu layer was inserted between the YIG and Pt layers, which aimed to exclude the induced magnetization at the YIG/Pt interface. The transverse Hall voltage and switching field were dependent on the applied charge current density. The origin of this behavior can be explained by the SHE induced torque exerted on the domain wall, caused by the transfer of the spin angular momentum from the spin-polarized current to the YIG magnetic moment.

  9. Phase-controllable spin wave generation in iron garnet by linearly polarized light pulses

    SciTech Connect (OSTI)

    Yoshimine, Isao; Iida, Ryugo; Shimura, Tsutomu; Satoh, Takuya; Stupakiewicz, Andrzej; Maziewski, Andrzej

    2014-07-28

    A phase-controlled spin wave was non-thermally generated in bismuth-doped rare-earth iron garnet by linearly polarized light pulses. We controlled the initial phase of the spin wave continuously within a range of 180 by changing the polarization azimuth of the excitation light. The azimuth dependences of the initial phase and amplitude of the spin wave were attributed to a combination of the inverse Cotton-Mouton effect and photoinduced magnetic anisotropy. Temporally and spatially resolved spin wave propagation was observed with a CCD camera, and the waveform was in good agreement with calculations. A nonlinear effect of the spin excitation was observed for excitation fluences higher than 100 mJ/cm{sup 2}.

  10. Band-gap and band-edge engineering of multicomponent garnet scintillators from first principles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; Jiang, Chao; Stanek, Christopher R.

    2015-11-24

    Complex doping schemes in R3Al5O12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimum (CBM) or valence-bandmore » maximum (VBM). We consider two sets of compositions based on Lu3B5O12 where B is Al, Ga, In, As, and Sb, and R3Al5O12, where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. Furthermore, this approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.« less

  11. Synthesis and studies on microhardness of alkali zinc borate glasses

    SciTech Connect (OSTI)

    Subhashini, Bhattacharya, Soumalya Shashikala, H. D. Udayashankar, N. K.

    2014-04-24

    The mixed alkali effect on zinc borate glasses have been reported. The glass systems of nominal composition 10Zn+xLi{sub 2}O+yNa{sub 2}O+80B{sub 2}O{sub 3} (x = y = 0, 5, 10, 15 mol%) were prepared using standard melt quenching method. The structural, physical and mechanical properties of the samples have been studied using X-ray diffraction(XRD), density measurement and Vickers hardness measurement, respectively. A consistent increase in the density was observed, which explains the role of the modifiers (Li{sub 2}O and Na{sub 2}O) in the network modification of borate structure. The molar volume is decreasing linearly with the alkali concentration, which is attributed to the conversion of tetrahedral boron (BO{sub 4/2}){sup −} into (BO{sub 3/2}){sup −}. The microhardness studies reveals the anisotropy nature of the material. It further confirms that the samples belong to hard glass category.

  12. Thermodynamic Properties Of Alkali Species In Coal Based Combined Cycle Power Systems

    SciTech Connect (OSTI)

    Willenborg, W.; Wolf, K.J.; Fricke, C.; Moeller, M.; Prikhodovsky, A.; Hilpert, K.; Singheiser, L.

    2002-09-20

    The aim of this project is to support the development of a concept for a successful alkali removal. Two strategies are possible: optimizing the alkali retention potential of the coal ash slag in the combustion chamber and the liquid slag separators and separate alkali removal with solid sorbents (getters) at temperatures below 1450 C. Therefore in a first step the alkali partial pressure over coal ash slag should be determined in order to get information about the retention potential of the slag. The influence of additives on the retention potential of the slag should be investigated. The measurements should show if the alkali partial pressure over the slag is generally low enough in case of thermodynamic equilibrium. In case of too high alkali partial pressures a separate alkali removal is needed. Therefore in a second step commercial sorbent materials should be investigated concerning their sorption potential for alkalis. To get information about the influence of getter components on the sorption potential some mixtures of pure components, predicted by thermodynamic modeling to be most effective, should be investigated.

  13. Charge-coupled substituted garnets (Y 3-x Ca 0.5x M 0.5x )Fe₅O₁₂...

    Office of Scientific and Technical Information (OSTI)

    DOE PAGES Search Results Accepted Manuscript: Charge-coupled substituted garnets (Y 3-x Ca 0.5x M 0.5x )FeO (M Ce, Th): Structure and stability as crystalline nuclear ...

  14. Dramatic impact of the giant local magnetic fields on spin-dependent recombination processes in gadolinium based garnets

    SciTech Connect (OSTI)

    Romanov, N. G. Tolmachev, D. O.; Gurin, A. S.; Uspenskaya, Yu. A.; Asatryan, H. R.; Badalyan, A. G.; Baranov, P. G.; Wieczorek, H.; Ronda, C.

    2015-06-29

    A giant magnetic field effect on spin-dependent recombination of the radiation-induced defects has been found in cerium doped gadolinium based garnet crystals and ceramics, promising materials for scintillator applications. A sharp and strong increase in the afterglow intensity stimulated by external magnetic field and an evidence of the magnetic field memory have been discovered. The effect was ascribed to huge Gd-induced internal magnetic fields, which suppress the recombination, and cross-relaxation with Gd{sup 3+} ions leading to reorientation of the spins of the electron and hole centers. Thus, the spin system of radiation-induced defects in gadolinium garnet based scintillator materials was shown to accumulate significant energy which can be released in external magnetic fields.

  15. Influence of lithium hydroxide on alkali-silica reaction

    SciTech Connect (OSTI)

    Bulteel, D.; Garcia-Diaz, E.; Degrugilliers, P.

    2010-04-15

    Several papers show that the use of lithium limits the development of alkali-silica reaction (ASR) in concrete. The aim of this study is to improve the understanding of lithium's role on the alteration mechanism of ASR. The approach used is a chemical method which allowed a quantitative measurement of the specific degree of reaction of ASR. The chemical concrete sub-system used, called model reactor, is composed of the main ASR reagents: reactive aggregate, portlandite and alkaline solution. Different reaction degrees are measured and compared for different alkaline solutions: NaOH, KOH and LiOH. Alteration by ASR is observed with the same reaction degrees in the presence of NaOH and KOH, accompanied by the consumption of hydroxyl concentration. On the other hand with LiOH, ASR is very limited. Reaction degree values evolve little and the hydroxyl concentration remains about stable. These observations demonstrate that lithium ions have an inhibitor role on ASR.

  16. Alkali-silica reaction and its effectes on concrete

    SciTech Connect (OSTI)

    Stark, D.

    1995-12-31

    Alkali-silica reactivity (ASR) has resulted in cracking of concrete in numerous dams in the United States and elsewhere. Many of these dams were constructed prior to the initial discovery of ASR in California in the late 1930`s, thus no special precautions could have been taken to prevent its development Since that time, ASR has been identified in all types of structures located in many parts of the world. Voluminous research has been carried out to better characterize its development, to more completely understand the mechanisms of expansion and distress, and to design means to mitigate its development in new and existing construction. Based on this work, this paper describes the nature of ASR, its effects on concrete, and means to control its development, with special reference to dams.

  17. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    SciTech Connect (OSTI)

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  18. Luminescence properties and electronic structure of Ce{sup 3+}-doped gadolinium aluminum garnet

    SciTech Connect (OSTI)

    Dotsenko, V.P.; Berezovskaya, I.V.; Voloshinovskii, A.S.; Zadneprovski, B.I.; Efryushina, N.P.

    2015-04-15

    Highlights: • The luminescence properties of Ce{sup 3+} ions in (Y, Gd){sub 3}Al{sub 5}O{sub 12} are analyzed. • The Gd{sup 3+} → Y{sup 3+} substitution leads to increasing of Ce{sup 3+} noncubic crystal field splitting parameter. • The excitation spectra for the Ce{sup 3+} emission in GdAG contain bands at 6.67, 7.75, and 9.76 eV. • These features are due to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions. • Contributions from Al atoms to the conduction-band density of states are quite essential. - Abstract: Yttrium-gadolinium aluminum garnets (YGdAG) doped with Ce{sup 3+} ions have been prepared by co-precipitation method. The luminescent properties of Ce{sup 3+} ions in Gd{sub 3(1−x)}Ce{sub 3x}Al{sub 5}O{sub 12} (x = 0.01) have been studied upon excitation in the 2–20 eV region. The substitution of Gd{sup 3+} for Y{sup 3+} in the garnet structure results in broadening the emission band and shifting its maximum towards the longer wavelengths. It was found that in addition to the 4f → 5d excitation bands of Ce{sup 3+} ions, the excitation spectra for the Ce{sup 3+} emission contain bands at 6.67, 7.75, and 9.76 eV. These bands are attributed to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions, respectively. Although gadolinium states dominate near the bottom of the conduction band of Gd{sub 3}Al{sub 5}O{sub 12}, contributions from Al{sub tetr} and Al{sub oct} atoms to the conduction-band density of states are evaluated as quite essential.

  19. A light water excess heat reaction suggests that cold fusion may be alkali-hydrogen fusion

    SciTech Connect (OSTI)

    Bush, R.T. )

    1992-09-01

    This paper reports that Mills and Kneizys presented data in support of a light water excess heat reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons cold fusion cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. It is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term alkali-hydrogen fusion seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A new three-dimensional transmission resonance model (TRM) is sketched. Finally, preliminary experimental evidence in support of the hypothesis of a light water nuclear reaction and alkali-hydrogen fusion is reported. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM.

  20. Optical spectroscopy of sputtered nanometer-thick yttrium iron garnet films

    SciTech Connect (OSTI)

    Jakubisova-Liskova, Eva Visnovsky, Stefan; Chang, Houchen; Wu, Mingzhong

    2015-05-07

    Nanometer (nm)-thick yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) films present interest for spintronics. This work employs spectral ellipsometry and magneto-optic Kerr effect (MOKE) spectra to characterize nm-thick YIG films grown on single-crystal Gd{sub 3}Ga{sub 5}O{sub 12} substrates by magnetron sputtering. The thickness (t) of the films ranges between 10 nm and 40 nm. Independent on t, the polar MOKE hysteresis loops saturate in the field of about 1.8 kOe, consistent with the saturation magnetization in bulk YIG (4πM{sub s} ≈ 1.75 kG). The MOKE spectrum measured at photon energies between 1.3 eV and 4.5 eV on the 38-nm-thick film agrees with that measured on single-crystal YIG bulk materials. The MOKE spectrum of the 12-nm-thick film still preserves the structure of the bulk YIG but its amplitude at lower photon energies is modified due to the fact that the radiation penetration depth exceeds 20 nm. The t dependence of the MOKE amplitude is consistent with MOKE calculations. The results indicate that the films are stoichiometric, strain free, without Fe{sup 2+}, and preserve bulk YIG properties down to t ≈ 10 nm.

  1. Structure and scintillation yield of Ce-doped AlGa substituted yttrium garnet

    SciTech Connect (OSTI)

    Sidletskiy, Oleg; Kononets, Valerii; Lebbou, Kheirreddine; Neicheva, Svetlana; Voloshina, Olesya; Bondar, Valerii; Baumer, Vyacheslav; Belikov, Konstantin; Gektin, Alexander; Grinyov, Boris; Joubert, Marie-France

    2012-11-15

    Highlights: ? Range of Y{sub 3}(Al{sub 1?x}Ga{sub x}){sub 5}O{sub 12}:Ce solid solution crystals are grown from melt by the Czochralski method. ? Light yield of mixed crystals reaches 130% of the YAG:Ce value at x ? 0.4. ? ?1% of antisite defects is formed in YGG:Ce, but no evidence of this is obtained for the rest of crystals. -- Abstract: Structure and scintillation yield of Y{sub 3}(Al{sub 1?x}Ga{sub x}){sub 5}O{sub 12}:Ce solid solution crystals are studied. Crystals are grown from melt by the Czochralski method. Distribution of host cations in crystal lattice is determined. Quantity of antisite defects in crystals is evaluated using XRD and atomic emission spectroscopy data. Trend of light output at Al/Ga substitution in Y{sub 3}(Al{sub 1?x}Ga{sub x}){sub 5}O{sub 12}:Ce is determined for the first time. Light output in mixed crystals reaches 130% comparative to Ce-doped yttriumaluminum garnet. Luminescence properties at Al/Ga substitution are evaluated.

  2. Breakdown of ionic character of molecular alkali bromides in inner-valence photoionization

    SciTech Connect (OSTI)

    Karpenko, A. Iablonskyi, D.; Kettunen, J. A.; Cao, W.; Huttula, M.; Aksela, H.; Urpelainen, S.

    2014-05-28

    The inner-valence region of alkali bromide XBr (X=Li, Na, K, Rb) vapours has been studied experimentally by means of synchrotron radiation excited photoelectron spectroscopy. Experimental spectra were analyzed by comparing them with available theoretical results and previous experiments. Ionic character of alkali bromides is seen to change in the inner-valence region with increasing atomic number of the alkali atom. A mechanism involving mixing between Br 4s and Rb 4p orbitals has been suggested to account for the fine structure observed in inner-valence ionization region of RbBr.

  3. Method and composition for testing for the presence of an alkali metal

    DOE Patents [OSTI]

    Guon, Jerold

    1981-01-01

    A method and composition for detecting the presence of an alkali metal on the surface of a body such as a metal plate, tank, pipe or the like is provided. The method comprises contacting the surface with a thin film of a liquid composition comprising a light-colored pigment, an acid-base indicator, and a nonionic wetting agent dispersed in a liquid carrier comprising a minor amount of water and a major amount of an organic solvent selected from the group consisting of the lower aliphatic alcohols, ketones and ethers. Any alkali metal present on the surface in elemental form or as an alkali metal hydroxide or alkali metal carbonate will react with the acid-base indicator to produce a contrasting color change in the thin film, which is readily discernible by visual observation or automatic techniques.

  4. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    DOE Patents [OSTI]

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  5. In situ formation of coal gasification catalysts from low cost alkali metal salts

    DOE Patents [OSTI]

    Wood, Bernard J.; Brittain, Robert D.; Sancier, Kenneth M.

    1985-01-01

    A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

  6. Detection of alkali-silica reaction swelling in concrete by staining

    DOE Patents [OSTI]

    Guthrie, Jr., George D.; Carey, J. William

    1998-01-01

    A method using concentrated aqueous solutions of sodium cobaltinitrite and rhodamine B is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR). These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na--K--Ca--Si gels are identified by yellow staining, and alkali-poor, Ca--Si gels are identified by pink staining.

  7. Detection of alkali-silica reaction swelling in concrete by staining

    DOE Patents [OSTI]

    Guthrie, G.D. Jr.; Carey, J.W.

    1998-04-14

    A method using concentrated aqueous solutions of sodium cobalt nitrite and rhodamine B is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR). These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na-K-Ca-Si gels are identified by yellow staining, and alkali-poor, Ca-Si gels are identified by pink staining.

  8. Solvation structure and transport properties of alkali cations in dimethyl sulfoxide under exogenous static electric fields

    SciTech Connect (OSTI)

    Kerisit, Sebastien; Vijayakumar, M. E-mail: karl.mueller@pnnl.gov; Han, Kee Sung; Mueller, Karl T. E-mail: karl.mueller@pnnl.gov

    2015-06-14

    A combination of molecular dynamics simulations and pulsed field gradient nuclear magnetic resonance spectroscopy is used to investigate the role of exogenous electric fields on the solvation structure and dynamics of alkali ions in dimethyl sulfoxide (DMSO) and as a function of temperature. Good agreement was obtained, for select alkali ions in the absence of an electric field, between calculated and experimentally determined diffusion coefficients normalized to that of pure DMSO. Our results indicate that temperatures of up to 400 K and external electric fields of up to 1 V nm{sup −1} have minimal effects on the solvation structure of the smaller alkali cations (Li{sup +} and Na{sup +}) due to their relatively strong ion-solvent interactions, whereas the solvation structures of the larger alkali cations (K{sup +}, Rb{sup +}, and Cs{sup +}) are significantly affected. In addition, although the DMSO exchange dynamics in the first solvation shell differ markedly for the two groups, the drift velocities and mobilities are not significantly affected by the nature of the alkali ion. Overall, although exogenous electric fields induce a drift displacement, their presence does not significantly affect the random diffusive displacement of the alkali ions in DMSO. System temperature is found to have generally a stronger influence on dynamical properties, such as the DMSO exchange dynamics and the ion mobilities, than the presence of electric fields.

  9. Synthesis and characterization of substituted garnet and perovskite-based lithium-ion conducting solid electrolytes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abreu-Sepúlveda, Maria; Huq, Ashfia; Dhital, Chetan; Dominique E. Williams; Li, Yunchao; Paranthaman, M. Parans; Zaghib, Karim; Manivannan, A.

