Powered by Deep Web Technologies
Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Yankee Rowe simulator core model validation  

Science Conference Proceedings (OSTI)

This paper presents the validation of the Yankee Rowe simulator core model. Link-Miles Simulation Corporation is developing the Yankee Rowe simulator and Yankee Atomic Electric Company is involved in input and benchmark data generation, as well as simulator validation. Core model validation by Yankee comprises three tasks: (1) careful generation of fuel reactivity characteristics (B constants); (2) nonintegrated core model testing; and (3) fully integrated core model testing. Simulator core model validation and verification is a multistage process involving input and benchmark data generation as well as interactive debugging. Core characteristics were brought within acceptable criteria by this process. This process was achieved through constant communication between Link-Miles and Yankee engineers. Based on this validation, the Yankee Rowe simulator core model is found to be acceptable for training purposes.

Napolitano, M.E.

1990-01-01T23:59:59.000Z

2

Policy Core Information Model (PCIM) Extensions  

Science Conference Proceedings (OSTI)

This document specifies a number of changes to the Policy Core Information Model (PCIM, RFC 3060). Two types of changes are included. First, several completely new elements are introduced, for example, classes for header filtering, that extend PCIM ...

B. Moore

2003-01-01T23:59:59.000Z

3

Comprehensive chemical kinetic modeling of the oxidation of C8 and larger n-alkanes and 2-methylalkanes  

DOE Green Energy (OSTI)

Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed and reduced chemical kinetic mechanism for singly methylated iso-alkanes (i.e., 2-methylalkanes) ranging from C{sub 8} to C{sub 20}. The mechanism also includes an updated version of our previously published C{sub 8} to C{sub 16} n-alkanes model. The complete detailed mechanism contains approximately 7,200 species 31,400 reactions. The proposed model is validated against new experimental data from a variety of fundamental combustion devices including premixed and nonpremixed flames, perfectly stirred reactors and shock tubes. This new model is used to show how the presence of a methyl branch affects important combustion properties such as laminar flame propagation, ignition, and species formation.

Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M; Togbe, C; Dagaut, P; Wang, H; Oehlschlaeger, M; NIemann, U; Seshadri, K; Veloo, P S; Ji, C; Egolfopoulos, F; Lu, T

2011-03-16T23:59:59.000Z

4

Ab Initio No-Core Shell Model  

SciTech Connect

A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory ({chi}EFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The resulting NN and NNN interactions, characterized by the order of the expansion retained (e.g. 'next-to-next-to leading order' is NNLO), provide a high-quality fit to the NN data and the A = 3 ground-state (g.s.) properties. The derivations of NN, NNN, etc. interactions within meson-exchange and {chi}EFT are well-established but are not subjects of this review. Our focus is solution of the non-relativistic quantum many-body Hamiltonian that includes these interactions using our no core shell model (NCSM) formalism. In the next section we will briefly outline the NCSM formalism and then present applications, results and extensions in later sections.

Barrett, B R; Navratil, P; Vary, J P

2011-04-11T23:59:59.000Z

5

Beyond the No Core Shell Model: Extending the NCSM to Heavier Nuclei  

Science Conference Proceedings (OSTI)

The No Core Shell Model (NCSM) is an ab initio method for calculating the properties of light nuclei, up to about A = 20, in which all A nucleons are treated as being active. It is difficult to go to larger A values due to the rapid grow of the basis spaces required in order to obtain converged results. In this presentation we briefly discuss three new techniques for extending the NCSM to heavier mass nuclei.

Barrett, Bruce R. [Department of Physics, P.O. Box 210081, University of Arizona, Tucson, AZ 85721-0081 (United States)

2011-05-06T23:59:59.000Z

6

Modeling of Molten Core Concrete Interactions and Fission Product Release  

Science Conference Proceedings (OSTI)

The study of molten core concrete interactions is important in estimating the possible consequences of a severe nuclear reactor accident. CORCON-Mod2 is a computer program that models the thermal, chemical, and physical phenomena associated with molten core concrete interactions. Models have been added to extend the modeling of these phenomena. An ideal solution chemical equilibrium methodology predicts the fission product vaporization release. Additional chemical species have been added, and the calcula...

1994-05-27T23:59:59.000Z

7

Evaluation of Relap5 Reactor Core Modeling Capability  

E-Print Network (OSTI)

of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science EVALUATION OF RELAP5 REACTOR CORE MODELING CAPABILITY By Vincent J.-P. Roux August 2001 Chairman: Professor Samim Anghaie Major Department: Nuclear and Radiological Engineering RELAP5 is a one-dimensional reactor-system simulation code with additional cross-flow calculation capability to include two- and three-dimensional effects in light water nuclear reactor cores. The code is used to model the core, steam generator, and the balance of the Surry reactor, which is a three-loop Westinghouse Pressurized Water Reactor (PWR) system. A detailed RELAP5 model including full nodalization of the system is developed and implemented for this study. The RELAP5 Surry core model uses one or several parallel channels to compare and assess the performance of the cross-flow model. Several inlet flow rates and core power distributions are considered and modeled. Results of the analysis showed the significant contribution of cross-flow in overall temperature and flow distributions in the core. Results of the study also showed that the RELAP5 predictions of cross-flow, at least for single-phase cases, are not consistent with the theory. xi To evaluate the accuracy of RELAP5 cross-flow model, an industry standard Computational Fluid Dynamics code, FLUENT, is used to perform two- and threedimensional calculations. Initial and boundary conditions for the RELAP5 model are used to develop a high-resolution FLUENT model for a pair of parallel reactor core channels. Two models were developed for FLUENT calculation of cross-flow. The first model is a simple tube with axisymmetric non-uniform inlet flow velocities. The second model included differen...

Vincent J. -p. Roux

2001-01-01T23:59:59.000Z

8

Model-driven development of multi-core embedded software  

Science Conference Proceedings (OSTI)

Model-driven development is worthy of further research because of its proven capabilities in increasing productivity and ensuring correctness. However, it has not yet been explored for multi-core processor-based embedded systems, whose programming is ...

Pao-Ann Hsiung; Shang-Wei Lin; Yean-Ru Chen; Nien-Lin Hsueh; Chih-Hung Chang; Chih-Hsiong Shih; Chorng-Shiuh Koong; Chao-Sheng Lin; Chun-Hsien Lu; Sheng-Ya Tong; Wan-Ting Su; William C. Chu

2009-05-01T23:59:59.000Z

9

Analytic Models for the Mechanical Structure of the Solar Core  

E-Print Network (OSTI)

All stars exhibit universal central behavior in terms of new homology variables (u,w). In terms of these variables, we obtain simple analytic fits to numerical standard solar models for the core and radiative zones of the ZAMS and present Suns, with a few global parameters. With these analytic fits, different theoretical models of the solar core, neutrino fluxes, and helioseismic observations can be parametrized and compared.

Dallas C. Kennedy; Sidney A. Bludman

1998-12-09T23:59:59.000Z

10

MAAP5 BWR Core Melt Progression Model Enhancement Description  

Science Conference Proceedings (OSTI)

This report describes proposed enhancements to the Modular Accident Analysis Program (MAAP) core melt progression model for BWRs. MAAP is an EPRI-owned and -licensed computer program that simulates the operation of light water and heavy water moderated nuclear power plants for both current and advanced light water reactor (ALWR) designs. The Fukushima accident—the first full-scale accident for a BWR design—poses challenges to the current core model that must be addressed.The ...

2013-02-25T23:59:59.000Z

11

Pathways core: a data model for cross-repository services  

Science Conference Proceedings (OSTI)

As part of the NSF-funded Pathways project, we have created an interoperable data model to facilitate object re-use and a broad spectrum of cross-repository services. The resulting Pathways Core data model is designed to be lightweight to implement, ... Keywords: data model, interoperability, scholarly communication

Jeroen Bekaert; Xiaoming Liu; Herbert Van de Sompel; Carl Lagoze; Sandy Payette; Simeon Warner

2006-06-01T23:59:59.000Z

12

Summary of multi-core hardware and programming model investigations  

Science Conference Proceedings (OSTI)

This report summarizes our investigations into multi-core processors and programming models for parallel scientific applications. The motivation for this study was to better understand the landscape of multi-core hardware, future trends, and the implications on system software for capability supercomputers. The results of this study are being used as input into the design of a new open-source light-weight kernel operating system being targeted at future capability supercomputers made up of multi-core processors. A goal of this effort is to create an agile system that is able to adapt to and efficiently support whatever multi-core hardware and programming models gain acceptance by the community.

Kelly, Suzanne Marie; Pedretti, Kevin Thomas Tauke; Levenhagen, Michael J.

2008-05-01T23:59:59.000Z

13

A Study of the Adequacy of Quasi-Geostrophic Dynamics for Modeling the Effect of Cyclone Waves on the Larger Scale Flow  

Science Conference Proceedings (OSTI)

The development of long-range “climate forecast” models depends, in part, on the ability to simulate the effect upon the surrounding atmosphere of the day-to-day evolution of cyclone waves. For theoretical reasons, the evolution of individual ...

Stephen Edward Mudrick

1982-11-01T23:59:59.000Z

14

Modeling magnetic core loss for sinusoidal waveforms  

E-Print Network (OSTI)

Among the challenging unsolved technical problems that have plagued the minds of scientist and engineers throughout the 20th and 21st century is the development of a quantifiable model to accurately estimate or explain ...

Dunlop, Colin J. (Colin James)

2008-01-01T23:59:59.000Z

15

Reflector modelling of small high leakage cores making use of multi-group nodal equivalence theory  

SciTech Connect

This research focuses on modelling reflectors in typical material testing reactors (MTRs). Equivalence theory is used to homogenise and collapse detailed transport solutions to generate equivalent nodal parameters and albedo boundary conditions for reflectors, for subsequent use in full core nodal diffusion codes. This approach to reflector modelling has been shown to be accurate for two-group large commercial light water reactor (LWR) analysis, but has not been investigated for MTRs. MTRs are smaller, with much larger leakage, environment sensitivity and multi-group spectrum dependencies than LWRs. This study aims to determine if this approach to reflector modelling is an accurate and plausible homogenisation technique for the modelling of small MTR cores. The successful implementation will result in simplified core models, better accuracy and improved efficiency of computer simulations. Codes used in this study include SCALE 6.1, OSCAR-4 and EQUIVA (the last two codes are developed and used at Necsa). The results show a five times reduction in calculational time for the proposed reduced reactor model compared to the traditional explicit model. The calculated equivalent parameters however show some sensitivity to the environment used to generate them. Differences in the results compared to the current explicit model, require more careful investigation including comparisons with a reference result, before its implementation can be recommended. (authors)

Theron, S. A. [South African Nuclear Energy Corporation (Necsa), PO Box 582, Pretoria, 0001 (South Africa); Reitsma, F. [Calvera Consultants, PO Box 150, Strubensvallei, 1735 (South Africa)

2012-07-01T23:59:59.000Z

16

Forecast Calls for Better Models: Examining the Core  

NLE Websites -- All DOE Office Websites (Extended Search)

Forecast Calls for Better Models: Examining the Core Forecast Calls for Better Models: Examining the Core Components of Arctic Clouds to Clear Their Influence on Climate For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Predicting how atmospheric aerosols influence cloud formation and the resulting feedback to climate is a challenge that limits the accuracy of atmospheric models. This is especially true in the Arctic, where mixed-phase (both ice- and liquid-based) clouds are frequently observed, but the processes that determine their composition are poorly understood. To obtain a closer look at what makes up Arctic clouds, scientists characterized cloud droplets and ice crystals collected at the North Slope of Alaska as part of the Indirect and Semi-Direct Aerosol Campaign (ISDAC) field study

17

CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model  

Science Conference Proceedings (OSTI)

The Community Atmosphere Model (CAM) version 5 includes a spectral element dynamical core option from NCAR's High-Order Method Modeling Environment. It is a continuous Galerkin spectral finite-element method designed for fully unstructured quadrilateral ... Keywords: atmospheric modeling, dynamical core, global circulation model, parallel scalability, spectral elements

John M. Dennis; Jim Edwards; Katherine J. Evans; Oksana Guba; Peter H. Lauritzen; Arthur A. Mirin; Amik St-Cyr; Mark A. Taylor; Patrick H. Worley

2012-02-01T23:59:59.000Z

18

Modeling shared cache and bus in multi-cores for timing analysis  

Science Conference Proceedings (OSTI)

Timing analysis of concurrent programs running on multi-core platforms is currently an important problem. The key to solving this problem is to accurately model the timing effects of shared resources in multi-cores, namely shared cache and bus. In this ... Keywords: WCET, multi-core, shared bus, shared cache

Sudipta Chattopadhyay; Abhik Roychoudhury; Tulika Mitra

2010-06-01T23:59:59.000Z

19

Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2011  

SciTech Connect

Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or 'Core Modeling Update') Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the anticipated ATR Core Internals Changeout (CIC) in the 2014 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its first full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (SCALE, KENO-6, HELIOS, NEWT, and ATTILA) have been installed at the INL under various permanent sitewide license agreements and corresponding baseline models of the ATR and ATRC are now operational, demonstrating the basic feasibility of these code packages for their intended purpose. Furthermore, a capability for rigorous sensitivity analysis and uncertainty quantification based on the TSUNAMI system is being implemented and initial computational results have been obtained. This capability will have many applications in 2011 and beyond as a tool for understanding the margins of uncertainty in the new models as well as for validation experiment design and interpretation. Finally we note that although full implementation of the new computational models and protocols will extend over a period 3-4 years as noted above, interim applications in the much nearer term have already been demonstrated. In particular, these demonstrations included an analysis that was useful for understanding the cause of some issues in December 2009 that were triggered by a larger than acceptable discrepancy between the measured excess core reactivity and a calculated value that was based on the legacy computational methods. As the Modeling Update project proceeds we anticipate further such interim, informal, applications in parallel with formal qualification of the system under the applicable INL Quality Assurance procedures and standards.

David W. Nigg; Devin A. Steuhm

2011-09-01T23:59:59.000Z

20

Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2011  

SciTech Connect

Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or 'Core Modeling Update') Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the anticipated ATR Core Internals Changeout (CIC) in the 2014 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its first full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (SCALE, KENO-6, HELIOS, NEWT, and ATTILA) have been installed at the INL under various permanent sitewide license agreements and corresponding baseline models of the ATR and ATRC are now operational, demonstrating the basic feasibility of these code packages for their intended purpose. Furthermore, a capability for rigorous sensitivity analysis and uncertainty quantification based on the TSUNAMI system is being implemented and initial computational results have been obtained. This capability will have many applications in 2011 and beyond as a tool for understanding the margins of uncertainty in the new models as well as for validation experiment design and interpretation. Finally we note that although full implementation of the new computational models and protocols will extend over a period 3-4 years as noted above, interim applications in the much nearer term have already been demonstrated. In particular, these demonstrations included an analysis that was useful for understanding the cause of some issues in December 2009 that were triggered by a larger than acceptable discrepancy between the measured excess core reactivity and a calculated value that was based on the legacy computational methods. As the Modeling Update project proceeds we anticipate further such interim, informal, applications in parallel with formal qualification of the system under the applicable INL Quality Assurance procedures and standards.

David W. Nigg; Devin A. Steuhm

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Modeling the Atmospheric General Circulation Using a Spherical Geodesic Grid: A New Class of Dynamical Cores  

Science Conference Proceedings (OSTI)

This paper documents the development and testing of a new type of atmospheric dynamical core. The model solves the vorticity and divergence equations in place of the momentum equation. The model is discretized in the horizontal using a geodesic ...

Todd D. Ringler; Ross P. Heikes; David A. Randall

2000-07-01T23:59:59.000Z

22

Dynamical Core of an Atmospheric General Circulation Model on a Yin–Yang Grid  

Science Conference Proceedings (OSTI)

The three-dimensional dynamical core of an atmospheric general circulation model employing Yin–Yang grid is developed and examined. Benchmark test cases based on the shallow-water model configuration are first performed to examine the validity of ...

Yuya Baba; Keiko Takahashi; Takeshi Sugimura; Koji Goto

2010-10-01T23:59:59.000Z

23

The Physics of Low Energy Solar "Today neutrinos have a larger and larger place in  

E-Print Network (OSTI)

Chapter 1 The Physics of Low Energy Solar Neutrinos "Today neutrinos have a larger and larger place oscillations could na¨ively be 1 #12;Chapter 1: The Physics of Low Energy Solar Neutrinos 2 accommodated simply of Low Energy Solar Neutrinos 3 first directly detected more than two decades later in 1953. Reines

24

Cross-Validation of SWERA's Core Radiative Transfer Models - Partial Report  

Open Energy Info (EERE)

Cross-Validation of SWERA's Core Radiative Transfer Models - Partial Report Cross-Validation of SWERA's Core Radiative Transfer Models - Partial Report Dataset Summary Description (Abstract): This partial report describes the results obtained by two of the core radiative transfer models adopted in the SWERA Project for global horizontal solar irradiation during the cross-validation step. They are BRASIL-SR and SUNY-ALBANY models (Martins, 2001; Stuhlmann et al. 1990; Perez et al., 2002). The results from other two other core models, NREL and DLR, are not yet available. The HELIOSAT was included as a reference model at this stage. The HELIOSAT model is widely employed for solar energy assessment in Europe and is well know by the solar energy community worldwide (Beyer et al., 1996; Cano et al., 1986). (Purpose): SWERA solar cross-validation study

25

Continuously Optimized Reliable Energy (CORE) Microgrid: Models & Tools (Fact Sheet)  

SciTech Connect

This brochure describes Continuously Optimized Reliable Energy (CORE), a trademarked process NREL employs to produce conceptual microgrid designs. This systems-based process enables designs to be optimized for economic value, energy surety, and sustainability. Capabilities NREL offers in support of microgrid design are explained.

Not Available

2013-07-01T23:59:59.000Z

26

A nonlinear lumped parameter model for transient studies of single-phase core form transformers  

Science Conference Proceedings (OSTI)

Power transformers, in service, are subjected to voltage transients. The transformer insulation should be designed to withstand the internal stresses initiated by these transients. To determine these stresses during the design stage, lumped parameter models of the transformer are employed. Computer models are the best tools for predetermination of these stresses. To date, in spite of the great efforts employed, lack of accurate and consistent transformer models are felt to contribute to the relatively high failure rate of the EHV transformers. This thesis is based on a detailed transformer model developed by G.E. for transformer insulation design. Although this model has provided the designer a suitable tool for transient study during design stage, it assumed a linear characteristic for iron core and employed an empirical method to model damping effect of transformer losses. It is felt that the core`s non-linear magnetic characteristic has an appreciable effect on the transformers transient response. This thesis develops a detailed transformer model which accurately models the nonlinear, saturable, characteristic of transformer magnetic core. The model is based on linearization of the core`s saturable characteristic during each time interval of solution. Then the linear model is solved within that interval and based on the magnetizing flux in the core, the inductance model is adjusted for the next time interval of solution, and the updated linear model is solved for the interval. A stable solution routine is developed to solve the nonlinear model`s system of O.D.E.`s. Supplementary features needed for transformer design such as external circuits, switches and nonlinear resistors are developed for this solution routine. The necessary methods are developed for verification of the linear transformer model in the frequency domain.

