Powered by Deep Web Technologies
Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Transportation Energy and Carbon Footprints of the 100 Largest U.S. Metropolitan Areas  

Science Conference Proceedings (OSTI)

We present estimates of the automobile and truck travel based energy and carbon footprints of the largest 100 U.S. metropolitan areas. The footprints are based on the estimated vehicle miles traveled and the transportation fuels consumed. Results are presented on an annual basis and represent end use emissions only. Total carbon emissions, emissions per capita, and emissions per dollar of gross metropolitan product are reported. Two years of annual data were examined, 2000 and 2005, with most of the in-depth analysis focused on the 2005 results. In section 2 we provide background data on the national picture and derive some carbon and energy consumption figures for the nation as a whole. In section 3 of the paper we examine the metropolitan area-wide results based on the sums and averages across all 100 metro areas, and compare these with the national totals and averages. In section 4 we present metropolitan area specific footprints and examine the considerable variation that is found to exist across individual metro areas. In doing so we pay particular attention to the effects that urban form might have on these differences. Finally, section 5 provides a summary of major findings, and a list of caveats that need to be borne in mind when using the results due to known limitations in the data sources used.

Southworth, Frank [ORNL; Sonnenberg, Anthon [Georgia Institute of Technology; Brown, Marilyn A [ORNL

2008-01-01T23:59:59.000Z

2

Metropolitan area network support at Fermilab  

Science Conference Proceedings (OSTI)

Advances in wide area network service offerings, coupled with comparable developments in local area network technology have enabled many research sites to keep their offsite network bandwidth ahead of demand. For most sites, the more difficult and costly aspect of increasing wide area network capacity is the local loop, which connects the facility LAN to the wide area service provider(s). Fermilab, in coordination with neighboring Argonne National Laboratory, has chosen to provide its own local loop access through leasing of dark fiber to nearby network exchange points, and procuring dense wave division multiplexing (DWDM) equipment to provide data channels across those fibers. Installing and managing such optical network infrastructure has broadened the Laboratory's network support responsibilities to include operating network equipment that is located off-site, and is technically much different than classic LAN network equipment. Effectively, the Laboratory has assumed the role of a local service provider. This paper will cover Fermilab's experiences with deploying and supporting a Metropolitan Area Network (MAN) infrastructure to satisfy its offsite networking needs. The benefits and drawbacks of providing and supporting such a service will be discussed.

DeMar, Phil; Andrews, Chuck; Bobyshev, Andrey; Crawford, Matt; Colon, Orlando; Fry, Steve; Grigaliunas, Vyto; Lamore, Donna; Petravick, Don; /Fermilab

2007-09-01T23:59:59.000Z

3

Office rent and labor availability in the Chicago Metropolitan Area  

E-Print Network (OSTI)

This paper provides an empirical analysis of office rents using data from the 2000 U.S. Census and TWR office building data in the Chicago Metropolitan Statistical Area. The results indicate that rent levels respond to ...

Tang, Wencan, M.C.P. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

4

Planning for mitigating climate change risk to metropolitan areas (USA)  

E-Print Network (OSTI)

In the last couple of decades, there has been increasing evidence of changes in global climate. With urban areas identified as the primary contributors to the climate change, there is an impetus for initiatives to persuade major contributors of greenhouse gases to undertake policy measures for climate change mitigation. The support for such initiatives at the international level has been mixed with many nations, including the United States, not accepting the Kyoto protocol. In view of the evident disagreement at the international level, initiatives promoting local communities to adopt self regulating policies for climate change mitigation have gained importance. One such initiative is the Cities for Climate Protection (CCP) supported by the International Council for Local Environmental Initiatives. This research explores the differences in the socio-economic and civic characteristics of metropolitan areas in the contiguous United States that have committed to CCP (as a policy measure for climate change mitigation) to those that have not. The data in this study has been primarily collected from the census documents and government publications. The indicators are grouped into risk, stress and civic variables. The differences amongst the metropolitan areas with CCP committed jurisdictions and those with non-committed jurisdictions have been analyzed through statistical t-tests and use of geographical information system (GIS). The research reveals that metropolitan areas with a higher degree of risk are more likely to commit to climate change mitigation policies whereas those with higher stress index are less likely to commit. The metropolitan areas with higher civic index were also found more likely to commit to policy measures for climate change mitigation. The results of the study are significant as they reveal that communities that are at risk are not necessarily adding to the climate stress and those contributing the most to the climatic stress are not committed to climate change mitigation. The results of the study support the need to discontinue the closed box approach and instead adopt an approach with vertical integration. Cooperation and coordination amongst the hierarchical aggregate levels of communities, from a place to a region, are imperative for effective implementation of climate mitigation initiatives.

Grover, Himanshu

2006-08-01T23:59:59.000Z

5

Washington Metropolitan Area Transit Authority: Compressed Natural Gas Transit Bus Evaluation  

DOE Green Energy (OSTI)

Evaluates compressed natural gas (CNG) powered transit buses at Washington Metropolitan Area Transit Authority (WMATA), providing a comparison between them and standard diesel transit buses.

Chandler, K.; Eberts, E.; Melendez, M.

2006-04-01T23:59:59.000Z

6

Upper-Level Atmospheric Circulation Patterns and Ground-Level Ozone in the Atlanta Metropolitan Area  

Science Conference Proceedings (OSTI)

The purpose of this paper is to identify middle-troposphere circulation patterns associated with high ozone concentrations during June–August of 2000–07 in the Atlanta, Georgia, metropolitan statistical area (MSA), which is located in the ...

Jeremy E. Diem; Melissa A. Hursey; Imani R. Morris; Amanda C. Murray; Ricardo A. Rodriguez

2010-11-01T23:59:59.000Z

7

The Evolution of Photochemical Smog in the Metropolitan Area of Santiago de Chile  

Science Conference Proceedings (OSTI)

In November and December 1996 the PHOTOCHEMICAL CAMPAIGN took place in the Metropolitan Area of Santiago de Chile and covered a range of simultaneous measurements of meteorological parameters and air chemical compounds, including ozone, carbon ...

Bernhard Rappenglück; Pedro Oyola; Ignacio Olaeta; Peter Fabian

2000-03-01T23:59:59.000Z

8

Daytime Local Circulations and Their Interactions in the Seoul Metropolitan Area  

Science Conference Proceedings (OSTI)

Daytime local circulations and their interactions in the Seoul, South Korea, metropolitan area are investigated using a high-resolution mesoscale model. It is found that the urban-breeze circulation interacts strongly with other local circulations,...

Young-Hee Ryu; Jong-Jin Baik

2013-04-01T23:59:59.000Z

9

Development of a Statistical Model for Forecasting Episodes of Visibility Degradation in the Denver Metropolitan Area  

Science Conference Proceedings (OSTI)

In 1990, the State of Colorado implemented a visibility standard of 0.076 km?1 of beta extinction for the Denver metropolitan area. Meteorologists with Colorado's Air Pollution Control Division forecast high pollution days associated with ...

P. J. Reddy; D. E. Barbarick; R. D. Osterburg

1995-03-01T23:59:59.000Z

10

Trends in Extreme Temperatures in Relation to Urbanization in the Twin Cities Metropolitan Area, Minnesota  

Science Conference Proceedings (OSTI)

The long-term trends in extreme summer season temperatures across the Twin Cities Metropolitan Area (TCMA) associated with urbanization are examined. To assess trends in extreme temperature data, maximum and minimum temperatures from 1975 to 2002 ...

Shouraseni Sen Roy; Fei Yuan

2009-03-01T23:59:59.000Z

11

The variation of capitalization rates across submarkets within the same metropolitan area  

E-Print Network (OSTI)

This paper investigates the variation of capitalization rates across submarkets within the same metropolitan area by using a database with 73 transactions of office properties located in nine submarkets of Atlanta during ...

Yu, Yisheng, 1973-

2004-01-01T23:59:59.000Z

12

Conservation justice in metropolitan Cape Town: A study at the Macassar Dunes Conservation Area  

E-Print Network (OSTI)

Conservation justice in metropolitan Cape Town: A study at the Macassar Dunes Conservation Area J xxxx Keywords: Conservation justice Community-based conservation South Africa Urban conservation Stakeholder analysis a b s t r a c t Conservation justice, a concept analogous to environmental justice

Silander Jr., John A.

13

Observed Structure of a Land Breeze Head in the Tokyo Metropolitan Area  

Science Conference Proceedings (OSTI)

The penetration of a land breeze front and its turbulence structure was observed at the center of the Tokyo metropolitan area on 27–28 January 1983. A turbulence sonde, small tethersonde and an acoustic sounder were used for the experiment. The ...

Toshimasa Ohara; Itsushi Uno; Shinji Wakamatsu

1989-08-01T23:59:59.000Z

14

Residential Segregation,Spatial Mismatch and Economic Growth across US Metropolitan Area  

Science Conference Proceedings (OSTI)

Numerous studies have demonstrated the detrimental influence of residential segregation on poor inner-city residents. This study examines the impact of residential segregation on the welfare of populations in US metropolitan areas using economic growth as the indicator. Panel data of US metropolitan areas spanning 25 years, 1980 2005, are used to analyze the effect of segregation on economic growth. The results show that both racial and skill segregation have a negative impact on short and long-term economic growth, which have increased over time. Further, the negative impact of the variables associated with spatial mismatch is also revealed. The results clearly point to the need for mobility policies that favor non-White households and comprehensive strategies that promote economic opportunities in low-resource communities in the US.

Campbell, Dr Harrison [University of North Carolina, Charlotte] [University of North Carolina, Charlotte; Li, Huiping [ORNL] [ORNL

2013-01-01T23:59:59.000Z

15

Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emission Testing of Washington Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Technical Report NREL/TP-540-36355 December 2005 Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Prepared under Task No. FC05-9000 Technical Report NREL/TP-540-36355 December 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov

16

Regional Economic Benefits from Electric Transportation: Case Study of the Cleveland, Ohio Metropolitan Statistical Area  

Science Conference Proceedings (OSTI)

This study analyzes the economic impacts due to electric drive vehicle (EDVs) market penetration in the Cleveland metropolitan statistical area (MSA). Specifically, the study examines the economic impacts due to petroleum displacement and decreased pollution control compliance costs for local industry. The study applies a regional input-out put analysis to develop regional economic impact multipliers (REIMs) appropriate for EDV evaluation. These REIMs are integrated into a spreadsheet based Cleveland EDV...

2006-12-12T23:59:59.000Z

17

Comparison of the Impact of Global Climate Changes and Urbanization on Summertime Future Climate in the Tokyo Metropolitan Area  

Science Conference Proceedings (OSTI)

In this study, the impact of global climate change and anticipated urbanization over the next 70 years is estimated with regard to the summertime local climate in the Tokyo metropolitan area (TMA), whose population is already near its peak now. ...

Sachiho A. Adachi; Fujio Kimura; Hiroyuki Kusaka; Tomoshige Inoue; Hiroaki Ueda

2012-08-01T23:59:59.000Z

18

The case for pension plan and university endowment equity investment in brownfields in the urban core of major metropolitan areas  

E-Print Network (OSTI)

The purpose of this thesis is to present a case for institutional equity investment in brownfields in the urban core of major metropolitan areas. Pension plans and university endowments are the primary institutional investors ...

Larsen, Tamara C. (Tamara Candace), 1977-

2003-01-01T23:59:59.000Z

19

In situ measurements of speciated atmospheric mercury and the identification of source regions in the Mexico City Metropolitan Area  

E-Print Network (OSTI)

In order to expand the currently limited understanding of atmospheric mercury source-receptor relationships in the Mexico City Metropolitan Area, real time measurements of atmospheric mercury were made at a downtown urban ...

Rutter, A. P.

20

The Geography of Metropolitan Carbon Footprints  

SciTech Connect

The world s metropolitan carbon footprints have distinct geographies that are not well understood or recognized in debates about climate change, partly because data on greenhouse gas emissions is so inadequate. This article describes the results of the most comprehensive assessment of carbon footprints for major American metropolitan areasavailable to date, focusing on residential and transportation carbon emissions for the largest 100 metropolitan areas in the United States. These findings are put into the context of effortsacross the country and the globe to characterize carbon impacts and policy linkages.

Brown, Dr. Marilyn Ann [Georgia Institute of Technology; Southworth, Frank [ORNL; Sarzynski, Andrea [Brookings Institution

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DEVELOPMENT OF THE REGIONAL INTELLIGENT TRANSPORTATION SYSTEMS ARCHITECTURE FOR THE SAN JUAN METROPOLITAN AREA Approved by:  

E-Print Network (OSTI)

Several regions around the United States and Puerto Rico have been facing increasingly complex problems related to their transportation systems. In many cases, the use of advanced technology and strategies collectively known as Intelligent Transportation Systems (ITS) have helped to substantially improve their transportation systems. The integration of all the ITS components in a framework is called the ITS system architecture and has usually been an important part of the success in improving the transportation system. This work presents the methodology followed to develop the regional ITS architecture for the San Juan Metropolitan Area. Initially, the region is described including the stakeholders group and identified needs. A description of user services, operational concepts and functional requirements is then presented. These steps lead to the presentation of the system architecture based upon the National ITS Architecture. At the end, the implications of the architecture in terms of planning and project development are discussed. i RESUMEN

María Isabel; Fernández González; Wilma Santiago

2006-01-01T23:59:59.000Z

22

Volcanic Ash Transport from Mount Asama to the Tokyo Metropolitan Area Influenced by Large-Scale Local Wind Circulation  

Science Conference Proceedings (OSTI)

The eruption of the Mount Asama volcano on 16 September 2004 produced an ash cloud and led to ashfall in the Tokyo metropolitan area that lies on the Kanto Plain. Satellite images showed the ash cloud drifting toward the south in the morning but ...

Nobumitsu Tsunematsu; Tomohiro Nagai; Toshiyuki Murayama; Ahoro Adachi; Yasuhiro Murayama

2008-04-01T23:59:59.000Z

23

Numerical Analysis on the Contribution of Urbanization to Wind Stilling: An Example over the Greater Beijing Metropolitan Area  

Science Conference Proceedings (OSTI)

A decline of surface wind speed (wind stilling) has been observed in many regions of the world. The greater Beijing metropolitan area in China is taken as an example for analyzing the urbanization impact on wind stilling. This study set up five ...

Aizhong Hou; Guangheng Ni; Hanbo Yang; Zhidong Lei

2013-05-01T23:59:59.000Z

24

Simulations of the Urban Planetary Boundary Layer in an Arid Metropolitan Area  

Science Conference Proceedings (OSTI)

A modified version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) was applied to the arid Phoenix, Arizona, metropolitan region. The ability of the model to simulate ...

Susanne Grossman-Clarke; Yubao Liu; Joseph A. Zehnder; Jerome D. Fast

2008-03-01T23:59:59.000Z

25

Modeling the Dynamics of Desakota Regions: Global - Local Nexus in the Taipei Metropolitan Area  

E-Print Network (OSTI)

Since the 1970s, Asia has experienced rapid urbanization processes, which are distinct from U.S. society, and the direction of Asian urbanization is more strongly affected by economic globalization. The desakota model, proposed by McGee and Ginsburg in 1991, focuses on how internal domestic and local forces drive the specific rural-urban transformation in Asia. However, the McGee-Ginsburg model does not emphasize the importance of globalization on Asian urbanization. To fill the gap, this study develops a GIS-based CA framework based on the desakota model to not only simulate the unique urbanization processes in Asia but also integrate the influence of globalization into Asian urban dynamics. Three approaches are developed in the CA simulation: 1) physical constraints and land-use classification from remotely sensed images in 1993, 2000, and 2008, are incorporated into micro-scale transformation; 2) population dynamics, shifts of economic activities, and foreign direct investment (FDIs), a representative of the impact of globalization, are applied for multi-scale interconnection; 3) the Monte Carlo mechanism is finally introduced to combine the above two approaches and implement the simulation process. The Taipei metropolitan area, a rapid urbanizing region that highly interacts with the global economy in Asia, is chosen to examine this model. The CA simulation model establishes a strong interaction between FDIs, an indicator representing impacts of globalization, and the dazzling Asian urban model. The combination of multi-scale economic factors and micro-scale land-use transformation also reveals how urban growth of the Taipei metropolis in recent years fits the characterization of the desakota model, and how desakota regions, the growth generators, interact with city cores. As a result, the research not only successfully links the influence of globalization with the desakota model and simulates urban dynamics of Asian cities but also provides scenarios of different FDI inputs for governments to better handle urban growth with global impacts under the deep economic recession since 2007.

Wu, Bing-Sheng

2009-08-01T23:59:59.000Z

26

Simple Modifications to Improve Fifth-Generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model Performance for the Phoenix, Arizona, Metropolitan Area  

Science Conference Proceedings (OSTI)

The diurnal temperature cycle in the Phoenix, Arizona, metropolitan area, as represented in the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), is examined using a high-resolution 2-...

Joseph A. Zehnder

2002-09-01T23:59:59.000Z

27

Set of Comparable Carbon Footprints for Highway Travel in Metropolitan America  

Science Conference Proceedings (OSTI)

The authors describe the development of a set of carbon dioxide emissions estimates for highway travel by automobile, truck, bus and other public transit vehicle movements within the nation s 100 largest metropolitan areas, in calendar year 2005. Considerable variability is found to exist across metropolitan areas when these greenhouse gas emissions are measured on a per capita and a per gross metropolitan product (GMP) basis. Least square regression modeling shows a relationship between emissions per capita and per GMP with truck traffic share, transit share, employment density, population dispersion within the metro area, and GMP per capita. As a result many of the nation s largest metropolitan areas tend to have lower CO2 emissions per capita and per GMP than smaller and more recently developed metro areas.

Southworth, Frank [ORNL; Sonnenberg, Anthon [Georgia Institute of Technology

2011-01-01T23:59:59.000Z

28

Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas  

SciTech Connect

Light-colored roofs reflect more sunlight than dark roofs, thus they keep buildings cooler and reduce air-conditioning demand. Typical roofs in the United States are dark, which creates a potential for savings energy and money by changing to reflective roofs. In this report, the authors make quantitative estimates of the impact of roof color by simulating prototypical buildings with light- and dark-colored roofs and calculating savings by taking the differences in annual cooling and heating energy use, and peak electricity demand. Monetary savings are calculated using local utility rates. Savings are estimated for 11 U.S. Metropolitan Statistical Areas (MSAs) in a variety of climates.

Konopacki, S.; Akbari, H.; Pomerantz, M.; Gabersek, S.; Gartland, L.

1997-05-01T23:59:59.000Z

29

Transitioning to a low-carbon climate-smart metropolitan America  

SciTech Connect

Meeting the climate challenge requires the leadership of metropolitan America. With two-thirds of the U.S. population and nearly three-quarters of the nation s economic activity residing in the nation s 100 largest metropolitan areas, urban centers account for much of the nation s greenhouse gas (GHG) emissions. At the same time, metropolitan America is the traditional locus of technological, entrepreneurial, and policy innovations. Its access to capital and a highly trained workforce have enabled metropolitan areas to play a pivotal role in expanding U.S. business opportunities while solving environmental challenges. With supportive federal policies, metropolitan areas can provide the low-carbon climate-smart leadership that is required to meet the nation s targets and timetables necessary to avoid dangerous levels of atmospheric greenhouse gases.

Brown, Dr. Marilyn Ann [Georgia Institute of Technology; Southworth, Frank [ORNL; Sarzynski, Andrea [Brookings Institution

2010-01-01T23:59:59.000Z

30

Development and application of GIS-based analysis/synthesis modeling techniques for urban planning of Istanbul Metropolitan Area  

Science Conference Proceedings (OSTI)

Istanbul is the largest city in Turkey with an area of around 5750km^2 and population of around 10.58M (2000). The population is increasing because of mass immigration. Planned and unplanned housing are increasing while green areas are decreasing in ... Keywords: Geographic information systems, Istanbul, Modeling, Spatial evaluation, Sustainability

Ibrahim Baz; Abdurrahman Geymen; Semih Nogay Er

2009-02-01T23:59:59.000Z

31

Modeling urban growth and land use/land cover change in the Houston Metropolitan Area from 2002 - 2030  

E-Print Network (OSTI)

The Houston-Galveston-Brazoria Consolidated Metropolitan Statistical Area (Houston CMSA) has experienced rapid population growth during the past decades and is the only major US metropolitan area with no zoning regulations. We use SLEUTH, a spatially explicit cellular automata model, to simulate future (2002-2030) urban growth in the Houston metropolitan area, one of the fastest growing metropolises in the United States during the past decades. The model is calibrated with historical data for the period 1974-2002 that are extracted from a time series of satellite images. The dataset consists of four historical urban extents (1974, 1984, 1992, 2002), two land use layers (1992, 2002), five transportation layers (1974, 1984, 1990, 2002, 2025), slope layer, hillshade layer, and excluded layer. Future growth patterns are predicted based on growth coefficients derived during the calibration phase. After calibrating the model successfully, the spatial pattern of urban growth of the Houston CMSA for the period from 2002 to 2030 is predicted. Within SLEUTH, growth in the Houston CMSA is predominately "organic" with most growth occurring along the urban/rural fringe. Projected increases in urban area from 2002 to 2030 parallel projected increases in population growth within the Houston CMSA. We design three specific scenarios to simulate the spatial consequences of urban growth under different environmental conditions. The first scenario is to simulate the unmanaged growth with no restrictions. The second scenario is to project the moderate growth trend by taking into consideration environmental protection, specifically for agricultural areas, forests and wetlands. The last scenario is to simulate the managed growth with maximum environmental protection. Adjusting the level of protection for different land cover types was found to markedly affect the land use changes in the Houston CMSA. Without any protection on resource lands, Houston CMSA is estimated to lose 2,000 km2 of forest land by 2030, about 600 km2 of agricultural land, and approximately 400 km2 of wetland. Approximately half of all resource land could be saved by the third scenario, managed growth with maximum protection.

Oguz, Hakan

2003-05-01T23:59:59.000Z

32

Regional planning and operations architectures as means to foster transportation integration in the Mexico City Metropolitan Area  

E-Print Network (OSTI)

The MCMA complexity in political, institutional, economical, and jurisdictional terms has resulted in limited coordination between MCMA authorities that in conjunction with the limited role of metropolitan transportation ...

Ortiz Mantilla, Bernardo Jose, 1977-

2005-01-01T23:59:59.000Z

33

Effects of urban land cover modifications in a mesoscale meteorological model on surface temperature and heat fluxes in the Phoenix metropolitan area.  

E-Print Network (OSTI)

and latent heat fluxes and therefore the ground temperature, Tg. Evaporation, E, for each grid cell temperature and heat fluxes in the Phoenix metropolitan area. S. Grossman-Clarke1, J.A. Zehnder2, and W) satellite images [2]. The data were upscaled to a 30-second grid and used to augment and correct

Hall, Sharon J.

34

Contribution of Land Use Changes to Near-Surface Air Temperatures during Recent Summer Extreme Heat Events in the Phoenix Metropolitan Area  

Science Conference Proceedings (OSTI)

The impact of 1973–2005 land use–land cover (LULC) changes on near-surface air temperatures during four recent summer extreme heat events (EHEs) are investigated for the arid Phoenix, Arizona, metropolitan area using the Weather Research and ...

Susanne Grossman-Clarke; Joseph A. Zehnder; Thomas Loridan; C. Sue B. Grimmond

2010-08-01T23:59:59.000Z

35

Effects of Regional Warming due to Urbanization on Daytime Local Circulations in a Complex Basin of the Daegu Metropolitan Area, Korea  

Science Conference Proceedings (OSTI)

Numerical and observational analyses were conducted using realistic and historical three-set land-use data over 40 yr from 1963 to 2002 to evaluate regional warming in the Daegu metropolitan area due to dramatic land-use alterations in the basin ...

Soon-Hwan Lee; Hae-Dong Kim

2008-05-01T23:59:59.000Z

36

Study of the temporal and spatial variation of climate and solar radiation in th metropolitan Phoenix area. Final technical progress report, July 1, 1977-June 30, 1978  

DOE Green Energy (OSTI)

The research performed was designed to identify spatial or temporal variation of any atmospheric parameters that might affect the operation of devices utilizing solar energy in the metropolitan Phoenix area. The first part of the research involved the analysis of all available solar and climatic data to determine their validity and comparability. For the standard climatic parameters, few difficulties were encountered, but the task of determining comparability of solar radiation data involved many pitfalls. It was concluded that most of the solar data acquired before January 1977 could not be used for purposes of identifying spatial variability. And, a year and a half of data does not represent a long enough period of time upon which to base sound conclusions about spatial and temporal variability of solar radiation in the metropolitan Phoenix region. The data currently available to us do not indicate any great variation of solar radiation in the metropolitan Phoenix area. However, any meaningful statements about spatial and temporal variability of solar radiation in the metropolitan Phoenix area must await the acquisition of additional data from well-calibrated equipment.

Durrenberger, R.W.

1978-09-29T23:59:59.000Z

37

Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses  

DOE Green Energy (OSTI)

An evaluation of emissions of natural gas and diesel buses operated by the Washington Metro Area Transit Authority.

Melendez, M.; Taylor, J.; Wayne, W. S.; Smith, D.; Zuboy, J.

2005-12-01T23:59:59.000Z

38

Regional Resilience in the Face of Foreclosures: Evidence from Six Metropolitan Areas  

E-Print Network (OSTI)

Figure 2. Pre-foreclosures by zip code in the St. LouisFigure 3. Pre-foreclosures by zip code in the Inland Empire,Pre-foreclosure notices by zip code, San Francisco Bay Area,

Todd Swanstrom; Karen Chapple; Dan Immergluck

2009-01-01T23:59:59.000Z

39

Executive Summary The Morgantown metropolitan statistical area (MSA) accelerated during 2010, after posting slow  

E-Print Network (OSTI)

facility, and a National Energy Technology Lab site, among others. Local government jobs, primarily.D. Associate Director, BBER and Associate Professor of Economics Jordan Hantz, Undergraduate Research Assistant.bber.wvu.edu This conference is made possible by the following underwriters: Chesapeake Energy Corporation Morgantown Area

Mohaghegh, Shahab

40

Executive Summary The Morgantown metropolitan statistical area (MSA) continued to expand in 2011, adding jobs  

E-Print Network (OSTI)

in natural resources and mining during the forecast, which reflects the startup of a new CONSOL Energy coal Assistant Jordan Hantz, Undergraduate Research Assistant This document is published by the Bureau underwriters: Chesapeake Energy Corporation Morgantown Area Economic Partnership The Dominion Post The State

Mohaghegh, Shahab

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

AMBIENT HYDROCARBONS IN THE HOUSTON METROPOLITAN AREA DURING TEXAQS 2000: AN IDENTIFICATION OF UNUSUAL FEATURES.  

SciTech Connect

Houston's ozone problem has been linked to the occurrence of very high light olefin concentrations. We have analyzed the DOE G-1 aircraft hydrocarbon data set to provide additional information on the geographic distribution and prevalence of air samples with high olefin concentration as well as an identification of other compounds which contribute to the high hydrocarbon reactivity in Houston. In order to identify high concentrations we need a definition of normal. For that purpose we use aircraft samples collected during a 1999 aircraft based field campaign in Philadelphia relying on the circumstance that the frequency distributions of NO{sub x} and C{sub 2}H{sub 2} in Philadelphia are nearly the same as in Houston. Comparison is made also with hydrocarbons collected in Phoenix which exhibit nearly the same NO{sub x} and C{sub 2}H{sub 2} frequency distribution as the other 2 cities, but in spite of that similarity have a much lower hydrocarbon reactivity. As in other studies we find that there is a subset of Houston hydrocarbon samples with very high OH-reactivity due to elevated concentrations of ethylene, propylene and less often butenes, including 1,3 butadiene. Although these samples stand out as being qualitatively different we present evidence that ethylene and propylene are significantly elevated in at least half of the Houston samples, covering a wide geographic area apart from the Ship Channel region. Frequency distributions for these compounds are log normal suggesting that Houston's atmosphere is a single entity rather than separate industrial and urban areas. The comparison between Houston and Philadelphia also identifies C{sub 2}-C{sub 5} alkanes, n-hexane, and benzene as having elevated concentrations. Emission reductions of these less reactive compounds sufficient to yield the concentrations observed in Philadelphia would have a minor effect on the most reactive samples, but about a 20% effect on samples with more typical (median) reactivity.