    2015-09-30

    In this study, titanium, tantalum-substituted Li7La3Zr2-xAxO12 (LLZO, A = Ta, Ti) garnets, and chromium-substituted La(2/3)-xLi3xTi1-yCryO3 (LLTO) perovskites were prepared by a conventional solid-state reaction and the Pechini processes. The desired crystal phases were obtained by varying the calcination temperature and time, as well as the substitution concentration. All samples indicated decomposition of the precursors when heated above 750 °C and formation of the desired phase after heat treatment at higher temperatures. Neutron diffraction data shows the formation of a predominant cubic phase in the case of Ta-LLZO, and monoclinic phase with minor impurity phases for Cr-LLTO. Ionic conductivity for Ti-LLZOmore » (Li7La3Zr1.4Ti0.6O12), Ta-LLZO (Li6.03La3Zr1.533Ta0.46O12), and Cr-LLTO (La(2/3)-xLi3xTi0.9Cr0.1O3) at room temperature were found to be 5.21 × 10–6, 1.01 ×10–6, and 1.2 × 10–4 S cm–1, respectively. The activation energies of the compounds were determined from the Arrhenius plot and were 0.44 eV (Ti0.6-LLZO), 0.54 eV (Ta0.5-LLZO), and 0.20 eV (Cr0.1-LLTO).« less

  10. Method of treating alkali metal sulfide and carbonate mixtures

    DOE Patents [OSTI]

    Kohl, Arthur L.; Rennick, Robert D.; Savinsky, Martin W.

    1978-01-01

    A method of removing and preferably recovering sulfur values from an alkali metal sulfide and carbonate mixture comprising the steps of (1) introducing the mixture in an aqueous medium into a first carbonation zone and reacting the mixture with a gas containing a major amount of CO.sub.2 and a minor amount of H.sub.2 S; (2) introducing the resultant product from step 1 into a stripping zone maintained at subatmospheric pressure, and contacting this product with steam to produce a gaseous mixture, comprising H.sub.2 S and water vapor, and a liquor of reduced sulfide content; (3) introducing the liquor of reduced sulfide content into a second carbonation zone, and reacting the liquor with substantially pure gaseous CO.sub.2 in an amount sufficient to precipitate bicarbonate crystals and produce an offgas containing CO.sub.2 and H.sub.2 S for use in step 1; (4) recovering the bicarbonate crystals from step 3, and thermally decomposing the crystals to produce an alkaline metal carbonate product and a substantially pure CO.sub.2 offgas for use in step 3.

  11. Microfabricated alkali vapor cell with anti-relaxation wall coating

    SciTech Connect (OSTI)

    Straessle, R.; Ptremand, Y.; Briand, D.; Rooij, N. F. de; Pellaton, M.; Affolderbach, C.; Mileti, G.

    2014-07-28

    We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140?C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantly lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.

  12. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    DOE Patents [OSTI]

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  13. Kenaf Bast Fibers—Part I: Hermetical Alkali Digestion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shi, Jinshu; Shi, Sheldon Q.; Barnes, H. Michael; Horstemeyer, Mark; Wang, Jinwu; Hassan, El-Barbary M.

    2011-01-01

    The objective of this study was to develop a hermetical alkali digestion process to obtain single cellulosic fibers from kenaf bast. Kenaf bast were hermetically digested into single fiber using a 5% sodium hydroxide solution for one hour at four different temperatures (80 ° C, 110 ° C, 130 ° C, and 160 ° C). The hermetical digestion process used in this study produced fibers with high cellulose content (84.2–92.3%) due to the removal of lignin and hemicelluloses. The surface hardness and elastic modulus of the fibers digested at 130 ° C and 160 ° C were improved significantlymore » compared with those digested at 80 ° C. The tensile modulus and tensile strength of the individual fibers reduced as the digestion temperature increased from 110 ° C to 160 ° C. Micropores were generated in fiber cell wall when the fibers were digested at 130 ° C and 160 ° C. The studies on the composites that were made from polypropylene reinforced with the digested fibers indicated that the compatibility between the digested fibers and polypropylene matrix was poor.« less

  14. Chemical leaching of coal to remove ash, alkali and vanadium

    SciTech Connect (OSTI)

    Smit, F.J.; Huggins, D.K.; Berggren, M.; Anast, K.R.

    1986-04-15

    A process is described for upgrading powdered coal to improve the usefulness thereof as a fuel for internal combustion engines which consists of: (a) pressure-leaching powdered coal having a particle size ranging from about 28 mesh to about 200 mesh in an aqueous caustic solution at a temperature ranging from about 175/sup 0/C, to about 350/sup 0/C., the amount of caustic in the solution ranging from about 5% to about 30% by weight, the amount of coal being sufficient to form a slurry comprising about 10% to 30% by weight of solids, (b) hydrochloric acid leaching the caustic leached coal to dissolve acid-soluble constituents resulting from the caustic leach, (c) pressure leaching the acid-leached coal with a liquid from the group consisting of water and dilute aqueous ammonia to remove sodium and chlorine, and thereafter (d) filtering and washing the pressure leached coal, whereby the coal is characterized by up to about 0.85% by weight of ash, up to about 150 ppm of alkali metals and up to about 4 ppm vanadium.

  15. Adsorption of superplasticizer admixtures on alkali-activated slag pastes

    SciTech Connect (OSTI)

    Palacios, M. Houst, Y.F.; Bowen, P.; Puertas, F.

    2009-08-15

    Alkali-activated slag (AAS) binders are obtained by a manufacturing process less energy-intensive than ordinary Portland cement (OPC) and involves lower greenhouse gasses emission. These alkaline cements allow the production of high mechanical strength and durable concretes. In the present work, the adsorption of different superplasticizer admixtures (naphthalene-based, melamine-based and a vinyl copolymer) on the slag particles in AAS pastes using alkaline solutions with different pH values have been studied in detail. The effect of the superplasticizers on the yield stress and plastic viscosity of the AAS and OPC pastes have been also evaluated. The results obtained allowed us to conclude that the adsorption of the superplasticizers on AAS pastes is independent of the pH of the alkaline solutions used and lower than on OPC pastes. However, the effect of the admixtures on the rheological parameters depends directly on the type and dosage of the superplasticizer as well as of the binder used and, in the case of the AAS, on the pH of the alkaline activator solution. In 11.7-pH NaOH-AAS pastes the dosages of the superplasticizers required to attain similar reduction in the yield stress are ten-fold lower than for Portland cement. In this case the superplasticizers studied show a fluidizing effect considerably higher in 11.7-pH NaOH-AAS pastes than in OPC pastes. In 13.6-pH NaOH-AAS pastes, the only admixture observed to affect the rheological parameters is the naphthalene-based admixture due to its higher chemical stability in such extremely alkaline media.

  16. Synthesis and characterization of substituted garnet and perovskite-based lithium-ion conducting solid electrolytes

    SciTech Connect (OSTI)

    Abreu-Sepúlveda, Maria; Huq, Ashfia; Dhital, Chetan; Dominique E. Williams; Li, Yunchao; Paranthaman, M. Parans; Zaghib, Karim; Manivannan, A.

    2015-09-30

    In this study, titanium, tantalum-substituted Li7La3Zr2-xAxO12 (LLZO, A = Ta, Ti) garnets, and chromium-substituted La(2/3)-xLi3xTi1-yCryO3 (LLTO) perovskites were prepared by a conventional solid-state reaction and the Pechini processes. The desired crystal phases were obtained by varying the calcination temperature and time, as well as the substitution concentration. All samples indicated decomposition of the precursors when heated above 750 °C and formation of the desired phase after heat treatment at higher temperatures. Neutron diffraction data shows the formation of a predominant cubic phase in the case of Ta-LLZO, and monoclinic phase with minor impurity phases for Cr-LLTO. Ionic conductivity for Ti-LLZO (Li7La3Zr1.4Ti0.6O12), Ta-LLZO (Li6.03La3Zr1.533Ta0.46O12), and Cr-LLTO (La(2/3)-xLi3xTi0.9Cr0.1O3) at room temperature were found to be 5.21 × 10–6, 1.01 ×10–6, and 1.2 × 10–4 S cm–1, respectively. The activation energies of the compounds were determined from the Arrhenius plot and were 0.44 eV (Ti0.6-LLZO), 0.54 eV (Ta0.5-LLZO), and 0.20 eV (Cr0.1-LLTO).

  17. Rapid Microwave Preparation of Highly Efficient Ce[superscript 3+]-Substituted Garnet Phosphors for Solid State White Lighting

    SciTech Connect (OSTI)

    Birkel, Alexander; Denault, Kristin A.; George, Nathan C.; Doll, Courtney E.; Hry, Bathylle; Mikhailovsky, Alexander A.; Birkel, Christina S.; Hong, Byung-Chul; Seshadri, Ram (UCSB); (Mitsubishi)

    2012-04-30

    Ce{sup 3+}-substituted aluminum garnet compounds of yttrium (Y{sub 3}Al{sub 5}O{sub 12}) and lutetium (Lu{sub 3}Al{sub 5}O{sub 12}) - both important compounds in the generation of (In,Ga)N-based solid state white lighting - have been prepared using a simple microwave heating technique involving the use of a microwave susceptor to provide the initial heat source. Carbon used as the susceptor additionally creates a reducing atmosphere around the sample that helps stabilize the desired luminescent compound. High quality, phase-pure materials are prepared within a fraction of the time and using a fraction of the energy required in a conventional ceramic preparation; the microwave technique allows for a reduction of about 95% in preparation time, making it possible to obtain phase pure, Ce{sup 3+}-substituted garnet compounds in under 20 min of reaction time. It is estimated that the overall reduction in energy compared with ceramic routes as practiced in the lab is close to 99%. Conventionally prepared material is compared with material prepared using microwave heating in terms of structure, morphology, and optical properties, including quantum yield and thermal quenching of luminescence. Finally, the microwave-prepared compounds have been incorporated into light-emitting diode 'caps' to test their performance characteristics in a real device, in terms of their photon efficiency and color coordinates.

  18. The direct observation of alkali vapor species in biomass combustion and gasification

    SciTech Connect (OSTI)

    French, R.J.; Dayton, D.C.; Milne, T.A.

    1994-01-01

    This report summarizes new data from screening various feedstocks for alkali vapor release under combustion conditions. The successful development of a laboratory flow reactor and molecular beam, mass spectrometer interface is detailed. Its application to several herbaceous and woody feedstocks, as well as a fast-pyrolysis oil, under 800 and 1,100{degrees}C batch combustion, is documented. Chlorine seems to play a large role in the facile mobilization of potassium. Included in the report is a discussion of relevant literature on the alkali problem in combustors and turbines. Highlighted are the phenomena identified in studies on coal and methods that have been applied to alkali speciation. The nature of binding of alkali in coal versus biomass is discussed, together with the implications for the ease of release. Herbaceous species and many agricultural residues appear to pose significant problems in release of alkali species to the vapor at typical combustor temperatures. These problems could be especially acute in direct combustion fired turbines, but may be ameliorated in integrated gasification combined cycles.

  19. The use of performance parameters in monitoring the safety of dams experiencing alkali-aggregate reaction

    SciTech Connect (OSTI)

    Veesaert, C.J.; LaBoon, J.H.

    1995-12-31

    As the Bureau of Reclamation (Reclamation) moves away from design and construction of new water resource projects toward optimizing the management of existing water resource projects, monitoring the condition of high risk structures such as dams becomes very important. To address this need, Reclamation has developed a logical approach of monitoring the safety of a dam over time. This approach analyzes visual and instrumentation performance parameters unique to each dam, Performance parameters specify the expected performance (behavior) of both embankment and concrete dams, including those concrete dams effected by alkali-aggregate reaction. This paper presents an overview of the concept of performance parameters in monitoring the safety of dams, which have experienced alkali-aggregate reaction. Three case studies are presented to illustrate the use of performance parameters in monitoring a dam`s behavior over time, relative to the effects of alkali-aggregate reaction.

  20. Synergistic capture mechanisms for alkali and sulfur species from combustion. Final report

    SciTech Connect (OSTI)

    Peterson, T.W.; Shadman, F.; Wendt, J.O.L.; Mwabe, P.O.

    1994-02-01

    Experimental work was carried out on a 17 kW, 600 cm long, gas laboratory combustor, to investigate the post flame reactive capture of alkali species by kaolinite. Emphasis was on alkali/sorbent interactions occurring in flue gas at temperatures above the alkali dewpoint and on the formation of water insoluble reaction products. Time-temperature studies were carried out by injecting kaolinite at different axial points along the combustor. The effect of chlorine and sulfur on alkali capture was investigated by doping the flame with SO{sub 2} and Cl{sub 2} gases to simulate coal flame environments. Particle time and temperature history was kept as close as possible to that which would ordinarily be found in a practical boiler. Experiments designed to extract apparent initial reaction rates were carried using a narrow range, 1-2 {mu}m modal size sorbent, while, a coarse, multi size sorbent was used to investigate the governing transport mechanisms. The capture reaction has been proposed to be between alkali hydroxide and activated kaolinite, and remains so in the presence of sulfur and chlorine. The presence of sulfur reduces sodium capture by under 10% at 1300{degree}C. Larger reductions at lower temperatures are attributed to the elevated dewpoint of sodium ({approximately}850{degree}C) with subsequent reduction in sorbent residence time in the alkali gas phase domain. Chlorine reduces sodium capture by 30% across the temperature range covered by the present experiments. This result has been linked to thermodynamic equilibria between sodium hydroxide, sodium chloride and water.

  1. Optimizing white light luminescence in Dy{sup 3+}-doped Lu{sub 3}Ga{sub 5}O{sub 12} nano-garnets

    SciTech Connect (OSTI)

    Haritha, P.; Linganna, K.; Venkatramu, V.; Martn, I. R.; Monteseguro, V.; Rodrguez-Mendoza, U. R.; Babu, P.; Len-Luis, S. F.; Jayasankar, C. K.; Lavn, V.

    2014-11-07

    Trivalent dysprosium-doped Lu{sub 3}Ga{sub 5}O{sub 12} nano-garnets have been prepared by sol-gel method and characterized by X-ray powder diffraction, high-resolution transmission electron microscopy, dynamic light scattering, and laser excited spectroscopy. Under a cw 457?nm laser excitation, the white luminescence properties of Lu{sub 3}Ga{sub 5}O{sub 12} nano-garnets have been studied as a function of the optically active Dy{sup 3+} ion concentration and at low temperature. Decay curves for the {sup 4}F{sub 9/2} level of Dy{sup 3+} ion exhibit non-exponential nature for all the Dy{sup 3+} concentrations, which have been well-fitted to a generalized energy transfer model for a quadrupole-quadrupole interaction between Dy{sup 3+} ions without diffusion. From these data, a simple rate-equations model can be applied to predict that intense white luminescence could be obtained from 1.8?mol% Dy{sup 3+} ions-doped nano-garnets, which is in good agreement with experimental results. Chromaticity color coordinates and correlated color temperatures have been determined as a function of temperature and are found to be within the white light region for all Dy{sup 3+} concentrations. These results indicate that 2.0?mol% Dy{sup 3+} ions doped nano-garnet could be useful for white light emitting device applications.

  2. Theory of magic optical traps for Zeeman-insensitive clock transitions in alkali-metal atoms

    SciTech Connect (OSTI)

    Derevianko, Andrei

    2010-05-15

    Precision measurements and quantum-information processing with cold atoms may benefit from trapping atoms with specially engineered, 'magic' optical fields. At the magic trapping conditions, the relevant atomic properties remain immune to strong perturbations by the trapping fields. Here we develop a theoretical analysis of magic trapping for especially valuable Zeeman-insensitive clock transitions in alkali-metal atoms. The involved mechanism relies on applying a magic bias B field along a circularly polarized trapping laser field. We map out these B fields as a function of trapping laser wavelength for all commonly used alkalis. We also highlight a common error in evaluating Stark shifts of hyperfine manifolds.

  3. High pressure elastic properties of minerals from ab initio simulations: The case of pyrope, grossular and andradite silicate garnets

    SciTech Connect (OSTI)

    Erba, A. Mahmoud, A.; Dovesi, R.; Belmonte, D.

    2014-03-28

    A computational strategy is devised for the accurate ab initio simulation of elastic properties of crystalline materials under pressure. The proposed scheme, based on the evaluation of the analytical stress tensor and on the automated computation of pressure-dependent elastic stiffness constants, is implemented in the CRYSTAL solid state quantum-chemical program. Elastic constants and related properties (bulk, shear and Young moduli, directional seismic wave velocities, elastic anisotropy index, Poisson's ratio, etc.) can be computed for crystals of any space group of symmetry. We apply such a technique to the study of high-pressure elastic properties of three silicate garnet end-members (namely, pyrope, grossular, and andradite) which are of great geophysical interest, being among the most important rock-forming minerals. The reliability of this theoretical approach is proved by comparing with available experimental measurements. The description of high-pressure properties provided by several equations of state is also critically discussed.

  4. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOE Patents [OSTI]

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  5. Alkali slurry ozonation to produce a high capacity nickel battery material

    DOE Patents [OSTI]

    Jackovitz, John F.; Pantier, Earl A.

    1984-11-06

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  6. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOE Patents [OSTI]

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  7. Method for inhibiting alkali metal corrosion of nickel-containing alloys

    DOE Patents [OSTI]

    DeVan, Jackson H.; Selle, James E.

    1983-01-01

    Structural components of nickel-containing alloys within molten alkali metal systems are protected against corrosion during the course of service by dissolving therein sufficient aluminum, silicon, or manganese to cause the formation and maintenance of a corrosion-resistant intermetallic reaction layer created by the interaction of the molten metal, selected metal, and alloy.