Vakilian, M.

1993-12-31T23:59:59.000Z

27

Some conservation issues for the dynamical cores of NWP and climate models  

Science Conference Proceedings (OSTI)

The rationale for designing atmospheric numerical model dynamical cores with certain conservation properties is reviewed. The conceptual difficulties associated with the multiscale nature of realistic atmospheric flow, and its lack of time-reversibility, ... Keywords: Climate simulation, Conservation, Weather prediction

J. Thuburn

2008-03-01T23:59:59.000Z

28

Instantaneous current modeling in a complex VLIW processor core  

Science Conference Proceedings (OSTI)

Measuring and modeling instantaneous current consumption or current dynamics of a processor is important in embedded system designs, wireless communications, low-energy mobile computing, security of communications, and reliability. In this paper, we ... Keywords: Instruction-level current model, current and power measurement in a processor, instantaneous current model, power and energy model

Radu Muresan; Catherine Gebotys

2005-05-01T23:59:59.000Z

29

SECA Core Program - Recent Development of Modeling Activities at PNNL  

DOE Green Energy (OSTI)

This presentation discusses recent modeling activities at the Pacific Northwest National Laboratory.

Khaleel, M.A.; Recknagle, K.P.; Koeppel, B.; Vetrano, J.; Sun, X.; Korolev, V.; Johnson, K.I.; Nguygen, N.; Rector, D.; Singh, P.

2005-01-27T23:59:59.000Z

30

Estimation and reduction of the uncertainties in chemical models: Application to hot core chemistry  

E-Print Network (OSTI)

It is not common to consider the role of uncertainties in the rate coefficients used in interstellar gas-phase chemical models. In this paper, we report a new method to determine both the uncertainties in calculated molecular abundances and their sensitivities to underlying uncertainties in the kinetic data utilized. The method is used in hot core models to determine if previous analyses of the age and the applicable cosmic-ray ionization rate are valid. We conclude that for young hot cores ($\\le 10^4$ yr), the modeling uncertainties related to rate coefficients are reasonable so that comparisons with observations make sense. On the contrary, the modeling of older hot cores is characterized by strong uncertainties for some of the important species. In both cases, it is crucial to take into account these uncertainties to draw conclusions from the comparison of observations with chemical models.

Wakelam, V; Herbst, E; Caselli, P; Wakelam, Valentine; Selsis, Franck; Herbst, Eric; Caselli, Paola

2005-01-01T23:59:59.000Z

31

Estimation and reduction of the uncertainties in chemical models: Application to hot core chemistry  

E-Print Network (OSTI)

It is not common to consider the role of uncertainties in the rate coefficients used in interstellar gas-phase chemical models. In this paper, we report a new method to determine both the uncertainties in calculated molecular abundances and their sensitivities to underlying uncertainties in the kinetic data utilized. The method is used in hot core models to determine if previous analyses of the age and the applicable cosmic-ray ionization rate are valid. We conclude that for young hot cores ($\\le 10^4$ yr), the modeling uncertainties related to rate coefficients are reasonable so that comparisons with observations make sense. On the contrary, the modeling of older hot cores is characterized by strong uncertainties for some of the important species. In both cases, it is crucial to take into account these uncertainties to draw conclusions from the comparison of observations with chemical models.

Valentine Wakelam; Franck Selsis; Eric Herbst; Paola Caselli

2005-09-07T23:59:59.000Z

32

Core Information Model: A Practical Solution to Costly Integration Problems  

E-Print Network (OSTI)

as a whole. Thus, an enterprise information model is critical to CIM. A missing element in many CIM, CIM-OSA [3]), which are recommended by international standards communities as an economical way is then fully engineered to integrate with a generic, basic CIM data model developed from industrial scenarios

Hsu, Cheng

33

Analytical modeling of core hydraulics and flow management in breeder reactors  

SciTech Connect

An analytical model representing the hydraulic behavior of the primary system of fast breeder nuclear reactors is discussed. A computer code capable of detailing the core flow distribution and characterizing the flow and pressure drop in each reactor component is presented. Application of this method to the reactor core thermal-hydraulic design has allowed optimization of the flow management with consequent upgrading in performance, reduction of unnecessary conservatism and very substantial cost savings. Typical quantitative examples are presented.

Carelli, M.D.; Willis, J.M.

1979-01-01T23:59:59.000Z

34

VANESA: a mechanistic model of radionuclide release and aerosol generation during core debris interactions with concrete  

Science Conference Proceedings (OSTI)

This document describes a model, called VANESA, of the release of radionuclides and generation of aerosol accompanying reactor core melt interactions with structural concrete. The document also serves as a user's manual for an implementation of the VANESA model as a computer code. The technical bases for the VANESA model are reviewed. Mechanical generation of aerosols as bubbles burst at melt surfaces or as a result of liquid entrainment is considered. A description of these processes based on data for gas-sparged water systems is included in the VANESA model. Some limiting solutions to the problem of the competitive processes of nucleation of particles from vapor, condensation of vapors on surfaces, and coagulation of particles are examined. From these examinations an approximate model of the aerosol particle size produced during core debris interactions with concrete is devised. The attenuation of aerosol emission during core debris/concrete interactions by an overlying water pool is discussed. The document concludes with a description of a computer code implementation of the VANESA model. This implementation of the model was used in recent assessments of the behavior of radionuclides during severe reactor accidents. Comparisons of the predictions of radionuclide release during core debris/concrete interactions obtained with the VANESA model and with older models are presented.

Powers, D.A.; Brockmann, J.E.; Shiver, A.W.

1986-07-01T23:59:59.000Z

35

Benchmark calculation of no-core Monte Carlo shell model in light nuclei  

E-Print Network (OSTI)

The Monte Carlo shell model is firstly applied to the calculation of the no-core shell model in light nuclei. The results are compared with those of the full configuration interaction. The agreements between them are within a few % at most.

T. Abe; P. Maris; T. Otsuka; N. Shimizu; Y. Utsuno; J. P. Vary

2011-07-09T23:59:59.000Z

36

Benchmark calculation of no-core Monte Carlo shell model in light nuclei  

E-Print Network (OSTI)

The Monte Carlo shell model is firstly applied to the calculation of the no-core shell model in light nuclei. The results are compared with those of the full configuration interaction. The agreements between them are within a few % at most.

Abe, T; Otsuka, T; Shimizu, N; Utsuno, Y; Vary, J P; 10.1063/1.3584062

2011-01-01T23:59:59.000Z

37

Benchmark calculation of no-core Monte Carlo shell model in light nuclei  

SciTech Connect

The Monte Carlo shell model is firstly applied to the calculation of the no-core shell model in light nuclei. The results are compared with those of the full configuration interaction. The agreements between them are within a few % at most.

Abe, T.; Shimizu, N. [Department of Physics, the University of Tokyo, Hongo, Tokyo 113-0033 (Japan); Maris, P.; Vary, J. P. [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Otsuka, T. [Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033 (Japan); CNS, University of Tokyo, Hongo, Tokyo 113-0033 (Japan); NSCL, Michigan State University, East Lansing, Michigan 48824 (United States); Utsuno, Y. [ASRC, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

2011-05-06T23:59:59.000Z

38

An efficient FE model based on combined theory for the analysis of soft core sandwich plate  

Science Conference Proceedings (OSTI)

An efficient C0 continuous finite element (FE) model is developed based on combined theory (refine higher order shear deformation theory (RHSDT) and least square error (LSE) method) for the static analysis of soft core sandwich plate. In this ... Keywords: Composites, Finite element, Laminate, Plates, Sandwich materials

Ravi Prakash Khandelwal; Anupam Chakrabarti; Pradeep Bhargava

2013-05-01T23:59:59.000Z

39

Larger Turbines and the Future Cost of Wind Energy (Poster)  

DOE Green Energy (OSTI)

The move to larger turbines has been observed in the United States and around the world. Turbine scaling increases energy capture while reducing general project infrastructure costs and landscape impacts, each of which of can reduce the cost of wind energy. However, scaling in the absence of innovation, can increase turbine costs. The ability of turbine designers and manufacturers to continue to scale turbines, while simultaneously reducing costs, is an important factor in long-term viability of the industry. This research seeks to better understand how technology innovation can allow the continued development of larger turbines on taller towers while also achieving lower cost of energy. Modeling incremental technology improvements identified over the past decade demonstrates that cost reductions on the order of 10%, and capacity factor improvements on the order of 5% (for sites with annual mean wind speed of 7.25 m/s at 50m), are achievable for turbines up to 3.5 MW. However, to achieve a 10% cost reduction and a 10% capacity factor improvement for turbines up to 5 MW, additional technology innovations must be developed and implemented.

Lantz, E.; Hand, M.

2011-03-01T23:59:59.000Z

40

Core Analysis For The Development And Constraint Of Physical Models Of  

Open Energy Info (EERE)

For The Development And Constraint Of Physical Models Of For The Development And Constraint Of Physical Models Of Geothermal Reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Core Analysis For The Development And Constraint Of Physical Models Of Geothermal Reservoirs Details Activities (2) Areas (2) Regions (0) Abstract: Effective reservoir exploration, characterization, and engineering require a fundamental understanding of the geophysical properties of reservoir rocks and fracture systems. Even in the best of circumstances, spatial variability in porosity, fracture density, salinity, saturation, tectonic stress, fluid pressures, and lithology can all potentially produce and/or contribute to geophysical anomalies. As a result, serious uniqueness problems frequently occur when interpreting

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Thermal-radiation heat-transfer model for degraded cores. [PWR; BWR  

SciTech Connect

One consequence of the accident at the Three Mile Island Unit 2 (TMI-2) nuclear power plant is a realization by the nuclear power technical community that there is a need for calculational tools that can be used to analyze the TMI-2 accident and to investigate hypothetical situations involving degraded light-water reactor (LWR) cores. As a result, there are now several ongoing modeling and code development efforts in the United States among which is the development of the MIMAS (Multifield Integrated Meltdown Analysis System code) at the Los Alamos National Laboratory. This paper describes a thermal-radiation heat-transfer model for LWR degraded cores that has been developed for the MIMAS code.

Tomkins, J.L.

1983-01-01T23:59:59.000Z

42

Modeling of C stars with core/mantle grains: Amorphous carbon + SiC  

E-Print Network (OSTI)

A set of 45 dust envelopes of carbon stars has been modeled. Among them, 34 were selected according to their dust envelope class (as suggested by Sloan, Little-Marenin & Price, 1998) and 11 are extreme carbon stars. The models were performed using a code that describes the radiative transfer in dust envelopes considering core/mantle grains composed by an alpha-SiC core and an amorphous carbon (A.C.) mantle. In addition, we have also computed models with a code that considers two kinds of grains - alpha-SiC and A.C. - simultaneously. Core-mantle grains seem to fit dust envelopes of evolved carbon stars, while two homogeneous grains are more able to reproduce thinner dust envelopes. Our results suggest that there exists an evolution of dust grains in the carbon star sequence. In the beginning of the sequence, grains are mainly composed of SiC and amorphous carbon; with dust envelope evolution, carbon grains are coated in SiC. This phenomena could perhaps explain the small quantity of SiC grains observed in the interstellar medium. However, in this work we consider only alpha-SiC grains, and the inclusion of beta-SiC grains can perhaps change some of there results.

S. Lorenz-Martins; F. X. de Araujo; S. J. Codina Landaberry; W. G. de Almeida; R. V. de Nader

2000-12-08T23:59:59.000Z

43

Short communication: a larger clique for a DIMACS test  

E-Print Network (OSTI)

Optimization Online. Short communication: a larger clique for a DIMACS test. Andrea Grosso (grosso ***at*** di.unito.it) Marco Locatelli (locatell ***at*** ...

44

Converging sequences in the ab initio no-core shell model  

E-Print Network (OSTI)

We demonstrate the existence of multiple converging sequences in the ab initio no-core shell model. By examining the underlying theory of effective operators, we expose the physical foundations for the alternative pathways to convergence. This leads us to propose a revised strategy for evaluating effective interactions for $A$-body calculations in restricted model spaces. We suggest that this strategy is particularly useful for applications to nuclear processes in which states of both parities are used simultaneously, such as for transition rates. We demonstrate the utility of our strategy with large-scale calculations in light nuclei.

C. Forssén; J. P. Vary; E. Caurier; P. Navrátil

2008-02-12T23:59:59.000Z

45

Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2010  

SciTech Connect

Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or “Core Modeling Update”) Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF).

Rahmat Aryaeinejad; Douglas S. Crawford; Mark D. DeHart; George W. Griffith; D. Scott Lucas; Joseph W. Nielsen; David W. Nigg; James R. Parry; Jorge Navarro

2010-09-01T23:59:59.000Z

46

TRACE/PARCS Core Modeling of a BWR/5 for Accident Analysis of ATWS Events  

Science Conference Proceedings (OSTI)

The TRACE/PARCS computational package [1, 2] isdesigned to be applicable to the analysis of light water reactor operational transients and accidents where the coupling between the neutron kinetics (PARCS) and the thermal-hydraulics and thermal-mechanics (TRACE) is important. TRACE/PARCS has been assessed for itsapplicability to anticipated transients without scram(ATWS) [3]. The challenge, addressed in this study, is to develop a sufficiently rigorous input model that would be acceptable for use in ATWS analysis. Two types of ATWS events were of interest, a turbine trip and a closure of main steam isolation valves (MSIVs). In the first type, initiated by turbine trip, the concern is that the core will become unstable and large power oscillations will occur. In the second type,initiated by MSIV closure,, the concern is the amount of energy being placed into containment and the resulting emergency depressurization. Two separate TRACE/PARCS models of a BWR/5 were developed to analyze these ATWS events at MELLLA+ (maximum extended load line limit plus)operating conditions. One model [4] was used for analysis of ATWS events leading to instability (ATWS-I);the other [5] for ATWS events leading to emergency depressurization (ATWS-ED). Both models included a large portion of the nuclear steam supply system and controls, and a detailed core model, presented henceforth.

Cuadra A.; Baek J.; Cheng, L.; Aronson, A.; Diamond, D.; Yarsky, P.

2013-11-10T23:59:59.000Z

47

A THREE-PHASE CHEMICAL MODEL OF HOT CORES: THE FORMATION OF GLYCINE  

SciTech Connect

A new chemical model is presented that simulates fully coupled gas-phase, grain-surface, and bulk-ice chemistry in hot cores. Glycine (NH{sub 2}CH{sub 2}COOH), the simplest amino acid, and related molecules such as glycinal, propionic acid, and propanal, are included in the chemical network. Glycine is found to form in moderate abundance within and upon dust-grain ices via three radical-addition mechanisms, with no single mechanism strongly dominant. Glycine production in the ice occurs over temperatures {approx}40-120 K. Peak gas-phase glycine fractional abundances lie in the range 8 Multiplication-Sign 10{sup -11}-8 Multiplication-Sign 10{sup -9}, occurring at {approx}200 K, the evaporation temperature of glycine. A gas-phase mechanism for glycine production is tested and found insignificant, even under optimal conditions. A new spectroscopic radiative-transfer model is used, allowing the translation and comparison of the chemical-model results with observations of specific sources. Comparison with the nearby hot-core source NGC 6334 IRS1 shows excellent agreement with integrated line intensities of observed species, including methyl formate. The results for glycine are consistent with the current lack of a detection of this molecule toward other sources; the high evaporation temperature of glycine renders the emission region extremely compact. Glycine detection with ALMA is predicted to be highly plausible, for bright, nearby sources with narrow emission lines. Photodissociation of water and subsequent hydrogen abstraction from organic molecules by OH, and NH{sub 2}, are crucial to the buildup of complex organic species in the ice. The inclusion of alternative branches within the network of radical-addition reactions appears important to the abundances of hot-core molecules; less favorable branching ratios may remedy the anomalously high abundance of glycolaldehyde predicted by this and previous models.

Garrod, Robin T., E-mail: rgarrod@astro.cornell.edu [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853-6801 (United States)

2013-03-01T23:59:59.000Z

48

Collaboration between varied organizations develops larger, more precise  

NLE Websites -- All DOE Office Websites (Extended Search)

The Large Area Picosecond Photodetector (LAPPD) collaboration has developed cheaper, larger, more robust microchannel plates, seen here at a test facility at Argonne. The LAPPD team has partnered with Massachusetts-based fiber optics company INCOM Inc. to manufacture the plates. Click to enlarge. The Large Area Picosecond Photodetector (LAPPD) collaboration has developed cheaper, larger, more robust microchannel plates, seen here at a test facility at Argonne. The LAPPD team has partnered with Massachusetts-based fiber optics company INCOM Inc. to manufacture the plates. Click to enlarge. The Large Area Picosecond Photodetector (LAPPD) collaboration has developed cheaper, larger, more robust microchannel plates, seen here at a test facility at Argonne. The LAPPD team has partnered with Massachusetts-based fiber optics company INCOM Inc. to manufacture the plates. Click to enlarge. Collaboration between varied organizations develops larger, more precise photodetectors for the market By Chelsea Leu * November 5, 2013 Tweet EmailPrint Scientific particle detectors, medical imaging devices and cargo scanners

49

Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components  

SciTech Connect

This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

Duffy, Stephen

2013-09-09T23:59:59.000Z

50

Inference of ICF Implosion Core Mix using Experimental Data and Theoretical Mix Modeling  

Science Conference Proceedings (OSTI)

The mixing between fuel and shell materials in Inertial Confinement Fusion (ICF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model performed well in predicting trends in the width of the mix layer. With these results, we have contributed to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increased our confidence in the methods used to extract mixing information from experimental data.

Welser-Sherrill, L; Haynes, D A; Mancini, R C; Cooley, J H; Tommasini, R; Golovkin, I E; Sherrill, M E; Haan, S W

2008-04-30T23:59:59.000Z

51

Inference of ICF implosion core mix using experimental data and theoretical mix modeling  

Science Conference Proceedings (OSTI)

The mixing between fuel and shell materials in Inertial Confinement Fusion (lCF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model predicted trends in the width of the mix layer as a function of initial shell thickness. These results contribute to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increasing confidence in the methods used to extract mixing information from experimental data.