KLEINMAN, L.I.; DAUM P.H.

2004-11-01T23:59:59.000Z

42

Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas  

SciTech Connect

The U.S. Environmental Protection Agency (EPA) sponsored this project to estimate potential energy and monetary savings resulting from the implementation of light-colored roofs on residential and commercial buildings in major U.S. metropolitan areas. Light-colored roofs reflect more sunlight than dark roofs, so they keep buildings cooler and reduce air-conditioning demand. Typically, rooftops in the United States are dark, and thus there is a potential for saving energy and money by changing to reflective roofs. Naturally, the expected savings are higher in southern, sunny, and cloudless climates. In this study, we make quantitative estimates of reduction in peak power demand and annual cooling electricity use that would result from increasing the reflectivity of the roofs. Since light-colored roofs also reflect heat in the winter, the estimates of annual electricity savings are a net value corrected for the increased wintertime energy use. Savings estimates only include direct reduction in building energy use and do not account for the indirect benefit that would also occur from the reduction in ambient temperature, i.e. a reduction in the heat island effect. This analysis is based on simulations of building energy use, using the DOE-2 building energy simulation program. Our methodology starts with specifying 11 prototypical buildings: single-family residential (old and new), office (old and new), retail store (old and new), school (primary and secondary), health (hospital and nursing home), and grocery store. Most prototypes are simulated with two heating systems: gas furnace and heat pumps. We then perform DOE-2 simulations of the prototypical buildings, with light and dark roofs, in a variety of climates and obtain estimates of the energy use for air conditioning and heating.

Konopacki, S.; Akbari, H.; Gartland, L. [and others

1997-05-01T23:59:59.000Z

43

Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area  

SciTech Connect

This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on-road vehicles: the MCMA motor vehicles produce abundant amounts of primary PM, elemental carbon, particle-bound polycyclic aromatic hydrocarbons, carbon monoxide and a wide range of air toxics; the feasibility of using eddy covariance techniques to measure fluxes of volatile organic compounds in an urban core and a valuable tool for validating local emissions inventory; a much better understanding of the sources and atmospheric loadings of volatile organic compounds; the first spectroscopic detection of glyoxal in the atmosphere; a unique analysis of the high fraction of ambient formaldehyde from primary emission sources; characterization of ozone formation and its sensitivity to VOCs and NOx; a much more extensive knowledge of the composition, size distribution and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models; evaluations of significant errors that can arise from standard air quality monitors for O3 and NO2; and the implementation of an innovative Markov Chain Monte Carlo method for inorganic aerosol modeling as a powerful tool to analyze aerosol data and predict gas phase concentrations where these are unavailable. During the MILAGRO Campaign the collaborative team utilized a combination of central fixed sites and a mobile laboratory deployed throughout the MCMA to representative urban and boundary sites to measure trace gases and fine particles. Analysis of the extensive 2006 data sets has confirmed the key findings from MCMA-2002/2003; additionally MCMA-2006 provided more detailed gas and aerosol chemistry and wider regional scale coverage. Key results include an updated 2006 emissions inventory; extension of the flux system to measure fluxes of fine particles; better understanding of the sources and apportionment of aerosols, including contribution from biomass burning and industrial sources; a comprehensive evaluation of metal containing particles in a complex urban environment; identification of a close correlation between

Luisa T. Molina, Rainer Volkamer, Benjamin de Foy, Wenfang Lei, Miguel Zavala, Erik Velasco; Mario J. Molina

2008-10-31T23:59:59.000Z

44

The Effect of Urban Street Gang Densities on Small Area Homicide Incidence in a Large Metropolitan County, 1994–2002  

E-Print Network (OSTI)

43 Two hundred eighty-nine zip code tabulation areas existedWe selected 255 of those zip codes to merge with homicideanalysis. We excluded zip codes with very low populations

Robinson, Paul L.; Boscardin, W. John; George, Sheba M.; Teklehaimanot, Senait; Heslin, Kevin C.; Bluthenthal, Ricky N.

2009-01-01T23:59:59.000Z

45

The Resonance of the Surface Waves. The H/V Ratio in the Metropolitan Area of Bucharest  

SciTech Connect

The purpose of this work is to evaluate the natural period of oscillation T{sub 0} for soils in Bucharest city area. We will start by examine the elastic waves excited at the surface of an isotropic body by an oscillatory, localized force (Rayleigh waves). We define the 'H/V'-ratio as the ratio of the intensity of the in-plane waves (horizontal waves) to the intensity of the perpendicular-to-the-plane waves (vertical waves). It is shown that this ratio exhibits a resonance at a frequency which is close to the frequency of the transverse waves. It may serve to determine Poison's ratio of the body. We consider the ratio H/V of the horizontal to the vertical component of the Fourier spectrum for the seismic events recorded at 34 locations during the period October 2003 to August 2004. The method gives reliable data regarding the fundamental frequencies for soil deposits and the results of this experiment allows us to improve the known distribution of T{sub 0}--regularly calculated with the approximate formula T = 4h/v{sub s}. The earthquakes with M{sub w}>4 that occurred on 21.01.2004, 07.02.2004, 17.03.2004 and 04.04.2004 will be used as input to compute H/V ratios for each site of a URS stations in the area of Bucharest city. The H/V ratio is also calculated from noise recordings in the same areas. Computation of H/V spectral ratios are performed by means of the SeismicHandler and J-SESAME software showing the reliability of the method used for the sites located in Bucharest. The fundamental period obtained for the majority of sites is in accordance with already known results. By obtaining the fundamental period for much more and different spots situated in the Bucharest area we covered the zones where these data did not exist before. This study is significant in seismic risk mitigation for the Bucharest city area, for a safer seismic design and for the improvement of microzonation efforts.

Balan, Stefan F.; Cioflan, Carmen O.; Apostol, Bogdan F.; Tataru, Dragos; Grecu, Bogdan [National Institute for Earth Physics, Calugareni 12, PO Box MG2, Bucharest-Magurele (Romania)

2008-07-08T23:59:59.000Z

46

Investigation of surface inhomogeneity and estimation of the GOES skin temperature assimilation errors of the MM5 implied by the inhomogeneity over Houston metropolitan area  

E-Print Network (OSTI)

This study developed a parameterization method to investigate the impacts of inhomogeneous land surfaces on mesoscale model simulations using a high-resolution 1-d PBL model. Then, the 1-d PBL model was used to investigate the inhomogeneity-caused model errors in applying the GOES satellite skin temperature assimilation technique into the MM5 over the Houston metropolitan area (HOU). In order to investigate the surface inhomogeneity impacts on the surface fluxes and PBL variables over HOU, homo- and inhomogeneous 1-d PBL model simulations were performed over HOU and compared to each other. The 1-d PBL model was constructed so that the surface inhomogeneities were able to be represented within model grid elements using a methodology similar to Avissar and Pielke (1989). The surface inhomogeneities over HOU were defined using 30-m resolution land cover data produced by Global Environment Management (GEM), Inc. The inhomogeneity parameterization method developed in the 1-d model was applied to a standard MM5 simulation to test the applicability of the parameterization to 3-d mesoscale model simulations. From the 1-d simulations it was inferred that the surface inhomogeneities would enhance the sensible heat flux by about 36 % and reduce the latent heat flux by about 25 %, thereby inducing the warmer (0.7 %) and drier (-1.0 %) PBL and the colder and moister PBL top induced by greater turbulent diffusivities. The 3-d application of the inhomogeneity parameterization indicated consistent results with the 1-d in general, with additional effects of advection and differential local circulation. The original GOES simulation was warmer compared to observations over HOU than over surrounding areas. The satellite data assimilation itself would lead to a warm bias due to erroneous estimation of gridpoint-mean skin temperature by the satellite, but 1-d simulations indicate that the impact of this error should be much weaker than what was observed. It seems that, unless the already existing warm and dry bias of the MM5 is corrected, the inhomogeneity parameterization in the MM5 would adversely affect the MM5 performance. Therefore, consideration of the surface inhomogeneities in the urban area needs to be confined to the GOES skin temperature retrieval errors at the moment.

Han, Sang-Ok

2004-08-01T23:59:59.000Z

47

Australia world's largest coal exporter, fourth-largest ...  

U.S. Energy Information Administration (EIA)

In 2010, Australia was the world's largest coal exporter and fourth-largest liquefied natural gas exporter. Australia is one of the few countries in the Organization ...

48

A Set of Comparable Carbon Footprints for Auto, Truck and Transit Travel in Metropolitan America  

NLE Websites -- All DOE Office Websites (Extended Search)

Set of Comparable Carbon Footprints for Highway Travel in Set of Comparable Carbon Footprints for Highway Travel in Metropolitan America by Frank Southworth* and Anthon Sonnenberg** August 31, 2009 *Corresponding author: Senior R&D Staff, Oak Ridge National Laboratory and Principal Research Scientist Georgia Institute of Technology 790 Atlantic Drive SEB Building, Room 324 Atlanta, GA 30332-0355 E-mail: frank.southworth@ce.gatech.edu ** PhD Student, Georgia Institute of Technology School of Civil and Environmental Engineering Georgia Institute of Technology 1 Abstract The authors describe the development of a set of carbon dioxide emissions estimates for highway travel by automobile, truck, bus and other public transit vehicle movements within the nation's 100 largest metropolitan areas, in calendar year 2005. Considerable variability is found to exist

49

Sustainable metropolitan growth strategies : exploring the role of the built environment  

E-Print Network (OSTI)

The sustainability of metropolitan areas has been considered one of the most significant social challenges worldwide. Among the various policy options to achieve sustainable metropolitan growth, smart-growth strategies ...

Diao, Mi, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

50

Human mobility modeling at metropolitan scales  

Science Conference Proceedings (OSTI)

Models of human mobility have broad applicability in fields such as mobile computing, urban planning, and ecology. This paper proposes and evaluates WHERE, a novel approach to modeling how large populations move within different metropolitan areas. ... Keywords: call detail records, human mobility patterns

Sibren Isaacman; Richard Becker; Ramón Cáceres; Margaret Martonosi; James Rowland; Alexander Varshavsky; Walter Willinger

2012-06-01T23:59:59.000Z

51

The largest radioactive waste glassification  

NLE Websites -- All DOE Office Websites (Extended Search)

largest radioactive waste glassification largest radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid nuclear waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called "vitrification," as the preferred option for treating liquid nuclear waste. By immobilizing the radioactivity in glass, the DWPF reduces the risks associated with the continued storage of liquid nuclear waste at SRS and prepares the waste for final disposal in a federal repository. About 38 million gallons of liquid nuclear wastes are now stored in 49 underground carbon-steel tanks at SRS. This waste has about 300 million curies of radioactivity, of which the vast majority

52

Metropolitan functional specialization, transportation, and gasoline consumption  

SciTech Connect

This study examines metropolitan functional specialization relative to urban commuting patterns and per capita gasoline consumption in 55 Standard Metropolitan Statistical Areas throughout the United States. Under the concept of sustenance organization in human ecology, social scientists have documented support for the importance of the key urban economic function for composition and distribution of population and firms in cities. However, sociological and ecological knowledge of the relationships of functional specialization, commuting, and transportation energy use is extremely limited. The present research utilizes the concept of function specialization and the framework of the ecological complex in developing relationships and models of personal daily urban travel patterns and gasoline use. The effort is made to examine human ecological factors in a physical approach to energy consumption. Relationships are tested using correlation matrices, regression analyses, and scatterplots where necessary. The findings indicate that the functional specialization of communities is significant in accounting for variance and patterns in their commuting travel and per capita gasoline consumption.

Hoffman, W.D.

1985-01-01T23:59:59.000Z

53

Record Flood-Producing Rainstorms of 17–18 July 1996 in the Chicago Metropolitan Area. Part III: Impacts and Responses to the Flash Flooding  

Science Conference Proceedings (OSTI)

A record-breaking 24-h rainstorm on 17–18 July 1996 was centered on south Chicago and its southern and western suburbs, areas with a population of 3.4 million. The resulting flash flooding in Chicago and 21 suburbs broke all-time records in the ...

Stanley A. Changnon

1999-03-01T23:59:59.000Z

54

Emerging factors associated with the decline of a gray fox population and multi-scale land cover associations of mesopredators in the Chicago metropolitan area.  

SciTech Connect

Statewide surveys of furbearers in Illinois indicate gray (Urocyon cinereoargenteus) and red (Vulpes vulpes) foxes have experienced substantial declines in relative abundance, whereas other species such as raccoons (Procyon lotor) and coyotes (Canis latrans) have exhibited dramatic increases during the same time period. The cause of the declines of gray and red foxes has not been identified, and the current status of gray foxes remains uncertain. Therefore, I conducted a large-scale predator survey and tracked radiocollared gray foxes from 2004 to 2007 in order to determine the distribution, survival, cause-specific mortality sources and land cover associations of gray foxes in an urbanized region of northeastern Illinois, and examined the relationships between the occurrence of gray fox and the presence other species of mesopredators, specifically coyotes and raccoons. Although generalist mesopredators are common and can reach high densities in many urban areas their urban ecology is poorly understood due to their secretive nature and wariness of humans. Understanding how mesopredators utilize urbanized landscapes can be useful in the management and control of disease outbreaks, mitigation of nuisance wildlife issues, and gaining insight into how mesopredators shape wildlife communities in highly fragmented areas. I examined habitat associations of raccoons, opossums (Didelphis virginiana), domestic cats (Felis catus), coyotes, foxes (gray and red), and striped skunks (Mephitis mephitis) at multiple spatial scales in an urban environment. Gray fox occurrence was rare and widely dispersed, and survival estimates were similar to other studies. Gray fox occurrence was negatively associated with natural and semi-natural land cover types. Fox home range size increased with increasing urban development suggesting that foxes may be negatively influenced by urbanization. Gray fox occurrence was not associated with coyote or raccoon presence. However, spatial avoidance and mortality due to coyote predation was documented and disease was a major mortality source for foxes. The declining relative abundance of gray fox in Illinois is likely a result of a combination of factors. Assessment of habitat associations indicated that urban mesopredators, particularly coyotes and foxes, perceived the landscape as relatively homogeneous and that urban mesopredators interacted with the environment at scales larger than that accommodated by remnant habitat patches. Coyote and fox presence was found to be associated with a high degree of urban development at large and intermediate spatial scales. However, at a small spatial scale fox presence was associated with high density urban land cover whereas coyote presence was associated with urban development with increased forest cover. Urban habitats can offer a diversity of prey items and anthropogenic resources and natural land cover could offer coyotes daytime resting opportunities in urban areas where they may not be as tolerated as smaller foxes. Raccoons and opossums were found to utilize moderately developed landscapes with interspersed natural and semi-natural land covers at a large spatial scale, which may facilitate dispersal movements. At intermediate and small spatial scales, both species were found to utilize areas that were moderately developed and included forested land cover. These results indicated that raccoons and opossums used natural areas in proximity to anthropogenic resources. At a large spatial scale, skunk presence was associated with highly developed landscapes with interspersed natural and semi-natural land covers. This may indicate that skunks perceived the urban matrix as more homogeneous than raccoons or opossums. At an intermediate spatial scale skunks were associated with moderate levels of development and increased forest cover, which indicated that they might utilize natural land cover in proximity to human-dominated land cover. At the smallest spatial scale skunk presence was associated with forested land cover surrounded by a suburban matrix. Compared to raccoon

Willingham, Alison N.; /Ohio State U.

2008-01-01T23:59:59.000Z

55

Metropolitan governance and local land use planning in Boston, Denver, and Portland  

E-Print Network (OSTI)

Metropolitan areas across the U.S. are characterized by sprawling development which uses larger amounts of open space than necessary, leads to the inefficient use of energy and water, increases social inequality, and causes ...

Rosan, Christina

2007-01-01T23:59:59.000Z

56

Economic impact of M.I.T. on Cambridge and Metropolitan Boston  

E-Print Network (OSTI)

This thesis investigated the economic impact of the Massachusetts Institute of Technology on its host city, Cambridge, and upon the Boston Metropolitan Area. The primary purpose was to develop sufficient information about ...

Finberg, Irving William

1964-01-01T23:59:59.000Z

57

Unequal development : decentralization and fiscal disparities in the Metropolitan Zone of the Valley of Mexico  

E-Print Network (OSTI)

This study is about the impact of decentralization in metropolitan areas. Studies of fiscal decentralization have largely centered on the formal tiers of government, without looking at the effects of this process on the ...

Raich, Uri

2006-01-01T23:59:59.000Z

58

World's Largest Solar Energy Project Heads to Mojave | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

World's Largest Solar Energy Project Heads to Mojave World's Largest Solar Energy Project Heads to Mojave World's Largest Solar Energy Project Heads to Mojave April 16, 2010 - 4:47pm Addthis A California company will harness the Mojave Desert sunshine to create the world's largest solar energy system by the end of 2013. The Ivanpah Solar Electric Generating System, located just a few miles from the California - Nevada border near Interstate 15, will generate approximately 400 MW of energy per year, almost doubling the amount of solar thermal energy produced in the United States. Ivanpah will focus sunlight from mirrors placed on poles, which don't require the land to be graded and can be placed around areas that are already in use or environmentally sensitive. The project of Oakland, Calif.-based BrightSource Energy, Inc. will likely generate enough power

59

Today, nuclear energy is the largest...  

NLE Websites -- All DOE Office Websites (Extended Search)

Today, nuclear energy is the largest non-carbon electricity production method in use, but the nation must effectively address economic and waste management concerns to enable its...

60

Metropolitan Edison Co (Pennsylvania) | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania) Jump to: navigation, search Name Metropolitan Edison Co Place Pennsylvania Utility Id 12390 References EIA Form EIA-861 Final Data File for 2010 - File220101...

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alternative Fuels Data Center: Metropolitan Utilities District Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Metropolitan Utilities Metropolitan Utilities District Fuels Vehicles With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Google Bookmark Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Delicious Rank Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on

62

IWTU Construction Workers Set Largest Process Vessel  

NLE Websites -- All DOE Office Websites (Extended Search)

IWTU Construction Workers Set Largest Process Vessel IWTU Construction Workers Set Largest Process Vessel Click on image to enlarge Construction of the Integrated Waste Treatment Unit (IWTU) took a major step forward on Sept. 2, 2009 as crews lifted into place the largest of the six process vessels that will be used to treat radioactive liquid waste stored at the site. The IWTU will use a steam reforming process to solidify the waste for eventual shipment out of Idaho. The vessel and its skid, or framework, were constructed at Premier Technologies in Blackfoot. (Premier is the main small business partner for CH2M-WG Idaho (CWI), the contractor for DOE's Idaho Cleanup Project.) The Carbon Reduction Reformer vessel and skid weigh approximately 60 tons (120,000 lbs.). Because of the weight of the vessel and the location of the

63

New York Metropolitan Transportation Council  

E-Print Network (OSTI)

The contents of this report reflect the views of those interviewed as interpreted by the authors except where specified. The authors are responsible for the facts, data, and analyses presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration, the Federal Transit Administration, nor the collective membership of the New York Metropolitan Transportation Council (NYMTC). This report does not constitute a standard, specification, or regulation. Acceptance of this report as evidence of fulfillment, in part or whole, of the objectives of the planning study PTCS.07.P12 does not constitute endorsement or approval of the need for any recommended improvement or additional study. It is being sponsored by the NYMTC for the benefit of its members and all interested stakeholders. Other legislation, regulation, executive order(s), official policy, and/or standard practice may supersede the recommendations or advice provided within. 1. Report No.

Jeff Ban Ph. D; Miguel Jaller M. S; Lisa Destro; Robyn Marquis

2010-01-01T23:59:59.000Z

64

Urban Modifications in a Mesoscale Meteorological Model and the Effects on Near-Surface Variables in an Arid Metropolitan Region  

Science Conference Proceedings (OSTI)

A refined land cover classification for the arid Phoenix (Arizona) metropolitan area and some simple modifications to the surface energetics were introduced in the fifth-generation Pennsylvania State University–National Center for Atmospheric ...

Susanne Grossman-Clarke; Joseph A. Zehnder; William L. Stefanov; Yubao Liu; Michael A. Zoldak

2005-09-01T23:59:59.000Z

65

Data management for the world's largest machine  

Science Conference Proceedings (OSTI)

The world's largest machine, the Large Hadron Collider, will have four detectors whose output is expected to answer fundamental questions about the universe. The ATLAS detector is expected to produce 3.2 PB of data per year which will be distributed ...

Sigve Haug; Farid Ould-Saada; Katarina Pajchel; Alexander L. Read

2006-06-01T23:59:59.000Z

66

Plate heat exchanger system largest in United States  

SciTech Connect

This article focuses on the largest plate heat exchanger system in the USA having 70,000 sq. ft. of surface area. It is used as a sodium carbonate brine heat exchanger at the Kerr-McGee Chemical Corporation's Argus facility at Searles Valley in California's Mojave Desert. The heat interchange process and operation are discussed. Plate heat exchangers were found to be more cost effective than conventional heat exchangers in the process.

Canning, T. (Kerr-McGee Chemical Corp., Trona, CA); Regan, J.T.

1982-08-01T23:59:59.000Z

67

Metropolitan Edison Co | Open Energy Information  

Open Energy Info (EERE)

Metropolitan Edison Co Metropolitan Edison Co Jump to: navigation, search Name Metropolitan Edison Co Place Ohio Utility Id 12390 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png RS Residential RT (Time-Of-Day) Residential Average Rates No Rates Available The following table contains monthly sales and revenue data for

68

Metropolitan Groundwater Plans (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Groundwater Plans (Minnesota) Groundwater Plans (Minnesota) Metropolitan Groundwater Plans (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Environmental Regulations This section gives metropolitan counties the authority to prepare and adopt groundwater plans, or to grant this responsibility to soil and water

69

LARGEST EVER CASTOR TRANSPORT TO GORLEBEN  

E-Print Network (OSTI)

from 11-14 November. Thousands of protesters took part in actions against the transport. As with previous transports, protests delayed the transport by several hours, although the massive police presence ensured that the transport eventually reached Gorleben. (577.5459) WISE Amsterdam – The idea behind transporting 12 Castor nuclear waste casks at the same time was essentially to save money. Instead of transporting 6 nuclear waste casks twice a year, the authorities decided to transport 12 casks once a year, so that the authorities “only ” need to organize one massive police operation, involving around 15,000 police and border guards, per year. For the authorities, there are other advantages: “only ” one international outcry per year about the repression that occurs during every transport, “only ” once per year – this time conveniently after the elections – that the Gorleben transport highlights yet again the inconsistency of the consensus agreement on nuclear phaseout. And, of course, only “once ” per year that protesters, despite being massively outnumbered by the police, succeed in blocking the transport, at least temporarily, in several places along its route. This time, the transport was blocked 11 times by non-violent direct actions at several locations on its route through Germany (1). The largest of these was when over 1,200 people sat down in the road for over 5 hours near Laase, on the final part of the waste convoy’s journey. And this time, police actions left 13 people seriously injured (2). Hundreds of people were arrested, of which at least 180 were detained in bad conditions for longer than German law permits (3). At one point, police took their time with processing documents – a trick to keep people detained for longer by delaying the work of the judges who needed to approve their detentions (4). The police even banned a head teacher from his own school when he pointed out that they did not have the correct papers to occupy his

unknown authors

2002-01-01T23:59:59.000Z

70

Recovery Act Supports Construction of Site's Largest Groundwater Treatment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supports Construction of Site's Largest Groundwater Supports Construction of Site's Largest Groundwater Treatment Facility Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility Construction of the largest groundwater treatment facility at the Hanford Site – a major American Recovery and Reinvestment Act project – is on schedule and more than 70 percent complete. Recovery Act workers with DOE contractor CH2M HILL Plateau Remediation Company are on pace to finish construction of the 200 West Groundwater Treatment Facility this year. Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility More Documents & Publications Hanford Treats Record Amount of Groundwater Recovery Act Invests in Cleanup, Preservation of Hanford Site Locomotives,

71

AREA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AREA AREA FAQ # Question Response 316 vs DCAA FAQ 1 An inquiry from CH about an SBIR recipient asking if a DCAA audit is sufficient to comply with the regulation or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO NOT replace DCAA or other audits requested by DOE to look at indirect rates or incurred costs or closeouts. DCAA would never agree to perform A-133 or our 316 audits. They don't do A-133 audits for DOD awardees. The purpose of the audits are different, look at different things and in the few instances of overlap, from different perspectives. 316

72

Los Angeles County Metropolitan Transportation Authority Metro | Open  

Open Energy Info (EERE)

County Metropolitan Transportation Authority Metro County Metropolitan Transportation Authority Metro Jump to: navigation, search Name Los Angeles County Metropolitan Transportation Authority (Metro) Place Los Angeles, California Zip 90012-2952 Sector Renewable Energy Product Metro is the regional transportation planner for all of Los Angeles County. It is a developer of renewable energy projects. References Los Angeles County Metropolitan Transportation Authority (Metro)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Los Angeles County Metropolitan Transportation Authority (Metro) is a company located in Los Angeles, California . References ↑ "Los Angeles County Metropolitan Transportation Authority

73

Open space system study for the Dacca metropolitan area  

E-Print Network (OSTI)

Open space facilities proposed in the Master Plan for Dacca, 1960, based on zoning by land subdivision, although inadequate in terms of population needs, were never realized -- partly due to their turnover to other land hungry urban developments. A comprehensive step to solve the problem of open space needs for present and future Decca was sought through an ecological approach. The search was for land of intrinsic open space value to be developed with compatible land uses to arrive at a system of multiple values. The map of Dacca published by the geological survey of Pakistan and supporting reference material was analysed for an understanding of the city's various features -- water and wetland, settlement pattern, climate, community, transportation and vegetation. The analytical facts were synthesized to socio-cultural image study, road system study, end finally, open space system study. These studies are based on existing and future physical, socio-cultural growth patterns. It was found out that the rivers, canals, wetlands encircling Dacca could "be the median of an open space system developed with the compatible land use of flood and erosion control, drainage, water supply, agriculture, water transportation and recreation. The system incorporates existing parks, open spaces, and historic value nodes, proposes pedestrian shopping malls, pedestrian, levels in highways, and, reserves spaces for institution and housing expansion.

Rab, Wajeda Jafar

1970-01-01T23:59:59.000Z

74

The Metropolitan Surface Water Management Act (Minnesota) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Metropolitan Surface Water Management Act (Minnesota) The Metropolitan Surface Water Management Act (Minnesota) The Metropolitan Surface Water Management Act (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting The Metropolitan Surface Water Management Act aims to protect, preserve,

75

Sustainable Energy Fund (Metropolitan Edison) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Energy Fund (Metropolitan Edison) Sustainable Energy Fund (Metropolitan Edison) Sustainable Energy Fund (Metropolitan Edison) < Back Eligibility Commercial Industrial Local Government Nonprofit Schools Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Heating & Cooling Solar Heating Water Heating Wind Maximum Rebate Varies; $25,000 for some types of projects Program Info State Pennsylvania Program Type Local Grant Program Rebate Amount Varies according to project Provider Community Foundation of the Alleghenies FirstEnergy (formerly GPU) established the Metropolitan Edison Company Sustainable Energy Fund and the Penelec Sustainable Energy Fund in 2000. The Community Foundation for the Alleghenies in Johnstown, Pennsylvania

76

NNSA Awards Contract for Largest Federal Wind Farm to Siemens...  