  8. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOE Patents [OSTI]

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  9. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOE Patents [OSTI]

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  10. High temperature alkali corrosion of ceramics in coal gas: Final report

    SciTech Connect (OSTI)

    Pickrell, G.R.; Sun, T.; Brown, J.J. Jr.

    1994-12-31

    There are several ceramic materials which are currently being considered for use as structural elements in coal combustion and coal conversion systems because of their thermal and mechanical properties. These include alumina (refractories, membranes, heat engines); silicon carbide and silicon nitride (turbine engines, internal combustion engines, heat exchangers, particulate filters); zirconia (internal combustion engines, turbine engines, refractories); and mullite and cordierite (particulate filters, refractories, heat exchangers). High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, and zirconia. The study consists of identification of the alkali reaction products and determination of the kinetics of the alkali reactions as a function of temperature and time. 145 refs., 29 figs., 12 tabs.

  11. Dissolution of HTGR TRISO beads by the alkali fluoride fusion method

    SciTech Connect (OSTI)

    Byster, S.E.

    1980-07-01

    The alkali fluoride fusion method for the dissolution of HTGR TRISO fuel beads offers significant time advantage over other commonly used fusion procedures when applied to samples weighing less than three grams. The method is straightforward, utilizes standard analytical laboratory equipment, and yields solutions which may be utilized by customary procedures.

  12. NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS

    SciTech Connect (OSTI)

    Hemrick, James Gordon; Smith, Jeffrey D; O'Hara, Kelley; Rodrigues-Schroer, Angela; Colavito,

    2012-08-01

    A project was led by Oak Ridge National Laboratory (ORNL) in collaboration with a research team comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3, MgAl2O4, or other similar spinel structured or alumina-based unshaped refractory compositions (castables, gunnables, shotcretes, etc.) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. Both practical refractory development experience and computer modeling techniques were used to aid in the design of this new family of materials. The newly developed materials were expected to offer alternative material choices for high-temperature, high-alkali environments that were capable of operating at higher temperatures (goal of increasing operating temperature by 100-200oC depending on process) or for longer periods of time (goal of twice the life span of current materials or next process determined service increment). This would lead to less process down time, greater energy efficiency for associated manufacturing processes (more heat kept in process), and materials that could be installed/repaired in a more efficient manner. The overall project goal was a 5% improvement in energy efficiency (brought about through a 20% improvement in thermal efficiency) resulting in a savings of 3.7 TBtu/yr (7.2 billion ft3 natural gas) by the year 2030. Additionally, new

  13. Charge-coupled Substituted Garnets (Y3-xCa0.5xM0.5x)Fe5O12 (M = Ce, Th): Structure and Stability as Crystalline Nuclear Waste Forms

    SciTech Connect (OSTI)

    Guo, Xiaofeng; Kukkadapu, Ravi K.; Lanzirotti, Anthony; Newville, Mathew; Engelhard, Mark H.; Sutton , Steven R.; Navrotsky, Alexandra

    2015-04-20

    The garnet structure has been proposed as a potential crystalline nuclear waste form for accommodation of actinide elements, especially uranium (U). In this study, yttrium iron garnet (YIG) as a model garnet host was studied for the incorporation of U analogs, cerium (Ce), and thorium (Th), incorporated by a charge-coupled substitution with calci-um (Ca) for yttrium (Y) in YIG, namely 2Y3+ = Ca2+ + M4+, where M4+ = Ce4+ or Th4+. Single phase garnets Y3-xCa0.5xM0.5xFe5O12, synthesized by the citrate-nitrate combustion method, were obtained up to x = 0.7. Ce was confirmed to be tetravalent by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. X-ray diffraction and 57Fe-Mössbauer spectroscopy indicated that the samples are single phase, M4+ and Ca2+ cations are restricted to the c-site, the nature of M4+ has only a minor effect on the structure, and the local environments of both the tetrahedral and octahedral Fe3+ are systematically affected by the extent of substitution, especially on the tetrahedral sublattice. The charge coupled substitution has advantages in incorporating Ce/Th and in stabilizing the substituted phases, compared to a single substitution strategy. Enthalpies of formation of garnets were obtained by high temperature oxide melt solution calorimetry, and the enthalpies of substitution of Ce and Th were determined. The thermodynamic analysis demonstrates that the substituted garnets are entropically rather than energetically stabilized. This suggests that such garnets may form and persist in repositories at high temperature but might decompose near room temperature. These structural and thermodynamic findings shed light on possible incorporation of U in this garnet system.

  14. Resolving the grain boundary and lattice impedance of hot-pressed Li7La3Zr2O12 garnet electrolytes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tenhaeff, Wyatt E.; Wang, Yangyang; Sokolov, Alexei P.; Wolfenstine, Jeff; Sakamoto, Jeffrey; Dudney, Nancy J.; Rangasamy, Ezhiyl

    2013-07-24

    Here, the cubic-stabilized garnet solid electrolyte with a nominal composition of Li6.28Al0.24La3Zr2O12 is thoroughly characterized by impedance spectroscopy. By varying the frequency of the applied AC signal over 11 orders of magnitude for characterizations from –100 to +60 °C, the relative contributions of grain and grain boundary conduction are unambiguously resolved.

  15. Evaluation of the physi- and chemisorption of hydrogen in alkali (Na, Li) doped fullerenes

    SciTech Connect (OSTI)

    Ward, Patrick A.; Teprovich, Jr., Jospeph A.; Compton, Robert N.; Schwartz, Viviane; Veith, Gabriel M.; Zidan, Ragiay

    2015-01-11

    Here, alkali doped fullerenes synthesized by two different solvent assisted mixing techniques are compared for their hydrogen uptake activity. In this study we investigated the interaction of hydrogen with alkali doped fullerenes via physisorption. In addition, we present the first mass spectrometric evidence for the formation of C60H60 via chemisorption. Hydrogen physisorption isotherms up to 1 atm at temperatures ranging from 77-303 K were measured demonstrating an increase in hydrogen uptake versus pure C60 and increased isosteric heats of adsorption for the lithium doped fullerene Li12C60. However, despite these improvements the low amount of physisorbed hydrogen at 1 atm and 77 K in these materials suggests that fullerenes do not possess enough accessible surface area to effectively store hydrogen due to their close packed crystalline nature.

  16. Evaluation of the physi- and chemisorption of hydrogen in alkali (Na, Li) doped fullerenes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ward, Patrick A.; Teprovich, Jr., Jospeph A.; Compton, Robert N.; Schwartz, Viviane; Veith, Gabriel M.; Zidan, Ragiay

    2015-01-11

    Here, alkali doped fullerenes synthesized by two different solvent assisted mixing techniques are compared for their hydrogen uptake activity. In this study we investigated the interaction of hydrogen with alkali doped fullerenes via physisorption. In addition, we present the first mass spectrometric evidence for the formation of C60H60 via chemisorption. Hydrogen physisorption isotherms up to 1 atm at temperatures ranging from 77-303 K were measured demonstrating an increase in hydrogen uptake versus pure C60 and increased isosteric heats of adsorption for the lithium doped fullerene Li12C60. However, despite these improvements the low amount of physisorbed hydrogen at 1 atm andmore » 77 K in these materials suggests that fullerenes do not possess enough accessible surface area to effectively store hydrogen due to their close packed crystalline nature.« less

  17. An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Xia, Gordon; Kirby, Brent W.; Thomsen, Edwin C.; Li, Bin; Nie, Zimin; Graff, Gordon L.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-11-13

    Aiming to explore low-cost redox flow battery systems, a novel iron-polysulfide (Fe/S) flow battery has been demonstrated in a laboratory cell. This system employs alkali metal ferri/ferrocyanide and alkali metal polysulfides as the redox electrolytes. When proper electrodes, such as pretreated graphite felts, are used, 78% energy efficiency and 99% columbic efficiency are achieved. The remarkable advantages of this system over current state-of-the-art redox flow batteries include: 1) less corrosive and relatively environmentally benign redox solutions used; 2) excellent energy and utilization efficiencies; 3) low cost for redox electrolytes and cell components. These attributes can lead to significantly reduced capital cost and make the Fe/S flow battery system a promising low-cost energy storage technology. The major drawbacks of the present cell design are relatively low power density and possible sulfur species crossover. Further work is underway to address these concerns.

  18. Petrography study of two siliceous limestones submitted to alkali-silica reaction

    SciTech Connect (OSTI)

    Monnin, Y. . E-mail: monnin@ensm-douai.fr; Degrugilliers, P.; Bulteel, D.; Garcia-Diaz, E.

    2006-08-15

    This study presents the contribution of petrography to the comprehension of the alkali-silica reaction mechanism applied to two siliceous limestones. A petrography study was made on the two aggregates before reaction to define their relative proportions and types of reactive silica and to observe their distribution in the microstructure. Then a model reactor, constituted by the reactive siliceous limestone aggregate, portlandite and NaOH, was used to measure the swelling due to reaction of the silica with alkalis and the free expansion of the aggregates. The volume evolution between both aggregates was very different and could be explained by the preliminary petrographic study. It appears that the swelling of the aggregates is conditioned by the microstructure of the carbonated matrix, the quantity and the distribution of the reactive silica.

  19. Evaluation of the physi- and chemisorption of hydrogen in alkali (Na, Li) doped fullerenes

    SciTech Connect (OSTI)

    Ward, Patrick; Teprovich, Jospeph A.; Compton, Robert; Affholter, Kathleen A; Schwartz, Viviane; Veith, Gabriel M; Zidan, Ragiay

    2015-01-01

    Alkali doped fullerenes synthesized by two different solvent assisted mixing techniques are compared for their hydrogen uptake activity. In this study we investigated the interaction of hydrogen with alkali doped fullerenes via physisorption. In addition, we present the first mass spectrometric evidence for the formation of C60H60 via chemisorption. Hydrogen physisorption isotherms up to 1 atm at temperatures ranging from 77-303 K were measured demonstrating an increase in hydrogen uptake versus pure C60 and increased isosteric heats of adsorption for the lithium doped fullerene Li12C60. However, despite these improvements the low amount of physisorbed hydrogen at 1 atm and 77 K in these materials suggests that fullerenes do not possess enough accessible surface area to effectively store hydrogen due to their close packed crystalline nature.

  20. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOE Patents [OSTI]

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  1. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOE Patents [OSTI]

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-31

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  2. Second international conference on alkali-aggregate reactions in hydroelectric plants and dams

    SciTech Connect (OSTI)

    1995-12-31

    This document is the report of the Second International Conference on Alkali-Aggregate Reactions in Hydroelectric Plants and Dams. This conference was held in October 1995 in Chattanooga, TN and sponsored by the Tennessee Valley Authority. Thirty five papers were presented, with technical sessions covering: (1) The TVA experience, (2) AAR in Hydroelectric Powerplants, (3) AAR in Dams and Spillways, and (4) Long-term management of AAR. Additionally, there were several workshop sessions.

  3. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation

    SciTech Connect (OSTI)

    Bernal, Susan A.; Provis, John L.; Walkley, Brant; San Nicolas, Rackel; Gehman, John D.; Brice, David G.; Kilcullen, Adam R.; Duxson, Peter; Deventer, Jannie S.J. van

    2013-11-15

    Binders formed through alkali-activation of slags and fly ashes, including ‘fly ash geopolymers’, provide appealing properties as binders for low-emissions concrete production. However, the changes in pH and pore solution chemistry induced during accelerated carbonation testing provide unrealistically low predictions of in-service carbonation resistance. The aluminosilicate gel remaining in an alkali-activated slag system after accelerated carbonation is highly polymerised, consistent with a decalcification mechanism, while fly ash-based binders mainly carbonate through precipitation of alkali salts (bicarbonates at elevated CO{sub 2} concentrations, or carbonates under natural exposure) from the pore solution, with little change in the binder gel identifiable by nuclear magnetic resonance spectroscopy. In activated fly ash/slag blends, two distinct gels (C–A–S–H and N–A–S–H) are formed; under accelerated carbonation, the N–A–S–H gel behaves comparably to fly ash-based systems, while the C–A–S–H gel is decalcified similarly to alkali-activated slag. This provides new scope for durability optimisation, and for developing appropriate testing methodologies. -- Highlights: •C-A-S-H gel in alkali-activated slag decalcifies during accelerated carbonation. •Alkali-activated fly ash gel changes much less under CO{sub 2} exposure. •Blended slag-fly ash binder contains two coexisting gel types. •These two gels respond differently to carbonation. •Understanding of carbonation mechanisms is essential in developing test methods.

  4. Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Junxue; Xu, Yadong; Aldosary, Mohammed; Tang, Chi; Lin, Zhisheng; Zhang, Shufeng; Lake, Roger; Shi, Jing

    2016-03-02

    Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon.more » The transmitted signal scales linearly with the driving current without a threshold and follows the power-law Tn with n ranging from 1.5 to 2.5. Lastly, our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics.« less

  5. Superexchange and iron valence control by off-stoichiometry in yttrium iron garnet thin films grown by pulsed laser deposition

    SciTech Connect (OSTI)

    Dumont, Y.; Keller, N.; Popova, E.; Schmool, D.S.; Bhattacharya, S.; Stahl, B.; Tessier, M.; Guyot, M.

    2005-05-15

    Controlled off-stoichiometric single phase polycrystalline yttrium iron garnet (YIG) thin films have been grown by pulsed laser deposition, adjusting the oxygen partial pressure P{sub O2} between 5 and 400 mTorr. Atomic stoichiometry by RBS shows an oxygen deficiency for P{sub O2}P{sub stoich}. P{sub stoich}=30 mTorr refers to films showing magnetic and structural properties of the bulk stoichiometric YIG. Curie temperature T{sub c} and saturation magnetization 4{pi}Ms decreased for P{sub O2}P{sub stoich}: Increase of Tc (up to +10%) and of 4{pi}Ms (up to +20%) and lattice parameter compression. Microscopic interpretation is given in terms of superexchange interaction and creation and site selectivity of iron vacancies.

  6. Charge-coupled substituted garnets (Y 3–x Ca 0.5x M 0.5x )Fe₅O₁₂ (M = Ce, Th): Structure and stability as crystalline nuclear waste forms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Xiaofeng; Kukkadapu, Ravi K.; Lanzirotti, Antonio; Newville, Matthew; Engelhard, Mark H.; Sutton, Stephen R.; Navrotsky, Alexandra

    2015-04-20

    The garnet structure has been proposed as a potential crystalline nuclear waste form for accommodation of actinide elements, especially uranium (U). In this study, yttrium iron garnet (YIG) as a model garnet host was studied for the incorporation of U analogs, cerium (Ce) and thorium (Th), incorporated by a charge-coupled substitution with calcium (Ca) for yttrium (Y) in YIG, namely, 2Y³⁺ = Ca²⁺ + M⁴⁺, where M⁴⁺ = Ce⁴⁺ or Th⁴⁺. Single-phase garnets Y3–xCa0.5xM0.5xFe₅O₁₂ (x = 0.1–0.7) were synthesized by the citrate–nitrate combustion method. Ce was confirmed to be tetravalent by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. X-ray diffractionmore » and ⁵⁷Fe–Mössbauer spectroscopy indicated that M⁴⁺ and Ca²⁺ cations are restricted to the c site, and the local environments of both the tetrahedral and the octahedral Fe³⁺ are systematically affected by the extent of substitution. The charge-coupled substitution has advantages in incorporating Ce/Th and in stabilizing the substituted phases compared to a single substitution strategy. Enthalpies of formation of garnets were obtained by high-temperature oxide melt solution calorimetry, and the enthalpies of substitution of Ce and Th were determined. The thermodynamic analysis demonstrates that the substituted garnets are entropically rather than energetically stabilized. This suggests that such garnets may form and persist in repositories at high temperature but might decompose near room temperature.« less

  7. Intrinsic differences in atomic ordering of calcium (alumino)silicate hydrates in conventional and alkali-activated cements

    SciTech Connect (OSTI)

    White, Claire E.; Daemen, Luke L.; Hartl, Monika; Page, Katharine

    2015-01-15

    The atomic structures of calcium silicate hydrate (C–S–H) and calcium (–sodium) aluminosilicate hydrate (C–(N)–A–S–H) gels, and their presence in conventional and blended cement systems, have been the topic of significant debate over recent decades. Previous investigations have revealed that synthetic C–S–H gel is nanocrystalline and due to the chemical similarities between ordinary Portland cement (OPC)-based systems and low-CO{sub 2} alkali-activated slags, researchers have inferred that the atomic ordering in alkali-activated slag is the same as in OPC–slag cements. Here, X-ray total scattering is used to determine the local bonding environment and nanostructure of C(–A)–S–H gels present in hydrated tricalcium silicate (C{sub 3}S), blended C{sub 3}S–slag and alkali-activated slag, revealing the large intrinsic differences in the extent of nanoscale ordering between C–S–H derived from C{sub 3}S and alkali-activated slag systems, which may have a significant influence on thermodynamic stability, and material properties at higher length scales, including long term durability of alkali-activated cements.