Sherrill, Leslie Welser [Los Alamos National Laboratory; Haynes, Donald A [Los Alamos National Laboratory; Cooley, James H [Los Alamos National Laboratory; Sherrill, Manolo E [Los Alamos National Laboratory; Mancini, Roberto C [UNR; Tommasini, Riccardo [LLNL; Golovkin, Igor E [PRISM COMP. SCIENCES; Haan, Steven W [LLNL

2009-01-01T23:59:59.000Z

52

Simulating HFIR Core Thermal Hydraulics Using 3D-2D Model Coupling  

SciTech Connect

A model utilizing interdimensional variable coupling is presented for simulating the thermal hydraulic interactions of the High Flux Isotope Reactor (HFIR) core at Oak Ridge National Laboratory (ORNL). The model s domain consists of a single, explicitly represented three-dimensional fuel plate and a simplified two-dimensional coolant channel slice. In simplifying the coolant channel, and thus the number of mesh points in which the Navier-Stokes equations must be solved, the computational cost and solution time are both greatly reduced. In order for the reduced-dimension coolant channel to interact with the explicitly represented fuel plate, however, interdimensional variable coupling must be enacted along all shared boundaries. The primary focus of this paper is in detailing the collection, storage, passage, and application of variables across this interdimensional interface. Comparisons are made showing the general speed-up associated with this simplified coupled model.

Travis, Adam R [ORNL] ORNL; Freels, James D [ORNL] ORNL; Ekici, Kivanc [ORNL] ORNL

2013-01-01T23:59:59.000Z

53

Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2012  

SciTech Connect

Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance, and to some extent, experiment management, are inconsistent with the state of modern nuclear engineering practice, and are difficult, if not impossible, to properly verify and validate (V&V) according to modern standards. Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In late 2009, the Idaho National Laboratory (INL) initiated a focused effort, the ATR Core Modeling Update Project, to address this situation through the introduction of modern high-fidelity computational software and protocols. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the next anticipated ATR Core Internals Changeout (CIC) in the 2014-2015 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its third full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (HELIOS, KENO6/SCALE, NEWT/SCALE, ATTILA, and an extended implementation of MCNP5) has been installed at the INL under various licensing arrangements. Corresponding models of the ATR and ATRC are now operational with all five codes, demonstrating the basic feasibility of the new code packages for their intended purpose. Of particular importance, a set of as-run core depletion HELIOS calculations for all ATR cycles since August 2009, Cycle 145A through Cycle 151B, was successfully completed during 2012. This major effort supported a decision late in the year to proceed with the phased incorporation of the HELIOS methodology into the ATR Core Safety Analysis Package (CSAP) preparation process, in parallel with the established PDQ-based methodology, beginning late in Fiscal Year 2012. Acquisition of the advanced SERPENT (VTT-Finland) and MC21 (DOE-NR) Monte Carlo stochastic neutronics simulation codes was also initiated during the year and some initial applications of SERPENT to ATRC experiment analysis were demonstrated. These two new codes will offer significant additional capability, including the possibility of full-3D Monte Carlo fuel management support capabilities for the ATR at some point in the future. Finally, a capability for rigorous sensitivity analysis and uncertainty quantification based on the TSUNAMI system has been implemented and initial computational results have been obtained. This capability will have many applications as a tool for understanding the margins of uncertainty in the new models as well as for validation experiment design and interpretation.

David W. Nigg, Principal Investigator; Kevin A. Steuhm, Project Manager

2012-09-01T23:59:59.000Z

54

The Ocean–Land–Atmosphere Model (OLAM). Part II: Formulation and Tests of the Nonhydrostatic Dynamic Core  

Science Conference Proceedings (OSTI)

The dynamic core of the Ocean–Land–Atmosphere Model (OLAM), which is a new global model that is partly based on the Regional Atmospheric Modeling System (RAMS), is described and tested. OLAM adopts many features of its predecessor, but its ...

Robert L. Walko; Roni Avissar

2008-11-01T23:59:59.000Z

55

into deeper and larger-volume saline formations. Researchers at  

NLE Websites -- All DOE Office Websites (Extended Search)

into deeper and larger-volume saline formations. Researchers at into deeper and larger-volume saline formations. Researchers at Cranfield have been monitoring the injected CO 2 with instrumentation installed nearly two miles beneath the surface to ensure the safe and permanent storage in the Lower Tuscaloosa Formations. The Cranfield project also has been successful in the deployment of pressure-response monitoring techniques in the injection zone ("in-zone") and above the injection zone ("above zone"). Real-time data collected since July 2008

56

Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2013  

SciTech Connect

Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance, and to some extent, experiment management, are inconsistent with the state of modern nuclear engineering practice, and are difficult, if not impossible, to verify and validate (V&V) according to modern standards. Furthermore, the legacy staff knowledge required for effective application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In late 2009, the Idaho National Laboratory (INL) initiated a focused effort, the ATR Core Modeling Update Project, to address this situation through the introduction of modern high-fidelity computational software and protocols. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF).

David W. Nigg

2013-09-01T23:59:59.000Z

57

Reactor core design and modeling of the MIT research reactor for conversion to LEU  

SciTech Connect

Feasibility design studies for conversion of the MIT Research Reactor (MITR) to LEU are described. Because the reactor fuel has a rhombic cross section, a special input processor was created in order to model the reactor in great detail with the REBUS-PC diffusion theory code, in 3D (triangular-z) geometry. Comparisons are made of fuel assembly power distributions and control blade worth vs. axial position, between REBUS-PC results and Monte Carlo predictions from the MCNP code. Results for the original HEU core at zero burnup are also compared with measurement. These two analysis methods showed remarkable agreement. Ongoing fuel cycle studies are summarized. A status report will be given as to results thus far that affect key design decisions. Future work plans and schedules to achieve completion of the conversion are presented. (author)

Newton, Thomas H. Jr. [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany St., Cambridge, MA 02139 (United States); Olson, Arne P.; Stillman, John A. [RERTR Program, Argonne National Laboratory, Argonne, IL 60439 (United States)

2008-07-15T23:59:59.000Z

58

On the Requirements for Realistic Modeling of Neutrino Transport in Simulations of Core-collapse Supernovae  

SciTech Connect

We have conducted a series of numerical experiments with the spherically-symmetric, general-relativistic neutrino radiation hydrodynamics code Agile-BOLTZTRAN to examine the effects of several approximations used in multidimensional core-collapse supernova simulations. Our code permits us to examine the effects of these approximations quantitatively by removing, or substituting for, the pieces of supernova physics of interest. These approximations include: (1) using Newtonian versus general-relativistic gravity, hydrodynamics, and transport; (2) using older weak interactions, including the omission of non-isoenergetic neutrino scattering, versus up-to-date weak interactions; and (3) omitting the velocity-dependent terms, or observer corrections, from the neutrino Boltzmann kinetic equation. We demonstrate that each of these changes has non-negligible effects on the outcomes of our simulations. Finally, we discuss the impact these results have for current, and future, multidimensional models.

Lentz, Eric J [ORNL; Mezzacappa, Anthony [ORNL; Messer, Bronson [ORNL; Liebendoerfer, Matthias [Universitat Basel, Switzerland; Hix, William Raphael [ORNL; Bruenn, S. W. [Florida Atlantic University

2012-01-01T23:59:59.000Z

59

Percentage of Positive Biopsy Cores: A Better Risk Stratification Model for Prostate Cancer?  

Science Conference Proceedings (OSTI)

Purpose: To assess the prognostic value of the percentage of positive biopsy cores (PPC) and perineural invasion in predicting the clinical outcomes after radiotherapy (RT) for prostate cancer and to explore the possibilities to improve on existing risk-stratification models. Methods and Materials: Between 1993 and 2004, 1,056 patients with clinical Stage T1c-T3N0M0 prostate cancer, who had four or more biopsy cores sampled and complete biopsy core data available, were treated with external beam RT, with or without a high-dose-rate brachytherapy boost at William Beaumont Hospital. The median follow-up was 7.6 years. Multivariate Cox regression analysis was performed with PPC, Gleason score, pretreatment prostate-specific antigen, T stage, PNI, radiation dose, androgen deprivation, age, prostate-specific antigen frequency, and follow-up duration. A new risk stratification (PPC classification) was empirically devised to incorporate PPC and replace the T stage. Results: On multivariate Cox regression analysis, the PPC was an independent predictor of distant metastasis, cause-specific survival, and overall survival (all p 50% was associated with significantly greater distant metastasis (hazard ratio, 4.01; 95% confidence interval, 1.86-8.61), and its independent predictive value remained significant with or without androgen deprivation therapy (all p 50%) with National Comprehensive Cancer Network risk stratification demonstrated added prognostic value of distant metastasis for the intermediate-risk (hazard ratio, 5.44; 95% confidence interval, 1.78-16.6) and high-risk (hazard ratio, 4.39; 95% confidence interval, 1.70-11.3) groups, regardless of the use of androgen deprivation and high-dose RT (all p < .05). The proposed PPC classification appears to provide improved stratification of the clinical outcomes relative to the National Comprehensive Cancer Network classification. Conclusions: The PPC is an independent and powerful predictor of clinical outcomes of prostate cancer after RT. A risk model replacing T stage with the PPC to reduce subjectivity demonstrated potentially improved stratification.

Huang Jiayi; Vicini, Frank A. [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States); Williams, Scott G. [Peter Maccallum Cancer Centre and University of Melbourne, Melbourne, Victoria (Australia); Ye Hong; McGrath, Samuel; Ghilezan, Mihai; Krauss, Daniel; Martinez, Alvaro A. [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States); Kestin, Larry L., E-mail: lkestin@comcast.net [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States)

2012-07-15T23:59:59.000Z

60

CORCON-MOD3: An integrated computer model for analysis of molten core-concrete interactions. User`s manual  

SciTech Connect

The CORCON-Mod3 computer code was developed to mechanistically model the important core-concrete interaction phenomena, including those phenomena relevant to the assessment of containment failure and radionuclide release. The code can be applied to a wide range of severe accident scenarios and reactor plants. The code represents the current state of the art for simulating core debris interactions with concrete. This document comprises the user`s manual and gives a brief description of the models and the assumptions and limitations in the code. Also discussed are the input parameters and the code output. Two sample problems are also given.

Bradley, D.R.; Gardner, D.R.; Brockmann, J.E.; Griffith, R.O. [Sandia National Labs., Albuquerque, NM (United States)

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Thermodynamics and Structural Properties of the High Density Gaussian Core Model  

E-Print Network (OSTI)

We numerically study thermodynamic and structural properties of the one-component Gaussian core model (GCM) at very high densities. The solid-fluid phase boundary is carefully determined. We find that the density dependence of both the freezing and melting temperatures obey the asymptotic relation, $\\log T_f$, $\\log T_m \\propto -\\rho^{2/3}$, where $\\rho$ is the number density, which is consistent with Stillinger's conjecture. Thermodynamic quantities such as the energy and pressure and the structural functions such as the static structure factor are also investigated in the fluid phase for a wide range of temperature above the phase boundary. We compare the numerical results with the prediction of the liquid theory with the random phase approximation (RPA). At high temperatures, the results are in almost perfect agreement with RPA for a wide range of density, as it has been already shown in the previous studies. In the low temperature regime close to the phase boundary line, although RPA fails to describe the structure factors and the radial distribution functions at the length scales of the interparticle distance, it successfully predicts their behaviors at shorter length scales. RPA also predicts thermodynamic quantities such as the energy, pressure, and the temperature at which the thermal expansion coefficient becomes negative, almost perfectly. Striking ability of RPA to predict thermodynamic quantities even at high densities and low temperatures is understood in terms of the decoupling of the length scales which dictate thermodynamic quantities from the interparticle distance which dominates the peak structures of the static structure factor due to the softness of the Gaussian core potential.

Atsushi Ikeda; Kunimasa Miyazaki

2011-04-18T23:59:59.000Z

62

Phase diagram of the hard-core Bose-Hubbard model on a checkerboard superlattice  

SciTech Connect

We obtain the complete phase diagram of the hard-core Bose-Hubbard model in the presence of a period-two superlattice in two and three dimensions. First we acquire the phase boundaries between the superfluid phase and the 'trivial' insulating phases of the model (the completely-empty and completely-filled lattices) analytically. Next, the boundary between the superfluid phase and the half-filled Mott-insulating phase is obtained numerically, using the stochastic series expansion algorithm followed by finite-size scaling. We also compare our numerical results against the predictions of several approximation schemes, including two mean-field approaches and a fourth-order strong-coupling expansion, where we show that the latter method in particular is successful in producing an accurate picture of the phase diagram. Finally, we examine the extent to which several approximation schemes, such as the random phase approximation and the strong-coupling expansion, give an accurate description of the momentum distribution of the bosons inside the insulating phases.

Hen, Itay; Rigol, Marcos [Department of Physics, Georgetown University, Washington, DC 20057 (United States); Iskin, M. [Department of Physics, Koc University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul (Turkey)

2010-02-01T23:59:59.000Z

63

Cumulonimbus Vertical Velocity Events in GATE. Part II: Synthesis and Model Core Structure  

Science Conference Proceedings (OSTI)

The properties of convective drafts and cores are presented in Part I. By our definition a convective updraft must have a positive vertical velocity for 0.5 km, and exceed 0.5 m s?1 for 1 s; a convective updraft core must exceed 1 m s?1 for 0.5 ...

E. J. Zipser; M. A. LeMone

1980-11-01T23:59:59.000Z

64

A three-phase three-winding core-type transformer model for low-frequency transient studies  

Science Conference Proceedings (OSTI)

A topology-based and duality-derived three-phase, three-winding, core-type transformer model is presented. The model treats the leakage inductances and the coupling effects of the core in a straightforward and integrated way. The long-established positive- and zero-sequence star equivalent circuits of a three-phase three-winding transformer are derived from the original equivalent magnetic circuit of the transformer by applying duality. Formulations for determining the values of the leakage inductances and the core loss resistances from transformer open- and short-circuit test data are presented. A supporting routine is written to generate the {lambda}-i curves for each segment of the core and the other input data for EMTP. Since the duality-derived model consists of only RLC elements, no device-specific code to EMTP time-step code is needed. Winding capacitances are lumped to the terminals. The model is suitable for simulation of power system low-frequency transients such as inrush currents and ferroresonance, short circuits, and abnormalities including transformer winding faults.

Chen, X. [Seattle Univ., WA (United States). Dept. of Electrical Engineering; Venkata, S.S. [Univ. of Washington, Seattle, WA (United States). Dept. of Electrical Engineering

1997-04-01T23:59:59.000Z

65

ON THE REQUIREMENTS FOR REALISTIC MODELING OF NEUTRINO TRANSPORT IN SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE  

SciTech Connect

We have conducted a series of numerical experiments with the spherically symmetric, general relativistic, neutrino radiation hydrodynamics code AGILE-BOLTZTRAN to examine the effects of several approximations used in multidimensional core-collapse supernova simulations. Our code permits us to examine the effects of these approximations quantitatively by removing, or substituting for, the pieces of supernova physics of interest. These approximations include: (1) using Newtonian versus general relativistic gravity, hydrodynamics, and transport; (2) using a reduced set of weak interactions, including the omission of non-isoenergetic neutrino scattering, versus the current state-of-the-art; and (3) omitting the velocity-dependent terms, or observer corrections, from the neutrino Boltzmann kinetic equation. We demonstrate that each of these changes has noticeable effects on the outcomes of our simulations. Of these, we find that the omission of observer corrections is particularly detrimental to the potential for neutrino-driven explosions and exhibits a failure to conserve lepton number. Finally, we discuss the impact of these results on our understanding of current, and the requirements for future, multidimensional models.

Lentz, Eric J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States); Mezzacappa, Anthony; Hix, W. Raphael [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6354 (United States); Messer, O. E. Bronson [Computer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6164 (United States); Liebendoerfer, Matthias [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Bruenn, Stephen W., E-mail: elentz@utk.edu, E-mail: mezzacappaa@ornl.gov [Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991 (United States)

2012-03-01T23:59:59.000Z

66

A Scalable Spectral Element Eulerian Atmospheric Model (SEE-AM) for NWP: Dynamical Core Tests  

Science Conference Proceedings (OSTI)

A new dynamical core for numerical weather prediction (NWP) based on the spectral element method is presented. This paper represents a departure from previously published work on solving the atmospheric primitive equations in that the horizontal ...

Francis X. Giraldo; Thomas E. Rosmond

2004-01-01T23:59:59.000Z

67

Benchmark of Atucha-2 PHWR RELAP5-3D control rod model by Monte Carlo MCNP5 core calculation  

Science Conference Proceedings (OSTI)

Atucha-2 is a Siemens-designed PHWR reactor under construction in the Republic of Argentina. Its geometrical complexity and peculiarities require the adoption of advanced Monte Carlo codes for performing realistic neutronic simulations. Therefore core models of Atucha-2 PHWR were developed using MCNP5. In this work a methodology was set up to collect the flux in the hexagonal mesh by which the Atucha-2 core is represented. The scope of this activity is to evaluate the effect of obliquely inserted control rod on neutron flux in order to validate the RELAP5-3D{sup C}/NESTLE three dimensional neutron kinetic coupled thermal-hydraulic model, applied by GRNSPG/UNIPI for performing selected transients of Chapter 15 FSAR of Atucha-2. (authors)

Pecchia, M.; D'Auria, F. [San Piero A Grado Nuclear Research Group GRNSPG, Univ. of Pisa, via Diotisalvi, 2, 56122 - Pisa (Italy); Mazzantini, O. [Nucleo-electrica Argentina Societad Anonima NA-SA, Buenos Aires (Argentina)

2012-07-01T23:59:59.000Z

68

Modeling and design of a reload PWR core for a 48-month fuel cycle  

Science Conference Proceedings (OSTI)

The objective of this research was to use state-of-the-art nuclear and fuel performance packages to evaluate the feasibility and costs of a 48 calendar month core in existing pressurized water reactor (PWR) designs, considering the full range of practical design and economic considerations. The driving force behind this research is the desire to make nuclear power more economically competitive with fossil fuel options by expanding the scope for achievement of higher capacity factors. Using CASMO/SIMULATE, a core design with fuel enriched to 7{sup w}/{sub o} U{sup 235} for a single batch loaded, 48-month fuel cycle has been developed. This core achieves an ultra-long cycle length without exceeding current fuel burnup limits. The design uses two different types of burnable poisons. Gadolinium in the form of gadolinium oxide (Gd{sub 2}O{sub 3}) mixed with the UO{sub 2} of selected pins is sued to hold down initial reactivity and to control flux peaking throughout the life of the core. A zirconium di-boride (ZrB{sub 2}) integral fuel burnable absorber (IFBA) coating on the Gd{sub 2}O{sub 3}-UO{sub 2} fuel pellets is added to reduce the critical soluble boron concentration in the reactor coolant to within acceptable limits. Fuel performance issues of concern to this design are also outlined and areas which will require further research are highlighted.