National Nuclear Security Administration (NNSA)

Awards Contract for Largest Federal Wind Farm to Siemens Government Technologies, Inc. | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing...

77

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...  

Gasoline and Diesel Fuel Update (EIA)

through 20072008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary...

78

Determine Largest Mobile Greenhouse Gas Emission Sources | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Largest Mobile Greenhouse Gas Emission Sources Largest Mobile Greenhouse Gas Emission Sources Determine Largest Mobile Greenhouse Gas Emission Sources October 7, 2013 - 11:39am Addthis YOU ARE HERE Step 2 For the purposes of portfolio planning, a Federal agency's first data analysis step is to determine which mobile emissions sources represent the largest contributors to the agency's overall greenhouse gas (GHG) emissions. Agencies can use agency-level data to determine which fleets/locations, which vehicle assets (e.g., fleet vehicles, non-fleet equipment, etc.), and which fuel types are producing the largest amounts of emissions. Based on this analysis, the agency can better define which mitigation strategies will be most effective. For instance, if a single fleet comprises over half of the agency's vehicle and equipment emissions, the

79

La variedad linguistica de la mujer del Area Metropolitana de San Juan, Puerto Rico.  

E-Print Network (OSTI)

??This is an empirical study which aims at describing the speech of women in the Metropolitan Area of San Juan, Puerto Rico. Despite the fact… (more)

Pratt-Panford, Comfort

2012-01-01T23:59:59.000Z

80

World's Largest Laser Sets New Records | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

World's Largest Laser Sets New Records World's Largest Laser Sets New Records World's Largest Laser Sets New Records November 10, 2010 - 6:26pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What are the key facts? The National Ignition Facility in California fired a shot of 300 trillion neutrons -- one step closer to the amount of neutrons needed to reach fusion ignition. Scientists also used the laser to create a temperature of six million degrees Fahernheit. The world's largest laser, located at the National Ignition Facility (or NIF) in California, set new records on October 31 and November 2. Specifically, on October 31 the NIF laser fired a shot of 300 trillion neutrons, the most neutrons ever yielded by a laser to date, and one step closer to the amount of neutrons (about 10 to the 18th power) needed to

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Department of Energy Announces Completion of World's Largest Laser |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Announces Completion of World's Largest Laser Department of Energy Announces Completion of World's Largest Laser Department of Energy Announces Completion of World's Largest Laser March 31, 2009 - 12:00am Addthis WASHINGTON, DC - The Department of Energy today announced that the National Nuclear Security Administration (NNSA) has certified the completion of the historic effort to build the world's largest laser. Housed at the Department of Energy's Lawrence Livermore National Laboratory, the National Ignition Facility (NIF) is expected to allow scientists to achieve fusion ignition in the laboratory, obtaining more energy from the target than is provided by the laser. The completion of NIF opens the door to scientific advancement and discovery that promises to enhance our national security, could help break America's dependence on foreign oil, and will lead to new

82

Calpine: America's largest geothermal energy producer | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calpine: America's largest geothermal energy producer Calpine: America's largest geothermal energy producer Calpine: America's largest geothermal energy producer October 6, 2010 - 12:37pm Addthis Calpine operates 15 plants at The Geysers in northwest California, which generate enough clean energy daily to power a city the size of San Francisco.| Photo Courtesy of Calpine Calpine operates 15 plants at The Geysers in northwest California, which generate enough clean energy daily to power a city the size of San Francisco.| Photo Courtesy of Calpine Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Amid the Mayacamas Mountains in northwest California sits the world's largest geothermal field: The Geysers. Since 1960, steam from the 45 square mile field spanning Lake and Sonoma

83

Metropolitan Land Use Planning (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Use Planning (Minnesota) Land Use Planning (Minnesota) Metropolitan Land Use Planning (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Environmental Regulations This statute establishes the Metropolitan Land Use Advisory Committee within the Metropolitan Council to coordinate plans, programs, and controls

84

METRO Metropolitan Exposition Recreation Commission MERC Facilities Efficiently Maintained – Maybe Too Efficiently  

E-Print Network (OSTI)

To the Metro Council, Metropolitan Exposition Recreation Commission and Metro-area citizens: As part of the Metro Auditor’s risk assessment and audit plan, we studied facility care and capital improvement processes at the Metropolitan Exposition Recreation Commission (MERC), a unit of Metro. Facility care includes janitorial and repair and maintenance activities. Capital improvement processes include plans for determining necessary capital improvements and obtaining adequate, reliable funding for capital renewal and replacement projects. MERC owns public assembly facilities with a book value of over $200 million. It manages the Oregon Convention Center, the Portland Center for the Performing Arts and the Portland Metropolitan Exposition Center. The cost of maintaining and safeguarding these facilities consumes about 14 % of MERC’s operating revenues each year. The cost of MERC facilities care activities benchmark below that of other facilities across the nation. While low cost is generally a positive, some improvements in facility care practices and capital improvement processes could be made. We recommend that MERC: Evaluate the adequacy of staffing for janitorial and maintenance activities and add electrical expertise where needed.

Alexis Dow Cpa; A Uditor; A Lexis; D Ow

2006-01-01T23:59:59.000Z

85

Metropolitan Edison Company SEF Grants (FirstEnergy Territory) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Metropolitan Edison Company SEF Grants (FirstEnergy Territory) Metropolitan Edison Company SEF Grants (FirstEnergy Territory) Metropolitan Edison Company SEF Grants (FirstEnergy Territory) < Back Eligibility Commercial Industrial Local Government Nonprofit Schools Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Heating & Cooling Solar Heating Water Heating Wind Maximum Rebate Varies; $25,000 for some types of projects Program Info State Pennsylvania Program Type Local Grant Program Rebate Amount Varies according to project Provider Berks County Community Foundation FirstEnergy (formerly GPU) established the Metropolitan Edison Company Sustainable Energy Fund in 2000 with an initial contribution of $5.7 million. The fund later received an additional contribution of $2.5 million

86

Metropolitan Edison Company SEF Loans (FirstEnergy Territory) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Metropolitan Edison Company SEF Loans (FirstEnergy Territory) Metropolitan Edison Company SEF Loans (FirstEnergy Territory) Metropolitan Edison Company SEF Loans (FirstEnergy Territory) < Back Eligibility Commercial Industrial Local Government Nonprofit Schools Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Heating & Cooling Solar Heating Water Heating Wind Maximum Rebate $500,000 (generally) Program Info State Pennsylvania Program Type Local Loan Program Rebate Amount Varies according to project Provider Berks County Community Foundation FirstEnergy (formerly GPU) established the Metropolitan Edison Company Sustainable Energy Fund in 2000 with an initial contribution of $5.7 million. The fund later received an additional contribution of $2.5 million

87

The interests of landowners on the metropolitan fringe  

E-Print Network (OSTI)

Numerous authors have noted that the patchy, sprawling pattern of development characterizing the metropolitan fringe results in part from the decisions of individual landowners regarding the use, subdivision, development, ...

Molinsky, Jennifer H. (Jennifer Hrabchak)

2005-01-01T23:59:59.000Z

88

Metropolitan Water District of S CA | Open Energy Information  

Open Energy Info (EERE)

Water District of S CA Jump to: navigation, search Name Metropolitan Water District of S CA Place California Utility Id 12397 Utility Location Yes Ownership S NERC Location WECC...

89

National Lab 'Flips Switch' on East Coast's Largest Solar Array |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Lab 'Flips Switch' on East Coast's Largest Solar Array National Lab 'Flips Switch' on East Coast's Largest Solar Array National Lab 'Flips Switch' on East Coast's Largest Solar Array November 21, 2011 - 12:16pm Addthis An aerial view of the 32-megawatt photovoltaic array of the Long Island Solar Farm, which will produce enough energy to power up to 4,500 local homes. The central Brookhaven National Laboratory campus is seen at left. An aerial view of the 32-megawatt photovoltaic array of the Long Island Solar Farm, which will produce enough energy to power up to 4,500 local homes. The central Brookhaven National Laboratory campus is seen at left. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs What are the key facts? The 32-megawatt Long Island Solar Farm Project will produce enough

90

Washington State Becomes Largest Public Consumer of Biodiesel | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington State Becomes Largest Public Consumer of Biodiesel Washington State Becomes Largest Public Consumer of Biodiesel Washington State Becomes Largest Public Consumer of Biodiesel December 14, 2011 - 11:56am Addthis Auto and passenger ferries operated by the Washington State Transportation Department shuttle more than 11 million people across the Puget Sound every year. Now, the electric-diesel engines that propel these vessels are powered by a blend of soy-based biodiesel and petroleum diesel. | Photo courtesy of Joe Mabel. Auto and passenger ferries operated by the Washington State Transportation Department shuttle more than 11 million people across the Puget Sound every year. Now, the electric-diesel engines that propel these vessels are

91

National Lab 'Flips Switch' on East Coast's Largest Solar Array |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab 'Flips Switch' on East Coast's Largest Solar Array Lab 'Flips Switch' on East Coast's Largest Solar Array National Lab 'Flips Switch' on East Coast's Largest Solar Array November 21, 2011 - 12:16pm Addthis An aerial view of the 32-megawatt photovoltaic array of the Long Island Solar Farm, which will produce enough energy to power up to 4,500 local homes. The central Brookhaven National Laboratory campus is seen at left. An aerial view of the 32-megawatt photovoltaic array of the Long Island Solar Farm, which will produce enough energy to power up to 4,500 local homes. The central Brookhaven National Laboratory campus is seen at left. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs What are the key facts? The 32-megawatt Long Island Solar Farm Project will produce enough

92

Going Big: Building the Largest Ever Energy Efficiency Project | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Going Big: Building the Largest Ever Energy Efficiency Project Going Big: Building the Largest Ever Energy Efficiency Project Going Big: Building the Largest Ever Energy Efficiency Project August 16, 2012 - 2:19pm Addthis New screening equipment used to refine wood chips at the North Pacific Paper Corporation paper mill in Longview, Wash., is expected to save NORPAC 100 million kilowatt hours of electricity a year, which is enough energy to serve 8,000 Northwest homes. Construction of the chip pretreatment structure, shown here, is scheduled to be completed in 2013. | Photo courtesy of Bonneville Power Administration. New screening equipment used to refine wood chips at the North Pacific Paper Corporation paper mill in Longview, Wash., is expected to save NORPAC 100 million kilowatt hours of electricity a year, which is enough energy to

93

Department of Energy Completes Demolition of K-33 Building - Largest  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demolition of K-33 Building - Demolition of K-33 Building - Largest Completed Demo Project in Oak Ridge History Department of Energy Completes Demolition of K-33 Building - Largest Completed Demo Project in Oak Ridge History September 30, 2011 - 12:00pm Addthis Media Contact Ben Williams http://www.oakridge.doe.gov 865-576-0885 OAK RIDGE, Tenn. - The U.S. Department of Energy's Oak Ridge Environmental Management (EM) program recently completed its largest demolition project to date. The removal of K-33, a former gaseous diffusion uranium enrichment facility spanning 32-acres, was completed several months ahead of schedule. The American Recovery and Reinvestment Act funded the $51 million project. "The expedited removal of K-33 significantly changes our site's landscape, and moves DOE closer to transitioning the East Tennessee

94

Largest American Net Zero Energy Campus Community Embraces Clean Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Largest American Net Zero Energy Campus Community Embraces Clean Largest American Net Zero Energy Campus Community Embraces Clean Energy Largest American Net Zero Energy Campus Community Embraces Clean Energy April 9, 2012 - 4:10pm Addthis Based on its sustainable design, UC Davis' new net zero energy community is designed to generate as much energy as it consumes. | Video courtesy of the University of California at Davis. Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office What does this project do? UC Davis is planning to incorporate a biodigester -- a source of renewable energy -- into plans for its new housing development. The biodigester will turn organic waste into electricity. The organic waste is burned and produces biogas that a turbine converts into electricity. A new housing development on the University of California at Davis (UC

95

Going Big: Building the Largest Ever Energy Efficiency Project | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Going Big: Building the Largest Ever Energy Efficiency Project Going Big: Building the Largest Ever Energy Efficiency Project Going Big: Building the Largest Ever Energy Efficiency Project August 16, 2012 - 2:19pm Addthis New screening equipment used to refine wood chips at the North Pacific Paper Corporation paper mill in Longview, Wash., is expected to save NORPAC 100 million kilowatt hours of electricity a year, which is enough energy to serve 8,000 Northwest homes. Construction of the chip pretreatment structure, shown here, is scheduled to be completed in 2013. | Photo courtesy of Bonneville Power Administration. New screening equipment used to refine wood chips at the North Pacific Paper Corporation paper mill in Longview, Wash., is expected to save NORPAC 100 million kilowatt hours of electricity a year, which is enough energy to

96

Department of Energy Finalizes Loan Guarantee to Support World's Largest  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Support World's to Support World's Largest Wind Project Department of Energy Finalizes Loan Guarantee to Support World's Largest Wind Project December 16, 2010 - 12:00am Addthis Washington D.C. --- U.S. Energy Secretary Steven Chu today announced that a partial loan guarantee for a $1.3 billion loan has been finalized to support the world's largest wind farm. The loan will finance the Caithness Shepherds Flat project, an 845-megawatt wind generation facility located in eastern Oregon sponsored by Caithness Energy, LLC and GE Energy Financial Services. "Renewable energy investments like these are creating jobs while helping to maintain America's global competitiveness in the clean energy economy," said Secretary Chu. "By leveraging our nation's vast natural resources,

97

Washington State Becomes Largest Public Consumer of Biodiesel | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington State Becomes Largest Public Consumer of Biodiesel Washington State Becomes Largest Public Consumer of Biodiesel Washington State Becomes Largest Public Consumer of Biodiesel December 14, 2011 - 11:56am Addthis Auto and passenger ferries operated by the Washington State Transportation Department shuttle more than 11 million people across the Puget Sound every year. Now, the electric-diesel engines that propel these vessels are powered by a blend of soy-based biodiesel and petroleum diesel. | Photo courtesy of Joe Mabel. Auto and passenger ferries operated by the Washington State Transportation Department shuttle more than 11 million people across the Puget Sound every year. Now, the electric-diesel engines that propel these vessels are

98

Oak Ridge Finishes Site's Largest Demolition Project to Date | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finishes Site's Largest Demolition Project to Date Finishes Site's Largest Demolition Project to Date Oak Ridge Finishes Site's Largest Demolition Project to Date July 1, 2012 - 12:00pm Addthis BEFORE: An aerial photo shows Building K-33 before demolition. BEFORE: An aerial photo shows Building K-33 before demolition. AFTER: This photo shows the site of Building K-33 following completion of the demolition project. AFTER: This photo shows the site of Building K-33 following completion of the demolition project. BEFORE: An aerial photo shows Building K-33 before demolition. AFTER: This photo shows the site of Building K-33 following completion of the demolition project. OAK RIDGE, Tenn. - This month, the Oak Ridge Environmental Management (EM) program finished the final phase of the Building K-33 demolition

99

California Energy Commission "We have the largest rooftop solar  

E-Print Network (OSTI)

solar system in the nation!" Matt Muniz, P.E. Energy Program Manager Alameda County "With the Energy Commission's Energy Efficiency Financing Program we installed our 1.18 MW solar project at Santa Rita JailLOW INTEREST RATE LOANS AVAILABLE NOW! California Energy Commission "We have the largest rooftop

100

LNG plant ranks with world's largest  

SciTech Connect

Products from Indonesia's Arun LNG plant, one of the world's largest, have recently entered the Far East LPG markets. This is the first of two articles about the plant and its processes for producing both LNG and LPG's.

Naklie, M.M.; Penick, D.P.; Denton, L.A.; Kartiyoso, I.

1987-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Dynamics and Structure of the 30 Largest North American Companies  

Science Conference Proceedings (OSTI)

In this paper we describe a method to analyze the structure and dynamics of the 30 largest North American companies. The method combines the tools of symbolic time series analysis (Daw et al. in Rev Sci Instrum 74:916---930, 2003) with the nearest neighbor ... Keywords: C10, C14, Cluster analysis, Financial asset returns, G10, Symbolic time series analysis

Juan Gabriel Brida; Wiston Adrián Risso

2010-01-01T23:59:59.000Z

102

Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 7, 2011 June 7, 2011 Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility RICHLAND, Wash. - Construction of the largest ground- water treatment facility at the Hanford Site - a major American Recovery and Reinvestment Act project - is on schedule and more than 70 percent complete. Recovery Act workers with DOE contractor CH2M HILL Plateau Remediation Company are on pace to finish con- struction of the 200 West Groundwater Treatment Facil- ity this year. Funding for the project comes from the $1.6 billion the Richland Operations Office received from the Recovery Act. The 52,000-square-foot facility will pump contaminated water from the ground, remove contaminants with a combination of treatment technologies, and return clean water to the aquifer. The system will have the capacity to

103

Final Status Survey for the Largest Decommissioning Project on Earth  

Science Conference Proceedings (OSTI)

To assist the United States Department of Energy's (US DOE's) re-industrialization efforts at its gaseous diffusion site in Oak Ridge, Tennessee, known as the East Tennessee Technology Park (ETTP), the US DOE awarded a 6-year Decontamination and Decommissioning (D and D) contract to BNG America (formerly BNFL Inc.) in 1997. The ETTP 3-Building D and D Project included the removal and disposition of the materials and equipment from the K-33, K-31, and K-29 Gaseous Diffusion Plant buildings. The three buildings comprise more than 4.8 million square feet (446,000 square meters) of floor surface area and more than 350 million pounds (148 million kilograms) of hazardous and radioactively contaminated material, making it the largest nuclear D and D project in progress anywhere in the world. The logistical hurdles involved in a project of this scope and magnitude required an extensive amount of Engineering and Health Physics professionals. In order to accomplish the Final Status Survey (FSS) for a project of this scope, the speed and efficiency of automated survey equipment was essential. Surveys of floors, structural steel and ceilings up to 60 feet (18 meters) were required. The FSS had to be expanded to include additional remediation and surveys due to characterization surveys and assumptions regarding the nature and extent of contamination provided by the US DOE. Survey design and technical bases had to consider highly variable constituents; including uranium from depleted to low enrichment, variable levels of Technetium-99 and transuranic nuclides, which were introduced into the cascade during the 1960's when recycled uranium (RU) from Savannah River was re-enriched at the facility. The RU was transported to unexpected locations from leaks in the cascade by complex building ventilation patterns. The primary survey tool used for the post remediation and FSS was the Surface Contamination Monitor (SCM) and the associated Survey Information Management System (SIMS), developed by Shonka Research Associates, Inc. (SRA). Final Status Radiological surveys have been performed over the last year on a 24-hour per day and seven day per week basis. As many as eight SCMs have been in use at any one time. Each SCM can perform over 250,000 measurements per hour, simultaneously collecting both scan and static measurement requirements to meet FSS regulatory requirements. Thus, efficient management and quality control of giga-bytes of data was needed. In addition, some surveys were accomplished with traditional instrumentation and with some using other automated systems such as smear counters. The FSS Reports required integration of all of the data in a format that permitted undemanding verification by DOE using the ORISE/ESSAP IVT contractor. A project of this scope and magnitude could not have been accomplished without the use of the SCM and SIMS. This paper reports on the survey and logistical issues that required ingenuity of the entire 1,700-person workforce to resolve. In particular, this paper summarizes the issues addressed and resolved by the integrated team of survey technicians, subject matter experts (SMEs), radiological engineers, data processing staff and BNG America management. (authors)

Dubiel, R.W. [Millennium Services, Inc., 222 Creekstone Ridge, Woodstock, GA 30188 (United States); Miller, J. [BNG America, 804 S. Illinois Avenue, Oak Ridge, TN 37830 (United States); Quayle, D. [Shonka Research Associates, Inc., 704 S. Illinois Avenue, Oak Ridge, TN 37830 (United States)

2006-07-01T23:59:59.000Z

104

Green optical network design : power optimization of wide area and metropolitan area networks  

E-Print Network (OSTI)

Advancements in technology are fueling huge growth in network traffic capacity. Demand for low cost, reliable, and high bitrate transmissions grows 40-110% internationally every year. To date, most research has focused on ...

Lin, Katherine Xiaoyan

2011-01-01T23:59:59.000Z

105

Argonne partners with Metropolitan Water Reclamation District to study  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists at Argonne and the Metropolitan Water Reclamation District hope to map the Chicago River microbe population and how it changes during daily events like storms as well as larger events, such as the MWRD beginning to disinfect its discharge. Click to enlarge. Scientists at Argonne and the Metropolitan Water Reclamation District hope to map the Chicago River microbe population and how it changes during daily events like storms as well as larger events, such as the MWRD beginning to disinfect its discharge. Click to enlarge. Scientists at Argonne and the Metropolitan Water Reclamation District hope to map the Chicago River microbe population and how it changes during daily events like storms as well as larger events, such as the MWRD beginning to disinfect its discharge. Click to enlarge. Boats pass under the LaSalle St. Bridge in downtown Chicago. Scientists at Argonne are partnering with the Metropolitan Water Reclamation District to catalogue the microbe population of the Chicago River. Click to enlarge.

106

Optimizing Fire Station Locations for the Istanbul Metropolitan Municipality  

Science Conference Proceedings (OSTI)

The Istanbul Metropolitan Municipality IMM seeks to determine locations for additional fire stations to build in Istanbul; its objective is to make residences and historic sites reachable by emergency vehicles within five minutes of a fire station’s ... Keywords: fire station location, geographic information system, maximal-covering problem, set-covering problem

Emel Akta?; Özay Özayd?n; Burçin Bozkaya; Füsun Ülengin; ?ule Önsel

2013-05-01T23:59:59.000Z

107

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY, OH, VA, WV 1,849 9,350 10,365 Transcontinental Gas Pipeline Co. Northeast, Southeast Southwest AL, GA, LA, MD, MS, NC, NY, SC, TX, VA, GM 2,670 8,466 10,450 Northern Natural Gas Co. Central, Midwest Southwest IA, IL, KS, NE, NM, OK, SD, TX, WI, GM 1,055 7,442 15,874 Texas Eastern Transmission Corp.

108

Aerial surveying of the world's largest leatherback turtle rookery: A more effective methodology for large-scale monitoring  

E-Print Network (OSTI)

Aerial surveying of the world's largest leatherback turtle rookery: A more effective methodology are monitored in great detail by foot. In this study we use nationwide aerial surveying interfaced with ground­86%) of leatherback turtle activities recorded during aerial surveys (n = 8) occurred within protected areas (345 km

Exeter, University of

109

Largest US oil and gas fields, August 1993  

Science Conference Proceedings (OSTI)

The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

Not Available

1993-08-06T23:59:59.000Z

110

Alternative Fuels Data Center: Largest U.S. Port Complex Embraces LNG for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Largest U.S. Port Largest U.S. Port Complex Embraces LNG for Heavy-Duty Trucks to someone by E-mail Share Alternative Fuels Data Center: Largest U.S. Port Complex Embraces LNG for Heavy-Duty Trucks on Facebook Tweet about Alternative Fuels Data Center: Largest U.S. Port Complex Embraces LNG for Heavy-Duty Trucks on Twitter Bookmark Alternative Fuels Data Center: Largest U.S. Port Complex Embraces LNG for Heavy-Duty Trucks on Google Bookmark Alternative Fuels Data Center: Largest U.S. Port Complex Embraces LNG for Heavy-Duty Trucks on Delicious Rank Alternative Fuels Data Center: Largest U.S. Port Complex Embraces LNG for Heavy-Duty Trucks on Digg Find More places to share Alternative Fuels Data Center: Largest U.S. Port Complex Embraces LNG for Heavy-Duty Trucks on AddThis.com...

111

Car Based Transport and Transit Oriented Metropolitan —— Chinese Urban Motorization Pathways  

E-Print Network (OSTI)

Car Based Transport and Transit Oriented Metropolitan ——the automobile, the result is that car ownership has becomeof American families lack cars. In China, however, large

Ximing, Lu

2008-01-01T23:59:59.000Z

112

Inadvertent Weather Modification in Urban Areas: Lessons for Global Climate Change  

Science Conference Proceedings (OSTI)

Large metropolitan areas in North America, home to 65% of the nation's population, have created major changes in their climates over the past 150 years. The rate and amount of the urban climate change approximate those being predicted globally ...

Stanley A. Changnon

1992-05-01T23:59:59.000Z

113

Merger of Progress Energy and Duke Energy created largest U.S ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... of Duke Energy and Progress Energy created the largest electric utility in the United States (measured by number of customers).

114

Japan is the second largest net importer of fossil fuels in ...  

U.S. Energy Information Administration (EIA)

Japan ranked as the second largest net importer of fossil fuels in the world in 2012, trailing only China. This follows the Fukushima nuclear disaster in 2011, after ...

115

A Dual-Polarization-Radar-Based Assessment of the 8 May 2003 Oklahoma City Area Tornadic Supercell  

Science Conference Proceedings (OSTI)

On 8 May 2003, a tornadic supercell tracked through portions of the Oklahoma City, Oklahoma, metropolitan area and produced violent damage along portions of its path. This storm passed through the dense in situ radar network in central Oklahoma ...

Glen S. Romine; Donald W. Burgess; Robert B. Wilhelmson

2008-08-01T23:59:59.000Z

116

Statistics of the largest geomagnetic storms per solar cycle (18441993) D. M. Willis1,*  

E-Print Network (OSTI)

Statistics of the largest geomagnetic storms per solar cycle (1844±1993) D. M. Willis1,* , P. R- tistics to the ®rst, second and third largest geomagnetic storms per solar cycle for nine solar cycles is extended to fourteen solar cycles (1844±1993). The intensity of a geomagnetic storm is measured

Paris-Sud XI, Université de

117

Press Release Von Roll Inova to build the UK's largest energy-from-waste  

E-Print Network (OSTI)

Press Release Von Roll Inova to build the UK's largest energy-from-waste plant Zürich, September, 1 Roll Inova will build the UK's largest energy-from-waste facility. The contract is worth approximately and energy recovery. Apart from building and commissioning the plant, Von Roll Inova's scope of delivery also

Columbia University

118

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network (OSTI)

Monitoring of Direct Energy Consumption in Long-Term2007. “Constraining Energy Consumption of China’s LargestProgram: Reducing Energy Consumption of the 1000 Largest

Price, Lynn

2008-01-01T23:59:59.000Z

119

Climatological Analyses of Thunderstorms and Flash Floods in the Baltimore Metropolitan Region  

Science Conference Proceedings (OSTI)

The climatology of thunderstorms and flash floods in the Baltimore, Maryland, metropolitan region is examined through analyses of cloud-to-ground (CG) lightning observations from the National Lightning Detection Network (NLDN) and discharge ...

Alexandros A. Ntelekos; James A. Smith; Witold F. Krajewski

2007-02-01T23:59:59.000Z

120

Largest Solar Panel Installation at a U.S. University Goes Live |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Largest Solar Panel Installation at a U.S. University Goes Live Largest Solar Panel Installation at a U.S. University Goes Live Largest Solar Panel Installation at a U.S. University Goes Live November 4, 2010 - 6:10pm Addthis Sen. Menendez, Rep. Pascrell, John Lushetsky and other officials at the ribbon cutting. Sen. Menendez, Rep. Pascrell, John Lushetsky and other officials at the ribbon cutting. John Lushetsky A couple of weeks ago, I had the opportunity to participate in a ribbon cutting event for the largest solar installation on a United States university campus. It was an honor to stand with Senator Robert Menendez, Representative Bill Pascrell, university administrators, faculty and students to celebrate William Paterson University's new solar panels. This project will have the capacity to produce 3.5 megawatts of clean

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

PPPL and ITER: Lab teams support the world's largest fusion experiment...  