  8. Accurate potential energy, dipole moment curves, and lifetimes of vibrational states of heteronuclear alkali dimers

    SciTech Connect (OSTI)

    Fedorov, Dmitry A.; Varganov, Sergey A.; Derevianko, Andrei

    2014-05-14

    We calculate the potential energy curves, the permanent dipole moment curves, and the lifetimes of the ground and excited vibrational states of the heteronuclear alkali dimers XY (X, Y = Li, Na, K, Rb, Cs) in the X{sup 1}?{sup +} electronic state using the coupled cluster with singles doubles and triples method. All-electron quadruple-? basis sets with additional core functions are used for Li and Na, and small-core relativistic effective core potentials with quadruple-? quality basis sets are used for K, Rb, and Cs. The inclusion of the coupled cluster non-perturbative triple excitations is shown to be crucial for obtaining the accurate potential energy curves. A large one-electron basis set with additional core functions is needed for the accurate prediction of permanent dipole moments. The dissociation energies are overestimated by only 14 cm{sup ?1} for LiNa and by no more than 114 cm{sup ?1} for the other molecules. The discrepancies between the experimental and calculated harmonic vibrational frequencies are less than 1.7 cm{sup ?1}, and the discrepancies for the anharmonic correction are less than 0.1 cm{sup ?1}. We show that correlation between atomic electronegativity differences and permanent dipole moment of heteronuclear alkali dimers is not perfect. To obtain the vibrational energies and wave functions the vibrational Schrdinger equation is solved with the B-spline basis set method. The transition dipole moments between all vibrational states, the Einstein coefficients, and the lifetimes of the vibrational states are calculated. We analyze the decay rates of the vibrational states in terms of spontaneous emission, and stimulated emission and absorption induced by black body radiation. In all studied heteronuclear alkali dimers the ground vibrational states have much longer lifetimes than any excited states.

  9. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags

    SciTech Connect (OSTI)

    Bernal, Susan A.; Mejia de Gutierrez, Ruby; Provis, John L.; Rose, Volker

    2010-06-15

    Accelerated carbonation is induced in pastes and mortars produced from alkali silicate-activated granulated blast furnace slag (GBFS)-metakaolin (MK) blends, by exposure to CO{sub 2}-rich gas atmospheres. Uncarbonated specimens show compressive strengths of up to 63 MPa after 28 days of curing when GBFS is used as the sole binder, and this decreases by 40-50% upon complete carbonation. The final strength of carbonated samples is largely independent of the extent of metakaolin incorporation up to 20%. Increasing the metakaolin content of the binder leads to a reduction in mechanical strength, more rapid carbonation, and an increase in capillary sorptivity. A higher susceptibility to carbonation is identified when activation is carried out with a lower solution modulus (SiO{sub 2}/Na{sub 2}O ratio) in metakaolin-free samples, but this trend is reversed when metakaolin is added due to the formation of secondary aluminosilicate phases. High-energy synchrotron X-ray diffractometry of uncarbonated paste samples shows that the main reaction products in alkali-activated GBFS/MK blends are C-S-H gels, and aluminosilicates with a zeolitic (gismondine) structure. The main crystalline carbonation products are calcite in all samples and trona only in samples containing no metakaolin, with carbonation taking place in the C-S-H gels of all samples, and involving the free Na{sup +} present in the pore solution of the metakaolin-free samples. Samples containing metakaolin do not appear to have the same availability of Na{sup +} for carbonation, indicating that this is more effectively bound in the presence of a secondary aluminosilicate gel phase. It is clear that claims of exceptional carbonation resistance in alkali-activated binders are not universally true, but by developing a fuller mechanistic understanding of this process, it will certainly be possible to improve performance in this area.

  10. Oxygen-consuming chlor alkali cell configured to minimize peroxide formation

    DOE Patents [OSTI]

    Chlistunoff, Jerzy B.; Lipp, Ludwig; Gottesfeld, Shimshon

    2006-08-01

    Oxygen-consuming zero gap chlor-alkali cell was configured to minimize peroxide formation. The cell included an ion-exchange membrane that divided the cell into an anode chamber including an anode and a cathode chamber including an oxygen gas diffusion cathode. The cathode included a single-piece of electrically conducting graphitized carbon cloth. Catalyst and polytetrafluoroethylene were attached to only one side of the cloth. When the cathode was positioned against the cation exchange membrane with the catalyst side away from the membrane, electrolysis of sodium chloride to chlorine and caustic (sodium hydroxide) proceeded with minimal peroxide formation.

  11. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.; Rawn, Claudia J.; Richardson, Jim

    2016-01-01

    When appropriately activated, alkali rare-earth double phosphates of the form: M3RE(PO4)2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K3RE(PO4)2 with RE = Lu, Er, Ho, Dy, Gd, Nd, Ce, plus Ymore » and Sc - as well as the compounds: A3Lu(PO4)2, with A = Rb, and Cs. The double phosphate K3Lu(PO4)2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K3Lu(PO4)2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K3Lu(PO4)2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K3Yb(PO4)2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single-crystal growth methods structural systematics, and thermal expansion properties of the present series of alkali rare-earth double phosphates, as determined by X-ray and neutron diffraction methods, are treated here.« less

  12. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    SciTech Connect (OSTI)

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.; Rawn, Claudia J.; Richardson, Jim

    2016-01-01

    When appropriately activated, alkali rare-earth double phosphates of the form: M3RE(PO4)2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K3RE(PO4)2 with RE = Lu, Er, Ho, Dy, Gd, Nd, Ce, plus Y and Sc - as well as the compounds: A3Lu(PO4)2, with A = Rb, and Cs. The double phosphate K3Lu(PO4)2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K3Lu(PO4)2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K3Lu(PO4)2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K3Yb(PO4)2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single

  13. DuraLith Alkali-Aluminosilicate Geopolymer Waste Form Testing for Hanford Secondary Waste

    SciTech Connect (OSTI)

    Gong, W. L.; Lutz, Werner; Pegg, Ian L.

    2011-07-21

    The primary objective of the work reported here was to develop additional information regarding the DuraLith alkali aluminosilicate geopolymer as a waste form for liquid secondary waste to support selection of a final waste form for the Hanford Tank Waste Treatment and Immobilization Plant secondary liquid wastes to be disposed in the Integrated Disposal Facility on the Hanford Site. Testing focused on optimizing waste loading, improving waste form performance, and evaluating the robustness of the waste form with respect to waste variability.

  14. Half metallic ferromagnetism in alkali metal nitrides MN (M = Rb, Cs): A first principles study

    SciTech Connect (OSTI)

    Murugan, A. Rajeswarapalanichamy, R. Santhosh, M. Sudhapriyanga, G.; Kanagaprabha, S.

    2014-04-24

    The structural, electronic and elastic properties of two alkali metal nitrides (MN: M= Rb, Cs) are investigated by the first principles calculations based on density functional theory using the Vienna ab-initio simulation package. At ambient pressure the two nitrides are stable in ferromagnetic state with CsCl structure. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that these materials are half metallic in nature. A pressure-induced structural phase transition from CsCl to ZB phase is observed in RbN and CsN.

  15. Alkali metal vapor removal from pressurized fluidized-bed combustor flue gas. Quarterly report, April-June 1980

    SciTech Connect (OSTI)

    Johnson, I.; Swift, W.M.; Lee, S.H.D.; Boyd, W.A.

    1980-07-01

    In the application of pressurized fluidized-bed combustors (PFBC) to the generation of electricity, hot corrosion of gas turbine components by alkali metal compounds is a potential problem. The objective of this investigation is to develop a method for removing these gaseous alkali metal compounds from the high-pressure high-temperature gas from a PFBC before the gas enters the gas turbine. A granular-bed filter, using either diatomaceous earth or activated bauxite as the bed material, is the concept currently being studied. Results are presented for the testing of diatomaceous earth for alkali vapor sorption at 800/sup 0/C and 9-atm pressure, using a simulated flue gas. Activated bauxite sorbent can be regenerated by leaching with water, and the kinetics of the leaching is under study.

  16. Optically pumped alkali laser and amplifier using helium-3 buffer gas

    DOE Patents [OSTI]

    Beach, Raymond J.; Page, Ralph; Soules, Thomas; Stappaerts, Eddy; Wu, Sheldon Shao Quan

    2010-09-28

    In one embodiment, a laser oscillator is provided comprising an optical cavity, the optical cavity including a gain medium including an alkali vapor and a buffer gas, the buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Additionally, an optical excitation source is provided. Furthermore, the laser oscillator is capable of outputting radiation at a first frequency. In another embodiment, an apparatus is provided comprising a gain medium including an alkali vapor and a buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Other embodiments are also disclosed.

  17. Hydration of a low-alkali CEM III/B-SiO{sub 2} cement (LAC)

    SciTech Connect (OSTI)

    Lothenbach, Barbara; Le Saout, Gwenn; Ben Haha, Mohsen; Figi, Renato; Wieland, Erich

    2012-02-15

    The hydration of a low-alkali cement based on CEM III/B blended with 10 wt.% of nanosilica has been studied. The nanosilica reacted within the first days and 90% of the slag reacted within 3.5 years. C-S-H (Ca/Si {approx} 1.2, Al/Si {approx} 0.12), calcite, hydrotalcite, ettringite and possibly straetlingite were the main hydrates. The pore water composition revealed ten times lower alkali concentrations than in Portland cements. Reducing conditions (HS{sup -}) and a pH value of 12.2 were observed. Between 1 month and 3.5 years of hydration more hydrates were formed due to the ongoing slag reaction but no significant differences in the composition of the pore solution or solid phase assemblage were observed. On the basis of thermodynamic calculations it is predicted that siliceous hydrogarnet could form in the long-term and, in the presence of siliceous hydrogarnet, also thaumasite. Nevertheless, even after 3.5 year hydration, neither siliceous hydrogarnet nor thaumasite have been observed.

  18. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    SciTech Connect (OSTI)

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  19. Raman Analysis of Perrhenate and Pertechnetate in Alkali Salts and Borosilicate Glasses

    SciTech Connect (OSTI)

    Gassman, Paul L.; McCloy, John S.; Soderquist, Chuck Z.; Schweiger, Michael J.

    2014-01-03

    Sodium borosilicate glasses containing various concentrations of rhenium or technetium were fabricated, and their vibrational spectra studied using a Raman microscope. Spectra were interpreted with reference to new high resolution measurements of alkali pertechnetates and perrhenates NaReO4, KReO4, NaTcO4, and KTcO4. At low concentrations of ReO4- or TcO4-, glass spectra show weak peaks superimposed on a dominant spectrum of glass characteristic of silicate and borate network vibrations. At high concentrations, sharp peaks characteristic of crystal field splitting and C4h symmetry dominate the spectra of glasses, indicating alkali nearby tetrahedral Re or Tc. Often peaks indicative of both the K and Na pertechnetates/ perrhenates are evident in the Raman spectrum, with the latter being favored at high additions of the source chemical, since Na is more prevalent in the glass and ion exchange takes place. These results have significance to immobilization of nuclear waste containing radioactive 99Tc in glass for ultimate disposal.

  20. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    SciTech Connect (OSTI)

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  1. A study of suppressed formation of low-conductivity phases in doped Li7La3Zr2O12 garnets by in situ neutron diffraction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Yan; Rangasamy, Ezhiylmurugan; dela Cruz, Clarina R.; Liang, Chengdu; An, Ke

    2015-09-28

    Doped Li7La3Zr2O12 garnets, oxide-based solids with good Li+ conductivity and compatibility, show great potential as leading electrolyte material candidates for all-solid-state lithium ion batteries. Still yet, the conductive bulk usually suffers from the presence of secondary phases and the transition towards a low-conductivity tetragonal phase during synthesis. Dopants are designed to stabilize the high-conductive cubic phase and suppress the formation of the low-conductivity phases. In situ neutron diffraction enables a direct observation of the doping effects by monitoring the phase evolutions during garnet synthesis. It reveals the reaction mechanism involving the temporary presence of intermediate phases. The off-stoichiometry due tomore » the liquid Li2CO3 evaporation leads to the residual of the low-conductivity intermediate phase in the as-synthesized bulk. Appropriate doping of an active element may alter the component of the intermediate phases and promote the completion of the reaction. While the dopants aid to stabilize most of the cubic phase, a small amount of tetragonal phase tends to form under a diffusion process. Lastly, the in situ observations provide the guideline of process optimization to suppress the formation of unwanted low-conductivity phases.« less

  2. Kimzeyite garnet phosphors

    DOE Patents [OSTI]

    Lyons, Robert Joseph

    2013-05-14

    A phosphor of formula I is included in a phosphor composition in a lighting apparatus capable of emitting white light, Ca.sub.3-x-zSr.sub.xCe.sub.zM.sup.1.sub.2M.sup.2AlSiO.sub.12 (I) wherein M.sup.1 is Hf, Zr, or a combination thereof; M.sup.2 is Al, or a combination of Al and Ga; z<3-x; and 0.2>x.gtoreq.0. The lighting apparatus includes a semiconductor light source in addition to the phosphor composition.

  3. Rheological properties of water-coal slurries based on brown coal in the presence of sodium lignosulfonates and alkali

    SciTech Connect (OSTI)

    D.P. Savitskii; A.S. Makarov; V.A. Zavgorodnii

    2009-07-01

    The effect of the oxidized surface of brown coal on the structural and rheological properties of water-coal slurries was found. The kinetics of structure formation processes in water-coal slurries based on as-received and oxidized brown coal was studied. The effect of lignosulfonate and alkali additives on the samples of brown coal was considered.

  4. Electric dipole polarizabilities at imaginary frequencies for hydrogen, the alkali-metal, alkaline-earth, and noble gas atoms

    SciTech Connect (OSTI)

    Derevianko, Andrei Porsev, Sergey G. Babb, James F.

    2010-05-15

    The electric dipole polarizabilities evaluated at imaginary frequencies for hydrogen, the alkali-metal atoms, the alkaline-earth atoms, and the noble gases are tabulated along with the resulting values of the atomic static polarizabilities, the atom-surface interaction constants, and the dispersion (or van der Waals) constants for the homonuclear and the heteronuclear diatomic combinations of the atoms.

  5. Ultralow-power local laser control of the dimer density in alkali-metal vapors through photodesorption

    SciTech Connect (OSTI)

    Jha, Pankaj K.; Scully, Marlan O. [Texas A and M University, College Station, Texas 77843 (United States); Princeton University, Princeton, New Jersey 08544 (United States); Dorfman, Konstantin E. [Texas A and M University, College Station, Texas 77843 (United States); University of California, Irvine, Irvine, California 92697 (United States); Yi Zhenhuan; Yuan Luqi; Welch, George R. [Texas A and M University, College Station, Texas 77843 (United States); Sautenkov, Vladimir A. [Texas A and M University, College Station, Texas 77843 (United States); Joint Institute of High Temperature, RAS, Moscow 125412 (Russian Federation); Rostovtsev, Yuri V. [University of North Texas, Denton, Texas 76203 (United States); Zheltikov, Aleksei M. [Texas A and M University, College Station, Texas 77843 (United States); M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation)

    2012-08-27

    Ultralow-power diode-laser radiation is employed to induce photodesorption of cesium from a partially transparent thin-film cesium adsorbate on a solid surface. Using resonant Raman spectroscopy, we demonstrate that this photodesorption process enables an accurate local optical control of the density of dimer molecules in alkali-metal vapors.

  6. Silicate species of water glass and insights for alkali-activated green cement

    SciTech Connect (OSTI)

    Jansson, Helén; Bernin, Diana; Ramser, Kerstin

    2015-06-15

    Despite that sodium silicate solutions of high pH are commonly used in industrial applications, most investigations are focused on low to medium values of pH. Therefore we have investigated such solutions in a broad modulus range and up to high pH values (∼14) by use of infrared (IR) spectroscopy and silicon nuclear magnetic resonance ({sup 29}Si-NMR). The results show that the modulus dependent pH value leads to more or less charged species, which affects the configurations of the silicate units. This in turn, influences the alkali-activation process of low CO{sub 2} footprint cements, i.e. materials based on industrial waste or by-products.

  7. Ion Segregation and Deliquescence of Alkali Halide Nanocrystals on SiO2

    SciTech Connect (OSTI)

    Arima, Kenta; Jiang, Peng; Lin, Deng-Sung; Verdaguer, Albert; Salmeron, Miquel

    2009-08-11

    The adsorption of water on alkali halide (KBr, KCl, KF, NaCl) nanocrystals on SiO{sub 2} and their deliquescence was investigated as a function of relative humidity (RH) from 8% to near saturation by scanning polarization force microscopy. At low humidity, water adsorption solvates ions at the surface of the crystals and increases their mobility. This results in a large increase in the dielectric constant, which is manifested in an increase in the electrostatic force and in an increase in the apparent height of the nanocrystals. Above 58% RH, the diffusion of ions leads to Ostwald ripening, where larger nanocrystals grow at the expense of the smaller ones. At the deliquescence point, droplets were formed. For KBr, KCl, and NaCl, the droplets exhibit a negative surface potential relative to the surrounding region, which is indicative of the preferential segregation of anions to the air/solution interface.