McMahon, M.V.; Driscoll, M.J.; Todreas, N.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

1997-05-01T23:59:59.000Z

69

Physical modeling of core debris: basemat interactions in a MgO-lined LMFBR cavity  

SciTech Connect

The use of a MgO delay bed as a sacrificial material to accommodate core debris within the reactor cavity following a major core disruptive accident involving reactor vessel and guard vessel failure has been considered as one of the likely core retention concepts in LMFBR safety studies. The primary objective of this concept is to prevent direct contact of sodium with concrete so as to minimize the sodium-concrete interactions which result in gas evolution from the concrete structure and the chemical energy release. Another important objective is to provide an effective means of decay heat removal utilizing the large thermal mass of the MgO bed. Characterization has been made of the nature of phenomena involved in the interactions and the potential sequence of their occurrence. A flow diagram for accident progression has been constructed to describe the likely events that may take place in the cavity. The transport rate and mechanism as well as the time scale of each event have been determined by a scoping analysis.

Cheung, F.B.; Pedersen, D.R.

1983-01-01T23:59:59.000Z

70

The First Five Minutes of a Core Collapse Supernova: Multidimensional Hydrodynamic Models  

E-Print Network (OSTI)

We present results of high-resolution two-dimensional simulations which follow the first five minutes of a core collapse supernova explosion in a 15 solar mass blue supergiant progenitor. The computations start shortly after core bounce and include neutrino-matter interactions by using a light-bulb approximation for the neutrinos, and a treatment of the nucleosynthesis due to explosive silicon and oxygen burning. We find that newly formed iron-group elements are distributed throughout a significant fraction of the stellar helium core by the concerted action of convective and Rayleigh-Taylor instabilities. Fast moving nickel mushrooms with velocities up to 4000 km/s are observed. A continuation of the calculations to later times, however, indicates, that the iron velocities observed in SN 1987 A cannot be reproduced due to a strong deceleration of the clumps during their interaction with the dense shell left behind by the shock at the He/H interface. Therefore, we cannot confirm the claim that convective "premixing" of the nickel in the early phases of the explosion solves the problem of the high iron velocities.

K. Kifonidis; T. Plewa; H. -Th. Janka; E. Mueller

1999-11-22T23:59:59.000Z

71

A RECOLLIMATION SHOCK 80 mas FROM THE CORE IN THE JET OF THE RADIO GALAXY 3C 120: OBSERVATIONAL EVIDENCE AND MODELING  

Science Conference Proceedings (OSTI)

We present Very Long Baseline Array observations of the radio galaxy 3C 120 at 5, 8, 12, and 15 GHz designed to study a peculiar stationary jet feature (hereafter C80) located {approx}80 mas from the core, which was previously shown to display a brightness temperature {approx}600 times larger than expected at such distances. The high sensitivity of the images-obtained between 2009 December and 2010 June-has revealed that C80 corresponds to the eastern flux density peak of an arc of emission (hereafter A80), downstream of which extends a large ({approx}20 mas in size) bubble-like structure that resembles an inverted bow shock. The linearly polarized emission closely follows that of the total intensity in A80, with the electric vector position angle distributed nearly perpendicular to the arc-shaped structure. Despite the stationary nature of C80/A80, superluminal components with speeds up to 3 {+-} 1 c have been detected downstream from its position, resembling the behavior observed in the HST-1 emission complex in M87. The total and polarized emission of the C80/A80 structure, its lack of motion, and brightness temperature excess are best reproduced by a model based on synchrotron emission from a conical shock with cone opening angle {eta} = 10 Degree-Sign , jet viewing angle {theta} = 16 Degree-Sign , a completely tangled upstream magnetic field, and upstream Lorentz factor {gamma}{sub u} = 8.4. The good agreement between our observations and numerical modeling leads us to conclude that the peculiar feature associated with C80/A80 corresponds to a conical recollimation shock in the jet of 3C 120 located at a de-projected distance of {approx}190 pc downstream from the nucleus.

Agudo, Ivan; Gomez, Jose L.; Casadio, Carolina; Roca-Sogorb, Mar [Instituto de Astrofisica de Andalucia, CSIC, Apartado 3004, 18080 Granada (Spain); Cawthorne, Timothy V., E-mail: jlgomez@iaa.es [School of Computing, Engineering and Physical Science, University of Central Lancashire, Preston PR1 2HE (United Kingdom)

2012-06-20T23:59:59.000Z

72

A Double Fourier Series (DFS) Dynamical Core in a Global Atmospheric Model with Full Physics  

Science Conference Proceedings (OSTI)

This study describes an application of the double Fourier series (DFS) spectral method developed by Cheong as an alternative dynamical option in a model system that was ported into the Global/Regional Integrated Model System (GRIMs). A message ...

Hoon Park; Song-You Hong; Hyeong-Bin Cheong; Myung-Seo Koo

2013-09-01T23:59:59.000Z

73

A Double Fourier Series (DFS) Dynamic Core in a Global Atmospheric Model with Full Physics  

Science Conference Proceedings (OSTI)

This study describes an application of the double Fourier series (DFS) spectral method developed by Cheong (2006) as an alternative dynamic option in a model system that was ported in the Global/Regional Integrated Model system (GRIMs). A message-...

Hoon Park; Song-You Hong; Hyeong-Bin Cheong; Myung-Seo Koo

74

Core Specialization  

NLE Websites -- All DOE Office Websites (Extended Search)

Core Specialization Core Specialization Core Specialization Core Specialization (CS) is a feature of the Cray operating system that allows the user to reserve one or more cores per node for handling system services, and thus reduce the effects of timing jitter due to interruptions from the operating system at the expense of (possibly) requiring more nodes to run an application. The specialized cores may also be used in conjunction with Cray's MPI asynchronous progress engine [1] to improve the overlap of communication and computation for applications that use non-blocking MPI functions. In the absence of CS, the compute cores must service their own non-blocking calls. Hyper-Threading complicates questions abouty the most effective use of processor resources. HT doubles the number of compute stream (i.e.

75

Core Specialization  

NLE Websites -- All DOE Office Websites (Extended Search)

Core Core Specialization Core Specialization Core Specialization (CS) is a feature of the Cray operating system that allows the user to reserve one or more cores per node for handling system services, and thus reduce the effects of timing jitter due to interruptions from the operating system at the expense of (possibly) requiring more nodes to run an application. The specialized cores may also be used in conjunction with Cray's MPI asynchronous progress engine [1] to improve the overlap of communication and computation for applications that use non-blocking MPI functions. In the absence of CS, the compute cores must service their own non-blocking calls. Hyper-Threading complicates questions abouty the most effective use of processor resources. HT doubles the number of compute stream (i.e.

76

A generalized theory for non-classical transport with angular-dependent path-length distributions 2: Anisotropic diffusion in model pebble bed reactor cores  

E-Print Network (OSTI)

We describe an analysis of neutron transport in the interior of model pebble bed reactor (PBR) cores, considering both crystal and random pebble arrangements. Monte Carlo codes were developed for (i) generating random realizations of the model PBR core, and (ii) performing neutron transport inside the crystal and random heterogeneous cores; numerical results are presented for two different choices of material parameters. These numerical results are used to investigate the anisotropic behavior of neutrons in each case and to assess the accuracy of estimates for the diffusion coefficients obtained with the diffusion approximations of different models: the atomic mix model, the Behrens correction, the Lieberoth correction, the generalized linear Boltzmann equation (GLBE), and the new GLBE with angular-dependent path-length distributions. This new theory utilizes a non-classical form of the Boltzmann equation in which the locations of the scattering centers in the system are correlated and the distance-to-collisi...

Vasques, Richard

2013-01-01T23:59:59.000Z

77

Recent Greenland Accumulation Estimated from Regional Climate Model Simulations and Ice Core Analysis  

Science Conference Proceedings (OSTI)

The accumulation defined as “precipitation minus evaporation” over Greenland has been simulated with the high-resolution limited-area regional climate model HIRHAM4 applied over an Arctic integration domain. This simulation is compared with a ...

K. Dethloff; M. Schwager; J. H. Christensen; S. Kiilsholm; A. Rinke; W. Dorn; F. Jung-Rothenhäusler; H. Fischer; S. Kipfstuhl; H. Miller

2002-10-01T23:59:59.000Z

78

Modeling the Surface Energy Balance of the Core of an Old Mediterranean City: Marseille  

Science Conference Proceedings (OSTI)

The Town Energy Balance (TEB) model, which parameterizes the local-scale energy and water exchanges between urban surfaces and the atmosphere by treating the urban area as a series of urban canyons, coupled to the Interactions between Soil, ...

A. Lemonsu; C. S. B. Grimmond; V. Masson

2004-02-01T23:59:59.000Z

79

Core Analysis for the Development and Constraint of Physical Models of Geothermal Reservoirs  

DOE Green Energy (OSTI)

Effective reservoir exploration, characterization, and engineering require a fundamental understanding of the geophysical properties of reservoir rocks and fracture systems. Even in the best of circumstances, spatial variability in porosity, fracture density, salinity, saturation, tectonic stress, fluid pressures, and lithology can all potentially produce and/or contribute to geophysical anomalies. As a result, serious uniqueness problems frequently occur when interpreting assumptions based on a knowledge base founded in validated rock physics models of reservoir material.

Greg N. Boitnott

2003-12-14T23:59:59.000Z

80

Quark deconfinement in protoneutron star cores: effect of color superconductivity within the MIT bag model  

E-Print Network (OSTI)

We analyze the effect of color superconductivity in the transition from hot hadron matter to quark matter in the presence of a gas of trapped electron neutrinos. To describe strongly interacting matter we adopt a two-phase picture in which the hadronic phase is described by means of a non-linear Walecka model and just deconfined matter through the MIT bag model including color superconductivity. We impose flavor conservation during the transition in such a way that just deconfined quark matter is transitorily out of equilibrium with respect to weak interactions. Our results show that color superconductivity facilitates the transition for temperatures below $T_c$. This effect may be strong if the superconducting gap is large enough. As in previous work we find that trapped neutrinos increase the critical density for deconfinement; however, if the just deconfined phase is color superconducting this effect is weaker than if deconfined matter is unpaired. We also explore the effect of different parametrizations of the hadronic equation of state (GM1 and NL3) and the effect of hyperons in the hadronic phase. We compare our results with those previously obtained employing the Nambu-Jona-Lasinio model in the description of just deconfined matter and show that they are in excellent agreement if the bag constant $B$ is properly chosen.

Taiza A. S. do Carmo; Germán Lugones

2013-08-21T23:59:59.000Z

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

MCNP LWR Core Generator  

Science Conference Proceedings (OSTI)

The reactor core input generator allows for MCNP input files to be tailored to design specifications and generated in seconds. Full reactor models can now easily be created by specifying a small set of parameters and generating an MCNP input for a full reactor core. Axial zoning of the core will allow for density variation in the fuel and moderator, with pin-by-pin fidelity, so that BWR cores can more accurately be modeled. LWR core work in progress: (1) Reflectivity option for specifying 1/4, 1/2, or full core simulation; (2) Axial zoning for moderator densities that vary with height; (3) Generating multiple types of assemblies for different fuel enrichments; and (4) Parameters for specifying BWR box walls. Fuel pin work in progress: (1) Radial and azimuthal zoning for generating further unique materials in fuel rods; (2) Options for specifying different types of fuel for MOX or multiple burn assemblies; (3) Additional options for replacing fuel rods with burnable poison rods; and (4) Control rod/blade modeling.

Fischer, Noah A. [Los Alamos National Laboratory

2012-08-14T23:59:59.000Z

82

Large-scale Renewable Energy Projects (Larger than 10 MWs) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-scale Renewable Energy Projects (Larger than 10 MWs) Large-scale Renewable Energy Projects (Larger than 10 MWs) Large-scale Renewable Energy Projects (Larger than 10 MWs) October 7, 2013 - 9:32am Addthis Renewable energy projects larger than 10 megawatts (MW) are complex and typically require private-sector financing. The Federal Energy Management Program (FEMP) developed a guide to help Federal agencies, and the developers and financiers that work with them, to successfully install these projects at Federal facilities. The Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger than 10 MWs at Federal Facilities: A Practical Guide to Getting Large-Scale Renewable Energy Projects Financed with Private Capital provides a framework to allow the Federal Government, private developers, and financiers to work in a

83

New Report Shows Trend Toward Larger Offshore Wind Systems, with 11  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters October 23, 2013 - 10:52am Addthis The Energy Department today released a new report showing progress for the U.S. offshore wind energy market in 2012, including the completion of two commercial lease auctions for federal Wind Energy Areas and 11 commercial-scale U.S. projects representing over 3,800 megawatts (MW) of capacity reaching an advanced stage of development. Further, the report highlights global trends toward building offshore turbines in deeper waters and using larger, more efficient turbines in offshore wind farms, increasing the amount of electricity delivered to consumers.

84

Reasons for Larger Warming Projections in the IPCC Third Assessment Report  

Science Conference Proceedings (OSTI)

Projections of future warming in the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report (TAR) are substantially larger than those in the Second Assessment Report (SAR). The reasons for these differences are documented and ...

T. M. L. Wigley; S. C. B. Raper

2002-10-01T23:59:59.000Z

85

Larger Teaching and Learning Development Projects Proposal Criteria (3 pages maximum)  

E-Print Network (OSTI)

. This can, for example, include project specific personnel costs (e.g. RA Larger Teaching and Learning Development Projects Proposal Criteria (3 of project 2. Description of the proposed project, please include the following

86

A lattice with larger momentum compaction for the NLC main damping rings  

E-Print Network (OSTI)

The dynamic aperture of the lattice is probably sufficient,Collider Damping Ring Lattices”, PAC’01, p.3795. [2] A.LBNL-52579 A LATTICE WITH LARGER MOMENTUM COMPACTION FOR THE

Wolski, Andrzej; Raubenheimer, Tor O.; Woodley, Mark; Wu, Juhao

2004-01-01T23:59:59.000Z

87

Non-local equilibrium two-phase flow model with phase change in porous media and its application to reflooding of a severely damaged reactor core  

Science Conference Proceedings (OSTI)

A generalized non local-equilibrium, three-equation model was developed for the macroscopic description of two-phase flow heat and mass transfer in porous media subjected to phase change. Six pore-scale closure problems were proposed to determine all the effective transport coefficients for representative unit cells. An improved model is presented in this paper with the perspective of application to intense boiling phenomena. The objective of this paper is to present application of this model to the simulation of reflooding of severely damaged nuclear reactor cores. In case of accident at a nuclear power plant, water sources may not be available for a long period of time and the core heats up due to the residual power. Any attempt to inject water during core degradation can lead to quenching and further fragmentation of the core material. The fragmentation of fuel rods and melting of reactor core materials may result in the formation of a {sup d}ebris bed{sup .} The typical particle size in a debris bed might reach few millimeters (characteristic length-scale: 1 to 5 mm), which corresponds to a high permeability porous medium. The proposed two-phase flow model is implemented in the ICARECATHARE code, developed by IRSN to study severe accident scenarios in pressurized water reactors. Currently, the French IRSN has set up two experimental facilities to study debris bed reflooding, PEARL and PRELUDE, with the objective to validate safety models. The PRELUDE program studies the complex two phase flow of water and steam in a porous medium (diameter 180 mm, height 200 mm), initially heated to a high temperature (400 deg. C or 700 deg. C). The series of PRELUDE experiments achieved in 2010 constitute a significant complement to the database of high temperature bottom reflood experimental data. They provide relevant data to understand the progression of the quench front and the intensity of heat transfer. Modeling accurately these experiments required improvements to the reflooding model, especially in terms of the existence of various saturation regimes. The improved two-phase flow model shows a good agreement with PRELUDE experimental results.

Bachrata, A.; Fichot, F.; Quintard, M.; Repetto, G.; Fleurot, J. [Institut de Radioprotection et de Surete Nucleaire, Cadarache (France); Universite de Toulouse (France); INPT, UPS (France); IMFT - Institut de Mecanique des Fluides de Toulouse, Allee Camille Soula, F-31400 Toulouse (France) and CNRS (France); IMFT, F-31400 Toulouse (France); Institut de Radioprotection et de Surete Nucleaire, Cadarache (France)

2012-05-15T23:59:59.000Z

88

Core Analysis At Geysers Area (Boitnott, 2003) | Open Energy...  

Open Energy Info (EERE)

Core Analysis Activity Date Usefulness not indicated DOE-funding Unknown References Greg N. Boitnott (2003) Core Analysis For The Development And Constraint Of Physical Models Of...

89

The Evolution of Dynamical Cores for Global Atmospheric Models,” Journal of the Meteorological Society of Japan 85B 241–269  

E-Print Network (OSTI)

The evolution of global atmospheric model dynamical cores from the first developments in the early 1960s to present day is reviewed. Numerical methods for atmospheric models are not straightforward because of the so-called pole problem. The early approaches include methods based on composite meshes, on quasi-homogeneous grids such as spherical geodesic and cubed sphere, on reduced grids, and on a latitude-longitude grid with short time steps near the pole, none of which were entirely successful. This resulted in the dominance of the spectral transform method after it was introduced. Semi-Lagrangian semi-implicit methods were developed which yielded significant computational savings and became dominant in Numerical Weather Prediction. The need for improved physical properties in climate modeling led to developments in shape preserving and conservative methods. Today the numerical methods development community is extremely active with emphasis placed on methods with desirable physical properties, especially conservation and shape preservation, while retaining the accuracy and efficiency gained in the past. Much of the development is based on quasi-uniform grids. Although the need for better physical properties is emphasized in this paper, another driving force is the need to develop schemes which are capable of running efficiently on computers with thousands of processors and distributed memory. Test cases for dynamical core evaluation are also briefly reviewed. These range from well defined deterministic tests to longer term statistical tests with both idealized forcing and complete parameterization packages but simple geometries. Finally some aspects of coupling dynamical cores to parameterization suites are discussed. 1.

David L. Williamson

2007-01-01T23:59:59.000Z

90

Using CORE Model-Based Systems Engineering Software to Support Program Management in the U.S. Department of Energy Office of the Biomass Project: Preprint  

DOE Green Energy (OSTI)

This paper describes how a model-based systems engineering software, CORE, is helping the U. S. Department of Energy's Office of Biomass Program assist with bringing biomass-derived biofuels to the market. This software tool provides information to guide informed decision-making as biomass-to-biofuels systems are advanced from concept to commercial adoption. It facilitates management and communication of program status by automatically generating custom reports, Gantt charts, and tables using the widely available programs of Microsoft Word, Project and Excel.