NLE Websites -- All DOE Office Websites (Extended Search)

ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and design By John Greenwald May 7, 2013 Tweet Widget Facebook Like Google Plus One PPPL...

122

Photos of One of the World's Largest Wind Farms | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photos of One of the World's Largest Wind Farms Photos of One of the World's Largest Wind Farms Photos of One of the World's Largest Wind Farms February 6, 2013 - 4:20pm Addthis 1 of 5 Image: Caithness Energy 2 of 5 Image: Caithness Energy 3 of 5 Image: Caithness Energy 4 of 5 Image: Caithness Energy 5 of 5 Image: Caithness Energy Arlington, OR Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Panoramic View See a landscape shot of the Shepherds Flat Wind Farm here America's clean energy industry continues to build momentum as Deputy Energy Secretary Daniel Poneman heads to Arlington, Oregon, to visit Shepherds Flat -- the world's largest financed wind farm. Located about 135 miles from Portland, Shepherds Flat generates up to 845 megawatts of wind power everyday -- enough clean electricity to power

123

Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility August 13, 2013 - 10:54am Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan, which calls for steady, responsible steps to reduce carbon pollution, the Energy Department today broke ground on the nation's largest federally-owned wind project at the Pantex Plant in Amarillo, Texas. Once completed, this five-turbine 11.5 megawatt project will power more than 60 percent of the plant with clean, renewable wind energy and reduce carbon emissions by over 35,000 metric tons per year - equivalent to taking 7,200 cars off the road. The Pantex Plant is the primary site for the assembly, disassembly,

124

Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility August 13, 2013 - 10:54am Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan, which calls for steady, responsible steps to reduce carbon pollution, the Energy Department today broke ground on the nation's largest federally-owned wind project at the Pantex Plant in Amarillo, Texas. Once completed, this five-turbine 11.5 megawatt project will power more than 60 percent of the plant with clean, renewable wind energy and reduce carbon emissions by over 35,000 metric tons per year - equivalent to taking 7,200 cars off the road. The Pantex Plant is the primary site for the assembly, disassembly,

125

Workers Complete Y-12's Largest Recovery Act Project Ahead of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12's Largest Recovery Act Project Ahead of Schedule More Documents & Publications Audit Report: OAS-RA-L-11-02 Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash...

126

When Will China Become the World's Largest Emitter of CO2?  

NLE Websites -- All DOE Office Websites (Extended Search)

When Will China Become the World's Largest Emitter of CO2? Speaker(s): Mark Levine Date: November 10, 1998 - 12:00pm Location: 90-3148 Seminar HostPoint of Contact: Richard Sextro...

127

NNSA Awards Contract for Largest Federal Wind Farm to Siemens Government  

National Nuclear Security Administration (NNSA)

Contract for Largest Federal Wind Farm to Siemens Government Contract for Largest Federal Wind Farm to Siemens Government Technologies, Inc. | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Field Offices > Welcome to the NNSA Production Office > NPO Press Releases > NNSA Awards Contract for Largest Federal Wind ... NNSA Awards Contract for Largest Federal Wind Farm to Siemens Government

128

Solar Spectral Irradiance under Clear Skies around a Major Metropolitan Area  

Science Conference Proceedings (OSTI)

This paper investigates the influence of gaseous pollutants and aerosol on the spectral composition of various segments of the solar spectrum in cloudless conditions. This investigation is done by using data of the spectral energy distribution of ...

C. P. Jacovides; Michael D. Steven; D. N. Asimakopoulos

2000-06-01T23:59:59.000Z

129

State and Metropolitan Area Impacts of the Offshore Outsourcing of Business Services and IT  

E-Print Network (OSTI)

US Services Jobs to Go Offshore." Forrester Research, IT37. Garry, G.C. 1999. "Offshore programmers: The wave of theInsight. The Impact of Offshore IT Software and Services

Kroll, Cynthia A.

2005-01-01T23:59:59.000Z

130

Real-time air quality monitoring through mobile sensing in metropolitan areas  

Science Conference Proceedings (OSTI)

Traditionally, pollution measurements are performed using expensive equipment at fixed locations or dedicated mobile equipment laboratories. This is a coarse-grained and expensive approach where the pollution measurements are few and far in-between. ... Keywords: air quality, mobile sensing, participatory sensing, pollution, social networks, urban sensing

Srinivas Devarakonda, Parveen Sevusu, Hongzhang Liu, Ruilin Liu, Liviu Iftode, Badri Nath

2013-08-01T23:59:59.000Z

131

An Analysis of the Impacts of British Transport Reforms on Transit Integration in the Metropolitan Areas  

E-Print Network (OSTI)

to Decide (Transport White Paper), Luxembourg: Office forSADOT), 1996. Transport White Paper, Pretoria. ________,Everyone (Transport White Paper), London: HMSO. ________,

Rivasplata, Charles Richard

2006-01-01T23:59:59.000Z

132

An Analysis Of Teacher Distribution Across Districts And Schools In The Detroit Metropolitan Area.  

E-Print Network (OSTI)

??The demand that today's schools shall produce better educational outcomes of their pupils is stronger than ever before, especially in front of the background of… (more)

Krispien, Christina Susanne

2010-01-01T23:59:59.000Z

133

Executive Summary The Morgantown metropolitan statistical area (MSA) outperformed both the state and the nation  

E-Print Network (OSTI)

Unemployment Rate 9.3 9.9 9.3 8.3 7.5 7.0 Federal Funds Rate 0.16 0.24 1.70 3.34 3.55 4.59 30-Year Fixed through 2014. Monetary policy is expected to remain accommodative through 2010. The federal funds rate infrastructure. Morgantown MSA Outlook FORECAST: 2010-2014 March 2010 BUREAU OF BUSINESS AND ECONOMIC RESEARCH

Mohaghegh, Shahab

134

Executive Summary The Morgantown metropolitan statistical area (MSA) continued to expand in 2011, adding jobs  

E-Print Network (OSTI)

to remain low until 2014. As Figure 4 shows, the federal funds rate is expected to stay in the 0.10 range until 2014, when it jumps to 1.23 percent. The federal funds rate is then expected to rise to 4 6 8 10 12 14 16 FederalFundsRate(%) Forecast Figure 4 The Federal Budget Deficit Declines While

Mohaghegh, Shahab

135

After the Fall: An Ex Post Characterization of Housing Price Declines Across Metropolitan Areas  

E-Print Network (OSTI)

Model: How Much Do House Prices Matter?" , Real EstateThe Subprime Crisis and House Price Appreciation", NationalT. 2005, "Assessing High House Prices: Bubbles, Fundamentals

Carson, Richard T; Dastrup, Samuel R.

2009-01-01T23:59:59.000Z

136

The influence of peer, community and religion on adolescent substance use in the Cape Metropolitan area.  

E-Print Network (OSTI)

??The aim of this study was to investigate the impact of peer, community and religious influences on alcohol and tobacco use among high school adolescents… (more)

Gana, Thandeka Christine

2004-01-01T23:59:59.000Z

137

Technology and policy options for reducing industrial air pollutants in the Mexico City Metropolitan Area  

E-Print Network (OSTI)

Technology plays an important role in dealing with air pollution and other environmental problems faced by developing and developed societies. This research examines if technological solutions alone, such as end-of-pipe ...

Vijay, Samudra, 1968-

2005-01-01T23:59:59.000Z

138

Technological analysis of options for generating electricity with solid waste fuel in the Bangkok metropolitan area  

SciTech Connect

A discussion of relatively current techniques for converting mixed municipal waste into electricity is presented. A brief review of the comparative capabilities of the relevant energy recovery systems is documented in this section. The discussion is focused on the principal system and technological strategies that would be best suited for the municipal solid waste recovery project in Thailand. Emphasis in the review was placed on mixed waste processing in a mass burning waterwalled system.

1985-09-01T23:59:59.000Z

139

Suppression and Dissipation of Weak Tornadoes in Metropolitan Areas: A Case Study of Greater London  

Science Conference Proceedings (OSTI)

Examination of the distribution of property-damaging tornadoes which have occurred in and around Greater London since 1830 reveals that the inner parts of the metropolis have experienced relatively few tornadoes during the past 150 years compared ...

Derek M. Elsom; G. Terence Meaden

1982-07-01T23:59:59.000Z

140

The Frequency of High-Impact Convective Weather Events in the Twin Cities Metropolitan Area, Minnesota  

Science Conference Proceedings (OSTI)

Thunderstorms frequently produce brief flooding or minor damage, though far fewer lead to major flooding and widespread or significant damage. Outbreaks of such storms exact large tolls on their victims and can compromise, or completely overwhelm,...

Kenneth A. Blumenfeld

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Formation of semivolatile inorganic aerosols in the Mexico City Metropolitan Area during the MILAGRO campaign  

E-Print Network (OSTI)

One of the most challenging tasks for chemical transport models (CTMs) is the prediction of the formation and partitioning of the major semi-volatile inorganic aerosol components (nitrate, chloride, ammonium) between the ...

Karydis, V. A.

142

Lessons Learned in Deploying the World s Largest Scale Lustre File System  

Science Conference Proceedings (OSTI)

The Spider system at the Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) is the world's largest scale Lustre parallel file system. Envisioned as a shared parallel file system capable of delivering both the bandwidth and capacity requirements of the OLCF's diverse computational environment, the project had a number of ambitious goals. To support the workloads of the OLCF's diverse computational platforms, the aggregate performance and storage capacity of Spider exceed that of our previously deployed systems by a factor of 6x - 240 GB/sec, and 17x - 10 Petabytes, respectively. Furthermore, Spider supports over 26,000 clients concurrently accessing the file system, which exceeds our previously deployed systems by nearly 4x. In addition to these scalability challenges, moving to a center-wide shared file system required dramatically improved resiliency and fault-tolerance mechanisms. This paper details our efforts in designing, deploying, and operating Spider. Through a phased approach of research and development, prototyping, deployment, and transition to operations, this work has resulted in a number of insights into large-scale parallel file system architectures, from both the design and the operational perspectives. We present in this paper our solutions to issues such as network congestion, performance baselining and evaluation, file system journaling overheads, and high availability in a system with tens of thousands of components. We also discuss areas of continued challenges, such as stressed metadata performance and the need for file system quality of service alongside with our efforts to address them. Finally, operational aspects of managing a system of this scale are discussed along with real-world data and observations.

Dillow, David A [ORNL; Fuller, Douglas [ORNL; Wang, Feiyi [ORNL; Oral, H Sarp [ORNL; Zhang, Zhe [ORNL; Hill, Jason J [ORNL; Shipman, Galen M [ORNL

2010-01-01T23:59:59.000Z

143

Bangkok area grid extensions go underground  

SciTech Connect

To reinforce electricity supply in the growing load center of Bangkok, the Metropolitan Electricity Authority is constructing a 230-kV underground, oil-filled cable system from Bangkapi substation, located on the outskirts of the city, to Chidlom substation in the heart of the city's business area. The project covers design, supply, and delivery to site of all the materials and equipments, installation, assembly of equipment and commissioning tests of the system.

1976-12-01T23:59:59.000Z

144

Intra-metropolitan health disparities in Canada: Studying how and why globalization matters, and what to do about it  

E-Print Network (OSTI)

of Supermarkets in Metropolitan Detroit. American Journal ofAn Economic Development Agenda for Detroit.Detroit: Widgetripper Press [on file with author]. Maher, K.

Schrecker, Ted

2007-01-01T23:59:59.000Z

145

Women and the high school principalship: metropolitan detroit principals' and superintendents' perceptions regarding barriers and facilitators for job attainment.  

E-Print Network (OSTI)

??WOMEN AND THE HIGH SCHOOL PRINCIPALSHIP: METROPOLITAN DETROIT PRINCIPALS' AND SUPERINTENDENTS' PERCEPTIONS REGARDING BARRIERS AND FACILITATORS FOR JOB ATTAINMENT by HEIDI SCHNABEL KATTULA 2011 Advisor:… (more)

Schnabel Kattula, Heidi

2011-01-01T23:59:59.000Z

146

The World's Largest Medical Center is Now Among the Most Energy Efficient  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The World's Largest Medical Center is Now Among the Most Energy The World's Largest Medical Center is Now Among the Most Energy Efficient The World's Largest Medical Center is Now Among the Most Energy Efficient May 18, 2011 - 2:52pm Addthis Thermal Energy Corporation's (TECO) Control Room | Photo Courtesy of the Texas Medical Center Thermal Energy Corporation's (TECO) Control Room | Photo Courtesy of the Texas Medical Center Lowell Sachs Lead Technology Partnership Specialist, Industrial Technologies Program Houston-based Texas Medical Center recently celebrated the completion of an energy-efficient, 48 megawatt combined heat and power system. The Medical Center projects that new system, funded in part by a $10 million Recovery Act grant, will help save about $200 million in energy costs over the next 15 years - a big number, even by Texas standards.

147

Caithness Shephards Flat: The Largest Wind Farm Project in the World |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Caithness Shephards Flat: The Largest Wind Farm Project in the Caithness Shephards Flat: The Largest Wind Farm Project in the World Caithness Shephards Flat: The Largest Wind Farm Project in the World October 12, 2010 - 5:04pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this project do? Wind farm project is projected to employ over 400 people in construction phase. It is expected to produce 845 megawatt wind-powered electrical generation, or enough wind energy to supply 235,000 homes. It will directly avoid 1,215,991 tons of carbon dioxide per year, roughly equivalent to the annual greenhouse gas emissions from 212,141 passenger vehicles. "One step at a time" This is a mantra that has been used in countless situations - trying to express the scale of a great challenge that may lie ahead, but emphasizing

148

The World's Largest Solar Project Finds a Home in California | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Largest Solar Project Finds a Home in California Largest Solar Project Finds a Home in California The World's Largest Solar Project Finds a Home in California October 27, 2010 - 3:49pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? The Blythe site will be the first of four solar thermal plant developments that will eventually produce 2,800 megawatts of electricity, powering up to two million homes in the region. The massive project will generate over 1,000 construction jobs, before requiring 295 permanent staff to maintain the solar thermal plant. Take the total solar thermal energy capacity in the U.S. - now imagine being able to double that with a single solar farm. That's the impact that the Blythe Solar Power Project is projected to have upon completion.

149

DOE Finalizes $1.45 Billion Loan Guarantee for One of the World's Largest  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finalizes $1.45 Billion Loan Guarantee for One of the World's Finalizes $1.45 Billion Loan Guarantee for One of the World's Largest Solar Generation Plants DOE Finalizes $1.45 Billion Loan Guarantee for One of the World's Largest Solar Generation Plants December 21, 2010 - 12:00am Addthis Washington D.C. - U.S. Energy Secretary Steven Chu today announced a $1.45 billion loan guarantee has been finalized for Abengoa Solar Inc.'s Solana project, the world's largest parabolic trough concentrating solar plant. Located near Gila Bend, Arizona, the 250-megawatt (MW) project is the first large-scale solar plant in the United States capable of storing energy it generates. Solana will produce enough energy to serve 70,000 households and will avoid the emissions of 475,000 tons of carbon dioxide per year compared to a natural gas burning power plant.

150

The World's Largest Medical Center is Now Among the Most Energy Efficient  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The World's Largest Medical Center is Now Among the Most Energy The World's Largest Medical Center is Now Among the Most Energy Efficient The World's Largest Medical Center is Now Among the Most Energy Efficient May 18, 2011 - 2:52pm Addthis Thermal Energy Corporation's (TECO) Control Room | Photo Courtesy of the Texas Medical Center Thermal Energy Corporation's (TECO) Control Room | Photo Courtesy of the Texas Medical Center Lowell Sachs Lead Technology Partnership Specialist, Industrial Technologies Program Houston-based Texas Medical Center recently celebrated the completion of an energy-efficient, 48 megawatt combined heat and power system. The Medical Center projects that new system, funded in part by a $10 million Recovery Act grant, will help save about $200 million in energy costs over the next 15 years - a big number, even by Texas standards.

151

Secretary Chu, Mayor Stanton to Unveil Phase Two of Nation's Largest  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu, Mayor Stanton to Unveil Phase Two of Nation's Secretary Chu, Mayor Stanton to Unveil Phase Two of Nation's Largest Solar Financing Program in Arizona Secretary Chu, Mayor Stanton to Unveil Phase Two of Nation's Largest Solar Financing Program in Arizona May 14, 2012 - 2:44pm Addthis News Media Contact (202) 586-4940 WASHINGTON - On Tuesday, May 15, 2012, U.S. Energy Secretary Steven Chu, Phoenix Mayor Greg Stanton, CEO of National Bank of Arizona Keith Maio, and Managing Director of National Bank of Arizona and Zion Energy Link Craig Robb will re-launch the nation's largest city-sponsored residential solar financing program. This will be the second phase of the Solar Phoenix program, made possible thanks to a $25 million commitment from National Bank of Arizona. Secretary Chu will recognize Arizona's leadership in the global race for

152

N Reactor Placed In Interim Safe Storage: Largest Hanford Reactor Cocooning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

N Reactor Placed In Interim Safe Storage: Largest Hanford Reactor N Reactor Placed In Interim Safe Storage: Largest Hanford Reactor Cocooning Project Now Complete N Reactor Placed In Interim Safe Storage: Largest Hanford Reactor Cocooning Project Now Complete June 14, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy Cameron.Hardy@rl.doe.gov 509-376-5365 Mark McKenna mmckenna@wch-rcc.com 509-372-9032 RICHLAND, WASH. - The U.S. Department of Energy's (DOE's) River Corridor contractor, Washington Closure Hanford, has completed placing N Reactor in interim safe storage, a process also known as "cocooning." N Reactor was the last of nine plutonium production reactors to be shut down at DOE's Hanford Site in southeastern Washington state. It was Hanford's longest-running reactor, operating from 1963 to 1987. "In the 1960's, N Reactor represented the future of energy in America.

153

Secretary Chu, Mayor Stanton to Unveil Phase Two of Nation's Largest  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu, Mayor Stanton to Unveil Phase Two of Nation's Chu, Mayor Stanton to Unveil Phase Two of Nation's Largest Solar Financing Program in Arizona Secretary Chu, Mayor Stanton to Unveil Phase Two of Nation's Largest Solar Financing Program in Arizona May 14, 2012 - 2:44pm Addthis News Media Contact (202) 586-4940 WASHINGTON - On Tuesday, May 15, 2012, U.S. Energy Secretary Steven Chu, Phoenix Mayor Greg Stanton, CEO of National Bank of Arizona Keith Maio, and Managing Director of National Bank of Arizona and Zion Energy Link Craig Robb will re-launch the nation's largest city-sponsored residential solar financing program. This will be the second phase of the Solar Phoenix program, made possible thanks to a $25 million commitment from National Bank of Arizona. Secretary Chu will recognize Arizona's leadership in the global race for

154

U.S. Partners with Canada to Renew Funding for World's Largest  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Partners with Canada to Renew Funding for World's Largest U.S. Partners with Canada to Renew Funding for World's Largest International CO2 Storage Project in Depleted Oil Fields U.S. Partners with Canada to Renew Funding for World's Largest International CO2 Storage Project in Depleted Oil Fields July 20, 2010 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) and Natural Resources Canada announced today a total of $5.2 million has been committed by the two governments to bring a benchmark carbon dioxide (CO2) injection project to successful conclusion in 2011. Natural Resources Canada (NRCan) and DOE will partner to renew funding for the International Energy Agency (IEA) Greenhouse Gas Weyburn-Midale CO2 Monitoring and Storage project. The renewed endorsements will allow the project's final phase to focus on best practices for the safe and permanent

155

The parabolic trough power plants Andasol 1 to 3 The largest solar power plants in the world  

E-Print Network (OSTI)

The parabolic trough power plants Andasol 1 to 3 The largest solar power plants in the world and solar-thermal power plants The first parabolic trough power plants in Europe ­ the world's largest solar

Laughlin, Robert B.

156

The Airy_1 process is not the limit of the largest eigenvalue in GOE matrix diffusion  

E-Print Network (OSTI)

Using a systematic approach to evaluate Fredholm determinants numerically, we provide convincing evidence that the Airy_1-process, arising as a limit law in stochastic surface growth, is not the limit law for the evolution of the largest eigenvalue in GOE matrix diffusion.

Folkmar Bornemann; Patrik L. Ferrari; Michael Prähofer

2008-06-20T23:59:59.000Z

157

DTU Informatics Profile DTU Informatics is by far the largest IT institute in  

E-Print Network (OSTI)

Research Teaching Technology DTU Informatics Profile #12;2 DTU Informatics is by far the largest. Current application topics of high importance are within climate, sustainable energy, health, and food-time systems, fault-tolerant and safety-critical systems, hardware/ software co-design, as well as a range

Mosegaard, Klaus

158

Understanding Controls on Historical River Discharge in the World’s Largest Drainage Basins  

Science Conference Proceedings (OSTI)

Long-term (20 yr) river discharge records from 30 of the world’s largest river basins have been used to characterize surface hydrologic flows in relation to net precipitation inputs, ocean climate teleconnections, and human land/water use ...

Christopher Potter; Pusheng Zhang; Steven Klooster; Vanessa Genovese; Shashi Shekhar; Vipin Kumar

2004-01-01T23:59:59.000Z

159

An experiment of the life support network for elderly people living in a rural area  

Science Conference Proceedings (OSTI)

In order to provide comfortable and safety life for every people in the world, information technologies will be useful in a rural area as well as in a metropolitan area. This paper proposes a new concept of Life Support Network (LSN) for elderly people ... Keywords: healthcare system, information network, information system, life support system, quality of life, safety network, telemedicine, welfare system

Jun Sasaki; Bayme Abaydulla; Keizo Yamada; Michiru Tanaka; Yutaka Funyu

2007-11-01T23:59:59.000Z

160

Metropolitan Washington Council of Governments National Capital Region Transportation Planning Board Summary of the State of the Practice and State of the Art of Modeling Peak Spreading  

E-Print Network (OSTI)

Traffic congestion in large metropolitan areas has become so acute that many commuters are adjusting their departure and/or arrival times for work and other destinations to avoid the worst of what is now called the “peak period”. The adjustments in departure times combined with travel times that can last beyond the peak hour have led to the phenomena of peak spreading, where the peak hour demand on a particular roadway exceeds the peak hour capacity and causes demand to shift to the “shoulders ” of the peak hour, or the hours adjacent to the peak hour. This situation is so pronounced in the TPB region, that most of the major freeways in the areas have peak periods that last from roughly 6 AM to 10 AM in the morning and 3 PM to 7 PM in the evening where stop and go traffic is common throughout. The Metropolitan Washington Council of Governments, National Capital Region Transportation Planning Board (TPB) engaged Vanasse Hangen Brustlin (VHB) to review and summarize the state of the practice and the state of the art with regards to modeling peak spreading at the MPO level. VHB began this effort by reviewing the recent MPO survey and following up with staff at large MPOs with characteristics similar

unknown authors

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Code for Largest Cosmological Simulations Ever on GPUs Is Gordon Bell  

NLE Websites -- All DOE Office Websites (Extended Search)

Code for Largest Cosmological Simulations Ever on GPUs Is Gordon Bell Code for Largest Cosmological Simulations Ever on GPUs Is Gordon Bell Finalist Katie Elyce Jones - November 05, 2013 Zoom-in showing the clustering of dark matter, including the effect of massive neutrinos, as simulated on Titan. HACC uses modules with algorithms specific to different supercomputing architectures Advancements to instruments in observatories and satellites can stretch the eye of the observer billions of light-years away to the fringes of the observable universe. Images from sky surveys of galaxies, quasars, and other astronomical objects offer scientists clues about how the distribution of mass is influenced by dark energy, the repelling force guiding the accelerated expansion of the universe. But all the telescopes at scientists' disposal cannot begin to canvas the

162

New report from White House outlines largest problems facing United States  

Open Energy Info (EERE)

New report from White House outlines largest problems facing United States New report from White House outlines largest problems facing United States energy grid Home > Blogs > Graham7781's blog Graham7781's picture Submitted by Graham7781(2002) Super contributor 16 August, 2013 - 12:21 energy grid OpenEI President Smart Grid United States White House On Monday, the White House released a new report that identifies the one of the biggest problems facing today's power grid. As prepared by the President's Council of Economic Advisers, the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability and the White House Office of Science and Technology, the report, entitled "Economic Benefits of Increasing Electric Grid Resilience to Weather Outages," states that the grid is extremely vulnerable to power outages due

163

Workers Complete Y-12's Largest Recovery Act Project Ahead of Schedule  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 OAK RIDGE, Tenn. - The Y-12 National Security Complex (Y-12) re- cently celebrated the early completion of its largest Recovery Act- funded project, emptying all legacy material from Alpha 5. The clea- nout of the 613,000-square-foot facility was completed at a cost of about $100 million one month ahead of schedule. Built in 1944, Alpha 5 is the largest building at Y-12, and was formerly used for uranium separation activities. With cleanout complete, Oak Ridge's Environmental Management (EM) program plans to demol- ish the structure to reduce the site's footprint and to gain access to previously unreachable mercury sources in the soil that need to be removed. A key to the project's accelerated completion was a modified approach for sorting and removing legacy waste from the facility. Custom boxes

164

A Simple Geometric Proof That Comonotonic Risks Have the Convex-largest Sum  

E-Print Network (OSTI)

In the recent actuarial literature, several proofs have been given for the fact that if a random vector (X 1 ,X 2 ,...,X n ) with given marginals has a comonotonic joint distribution, the sum X 1 +X 2 + X n is the largest possible in convex order. In this note we give a lucid proof of this fact, based on a geometric interpretation of the support of the comonotonic distribution.

R. Kaas; J. Dhaene; D. Vyncke; M.J. Goovaerts; M. Denuit; K. U. Leuven

2002-01-01T23:59:59.000Z

165

Rapid Deposition Technology Holds the Key for the World's Largest Solar Manufacturer (Fact Sheet)  

SciTech Connect

Thanks in part to years of collaboration with the National Renewable Energy Laboratory (NREL), a manufacturer of thin-film solar modules has grown from a small garage-type operation to become the world's largest manufacturer of solar modules. First Solar, Inc. now manufactures cadmium telluride (CdTe) solar modules throughout the world, but it began in Ohio as a small company called Solar Cells, Inc.

Not Available

2010-10-01T23:59:59.000Z

166

Volume 131, Number 2 tech.mit.edu Friday, February 4, 2011 Oldest and Largest  

E-Print Network (OSTI)

S. SteelerS Sports staff make their picks for Super Bowl XLV -- can Pittsburgh pull it off against Green Bay's brews ArtS, p. 12 aS CaIrO bUrNS... Tech columnists opine on the situation in the Middle East opiNioN, p of the na- tion's largest, richest, and most influential schools have a big impact on how this town works

167

THE CHALLENGE OF THE LARGEST STRUCTURES IN THE UNIVERSE TO COSMOLOGY  

Science Conference Proceedings (OSTI)

Large galaxy redshift surveys have long been used to constrain cosmological models and structure formation scenarios. In particular, the largest structures discovered observationally are thought to carry critical information on the amplitude of large-scale density fluctuations or homogeneity of the universe, and have often challenged the standard cosmological framework. The Sloan Great Wall (SGW) recently found in the Sloan Digital Sky Survey (SDSS) region casts doubt on the concordance cosmological model with a cosmological constant (i.e., the flat {Lambda}CDM model). Here we show that the existence of the SGW is perfectly consistent with the {Lambda}CDM model, a result that only our very large cosmological N-body simulation (the Horizon Run 2, HR2) could supply. In addition, we report on the discovery of a void complex in the SDSS much larger than the SGW, and show that such size of the largest void is also predicted in the {Lambda}CDM paradigm. Our results demonstrate that an initially homogeneous isotropic universe with primordial Gaussian random phase density fluctuations growing in accordance with the general relativity can explain the richness and size of the observed large-scale structures in the SDSS. Using the HR2 simulation we predict that a future galaxy redshift survey about four times deeper or with 3 mag fainter limit than the SDSS should reveal a largest structure of bright galaxies about twice as big as the SGW.