  8. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOE Patents [OSTI]

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  9. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOE Patents [OSTI]

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  10. The effects of lithium hydroxide solution on alkali silica reaction gels created with opal

    SciTech Connect (OSTI)

    Mitchell, Lyndon D.; Beaudoin, James J.; Grattan-Bellew, Patrick

    2004-04-01

    The reaction of Nevada opal with calcium hydroxide, potassium hydroxide and lithium hydroxide solutions was investigated. In addition, opal was exposed to a combined solution of these three hydroxides. The progress of the three reactions was followed using X-ray diffraction (XRD), {sup 29}Si nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). The XRD results indicated the presence of a low-angle peak exclusive to the lithium-based reactions. The NMR results suggested a change in the silicate structure in the presence of lithium. These techniques indicated that the reaction of the alkali with the opal starting material is inhibited and perhaps stopped in the presence of lithium hydroxide. SEM revealed that the morphology of the reaction products on the surface of the reacted opal grains is markedly different invariably. It was concluded that evidence to support the theory of a protective layer exists and that the nature of the layer varies with ion type.

  11. Energy conservation in the primary aluminum and chlor-alkali industries

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    The primary aluminum and chlor-alkali industries together use nearly 13% of the electrical energy consumed by US industry. As part of its mission to promote energy conservation in basic US industries, the DOE surveys the present technological status of the major electrochemical industries and evaluates promising technological innovations that may lead to reduced energy requirements. This study provides technical and economic analyses in support of a government program of research and development in advanced electrolytic technology. This program is intended to supplement the development efforts directed toward energy savings by private industry. Sections II and III of this report cover aluminum and chlorine production processes only, since these two industries represent over 90% of the electrical energy requirements of all electrolytic industries in the United States. Section IV examines barriers to accelerated research and development by the electrolytic industries, and makes suggestions for government actions to overcome these barriers.

  12. Microstructural Changes Due to Alkali-Silica Reaction during Standard Mortar Test

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shin, Jun-Ho; Struble, Leslie; Kirkpatrick, R.

    2015-12-01

    The microstructural development of mortar bars with silica glass aggregate undergoing alkali-silica reaction (ASR) under the conditions of American Society for Testing and Materials (ASTM) Standard Test C1260 was analyzed using scanning electron microscopy and qualitative X-ray microanalysis. Cracking in the aggregate, the hydrated paste, and the paste-aggregate interface was important in the development of the microstructure. Cracks were characterized according to their location, their relationship to other cracks, and whether they are filled with ASR gel. Expansion of the bars was approximately 1% at 12 days and 2% at 53 days. They fell apart by 63 days. The barsmore » contained two zones, an inner region that was undergoing ASR and an outer and much more highly damaged zone that extended further inward over time. Evidence of ASR was present even during the period when specimens were immersed in water, prior to immersion in NaOH solution.« less

  13. Finite element analysis of three TVA dams with alkali-aggregate reaction

    SciTech Connect (OSTI)

    Grenoble, B.A.; Meisenheimer, J.K.; Wagner, C.D.; Newell, V.A.

    1995-12-31

    Three large Tennessee Valley Authority (TVA) dams are currently experiencing problems caused by alkali-aggregate reaction (AAR). Since the fall of 1990, engineers in Stone & Webster`s Denver, Colorado office have been working with TVA to evaluate how AAR is affecting the dams and to identify measures for controlling the adverse effects of the concrete growth. This paper provides an overview of how finite element analysis is being used to understand the affects of AAR on these structures and to evaluate alternatives for minimizing the adverse effects of the concrete growth. Work on Hiwassee Dam is essentially complete, while that on the Chickamauga and Fontana Projects is still in progress. Consequently, this paper will focus primarily on Hiwassee Dam. The ongoing work on the other two projects will only be discussed briefly.

  14. The development of high-performance alkali-hybrid polarized He3 targets for electron scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, Jaideep T.; Dolph, Peter A.M.; Tobias, William Al; Averett, Todd D.; Kelleher, Aiden; Mooney, K. E.; Nelyubin, Vladimir V.; Wang, Yunxiao; Zheng, Yuan; Cates, Gordon D.

    2015-05-01

    We present the development of high-performance polarized ³He targets for use in electron scattering experiments that utilize the technique of alkali-hybrid spin-exchange optical pumping. We include data obtained during the characterization of 24 separate target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. The results presented here document dramatic improvement in the performance of polarized ³He targets, as well as the target properties and operating parameters that made those improvements possible. Included in our measurements were determinations of the so-called X-factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable ³He polarization to well under 100%. The presence of this spin-relaxation mechanism was clearly evident in our data. We also present results from a simulation of the alkali-hydrid spin-exchange optical pumping process that was developed to provide guidance in the design of these targets. Good agreement with actual performance was obtained by including details such as off-resonant optical pumping. Now benchmarked against experimental data, the simulation is useful for the design of future targets. Included in our results is a measurement of the K- ³He spin-exchange rate coefficientmore » $$k^\\mathrm{K}_\\mathrm{se} = \\left ( 7.46 \\pm 0.62 \\right )\\!\\times\\!10^{-20}\\ \\mathrm{cm^3/s}$$ over the temperature range 503 K to 563 K.« less

  15. A comparative transport study of Bi{sub 2}Se{sub 3} and Bi{sub 2}Se{sub 3}/yttrium iron garnet

    SciTech Connect (OSTI)

    Jiang, Zilong; Tang, Chi; Shi, Jing; Katmis, Ferhat; Wei, Peng; Moodera, Jagadeesh S.

    2014-06-02

    Bilayers of 20 quintuple layer Bi{sub 2}Se{sub 3} on 30 nm thick yttrium iron garnet (YIG) have been grown with molecular beam epitaxy in conjunction with pulsed laser deposition. The presence of the ferri-magnetic insulator YIG causes additional scattering to the surface states of the Bi{sub 2}Se{sub 3} topological insulator layer, as indicated by the temperature dependence of the resistivity. From the two-channel analysis of the Hall data, we find that the surface contribution in the bilayer samples is greatly reduced. Furthermore, the weak antilocalization effect from the surface states is clearly suppressed due to the presence of the YIG layer.

  16. Fabrication and microstructure of cerium doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics by solid-state reaction method

    SciTech Connect (OSTI)

    Li, Junlang; Xu, Jian; Shi, Ying; Qi, Hongfang; Xie, Jianjun; Lei, Fang

    2014-07-01

    Highlights: We fabricate Ce doped lutetium aluminum garnet ceramics by solid-state method. The raw materials include Lu{sub 2}O{sub 3} nanopowders synthesized by co-precipitation method. The density of the transparent ceramics reach 99.7% of the theoretical value. The optical transmittance of the bulk ceramic at 550 nm was 57.48%. Some scattering centers decrease the optical characteristic of the ceramic. - Abstract: Polycrystalline Ce{sup 3+} doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics fabricated by one step solid-state reaction method using synthetic nano-sized Lu{sub 2}O{sub 3}, commercial ?-Al{sub 2}O{sub 3} and CeO{sub 2} powders were investigated in this paper. The green compacts shaped by the mixed powders were successfully densified into Ce:LuAG transparent ceramics after vacuum sintering at 1750 C for 10 h. The in-line optical transmittance of the Ce:LuAG ceramic made by home-made Lu{sub 2}O{sub 3} powders could reach 57.48% at 550 nm, which was higher than that of the ceramic made by commercial Lu{sub 2}O{sub 3} powders (22.96%). The microstructure observation showed that light scattering centers caused by micro-pores, aluminum segregation and refraction index inhomogeneities induced the decrease of optical transparency of the Ce:LuAG ceramics, which should be removed and optimized in the future work.

  17. U.S. Energy Secretary Steven Chu, U.S. Representatives Larson...

    Energy Savers [EERE]

    U.S. Representative Joe Courtney WHAT: Tour of United Technologies Research Center WHEN: 9:45 AM EST **Media availability to follow Media are requested to park in the lot ...

  18. Methods of use of calcium hexa aluminate refractory linings and/or chemical barriers in high alkali or alkaline environments

    DOE Patents [OSTI]

    McGowan, Kenneth A; Cullen, Robert M; Keiser, James R; Hemrick, James G; Meisner, Roberta A

    2013-10-22

    A method for improving the insulating character/and or penetration resistance of a liner in contact with at least one of an alkali and/or alkaline environments is provided. The method comprises lining a surface that is subject to wear by an alkali environment and/or an alkaline environment with a refractory composition comprising a refractory aggregate consisting essentially of a calcium hexa aluminate clinker having the formula CA.sub.6, wherein C is equal to calcium oxide, wherein A is equal to aluminum oxide, and wherein the hexa aluminate clinker has from zero to less than about fifty weight percent C.sub.12A.sub.7, and wherein greater than 98 weight percent of the calcium hexa aluminate clinker having a particle size ranging from -20 microns to +3 millimeters, for forming a liner of the surface. This method improves the insulating character/and or penetration resistance of the liner.

  19. The role of alumina on performance of alkali-activated slag paste exposed to 50 °C

    SciTech Connect (OSTI)

    Jambunathan, N.; Sanjayan, J.G.; Pan, Z.; Li, G.; Liu, Y.; Korayem, A.H.; Duan, W.H.; Collins, F.

    2013-12-15

    The strength and microstructural evolution of two alkali-activated slags, with distinct alumina content, exposed to 50 °C have been investigated. These two slags are ground-granulated blast furnace slag (containing 13% (wt.) alumina) and phosphorous slag (containing 3% (wt.) alumina). They were hydrated in the presence of a combination of sodium hydroxide and sodium silicate solution at different ratios. The microstructure of the resultant slag pastes was assessed by X-ray diffraction, differential thermogravimetric analysis, and scanning electron microscopy. The results obtained from these techniques reveal the presence of hexagonal hydrates: CAH{sub 10} and C{sub 4}AH{sub 13} in all alkali-activated ground-granulated blast-furnace slag pastes (AAGBS). These hydrates are not observed in pastes formed by alkali-activated ground phosphorous slag (AAGPS). Upon exposure to 50 °C, the aforementioned hydration products of AAGBS pastes convert to C{sub 3}AH{sub 6}, leading to a rapid deterioration in the strength of the paste. In contrast, no strength loss was detected in AAGPS pastes following exposure to 50 °C. -- Highlights: •Strength of alkali-activated slag (AAS) pastes after exposure to 50 °C is studied. •AAS pastes with high alumina content lose strength after the exposure. •C{sub 4}AH{sub 13} and CAH{sub 10} form in these AAS pastes. •Conversion of these calcium alumina hydrates is associated with the strength loss. •AAS pastes with low alumina content maintain its strength after the exposure.

  20. Highly Effective Pt-Based Water-Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; Wasserscheid, Peter

    2015-01-29

    Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid filmmore » of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.« less

  1. Highly Effective Pt-Based Water-Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    SciTech Connect (OSTI)

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; Wasserscheid, Peter

    2015-01-29

    Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid film of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.

  2. Examination of the concrete from an old Portuguese dam: Texture and composition of alkali-silica gel

    SciTech Connect (OSTI)

    Fernandes, Isabel Noronha, Fernando Teles, Madalena

    2007-11-15

    Exudations and pop-outs were identified in the interior galleries of a large dam built in the 1960s. The samples collected were examined by a Scanning Electron Microscope. A dense material with a smooth surface and drying shrinkage cracks or a spongy texture were observed in the samples. The semi-quantitative composition was obtained by energy dispersive spectrometry (EDS) and it was concluded that this material corresponds to alkali-silica gel, composed of SiO{sub 2}-Na{sub 2}O-K{sub 2}O-CaO. A viscous white product in contact with an aggregate particle in a cone sampled from a pop-out was observed through use of the scanning electron microscope and it has characteristics similar to the gel present in the exudations and cavities. Reference is made to the potential alkali reactivity of the aggregate present in the concrete. The texture and composition of the products probably resulting from an alkali-silica reaction are presented, set out in ternary diagrams, and discussed.

  3. X-ray microtomography shows pore structure and tortuosity in alkali-activated binders

    SciTech Connect (OSTI)

    Provis, John L.; Myers, Rupert J.; White, Claire E.; Rose, Volker; Deventer, Jannie S.J. van

    2012-06-15

    Durability of alkali-activated binders is of vital importance in their commercial application, and depends strongly on microstructure and pore network characteristics. X-ray microtomography ({mu}CT) offers, for the first time, direct insight into microstructural and pore structure characteristics in three dimensions. Here, {mu}CT is performed on a set of sodium metasilicate-activated fly ash/slag blends, using a synchrotron beamline instrument. Segmentation of the samples into pore and solid regions is then conducted, and pore tortuosity is calculated by a random walker method. Segmented porosity and diffusion tortuosity are correlated, and vary as a function of slag content (slag addition reduces porosity and increases tortuosity), and sample age (extended curing gives lower porosity and higher tortuosity). This is particularly notable for samples with {>=} 50% slag content, where a space-filling calcium (alumino)silicate hydrate gel provides porosity reductions which are not observed for the sodium aluminosilicate ('geopolymer') gels which do not chemically bind water of hydration.

  4. Monitoring, Modeling, and Diagnosis of Alkali-Silica Reaction in Small Concrete Samples

    SciTech Connect (OSTI)

    Agarwal, Vivek; Cai, Guowei; Gribok, Andrei V.; Mahadevan, Sankaran

    2015-09-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This report describes alkali-silica reaction (ASR) degradation mechanisms and factors influencing the ASR. A fully coupled thermo-hydro-mechanical-chemical model developed by Saouma and Perotti by taking into consideration the effects of stress on the reaction kinetics and anisotropic volumetric expansion is presented in this report. This model is implemented in the GRIZZLY code based on the Multiphysics Object Oriented Simulation Environment. The implemented model in the GRIZZLY code is randomly used to initiate ASR in a 2D and 3D lattice to study the percolation aspects of concrete. The percolation aspects help determine the transport properties of the material and therefore the durability and service life of concrete. This report summarizes the effort to develop small-size concrete samples with embedded glass to mimic ASR. The concrete samples were treated in water and sodium hydroxide solution at elevated temperature to study how ingress of sodium ions and hydroxide ions at elevated temperature impacts concrete samples embedded with glass. Thermal camera was used to monitor the changes in the concrete sample and results are summarized.

  5. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    SciTech Connect (OSTI)

    Verdolotti, Letizia; Capasso, Ilaria; Lavorgna, Marino; Liguori, Barbara; Caputo, Domenico; Iannace, Salvatore

    2014-05-15

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a meringue type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (?500 Kg/m{sup 3}) with good cellular structure and mechanical properties were obtained by combining the meringue approach with the use of the chemical blowing agent based on Si.

  6. The influence of the iron content on the reductive decomposition of A{sub 3?x}Fe{sub x}Al{sub 2}Si{sub 3}O{sub 12} garnets (A = Mg, Mn; 0.47 ? x ? 2.85)

    SciTech Connect (OSTI)

    Aparicio, Claudia, E-mail: claudia.aparicio@upol.cz; Filip, Jan, E-mail: claudia.aparicio@upol.cz; Mashlan, Miroslav, E-mail: claudia.aparicio@upol.cz; Zboril, Radek, E-mail: claudia.aparicio@upol.cz [Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Palacky University, 17. listopadu 1192/12, 77146 Olomouc (Czech Republic)

    2014-10-27

    Thermally-induced reductive decomposition of natural iron-bearing garnets of the almandine-pyrope and almandine-spessartine series were studied at temperatures up to 1200 C (heating rate of 10 C/min) under atmosphere of forming gas (10% of H{sub 2} in N{sub 2}). Crystallochemical formula of the studied garnet was calculated as {sup VIII}(A{sub 3?x}Fe{sub x}{sup 2+}){sup VI}(Al,Fe{sup 3+}){sub 2}Si{sub 3}O{sub 12}, where the amount of Fe{sup 3+} in the octahedral sites is negligible with the exception of pyrope, A = Mg, Mn, and 0.47 ? x ? 2.85. The observed decomposition temperature, determined from differential scanning calorimetry and thermogravimetry, is greater than 1000 C in all cases and showed almost linear dependence on the iron content in the dodecahedral sites of the studied garnets, with the exception of garnet with a near-pyrope composition (Prp{sub 80}Alm{sub 20}). The initial garnet samples and decomposition products were characterized in details by means of X-ray powder diffraction and {sup 57}Fe Mssbauer spectroscopy. We found that all studied garnets have common decomposition products such as metallic iron (in general, rounded particles below 4 ?m) and Fe-spinel; the other identified decomposition products depend on starting chemical composition of the garnet: Fe-cordierite, olivine (fayalite or tephroite), cristobalite, pyroxene (enstatite or pigeonite), and anorthite. Anorthite and pigeonite were only present in garnets with Ca in the dodecahedral site. All the identified phases were usually well crystallized.

  7. Static SIMS Analysis of Carbonate on Basic Alkali-bearing Surfaces

    SciTech Connect (OSTI)

    Groenewold, Gary Steven; Gianotto, Anita Kay; Cortez, Marnie Michelle; Appelhans, Anthony David; Olsen, J.E.; Shaw, A. D.; Karahan, C.; Avci, R.