Riley, C.; Sandor, D.; Simpkins, P.

2006-11-01T23:59:59.000Z

91

Using CORE Model-Based Systems Engineering Software to Support Program Management in the U.S. Department of Energy Office of the Biomass Project: Preprint  

SciTech Connect

This paper describes how a model-based systems engineering software, CORE, is helping the U. S. Department of Energy's Office of Biomass Program assist with bringing biomass-derived biofuels to the market. This software tool provides information to guide informed decision-making as biomass-to-biofuels systems are advanced from concept to commercial adoption. It facilitates management and communication of program status by automatically generating custom reports, Gantt charts, and tables using the widely available programs of Microsoft Word, Project and Excel.

Riley, C.; Sandor, D.; Simpkins, P.

2006-11-01T23:59:59.000Z

92

Critical CRBR core pressure  

Science Conference Proceedings (OSTI)

The conditions are detailed under which gas pressure will cause or initiate failure in the structural containment of the fuel core. The Clinch River Breeder Reactor Plant is the prototype structure. Two general classes of problems have been studied, representing two entirely distinct configurations of containment failure. The first model determines the minimum pressure to lift a portion or the entire core from its containment. The second model estimates the critical pressure above which the fuel rods interior to the hexagonal fuel can warp, leading to blockage of the gas passages. Such blockage might cause further buildup of the gas pressure to a level causing the failure of the fuel rod containment in the hexagonal fuel container.

Ju, F.D.

1980-06-01T23:59:59.000Z

93

Microsoft Word - IronCore  

NLE Websites -- All DOE Office Websites (Extended Search)

November/December 2013 November/December 2013 Percolation Explains How Earth's Iron Core Formed The formation of Earth's metallic core, which makes up a third of our planet's mass, represents the most significant differentiation event in Earth's history. Earth's present layered structure with a metallic core and an overlying silicate mantle would have required mechanisms to separate iron alloy from a silicate phase. Percolation of liquid iron alloy moving through a solid silicate matrix (much as water percolates through porous rock, or even coffee grinds) has been proposed as a possible model for core formation (Figure 1). Many previous experimental results have ruled out percolation as a major core formation mechanism for Earth at the relatively lower pressure conditions in the upper mantle, but

94

Environmental effects of planting energy crops at larger scales on agricultural lands  

DOE Green Energy (OSTI)

Increasing from research-scale to larger-scale plantings of herbaceous and short rotation woody crops on agricultural land in the United States has raised questions about the positive and negative environmental effects of farmland conversion. Research currently underway at experimental plot scales enables us examine runoff quality and quantity, erosion, and changes in soil characteristics associated with these energy crops compared to conventional row crops. A study of the fate of chemicals applied to the different crop types will enhance our knowledge of uptake, release, and off-site movement of nutrients and pesticides. Ongoing biodiversity studies in the North Central US allow us to compare differences in scale of plantings on bird and small mammal populations and habitat use. Plantings of 50--100 or more contiguous acres are needed to allow both researchers and producers to determine the benefits of including temporal energy crop rotations in the landscape. Results from these larger-scale plantings will help identify (1) the monitoring requirements needed to determine environmental effects of larger-scale plantings, (2) the best methods to determine the environmental effects of rotation length and the best crop management strategies for full-scale production. Because of the variations in soils, temperature, rainfall and other climatic conditions, as well as differences in the types of energy crops most suited for different regions, monitoring of large-scale plantings in these different regions of the US will be required to predict the environmental effects of regional agricultural land-use shifts for full-scale plantings.

Tolbert, V.R.; Downing, M.

1995-09-01T23:59:59.000Z

95

Environmental effects of planting biomass crops at larger scales on agricultural lands  

DOE Green Energy (OSTI)

Increasing from research-scale to larger-scale plantings of herbaceous. and short rotation woody crops on agricultural land in the United States has raised questions about the positive and negative environmental effects of farmland conversion. Research currently underway at experimental plot scales enables us examine runoff quality and quantity, erosion, and changes in soil characteristics associated with these energy crops compared to conventional row crops. A study of the fate of chemicals applied to the different crop types will enhance our knowledge of uptake, release, and off-site movement of nutrients and pesticides. Ongoing biodiversity studies in the North Central US allow us to compare differences in scale of plantings on bird and small mammal populations and habitat use. Plantings of 50--100 or more contiguous acres are needed to allow both researchers and producers to determine the benefits of including temporal energy crop rotations in the landscape. Results from these larger-scale plantings will help identify (1) the monitoring requirements needed to determine environmental effects of larger-scale plantings, (2) the best methods to determine the environmental effects of rotation length and the best crop management strategies for full-scale production. Because of the variations in soils, temperature, rainfall and other climatic conditions, as well as differences in the types of energy crops most suited for different regions, monitoring of large-scale plantings in these different regions of the US will be required to predict the environmental effects of regional agricultural land-use shifts for full-scale plantings.

Tolbert, V.R.; Downing, M.E.

1995-09-01T23:59:59.000Z

96

India, China and the Nathu La Understanding Beijing’s Larger Strategy towards the Region  

E-Print Network (OSTI)

Sikkim is of immense importance to both India and China. This brief attempts to answer two specific questions: What is China’s larger game plan vis-a-vis Nathu La? What has been Beijing’s strategy on the Chinese side across the Nathu La? The issue of Sikkim’s sovereignty has always been a bone of contention between the two countries. After Vajpayee’s visit to China in 2003, both countries agreed to resume trade through Nathu La. The significance of this step lay in China’s implicit recognition of Sikkim’s merger with India- a fact that Beijing had consistently refused to accept earlier. On 23 June 2003, Vajpayee and Wen Jiabao signed the declaration of principles for relations and comprehensive cooperation between the China and India (Xinhua 2003) including the memorandum on expanding border trade that provided for the formal reopening of Nathu La as a border trade pass between Indian and China. Reopening of the Nathu La was the most significant confidence building measure in India-China relations. What are the larger objectives and strategies of China towards this region?

Teshu Singh

2013-01-01T23:59:59.000Z

97

THE DYNAMICS OF DENSE CORES IN THE PERSEUS MOLECULAR CLOUD. II. THE RELATIONSHIP BETWEEN DENSE CORES AND THE CLOUD  

Science Conference Proceedings (OSTI)

We utilize the extensive data sets available for the Perseus molecular cloud to analyze the relationship between the kinematics of small-scale dense cores and the larger structures in which they are embedded. The kinematic measures presented here can be used in conjunction with those discussed in our previous work as strong observational constraints that numerical simulations (or analytic models) of star formation should match. We find that dense cores have small motions with respect to the {sup 13}CO gas, about one third of the {sup 13}CO velocity dispersion along the same line of sight. Within each extinction region, the core-to-core velocity dispersion is about half of the total ({sup 13}CO) velocity dispersion seen in the region. Large-scale velocity gradients account for roughly half of the total velocity dispersion in each region, similar to what is predicted from large-scale turbulent modes following a power spectrum of P(k) {proportional_to} k {sup -4}.

Kirk, Helen; Johnstone, Doug [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1 (Canada); Pineda, Jaime E.; Goodman, Alyssa, E-mail: hkirk@cfa.harvard.ed [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2010-11-01T23:59:59.000Z

98

Core Capabilities | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

The Advanced Photon Source is one of the brightest sources of X-rays in the The Advanced Photon Source is one of the brightest sources of X-rays in the Western Hemisphere. Photons are accelerated to over 99% of the speed of light around its ring, which is the size of a baseball stadium. To view a larger version of the image, click on it. The Center for Nanoscale Materials at Argonne is a premier user facility, providing expertise, instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. To view a larger version of the image, click on it. Core Capabilities Argonne's vision is to lead the world in discovery science and engineering that provides technical solutions to the grand challenges of our time. Argonne's vision is to lead the world in discovery science and engineering that provides technical solutions to the grand challenges of our time:

99

Senior Design Projects 2013 Project Title 1 : Monte Carlo Simulations Using a Benchmark Full-Core Pressured Water Rector Model  

E-Print Network (OSTI)

defined in MCNP. There are a number of approaches in parallel high performance computing that can and 7,168 GPUs. The high performance computing industry is moving toward a hybrid computer model, where

Danon, Yaron

100

PARTICLE IMAGE VELOCIMETRY MEASUREMENTS IN A REPRESENTATIVE GAS-COOLED PRISMATIC REACTOR CORE MODEL: FLOW IN THE COOLANT CHANNELS AND INTERSTITIAL BYPASS GAPS  

Science Conference Proceedings (OSTI)

Core bypass flow is one of the key issues with the prismatic Gas Turbine-Modular Helium Reactor, and it refers to the coolant that navigates through the interstitial, non-cooling passages between the graphite fuel blocks instead of traveling through the designated coolant channels. To determine the bypass flow, a double scale representative model was manufactured and installed in the Matched Index-of-Refraction flow facility; after which, stereo Particle Image Velocimetry (PIV) was employed to measure the flow field within. PIV images were analyzed to produce vector maps, and flow rates were calculated by numerically integrating over the velocity field. It was found that the bypass flow varied between 6.9-15.8% for channel Reynolds numbers of 1,746 and 4,618. The results were compared to computational fluid dynamic (CFD) pre-test simulations. When compared to these pretest calculations, the CFD analysis appeared to under predict the flow through the gap.

Thomas E. Conder; Richard Skifton; Ralph Budwig

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Thermal-Hydraulic Modeling of the Primary Coolant System of Light Water Reactors During Severely Degraded Core Accidents  

Science Conference Proceedings (OSTI)

The transport of fission-product vapors and aerosols that would be released from an LWR primary system in postulated severe accidents depends on the prevalent thermal-hydraulic conditions. The analytic models developed in this study are incorporated in the PSAAC modular computer program, which can help predict more realistic estimates of accident consequences.

1984-07-01T23:59:59.000Z

102

Parallel multigrid solvers using OpenMP/MPI hybrid programming models on multi-core/multi-socket clusters  

Science Conference Proceedings (OSTI)

OpenMP/MPI hybrid parallel programming models were implemented to 3D finite-volume based simulation code for groundwater flow problems through heterogeneous porous media using parallel iterative solvers with multigrid preconditioning. Performance and ... Keywords: multigrid, openMP/MPI hybrid, preconditioning

Kengo Nakajima

2010-06-01T23:59:59.000Z

103

NEW TWO-DIMENSIONAL MODELS OF SUPERNOVA EXPLOSIONS BY THE NEUTRINO-HEATING MECHANISM: EVIDENCE FOR DIFFERENT INSTABILITY REGIMES IN COLLAPSING STELLAR CORES  

Science Conference Proceedings (OSTI)

The neutrino-driven explosion mechanism for core-collapse supernovae in its modern flavor relies on the additional support of hydrodynamical instabilities in achieving shock revival. Two possible candidates, convection and the so-called standing accretion shock instability (SASI), have been proposed for this role. In this paper, we discuss new successful simulations of supernova explosions that shed light on the relative importance of these two instabilities. While convection has so far been observed to grow first in self-consistent hydrodynamical models with multi-group neutrino transport, we here present the first such simulation in which the SASI grows faster while the development of convection is initially inhibited. We illustrate the features of this SASI-dominated regime using an explosion model of a 27 M{sub Sun} progenitor, which is contrasted with a convectively dominated model of an 8.1 M{sub Sun} progenitor with subsolar metallicity, whose early post-bounce behavior is more in line with previous 11.2 M{sub Sun} and 15 M{sub Sun} explosion models. We analyze the conditions discriminating between the two different regimes, showing that a high mass-accretion rate and a short advection timescale are conducive for strong SASI activity. We also briefly discuss some important factors for capturing the SASI-driven regime, such as general relativity, the progenitor structure, a nuclear equation of state leading to a compact proto-neutron star, and the neutrino treatment. Finally, we evaluate possible implications of our findings for two-dimensional and three-dimensional supernova simulations.

Mueller, Bernhard; Janka, Hans-Thomas [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Heger, Alexander, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de, E-mail: alexander.heger@monash.edu [School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

2012-12-10T23:59:59.000Z

104

Basic criticality relations for gas core design  

DOE Green Energy (OSTI)

Minimum critical fissile concentrations are calculated for U-233, U-235, Pu-239, and Am-242m mixed homogeneously with hydrogen at temperatures to 15,000K. Minimum critical masses of the same mixtures in a 1000 liter sphere are also calculated. It is shown that propellent efficiencies of a gas core fizzler engine using Am-242m as fuel would exceed those in a solid core engine as small as 1000L operating at 100 atmospheres pressure. The same would be true for Pu-239 and possibly U-233 at pressures of 1000 atm. or at larger volumes.

Tanner, J.E.

1992-05-22T23:59:59.000Z

105

The National Energy Modeling System: An Overview 2000 - Macroeconomic  

Gasoline and Diesel Fuel Update (EIA)

Macroeconomic assessment at EIA involves several modes of analysis. The first type of analysis, used in forecasting the Annual Energy Outlook where energy prices change, uses kernel regression and response surface techniques to mimic the response of larger macroeconomic and industrial models. This mode of analysis requires a given economic baseline and then calculates the economic impacts of changing energy prices, calculated from the chosen growth path. The economic growth cases are derived from the larger core models and can reflect either high, low, or reference case growth assumptions. Analyzing economic impacts from energy price changes uses the macroeconomic activity module (MAM) within NEMS and provides a subset of the macroeconomic variables available in the larger core models. The composition of the subset is determined by the other energy modules in NEMS, as they use various macroeconomic concepts as assumptions to their particular energy model.

106

HTTF Core Stress Analysis  

SciTech Connect

In accordance with the need to determine whether cracking of the ceramic core disks which will be constructed and used in the High Temperature Test Facility (HTTF) for heatup and cooldown experiments, a set of calculation were performed using Abaqus to investigate the thermal stresses levels and likelihood for cracking. The calculations showed that using the material properties provided for the Greencast 94F ceramic, cracking is predicted to occur. However, this modeling does not predict the size or length of the actual cracks. It is quite likely that cracks will be narrow with rough walls which would impede the flow of coolant gases entering the cracks. Based on data recorded at Oregon State University using Greencast 94F samples that were heated and cooled at prescribed rates, it was concluded that the likelihood that the cracks would be detrimental to the experimental objectives is small.

Brian D. Hawkes; Richard Schultz

2012-07-01T23:59:59.000Z

107

What Protects the Core When the Thiolated Gold Cluster is Extremely Small?  

SciTech Connect

The title question is motivated by the fact that extremely small thiolated-gold clusters such as Au{sub 20}(SR){sub 16} have been isolated, but their undetermined structures cannot be fully rationalized by the present knowledge derived from single-crystal structures of larger clusters. One needs to go beyond the linear monomer (RSAuSR) and V-shaped dimer (RSAuSRAuSR) motifs that were found to protect larger clusters. We hypothesize that the U-shaped trimer motif (RSAuSRAuSRAuSR) is required to protect the core of some extremely small thiolated-gold clusters, which have about 20 or fewer Au atoms. We test this hypothesis by proposing structural models for Au{sub 10}(SR){sub 8} based on two trimer motifs protecting a tetrahedral Au{sub 4} core and for Au{sub 20}(SR){sub 16} based on four trimer motifs protecting an Au{sub 8} core.

Jiang, Deen [ORNL; Chen, Wei [University of Puerto Rico; Whetten, Robert L [Georgia Institute of Technology; Chen, Zhongfang [University of Georgia, Athens, GA

2009-01-01T23:59:59.000Z

108

Modeling Nuclear Pasta and the Transition to Uniform Nuclear Matter with the 3D Skyrme-Hartree-Fock Method at Finite Temperature I: Core-Collapse Supernovae  

E-Print Network (OSTI)

The first results of a new three-dimensional, finite temperature Skyrme-Hartree-Fock+BCS study of the properties of inhomogeneous nuclear matter at densities and temperatures leading to the transition to uniform nuclear matter are presented. Calculations are carried out in a cubic box representing a unit cell of the locally periodic structure of the matter. A constraint is placed on the two independent components of the quadrupole moment of the neutron density in order to investigate the dependence of the total energy-density of matter on the geometry of the nuclear structure in the unit cell. This approach allows self-consistent modeling of effects such as (i) neutron drip, resulting in a neutron gas external to the nuclear structure, (ii) shell effects of bound and unbound nucleons, (iii) the variety of exotic nuclear shapes that emerge, collectively termed `nuclear pasta' and (iv) the dissolution of these structures into uniform nuclear matter as density and/or temperature increase. In part I of this work the calculation of the properties of inhomogeneous nuclear matter in the core collapse of massive stars is reported. Calculations are performed at baryon number densities of $n_{\\rm b}$ = 0.04 - 0.12 fm$^{\\rm -3}$, a proton fraction of $y_{\\rm p}=0.3$ and temperatures in the range 0 - 7.5 MeV. A wide variety of nuclear shapes are shown to emerge. It is suggested that thermodynamical properties change smoothly in the pasta regime up to the transition to uniform matter; at that transition, thermodynamic properties of the matter vary discontinuously.

W. G. Newton J. R. Stone

2009-04-30T23:59:59.000Z

109

Sea bottom coring apparatus  

SciTech Connect

A marine bottom coring apparatus for drilling into and obtaining core samples from subsea formations is described. It is particularly useful for obtaining core samples from hard rock formations. The apparatus includes a frame having buoyancy, which has sufficient capacity to float the apparatus in the unballast condition. Ballasting means are also connected to the frame and having ballast capacity sufficient to overcome a buoyancy of the buoyancy means. Release means are provided for releasing the ballast at a predetermined time. The frame has the core drilling means attached to it and is supported on the sea bottom, whereby the apparatus may be sunk to the sea bottom by the ballast, a core sample drilled from the subsea formation, and the apparatus floated to the surface upon release of the ballast. (11 claims)

Williamson, T.N.