Park, Changbom [School of Physics, Korea Institute for Advanced Study, Heogiro 85, Seoul 130-722 (Korea, Republic of); Choi, Yun-Young; Kim, Sungsoo S.; Kim, Kap-Sung [Department of Astronomy and Space Science, Kyung Hee University, Gyeonggi 446-701 (Korea, Republic of); Kim, Juhan [Center for Advanced Computation, Korea Institute for Advanced Study, Heogiro 85, Seoul 130-722 (Korea, Republic of); Gott III, J. Richard, E-mail: yy.choi@khu.ac.kr [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544-1001 (United States)

2012-11-01T23:59:59.000Z

168

Rapid Deposition Technology Holds the Key for the World's Largest Manufacturer of Thin-Film Solar Modules (Fact Sheet)  

Science Conference Proceedings (OSTI)

First Solar, Inc. has been collaborating with NREL since 1991, advancing its thin-film cadmium telluride solar technology to grow from a startup company to become one of the world's largest manufacturers of solar modules, and the world's largest manufacturer of thin-film solar modules.

Not Available

2013-08-01T23:59:59.000Z

169

NREL: News - NREL Reports Soft Costs Now Largest Piece of Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

News Release NR-6313 News Release NR-6313 NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost December 2, 2013 Two detailed reports from the Energy Department's National Renewable Energy Laboratory (NREL) find that solar financing and other non-hardware costs - often referred to as "soft costs" - now comprise up to 64% of the total price of residential solar energy systems, reflecting how soft costs are becoming an increasingly larger fraction of the cost of installing solar. "The two new reports, along with previous reports, provide a comprehensive look at the full cost of installing solar, while delineating and quantifying the various contributors to that final cost," NREL analyst Barry Friedman said. The first new report, "Benchmarking Non-Hardware Balance-of-System (Soft)

170

Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

LNG LNG Update on the world's largest landfill gas to LNG plant Mike McGowan Head of Government Affairs Linde NA, Inc. June 12, 2012 $18.3 billion global sales A leading gases and engineering company Linde North America Profile $2.3 billion in gases sales revenue in North America in 2011 5,000 employees throughout the U.S., Canada and the Caribbean Supplier of compressed and cryogenic gases and technology Atmospheric gases - oxygen, nitrogen, argon Helium LNG and LPG Hydrogen Rare gases Plant engineering and supply LNG Petrochemicals Natural gas processing Atmospheric gases 3 Linde's alternative fuels portfolio Green hydrogen production - Magog, Quebec Renewable liquefied natural gas production - Altamont, CA Biogas fueling, LNG import terminal - Sweden

171

Where did the money go? The cost and performance of the largest commercial sector DSM program  

SciTech Connect

We calculate the total resource cost (TRC) of energy savings for 40 of the largest 1992 commercial sector DSM programs. The calculation includes the participating customer`s cost contribution to energy saving measures and all utility costs, including incentives received by customers, program administrative and overhead costs, measurement and evaluation costs, and shareholder incentives paid to the utility. All savings are based on post-program savings evaluations. We find that, on a savings-weighted basis, the programs have saved energy at a cost of 3.2 {cents}/kWh. Taken as a whole, the programs have been highly cost effective when compared to the avoided costs faced by the utilities when the programs were developed. We investigate reasons for differences in program costs and examine uncertainties in current utility practices for reporting costs and evaluating savings.

Eto, J.; Kito, S.; Shown, L.; Sonnenblick, R.

1995-12-01T23:59:59.000Z

172

Visualizing Diurnal Population Change in Urban Areas for Emergency Management  

SciTech Connect

There is an increasing need for a quick, simple method to represent diurnal population change in metropolitan areas for effective emergency management and risk analysis. Many geographic studies rely on decennial U.S. Census data that assume that urban populations are static in space and time. This has obvious limitations in the context of dynamic geographic problems. The U.S. Department of Transportation publishes population data at the transportation analysis zone level in fifteen-minute increments. This level of spatial and temporal detail allows for improved dynamic population modeling. This article presents a methodology for visualizing and analyzing diurnal population change for metropolitan areas based on this readily available data. Areal interpolation within a geographic information system is used to create twenty-four (one per hour) population surfaces for the larger metropolitan area of Salt Lake County, Utah. The resulting surfaces represent diurnal population change for an average workday and are easily combined to produce an animation that illustrates population dynamics throughout the day. A case study of using the method to visualize population distributions in an emergency management context is provided using two scenarios: a chemical release and a dirty bomb in Salt Lake County. This methodology can be used to address a wide variety of problems in emergency management.

Kobayashi, Tetsuo [University of Utah; Medina, Richard M [ORNL; Cova, Thomas [University of Utah

2011-01-01T23:59:59.000Z

173

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network (OSTI)

accounting for 33% of national energy consumption and 47% ofenergy consumption of these 1000 enterprises accounted for 33% of national andEnergy Consumption of the 1000 Largest Industrial Enterprises in China Lynn Price, Lawrence Berkeley National

Price, Lynn

2008-01-01T23:59:59.000Z

174

Protected Areas Stacy Philpott  

E-Print Network (OSTI)

Extraction from PEMEX #12;Biotechnology, Pharmaceutical Extraction · Largest seed company in Mexico · tree

Gottgens, Hans

175

Dissolved organic matter discharge in the six largest arctic rivers-chemical composition and seasonal variability  

E-Print Network (OSTI)

The vulnerability of the Arctic to climate change has been realized due to disproportionately large increases in surface air temperatures which are not uniformly distributed over the seasonal cycle. Effects of this temperature shift are widespread in the Arctic but likely include changes to the hydrological cycle and permafrost thaw, which have implications for the mobilization of organic carbon into rivers. The focus of this research was to describe the seasonal variability of the chemical composition of dissolved organic matter (DOM) in the six largest Arctic rivers (Yukon, Mackenzie, Ob, Yenisei, Lena and Kolyma) using optical properties (UV-Vis Absorbance and Fluorescence) and lignin phenol analysis. We also investigated differences between rivers and how watershed characteristics influence DOM composition. Dissolved organic carbon (DOC) concentrations followed the hydrograph with highest concentrations measured during peak river flow. The chemical composition of peak-flow DOM indicates a dominance of freshly leached material with elevated aromaticity, larger molecular weight, and elevated lignin yields relative to base-flow DOM. During peak flow, soils in the watershed are still frozen and snowmelt water follows a lateral flow path to the river channels. As the soils thaw, surface water penetrates deeper into the soil horizons leading to lower DOC concentrations and likely altered composition of DOM due to sorption and microbial degradation processes. The six rivers studied here shared a similar seasonal pattern and chemical composition. There were, however, large differences between rivers in terms of total carbon discharge reflecting the differences in watershed characteristics such as climate, catchment size, river discharge, soil types, and permafrost distribution. The large rivers (Lena, Yenisei), with a greater proportion of permafrost, exported the greatest amount of carbon. The Kolyma and Mackenzie exported the smallest amount of carbon annually, however, the discharge weighted mean DOC concentration was almost 2-fold higher in the Kolyma, again, indicating the importance of continuous permafrost. The quality and quantity of DOM mobilized into Arctic rivers appears to depend on the relative importance of surface run-off and extent of soil percolation. The relative importance of these is ultimately determined by watershed characteristics.

Rinehart, Amanda J.

2007-08-01T23:59:59.000Z

176

Analysis of positional aspects in the variation of real estate values in an italian southern metropolitan area  

Science Conference Proceedings (OSTI)

The paper show the use of a fuzzy weighting system to identify the correspondence of real estate value with main socio-physical characters of the urban tissue. The descriptor of the relationship with the real estate value is represented by a set of indicators ... Keywords: SatScan, estate value, fuzzy logic, semantic distance

Silvestro Montrone; Paola Perchinunno; Carmelo Maria Torre

2010-03-01T23:59:59.000Z

177

From Cars to Casinos: Global Pasts and Local Futures in the Detroit-Windsor Transnational Metropolitan Area [book chapter  

E-Print Network (OSTI)

Over the past twenty years the topics of globalization and the global city have come to dominate the intellectual dialogue on international planning and development. Related issues like poverty, neocolonialism, sustainability, ...

Ryan, Brent D.

178

MAKING DO: How Working Families in Seven U.S. Metropolitan Areas Trade Off Housing Costs and Commuting Times  

E-Print Network (OSTI)

worker households trip-maker DRIVE ALONE/Disabled trip-maker CARPOOL/Disabled trip-makerPUBLIC TRANSIT/Disabled trip-maker BIKE-PED/Disabled trip-

2006-01-01T23:59:59.000Z

179

DESIGN AND DEPLOYMENT OF A MOBILE SENSOR NETWORK FOR THE SURVEILLANCE OF NUCLEAR MATERIALS IN METROPOLITAN AREAS  

E-Print Network (OSTI)

surveillance of nuclear materials in major cities. Specifically, the network consists of a large numberDESIGN AND DEPLOYMENT OF A MOBILE SENSOR NETWORK FOR THE SURVEILLANCE OF NUCLEAR MATERIALS, Rutgers University Piscataway, NJ 08854 Piscataway, NJ 08854 Key Words: Nuclear Detection and Surveillance

180

Bay Area Transportation Decision Making in the Wake of ISTEA: Planning Styles in Conflict at the Metropolitan Transportation Commission  

E-Print Network (OSTI)

1998 STIP . . . . . . . . . . . . . . . . . . . . . . . .Improvement Program (STIP) by passing a package of billsImprovement Program (STIP), and what technical studies of

Innes, Judith E.; Gruber, Judith

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Access to jobs : transportation barriers faced by low-skilled autoless workers in U.S. metropolitan areas  

E-Print Network (OSTI)

One of the major concerns in today's urban labor market is spatial mismatch, the geographic separation between jobs and workers. Although numerous studies examine spatial mismatch, most of them focus on inner-city minorities, ...

Kawabata, Mizuki, 1972-

2002-01-01T23:59:59.000Z

182

Project identification and evaluation techniques for transportation infrastructure : assessing their role in metropolitan areas of developing countries  

E-Print Network (OSTI)

Project identification and evaluation of transportation infrastructure play a vital role in shaping and sustaining the forms of cities all over the world. These cities differ substantially in character and urban form and ...

Kumar, Vimal, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

183

Urban Canopy Modeling of the New York City Metropolitan Area: A Comparison and Validation of Single- and Multilayer Parameterizations  

Science Conference Proceedings (OSTI)

High-resolution numerical simulations are conducted using the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) with two different urban canopy parameterizations for a 23-day period in August 2005 for the New York City (NYC) ...

Teddy Holt; Julie Pullen

2007-05-01T23:59:59.000Z

184

From Shrinking Cities to Toshi no Shukush?: Identifying Patterns of Urban Shrinkage in the Osaka Metropolitan Area  

E-Print Network (OSTI)

Osaka], CNRS Editions. Beauregard R. 2003 Voices of Decline.from inner cities (Beauregard 2003). In mature industrial

Buhnik, Sophie

2010-01-01T23:59:59.000Z

185

Executive Summary The Morgantown metropolitan statistical area (MSA) continues to be a force for growth in West  

E-Print Network (OSTI)

year growth. Leisure and hospitality includes motels/hotels, bars and restaurants, as well as local at a slower pace, as investments in hotels/motels in the region generate future job gains. Finally Corporation www.bber.wvu.edu This conference is made possible by the following underwriters: Chesapeake Energy

Mohaghegh, Shahab

186

A Modification to the NOAH LSM to Simulate Heat Mitigation Strategies in the New York City Metropolitan Area  

Science Conference Proceedings (OSTI)

A new approach to simulating the urban environment with a mesocale model has been developed to identify efficient strategies for mitigating increases in surface air temperatures associated with the urban heat island (UHI). A key step in this ...

Barry H. Lynn; Toby N. Carlson; Cynthia Rosenzweig; Richard Goldberg; Leonard Druyan; Jennifer Cox; Stuart Gaffin; Lily Parshall; Kevin Civerolo

2009-02-01T23:59:59.000Z

187

NATURAL AREAS ANALYSIS AND EVALUATION: OAK RIDGE RESERVATION  

NLE Websites -- All DOE Office Websites (Extended Search)

Old home places. Largest known cave on the ORR. Uncommon animals; cave species. Geomagnetic research. Within BSR3-45. PP. CMA1. Grassy Creek Power Line Area (51a). Lower edge...

188

Metropolitan Undergraduate  

E-Print Network (OSTI)

opportunities, careers and employability 14 Learn in an enriching environment with outstanding facilities 15 Essential Information How to apply Entry requirements, English language, visa information 45 Support your course. We combine world-class learning and teaching facilities underpinned by a £350million

189

Introduction to Solar Energy Conversion Solar energy represents the largest energy input into the terrestrial system. Despite its  

E-Print Network (OSTI)

of the resource to allow supply to meet demand at all times. Photovoltaic energy conversion efficiency hasIntroduction to Solar Energy Conversion Solar energy represents the largest energy input the global energy demand on its own. The challenges that need to be addressed to make solar energy viable

Nur, Amos

190

Constraining Energy Consumption of China's Largest Industrial Enterprises Through the Top-1000 Energy-Consuming Enterprise Program  

E-Print Network (OSTI)

for 33% of national energy consumption, and 47% ofenergy consumption of these 1000 enterprises accounted for 33% of national andConsumption of China’s Largest Industrial Enterprises Through the Top-1000 Energy-Consuming Enterprise Program Lynn Price, Lawrence Berkeley National

Price, Lynn; Wang, Xuejun

2007-01-01T23:59:59.000Z

191

GHPGHPGHPGHPGHPsPayforThemselvessPayforThemselvessPayforThemselvessPayforThemselvessPayforThemselves The world's largest installation of geothermal heat  

E-Print Network (OSTI)

ThemselvessPayforThemselvessPayforThemselvessPayforThemselvessPayforThemselves The world's largest installation of geothermal heat pumps has proven that this technology can deliver big savings resulting from the retrofit. Geothermal heat pumps (GHPs) were installed in a comprehensive energy their qualifications to build and finance successful GHP-centered projects. (Geothermal heat pumps are also known

Oak Ridge National Laboratory

192

The effectiveness of jobs-housing balance as a strategy for reducing traffic congestion: a study of metropolitan Bangkok  

E-Print Network (OSTI)

Bangkok is widely known for its severe traffic congestion. The Thai government advocates the concept of jobs and housing balance (JHB) as a strategy for reducing traffic congestion in Metropolitan Bangkok. The basic idea is to decentralize the jobs to the neighboring provinces so that the commuters would live closer to their workplaces and thereby alleviate traffic congestion. The main purpose of this research is to examine empirically the effectiveness of JHB in reducing the severity of traffic congestion in the Bangkok Metropolitan Region. For this purpose, three data sets derived from the Bangkok Metropolitan Region Extended City Model (BMR-ECM) were obtained from the Office of the Commission for the Management of Land Traffic and the National Statistical Office of Thailand. Travel time index (TTI) was developed to measure congestion. In addition to JHB, a number of land use variables were included in the analysis. They are population density, school density, and job accessibility index. Multiple regression models of TTI as functions of JHB and other variables were estimated at two geographic scales: subsector and traffic analysis zone (TAZ). The study finds JHB is significant in influencing congestion levels in the Bangkok Metropolitan Region. Other influential factors include the population density, school density, and job accessibility. All of these factors are found to be statistically significant in explaining the variation of traffic congestion at the traffic analysis zone level, but not at the subsector level, however.

Lobyaem, Sonchai

2006-08-01T23:59:59.000Z

193

Rapid Deposition Technology Holds the Key for the World's Largest Solar Manufacturer (Fact Sheet)  

SciTech Connect

Thanks in part to years of collaboration with the National Renewable Energy Laboratory (NREL), a manufacturer of thin-film solar modules has grown from a small garage-type operation to become the world's largest manufacturer of solar modules. First Solar, Inc. now manufactures cadmium telluride (CdTe) solar modules throughout the world, but it began in Ohio as a small company called Solar Cells, Inc.

2010-10-01T23:59:59.000Z

194

Aggregation of U.S. Population Centers Using Climate Parameters Related to Building Energy Use  

Science Conference Proceedings (OSTI)

A technique for aggregating population centers into groups based on selected climate parameters is presented. Climate information on the 125 largest Standard Metropolitan Statistical Areas (SMSAs) in the United States is used to assign each SMSA ...

Brandt Andersson; William L. Carroll; Marlo R. Martin

1986-05-01T23:59:59.000Z

195

Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world's largest no-take marine protected area  

E-Print Network (OSTI)

are standard error bars. Figure 6. Change in reef fish species richness across seven countries in the Indian out in 2006 in all atolls (Tamelander et al., 2009) based on standard port survey methods (Hewitt

Purkis, Sam

196

Elevated Ozone Layers over the Seoul Metropolitan Region in Korea: Evidence for Long-Range Ozone Transport from Eastern China and Its Contribution to Surface Concentrations  

Science Conference Proceedings (OSTI)

Elevated layers of high ozone concentration were observed over the Seoul metropolitan region (SMR) in Korea by ozonesonde measurements during 6–9 June 2003. An analysis of the synoptic-scale meteorological features and backward trajectories ...

In-Bo Oh; Yoo-Keun Kim; Mi-Kyung Hwang; Cheol-Hee Kim; Soontae Kim; Sang-Keun Song

2010-02-01T23:59:59.000Z

197

Research Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Areas Areas Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

198

Research Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Print Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

199

University of California Davis West Village: The Largest Planned Net Zero Energy Community in the United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UC Davis West Village UC Davis West Village The largest planned "zero net energy" community in the United States CRED Webinar October 16, 2012 CENTRAL SOUTH WEST WEST VILLAGE Program Phase 1 Phase 2 Total Acres 130 acres 75 acres 205 acres Faculty/Staff Housing 343 units 132 units 475 units Student Housing Beds (including beds over mixed use) 1,980 beds 1,158 beds 3,000 beds Retail/Office Space up to 42,500 sf 0 up to 45,000 sf Los Rios Community College District 20,000 sf 0 60,000 sf Recreation Fields 7.61 acres 14.29 acres 21.90 acres Phasing Plan For-sale Faculty/Staff Housing (343 homes) Student Housing (1,980 beds) Mixed-Use (45,000 sf retail + apartment units above) Community College (60,000 sf) Site for Day Care/Preschool Water management & open space

200

Hanford Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Groundwater Contamination Areas Shrink as EM Exceeds Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals Hanford Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals June 26, 2013 - 12:00pm Addthis The 200 West Pump and Treat System is Hanford’s largest facility for treating contaminated groundwater. The 200 West Pump and Treat System is Hanford's largest facility for treating contaminated groundwater. A graphic showing the 200 West Pump and Treat plumes and well network. A graphic showing the 200 West Pump and Treat plumes and well network. The 200 West Pump and Treat System is Hanford's largest facility for treating contaminated groundwater. A graphic showing the 200 West Pump and Treat plumes and well network. RICHLAND, Wash. - Workers supporting groundwater cleanup for EM's

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Radiological Areas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Radiological Areas On July 13, 2000, the Secretary of Energy imposed an agency-wide suspension on the unrestricted release of scrap metal originating from radiological areas at Department of Energy (DOE) facilities for the purpose of recycling. The suspension was imposed in response to concerns from the general public and industry groups about the potential effects of radioactivity in or on material released in accordance with requirements established in DOE Order 5400.5, Radiation Protection of the Public and Environment. The suspension was to remain in force until DOE developed and implemented improvements in, and better informed the public about, its release process. In addition, in 2001 the DOE announced its intention to prepare a

202

Current Hybrid Electric Vehicle performance based on temporal data from the world`s largest HEV fleet  

SciTech Connect

The United States Department of Energy (DOE) procured new data collection equipment for the 42 vehicles registered to compete in the 1994 Hybrid Electric Vehicle (HEV) Challenge, increasing the amount of information gathered from the worlds largest fleet of HEVs. Data were collected through an on-board data storage device and then analyzed to determine effects of different hybrid control strategies on energy efficiency and driving performance. In this paper, the results of parallel hybrids versus series hybrids with respect to energy usage and acceleration performance are examined, and the efficiency and performance of the power-assist types are compared to that of the range-extender types. Because on-board and off-board electrical charging performance is critical to an efficient vehicle energy usage cycle, charging performance is presented and changes and improvements from the 1993 HEV Challenge are discussed. Peak power used during acceleration is presented and then compared to the electric motor manufacturer ratings. Improvements in data acquisition methods for the 1995 HEV Challenge are recommended.

Wipke, K.

1994-09-01T23:59:59.000Z

204

Revised Hydrogeology for the Suprabasalt Aquifer System, 200-West Area and Vicinity, Hanford Site, Washington  

SciTech Connect

The primary objective of this study was to refine the conceptual groundwater flow model for the 200-West Area and vicinity. This is the second of two reports that combine to cover the 200 Area Plateau, an area that holds the largest inventory of radionuclide and chemical waste on the Hanford Site.

Williams, Bruce A.; Bjornstad, Bruce N.; Schalla, Ronald; Webber, William D.

2002-05-14T23:59:59.000Z

205

"In terms of the long-term outlook for biomass and biofuels, the largest proportion of Business Insights industry survey respondents  

E-Print Network (OSTI)

"In terms of the long-term outlook for biomass and biofuels, the largest proportion of Business proportion of world fuel/demand will biofuels and biomass account for by 2017? Source: The Biofuels Market the market. However, these will clearly affect the global fuel market. · Biomass: Food or fuel? Increased

206

One of the Largest Pieces of Processing Equipment Removed from Plutonium Finishing Plant- Worker involvement led to safe completion of high-hazard work  

Energy.gov (U.S. Department of Energy (DOE))

RICHLAND, WASH. – U.S. Department of Energy (DOE) contractor CH2M HILL Plateau Remediation Company (CH2M HILL) announced today the successful removal of one of the largest, most complex pieces of equipment from the Plutonium Finishing Plant (PFP) at the Hanford Site in southeast Washington State.

207

of Western Area Power Administration's Cyber Security Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Area Power Western Area Power Administration's Cyber Security Program DOE/IG-0873 October 2012 U.S. Department of Energy Office of Inspector General Office of Audits & Inspections Department of Energy Washington, DC 20585 October 22, 2012 MEMORANDUM FOR THE UNDER SECRETARY OF ENERGY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "Management of Western Area Power Administration's Cyber Security Program" INTRODUCTION AND OBJECTIVE The Department of Energy's Western Area Power Administration (Western) markets and delivers hydroelectric power and related services to 15 states within the central and western United States. As the largest U.S. Power Marketing Administration, millions of households and

208

The Department's Controls over Leased Space in the National Capital Area |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Department's Controls over Leased Space in the National Capital The Department's Controls over Leased Space in the National Capital Area The Department's Controls over Leased Space in the National Capital Area The Department of Energy (Department) manages a sizeable inventory of real property, including both owned and leased properties. The Office of Management is responsible for the Department's real estate function, which includes acquisition by lease or purchase, inventory, utilization surveys, tracking and disposal of real property assets. In Fiscal Year 2007, the Department had approximately 10 million square feet of leased property at a cost of approximately $168 million. This included approximately 2.3 million square feet in the Washington, D.C. metropolitan area costing approximately $45.6 million. The Department's Controls over Leased Space in the National Capital Area

209

The Nevada Test Site as a Lunar Analog Test Area  

Science Conference Proceedings (OSTI)

The Nevada Test Site (NTS) is a large (1,350 square miles) secure site currently operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy and was established in 1951 to provide a venue for testing nuclear weapons. Three areas with a variety of elevation and geological parameters were used for testing, but the largest number of tests was in Yucca Flat. The Yucca Flat area is approximately 5 miles wide and 20 miles long and approximately 460 subsidence craters resulted from testing in this area. The Sedan crater displaced approximately 12 million tons of earth and is the largest of these craters at 1,280 feet across and 320 feet deep. The profiles of Sedan and the other craters offer a wide variety of shapes and depths that are ideally suited for lunar analog testing.

Sheldon Freid

2007-02-13T23:59:59.000Z

210

Record Flood-Producing Rainstorms of 17–18 July 1996 in the Chicago Metropolitan Area. Part II: Hydrometeorological Characteristics of the Rainstorms  

Science Conference Proceedings (OSTI)

The rainstorm on 17–18 July 1996 in northern Illinois produced three rainfall records. The 43.0-cm total storm rainfall at Aurora was the greatest point rainfall recorded for storm durations of 24 hours or less in this century in Illinois and ...

James R. Angel; Floyd A. Huff

1999-03-01T23:59:59.000Z

211

A qualitative study of the relationship between disability, access and service provisions on the quality of life of the disabled in the Greater Durban Metropolitan Area.  

E-Print Network (OSTI)

??Disabled people live in a complex world encompassing the same interests and desires that motivate the balance of the earth's population. We have always known… (more)

Konar, Devoshini.

2008-01-01T23:59:59.000Z

212

Evaluation of the Research-Version TMPA Rainfall Estimate at Its Finest Spatial and Temporal Scales over the Rome Metropolitan Area  

Science Conference Proceedings (OSTI)

The focus of this study is the evaluation of the research-version Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) rainfall product at its finest spatial and temporal resolutions (3-hourly and 0.25° × 0.25°) ...

Gabriele Villarini

2010-12-01T23:59:59.000Z

213

Formation Mechanisms of the Extreme High Surface Air Temperature of 40.9°C Observed in the Tokyo Metropolitan Area: Considerations of Dynamic Foehn and Foehnlike Wind  

Science Conference Proceedings (OSTI)

A record-breaking high surface air temperature in Japan of 40.9°C was observed on 16 August 2007 in Kumagaya, located 60 km northwest of central Tokyo. In this study, the formation mechanisms of this extreme high temperature event are ...

Yuya Takane; Hiroyuki Kusaka

2011-09-01T23:59:59.000Z

214

This project is to evaluate the benefits of the System-Wide Adaptive Ramp Metering (SWARM) system implemented in the Portland Metropolitan area as  

E-Print Network (OSTI)

Abstract This project is to evaluate the benefits of the System-Wide Adaptive Ramp Metering (SWARM-timed ramp metering to manage traffic congestion during the morning and afternoon peak periods. The SWARM implemented in stages since May 2005 and is operating on six of the seven metered freeway corridors. Results

Bertini, Robert L.

215

A Square Prism Urban Canopy Scheme for the NHM and Its Evaluation on Summer Conditions in the Tokyo Metropolitan Area, Japan  

Science Conference Proceedings (OSTI)

A single-layered square prism urban canopy (SPUC) scheme for the Japan Meteorological Agency nonhydrostatic model (NHM) was developed. This scheme considers the urban canopy layer with square prism–shaped buildings. The basic concept of this ...

Toshinori Aoyagi; Naoko Seino

2011-07-01T23:59:59.000Z

216

Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area  

E-Print Network (OSTI)

New primary and secondary organic aerosol modules have been added to PMCAMx, a three dimensional chemical transport model (CTM), for use with the SAPRC99 chemistry mechanism based on recent smog chamber studies. The new ...

Tsimpidi, A. P.

217

Bay Area Transit Agencies Propel Fuel Cell Buses Toward Commercialization (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes the Zero Emission Bay Area (ZEBA) demonstration of the next generation of fuel cells buses. Several transit agencies in the San Francisco Bay Area are participating in demonstrating the largest single fleet of fuel cell buses in the United States.