    2003-02-01

    Carbonate is a somewhat enigmatic anion in static secondary ion mass spectrometry (SIMS) because abundant ions containing intact CO32- are not detected when analyzing alkaline-earth carbonate minerals common to the geochemical environment. In contrast, carbonate can be observed as an adduct ion when it is bound with alkali cations. In this study, carbonate was detected as the adduct Na2CO3Na+ in the spectra of sodium carbonate, bicarbonate, hydroxide, oxalate, formate and nitrite and to a lesser extent nitrate. The appearance of the adduct Na2CO3Na+ on hydroxide, oxalate, formate and nitrite surfaces was interpreted in terms of these basic surfaces fixing CO2 from the ambient atmosphere. The low abundance of Na2CO3Na+ in the static SIMS spectrum of sodium nitrate, compared with a significantly higher abundance in salts having stronger conjugate bases, suggested that the basicity of the conjugate anions correlated with aggressive CO2 fixation; however, the appearance of Na2CO3Na+ could not be explained simply in terms of solution basicity constants. The oxide molecular ion Na2O+ and adducts NaOHNa+ and Na2ONa+ also constituted part of the carbonate spectral signature, and were observed in spectra from all the salts studied. In addition to the carbonate and oxide ions, a low-abundance oxalate ion series was observed that had the general formula Na2-xHxC2O4Na+, where 0 < x < 2. Oxalate adsorption from the laboratory atmosphere was demonstrated but the oxalate ion series also was likely to be formed from reductive coupling occurring during the static SIMS bombardment event. The remarkable spectral similarity observed when comparing the sodium salts indicated that their surfaces shared common chemical speciation and that the chemistry of the surfaces was very different from the bulk of the particle. Copyright 2003 John Wiley & Sons, Ltd.

  8. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    SciTech Connect (OSTI)

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James; Dai, Sheng; Das, S.; Liao, W. -P.; Kuo, Li-Jung; Wood, Jordana; Gill, Gary; Byers, Maggie Flicker; Schneider, Eric

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  9. Localized excitation of magnetostatic surface spin waves in yttrium iron garnet by shorted coaxial probe detected via spin pumping and rectification effect

    SciTech Connect (OSTI)

    Soh, Wee Tee Ong, C. K.; Peng, Bin

    2015-04-21

    We demonstrate the localized excitation and dc electrical detection of magnetostatic surface spin waves (MSSWs) in yttrium iron garnet (YIG) by a shorted coaxial probe. Thin films of NiFe and Pt are patterned at different regions onto a common bulk YIG substrate. A shorted coaxial probe is used to excite spin precession locally near various patterned regions. The dc voltages across the corresponding regions are recorded. For excitation of the Pt regions, the dc voltage spectra are dominated by the spin pumping of MSSWs from YIG, where various modes can be clearly distinguished. For the NiFe region, it is also found that spin pumping from MSSWs generated in YIG dominated the spectra, indicating that the spin pumped currents are dissipated into charge currents via the inverse Spin Hall effect (ISHE) in NiFe. For all regions, dc signals from YIG MSSWs are observed to be much stronger than the ferromagnetic resonance (FMR) uniform mode, likely due to the nature of the microwave excitation. The results indicate the potential of this probe for microwave imaging via dc detection of spin dynamics in continuous and patterned films.

  10. Non-local detection of spin dynamics via spin rectification effect in yttrium iron garnet/SiO{sub 2}/NiFe trilayers near simultaneous ferromagnetic resonance

    SciTech Connect (OSTI)

    Soh, Wee Tee Ong, C. K.; Peng, Bin

    2015-08-15

    The spin rectification effect (SRE), a phenomenon that generates dc voltages from ac microwave fields incident onto a conducting ferromagnet, has attracted widespread attention due to its high sensitivity to ferromagnetic resonance (FMR) as well as its relevance to spintronics. Here, we report the non-local detection of yttrium iron garnet (YIG) spin dynamics by measuring SRE voltages from an adjacent conducting NiFe layer up to 200 nm thick. In particular, we detect, within the NiFe layer, SRE voltages stemming from magnetostatic surface spin waves (MSSWs) of the adjacent bulk YIG which are excited by a shorted coaxial probe. These non-local SRE voltages within the NiFe layer that originates from YIG MSSWs are present even in 200 nm-thick NiFe films with a 50 nm thick SiO{sub 2} spacer between NiFe and YIG, thus strongly ruling out the mechanism of spin-pumping induced inverse spin Hall effect in NiFe as the source of these voltages. This long-range influence of YIG dynamics is suggested to be mediated by dynamic fields generated from YIG spin precession near YIG/NiFe interface, which interacts with NiFe spins near the simultaneous resonance of both spins, to generate a non-local SRE voltage within the NiFe layer.

  11. Charge-coupled substituted garnets (Y 3–x Ca 0.5x M 0.5x )Fe₅O₁₂ (M = Ce, Th): Structure and stability as crystalline nuclear waste forms

    SciTech Connect (OSTI)

    Guo, Xiaofeng; Kukkadapu, Ravi K.; Lanzirotti, Antonio; Newville, Matthew; Engelhard, Mark H.; Sutton, Stephen R.; Navrotsky, Alexandra

    2015-04-20

    The garnet structure has been proposed as a potential crystalline nuclear waste form for accommodation of actinide elements, especially uranium (U). In this study, yttrium iron garnet (YIG) as a model garnet host was studied for the incorporation of U analogs, cerium (Ce) and thorium (Th), incorporated by a charge-coupled substitution with calcium (Ca) for yttrium (Y) in YIG, namely, 2Y³⁺ = Ca²⁺ + M⁴⁺, where M⁴⁺ = Ce⁴⁺ or Th⁴⁺. Single-phase garnets Y3–xCa0.5xM0.5xFe₅O₁₂ (x = 0.1–0.7) were synthesized by the citrate–nitrate combustion method. Ce was confirmed to be tetravalent by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. X-ray diffraction and ⁵⁷Fe–Mössbauer spectroscopy indicated that M⁴⁺ and Ca²⁺ cations are restricted to the c site, and the local environments of both the tetrahedral and the octahedral Fe³⁺ are systematically affected by the extent of substitution. The charge-coupled substitution has advantages in incorporating Ce/Th and in stabilizing the substituted phases compared to a single substitution strategy. Enthalpies of formation of garnets were obtained by high-temperature oxide melt solution calorimetry, and the enthalpies of substitution of Ce and Th were determined. The thermodynamic analysis demonstrates that the substituted garnets are entropically rather than energetically stabilized. This suggests that such garnets may form and persist in repositories at high temperature but might decompose near room temperature.

  12. Charge-coupled substituted garnets (Y 3x Ca 0.5x M 0.5x )Fe?O?? (M = Ce, Th): Structure and stability as crystalline nuclear waste forms

    SciTech Connect (OSTI)

    Guo, Xiaofeng; Kukkadapu, Ravi K.; Lanzirotti, Antonio; Newville, Matthew; Engelhard, Mark H.; Sutton, Stephen R.; Navrotsky, Alexandra

    2015-04-20

    The garnet structure has been proposed as a potential crystalline nuclear waste form for accommodation of actinide elements, especially uranium (U). In this study, yttrium iron garnet (YIG) as a model garnet host was studied for the incorporation of U analogs, cerium (Ce) and thorium (Th), incorporated by a charge-coupled substitution with calcium (Ca) for yttrium (Y) in YIG, namely, 2Y? = Ca? + M??, where M?? = Ce?? or Th??. Single-phase garnets Y3xCa0.5xM0.5xFe?O?? (x = 0.10.7) were synthesized by the citratenitrate combustion method. Ce was confirmed to be tetravalent by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. X-ray diffraction and ??FeMssbauer spectroscopy indicated that M?? and Ca? cations are restricted to the c site, and the local environments of both the tetrahedral and the octahedral Fe? are systematically affected by the extent of substitution. The charge-coupled substitution has advantages in incorporating Ce/Th and in stabilizing the substituted phases compared to a single substitution strategy. Enthalpies of formation of garnets were obtained by high-temperature oxide melt solution calorimetry, and the enthalpies of substitution of Ce and Th were determined. The thermodynamic analysis demonstrates that the substituted garnets are entropically rather than energetically stabilized. This suggests that such garnets may form and persist in repositories at high temperature but might decompose near room temperature.

  13. Charge-Coupled Substituted Garnets (Y3-xCa0.5xM0.5x)Fe5O12 (M = Ce, Th): Structure and Stability as Crystalline Nuclear Waste Forms

    SciTech Connect (OSTI)

    Guo, Xiaofeng; Kukkadapu, Ravi K.; Lanzirotti, Antonio; Newville, Matthew; Engelhard, Mark H.; Sutton, Stephen R.; Navrotsky, Alexandra

    2015-06-08

    The garnet structure has been proposed as a potential crystalline nuclear waste form for accommodation of actinide elements, especially uranium (U). In this study, yttrium iron garnet (YIG) as a model garnet host was studied for the incorporation of U analogs, cerium (Ce) and thorium (Th), incorporated by a charge-coupled substitution with calcium (Ca) for yttrium (Y) in YIG, namely, 2Y3+ = Ca2+ + M4+, where M4+ = Ce4+ or Th4+. Single-phase garnets Y3–xCa0.5xM0.5xFe5O12 (x = 0.1–0.7) were synthesized by the citrate–nitrate combustion method. Ce was confirmed to be tetravalent by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. X-ray diffraction and 57Fe–Mössbauer spectroscopy indicated that M4+ and Ca2+ cations are restricted to the c site, and the local environments of both the tetrahedral and the octahedral Fe3+ are systematically affected by the extent of substitution. The charge-coupled substitution has advantages in incorporating Ce/Th and in stabilizing the substituted phases compared to a single substitution strategy. Enthalpies of formation of garnets were obtained by high temperature oxide melt solution calorimetry, and the enthalpies of substitution of Ce and Th were determined. The thermodynamic analysis demonstrates that the substituted garnets are entropically rather than energetically stabilized. This suggests that such garnets may form and persist in repositories at high temperature but might decompose near room temperature.

  14. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: thermal cycle stability and chemical compatibility

    SciTech Connect (OSTI)

    Chou, Y. S.; Thomsen, Edwin C.; Williams, Riley T.; Choi, Jung-Pyung; Canfield, Nathan L.; Bonnett, Jeff F.; Stevenson, Jeffry W.; Shyam, Amit; Lara-Curzio, E.

    2011-03-01

    An alkali silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel (SOFC) applications. The glass containing ~17 mole% alkalis (K2O and Na2O) remains vitreous and compliant during SOFC operation, unlike conventional SOFC sealing glasses, which experience substantial devitrification after the sealing process. The non-crystallizing compliant sealing glass has lower glass transition and softening temperatures since the microstructure remains glassy without significant crystallite formation, and hence can relieve or reduce residual stresses and also has the potential for crack healing. Sealing approaches based on compliant glass will also need to satisfy all the mechanical, thermal, chemical, physical, and electrical requirements for SOFC applications, not only in bulk properties but also at sealing interfaces. In this first of a series of papers we will report the thermal cycle stability of the glass when sealed between two SOFC components, i.e., a NiO/YSZ anode supported YSZ bilayer and a coated ferritic stainless steel interconnect material. High temperature leak rates were monitored versus thermal cycles between 700-850oC using back pressures ranging from 0.2 psi to 1.0 psi. Isothermal stability was also evaluated in a dual environment consisting of flowing dilute H2 fuel versus ambient air. In addition, chemical compatibility at the alumina and YSZ interfaces was examined with scanning electron microscopy and energy dispersive spectroscopy. The results shed new light on the topic of SOFC glass seal development.

  15. Desulfurization of Illinois coals with hydroperoxides of vegetable oils and alkali. Technical report, September 1--November 30, 1995

    SciTech Connect (OSTI)

    Smith, G.V.; Gaston, R.D.; Song, R.; Cheng, J.; Shi, F.; Wang, Y.

    1995-12-31

    Organic sulfur is removed from coals by treatment with aqueous base, air, and vegetable oils with minimal loss of BTU. Such results were revealed during exploratory experiments on an ICCI funded project to remove organic sulfur from Illinois coals with hydroperoxides of vegetable oils. In fact, prewashing IBC-108 coal with dilute alkali prior to treating with linseed oil and air results in 26% removal of sulfur. This new method will be investigated by treating coals with alkali, impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of the solid products. During this first quarter the selection of base for pretreatment and extraction (Task 1) has been completed. NaOH is better than NH{sub 4}OH for the pretreatment and Na{sub 2}CO{sub 3} is better than NaOH for the oil extraction. About 40% of sulfur is removed from IBC-108 coal using 5% NaOH for pretreatment followed by linseed oil oxidation in air and Na{sub 2}CO{sub 3} extraction.

  16. Alkali metal cation complexation by 1,3-alternate, mono-ionisable calix[4]arene-benzocrown-6 compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Surowiec, Malgorzata A.; Custelcean, Radu; Surowiec, Kazimierz; Bartsch, Richard A.

    2014-04-23

    Alkali metal cation extraction behavior for two series of 1,3-alternate, mono-ionizable calix[4]arene-benzocrown-6 compounds is examined. In Series 1, the proton-ionizable group is a substituent on the benzo group of the polyether ring that directs it away from the crown ether cavity. In Series 2, the proton-ionizable group is attached to one para position in the calixarene framework, thus positioning it over the crown ether ring. Competitive solvent extraction of alkali metal cations from aqueous solutions into chloroform shows high Cs+ efficiency and selectivity. Single-species extraction pH profiles of Cs+ for Series 1 and 2 ligands with the same proton-ionizable groupmore » are very similar. Thus, association of Cs+ with the calixcrown ring is more important than the the proton-ionizable group’s position in relation to the crown ether cavity. Solid-state structures are presented for two unionized ligands from Series 2, as is a crystal containing two different ionized ligand–Cs+ complexes.« less

  17. Alkali metal cation complexation by 1,3-alternate, mono-ionisable calix[4]arene-benzocrown-6 compounds

    SciTech Connect (OSTI)

    Surowiec, Malgorzata A.; Custelcean, Radu; Surowiec, Kazimierz; Bartsch, Richard A.

    2014-04-23

    Alkali metal cation extraction behavior for two series of 1,3-alternate, mono-ionizable calix[4]arene-benzocrown-6 compounds is examined. In Series 1, the proton-ionizable group is a substituent on the benzo group of the polyether ring that directs it away from the crown ether cavity. In Series 2, the proton-ionizable group is attached to one para position in the calixarene framework, thus positioning it over the crown ether ring. Competitive solvent extraction of alkali metal cations from aqueous solutions into chloroform shows high Cs+ efficiency and selectivity. Single-species extraction pH profiles of Cs+ for Series 1 and 2 ligands with the same proton-ionizable group are very similar. Thus, association of Cs+ with the calixcrown ring is more important than the the proton-ionizable group’s position in relation to the crown ether cavity. Solid-state structures are presented for two unionized ligands from Series 2, as is a crystal containing two different ionized ligand–Cs+ complexes.

  18. Improved Recovery Boiler Performance Through Control of Combustion, Sulfur, and Alkali Chemistry

    SciTech Connect (OSTI)

    Baxter, Larry L.

    2008-06-09

    This project involved the following objectives: 1. Determine black liquor drying and devolatilization elemental and total mass release rates and yields. 2. Develop a public domain physical/chemical kinetic model of black liquor drop combustion, including new information on drying and devolatilization. 3. Determine mechanisms and rates of sulfur scavenging in recover boilers. 4. Develop non-ideal, public-domain thermochemistry models for alkali salts appropriate for recovery boilers 5. Develop data and a one-dimensional model of a char bed in a recovery boiler. 6. Implement all of the above in comprehensive combustion code and validate effects on boiler performance. 7. Perform gasification modeling in support of INEL and commercial customers. The major accomplishments of this project corresponding to these objectives are as follows: 1. Original data for black liquor and biomass data demonstrate dependencies of particle reactions on particle size, liquor type, gas temperature, and gas composition. A comprehensive particle submodel and corresponding data developed during this project predicts particle drying (including both free and chemisorbed moisture), devolatilization, heterogeneous char oxidation, char-smelt reactions, and smelt oxidation. Data and model predictions agree, without adjustment of parameters, within their respective errors. The work performed under these tasks substantially exceeded the original objectives. 2. A separate model for sulfur scavenging and fume formation in a recovery boiler demonstrated strong dependence on both in-boiler mixing and chemistry. In particular, accurate fume particle size predictions, as determined from both laboratory and field measurements, depend on gas mixing effects in the boilers that lead to substantial particle agglomeration. Sulfur scavenging was quantitatively predicted while particle size required one empirical mixing factor to match data. 3. Condensed-phase thermochemistry algorithms were developed for salt

  19. Alkali injection system with controlled CO.sub.2 /O.sub.2 ratios for combustion of coal

    DOE Patents [OSTI]

    Berry, Gregory F. (Naperville, IL)

    1988-01-01

    A high temperature combustion process for an organic fuel containing sulfur n which the nitrogen of air is replaced by carbon dioxide for combination with oxygen with the ratio of CO.sub.2 /O.sub.2 being controlled to generate combustion temperatures above 2000 K. for a gas-gas reaction with SO.sub.2 and an alkali metal compound to produce a sulfate and in which a portion of the carbon-dioxide rich gas is recycled for mixing with oxygen and/or for injection as a cooling gas upstream from heating exchangers to limit fouling of the exchangers, with the remaining carbon-dioxide rich gas being available as a source of CO.sub.2 for oil recovery and other purposes.