1969-05-06T23:59:59.000Z

110

Oxygen to the core  

NLE Websites -- All DOE Office Websites (Extended Search)

1-01 1-01 For immediate release: 01/10/2013 | NR-13-01-01 Oxygen to the core Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly An artist's conception of Earth's inner and outer core. LIVERMORE, Calif. -- An international collaboration including researchers from Lawrence Livermore National Laboratory has discovered that the Earth's core formed under more oxidizing conditions than previously proposed. Through a series of laser-heated diamond anvil cell experiments at high pressure (350,000 to 700,000 atmospheres of pressure) and temperatures (5,120 to 7,460 degrees Fahrenheit), the team demonstrated that the depletion of siderophile (also known as "iron loving") elements can be produced by core formation under more oxidizing conditions than earlier

111

Curing of Compacted Cores  

Science Conference Proceedings (OSTI)

...dry for 1 min. Add water and mull for 1 min. Add oil and mull for 4 min. These materials are mixed in a muller as follows: Sand (by weight), 95.80% Cereal flour, 1.01% Core oil, 1.17% Water, 1.86% Bentonite, 0.16% Oil-sand mixtures are used for cores in sand molds, and by varying their

112

Emergency core cooling system  

DOE Patents (OSTI)

A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.

Schenewerk, William E. (Sherman Oaks, CA); Glasgow, Lyle E. (Westlake Village, CA)

1983-01-01T23:59:59.000Z

113

Molecular Dynamics Simulation of Smaller Granular Particles Deposition on a Larger One Due to Velocity Sequence Dependent Electrical Charge Distribution  

E-Print Network (OSTI)

Deposition of smaller granular particles on a larger nucleus particle has been simulated in two-dimension using molecular dynamics method. Variation of sequences of velocity of deposited particles is conducted and reported in this work. The sequences obey a normal distribution function of velocity with the same parameters. It has been observed that for velocity in range of 0 to 0.02 the densest deposited site (15-17 % number of grains) is located at about angle {\\pi}/4 where location of injection point is {\\pi}/4. And the less dense is about {\\pi}/4 + {\\pi}/2. Different sequences give similar result.

Euis Sustini; Siti Nurul Khotimah; Ferry Iskandar; Sparisoma Viridi

2011-07-11T23:59:59.000Z

114

Out-of-Core Progressive Lossless Compression and Selective Decompression of Large Triangle Meshes  

Science Conference Proceedings (OSTI)

In this paper we propose a novel {\\em out-of-core} technique for{\\em progressive} lossless compression and {\\em selective}decompression of 3D triangle meshes larger than main memory. Most existing compression methods, in order to optimize compression ... Keywords: Progressive Lossless Compression, Selective Decompression, Out-of-Core Techniques, Triangle Meshes

Zhiyan Du; Pavel Jaromersky; Yi-Jen Chiang; Nasir Memon

2009-03-01T23:59:59.000Z

115

Effective out-of-core parallel delaunay mesh refinement using off-the-shelf software  

Science Conference Proceedings (OSTI)

We present three related out-of-core parallel mesh generation algorithms and their implementations for small size computational clusters. Computing out-of-core permits to solve larger problems than otherwise possible on the same hardware setup. Also, ... Keywords: Delaunay, Effective computing, off-the-shelf, wall-clock time

Andriy Kot; Andrey N. Chernikov; Nikos P. Chrisochoides

2011-05-01T23:59:59.000Z

116

Recent developments in pressure coring  

SciTech Connect

The current rapid growth in the number of enhanced oil and gas recovery projects has created a strong demand for reservoir data such as true residual oil saturations. The companies providing pressure coring services have moved to fill this need. Two recent developments have emerged with the potential of significantly improving the present performance of pressure coring. Coring bits utilizing synthetic diamond cutters have demonstrated coring rates of one-foot per minute while improving core recovery. It is also apparent that cores of a near-unconsolidated nature are more easily recovered. In addition, a special low invasion fluid that is placed in the core retriever has demonstrated reduced core washing by the drilling mud and a decrease in the complexity of preparing cores for analysis. This paper describes the design, laboratory, and field testing efforts that led to these coring improvements. Also, experience in utilizing these developments while recovering over 100 cores is discussed.

McFall, A. L.

1980-01-01T23:59:59.000Z

117

Toward Radiation-Magnetohydrodynamic Simulations in Core-Collapse Supernovae  

E-Print Network (OSTI)

We report a current status of our radiation-magnetohydrodynamic code for the study of core-collapse supernovae. In this contribution, we discuss the accuracy of our newly developed numerical code by presenting the test problem in a static background model. We also present the application to the spherically symmetric core-collapse simulations. Since close comparison with the previously published models is made, we are now applying it for the study of magnetorotational core-collapse supernovae.

Kotake, K; Yamada, S; Sato, K; Kotake, Kei; Ohnishi, Naofumi; Yamada, Shoichi; Sato, Katsuhiko

2006-01-01T23:59:59.000Z

118

Toward Radiation-Magnetohydrodynamic Simulations in Core-Collapse Supernovae  

E-Print Network (OSTI)

We report a current status of our radiation-magnetohydrodynamic code for the study of core-collapse supernovae. In this contribution, we discuss the accuracy of our newly developed numerical code by presenting the test problem in a static background model. We also present the application to the spherically symmetric core-collapse simulations. Since close comparison with the previously published models is made, we are now applying it for the study of magnetorotational core-collapse supernovae.

Kei Kotake; Naofumi Ohnishi; Shoichi Yamada; Katsuhiko Sato

2005-11-30T23:59:59.000Z

119

2000 BTS Core Databook  

Buildings Energy Data Book (EERE)

0 BTS CORE DATABOOK 0 BTS CORE DATABOOK 2000 BTS CORE DATABOOK OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY * U.S. DEPARTMENT OF ENERGY This version is dated: August 7, 2000 DISCLAIMER This document was designed for the internal use of the United States Department of Energy. This document was also designed to be occasionally updated and, therefore, this copy may not reflect the most current version. This document was prepared as account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that

120

AO Core Competency Worksheet  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AO Core Competency Worksheet AO Core Competency Worksheet 1 DOE CYBER SECURITY EBK: CORE COMPETENCY TRAINING REQUIREMENTS Key Cyber Security Role: Authorizing Official (AO) Role Definition: The AO is the Senior DOE Management Federal official with the authority to formally assume responsibility and be held fully accountable for operating an information system at an acceptable level of risk. Competency Area: Incident Management Functional Requirement: Manage Competency Definition: Refers to the knowledge and understanding of the processes and procedures required to prevent, detect, investigate, contain, eradicate, and recover from incidents that impact the organizational mission as directed by the DOE Cyber Incident Response Capability (CIRC). Behavioral Outcome: Individuals fulfilling the role of AO will have a working knowledge of policies

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Earth's Core Hottest Layer  

NLE Websites -- All DOE Office Websites (Extended Search)

Earth's Core Hottest Layer Earth's Core Hottest Layer Name: Alfred Status: Grade: 6-8 Location: FL Country: USA Date: Spring 2011 Question: Why is the inner core the hottest layer? How is that possible? Replies: There are two factors causing the center of the Earth hotter than various layers of the Earth's. First, the more dense is the layer. The denser layer, the hotter it will be. In addition, the source of the heating is due to heat produced by nuclear decay. These substances tend to be more dense than lower dense substances. So the source of heat (temperature) is higher, the greater will be the temperature. Having said all that, the reasons are rather more complicated in the "real" Earth. If the inner layers were less dense they would rise (bubble) to the "surface" leaving the inner layers more dense and thus hotter layers.

122

CORE SATURATION BLOCKING OSCILLATOR  

DOE Patents (OSTI)

A blocking oscillator which relies on core saturation regulation to control the output pulse width is described. In this arrangement an external magnetic loop is provided in which a saturable portion forms the core of a feedback transformer used with the thermionic or semi-conductor active element. A first stationary magnetic loop establishes a level of flux through the saturation portion of the loop. A second adjustable magnet moves the flux level to select a saturation point giving the desired output pulse width. (AEC)

Spinrad, R.J.

1961-10-17T23:59:59.000Z

123

Hopper Multi-Core FAQ  

NLE Websites -- All DOE Office Websites (Extended Search)

Hopper Multi-Core FAQ Hopper Multi-Core FAQ Hopper Multi-Core FAQ Q. How is Hopper Different than Franklin? A. The new Hopper Phase-II system will have 24 cores per node. Franklin had only four. Q. What else is different? A. There is less memory per core. Hopper has 1.3 GB / core rather than 2.0 GB / core on Franklin. A code using MPI on Hopper may be more likely to exhaust available memory, causing an error. Additionally, Hopper's memory hierarchy is "deeper" and more non-uniform than Franklin's and this can have a big impact on performance in certain cases. Hopper's 24 cores per node are implemented on two sockets, each containing two six-core dies (see the image below). Each of the six-core dies has direct access to one-quarter of the node's total memory. Thus,

124

FIRST DETECTION OF WATER VAPOR IN A PRE-STELLAR CORE  

Science Conference Proceedings (OSTI)

Water is a crucial molecule in molecular astrophysics as it controls much of the gas/grain chemistry, including the formation and evolution of more complex organic molecules in ices. Pre-stellar cores provide the original reservoir of material from which future planetary systems are built, but few observational constraints exist on the formation of water and its partitioning between gas and ice in the densest cores. Thanks to the high sensitivity of the Herschel Space Observatory, we report on the first detection of water vapor at high spectral resolution toward a dense cloud on the verge of star formation, the pre-stellar core L1544. The line shows an inverse P-Cygni profile, characteristic of gravitational contraction. To reproduce the observations, water vapor has to be present in the cold and dense central few thousand AU of L1544, where species heavier than helium are expected to freeze out onto dust grains, and the ortho:para H{sub 2} ratio has to be around 1:1 or larger. The observed amount of water vapor within the core (about 1.5 Multiplication-Sign 10{sup -6} M{sub Sun }) can be maintained by far-UV photons locally produced by the impact of galactic cosmic rays with H{sub 2} molecules. Such FUV photons irradiate the icy mantles, liberating water vapor in the core center. Our Herschel data, combined with radiative transfer and chemical/dynamical models, shed light on the interplay between gas and solids in dense interstellar clouds and provide the first measurement of the water vapor abundance profile across the parent cloud of a future solar-type star and its potential planetary system.

Caselli, Paola; Douglas, Thomas [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Keto, Eric [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bergin, Edwin A. [Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Tafalla, Mario [Observatorio Astronomico Nacional (IGN), Calle Alfonso XII, 3, E-28014 Madrid (Spain); Aikawa, Yuri [Department of Earth and Planetary Sciences, Kobe University, Nada, 657-8501 Kobe (Japan); Pagani, Laurent [LERMA and UMR 8112 du CNRS, Observatoire de Paris, 61 Av. de l'Observatoire, F-75014 Paris (France); Yildiz, Umut A.; Kristensen, Lars E.; Van Dishoeck, Ewine F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Van der Tak, Floris F. S. [SRON Netherlands Institute for Space Research, P.O. Box 800, 9700 AV, Groningen (Netherlands); Walmsley, C. Malcolm; Codella, Claudio [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Nisini, Brunella, E-mail: p.caselli@leeds.ac.uk [INAF-Osservatorio Astronomico di Roma, I-00040 Monte Porzio Catone (Italy)

2012-11-10T23:59:59.000Z

125

SECA Core Technology Program  

NLE Websites -- All DOE Office Websites (Extended Search)

January 27 - January 27 - 28, 2005 Workshop Peer Review Rating Results Summary Donald Collins SECA Core January 2005 Workshop Peer Review Summary - DWC,PM-30,3-10-05 2 of 21 Review Process Summary * Core Technology Project Presentations - Project Objectives & Results - Non-proprietary Information - Industry, National Lab & University Participation * Verbal & Written Constructive Comments - Written Comments on Peer Review Forms - Industry Verbal Feedback at Workshop * Core Participant Review & Reply to Comments - Reply to Comment Issues * DOE NETL Redirect Projects as Needed M a t e r i a l s C o n t r o l s & D i a g n o s t i c s P o w e r E le c t r o n ic s F u e l P r o c e s s i n g Manufacturing M o d e li n g & S im u la ti o n SECA Core January 2005 Workshop Peer Review Summary - DWC,PM-30,3-10-05 3 of 21 Peer Review Questions

126

SECA Core Technology Program  

NLE Websites -- All DOE Office Websites (Extended Search)

May 12 - May 12 - 13, 2004 Workshop Peer Review Rating Results Summary Donald Collins SECA Core May 2004 Workshop Peer Review Summary - DWC,PM-30,5-21-04 2 of 16 Review Process Summary * Core Technology Project Presentations - Project Objectives & Results - Non-proprietary Information - Industry, National Lab & University Participation * Verbal & Written Constructive Comments - Written Comments on Peer Review Forms - Industry Verbal Feedback at Workshop * Core Participant Review & Reply to Comments - Reply to Comment Issues * DOE NETL Redirect Projects as Needed M a t e r i a l s C o n t r o l s & D i a g n o s t i c s P o w e r E le c t r o n ic s F u e l P r o c e s s i n g Manufacturing M o d e li n g & S im u la ti o n SECA Core May 2004 Workshop Peer Review Summary - DWC,PM-30,5-21-04 3 of 16 Peer Review Questions

127

FROM PRESTELLAR TO PROTOSTELLAR CORES. II. TIME DEPENDENCE AND DEUTERIUM FRACTIONATION  

SciTech Connect

We investigate the molecular evolution and D/H abundance ratios that develop as star formation proceeds from a dense molecular cloud core to a protostellar core, by solving a gas-grain reaction network applied to a one-dimensional radiative hydrodynamic model with infalling fluid parcels. Spatial distributions of gas and ice-mantle species are calculated at the first-core stage, and at times after the birth of a protostar. Gas-phase methanol and methane are more abundant than CO at radii r {approx}< 100 AU in the first-core stage, but gradually decrease with time, while abundances of larger organic species increase. The warm-up phase, when complex organic molecules are efficiently formed, is longer-lived for those fluid parcels infalling at later stages. The formation of unsaturated carbon chains (warm carbon-chain chemistry) is also more effective in later stages; C{sup +}, which reacts with CH{sub 4} to form carbon chains, increases in abundance as the envelope density decreases. The large organic molecules and carbon chains are strongly deuterated, mainly due to high D/H ratios in the parent molecules, determined in the cold phase. We also extend our model to simulate simply the chemistry in circumstellar disks, by suspending the one-dimensional infall of a fluid parcel at constant disk radii. The species CH{sub 3}OCH{sub 3} and HCOOCH{sub 3} increase in abundance in 10{sup 4}-10{sup 5} yr at the fixed warm temperature; both also have high D/H ratios.

Aikawa, Y. [Department of Earth and Planetary Sciences, Kobe University, 657-8501 Kobe (Japan); Wakelam, V.; Hersant, F. [CNRS and Universite de Bordeaux, Observatoire Aquitain des Sciences de l'Univers, 2 rue de l'Observatoire, B.P. 89, F-33271 Floirac (France); Garrod, R. T. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Herbst, E., E-mail: aikawa@kobe-u.ac.jp [Departments of Chemistry, Astronomy, and Physics, University of Virginia, Charlottesville, VA 22904 (United States)

2012-11-20T23:59:59.000Z

128

Core Holes | Open Energy Information  

Open Energy Info (EERE)

Core Holes Core Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Core Holes Details Activities (8) Areas (7) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Core holes are drilled to identify lithology and mineralization Stratigraphic/Structural: Retrieved samples can be used to identify fracture networks or faults Hydrological: Thermal: Thermal conductivity measurements can be done on retrieved samples. Dictionary.png Core Holes: A core hole is a well that is drilled using a hallow drill bit coated with synthetic diamonds for the purposes of extracting whole rock samples from

129

Core Transitions in the Breakup of Exotic Nuclei  

E-Print Network (OSTI)

An interesting physical process has been unveiled: dynamical core excitation during a breakup reaction of loosely bound $core+N$ systems. These reactions are typically used to extract spectroscopic information and/or astrophysical information. A new method, the eXtended Continuum Discretized Coupled Channel (XCDCC) method, was developed to incorporate, in a consistent way and to all orders, core excitation in the bound and scattering states of the projectile, as well as dynamical excitation of the core as it interacts with the target. The model predicts cross sections to specific states of the core. It is applied to the breakup of $^{11}$Be on $^9$Be at 60 MeV/u, and the calculated cross sections are in improved agreement with the data. The distribution of the cross section amongst the various core states is shown to depend on the reaction model used, and not simply on the ground state spectroscopic factors.

N. C. Summers; F. M. Nunes; I. J. Thompson

2006-02-10T23:59:59.000Z

130

Core Measure Results  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Core Measure Core Measure Results FY 07 Results FY 08 Results FY 09 Results FY 10 Target FY 10 Customer Perspective: Customer Satisfaction: -Timeliness NM 81 NM NM NM -Quality NM 90 NM NM NM Effective Service Partnership: -Extent of Customer Satisfaction with the responsiveness, etc. NM 87 NM NM NM Internal Business Perspective: Acquisition Excellence: -Extent to which internal quality control systems are effective 86 87 84 87 88 Most Effective Use of Contracting Approaches to Maximize Efficiency and Cost Effectiveness: Use of Electronic Commerce: - % of delivery & purchase orders issued electronically as a % of total simplified actions 70 72 89 99 100 - % of new competitive transactions > $100K conducted through EC 70 72 91 100 95 Performance Based Service Contracts: - PBSCs awarded as a % of eligible new

131

Cross section generation and physics modeling in a feasibility study of the conversion of the high flux isotope reactor core to use low-enriched uranium fuel  

SciTech Connect

A computational study has been initiated at ORNL to examine the feasibility of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. The current study is limited to steady-state, nominal operation and are focused on the determination of the fuel requirements, primarily density, that are required to maintain the performance of the reactor. Reactor physics analyses are reported for a uranium-molybdenum alloy that would be substituted for the current fuel - U{sub 3}O{sub 8} mixed with aluminum. An LEU core design has been obtained and requires an increase in {sup 235}U loading of a factor of 1.9 over the current HEU fuel. These initial results indicate that the conversion from HEU to LEU results in a reduction of the thermal fluxes in the central flux trap region of approximately 9 % and in the outer beryllium reflector region of approximately 15%. Ongoing work is being performed to improve upon this initial design to further minimize the impact of conversion to LEU fuel. (authors)

Ellis, R. J.; Gehin, J. C.; Primm Iii, R. T. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

2006-07-01T23:59:59.000Z

132

Toroidal core winder  

DOE Patents (OSTI)

The disclosure is directed to an apparatus for placing wire windings on a toroidal body, such as a transformer core, having an orifice in its center. The apparatus comprises a wire storage spool, a wire loop holding continuous belt maintained in a C-shaped loop by a belt supporting structure and provision for turning the belt to place and tighten loops of wire on a toroidal body, which is disposed within the gap of the C-shaped belt loop.