Not Available

2010-07-01T23:59:59.000Z

218

Dose to man from a hypothetical loss-of-coolant accident at the Rancho Seco Nuclear Power Plant  

Science Conference Proceedings (OSTI)

At the request of the Sacramento Municipal Utilities District, we used our computer codes, MATHEW and ADPIC, to assess the environmental impact of a loss-of-coolant accident at the Rancho Seco Nuclear Power Plant, about 40 kilometres southeast of Sacramento, California. Meteorological input was selected so that the effluent released by the accident would be transported over the Sacramento metropolitan area. With the release rates provided by the Sacramento Municipal Utilities District, we calculated the largest total dose for a 24-hour release as 70 rem about one kilometre northwest of the reactor. The largest total dose in the Sacramento metropolitan area is 780 millirem. Both doses are from iodine-131, via the forage-cow-milk pathway to an infant's thyroid. The largest dose near the nuclear plant can be minimized by replacing contaminated milk and by giving the cows dry feed. To our knowledge, there are no milk cows within the Sacramento metropolitan area.

Peterson, K.R.; Greenly, G.D.

1981-02-01T23:59:59.000Z

219

Australia world's largest coal exporter, fourth-largest liquefied ...  

U.S. Energy Information Administration (EIA)

In addition to coal, Australia is one of the world's leading exporters of liquefied natural gas (LNG). Australia produced 1.6 trillion cubic feet (Tcf) ...

220

Strategic Focus Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Focus Areas Lockheed Martin on behalf of Sandia National Laboratories will consider grant requests that best support the Corporation's strategic focus areas and reflect effective...

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Oldest and Largest The Weather  

E-Print Network (OSTI)

by internal tensions and crises: immigration, street violence, extremism of many stripes, anti- Semitic

222

Oldest and Largest The Weather  

E-Print Network (OSTI)

of the Security Council. Senate Kills ANWR Drilling Bill UJS ANGEU;S TI.\\IES WASHINGTON The Senate on Thursday

223

Oldest and Largest The Weather  

E-Print Network (OSTI)

system is gaining strength in the Gulf of Maine as it heads to Newfoundland today. This low is sending to eventually diminish the wind chill. A low pressure system could hit the region by Thursday night, possibly the fall of the Taliban merely allowed some regional warlords to reclaim power over their former fiefdoms

224

Oldest and Largest The Weather  

E-Print Network (OSTI)

Alliancesystem." Dolby did not have a vote and was not a member of the committee,although its audio system's audio system proposal were accepted - that is, if Philips Electronics' com- peting "Musicam" system were as the .result of having voted in favor of Do'lby's system, over Musicam and MIT's own system, on a technical

225

Oldest and Largest The Weather  

E-Print Network (OSTI)

the future of U.S. elections. Under the new federal election law, the "provisional ballot" system in use here to be relieved of their financial obligations and reclaim millions of dollars now held by the federal Treasury-imposed fines. The vote means the measure, which has been pushed by the credit card industry and opposed

226

Oldest and Largest The Weather  

E-Print Network (OSTI)

. Kolenbrander, chair of the Campus Dining Board, addresses concerns about the new dining system in the stock market. Bush's desire to privatize elements of the social security system - which faded from Security by introducing personal retirement accounts into the system," he said. The goal of retirement

227

The Changing Industrial Composition of Manufacturing-Based Regions, 1980-2005  

E-Print Network (OSTI)

2005. Unlike analyses of aggregate metropolitan job growth,analysis shows which metropolitan areas had high, low, or moderate job

Howard Wial

2008-01-01T23:59:59.000Z

228

Cost effectiveness of park-and-ride lots in the Puget Sound region area. Final report  

SciTech Connect

A cost-effectiveness evaluation and a cost-benefit analysis was performed on a park-and-ride system consisting of 26 park-and-ride lots in the Seattle metropolitan area. Costs and benefits of the system were examined with respect to the user, the community at large, and the public agencies responsible for providing for the community's transportation needs. Using survey and other data as input, a model was developed to calculate the total incurred trip costs of both the park-and-ride trip and the corresponding trip not involving the park-and-ride lot. General results indicated that the park-and-ride system in the Seattle area is cost effective.

Rutherford, G.S.; Wellander, C.A.

1986-10-01T23:59:59.000Z

229

Successful Completion of the Largest Shipment of Russian Research Reactor High-Enriched Uranium Spent Nuclear Fuel from Czech Republic to Russian Federation  

SciTech Connect

On December 8, 2007, the largest shipment of high-enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together on the Russian Research Reactor Fuel Return (RRRFR) Program in support of the Global Threat Reduction Initiative. In February 2003, RRRFR Program representatives met with the Nuclear Research Institute in Rež, Czech Republic, and discussed the return of their high-enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This paper discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.

Michael Tyacke; Dr. Igor Bolshinsky; Jeff Chamberlin

2008-07-01T23:59:59.000Z

230

Division/ Interest Area Information  

Science Conference Proceedings (OSTI)

Learn more about Divisions and Interest areas. Division/ Interest Area Information Membership Information achievement application award Awards distinguished division Divisions fats job Join lipid lipids Member member get a member Membership memori

231

DOE Designates Southwest Area and Mid-Atlantic Area National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 DOE Designates Southwest Area and Mid-Atlantic Area National...

232

DOE Designates Southwest Area and Mid-Atlantic Area National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric...

233

Geothermal br Resource br Area Geothermal br Resource br Area...  

Open Energy Info (EERE)

Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane...

234

PREFERRED WATERFLOOD MANAGEMENT PRACTICES FOR THE SPRABERRY TREND AREA  

SciTech Connect

The naturally fractured Spraberry Trend Area is one of the largest reservoirs in the domestic U.S. and is the largest reservoir in area extent in the world. Production from Spraberry sands is found over a 2,500 sq. mile area and Spraberry reservoirs can be found in an eight county area in west Texas. Over 150 operators produce 65,000 barrels of oil per day (bopd) from the Spraberry Trend Area from more than 9,000 production wells. Recovery is poor, on the order of 7-10% due to the profoundly complicated nature of the reservoir, yet billions of barrels of hydrocarbons remain. We estimate over 15% of remaining reserves in domestic Class III reservoirs are in Spraberry Trend Area reservoirs. This tremendous domestic asset is a prime example of an endangered hydrocarbon resource in need of immediate technological advancements before thousands of wells are permanently abandoned. This report describes the final work of the project, ''Preferred Waterflood Management Practices for the Spraberry Trend Area.'' The objective of this project is to significantly increase field-wide production in the Spraberry Trend in a short time frame through the application of preferred practices for managing and optimizing water injection. Our goal is to dispel negative attitudes and lack of confidence in water injection and to document the methodology and results for public dissemination to motivate waterflood expansion in the Spraberry Trend. This objective has been accomplished through research in three areas: (1) detail historical review and extensive reservoir characterization, (2) production data management, and (3) field demonstration. This provides results of the final year of the three-year project for each of the three areas.

David S. Schechter

2004-08-31T23:59:59.000Z

235

Material Disposal Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Disposal Areas Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a 1.25-acre, fenced, and radiologically controlled area situated on the eastern end of Delta Prime Mesa. Delta Prime Mesa is bounded by Delta Prime Canyon to the north and Los Alamos Canyon to the south.

236

Naval applications study areas  

SciTech Connect

This memorandum discusses study areas and items that will require attention for the naval studies of the utilization of nuclear propulsion in a submarine-based missile system.

Hadley, J. W.

1962-06-20T23:59:59.000Z

237

Boulder Area Transportation  

Science Conference Proceedings (OSTI)

... NIST does not endorse or guarantee the quality or services provided by these businesses. All Denver/Boulder area transportation companies. ...

2011-11-16T23:59:59.000Z

238

NIST Aperture area measurements  

Science Conference Proceedings (OSTI)

... particularly critical, for example, in climate and weather applications on ... of aperture areas used in exo-atmospheric solar irradiance measurements; ...

2011-11-03T23:59:59.000Z

239

Missouri | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Missouri Missouri Last updated on 2013-11-05 Current News The Division of Energy conducted a survey in June 2012 regarding adoption activities within the state. In summary large jurisdictions in Missouri have adopted 2009 IECC or equivalent codes: - St. Louis metropolitan area cities of St. Louis, St. Charles, O'Fallon, Florissant, Wildwood, Affton, Manchester, Clayton and other smaller cities adopted the 2009 IECC along with St. Louis County. - Kansas City adopted the 2012 IECC with many metropolitan area cities planning to follow. The Kansas City metropolitan area city of Independence, the 4th largest Missouri city, adopted the 2012 IECC with energy conservation provisions mostly optional but encouraged. - The 3rd largest Missouri city, Springfield, located in southwest Missouri,

240

Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology  

Science Conference Proceedings (OSTI)

Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the region’s deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the region’s large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

Dahowski, Robert T.; Bachu, Stefan

2007-03-05T23:59:59.000Z

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fueling area site assessment  

SciTech Connect

This report provides results of a Site Assessment performed at the Fuel Storage Area at Buckley ANG Base in Aurora, Colorado. Buckley ANG Base occupies 3,328 acres of land within the City of Aurora in Arapahoe County, Colorado. The Fuel Storage Area (also known as the Fueling Area) is located on the west side of the Base at the intersection of South Powderhorn Street and East Breckenridge Avenue. The Fueling Area consists of above ground storage tanks in a bermed area, pumps, piping, valves, an unloading stand and a fill stand. Jet fuel from the Fueling Area is used to support aircraft operations at the Base. Jet fuel is stored in two 200,000 gallon above ground storage tanks. Fuel is received in tanker trucks at the unloading stand located south and east of the storage tanks. Fuel required for aircraft fueling and other use is transferred into tanker trucks at the fill stand and transported to various points on the Base. The Fuel Storage Area has been in operation for over 20 years and handles approximately 7 million gallons of jet fuel annually.

1996-08-15T23:59:59.000Z

242

NSTB Summarizes Vulnerable Areas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NSTB Summarizes Vulnerable Areas NSTB Summarizes Vulnerable Areas Commonly Found in Energy Control Systems Experts at the National SCADA Test Bed (NSTB) discovered some common areas of vulnerability in the energy control systems assessed between late 2004 and early 2006. These vulnerabilities ranged from conventional IT security issues to specific weaknesses in control system protocols. The paper "Lessons Learned from Cyber Security Assessments of SCADA and Energy Management Systems" describes the vulnerabilities and recommended strategies for mitigating them. It should be of use to asset owners and operators, control system vendors, system integrators, and third-party vendors interested in enhancing the security characteristics of current and future products.

243

area | OpenEI  

Open Energy Info (EERE)

area area Dataset Summary Description These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (United States) as processed for use in the IMAGE model. The high resolution datasets were produced by the National Renewable Energy Laboratory (United States), Risø DTU National Laboratory (Denmark), the National Institute for Space Research (Brazil), and the Canadian Wind Energy Association. The data repr Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords area capacity clean energy international National Renewable Energy Laboratory

244

Geographic Area Month  

Gasoline and Diesel Fuel Update (EIA)

Fuels by PAD District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Sales to End Users Sales for...

245

3. Producing Areas  

U.S. Energy Information Administration (EIA)

The OCS area provides surplus capacity to meet major seasonal swings in the lower 48 States gas requirements. The ... Jun-86 9,878 17,706 1,460 19,166 9,288 51.5

246

Western Area Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Loveland Area Projects November 29-30, 2011 2 Agenda * Overview of Western Area Power Administration * Post-1989 Loveland Area Projects (LAP) Marketing Plan * Energy Planning and Management Program * Development of the 2025 PMI Proposal * 2025 PMI Proposal * 2025 PMI Comment Period & Proposal Information * Questions 3 Overview of Western Area Power Administration (Western) * One of four power marketing administrations within the Department of Energy * Mission: Market and deliver reliable, renewable, cost-based Federal hydroelectric power and related services within a 15-state region of the central and western U.S. * Vision: Provide premier power marketing and transmission services Rocky Mountain Region (RMR) is one of five regional offices 4 Rocky Mountain Region

247

300 AREA URANIUM CONTAMINATION  

SciTech Connect

{sm_bullet} Uranium fuel production {sm_bullet} Test reactor and separations experiments {sm_bullet} Animal and radiobiology experiments conducted at the. 331 Laboratory Complex {sm_bullet} .Deactivation, decontamination, decommissioning,. and demolition of 300 Area facilities

BORGHESE JV

2009-07-02T23:59:59.000Z

248

Decontamination & decommissioning focus area  

Science Conference Proceedings (OSTI)

In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

NONE

1996-08-01T23:59:59.000Z

249

APS Area Emergency Supervisors  

NLE Websites -- All DOE Office Websites (Extended Search)

Area Emergency Supervisors BUILDING AES AAES 400-EAA Raul Mascote Debra Eriksen-Bubulka 400-A (SPX) Tim Jonasson 400-Sectors 25-30 Reggie Gilmore 401-CLO Steve Downey Ed Russell...

250

Comparison of Permian basin giant oil fields with giant oil fields of other U. S. productive areas  

SciTech Connect

Covering over 40 million ac, the Permian basin is the fourth largest of the 28 productive areas containing giant fields. The 56 giant fields in the basin compare with the total of 264 giant oil fields in 27 other productive areas. Cumulative production figures of 18 billion bbl from the giant fields in the Permian basin are the largest cumulative production figures from giant fields in any of the productive areas. An estimated 1.9 billion bbl of remaining reserves in giant fields rank the basin third among these areas and the 19.9 billion bbl total reserves in giant fields in the basin are the largest total reserves in giant fields in any of the productive areas. The 1990 production figures from giant fields place the basin second in production among areas with giant fields. However, converting these figures to by-basin averages for the giant fields places the Permian basin 12th in field size among the areas with giant fields. Based on average reserves per well, the basin ranks 18th. Average 1990 production per giant field place the basin seventh and the average 1990 production per well in giant fields place the Permian basin 14th among the areas with giant fields.

Haeberle, F.R. (Consultant Geologist, Dallas, TX (United States))

1992-04-01T23:59:59.000Z

251

Operational Area Monitoring Plan  

Office of Legacy Management (LM)

' ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan for the DOE Field Office, Nevada (DOEINV) nuclear and non- nuclear testing activities associated with the Nevada Test Site (NTS). These Operational Area Monitoring Plans are prepared by various DOE support contractors, NTS user organizations, and federal or state agencies supporting DOE NTS operations. These plans and the parent

252

_MainReportGM  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Performed Electricity Consumed (AC MWh) Phoenix, AZ Metropolitan Area 524 59,284 456.28 Tucson, AZ Metropolitan Area 145 16,694 119.53 Los Angeles, CA Metropolitan Area 528...

253

Bay Area | Open Energy Information  

Open Energy Info (EERE)

Bay Area Bay Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Bay Area 1.1 Products and Services in the Bay Area 1.2 Research and Development Institutions in the Bay Area 1.3 Networking Organizations in the Bay Area 1.4 Investors and Financial Organizations in the Bay Area 1.5 Policy Organizations in the Bay Area Clean Energy Clusters in the Bay Area Products and Services in the Bay Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

254

Texas Area | Open Energy Information  

Open Energy Info (EERE)

Area Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Texas Area 1.1 Products and Services in the Texas Area 1.2 Research and Development Institutions in the Texas Area 1.3 Networking Organizations in the Texas Area 1.4 Investors and Financial Organizations in the Texas Area 1.5 Policy Organizations in the Texas Area Clean Energy Clusters in the Texas Area Products and Services in the Texas Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

255

Rockies Area | Open Energy Information  

Open Energy Info (EERE)

Rockies Area Rockies Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Rockies Area 1.1 Products and Services in the Rockies Area 1.2 Research and Development Institutions in the Rockies Area 1.3 Networking Organizations in the Rockies Area 1.4 Investors and Financial Organizations in the Rockies Area 1.5 Policy Organizations in the Rockies Area Clean Energy Clusters in the Rockies Area Products and Services in the Rockies Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

256

Oak Ridge National Laboratory is the U.S. Department of Energy's largest science and energy laboratory. With 4,400 employees and 3,900 research guests annually, the lab  

E-Print Network (OSTI)

Oak Ridge National Laboratory is the U.S. Department of Energy's largest science and energy, environment, and economic competitiveness by transforming the way U.S. industry uses energy.We are leaders: neutron science, energy, high-performance computing, systems biology, materials science at the nanoscale

257

Bruneau Known Geothermal Resource Area: an environmental analysis  

DOE Green Energy (OSTI)

The Bruneau Known Geothermal Resource Area (KGRA) is part of the Bruneau-Grandview thermal anomaly, the largest geothermal area in the western US. This part of Owyhee County is the driest part of Idaho. The KGRA is associated with the southern boundary fault zone of the Snake River Plain. Thermal water, produced from numerous artesian wells in the region, is supplied from two major aquifers. Ecological concerns include the threatened Astragalus mulfordiae and the numerous birds of prey nesting in the Snake River canyon northwest of the KGRA. Extensive geothermal development may strain the limited health care facilities in the county. Ethnographic information suggests that there is a high probability of prehistoric cultural materials being remnant in the Hot Spring locality.

Spencer, S.G.; Russell, B.F. (eds.)

1979-09-01T23:59:59.000Z

258

borrow_area.cdr  

Office of Legacy Management (LM)

information information at Weldon Spring, Missouri. This site is managed by the U.S. Department of Energy Office of Legacy Management. developed by the former WSSRAP Community Relations Department to provide comprehensive descriptions of key activities that took place throughout the cleanup process The Missouri Department of Conservation (MDC) approved a plan on June 9, 1995, allowing the U.S. Department of Energy (DOE) at the Weldon Spring Site Remedial Action Project (WSSRAP) to excavate nearly 2 million cubic yards of clay material from land in the Weldon Spring Conservation Area. Clay soil from a borrow area was used to construct the permanent disposal facility at the Weldon Spring site. Clay soil was chosen to construct the disposal facility because it has low permeability when

259

Focus Area Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

information provided was consolidated from the original five focus areas for the EM information provided was consolidated from the original five focus areas for the EM Corporate QA Board. The status of QAP/QIP approvals etc. was accurate at the time of posting; however, additional approvals may have been achieved since that time. If you have any questions about the information provided, please contact Bob Murray at robert.murray@em.doe.gov Task # Task Description Status 1.1 Develop a brief questionnaire to send out to both commercial and EM contractors to describe their current approach for identifying the applicable QA requirements for subcontractors, tailoring the requirements based upon risk, process for working with procurement to ensure QA requirements are incorporated into subcontracts, and implementing verification of requirement flow-down by their

260

Focus Area 3 Deliverables  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 - Commercial Grade item and Services 3 - Commercial Grade item and Services Dedication Implementation and Nuclear Services Office of Environmental Management And Energy Facility Contractors Group Quality Assurance Improvement Project Plan Project Focus Area Task # and Description Deliverable Project Area 3-Commercial Grade Item and Services Dedication 3.1-Complete a survey of selected EM contractors to identify the process and basis for their CGI dedication program including safety classification of items being dedicated for nuclear applications within their facilities Completed Survey Approvals: Yes/No/NA Project Managers: S. Waisley, D. Tuttel Yes Executive Committee: D. Chung, J. Yanek, N. Barker, D. Amerine No EM QA Corporate Board: No Energy Facility Contractors Group

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Argonne area restaurants  

NLE Websites -- All DOE Office Websites (Extended Search)

area restaurants area restaurants Amber Cafe 13 N. Cass Ave. Westmont, IL 60559 630-515-8080 www.ambercafe.net Argonne Guest House Building 460 Argonne, IL 60439 630-739-6000 www.anlgh.org Ballydoyle Irish Pub & Restaurant 5157 Main Street Downers Grove, IL 60515 630-969-0600 www.ballydoylepub.com Bd's Mongolian Grill The Promenade Shopping Center Boughton Rd. & I-355 Bolingbrook, IL 60440 630-972-0450 www.gomongo.com Branmor's American Grill 300 Veterans Parkway Bolingbrook, IL 60440 630-226-9926 www.branmors.com Buca di Beppo 90 Yorktown Convenience Center Lombard, IL 60148 630-932-7673 www.bucadibeppo.com California Pizza Kitchen 551 Oakbrook Center Oak Brook, IL 60523 630-571-7800 www.cpk.com Capri Ristorante 5101 Main Street Downers Grove, IL 60516 630-241-0695 www.capriristorante.com Carrabba's Italian Grill

262

EA-1177: Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Salvage/Demolition of 200 West Area, 200 East Area, and 7: Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area Steam Plants, Richland, Washington EA-1177: Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area Steam Plants, Richland, Washington SUMMARY This EA evaluates the environmental impacts for the proposal to salvage and demolish the 200 West Area, 200 East Area, and 300 Area steam plants and their associated steam distribution piping equipment, and ancillary facilities at the U.S. Department of Energy Hanford Site in Richland, Washington. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 21, 1996 EA-1177: Finding of No Significant Impact Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area Steam Plants October 21, 1996 EA-1177: Final Environmental Assessment

263

A Good Year for Solar in Phoenix Area | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Good Year for Solar in Phoenix Area A Good Year for Solar in Phoenix Area A Good Year for Solar in Phoenix Area October 8, 2010 - 3:33pm Addthis A Good Year for Solar in Phoenix Area Stephen Graff Former Writer & editor for Energy Empowers, EERE Suntech opens solar panel manufacturing plant in Goodyear, Arizona Will create up to 150 jobs by 2013; production capacity of 30 MW annually 7th solar plant this year in Phoenix area because of new state tax incentive A ribbon cutting Friday at a new solar plant in Goodyear, Ariz., marked the creation of another 75 green manufacturing jobs for the area and the first U.S. plant from the world's largest photovoltaic manufacturer, Suntech Power. Governor Jan Brewer, along with local officials and corporate leaders, including Goodyear's economic-development director Paula Ilardo, was

264

A Good Year for Solar in Phoenix Area | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Good Year for Solar in Phoenix Area A Good Year for Solar in Phoenix Area A Good Year for Solar in Phoenix Area October 8, 2010 - 3:33pm Addthis A Good Year for Solar in Phoenix Area Stephen Graff Former Writer & editor for Energy Empowers, EERE Suntech opens solar panel manufacturing plant in Goodyear, Arizona Will create up to 150 jobs by 2013; production capacity of 30 MW annually 7th solar plant this year in Phoenix area because of new state tax incentive A ribbon cutting Friday at a new solar plant in Goodyear, Ariz., marked the creation of another 75 green manufacturing jobs for the area and the first U.S. plant from the world's largest photovoltaic manufacturer, Suntech Power. Governor Jan Brewer, along with local officials and corporate leaders, including Goodyear's economic-development director Paula Ilardo, was

265

The Status of Wildlife in Protected Areas Compared to Non-Protected Areas of Kenya  

E-Print Network (OSTI)

We compile over 270 wildlife counts of Kenya’s wildlife populations conducted over the last 30 years to compare trends in national parks and reserves with adjacent ecosystems and country-wide trends. The study shows the importance of discriminating human-induced changes from natural population oscillations related to rainfall and ecological factors. National park and reserve populations have declined sharply over the last 30 years, at a rate similar to non-protected areas and country-wide trends. The protected area losses reflect in part their poor coverage of seasonal ungulate migrations. The losses vary among parks. The largest parks, Tsavo East, Tsavo West and Meru, account for a disproportionate share of the losses due to habitat change and the difficulty of protecting large remote parks. The losses in Kenya’s parks add to growing evidence for wildlife declines inside as well as outside African parks. The losses point to the need to quantify the performance of conservation policies and promote integrated landscape practices that combine parks with private and community-based measures.

David Western; Samantha Russell; Innes Cuthill

2008-01-01T23:59:59.000Z

266

Aquatic Natural Areas Analysis and Evaluation: Oak Ridge Reservation  

SciTech Connect

This report presents an assessment of the natural area value of eight Aquatic Natural Areas (ANAs) and seven Aquatic Reference Areas (ARAs) on the Oak Ridge Reservation (ORR) in Anderson and Roane Counties in east Tennessee. It follows a previous study in 2009 that analyzed and evaluated terrestrial natural areas on the Reservation. The purpose of both studies was to evaluate and rank those specially designated areas on the Reservation that contain sensitive species, special habitats, and natural area value. Natural areas receive special protections through established statutes, regulations, and policies. The ORR contains 33,542 acres (13,574 ha) administered by the Department of Energy. The surface waters of the Reservation range from 1st-order to 5th-order streams, but the majority of the streams recognized as ANAs and ARAs are 1st- and 2nd-order streams. East Fork Poplar Creek is a 4th-order stream and the largest watershed that drains Reservation lands. All the waters of the Reservation eventually reach the Clinch River on the southern and western boundaries of the ORR. All available information was collected, synthesized, and evaluated. Field observations were made to support and supplement the available information. Geographic information system mapping techniques were used to develop several quantitative attributes about the study areas. Narrative descriptions of each ANA and ARA and tables of numerical data were prepared. Criteria for assessment and evaluation were developed, and eight categories of factors were devised to produce a ranking system. The evaluation factors used in the ranking system were: (A) size of area, (B) percentage of watershed protected, (C) taxa present with protected status, (D) overall biotic diversity, (E) stream features, (F) water quality and use support ratings, (G) disturbance regime, and (H) other factors. Each factor was evaluated on a 5-point ranking scale (0-4), and each area received a composite score, where 32 was the maximum score possible. A highly ranked ANA or ARA is one that is large in size compared to other areas, includes a greater proportion of the watershed within Reservation boundaries, contains a number of status taxa at high densities, exhibits a high overall biodiversity, has very good or excellent habitat and water quality, is well protected and isolated from disturbances, and shows several other characteristics that contribute to natural area value. In this report, the term 'natural area' is loosely defined as a terrestrial or aquatic system that exhibits, or is thought to exhibit, high natural integrity and other significant natural values. The purpose of the present study is to evaluate and rank the currently recognized Aquatic Natural Areas (ANAs) and Aquatic Reference Areas (ARAs) on the Oak Ridge Reservation (ORR) for their natural area value. A previous study (Baranski 2009) analyzed, evaluated, and ranked terrestrial areas (Natural Areas [NAs], Reference Areas [RAs], and Cooperative Management Areas [CMAs]) on the ORR for natural area value, and a precise methodology for natural area evaluation was developed. The present study is intended to be a complement and companion to the terrestrial area study and attempts to employ a similar methodology for aquatic areas so that aquatic and terrestrial areas can be compared on a similar scale. This study specifically develops criteria for assessing the ecological, biodiversity, and natural area importance and significance of aquatic systems on the Reservation in a relevant and consistent manner. The information can be integrated into the Tennessee Natural Heritage Program (http://tn.gov/environment/na/nhp.shtml) system and applied to potential new aquatic areas. Further, the information will be useful in planning, management, and protection efforts on the ORR.