  20. Comparative study of alkali-vapour cells with alkane-, alkeneand 1-nonadecylbenzene-based antirelaxation wall coatings

    SciTech Connect (OSTI)

    Balabas, M V; Tretiak, O Yu

    2013-12-31

    The dependence of both longitudinal and transverse relaxation times of ground-state magnetic polarisation in alkali atoms on the coating temperature is experimentally studied for the first time in a rubidium-vapour cell with 1-nonadecylbenzene antirelaxation coating of inner walls. The comparison of these times with the relaxation times in a caesium-vapour cell with alkane wall coatings is presented. It is found that within the studied temperature range (294 340K) the transverse relaxation time decreases with increasing temperature of alkene and 1-nonadecylbenzene coatings. For the alkane coating such a dependence was not explicitly found. The longitudinal relaxation time begins to decrease in all cases when passing a certain critical temperature of the coating material. It is found that the unsaturated radical structure of the coating material molecules strongly affects its antirelaxation properties. (optical pumping)

  1. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOE Patents [OSTI]

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  2. MgAl2O4 spinel refractory as containment liner for high-temperature alkali salt containing environments

    DOE Patents [OSTI]

    Peascoe-Meisner, Roberta A [Knoxville, TN; Keiser, James R [Oak Ridge, TN; Hemric, James G [Knoxville, TN; Hubbard, Camden R [Oak Ridge, TN; Gorog, J Peter [Kent, WA; Gupta, Amul [Jamestown, NY

    2008-10-21

    A method includes containing a high-temperature alkali salt containing environment using a refractory containment liner containing MgAl.sub.2O.sub.4 spinel. A method, includes forming a refractory brick containing MgAl.sub.2O.sub.4 spinel having an exterior chill zone defined by substantially columnar crystallization and an interior zone defined by substantially equiaxed crystallization; and removing at least a portion of the exterior chill zone from the refractory brick containing MgAl.sub.2O.sub.4 spinel by scalping the refractory brick containing MgAl.sub.2O.sub.4 spinel to define at least one outer surface having an area of substantially equiaxed crystallization. A product of manufacture includes a refractory brick containing MgAl.sub.2O.sub.4 spinel including an interior zone defined by substantially equiaxed crystallization; and at least one outer surface having an area of substantially equiaxed crystallization.

  3. Evaluation of alkali metal sulfate dew point measurement for detection of hot corrosion conditions in PFBC flue gas

    SciTech Connect (OSTI)

    Helt, J.E.

    1980-11-01

    Hot corrosion in combustion systems is, in general, the accelerated oxidation of nickel, cobalt, and iron-base alloys which occurs in the presence of small amounts of impurities - notably, sodium, sulfur, chlorine, and vanadium. There is no real consensus on which mechanisms are primarily responsible for high-temperature corrosion. One point generally accepted, however, is that corrosion reactions take place at an appreciable rate only in the presence of a liquid phase. When coal is the fuel for combustion, hot corrosion may occur in the form of accelerated sulfidation. It is generally agreed by investigators that molten alkali metal sulfates (Na/sub 2/SO/sub 4/ and K/sub 2/SO/sub 4/) are the principal agents responsible for the occurrence of sulfidation. Although molten sodium sulfate by itself appears to have little or no effect on the corrosion of metal alloys, its presence may increase the accessibility of the bare metal surface to the external atmosphere. If this atmosphere contains either a reductant and/or an oxide such as SiO/sub 2/, SO/sub 3/, or NaOH(Na/sub 2/O), corrosion is likely to occur. Alkali metal sulfate dew point measurement was evaluated as a means of anticipating hot corrosion in the gas turbine of a pressurized fluidized-bed combustion system. The hot corrosion mechanism and deposition rate theory were reviewed. Two methods of dew point measurement, electrical conductivity and remote optical techniques, were identified as having a potential for this application. Both techniques are outlined; practical measurement systems are suggested; and potential problem areas are identified.

  4. Desulfurization of Illinois coals with hydroperoxides of vegetable oils and alkali, Quarterly report, March 1 - May 31, 1996

    SciTech Connect (OSTI)

    Smith, G.V.; Gaston, R.D.; Song, R.; Cheng, J.; Shi, F.; Wang, Y.

    1996-12-31

    Organic sulfur is removed from coals by treatment with aqueous base, air, and vegetable oils with minimal loss of BTU. Such results were revealed during exploratory experiments on an ICCI funded project to remove organic sulfur from Illinois coals with hydroperoxides of vegetable oils. In fact, prewashing IBC-108 coal with dilute alkali prior to treating with linseed oil and air results in 26% removal of sulfur. This new method is being investigated by treating coals with alkali, impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. During the first quarter the selection of base fro pretreatment and extraction was completed. NaOH is better than NH{sub 4}OH for the pretreatment and Na{sub 2}CO{sub 3} is better than NaOH for the oil extraction. During the second quarter the effectiveness of linseed oil and NaOH for sulfur removal from IBC-108 coal was further tested by pretreating the coal with two base concentrations at four different times followed by treatment with linseed oil at 125{degrees}C for three different times and finally washing with 5% Na{sub 2}CO{sub 3} and methanol. During this third quarter more experimental parameters were systematically varied in order to study the effectiveness of linseed oil and NaOH for sulfur removal from IBC- 108 coal.

  5. Studies on the production of ultra-clean coal by alkali-acid leaching of low-grade coals

    SciTech Connect (OSTI)

    Nabeel, A.; Khan, T.A.; Sharma, D.K.

    2009-07-01

    The use of low-grade coal in thermal power stations is leading to environmental pollution due to the generation of large amounts of fly ash, bottom ash, and CO{sub 2} besides other pollutants. It is therefore important to clean the coal before using it in thermal power stations, steel plants, or cement industries etc. Physical beneficiation of coal results in only limited cleaning of coal. The increasing environmental pollution problems from the use of coal have led to the development of clean coal technologies. In fact, the clean use of coal requires the cleaning of coal to ultra low ash contents, keeping environmental norms and problems in view and the ever-growing need to increase the efficiency of coal-based power generation. Therefore this requires the adaptation of chemical cleaning techniques for cleaning the coal to obtain ultra clean coal having ultra low ash contents. Presently the reaction conditions for chemical demineralization of low-grade coal using 20% aq NaOH treatment followed by 10% H{sub 2}SO{sub 4} leaching under reflux conditions have been optimized. In order to reduce the concentration of alkali and acid used in this process of chemical demineralization of low-grade coals, stepwise, i.e., three step process of chemical demineralization of coal using 1% or 5% aq NaOH treatment followed by 1% or 5% H{sub 2}SO{sub 4} leaching has been developed, which has shown good results in demineralization of low-grade coals. In order to conserve energy, the alkali-acid leaching of coal was also carried out at room temperature, which gave good results.

  6. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: the effect of protective alumina coating on electrical stability in dual environment

    SciTech Connect (OSTI)

    Chou, Y. S.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-12-01

    An alkali-containing silicate glass was recently proposed as a potential sealant for solid oxide fuel cells (SOFC). The glass contains appreciable amount of alkalis and retains its glassy microstructure at elevated temperatures over time. It is more compliant as compared to conventional glass-ceramics sealants and could potentially heal cracks during thermal cycling. In previous papers the thermal cycle stability, thermal stability and chemical compatibility were reported with yttria-stabilized zirconia (YSZ) electrolyte and YSZ-coated ferritic stainless steel interconnect. In this paper, we report the electrical stability of the compliant glass with aluminized AISI441 interconnect material under DC load in dual environment at 700-800oC. Apparent electrical resistivity was measured with a 4-point method for the glass sealed between two aluminized AISI441 metal coupons as well as plain AISI441 substrates. The results showed good electrical stability with the aluminized AISI441 substrate, while unstable behavior was observed for un-coated substrates. In addition, interfacial microstructure was examined with scanning electron microscopy and correlated with the measured resistivity results. Overall, the alumina coating demonstrated good chemical stability with the alkali-containing silicate sealing glass under DC loading.

  7. A review of the history of alkali-aggregate reaction at three of the Tennessee Valley Authority`s dams

    SciTech Connect (OSTI)

    Wagner, C.D.; Newell, V.A.

    1995-12-31

    Three of The Tennessee Valley Authority (TVA) major hydroelectric projects are experiencing alkali-aggregate reaction (AAR), These projects include Fontana Dam and Powerhouse, Hiwassee Dam and Powerhouse, and Chickamauga Lock, Dam and Powerhouse, All of these dams are considered {open_quotes}high hazard,{close_quotes} causing significant economic losses from loss of power, replacement of the dam and generation facilities, and loss of life should they fail. This paper presents an overview of the descriptions of each of these projects, including construction and original instrumentation installed in the structure during construction, All of these projects are now 50 to 60 years old and are experiencing problems in one or more locations due to AAR with no indication of any slowing of the concrete growth process, Concrete problems at these projects came as no surprise. Cracks were noted within 5 years of construction, and by 1980 some of these cracks were 1/2 inch in width. continuous monitoring of these projects has always been a priority. This paper will discuss how the growth from AAR has affected each structure, which structures have been affected most, and why. It will discuss how TVA has managed AAR at these projects in the past and how TVA is changing from a reactive to a pro-active approach in its response to AAR.

  8. Hyrdo-Quebec`s experience using deep slot cutting to rehabilitate concrete gravity dams affected by alkali-aggregate reaction

    SciTech Connect (OSTI)

    Veilleux, M.

    1995-12-31

    In recent years, Hydro-Qu{acute e}bec has cut vertical slots in concrete dams to solve structural problems stemming from aging of concrete subject to thermal cycles and alkali-aggregate reaction (AAR). In most cases, the structural disorders caused large cracks and permanent displacement. This paper describes Hydro-Qu{acute e}bec`s experience using a new slot-cutting and sealing technology to rehabilitate concrete gravity dams affected by AAR, among them rehabilitation of the Paugan (1991), La Tuque (1992-1993), Rapides Farmers (1993-1994) and Chelsea (1994) hydroelectric developments. The aim of this technology is to relieve internal stress and to create an effective expansion joint which can accommodate reversible and irreversible displacement induced by thermal cycles as well as permanent movement due to chemical concrete swelling caused by AAR. This method of rehabilitation is generally used in conjunction with grouting and drainage work and sometimes with post-tensioned anchor rods or cables.

  9. Effect of Acid, Alkali, and Steam Explosion Pretreatments on Characteristics of Bio-Oil Produced from Pinewood

    SciTech Connect (OSTI)

    Wang, Hui; Srinivasan, Radhakrishnan; Yu, Fei; Steele, Philip; Li, Qi; Mitchell, Brian

    2011-06-21

    Bio-oil produced from pinewood by fast pyrolysis has the potential to be a valuable substitute for fossil fuels. Pretreatment prior to the fast pyrolysis process has been shown to alter the structure and chemical composition of biomass. To determine the influence of biomass pretreatments on bio-oil produced during fast pyrolysis, we tested three pretreatment methods: dilute acid, dilute alkali, and steam explosion. Bio-oils were produced from untreated and pretreated pinewood feedstocks in an auger reactor at 450 C. The bio-oils’ physical properties including pH, water content, acid value, density, viscosity, and heating value were measured. Chemical characteristics of the bio-oils were determined by gas chromatographymass spectrometry. Results showed that bio-oil yield and composition were influenced by biomass pretreatment. Of the three pretreatment methods, 1%H2SO4 pretreatment resulted in the highest bio-oil yield and best bio-oil quality.

  10. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect (OSTI)

    Marra, J.; Billings, A.

    2009-06-24

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  11. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect (OSTI)

    Marra, James C.; Billings, Amanda Y.; Crum, Jarrod V.; Ryan, Joseph V.; Vienna, John D.

    2010-02-26

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  12. Effects of setting regulators on the efficiency of an inorganic acid based alkali-free accelerator reacting with a Portland cement

    SciTech Connect (OSTI)

    Maltese, C. . E-mail: Building.lab@mapei.it; Pistolesi, C.; Bravo, A.; Cella, F.; Cerulli, T.; Salvioni, D.

    2007-04-15

    Today, in the field of underground constructions, alkali-free accelerators are commonly employed, during tunnel excavation, to allow flash concrete setting. In this way, the cementitious sprayed material can firmly bond to the tunnel walls, controlling the convergence (the tendency of the section to squeeze). Their efficiency may be related to many parameters like: cement type, setting regulator, concrete composition, working temperature. Nevertheless, the influence of such factors on the accelerator performance has not been clarified yet. The accelerator efficacy is evaluated by real spraying test in job site or, when only laboratory equipment are available, by measuring the final setting times of cement systems admixed with the accelerator. Several alkali-free flash setting admixtures are available on the market. They can be divided into two main categories both containing aluminium sulphate complexes stabilized either by inorganic acids or by organic acids. In this paper, the influence of different setting regulators on the performances of an inorganic acid based alkali-free accelerator was analysed. Portland cement samples were obtained by mixing clinker with gypsum, {alpha}-hemihydrate, {beta}-hemihydrate or anhydrite. The setting regulator instantaneous dissolution rates were evaluated through conductivity measurements. The setting time of cement pastes with and without the accelerator was measured. It was found that the shorter the final setting time (therefore the more efficient is the accelerator) the lower the setting regulator instantaneous dissolution rate. In order to understand this phenomenon, a comparison was performed between accelerated cement paste samples containing the setting regulator with the highest ({beta}-hemihydrate) and the lowest instantaneous dissolution rate (anhydrite). The analytical work included morphological (Environmental Scanning Electron Microscopy-Field Emission Gun - ESEM-FEG), crystal-chemical (X-Ray Powder Diffraction

  13. Growth and luminescent properties of scintillators based on the single crystalline films of Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12}:Ce garnet

    SciTech Connect (OSTI)

    Zorenko, Yu; Gorbenko, V.; Vasylkiv, Ja; Zelenyj, A.; Fedorov, A.; Kucerkova, R.; Mares, J.A.; Nikl, M.; Bilski, P.; Twardak, A.

    2015-04-15

    Highlights: • Single crystalline films of Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12} garnets at x = 0 ÷ 3.0 were grown by LPE method onto YAG substrates. • Lattice constant of Lu{sub 3−}Gd{sub x}Al{sub 5}O{sub 12}:Ce film and the misfit m between films and YAG substrate changed linearly with increasing of Gd content. • Effective Gd{sup 3+}–Ce{sup 3+} energy transfer occurs in the Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12}:Ce films. • Best scintillation light yield is observed in the Lu{sub 3}Al{sub 5}O{sub 12}:Ce and Lu{sub 2.4}Gd{sub 0.6}Al{sub 5}O{sub 12}:Ce films. • Increase of the Gd content in x = 1.5–2.5 range results in decreasing the scintillation LY of Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12}:Ce films. - Abstract: The work is related to the growth of scintillators based on the single crystalline films (SCF) of Ce{sup 3+} doped Lu{sub 3−}Gd{sub x}Al{sub 5}O{sub 12} mixed rare-earth garnets by Liquid Phase Epitaxy (LPE) method. We have shown, that full set of Lu{sub 3−}Gd{sub x}Al{sub 5}O{sub 12} SCFs with x values ranging from 0 to 3.0 can be successfully crystallized by the LPE method onto Y{sub 3}Al{sub 5}O{sub 12} (YAG) substrates from the melt-solutions based on PbO-B{sub 2}O{sub 3} flux. The absorption, X-ray excited luminescence, photoluminescence, thermoluminescence and light yield measurements, the latter under excitation by α-particles of {sup 239}Pu and {sup 241}Am radioisotopes, were applied for their characterization.

  14. Alkali ionization detector

    DOE Patents [OSTI]

    Hrizo, John (Monroeville, PA); Bauerle, James E. (Plum Borough, PA); Witkowski, Robert E. (West Mifflin, PA)

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  15. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: the effect of protective YSZ coating on electrical stability in dual environment

    SciTech Connect (OSTI)

    Chou, Y. S.; Thomsen, Edwin C.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-03-15

    Recently, compliant sealing glass has been proposed as a potential candidate sealant for solid oxide fuel cell (SOFC) applications. In a previous paper, the thermal stability and chemical compatibility were reported for a compliant alkali-containing silicate glass sealed between anode supported YSZ bi-layer and YSZ-coated stainless steel interconnect. In this paper, we will report the electrical stability of the compliant glass under a DC load and dual environment at 700-800 degrees C. Apparent electrical resistivity was measured with a 4-point method for the glass sealed between two plain SS441 metal coupons or YSZ-coated aluminized substrates. The results showed instability with plain SS441 at 800 degrees C, but stable behavior of increasing resistivity with time was observed with the YSZ coated SS441. In addition, results of interfacial microstructure analysis with scanning electron microscopy will be correlated with the measured resistivity results. Overall, the YSZ coating demonstrated chemically stability with the alkali-containing compliant silicate sealing glass under electrical field and dual environments.