Potthoff, Clifford M. (Livermore, CA)

1978-01-01T23:59:59.000Z

133

Banded electromagnetic stator core  

DOE Patents (OSTI)

A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

1994-04-05T23:59:59.000Z

134

Cerenkov radiation by neutrinos in a supernova core  

E-Print Network (OSTI)

Neutrinos with a magnetic dipole moment propagating in a medium with a velocity larger than the phase velocity of light emit photons by the Cerenkov process. The Cerenkov radiation is a helicity flip process via which a left-handed neutrino in a supernova core may change into a sterile right-handed one and free-stream out of the core. Assuming that the luminosity of such sterile right-handed neutrinos is less than $10^{53}$ ergs/sec gives an upper bound on the neutrino magnetic dipole moment $\\mu_\

Subhendra Mohanty; Manoj K. Samal

1995-06-21T23:59:59.000Z

135

Does the Influence of Oblate-Like Distortions in Larger Raindrops Make a Difference in Collection and Evaporation Parameterizations?  

Science Conference Proceedings (OSTI)

This note documents the results of more exact parameterizations for continuous-collection growth and evaporation against simpler traditional ones. Although the main focus is on improving research models, the research results also apply to high-...

Jerry M. Straka; Matthew S. Gilmore

2006-11-01T23:59:59.000Z

136

Core Analysis | Open Energy Information  

Open Energy Info (EERE)

Core Analysis Core Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Core Analysis Details Activities (41) Areas (28) Regions (2) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Core analysis is done to define lithology. Stratigraphic/Structural: Core analysis can locate faults or fracture networks. Oriented core can give additional important information on anisotropy. Hydrological: Thermal: Thermal conductivity can be measured from core samples. Cost Information Low-End Estimate (USD): 2,000.00200,000 centUSD 2 kUSD 0.002 MUSD 2.0e-6 TUSD / 30 foot core Median Estimate (USD): 10,000.001,000,000 centUSD

137

The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3  

Science Conference Proceedings (OSTI)

The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol–cloud ...

Leo J. Donner; Bruce L. Wyman; Richard S. Hemler; Larry W. Horowitz; Yi Ming; Ming Zhao; Jean-Christophe Golaz; Paul Ginoux; S.-J. Lin; M. Daniel Schwarzkopf; John Austin; Ghassan Alaka; William F. Cooke; Thomas L. Delworth; Stuart M. Freidenreich; C. T. Gordon; Stephen M. Griffies; Isaac M. Held; William J. Hurlin; Stephen A. Klein; Thomas R. Knutson; Amy R. Langenhorst; Hyun-Chul Lee; Yanluan Lin; Brian I. Magi; Sergey L. Malyshev; P. C. D. Milly; Vaishali Naik; Mary J. Nath; Robert Pincus; Jeffrey J. Ploshay; V. Ramaswamy; Charles J. Seman; Elena Shevliakova; Joseph J. Sirutis; William F. Stern; Ronald J. Stouffer; R. John Wilson; Michael Winton; Andrew T. Wittenberg; Fanrong Zeng

2011-07-01T23:59:59.000Z

138

Collapse and Fragmentation of Molecular Cloud Cores. X. Magnetic Braking of Prolate and Oblate Cores  

E-Print Network (OSTI)

The collapse and fragmentation of initially prolate and oblate, magnetic molecular clouds is calculated in three dimensions with a gravitational, radiative hydrodynamics code. The code includes magnetic field effects in an approximate manner: magnetic pressure, tension, braking, and ambipolar diffusion are all modelled. The parameters varied for both the initially prolate and oblate clouds are the initial degree of central concentration of the radial density profile, the initial angular velocity, and the efficiency of magnetic braking (represented by a factor $f_{mb} = 10^{-4}$ or $10^{-3}$). The oblate cores all collapse to form rings that might be susceptible to fragmentation into multiple systems. The outcome of the collapse of the prolate cores depends strongly on the initial density profile. Prolate cores with central densities 20 times higher than their boundary densities collapse and fragment into binary or quadruple systems, whereas cores with central densities 100 times higher collapse to form single...

Boss, Alan P

2009-01-01T23:59:59.000Z

139

2001 BTS Core Databook  

Buildings Energy Data Book (EERE)

1 BTS CORE 1 BTS CORE DATABOOK OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY U.S. DEPARTMENT OF ENERGY This version is dated: November 30, 2001 REVISED data tables on the web site that have been changed since November 30, 2001 include tables: 5.6.7 5.6.8 5.6.9 5.10.8 5.10.9 5.10.10 5.10.11 5.10.12 5.10.13 5.10.14 5.10.15 5.10.16 5.10.17 5.10.18 NEW data tables on the web site that have been added since July 13, 2001 include tables: 5.6.14 5.9.7 5.9.8 5.9.9 REVISED data tables on the web site that have been changed since July 13, 2001 include tables: 4.1.1 4.1.2 4.1.4 4.1.5 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.9 4.3.1 4.3.2 4.3.3 4.3.4 4.5.1 4.5.2 4.5.3 5.1.2 5.3.1 5.8.1 5.10.1 6.2.4 7.1.8 7.3.3 These tables are not included in this version of the 2001 BTS Core Databook. DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER

140

RESULTS FROM THE (1) DATA COLLECTION WORKSHOP, (2) MODELING WORKSHOP AND (3) DRILLING AND CORING METHODS WORKSHOP AS PART OF THE JOINT INDUSTRY PARTICIPATION (JIP) PROJECT TO CHARACTERIZE NATURAL GAS HYDRATES IN THE DEEPWATER GULF OF MEXICO  

SciTech Connect

In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. As part of the project, three workshops were held. The first was a data collection workshop, held in Houston during March 14-15, 2002. The purpose of this workshop was to find out what data exist on gas hydrates and to begin making that data available to the JIP. The second and third workshop, on Geoscience and Reservoir Modeling, and Drilling and Coring Methods, respectively, were held simultaneously in Houston during May 9-10, 2002. The Modeling Workshop was conducted to find out what data the various engineers, scientists and geoscientists want the JIP to collect in both the field and the laboratory. The Drilling and Coring workshop was to begin making plans on how we can collect the data required by the project's principal investigators.

Stephen A. Holditch; Emrys Jones

2002-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Partial core pulse transformer  

DOE Patents (OSTI)

A light-weight partial-core pule transformer is provided for generating high voltage output pulses with low distortion. The transformer includes sets of ferrite bars arranged so as to extend longitudinally along the inside and outside surfaces of a high frequency cylindrical coil winding-pair. The ferrite bars are arranged in pairs with the bars of each pair being located on opposite sides of winding-pair. The bars are preferably disposed in a radially symmetric arrangement around the winding-pair, and each has a length at least equal to the width of the winding-pair.

Lawson, R.N.; Rohwein, G.J.

1991-12-31T23:59:59.000Z

142

Original Article: Simulation-based weight factor selection and FPGA prediction core implementation for finite-set model based predictive control of power electronics  

Science Conference Proceedings (OSTI)

Model-based predictive control (MBPC) for power-electronic converters offers fast and accurate control. Based on the prediction of the future system states the optimal control input sequence is obtained by calculating a cost for each sequence. The control ... Keywords: FPGA, Multilevel inverters, Parallel calculation, Pipelining, Predictive control

Thomas J. Vyncke, Steven Thielemans, Jan A. A. Melkebeek

2013-05-01T23:59:59.000Z

143

Core-tube data logger  

DOE Green Energy (OSTI)

Wireline core drilling, increasingly used for geothermal exploration, employs a core-tube to capture a rock core sample during drilling. Three types of core-tube data loggers (CTDL) have been built and tested to date by Sandia national Laboratories. They are: (1) temperature-only logger, (2) temperature/inclinometer logger and (3) heat-shielded temperature/inclinometer logger. All were tested during core drilling operations using standard wireline diamond core drilling equipment. While these tools are designed for core-tube deployment, the tool lends itself to be adapted to other drilling modes and equipment. Topics covered in this paper include: (1) description on how the CTDLs are implemented, (2) the components of the system, (3) the type of data one can expect from this type of tool, (4) lessons learned, (5) comparison to its counterpart and (6) future work.

Henfling, J.A.; Normann, R.A.; Knudsen, S.; Drumheller, D.

1997-01-01T23:59:59.000Z

144

Percolation Explains How Earth's Iron Core Formed | Stanford Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Percolation Explains How Earth's Iron Core Formed Percolation Explains How Earth's Iron Core Formed Wednesday, November 27, 2013 The formation of Earth's metallic core, which makes up a third of our planet's mass, represents the most significant differentiation event in Earth's history. Earth's present layered structure with a metallic core and an overlying silicate mantle would have required mechanisms to separate iron alloy from a silicate phase. Percolation of liquid iron alloy moving through a solid silicate matrix (much as water percolates through porous rock, or even coffee grinds) has been proposed as a possible model for core formation (Figure 1). Many previous experimental results have ruled out percolation as a major core formation mechanism for Earth at the relatively lower pressure conditions in the upper mantle, but until now experimental

145

Identification of human gene core promoters in silico  

E-Print Network (OSTI)

Identification of the 5’-end of human genes requires identification of functional promoter elements. In silico identification of those elements is difficult because of the hierarchical and modular nature of promoter architecture. To address this problem, I propose a new stepwise strategy based on initial localization of a functional promoter into a 1-2 kb (extended-promoter) region from within a large genomic DNA sequence of 100 kb or larger, and further localization of a Transcriptional Start Site (TSS) into a 50-100 bp (core-promoter) region. Using positional dependent 5-tuple measures, a Quadratic Discriminant Analysis (QDA) method has been implemented in a new program- CorePromoter. Our experiments indicate that when given a 1-2 kb extended promoter, CorePromoter will correctly localize the TSS to a 100 bp interval approximately 60 % of the time.

Michael Q. Zhang

1998-01-01T23:59:59.000Z

146

Sn/SnOx Core-Shell Nanospheres: Synthesis, Anode Performance in Li Ion Batteries, and Superconductivity  

Science Conference Proceedings (OSTI)

Sn/SnO{sub x} core?shell nanospheres have been synthesized via a modified polyol process. Their size can be readily controlled by tuning the usage of surface stabilizers and the temperature. Anode performance in Li ion batteries and their superconducting properties is detailed. As anode materials, 45 nm nanospheres outperform both larger and smaller ones. Thus, they exhibit a capacity of about 3443 mAh cm{sup -3} and retain about 88% of after 10 cycles. We propose a model based on the microstructural evolution to explain the size impact on nanosphere performance. Magnetic measurements indicate that the nanospheres become superconducting below the transition temperature T{sub C} = 3.7 K, which is similar to the value obtained in bulk tin. Although T{sub C} does not significantly change with the size of the Sn core, we determined that the critical field H{sub C} of nanospheres can be as much as a factor of 30 larger compared to the bulk value. Alternating current measurements demonstrated that a transition from conventional to filamentary superconducting structure occurs in Sn/SnO{sub x} particles as their size increases. The transition is determined by the relationship between the particle size and the magnetic field penetration depth.

Wang, X.L.; Feygenson, M.; Aronson, M.C.; Han, W.-Q.

2010-09-09T23:59:59.000Z

147

NETL: Carbon Storage - Core R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Core R&D Carbon Storage Core R&D The Core Research and Development (Core R&D) focuses on developing new carbon capture and storage (CCS) technologies to a pre-commercial...

148

Power excursion analysis for high burnup cores  

SciTech Connect

A study was undertaken of power excursions in high burnup cores. There were three objectives in this study. One was to identify boiling water reactor (BWR) and pressurized water reactor (PWR) transients in which there is significant energy deposition in the fuel. Another was to analyze the response of BWRs to the rod drop accident (RDA) and other transients in which there is a power excursion. The last objective was to investigate the sources of uncertainty in the RDA analysis. In a boiling water reactor, the events identified as having significant energy deposition in the fuel were a rod drop accident, a recirculation flow control failure, and the overpressure events; in a pressurized water reactor, they were a rod ejection accident and boron dilution events. The RDA analysis was done with RAMONA-4B, a computer code that models the space- dependent neutron kinetics throughout the core along with the thermal hydraulics in the core, vessel, and steamline. The results showed that the calculated maximum fuel enthalpy in high burnup fuel will be affected by core design, initial conditions, and modeling assumptions. The important uncertainties in each of these categories are discussed in the report.

Diamond, D.J.; Neymotin, L.; Kohut, P. [Brookhaven National Lab., Upton, NY (United States)

1996-02-01T23:59:59.000Z

149

SECA Core Technology Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

June 3, 2003 June 3, 2003 National Energy Technology Laboratory Office of Fossil Energy SECA Core Technology IAPG, GPPD-DWC 4/30/03 SECA CORE TECHNOLOGY PROGRAM W. Nernst "Electrical Glow-Light" U.S. Patent 623,811 April 25, 1899 C C IAPG, GPPD-DWC 4/30/03 SECA SECA Program Structure Program Management Research Topics Needs Industry Integration Teams Technology Transfer Small Business University National Lab Industry Power Electronics Modeling & Simulation Materials Controls & Diagnostics Fuel Processing Fuel Processing Manufacturing Modeling & Simulation Power Electronics Controls & Diagnostics Manufacturing Materials Core Technology Program Fuel Cell Core Technology Project Management Industry Input IAPG, GPPD-DWC 4/30/03 Core Technology Program Powering All Ships Siemens Westinghouse

150

On the Height of the Warm Core in Tropical Cyclones  

Science Conference Proceedings (OSTI)

The warm-core structure of tropical cyclones is examined in idealized simulations using the Weather Research and Forecasting (WRF) Model. The maximum perturbation temperature in a control simulation occurs in the midtroposphere (5–6 km), in ...

Daniel P. Stern; David S. Nolan

2012-05-01T23:59:59.000Z

151

AMIP Simulation with the CAM4 Spectral Element Dynamical Core  

Science Conference Proceedings (OSTI)

The authors evaluate the climate produced by the Community Climate System Model, version 4, running with the new spectral element atmospheric dynamical core option. The spectral element method is configured to use a cubed-sphere grid, providing ...

K. J. Evans; P. H. Lauritzen; S. K. Mishra; R. B. Neale; M. A. Taylor; J. J. Tribbia

2013-02-01T23:59:59.000Z

152

SUBSTELLAR-MASS CONDENSATIONS IN PRESTELLAR CORES  

SciTech Connect

We present combined Submillimeter Array and single-dish images of the (sub)millimeter dust continuum emission toward two prestellar cores, SM1 and B2-N5, in the nearest star-cluster-forming region, {rho} Ophiuchus. Our combined images indicate that SM1 and B2-N5 consist of three and four condensations, respectively, with masses of 10{sup -2}-10{sup -1} M{sub Sun} and sizes of a few hundred AU. The individual condensations have mean densities of 10{sup 8}-10{sup 9} cm{sup -3} and the masses are comparable to or larger than the critical Bonner-Ebert mass, indicating that self-gravity plays an important role in the dynamical evolution of the condensations. The coalescence timescale of these condensations is estimated to be about 10{sup 4} yr, which is comparable to the local gravitational collapse timescale, suggesting that merging of the condensations, instead of accretion, plays an essential role in the star formation process. These results challenge the standard theory of star formation, where a single, rather featureless, prestellar core collapses to form at most a couple of condensations, each of which potentially evolves into a protostar that is surrounded by a rotating disk where planets are created.

Nakamura, Fumitaka; Kawabe, Ryohei [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Takakuwa, Shigehisa, E-mail: fumitaka.nakamura@nao.ac.jp [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China)

2012-10-20T23:59:59.000Z

153

Dynamism in the solar core  

E-Print Network (OSTI)

Recent results of a mixed shell model heated asymmetrically by transient increases in nuclear burning indicate the transient generation of small hot spots inside the Sun somewhere between 0.1 and 0.2 solar radii. These hot bubbles are followed by a nonlinear differential equation system with finite amplitude non-homologous perturbations which is solved in a solar model. Our results show the possibility of a direct connection between the dynamic phenomena of the solar core and the atmospheric activity. Namely, an initial heating about DQ_0 ~ 10^{31}-10^{37} ergs can be enough for a bubble to reach the outer convective zone. Our calculations show that a hot bubble can arrive into subphotospheric regions with DQ_final ~ 10^{28} - 10^{34} ergs with a high speed, up to 10 km s-1, approaching the local sound speed. We point out that the developing sonic boom transforms the shock front into accelerated particle beam injected upwards into the top of loop carried out by the hot bubble above its forefront traveling fro...

Grandpierre, Attila

2010-01-01T23:59:59.000Z

154

AMIP Simulation with the CAM4 Spectral Element Dynamical Core  

SciTech Connect

We evaluate the climate produced by the Community Earth System Model, version 1, running with the new spectral-element atmospheric dynamical core option. The spectral-element method is congured to use a cubed-sphere grid, providing quasi-uniform resolution over the sphere, increased parallel scalability and removing the need for polar filters. It uses a fourth order accurate spatial discretization which locally conserves mass and moist total energy. Using the Atmosphere Model Intercomparison Project protocol, we compare the results from the spectral-element dy- namical core with those produced by the default nite-volume dynamical core and with observations.

Evans, Katherine J [ORNL; Lauritzen, Peter [National Center for Atmospheric Research (NCAR); Mishra, Saroj [National Center for Atmospheric Research (NCAR); Neale, Rich [National Center for Atmospheric Research (NCAR); Taylor, Mark [Sandia National Laboratories (SNL); Tribbia, Joe [National Center for Atmospheric Research (NCAR)

2013-01-01T23:59:59.000Z

155

Modeling Nuclear Pasta and the Transition to Uniform Nuclear Matter with the 3D Skyrme-Hartree-Fock Method at Finite Temperature I: Core-Collapse Supernovae  

E-Print Network (OSTI)

The first results of a new three-dimensional, finite temperature Skyrme-Hartree-Fock+BCS study of the properties of inhomogeneous nuclear matter at densities and temperatures leading to the transition to uniform nuclear matter are presented. Calculations are carried out in a cubic box representing a unit cell of the locally periodic structure of the matter. A constraint is placed on the two independent components of the quadrupole moment of the neutron density in order to investigate the dependence of the total energy-density of matter on the geometry of the nuclear structure in the unit cell. This approach allows self-consistent modeling of effects such as (i) neutron drip, resulting in a neutron gas external to the nuclear structure, (ii) shell effects of bound and unbound nucleons, (iii) the variety of exotic nuclear shapes that emerge, collectively termed `nuclear pasta' and (iv) the dissolution of these structures into uniform nuclear matter as density and/or temperature increase. In part I of this work ...

Stone, W G Newton J R

2009-01-01T23:59:59.000Z

156

SNAP II REACTOR CORE MATERIALS  

SciTech Connect

A survey was made to select the construction materials for the SDR-1 reactor core vessel and grid plates. Hastelloy C was selected for the reactor vessel, top grid plate, and bottom grid plate. Inconel X was selected for the core hold-down springs. (C.J.G.)