Baranski, Dr. Michael J. [Catawba College

2011-04-01T23:59:59.000Z

267

Large area bulk superconductors  

DOE Patents (OSTI)

A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

Miller, Dean J. (Darien, IL); Field, Michael B. (Jersey City, NJ)

2002-01-01T23:59:59.000Z

268

Western Area Power Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

v*Zy- i , . v*Zy- i , . r ,v * -i S # Af [, (e- . - o -A tl }r- 0 v-" l^~4~S J l ^-)^ I^U^ck iM clti ^ Area Power Administration Follow-up to Nov. 25, 2008 Transition Meeting Undeveloped Transmission Right-of-Way Western has very little undeveloped transmission right-of-way. There is a 7-mile right- of-way between Folsom, CA and Roseville, CA where Western acquired a 250' wide right-of-way but is only using half of it. Another line could be built parallel to Western's line to relieve congestion in the Sacramento area. In addition, Western has rights-of- way for many transmission lines that could be rebuilt to increase transmission capacity. For example, Western's Tracy-Livermore 230-kV line is a single circuit line but the existing towers could support a double circuit line. These rights-of-way would have to

269

Geothermal Areas | Open Energy Information  

Open Energy Info (EERE)

Geothermal Areas Geothermal Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Areas Geothermal Areas are specific locations of geothermal potential (e.g., Coso Geothermal Area). The base set of geothermal areas used in this database came from the 253 geothermal areas identified by the USGS in their 2008 Resource Assessment.[1] Additional geothermal areas were added, as needed, based on a literature search and on projects listed in the GTP's 2011 database of funded projects. Add.png Add a new Geothermal Resource Area Map of Areas List of Areas Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":2500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

270

Western Area Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Area Power Administration Customer Meeting The meeting will begin at 12:30 pm MST We have logged on early for connectivity purposes Please stand-by until the meeting begins Please be sure to call into the conference bridge at: 888-989-6414 Conf. Code 60223 If you have connectivity issues, please contact: 866-900-1011 1 Introduction ï‚— Welcome ï‚— Introductions ï‚— Purpose of Meeting â—¦ Status of the SLCA/IP Rate â—¦ SLCA/IP Marketing Plan â—¦ Credit Worthiness Policy â—¦ LTEMP EIS update â—¦ Access to Capital ï‚— Handout Materials http://www.wapa.gov/crsp/ratescrsp/default.htm 2 SLCA/IP Rate 3 1. Status of Repayment 2. Current SLCA/IP Firm Power Rate (SLIP-F9) 3. Revenue Requirements Comparison Table 4.SLCA/IP Rate 5. Next Steps

271

AREA RADIATION MONITOR  

DOE Patents (OSTI)

S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)

Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

1962-06-12T23:59:59.000Z

272

Program Areas | National Security | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs Initiatives Facilities Events and Conferences Supporting Organizations National Security Home | Science & Discovery | National Security | Program Areas SHARE Program...

273

Body Area Networks: A Survey  

Science Conference Proceedings (OSTI)

Advances in wireless communication technologies, such as wearable and implantable biosensors, along with recent developments in the embedded computing area are enabling the design, development, and implementation of body area networks. This class of ... Keywords: body area networks, survey, wireless sensor networks

Min Chen; Sergio Gonzalez; Athanasios Vasilakos; Huasong Cao; Victor C. Leung

2011-04-01T23:59:59.000Z

274

Fluxes, variability and sources of cadmium, lead, arsenic and mercury in dry atmospheric depositions in urban, suburban and rural areas  

SciTech Connect

In China's largest city, Shanghai, dry deposition fluxes of Cd, Pb, As and Hg were 137, 19 354, 2897 and 9.4 {mu}g m{sup -2} a{sup -1}, respectively in an urban area, intermediate in a suburban area, and 51.7, 5311, 1703 and 7.3 {mu}g m{sup -2} a{sup -1}, respectively in a rural area. Enrichment factors were Cd>Pb>As>Hg. Seasonal variations of metals differed: Pb and As were dominated by fossil fuel combustion, Cd was related to industrial pollution, and natural source controlled Hg levels.

Shi, G., E-mail: gt_shi@163.com [Polar Research Institute of China, Shanghai 200136 (China); Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Chen, Z. [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China)] [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Teng, J. [Shanghai Chongming Dongtan National Nature Reserve, Shanghai 202183 (China)] [Shanghai Chongming Dongtan National Nature Reserve, Shanghai 202183 (China); Bi, C.; Zhou, D.; Sun, C. [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China)] [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Li, Y. [Polar Research Institute of China, Shanghai 200136 (China)] [Polar Research Institute of China, Shanghai 200136 (China); Xu, S. [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China)] [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China)

2012-02-15T23:59:59.000Z

275

Geothermal resource area 9: Nye County. Area development plan  

DOE Green Energy (OSTI)

Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

Pugsley, M.

1981-01-01T23:59:59.000Z

276

Welcome,Families Oldest and Largest  

E-Print Network (OSTI)

Sports 32 #12;Page 2 THE TECH WORLD & NATION October 18, 2002 Vatican Opposes U.S. Church's Zero Tolerance Sex Abuse Rule North Korea Nuke Program Caught By U.S. Intelligence Six Palestinians Die in Gaza electricity prices, the first criminal charges stemming from the power crisis there two years ago. Timothy

277

SLAC National Accelerator Laboratory - World's Largest Digital...  

NLE Websites -- All DOE Office Websites (Extended Search)

on LSST's 8.4-meter primary mirror and its final site atop Cerro Pachn in northern Chile. As the primary component of all energy in the universe, the still-mysterious dark...

278

Largest irrigated district in the world  

SciTech Connect

The geothermal administration report includes the following: status of transfer of Imperial Valley Environmental Project, status of data cataloging and storage, findings of geothermal field inspections, status of cooperative efforts between industry and the County for commercialization, problems in local geothermal commercialization and recommendations for action, and the status of geothermal exploration development and production in the County. The number and types of applications for geothermal energy received, results of hearings on applications, permits issued, and EIR prepared are discussed. Other geothermal activities include the Department of Energy Region 9 meeting in April, the Department of Energy Direct Heat Developers meeting held in El Centro in April, and a new drilling company in the County. These are followed by the summary of events. (MHR)

1980-10-02T23:59:59.000Z

279

Good Luck on Finals! Oldest and Largest  

E-Print Network (OSTI)

experiences with gas cooled reactors devoted to military plutonium production. In the 1960s France altered its Romania did undertake some, at the time undeclared, research into plutonium separation, producing minute

280

Successful Startup of World Largest Greenfield Smelter  

Science Conference Proceedings (OSTI)

... Heat Exchanger Solution for Aluminium Off-Gas Cooling and Heat Recovery ... The Effect of Calcium Fluoride on Alumina Solubility in Low Temperature ...

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

JEA successfully completes world's largest CFB demonstration  

Science Conference Proceedings (OSTI)

JEA (formerly the Jacksonville Electric Authority) has successfully completed an eighth year landmark demonstration project that continues in baseload commercial operation. It scales up atmospheric fluidized-bed technology demonstration to the near-300-MW size, providing important data on a technology that can achieve > 90% SO{sub 2} removal and 60% NOx reduction at relatively high efficiencies and at costs comparable to those of conventional pulverized coal plants. The article recounts the history of the project. Performance tests showed a blend of coal and petcoke were most efficient as a feedstock. 3 figs.

NONE

2005-09-30T23:59:59.000Z

282

Oldest and Largest WEATHER, p. 2  

E-Print Network (OSTI)

Thunderstorm Haze Weather Systems High Pressure Low Pressure Hurricane Weather Fronts Trough Warm Front Cold of a measure known as the Disclose Act, which Van Hollen sponsored. --eric Lichtblau, The New York Times, and that fact has been quite apparent over the past week. Last Thursday, a deep low pressure system over

283

The 'world's largest' Inconel waterwall weld overlay  

SciTech Connect

An 11,000 square foot Inconel 655 weld repaired severe wastage caused by low NOx firing with coal/petcoke at the Belledune generating station in New Brunswick, Canada. 1 ref., 1 fig., 3 photos.

MacLean, K.; Fournier, E.; Gomez-Grande, J.; Scandroli, T. [New Brunswick Power Generation (United States)

2009-11-15T23:59:59.000Z

284

Property:AreaGeology | Open Energy Information  

Open Energy Info (EERE)

AreaGeology AreaGeology Jump to: navigation, search Property Name AreaGeology Property Type String Description A description of the area geology This is a property of type String. Subproperties This property has the following 22 subproperties: A Amedee Geothermal Area B Beowawe Hot Springs Geothermal Area Blue Mountain Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area Coso Geothermal Area D Desert Peak Geothermal Area D cont. Dixie Valley Geothermal Area E East Mesa Geothermal Area G Geysers Geothermal Area K Kilauea East Rift Geothermal Area L Lightning Dock Geothermal Area Long Valley Caldera Geothermal Area R Raft River Geothermal Area Roosevelt Hot Springs Geothermal Area S Salt Wells Geothermal Area Salton Sea Geothermal Area San Emidio Desert Geothermal Area

285

Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry  

E-Print Network (OSTI)

carbon dioxide emissions among metropolitan areas (generated by climate, commute patterns, and other factors),

Bardhan, Ashok; Kroll, Cynthia A.

2011-01-01T23:59:59.000Z

286

Metropolitan Landfill Abatement Act (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

A fee is imposed on operators of mixed municipal solid waste disposal facilities corresponding to the amount of waste taken in. Waste residue from recycling facilities or resource recovery...

287

Transforming Parks and Protected Areas  

E-Print Network (OSTI)

areas Lisa M. Campbell, Noella J. Gray; and Zoe A. Meletis In many countries, parks and protected areas construction of nature, conservation and development narratives, and alternative consumption - and what World' or 'developing' countries. One feature of political ecology has been an overriding emphasis

Bolch, Tobias

288

Data Administration Area: Date Issued  

E-Print Network (OSTI)

Policy Data Administration Policy Area: Date Issued: April, 1994 Title: Data Administration Last. INTRODUCTION The President established the Committee on Data Administration (CODA) in May, 1992, to advise him on policies in the area of data administration (attached as references Policy ADC 011 and TOR for CODA

Brownstone, Rob

289

Area 410 status and capabilities  

SciTech Connect

This memo is distributed to acquaint personnel with (a) the status of the various 410 areas, (b) time and personnel required to do optic experiments in the ``Dog`` area, and (c) status of the timing and firing system and conditions of cables from Able to Dog.

Bennett, W. P.

1962-10-01T23:59:59.000Z

290

Report Wildland Fire Area Hazard  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Wildland Fire Area Hazard Report Wildland Fire Area Hazard Report Wildland Fire Area Hazard Report wildland fire area hazards or incidents that are non-life threatening only. Call 911 for all emergencies that require immediate assistance. How to report wildland fire hazard Use the following form to report any wildland fire area hazards or incidents that are non-life threatening only. Call 911 for all emergencies that require immediate assistance. Fill out this form as completely as possible so we can better assess the hazard. All submissions will be assessed as promptly as possible. For assistance with a non-emergency situation, contact the Operations Support Center at 667-6211. Name (optional): Hazard Type (check one): Wildlife Sighting (check box if animal poses serious threat) Trails (access/egress)

291

Tech Area II: A History  

E-Print Network (OSTI)

This report documents the history of the major buildings in Sandia National Laboratories' Technical Area II. It was prepared in support of the Department of Energy's compliance with Section 106 of the National Historic Preservation Act. Technical Area II was designed and constructed in 1948 specifically for the final assembly of the non-nuclear components of nuclear weapons, and was the primary site conducting such assembly until 1952. Both the architecture and location of the oldest buildings in the area reflect their original purpose. Assembly activities continued in Area II from 1952 to 1957, but the major responsibility for this work shifted to other sites in the Atomic Energy Commission's integrated contractor complex. Gradually, additional buildings were constructed and the original buildings were modified. After 1960, the Area's primary purpose was the research and testing of high-explosive components for nuclear weapons. In 1994, Sandia constructed new facilities for work on hi...

Rebecca Ullrich; Rebecca Ullrich

1998-01-01T23:59:59.000Z

292

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration: First Results Report  

DOE Green Energy (OSTI)

This report documents the early implementation experience for the Zero Emission Bay Area (ZEBA) Demonstration, the largest fleet of fuel cell buses in the United States. The ZEBA Demonstration group includes five participating transit agencies: AC Transit (lead transit agency), Santa Clara Valley Transportation Authority (VTA), Golden Gate Transit (GGT), San Mateo County Transit District (SamTrans), and San Francisco Municipal Railway (Muni). The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service.

Chandler, K.; Eudy, L.

2011-08-01T23:59:59.000Z

293

Beyond the Inventory: An Interagency Collaboration to Reduce Greenhouse Gas Emissions in the Greater Yellowstone Area  

Science Conference Proceedings (OSTI)

As one of the largest, intact ecosystems in the continental United States, land managers within the Greater Yellowstone Area (GYA) have recognized the importance of compiling and understanding agency greenhouse gas (GHG) emissions. The 10 Federal units within the GYA have taken an active role in compiling GHG inventories on a unit- and ecosystem-wide level, setting goals for GHG mitigation, and identifying mitigation strategies for achieving those goals. This paper details the processes, methodologies, challenges, solutions, and lessons learned by the 10 Federal units within the GYA throughout this ongoing effort.

Kandt, A.; Hotchkiss, E.; Fiebig, M.

2010-10-01T23:59:59.000Z

294

Thermal energy storage application areas  

DOE Green Energy (OSTI)

The use of thermal energy storage in the areas of building heating and cooling, recovery of industrial process and waste heat, solar power generation, and off-peak energy storage and load management in electric utilities is reviewed. (TFD)

Not Available

1979-03-01T23:59:59.000Z

295

Accelerating Observers, Area and Entropy  

E-Print Network (OSTI)

We consider an explicit example of a process, where the entropy carried by radiation through an accelerating two-plane is proportional to the decrease in the area of that two-plane even when the two-plane is not a part of any horizon of spacetime. Our results seem to support the view that entropy proportional to area is possessed not only by horizons but by all spacelike two-surfaces of spacetime.

Makela, J

2005-01-01T23:59:59.000Z

296

Accelerating Observers, Area and Entropy  

E-Print Network (OSTI)

We consider an explicit example of a process, where the entropy carried by radiation through an accelerating two-plane is proportional to the decrease in the area of that two-plane even when the two-plane is not a part of any horizon of spacetime. Our results seem to support the view that entropy proportional to area is possessed not only by horizons but by all spacelike two-surfaces of spacetime.

Jarmo Makela

2005-06-16T23:59:59.000Z

297

Variable area fuel cell cooling  

DOE Patents (OSTI)

A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

Kothmann, Richard E. (Churchill Borough, PA)

1982-01-01T23:59:59.000Z

298

Geothermal resource area 3: Elko County. Area development plan  

DOE Green Energy (OSTI)

Geothermal Resource Area 3 includes all of the land in Elko County, Nevada. There are in excess of 50 known thermal anomalies in this area. Several of the more major resources have been selected for detailed description and evaluation in this Area Development Plan. The other resources are considered too small, too low in temperature, or too remote to be considered for development in the near future. Various potential uses of the energy found at each of the studied resource sites in Elko County were determined after evaluating the area's physical characteristics; the land ownership and land use patterns; existing population and projected growth rates; transportation facilities and energy requirements. These factors were then compared with resource site specific data to determine the most likely uses of the resource. The uses considered in this evaluation were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories several subdivisions were considered separately. It was determined that several of the geothermal resources evaluated in the Area Development Plan could be commercially developed. The potential for development for the seven sites considered in this study is summarized.

Pugsley, M.

1981-01-01T23:59:59.000Z

299

Geothermal resource area 11, Clark County area development plan  

DOE Green Energy (OSTI)

Geothermal Resource Area 11 includes all of the land in Clark County, Nevada. Within this area are nine geothermal anomalies: Moapa Area, Las Vegas Valley, Black Canyon, Virgin River Narrows, Roger's Springs, Indian Springs, White Rock Springs, Brown's Spring, and Ash Creek Spring. All of the geothermal resources in Clark County have relatively low temperatures. The highest recorded temperature is 145{sup 0}F at Black Canyon. The temperatures of the other resources range from 70 to 90{sup 0}F. Because of the low temperature of the resources and, for the most part, the distance of the resources from any population base, the potential for the development of the resources are considered to be somewhat limited.

Pugsley, M.

1981-01-01T23:59:59.000Z

300

Focus Areas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission » Focus Areas Mission » Focus Areas Focus Areas Safety With this focus on cleanup completion and risk reducing results, safety still remains the utmost priority. EM will continue to maintain and demand the highest safety performance. All workers deserve to go home as healthy as they were when they came to the job in the morning. There is no schedule or milestone worth any injury to the work force. Project Management EM is increasing its concentration on project management to improve its overall performance toward cost-effective risk reduction. This will involve review of validated project baselines, schedules, and assumptions about effective identification and management of risks. Instrumental in refining the technical and business approaches to project management are the senior

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

100 Areas CERCLA ecological investigations  

SciTech Connect

This document reports the results of the field terrestrial ecological investigations conducted by Westinghouse Hanford Company during fiscal years 1991 and 1992 at operable units 100-FR-3, 100-HR-3, 100-NR-2, 100-KR-4, and 100-BC-5. The tasks reported here are part of the Remedial Investigations conducted in support of the Comprehensive Environmental Response, compensation, and Liability Act of 1980 studies for the 100 Areas. These ecological investigations provide (1) a description of the flora and fauna associated with the 100 Areas operable units, emphasizing potential pathways for contaminants and species that have been given special status under existing state and/or federal laws, and (2) an evaluation of existing concentrations of heavy metals and radionuclides in biota associated with the 100 Areas operable units.

Landeen, D.S.; Sackschewsky, M.R.; Weiss, S.

1993-09-01T23:59:59.000Z

302

Manhattan Project: Tech Area Gallery  

Office of Scientific and Technical Information (OSTI)

TECH AREA GALLERY (LARGE) TECH AREA GALLERY (LARGE) Los Alamos: The Laboratory Resources > Photo Gallery All of the photographs below are of the "Tech Area" at Los Alamos during or shortly after the wartime years. If this page is taking a long time to load, click here for a photo gallery with smaller versions of the same images. There is a map of the Tech Area at the top and again at the bottom. The first image below is courtesy the Los Alamos National Laboratory. All of the other photographs are reproduced from Edith C. Truslow, with Kasha V. Thayer, ed., Manhattan Engineer District: Nonscientific Aspects of Los Alamos Project Y, 1942 through 1946 (Los Alamos, NM: Manhattan Engineer District, ca. 1946; first printed by Los Alamos Scientific Laboratory as LA-5200, March 1973; reprinted in 1997 by the Los Alamos Historical Society). This is a reprint of an unpublished volume originally written in 1946 by 2nd Lieutenant Edith C. Truslow, a member of the Women's Army Corps, as a contribution to the Manhattan Engineer District History.

303

"Arab Americans and Segmented Assimilation: Looking Beyond the Theory to the Reality in the Detroit Metro Area".  

E-Print Network (OSTI)

??This thesis aims to apply Segmented Assimilation Theory to the Arab-American community in Metropolitan Detroit. Segmented assimilation theory relates to second-generation immigrants, and proposes three… (more)

Weaver, Kristin

2010-01-01T23:59:59.000Z

304

CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA  

NLE Websites -- All DOE Office Websites (Extended Search)

r r r r r t r r t r r r * r r r r r r CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA ,FACILITY RECORDS 1970 UNITED STATES ATOMIC ENERGY COMMlSSION NEVADA OPERATIONS OFFICE LAS VEGAS, NEVADA September 1970 Prepared By Holmes & Narver. Inc. On-Continent Test Division P.O. Box 14340 Las Vegas, Nevada 338592 ...._- _._--_ .. -- - - - - - - .. .. - .. - - .. - - - CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA FACILITY RECORDS 1970 This page intentionally left blank - - .. - - - PURPOSE This facility study has been prepared in response to a request of the AEC/NVOO Property Management Division and confirmed by letter, W. D. Smith to L. E. Rickey, dated April 14, 1970, STS Program Administrative Matters. The purpose is to identify each facility, including a brief description, the acquisition cost either purchase and/or construction, and the AE costs if identi- fiable. A narrative review of the history of the subcontracts

305

RHIC | New Areas of Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Area of Physics A New Area of Physics RHIC has created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. Instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions is more like a liquid. Quarks Gluons and quarks Ions Ions about to collide Impact Just after collision Perfect Liquid The "perfect" liquid hot matter Hot Nuclear Matter A review article in the journal Science describes groundbreaking discoveries that have emerged from RHIC, synergies with the heavy-ion program at the Large Hadron Collider, and the compelling questions that will drive this research forward on both sides of the Atlantic.

306

Variable area light reflecting assembly  

DOE Patents (OSTI)

Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

Howard, T.C.

1986-12-23T23:59:59.000Z

307

Variable area light reflecting assembly  

DOE Patents (OSTI)

Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

Howard, Thomas C. (Raleigh, NC)

1986-01-01T23:59:59.000Z

308

Carlsbad Area Office Executive Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

June 1998 June 1998 Carlsbad Area Office Executive Summary The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other activities associated with the National TRU Program (NTP). The CAO develops and directs implementation of the TRU waste program, and assesses compliance with the program guidance, as well as the commonality of activities and assumptions among all TRU waste sites. A cornerstone of the Department of Energy's (DOE) national cleanup strategy, WIPP is

309

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area (Redirected from Kilauea Summit Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

310

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area (Redirected from Blackfoot Reservoir Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

311

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area (Redirected from Wister Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

312

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area (Redirected from Teels Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

313

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area (Redirected from Truckhaven Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

314

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area (Redirected from Mokapu Penninsula Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

315

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

316

Innovation investment area: Technology summary  

Science Conference Proceedings (OSTI)

The mission of Environmental Management`s (EM) Office of Technology Development (OTD) Innovation Investment Area is to identify and provide development support for two types of technologies that are developed to characterize, treat and dispose of DOE waste, and to remediate contaminated sites. They are: technologies that show promise to address specific EM needs, but require proof-of-principle experimentation; and (2) already proven technologies in other fields that require critical path experimentation to demonstrate feasibility for adaptation to specific EM needs. The underlying strategy is to ensure that private industry, other Federal Agencies, universities, and DOE National Laboratories are major participants in developing and deploying new and emerging technologies. To this end, about 125 different new and emerging technologies are being developed through Innovation Investment Area`s (IIA) two program elements: RDDT&E New Initiatives (RD01) and Interagency Agreements (RD02). Both of these activities are intended to foster research and development partnerships so as to introduce innovative technologies into other OTD program elements for expedited evaluation.

Not Available

1994-03-01T23:59:59.000Z

317

A gravity model for the Coso geothermal area, California  

DOE Green Energy (OSTI)

Two- and three-dimensional gravity modeling was done using gridded Bouguer gravity data covering a 45 {times} 45 km region over the Coso geothermal area in an effort to identify features related to the heat source and to seek possible evidence for an underlying magma chamber. Isostatic and terrain corrected Bouguer gravity data for about 1300 gravity stations were obtained from the US Geological Survey. After the data were checked, the gravity values were gridded at 1 km centers for the area of interest centered on the Coso volcanic field. Most of the gravity variations can be explained by two lithologic units: (1) low density wedges of Quarternary alluvium with interbedded thin basalts (2.4 g/cm{sup 3}) filling the Rose Valley and Coso Basin/Indian Wells Valley, and (2) low density cover of Tertiary volcanic rocks and intercalated Coso Formation (2.49 g/cm{sup 3}). A 3-D iterative approach was used to find the thicknesses of both units. The gravity anomaly remaining after effects from Units 1 and 2 are removed is a broad north-south-trending low whose major peak lies 5 km north of Sugarloaf Mountain, the largest of the less than 0.3 m.y. old rhyolite domes in the Coso Range. Most of this residual anomaly can be accounted for by a deep, low-density (2.47 g/cm{sup 3}) prismatic body extending from 8 to about 30 km below the surface. While some of this anomaly might be associated with fractured Sierran granitic rocks, its close correlation to a low-velocity zone with comparable geometry suggests that the residual anomaly is probably caused a large zone of partial melt underlying the rhyolite domes of the Coso Range. 12 refs., 9 figs.

Feighner, M.A.; Goldstein, N.E.

1990-08-01T23:59:59.000Z

318

Tanks focus area. Annual report  

SciTech Connect

The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM`s technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE`s four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program.

Frey, J.

1997-12-31T23:59:59.000Z

319

History of 100-B Area  

SciTech Connect

The initial three production reactors and their support facilities were designated as the 100-B, 100-D, and 100-F areas. In subsequent years, six additional plutonium-producing reactors were constructed and operated at the Hanford Site. Among them was one dual-purpose reactor (100-N) designed to supply steam for the production of electricity as a by-product. Figure 1 pinpoints the location of each of the nine Hanford Site reactors along the Columbia River. This report documents a brief description of the 105-B reactor, support facilities, and significant events that are considered to be of historical interest. 21 figs.

Wahlen, R.K.

1989-10-01T23:59:59.000Z

320

Carlsbad Area Office strategic plan  

SciTech Connect

This edition of the Carlsbad Area Office Strategic Plan captures the U.S. Department of Energy`s new focus, and supercedes the edition issued previously in 1995. This revision reflects a revised strategy designed to demonstrate compliance with environmental regulations earlier than the previous course of action; and a focus on the selected combination of scientific investigations, engineered alternatives, and waste acceptance criteria for supporting the compliance applications. An overview of operations and historical aspects of the Waste Isolation Pilot Plant near Carlsbad, New Mexico is presented.

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

322

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

323

Area Science Park | Open Energy Information  

Open Energy Info (EERE)

Area Science Park Jump to: navigation, search Name Area Science Park Place Italy Sector Services Product General Financial & Legal Services ( Government Public sector )...

324

Southwest Area Corridor Map | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Map DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 FACT SHEET: Designation of National Interest Electric...

325

Southwest Area Corridor Map | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Map DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 Proposed Energy Transport Corridors: West-wide energy...

326

White Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

White Mountains Geothermal Area White Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: White Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Hampshire Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

327

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

328

Honokowai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Honokowai Geothermal Area Honokowai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Honokowai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

329

Redevelopment of Areas Needing Redevelopment Generally (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

Local redevelopment commissions may be established to oversee areas needing redevelopment (previously known as blighted, deteriorated, or deteriorating areas). The clearance, replanning, and...

330

Hydrogen, Fuel Cells, & Infrastructure - Program Areas - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel cell Welcome> Program Areas> Program Areas Hydrogen, Fuel Cells & Infrastructure Production & Delivery | Storage | Fuel Cell R&D | Systems Integration & Analysis | Safety...

331

Aquifer Protection Area Land Use Regulations (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations describe allowable activities within aquifer protection areas, the procedure by which such areas are delineated, and relevant permit requirements. The regulations also describe...

332

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

333

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

334

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lualualei Valley Geothermal Area (Redirected from Lualualei Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

335

Manhattan Project: Tech Area Gallery  

Office of Scientific and Technical Information (OSTI)

SMALL) SMALL) Los Alamos: The Laboratory Resources > Photo Gallery All of the photographs below are of the "Tech Area" at Los Alamos during or shortly after the wartime years. If you have a fast internet connection, you may wish to click here for a photo gallery with larger versions of the same images. There is a map of the Tech Area at the top and again at the bottom. The first image below is courtesy the Los Alamos National Laboratory. All of the other photographs are reproduced from Edith C. Truslow, with Kasha V. Thayer, ed., Manhattan Engineer District: Nonscientific Aspects of Los Alamos Project Y, 1942 through 1946 (Los Alamos, NM: Manhattan Engineer District, ca. 1946; first printed by Los Alamos Scientific Laboratory as LA-5200, March 1973; reprinted in 1997 by the Los Alamos Historical Society). This is a reprint of an unpublished volume originally written in 1946 by 2nd Lieutenant Edith C. Truslow, a member of the Women's Army Corps, as a contribution to the Manhattan Engineer District History.

336

Chena Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chena Geothermal Area Chena Geothermal Area (Redirected from Chena Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Technical Problems and Solutions 8 Geology of the Area 9 Heat Source 10 Geofluid Geochemistry 11 NEPA-Related Analyses (1) 12 Exploration Activities (9) 13 References Map: Chena Geothermal Area Chena Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Fairbanks, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

337

Mapping Population onto Priority Conservation Areas  

E-Print Network (OSTI)

areas and (in every case except Mesoamerican Reef and Namib-Karoo) are higher in areas within aggregated. Rural areas in Namib-Karoo have the highest total fertility rates (mean rate of 6.2). Areas inside / Namib Karoo (p

Lopez-Carr, David

338

Boulder Area Directions and Transportation Information  

Science Conference Proceedings (OSTI)

Boulder Area Directions and Transportation Information. NIST Boulder Visitor Check-In & Parking. Transportation. ...