  16. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: Combined stability in isothermal ageing and thermal cycling with YSZ coated ferritic stainless steels

    SciTech Connect (OSTI)

    Chou, Y. S.; Thomsen, Edwin C.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-01-01

    An alkali-containing silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel cell (SOFC) applications. The glass contains about 17 mole% alkalis (K+Na) and has low glass transition and softening temperatures. It remains vitreous and compliant around 750-800oC after sealing without substantial crystallization, as contrary to conventional glass-ceramic sealants, which experience rapid crystallization after the sealing process. The glassy nature and low characteristic temperatures can reduce residual stresses and result in the potential for crack healing. In a previous study, the glass was found to have good thermal cycle stability and was chemically compatible with YSZ coating during short term testing. In the current study, the compliant glass was further evaluated in a more realistic way in that the sealed glass couples were first isothermally aged for 1000h followed by thermal cycling. High temperature leakage was measured. The chemical compatibility was also investigated with powder mixtures at 700 and 800oC to enhance potential interfacial reaction. In addition, interfacial microstructure was examined with scanning electron microscopy and evaluated with regard to the leakage and chemical compatibility results.

  17. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers

    SciTech Connect (OSTI)

    Oh, Jae Eun; Monteiro, Paulo J.M.; Jun, Ssang Sun; Choi, Sejin; Clark, Simon M.

    2010-02-15

    The increase in strength and evolution of crystalline phases in inorganic polymer cement, made by the alkali activation of slag, Class C and Class F fly ashes, was followed using compressive strength test and synchrotron X-ray diffraction. In order to increase the crystallinity of the product the reactions were carried out at 80 deg. C. We found that hydrotalcite formed in both the alkali-activated slag cements and the fly ash-based geopolymers. Hydroxycancrinite, one member of the ABC-6 family of zeolites, was found only in the fly ash geopolymers. Assuming that the predominantly amorphous geopolymer formed under ambient conditions relates to the crystalline phases found when the mixture is cured at high temperature, we propose that the structure of this zeolitic precursor formed in Na-based high alkaline environment can be regarded as a disordered form of the basic building unit of the ABC-6 group of zeolites which includes poly-types such as hydroxycancrinite, hydroxysodalite and chabazite-Na.

  18. Theoretical simulations of protective thin film Fabry-Pérot filters for integrated optical elements of diode pumped alkali lasers (DPAL)

    SciTech Connect (OSTI)

    Quarrie, L. E-mail: lindsay.o.quarrie@gmail.com

    2014-09-15

    The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and output laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.

  19. Simultaneous high-temperature removal of alkali and particulates in a pressurized gasification system. Final technical progress report, April 1981-July 1983

    SciTech Connect (OSTI)

    Mulik, P.R.; Alvin, M.A.; Bachovchin, D.M.

    1983-09-01

    This program is directed at performing experimental and analytical investigations, deriving system designs, and estimating costs to ascertain the feasibility of using aluminosilicate-based getters for controlling alkali in pressurized gasification systems. Its overall objective is to develop a plan for evaluating a scaled-up version of the gettering process as a unit operation or as an integral part of a particulate removal device. This report describes work completed on the four technical program tasks: Thermodynamic projections; Getter Selection and Qualification; System Performance Projections; and Program Definition for Concept Scale-up during the 27-month contract performance period. Work completed on the thermodynamic projections includes a data base update, development of alkali phase diagrams, and system performance projections. Getter selection and qualification efforts involved over 70 kinetic studies in which a leading candidate getter - emathlite - was selected and characterized. System performance projections identified a packed-bed configuration containing relatively large getter pellets as the preferred contacting device for a full-scale unit. For emathlite, we concluded that full-scale unit bed heights of 2 m or less would be required if we assume annual replacement on the basis of bed saturation capacity. Concept scale-up work involved defining the hardware and test program requirements for further development of the emathlite packed-bed system. 56 references, 80 figures, 74 tables.

  20. Longitudinal spin Seebeck effect in Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} prepared on gadolinium gallium garnet (001) by metal organic decomposition method

    SciTech Connect (OSTI)

    Asada, H. Kuwahara, A.; Sakata, N.; Ono, T.; Kishimoto, K.; Koyanagi, T.; Ishibashi, T.; Meguro, A.; Hashinaka, T.

    2015-05-07

    Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} thin films with the Ga composition x = 0, 0.5, and 1.0 are prepared on (001) oriented gadolinium gallium garnet substrates by a metal organic decomposition method. Only (001) peaks are observed in x-ray diffraction patterns for all the films, suggesting that the highly oriented Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} thin films were formed. Increasing Ga composition, the saturation magnetization decreases, and the perpendicular easy axis is enhanced due to the decrease of the shape anisotropy. Longitudinal spin Seebeck effects (LSSEs) in Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} thin films with a Pt layer of 10 nm in thickness were investigated. Magnetic field dependence of the thermoelectric voltage caused by the LSSE in Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} films indicates the hysteresis loop with the small coercivity reflecting the magnetization curve. The decrease of LSSE voltage in Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} is clearly observed with the decrease of Fe composition.

  1. Modifications to Hiwassee Dam and planned modification to Fontana and Chickamauga Dams by the Tennessee Valley Authority to manage alkali-aggregate reaction

    SciTech Connect (OSTI)

    Newell, V.A.; Wagner, C.D.

    1995-12-31

    Large concrete members usually decrease in volume as their temperature drops from that achieved during hydration to that imposed during service. Small concrete members usually decrease in volume because of drying shrinkage. Most concrete structures are designed and detailed to provide for a volume decrease without excessive cracking, Occasionally concrete growth is exhibited in a concrete structure. Growth may result from a variety of reactions, such as the oxidation of minerals, the hydration of unstable oxides included in the concrete mix, or from an outside attack of sulphates. The most important reaction creating concrete growth is probably the reaction between minor alkali (Na{sub 2}O and K{sub 2}O) hydroxides from cement and the concrete aggregates.

  2. Development of processes for the production of solar grade silicon from halides and alkali metals, Phase 1 and Phase 2. Final report, October 1979 - February 1981

    SciTech Connect (OSTI)

    Dickson, C.R.; Gould, R.K.; Felder, W.

    1981-03-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon are described. Product separation and collection processes were evaluated, measure heat release parameters for scaling purposes and effects of reactants and/or products on materials of reactor construction were determined, and preliminary engineering and economic analysis of a scaled up process were made. The feasibility of the basic process to make and collect silicon was demonstrated. The jet impaction/separation process was demonstrated to be a purification process. The rate at which gas phase species from silicon particle precursors, the time required for silane decomposition to produce particles, and the competing rate of growth of silicon seed particles injected into a decomposing silane environment were determined. The extent of silane decomposition as a function of residence time, temperature, and pressure was measured by infrared absorption spectroscopy. A simplistic model is presented to explain the growth of silicon in a decomposing silane enviroment.

  3. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    SciTech Connect (OSTI)

    Gou, Dezhi; Kuang, Xiaoyu Gao, Yufeng; Huo, Dongming

    2015-01-21

    In this paper, we systematically investigate the electronic structure for the {sup 2}Σ{sup +} ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.

  4. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part I: Effect of MgO

    SciTech Connect (OSTI)

    Ben Haha, M.; Lothenbach, B. Le Saout, G.; Winnefeld, F.

    2011-09-15

    The hydration and the microstructure of three alkali activated slags (AAS) with MgO contents between 8 and 13 wt.% are investigated. The slags were hydrated in the presence of two different alkaline activators, NaOH and Na{sub 2}SiO{sub 3}.5H{sub 2}O (WG). Higher MgO content of the slag resulted in a faster reaction and higher compressive strengths during the first days. The formation of C(- A)-S-H and of a hydrotalcite-like phase was observed in all samples by X-ray diffraction (XRD), thermal analysis (TGA) and scanning electron microscopy (SEM) techniques. Increasing the MgO content of the slag from 8 to 13% increased the amount of hydrotalcite and lowered the Al uptake by C-S-H resulting in 9% higher volume of the hydrates and a 50 to 80% increase of the compressive strength after 28 days and longer for WG activated slag pastes. For NaOH activated slags only a slight increase of the compressive strength was measured.

  5. Density and water content of nanoscale solid C-S-H formed in alkali-activated slag (AAS) paste and implications for chemical shrinkage

    SciTech Connect (OSTI)

    Thomas, Jeffrey J.; Allen, Andrew J.; Jennings, Hamlin M.

    2012-02-15

    Alkali-activated slag (AAS) paste was analyzed using small-angle neutron scattering (SANS). The scattering response indicates that the microstructure consists of a uniform matrix of hydration product with a high surface area studded with unhydrated cores of slag particles. In contrast with portland cement paste, no surface fractal scattering regime was detected, and elevated temperature curing (at 60 Degree-Sign C) had no detectable effect on the microstructure at any length scale studied. The specific surface area of the AAS pastes is about 25% higher than that of a portland cement paste cured under the same conditions. The composition and mass density of the nanoscale solid C-S-H phase formed in the AAS paste was determined using a previously developed neutron scattering method, in conjunction with a hydration model. The result ((CaO){sub 0.99}-SiO{sub 2}-(Al{sub 2}O{sub 3}){sub 0.06}-(H{sub 2}O){sub 0.97}, d = (2.73 {+-} 0.02) g/cm{sup 3}) is significantly lower in calcium and in water as compared to portland cement or pure tricalcium silicate paste. These values were used to calculate the chemical shrinkage that would result from complete hydration of the AAS paste. The result, (12.2 {+-} 1.5) cm{sup 3} of volumetric shrinkage per 100 g of unhydrated cement, is about twice the amount of chemical shrinkage exhibited by normal cement pastes.

  6. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part II: Effect of Al{sub 2}O{sub 3}

    SciTech Connect (OSTI)

    Ben Haha, M.; Lothenbach, B. Le Saout, G.; Winnefeld, F.

    2012-01-15

    The hydration and microstructural evolution of three alkali activated slags (AAS) with Al{sub 2}O{sub 3} contents between 7 and 17% wt.% have been investigated. The slags were hydrated in the presence of two different alkaline activators, NaOH and Na{sub 2}SiO{sub 3}{center_dot}5H{sub 2}O. The formation of C(-A)-S-H and hydrotalcite was observed in all samples by X-ray diffraction, thermal analysis and scanning electron microscopy. Higher Al{sub 2}O{sub 3} content of the slag decreased the Mg/Al ratio of hydrotalcite, increased the Al incorporation in the C(-A)-S-H and led to the formation of straetlingite. Increasing Al{sub 2}O{sub 3} content of the slag slowed down the early hydration and a lower compressive strength during the first days was observed. At 28 days and longer, no significant effects of slag Al{sub 2}O{sub 3} content on the degree of hydration, the volume of the hydrates, the coarse porosity or on the compressive strengths were observed.

  7. Solar assisted alkali pretreatment of garden biomass: Effects on lignocellulose degradation, enzymatic hydrolysis, crystallinity and ultra-structural changes in lignocellulose

    SciTech Connect (OSTI)

    Gabhane, Jagdish; William, S.P.M. Prince; Vaidya, Atul N.; Das, Sera; Wate, Satish R.

    2015-06-15

    Highlights: • SAAP is an efficient and economic means of pretreatment. • SAAP was found to be efficient in lignin and hemicellulose removal. • SAAP enhanced the enzymatic hydrolysis. • FTIR, XRD and SEM provided vivid understanding about the mode of action of SAAP. • Mass balance closer of 98% for pretreated GB confirmed the reliability of SAAP. - Abstract: A comprehensive study was carried out to assess the effectiveness of solar assisted alkali pretreatment (SAAP) on garden biomass (GB). The pretreatment efficiency was assessed based on lignocellulose degradation, conversion of cellulose into reducing sugars, changes in the ultra-structure and functional groups of lignocellulose and impact on the crystallinity of cellulose, etc. SAAP was found to be efficient for the removal of lignin and hemicellulose that facilitated enzymatic hydrolysis of cellulose. FTIR and XRD studies provided details on the effectiveness of SAAP on lignocellulosic moiety and crystallinity of cellulose. Scanning electron microscopic analysis showed ultra-structural disturbances in the microfibrils of GB as a result of pretreatment. The mass balance closer of 97.87% after pretreatment confirmed the reliability of SAAP pretreatment. Based on the results, it is concluded that SAAP is not only an efficient means of pretreatment but also economical as it involved no energy expenditure for heat generation during pretreatment.

  8. GRIZZLY Model of Multi-Reactive Species Diffusion, Moisture/Heat Transfer and Alkali-Silica Reaction for Simulating Concrete Aging and Degradation

    SciTech Connect (OSTI)

    Huang, Hai; Spencer, Benjamin W.; Cai, Guowei

    2015-09-01

    Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear power plants for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have accurate and reliable predictive tools to address concerns related to various aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to document the progress of the development and implementation of a fully coupled thermo-hydro-mechanical-chemical model in GRIZZLY code with the ultimate goal to reliably simulate and predict long-term performance and response of aged NPP concrete structures subjected to a number of aging mechanisms including external chemical attacks and volume-changing chemical reactions within concrete structures induced by alkali-silica reactions and long-term exposure to irradiation. Based on a number of survey reports of concrete aging mechanisms relevant to nuclear power plants and recommendations from researchers in concrete community, we’ve implemented three modules during FY15 in GRIZZLY code, (1) multi-species reactive diffusion model within cement materials; (2) coupled moisture and heat transfer model in concrete; and (3) anisotropic, stress-dependent, alkali-silica reaction induced swelling model. The multi-species reactive diffusion model was implemented with the objective to model aging of concrete structures subjected to aggressive external chemical attacks (e.g., chloride attack, sulfate attack, etc.). It considers multiple processes relevant to external chemical attacks such as diffusion of ions in aqueous phase within pore spaces, equilibrium chemical speciation reactions and kinetic mineral dissolution/precipitation. The moisture

  9. Alkali deposits found in biomass boilers: The behavior of inorganic material in biomass-fired power boilers -- Field and laboratory experiences. Volume 2

    SciTech Connect (OSTI)

    Baxter, L.L.; Miles, T.R.; Miles, T.R. Jr.; Jenkins, B.M.; Dayton, D.C.; Milne, T.A.; Bryers, R.W.; Oden, L.L.

    1996-03-01

    This report documents the major findings of the Alkali Deposits Investigation, a collaborative effort to understand the causes of unmanageable ash deposits in biomass-fired electric power boilers. Volume 1 of this report provide an overview of the project, with selected highlights. This volume provides more detail and discussion of the data and implications. This document includes six sections. The first, the introduction, provides the motivation, context, and focus for the investigation. The remaining sections discuss fuel properties, bench-scale combustion tests, a framework for considering ash deposition processes, pilot-scale tests of biomass fuels, and field tests in commercially operating biomass power generation stations. Detailed chemical analyses of eleven biomass fuels representing a broad cross-section of commercially available fuels reveal their properties that relate to ash deposition tendencies. The fuels fall into three broad categories: (1) straws and grasses (herbaceous materials); (2) pits, shells, hulls and other agricultural byproducts of a generally ligneous nature; and (3) woods and waste fuels of commercial interest. This report presents a systematic and reasonably detailed analysis of fuel property, operating condition, and boiler design issues that dictate ash deposit formation and property development. The span of investigations from bench-top experiments to commercial operation and observations including both practical illustrations and theoretical background provide a self-consistent and reasonably robust basis to understand the qualitative nature of ash deposit formation in biomass boilers. While there remain many quantitative details to be pursued, this project encapsulates essentially all of the conceptual aspects of the issue. It provides a basis for understanding and potentially resolving the technical and environmental issues associated with ash deposition during biomass combustion. 81 refs., 124 figs., 76 tabs.

  10. The development of high-performance alkali-hybrid polarized He3 targets for electron scattering

    SciTech Connect (OSTI)

    Singh, Jaideep T.; Dolph, Peter A.M.; Tobias, William Al; Averett, Todd D.; Kelleher, Aiden; Mooney, K. E.; Nelyubin, Vladimir V.; Wang, Yunxiao; Zheng, Yuan; Cates, Gordon D.

    2015-05-01

    We present the development of high-performance polarized ³He targets for use in electron scattering experiments that utilize the technique of alkali-hybrid spin-exchange optical pumping. We include data obtained during the characterization of 24 separate target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. The results presented here document dramatic improvement in the performance of polarized ³He targets, as well as the target properties and operating parameters that made those improvements possible. Included in our measurements were determinations of the so-called X-factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable ³He polarization to well under 100%. The presence of this spin-relaxation mechanism was clearly evident in our data. We also present results from a simulation of the alkali-hydrid spin-exchange optical pumping process that was developed to provide guidance in the design of these targets. Good agreement with actual performance was obtained by including details such as off-resonant optical pumping. Now benchmarked against experimental data, the simulation is useful for the design of future targets. Included in our results is a measurement of the K- ³He spin-exchange rate coefficient $k^\\mathrm{K}_\\mathrm{se} = \\left ( 7.46 \\pm 0.62 \\right )\\!\\times\\!10^{-20}\\ \\mathrm{cm^3/s}$ over the temperature range 503 K to 563 K.