2013-02-27T23:59:59.000Z

339

Geothermal resource evaluation of the Yuma area  

DOE Green Energy (OSTI)

This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

Poluianov, E.W.; Mancini, F.P.

1985-11-29T23:59:59.000Z

340

Ashland Area Support Substation Project  

Science Conference Proceedings (OSTI)

The Bonneville Power Administration (BPA) provides wholesale electric service to the City of Ashland (the City) by transferring power over Pacific Power Light Company's (PP L) 115-kilovolt (kV) transmission lines and through PP L's Ashland and Oak Knoll Substations. The City distributes power over a 12.5-kV system which is heavily loaded during winter peak periods and which has reached the limit of its ability to serve peak loads in a reliable manner. Peak loads under normal winter conditions have exceeded the ratings of the transformers at both the Ashland and Oak Knoll Substations. In 1989, the City modified its distribution system at the request of PP L to allow transfer of three megawatts (MW's) of electric power from the overloaded Ashland Substation to the Oak Knoll Substation. In cooperation with PP L, BPA installed a temporary 6-8 megavolt-amp (MVA) 115-12.5-kV transformer for this purpose. This additional transformer, however, is only a temporary remedy. BPA needs to provide additional, reliable long-term service to the Ashland area through additional transformation in order to keep similar power failures from occurring during upcoming winters in the Ashland area. The temporary installation of another 20-MVA mobile transformer at the Ashland Substation and additional load curtailment are currently being studied to provide for sustained electrical service by the peak winter period 1992. Two overall electrical plans-of-service are described and evaluated in this report. One of them is proposed for action. Within that proposed plan-of-service are location options for the substation. Note that descriptions of actions that may be taken by the City of Ashland are based on information provided by them.

Not Available

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Obsidian Cliff Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

342

Chena Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chena Geothermal Area Chena Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Technical Problems and Solutions 8 Geology of the Area 9 Heat Source 10 Geofluid Geochemistry 11 NEPA-Related Analyses (1) 12 Exploration Activities (9) 13 References Map: Chena Geothermal Area Chena Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Fairbanks, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

343

Southern CA Area | Open Energy Information  

Open Energy Info (EERE)

Southern CA Area Southern CA Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Southern CA Area 1.1 Products and Services in the Southern CA Area 1.2 Research and Development Institutions in the Southern CA Area 1.3 Networking Organizations in the Southern CA Area 1.4 Investors and Financial Organizations in the Southern CA Area 1.5 Policy Organizations in the Southern CA Area Clean Energy Clusters in the Southern CA Area Products and Services in the Southern CA Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

344

Pumpernickel Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Pumpernickel Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

345

Whiskey Flats Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Whiskey Flats Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

346

Pacific Northwest Area | Open Energy Information  

Open Energy Info (EERE)

Pacific Northwest Area Pacific Northwest Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Pacific Northwest Area 1.1 Products and Services in the Pacific Northwest Area 1.2 Research and Development Institutions in the Pacific Northwest Area 1.3 Networking Organizations in the Pacific Northwest Area 1.4 Investors and Financial Organizations in the Pacific Northwest Area 1.5 Policy Organizations in the Pacific Northwest Area Clean Energy Clusters in the Pacific Northwest Area Products and Services in the Pacific Northwest Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

347

Greater Boston Area | Open Energy Information  

Open Energy Info (EERE)

Greater Boston Area Greater Boston Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Greater Boston Area 1.1 Products and Services in the Greater Boston Area 1.2 Research and Development Institutions in the Greater Boston Area 1.3 Networking Organizations in the Greater Boston Area 1.4 Investors and Financial Organizations in the Greater Boston Area 1.5 Policy Organizations in the Greater Boston Area Clean Energy Clusters in the Greater Boston Area Products and Services in the Greater Boston Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

348

Safety analysis, 200 Area, Savannah River Plant: Separations area operations  

Science Conference Proceedings (OSTI)

The nev HB-Line, located on the fifth and sixth levels of Building 221-H, is designed to replace the aging existing HB-Line production facility. The nev HB-Line consists of three separate facilities: the Scrap Recovery Facility, the Neptunium Oxide Facility, and the Plutonium Oxide Facility. There are three separate safety analyses for the nev HB-Line, one for each of the three facilities. These are issued as supplements to the 200-Area Safety Analysis (DPSTSA-200-10). These supplements are numbered as Sup 2A, Scrap Recovery Facility, Sup 2B, Neptunium Oxide Facility, Sup 2C, Plutonium Oxide Facility. The subject of this safety analysis, the, Plutonium Oxide Facility, will convert nitrate solutions of {sup 238}Pu to plutonium oxide (PuO{sub 2}) powder. All these new facilities incorporate improvements in: (1) engineered barriers to contain contamination, (2) barriers to minimize personnel exposure to airborne contamination, (3) shielding and remote operations to decrease radiation exposure, and (4) equipment and ventilation design to provide flexibility and improved process performance.

Perkins, W.C.; Lee, R.; Allen, P.M.; Gouge, A.P.

1991-07-01T23:59:59.000Z

349

Shillapoo Wildlife Area, Annual Report 2007-2008.  

DOE Green Energy (OSTI)

This report summarizes accomplishments, challenges and successes on WDFW's Shillapoo Wildlife Area funded under Bonneville Power Administration's (BPA) Wildlife Mitigation Program (BPA project No.2003-012-00) during the Fiscal Year 08 contract period October 1, 2007-September 30, 2008. The information presented here is intended to supplement that contained in BPA's PISCES contract development and reporting system. The organization below is by broad categories of work but references are made to individual work elements in the PISCES Statement of Work as appropriate. Significant progress was realized in almost all major work types. Of particular note was progress made in tree plantings and pasture rehabilitation efforts. This year's tree planting effort included five sites detailed below and in terms of the number of plants was certainly the largest effort on the wildlife area to date in one season. The planting itself took a significant amount of time, which was anticipated. However, installation of mats and tubes took much longer than expected which impacted planned fence projects in particular. Survival of the plantings appears to be good. Improvement to the quality of waterfowl pasture habitats is evident on a number of sites due to replanting and weed control efforts. Continuing long-term weed control efforts will be key in improving this particular type of habitat. A prolonged cold, wet spring and a number of equipment breakdowns presented stumbling blocks that impacted schedules and ultimately progress on planned activities. The unusual spring weather delayed fieldwork on pasture planting projects as well as weed control and slowed the process of maintaining trees and shrubs. This time lag also caused the continued deferral of some of our fencing projects. The large brush hog mower had the driveline break twice and the smaller tractor had an engine failure that caused it to be down for over a month. We have modified our budget plan for next year to include a temporary employee that will work primarily on tree maintenance and fencing projects to make sure that we make progress in these areas and we will be investigating whether a heavier duty driveline can be obtained for the mower.

Calkins, Brian

2007-10-01T23:59:59.000Z

350

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maui Geothermal Area Maui Geothermal Area (Redirected from Maui Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maui Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

351

Glass Buttes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Glass Buttes Geothermal Area Glass Buttes Geothermal Area (Redirected from Glass Buttes Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Buttes Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (14) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

352

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Obsidian Cliff Geothermal Area Obsidian Cliff Geothermal Area (Redirected from Obsidian Cliff Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

353

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Geothermal Area Gabbs Valley Geothermal Area (Redirected from Gabbs Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

354

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area (Redirected from Salt Wells Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

355

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area (Redirected from Marysville Mt Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

356

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area (Redirected from Fort Bliss Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

357

Amedee Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Amedee Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Amedee Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Map: Amedee Geothermal Area Amedee Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

358

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area (Redirected from New River Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

359

Kawaihae Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kawaihae Geothermal Area Kawaihae Geothermal Area (Redirected from Kawaihae Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kawaihae Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

360

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area (Redirected from Jemez Pueblo Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area (Redirected from Socorro Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

362

Kauai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kauai Geothermal Area Kauai Geothermal Area (Redirected from Kauai Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kauai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

363

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area (Redirected from Dixie Meadows Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

364

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area (Redirected from Jemez Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

365

Alderwood Area Service Environmental Assessment.  

SciTech Connect

Bonneville Power Administration's (BPA's) proposal to build a new 115-kV transmission line and 115-12.5-kV, 25-MW substation in the Alderwood, Oregon, area is discussed in the attached Environmental Assessment. The proposed substation site has been relocated about 500 feet east of the site outlined in the Environmental Assessment, but in the same field. This is not a substantial change relevant to environmental concerns. Environmental impacts of the new site differ only in that: Two residences will be visually affected. The substation will be directly across Highway 36 from two houses and would be seen in their primary views. This impact will be mitigated by landscaping the substation to create a vegetative screen. To provide access to the new site and provide for Blachly-Lane Cooperative's distribution lines, a 60-foot-wide right-of-way about 200 feet long will be needed. The total transmission line length will be less than originally planned. However, the tapline into the substation will be about 50 feet longer. 4 figs.

United States. Bonneville Power Administration.

1982-06-01T23:59:59.000Z

366

Bristol Bay Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Bristol Bay Geothermal Area Bristol Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Bristol Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Bristol Bay Borough, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

367

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

368

Haleakala Volcano Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Haleakala Volcano Geothermal Area Haleakala Volcano Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Haleakala Volcano Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

369

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

370

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

371

Global Vegetation Data: Leaf Area Index  

NLE Websites -- All DOE Office Websites (Extended Search)

Leaf Area Index Data Available The ORNL DAAC announces the availability of a global data set containing approximately 1000 estimates of leaf area index (LAI) for a variety of...

372

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

373

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

374

Florida Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Florida Mountains Geothermal Area Florida Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Florida Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

375

Molokai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Molokai Geothermal Area Molokai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Molokai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

376

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maui Geothermal Area Maui Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maui Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

377

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rhodes Marsh Geothermal Area (Redirected from Rhodes Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase:

378

Jersey Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jersey Valley Geothermal Area Jersey Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jersey Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: near Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

379

Glass Buttes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Glass Buttes Geothermal Area Glass Buttes Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Buttes Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (14) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

380

Separation Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Separation Creek Geothermal Area Separation Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Separation Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Areas Participating in the Reformulated Gasoline Program  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Program Reformulated Gasoline Program Contents * Introduction * Mandated RFG Program Areas o Table 1. Mandated RFG Program Areas * RFG Program Opt-In Areas o Table 2. RFG Program Opt-In Areas * RFG Program Opt-Out Procedures and Areas o Table 3. History of EPA Rulemaking on Opt-Out Procedures o Table 4. RFG Program Opt-Out Areas * State Programs o Table 5. State Reformulated Gasoline Programs * Endnotes Spreadsheets Referenced in this Article * Reformulated Gasoline Control Area Populations Related EIA Short-Term Forecast Analysis Products * Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 * Environmental Regulations and Changes in Petroleum Refining Operations * Areas Participating in Oxygenated Gasoline Program

382

Kauai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kauai Geothermal Area Kauai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kauai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

383

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Rhodes Marsh Geothermal Area Rhodes Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

384

Kawaihae Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kawaihae Geothermal Area Kawaihae Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kawaihae Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

385

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

386

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

387

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

388

Augusta Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Augusta Mountains Geothermal Area Augusta Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Augusta Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

389

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

390

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

391

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lualualei Valley Geothermal Area Lualualei Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

392

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

393

AREA USA LLC | Open Energy Information  

Open Energy Info (EERE)

AREA USA LLC Jump to: navigation, search Name AREA USA LLC Place Washington, DC Zip 20004 Sector Services Product Washington, D.C.-based division of Fabiani & Company providing...

394

For the B-Area Operable Unit  

NLE Websites -- All DOE Office Websites (Extended Search)

3 April 16, 2013 Notice of Availability Record of Decision For the B-Area Operable Unit The Record of Decision (ROD) Remedial Alternative Selection for the B-Area Operable Unit...

395

Desert Queen Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Desert Queen Geothermal Area Desert Queen Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Desert Queen Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

396

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

397

Lester Meadow Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lester Meadow Geothermal Area Lester Meadow Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lester Meadow Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

398

Mt Ranier Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mt Ranier Geothermal Area Mt Ranier Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Ranier Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

399

from Savannah River Nuclear Solutions, LLC NEWS Area High School Teams Compete during DOE's National Science  

NLE Websites -- All DOE Office Websites (Extended Search)

High School Teams Compete during DOE's National Science High School Teams Compete during DOE's National Science Bowl® Regional Championship: Lakeside and Evans High School Finish Second and Third - Dorman Wins AIKEN, S.C. - Feb. 25, 2013 - Using a format similar to the television show "Jeopardy," America's next generation of scientists and engineers put their knowledge to the test at the University of South Carolina Aiken during the DOE National Science Bowl regional compe- tition this past weekend. High School teams from across South Carolina and the greater Augusta, Ga. area relied on their collective knowledge as they participated in one of the coun- try's largest science tournaments. This regional competition, managed by Savannah River Nuclear Solutions, LLC (SRNS), hosted 120 high school students from 12 high schools. It is the only educational event

400

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration: Second Results Report  

DOE Green Energy (OSTI)

This report presents results of a demonstration of 12 new fuel cell electric buses (FCEB) operating in Oakland, California. The 12 FCEBs operate as a part of the Zero Emission Bay Area (ZEBA) Demonstration, which also includes two new hydrogen fueling stations. This effort is the largest FCEB demonstration in the United States and involves five participating transit agencies. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. The first results report was published in August 2011, describing operation of these new FCEBs from September 2010 through May 2011. New results in this report provide an update through April 2012.

Eudy, L.; Chandler, K.

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Cryptographic Challenges for Smart Grid Home Area ...  

Science Conference Proceedings (OSTI)

Page 1. Cryptographic Challenges for Smart Grid Home Area Networks Secure Networking Author – Apurva Mohan, Honeywell ACS Labs ...

2012-05-09T23:59:59.000Z

402

Optimization Online - All Areas Submissions - February 2011  

E-Print Network (OSTI)

... Optimization for Power System Configuration with Renewable Energy in Remote Areas ... Robust Energy Cost Optimization of Water Distribution System with ...

403

Optimization Online - All Areas Submissions - October 2013  

E-Print Network (OSTI)

All Areas Submissions - October 2013. Network Optimization Optimization Models for Differentiating Quality of Service Levels in Probabilistic Network Capacity ...

404

Local control of area-preserving maps  

E-Print Network (OSTI)

We present a method of control of chaos in area-preserving maps. This method gives an explicit expression of a control term which is added to a given area-preserving map. The resulting controlled map which is a small and suitable modification of the original map, is again area-preserving and has an invariant curve whose equation is explicitly known.

Cristel Chandre; Michel Vittot; Guido Ciraolo

2008-09-01T23:59:59.000Z

405

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Geothermal Area Brady Hot Springs Geothermal Area Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone Geothermal Region Pull Apart in Strike Slip Fault Zone Mesozoic Granitic MW K Dixie Valley Geothermal Area Dixie Valley Geothermal Area Central Nevada Seismic Zone Geothermal Region Stepover or Relay Ramp in Normal Fault Zones major range front fault Jurassic Basalt MW K Geysers Geothermal Area Geysers Geothermal Area Holocene Magmatic Geothermal Region Pull Apart in Strike Slip Fault Zone intrusion margin and associated fractures MW K Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Walker Lane Transition Zone Geothermal Region Displacement Transfer Zone Caldera Margin Quaternary Rhyolite MW K

406

EA-1177: Salvage/Demolition of 200 West Area, 200 East Area,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

demolish the 200 West Area, 200 East Area, and 300 Area steam plants and their associated steam distribution piping equipment, and ancillary facilities at the U.S. Department of...

407

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Gabbs Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

408

Redfield Campus Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Redfield Campus Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Redfield Campus Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate

409

Category Key Area Sub Area Do?an, Ö.N., "Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Papers funded by the Fuels Program (2013) Category Key Area Sub Area Doan, .N., "Materials Development for Fossil Fueled Energy Conversion Systems," Materials Science...

410

GEOCHEMICAL MODELING OF F AREA SEEPAGE BASIN COMPOSITION AND VARIABILITY  

SciTech Connect

From the 1950s through 1989, the F Area Seepage Basins at the Savannah River Site (SRS) received low level radioactive wastes resulting from processing nuclear materials. Discharges of process wastes to the F Area Seepage Basins followed by subsequent mixing processes within the basins and eventual infiltration into the subsurface resulted in contamination of the underlying vadose zone and downgradient groundwater. For simulating contaminant behavior and subsurface transport, a quantitative understanding of the interrelated discharge-mixing-infiltration system along with the resulting chemistry of fluids entering the subsurface is needed. An example of this need emerged as the F Area Seepage Basins was selected as a key case study demonstration site for the Advanced Simulation Capability for Environmental Management (ASCEM) Program. This modeling evaluation explored the importance of the wide variability in bulk wastewater chemistry as it propagated through the basins. The results are intended to generally improve and refine the conceptualization of infiltration of chemical wastes from seepage basins receiving variable waste streams and to specifically support the ASCEM case study model for the F Area Seepage Basins. Specific goals of this work included: (1) develop a technically-based 'charge-balanced' nominal source term chemistry for water infiltrating into the subsurface during basin operations, (2) estimate the nature of short term and long term variability in infiltrating water to support scenario development for uncertainty quantification (i.e., UQ analysis), (3) identify key geochemical factors that control overall basin water chemistry and the projected variability/stability, and (4) link wastewater chemistry to the subsurface based on monitoring well data. Results from this study provide data and understanding that can be used in further modeling efforts of the F Area groundwater plume. As identified in this study, key geochemical factors affecting basin chemistry and variability included: (1) the nature or chemistry of the waste streams, (2) the open system of the basins, and (3) duration of discharge of the waste stream types. Mixing models of the archetype waste streams indicated that the overall basin system would likely remain acidic much of the time. Only an extended periods of predominantly alkaline waste discharge (e.g., >70% alkaline waste) would dramatically alter the average pH of wastewater entering the basins. Short term and long term variability were evaluated by performing multiple stepwise modeling runs to calculate the oscillation of bulk chemistry in the basins in response to short term variations in waste stream chemistry. Short term (1/2 month and 1 month) oscillations in the waste stream types only affected the chemistry in Basin 1; little variation was observed in Basin 2 and 3. As the largest basin, Basin 3 is considered the primary source to the groundwater. Modeling showed that the fluctuation in chemistry of the waste streams is not directly representative of the source term to the groundwater (i.e. Basin 3). The sequence of receiving basins and the large volume of water in Basin 3 'smooth' or nullify the short term variability in waste stream composition. As part of this study, a technically-based 'charge-balanced' nominal source term chemistry was developed for Basin 3 for a narrow range of pH (2.7 to 3.4). An example is also provided of how these data could be used to quantify uncertainty over the long term variations in waste stream chemistry and hence, Basin 3 chemistry.

Millings, M.; Denham, M.; Looney, B.

2012-05-08T23:59:59.000Z

411

Don't Work, Work at Home, or Commute? Discrete Choice Models of the Decision for San Francisco Bay Area Residents  

E-Print Network (OSTI)

Don’t Work, Work at Home, or Commute? Discrete Choice ModelsA. R. (1997) The Time Bind: When Work Becomes Homeand Home Becomes Work. New York: Metropolitan Books. Ho, C.

Ory, David T.; Mokhtarian, Patricia L.

2005-01-01T23:59:59.000Z

412

Chocolate Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chocolate Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Map: Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Phase II - Resource Exploration and Confirmation Coordinates: 33.352°, -115.353° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.352,"lon":-115.353,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

Magic Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Magic Reservoir Geothermal Area Magic Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Magic Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.32833333,"lon":-114.3983333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

Mcgee Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mcgee Mountain Geothermal Area Mcgee Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mcgee Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (7) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8,"lon":-118.87,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

Astor Pass Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Astor Pass Geothermal Area Astor Pass Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Astor Pass Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.352110729808,"lon":-118.48461985588,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

South Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

South Geothermal Area South Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: South Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":66.15,"lon":-157.1166667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

417

Boiling Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Boiling Springs Geothermal Area Boiling Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Boiling Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3641,"lon":-115.856,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

Geysers Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geysers Geothermal Area Geysers Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Geysers Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (2) 10 Exploration Activities (22) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8,"lon":-122.8,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

419

Banbury Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Banbury Geothermal Area Banbury Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Banbury Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.688,"lon":-114.8256,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

Weiser Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Weiser Geothermal Area Weiser Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Weiser Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.29833333,"lon":-117.0483333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Tungsten Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Tungsten Mountain Geothermal Area Tungsten Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Tungsten Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (4) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6751,"lon":-117.6945,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

Colado Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Colado Geothermal Area Colado Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Colado Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.23,"lon":-118.37,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

Moana Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Moana Geothermal Area Moana Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Moana Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.495,"lon":-119.815,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

Kilo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilo Geothermal Area Kilo Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.8101865,"lon":-151.2360627,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Sierra Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Sierra Valley Geothermal Area Sierra Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Sierra Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.71166667,"lon":-120.3216667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Wendel Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wendel Geothermal Area Wendel Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wendel Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.35734979,"lon":-120.2549785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

427

Crane Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Crane Creek Geothermal Area Crane Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Crane Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3064,"lon":-116.7447,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

Mother Goose Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mother Goose Geothermal Area Mother Goose Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mother Goose Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.18,"lon":-157.0183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

429

Fireball Ridge Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fireball Ridge Geothermal Area Fireball Ridge Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fireball Ridge Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.92,"lon":-119.07,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

Newcastle Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Newcastle Geothermal Area Newcastle Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Newcastle Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.66166667,"lon":-113.5616667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Klamath Falls Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Klamath Falls Geothermal Area Klamath Falls Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Klamath Falls Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.23333333,"lon":-121.7666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

Clear Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geothermal Area Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Clear Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.85,"lon":-162.3,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

Heber Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Heber Geothermal Area Heber Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Heber Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (0) 10 Exploration Activities (2) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.71666667,"lon":-115.5283333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

South Brawley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

South Brawley Geothermal Area South Brawley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: South Brawley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.90607,"lon":-115.54,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

435

Medicine Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Medicine Lake Geothermal Area Medicine Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Medicine Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.57,"lon":-121.57,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

436

Fernley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fernley Geothermal Area Fernley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fernley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.598803,"lon":-119.110415,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

437

Lakeview Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lakeview Geothermal Area Lakeview Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lakeview Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2,"lon":-120.36,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

Drum Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Drum Mountain Geothermal Area Drum Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Drum Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

The Needles Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

The Needles Geothermal Area The Needles Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: The Needles Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.15,"lon":-119.68,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

Mt Signal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Signal Geothermal Area Signal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Signal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.65,"lon":-115.71,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Carson River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

River Geothermal Area River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Carson River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.77,"lon":-119.715,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

442

Harney Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lake Geothermal Area Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Harney Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.18166667,"lon":-119.0533333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

443

Maazama Well Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maazama Well Geothermal Area Maazama Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maazama Well Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8965,"lon":-121.9865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

444

False Pass Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

False Pass Geothermal Area False Pass Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: False Pass Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.93,"lon":-163.24,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

Okpilak Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Okpilak Springs Geothermal Area Okpilak Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Okpilak Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":69.3,"lon":-144.0333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Hot Pot Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Pot Geothermal Area Hot Pot Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Pot Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.922,"lon":-117.108,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

Stillwater Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Stillwater Geothermal Area Stillwater Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Stillwater Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.51666667,"lon":-118.5516667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

Willow Well Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Well Geothermal Area Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Willow Well Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.6417,"lon":-150.095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

Area Guide - National Transportation Research Center (NTRC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Area Guide Area Guide Recreational & Cultural Opportunities Some Things To Do In and Around the NTRC Area Area Attractions Big South Fork The following links offer general information about parks, cultural events, and recreational opportunities available. All locations listed are within a few hours' drive. Big South Fork National River and Recreation Area of the U.S. National Park Service, located near Oak Ridge. Biltmore Estate- A 250-room historical chateau in located in Asheville, North Carolina (about 3 hours from Oak Ridge); open all year Knoxville, Tennessee Women's Basketball Hall of Fame, Knoxville Star of Knoxville Riverboat Ice Rinks Ice Chalet Icearium Korrnet - Website for area nonprofit organizations Big South Fork Park - Canoeing, fishing, camping, hiking; located near

450

Akutan Fumaroles Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Akutan Fumaroles Geothermal Area Akutan Fumaroles Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Akutan Fumaroles Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.1469,"lon":-165.9078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Fallon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fallon Geothermal Area Fallon Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fallon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.38,"lon":-118.65,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

Randsburg Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Randsburg Geothermal Area Randsburg Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Randsburg Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.38333333,"lon":-117.5333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

Kwiniuk Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kwiniuk Geothermal Area Kwiniuk Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kwiniuk Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.70787,"lon":-162.46488,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

Worswick Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Worswick Geothermal Area Worswick Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Worswick Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.5636,"lon":-114.7986,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

Area Information | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Visiting Us / Area Information Visiting Us / Area Information Area Information Guides, Area Maps, Airport... Airport, About: McGhee Tyson Airport Airport: map to Oak Ridge/Knoxville Oak Ridge: City Guide for City of Oak Ridge, Tennessee Knoxville: maps for visitors Oak Ridge: area map with location of Y-12 Visitor's Center Oak Ridge: map of city streets Roane County: Roane County Guide Resources: News, History... Knoxville: Knoxville, Tennessee Knoxville: Museums Knoxville: Knoxville News-Sentinel Oak Ridge: City of Oak Ridge Oak Ridge: Chamber of Commerce Oak Ridge: Convention and Visitors Bureau Oak Ridge: Oak Ridger Oak Ridge: Secret City History Area Attractions: To Do and See Knoxville: Clarence Brown Theater Knoxville: Frank H. McClung Museum Knoxville: Knoxville Opera Company, Francis Graffeo, General

456

Radio Towers Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Radio Towers Geothermal Area Radio Towers Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Radio Towers Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.03666667,"lon":-115.4566667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Newberry Caldera Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Newberry Caldera Geothermal Area Newberry Caldera Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Newberry Caldera Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (18) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.71666667,"lon":-121.2333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

Serpentine Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Serpentine Springs Geothermal Area Serpentine Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Serpentine Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.85703165,"lon":-164.7097211,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

North Brawley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

North Brawley Geothermal Area North Brawley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: North Brawley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0153,"lon":-115.5153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

Canby Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Canby Geothermal Area Canby Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Canby Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.438,"lon":-120.8676,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "largest metropolitan areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Mcleod 88 Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mcleod 88 Geothermal Area Mcleod 88 Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mcleod 88 Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.028,"lon":-117.136,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

462

Mitchell Butte Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mitchell Butte Geothermal Area Mitchell Butte Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mitchell Butte Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.763,"lon":-117.156,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

Circle Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Circle Geothermal Area Circle Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Circle Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.48236057,"lon":-144.6372556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

464

Patua Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Patua Geothermal Area Patua Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Patua Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (11) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.598611111111,"lon":-119.215,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

465

Ophir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Ophir Geothermal Area Ophir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Ophir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.1925,"lon":-159.8589,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

466

Hawthorne Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hawthorne Geothermal Area Hawthorne Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hawthorne Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.53,"lon":-118.65,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

467

Manley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Manley Geothermal Area Manley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Manley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65,"lon":-150.633333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

468

Routt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Routt Geothermal Area Routt Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Routt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.56,"lon":-106.85,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

469

Definition: Reliability Coordinator Area | Open Energy Information  

Open Energy Info (EERE)

Coordinator Area Coordinator Area Jump to: navigation, search Dictionary.png Reliability Coordinator Area The collection of generation, transmission, and loads within the boundaries of the Reliability Coordinator. Its boundary coincides with one or more Balancing Authority Areas.[1] Related Terms transmission lines, Reliability Coordinator, Balancing Authority Area, transmission line, balancing authority, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inlin LikeLike UnlikeLike You like this.Sign Up to see what your friends like. e Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reliability_Coordinator_Area&oldid=502626" Categories: Definitions ISGAN Definitions What links here Related changes Special pages

470

Paso Robles Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geothermal Area Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Paso Robles Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.657,"lon":-120.6945,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

Emmons Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lake Geothermal Area Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Emmons Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.3333,"lon":-162.14,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

Dulbi Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dulbi Geothermal Area Dulbi Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dulbi Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.2667,"lon":-155.2667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

Mcdermitt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mcdermitt Geothermal Area Mcdermitt Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mcdermitt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.08092,"lon":-117.75895,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}