Facha, J.V.

1960-04-11T23:59:59.000Z

157

Apricot: an optimizing compiler and productivity tool for x86-compatible many-core coprocessors  

Science Conference Proceedings (OSTI)

Intel MIC (Many Integrated Core) is the first x86-based coprocessor architecture aimed at accelerating multi-core HPC applications. In the most common usage model, parallel code sections are offloaded to the MIC coprocessor using LEO (Language Extensions ... Keywords: compiler, intel MIC, many-core, offload, optimizations

Nishkam Ravi; Yi Yang; Tao Bao; Srimat Chakradhar

2012-06-01T23:59:59.000Z

158

Design of an LEU core for the MIT reactor  

Science Conference Proceedings (OSTI)

A design of the MIT Reactor core using monolithic U-7Mo LEU fuel has been developed with the goal of maintaining thermal and fast neutron fluxes as well as increasing the flexibility for meeting the needs of in-core experiments. An optimum core was sought by varying the core materials, and fuel plate numbers and thicknesses, but maintaining the outside dimensions of a fuel element. A full-core model of the MITR by the Monte-Carlo transport code MCNP was used to calculate the neutron fluxes, reactivity and neutron spectrum available for experiments. The optimum reactor design consisted of the use of half-sized fuel elements made up of nine U-7Mo LEU fuel plates of 0.55 mm thickness with 0.25 mm finned aluminum cladding. This design also utilized solid beryllium fuel elements (dummies) with boron fixed absorbers or solid lead dummies, depending on the in-core experiment flux and spectrum needs. Because the new core design contains twice the amount of 235 U as does the existing HEU core, and produces much more Pu, its fuel cycle length is twice as long at the same power level. Preliminary thermal-hydraulic and neutronic safety evaluations indicate superior performance to the current HEU fuel. (authors)

Newton, T. [Massachusetts Inst. of Technology, Nuclear Reactor Laboratory, 138 Albany St., Cambridge, MA 02139 (United States); Kazimi, M.; Pilat, E. [Nuclear Science and Engineering Dept., 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

2006-07-01T23:59:59.000Z

159

Preservation under Substructures modulo Bounded Cores  

E-Print Network (OSTI)

We investigate a model-theoretic property that generalizes the classical notion of "preservation under substructures". We call this property \\emph{preservation under substructures modulo bounded cores}, and present a syntactic characterization via $\\Sigma_2^0$ sentences for properties of arbitrary structures definable by FO sentences. Towards a sharper characterization, we conjecture that the count of existential quantifiers in the $\\Sigma_2^0$ sentence equals the size of the smallest bounded core. While we do not have a proof of the conjecture yet, we show that it holds for special fragments of FO and also over special classes of structures. We present a (not FO-definable) class of finite structures for which the conjecture fails, but for which the classical {\\L}o\\'s-Tarski preservation theorem holds. As a fallout of our studies, we have obtained combinatorial proofs of the {\\L}o\\'s-Tarski theorem for some of the aforementioned cases.

Sankaran, Abhisekh; Madan, Vivek; Kamath, Pritish; Chakraborty, Supratik

2012-01-01T23:59:59.000Z

160

The inverse kinetics method and PID compensation of the Annular Core Research Reactor.  

E-Print Network (OSTI)

??This thesis explores the development of a model describing the Annular Core Research Reactor (ACRR), the application of the inverse kinetics method to calculate the… (more)

Garnas, Benjamin

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Optimization of Core Point Detection in Fingerprints  

Science Conference Proceedings (OSTI)

This paper compares and documents the work of an optimized fingerprint core point determination algorithm. This work focuses to present an efficient and precise way for the extraction of core point. Core Point is detected using least mean square algorithm. ...

Nabeel Younus Khan; M. Younus Javed; Naveed Khattak; Umer Munir Yongjun Chang

2007-12-01T23:59:59.000Z

162

Audit of Departmental Integrated Standardized Core Accounting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Audit of Departmental Integrated Standardized Core Accounting System (DISCAS) Operations at Selected Field Sites, AP-FS-97-02 Audit of Departmental Integrated Standardized Core...

163

Sandia National Laboratories: Research: Facilities: Annular Core...  

NLE Websites -- All DOE Office Websites (Extended Search)

Annular Core Research Reactor facility Nuclear science photo At the Annular Core Research Reactor (ACRR) facility, Sandia researchers can subject various test objects to a mixed...

164

Residential Utility Core Wall System - ResCore  

SciTech Connect

This paper describes activities associated with the RESidential utility CORE wall system (ResCore) developed by students and faculty in the Department of Industrial Design at Auburn University between 1996 and 1998. These activities analyize three operational prototype units installed in Habitat for Humanity Houses. The paper contains two Parts: 1) analysis of the three operational prototype units, 2) exploration of alternative design solutions. ResCore is a manufactured construction component designed to expedite home building by decreasing the need for skilled labor at the work site. The unit concentrates untility elements into a wall unit(s), which is shipped to the construction site and installed in minimum time. The ResCore unit is intended to be built off-site in a manufacturing environment where the impact of vagaries of weather and work-crew coordination and scheduling are minimized. The controlled environment of the factory enhances efficient production of building components through material and labor throughput controls, enabling the production of components at a substantially reduced per-unit cost. The ResCore unit when compared to traditional "stick-built" utility wall components is in may ways analogous to the factory built roof truss compared to on-site "stick-Built" roof framing.

Boyd, G.; Lundell, C.; Wendt, R.

1999-06-01T23:59:59.000Z

165

MASSIVE QUIESCENT CORES IN ORION: DYNAMICAL STATE REVEALED BY HIGH-RESOLUTION AMMONIA MAPS  

SciTech Connect

We present combined Very Large Array and Green Bank Telescope images of NH{sub 3} inversion transitions (1, 1) and (2, 2) toward OMC2 and OMC3. We focus on the relatively quiescent Orion cores, which are away from the Trapezium cluster and have no sign of massive protostars or evolved star formation. The 5'' angular resolution and 0.6 km s{sup -1} velocity resolution enable us to study the thermal and dynamic state of these cores at {approx}0.02 pc scales, comparable to or smaller than those of the current dust continuum surveys. We measure temperatures for a total of 30 cores, with average masses of 11 M{sub Sun }, radii of 0.039 pc, virial mass ratio R{sub vir}-bar = 3.9, and critical mass ratio R{sub C}-bar = 1.5. Twelve sources contain Spitzer protostars. The thus defined starless and protostellar subsamples have similar temperature, line width, but different masses, with an average of 7.3 M{sub Sun} for the former and 16 M{sub Sun} for the latter. Compared to other Gould Belt dense cores, more Orion cores have a high gravitational-to-kinetic energy ratio and more cores have a larger than unity critical mass ratio. Orion dense cores have velocity dispersions similar to those of cores in low-mass star-forming regions but larger masses for given size. Some cores appear to have truly supercritical gravitational-to-kinetic energy ratios, even when considering significant observational uncertainties: thermal and non-thermal gas motions alone cannot prevent collapse.

Li, D. [National Astronomical Observatories, Chinese Academy of Science, Chaoyang District Datun Rd A20, Beijing (China); Kauffmann, J. [Department of Astronomy, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125 (United States); Zhang, Q. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Chen, W., E-mail: ithaca.li@gmail.com [Peking University, Beijing (China)

2013-05-01T23:59:59.000Z

166

PWR cores with silicon carbide cladding  

Science Conference Proceedings (OSTI)

The feasibility of using silicon carbide rather than Zircaloy cladding, to reach higher power levels and higher discharge burnups in PWRs has been evaluated. A preliminary fuel design using fuel rods with the same dimensions as in the Westinghouse Robust Fuel Assembly but with fuel pellets having 10 vol% central void has been adopted to mitigate the higher fuel temperatures that occur due to the lower thermal conductivity of the silicon carbide and to the persistence of the open clad-pellet gap over most of the fuel life. With this modified fuel design, it is possible to achieve 18 month cycles that meet present-day operating constraints on peaking factor, boron concentration, reactivity coefficients and shutdown margin, while allowing batch average discharge burnups up to 80 MWD/kgU and peak rod burnups up to 100 MWD/kgU. Power uprates of 10% and possibly 20% also appear feasible. For non-uprated cores, the silicon carbide-clad fuel has a clear advantage that increases with increasing discharge burnup. Even for comparable discharge burnups, there is a savings in enriched uranium. Control rod configuration modifications may be required to meet the shutdown margin criterion for the 20% up-rate. Silicon carbide's ability to sustain higher burnups than Zircaloy also allows the design of a licensable two year cycle with only 96 fresh assemblies, avoiding the enriched uranium penalty incurred with use of larger batch sizes due to their excessive leakage. (authors)

Dobisesky, J. P.; Carpenter, D.; Pilat, E.; Kazimi, M. S. [Center for Advanced Nuclear Energy Systems, Dept. of Nuclear Science and Engineering, Massachusetts Inst. of Technology, 77 Massachusetts Avenue 24-215, Cambridge, MA 02139-4307 (United States)

2012-07-01T23:59:59.000Z

167

Core Analysis At International Geothermal Area, Philippines (Laney, 2005) |  

Open Energy Info (EERE)

Core Analysis At International Geothermal Area Core Analysis At International Geothermal Area Philippines (Laney, 2005) Exploration Activity Details Location International Geothermal Area Philippines Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Improving Exploration Models of Andesite-Hosted Geothermal Systems, Allis, Browne, Bruton, Christensen, Hulen, Lutz, Mindenhall, Nemcok, Norman, Powell and Stimac. The approach we are using is to characterize the petrology, geochemistry and fractures in core and cuttings samples and then integrate these data with measured downhole temperatures and pressures and with the compositions of the reservoir fluids. Our investigations represent cooperative efforts with the Karaha-Bodas Co. LLC (a subsidiary of Caithness Energy) at Karaha-Telaga Bodas, Indonesia and with Philippine

168

Effects of core barrel on vessel seismic loadings. [LMFBR  

Science Conference Proceedings (OSTI)

Reliability of reactor systems under seismic events is a major concern for the safety of the nuclear power plants. This paper deals with the effects of the core barrel on the seismic response of reactor tanks. The main emphases are the effects of core barrel on the free-surface wave height and the fluid coupling effects between the core barrel and primary tank. This study represents an initial step to investigate the effects of in-tank components, structures on the seismically-induced hydrodynamic behavior of the reactor tanks. To simplify the analysis, the tank used in the study is simulated by a two-dimensional model. Two parametric studies were carried out in which the wall flexibility and location of core barrel were used as parameters respectively.

Ma, D.C.; Gvildys, J.; Chang, Y.W.

1983-01-01T23:59:59.000Z

169

Core Values | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Core Values Core Values Core Values People - People are our most important resource. We respect and use our experience and skills and appreciate our diversity. Business Excellence - We are fiscally responsible and actively pursue best business practices. Safety - We protect our human and material resources and promote safe work practices within the office and at our sites. Communication - We take full advantage of our virtual organization's strengths and share information freely across all levels of the organization. Leadership and Teamwork - We encourage leadership and teamwork at all levels of the organization. We value active participation and demonstrate respect for each other. Customer Service - We openly communicate with all our customers in a timely manner and actively seek opportunities to improve our services.

170

Reactor core isolation cooling system  

DOE Patents (OSTI)

A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

Cooke, F.E.

1992-12-08T23:59:59.000Z

171

Reactor core isolation cooling system  

DOE Patents (OSTI)

A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

Cooke, Franklin E. (San Jose, CA)

1992-01-01T23:59:59.000Z

172

Interactive out-of-core isosurface extraction  

Science Conference Proceedings (OSTI)

Keywords: interval tree, isosurface extraction, marching cubes, out-of-core computation, scientific visualization

Yi-Jen Chiang; Cláudio T. Silva; William J. Schroeder

1998-10-01T23:59:59.000Z

173

Multi-core Performance Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

core Performance Analysis core Performance Analysis HPC Computation 1 Performance Analysis * Compiler Feedback * HWPC Data * Load Balance 2 Compiler Feedback * Before optimizing code, it's critical to know what the compiler does to your code - Loop optimizations - Vectorization - Prefetching - ... * Equally important to what the compiler does is what it doesn't do, and why - Data dependencies - Misplaced branches - Unknown loop counts - ... 3 Enabling Compiler Feedback * Portland Group - Minfo=all - Mneginfo - Minfo=ccff (Common Compiler Feedback Format) * Cray - rm (Fortran) - hlist=m (C/C++) * Intel - vec-report1 * Pathscale - LNO:simd_verbose=ON:vintr_verbose=ON:prefetch_v erbose=ON * GNU - ftree-vectorizer-verbose=1

174

Free-fall core sampler  

SciTech Connect

The described free-fall corer apparatus consists of an expendable, elongated casing having an annular-shaped ballast member secured to it. A cylindrical housing surmounts this ballast member and accommodates a float which is tied to the core liner. During descent of the apparatus, the float is latched to the ballast element, but when the apparatus strikes bottom, a pilot weight suspended from the float latching means moves upward and allows the float to freely ascend within the ocean. This ascent unlatches the core liner from the expendable casing and the liner is thereafter raised to the surface. (13 claims)

Raymond, S.O.; Sachs, P.L.

1968-03-12T23:59:59.000Z

175

Many-core key-value store  

Science Conference Proceedings (OSTI)

Scaling data centers to handle task-parallel work-loads requires balancing the cost of hardware, operations, and power. Low-power, low-core-count servers reduce costs in one of these dimensions, but may require additional nodes to provide the required ... Keywords: 64-core Tilera TILEPro64, many-core key-value store, data centers, task-parallel workloads, low-core-count servers, low-power servers, under-utilizing memory, power consumption, high-core-count processor, clock rate, 4-core Intel Xeon L5520, 8-core AMD Opteron 6128 HE

M. Berezecki; E. Frachtenberg; M. Paleczny; K. Steele

2011-07-01T23:59:59.000Z

176

Definition: Core Analysis | Open Energy Information  

Open Energy Info (EERE)

Core Analysis Core Analysis Jump to: navigation, search Dictionary.png Core Analysis Core samples are obtained from drilling a well, typically using a synthetic diamond coated bit that has a hollow center so cylindrical rock samples ("core") can be extracted. Core samples successfully recovered are visually inspected to determine rock type, mineralization, and fracture networks, then certain laboratory analyses may ensue to acquire detailed rock properties. View on Wikipedia Wikipedia Definition A core sample is a cylindrical section of (usually) a naturally occurring substance. Most core samples are obtained by drilling with special drills into the substance, for example sediment or rock, with a hollow steel tube called a core drill. The hole made for the core sample is

177

Core-melt source reduction system  

DOE Patents (OSTI)

A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results.

Forsberg, Charles W. (Oak Ridge, TN); Beahm, Edward C. (Oak Ridge, TN); Parker, George W. (Concord, TN)

1995-01-01T23:59:59.000Z

178

Core-melt source reduction system  

DOE Patents (OSTI)

A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results. 4 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-04-25T23:59:59.000Z

179

Evaluation of the HOMME Dynamical Core in the Aquaplanet Configuration of NCAR CAM4: Rainfall  

Science Conference Proceedings (OSTI)

The NCAR Community Climate System Model, version 4 (CCSM4), includes a new dynamical core option based on NCAR’s High-Order Method Modeling Environment (HOMME). HOMME is a petascale-capable high-order element-based conservative dynamical core ...

Saroj K. Mishra; Mark A. Taylor; Ramachandran D. Nair; Peter H. Lauritzen; Henry M. Tufo; Joseph J. Tribbia

2011-08-01T23:59:59.000Z

180

Laminated grid and web magnetic cores  

DOE Patents (OSTI)

A laminated magnetic core characterized by an electromagnetic core having core legs which comprise elongated apertures and edge notches disposed transversely to the longitudinal axis of the legs, such as high reluctance cores with linear magnetization characteristics for high voltage shunt reactors. In one embodiment the apertures include compact bodies of microlaminations for more flexibility and control in adjusting permeability and/or core reluctance.

Sefko, John (Monroeville, PA); Pavlik, Norman M. (Plum Borough, PA)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Stability of Molten Core Materials  

SciTech Connect

The purpose of this report is to document a literature and data search for data and information pertaining to the stability of nuclear reactor molten core materials. This includes data and analysis from TMI-2 fuel and INL’s LOFT (Loss of Fluid Test) reactor project and other sources.

Layne Pincock; Wendell Hintze

2013-01-01T23:59:59.000Z

182

A Dynamical Core with Double Fourier Series: Comparison with the Spherical Harmonics Method  

Science Conference Proceedings (OSTI)

A dynamical core of a general circulation model with the spectral method using double Fourier series (DFS) as basis functions is presented. The model uses the hydrostatic balance approximation and sigma coordinate system in the vertical direction ...

Hyeong-Bin Cheong

2006-04-01T23:59:59.000Z

183

On-chip COMA cache-coherence protocol for microgrids of microthreaded cores  

Science Conference Proceedings (OSTI)

This paper describes an on-chip COMA cache coherency protocol to support the microthread model of concurrent program composition. The model gives a sound basis for building multi-core computers as it captures concurrency, abstracts communication and ...

Li Zhang; Chris Jesshope

2007-08-01T23:59:59.000Z

184

Logging-while-coring method and apparatus  

DOE Patents (OSTI)

A method and apparatus for downhole coring while receiving logging-while-drilling tool data. The apparatus includes core collar and a retrievable core barrel. The retrievable core barrel receives core from a borehole which is sent to the surface for analysis via wireline and latching tool The core collar includes logging-while-drilling tools for the simultaneous measurement of formation properties during the core excavation process. Examples of logging-while-drilling tools include nuclear sensors, resistivity sensors, gamma ray sensors, and bit resistivity sensors. The disclosed method allows for precise core-log depth calibration and core orientation within a single borehole, and without at pipe trip, providing both time saving and unique scientific advantages.

Goldberg, David S. (New York, NY); Myers, Gregory J. (Cornwall, NY)

2007-11-13T23:59:59.000Z

185

Hydrologic characterization of four cores from the Geysers Coring Project  

DOE Green Energy (OSTI)

Results of hydrologic tests on 4 representative core plugs from Geysers Coring Project drill hole SB-15-D were related to mineralogy and texture. Permeability measurements were made on 3 plugs from caprock and one plug from the steam reservoir. Late-stage microfractures present in 2 of the plugs contributed to greater permeability, but the values for the 2 other plugs indicate a typical matrix permeability of 1 to 2 {times} 10{sup {minus}21}m{sup 2}. Klinkenberg slip factor b for these plugs is generally consistent with the inverse relation between slip factor and permeability observed by Jones (1972) for plugs of much more permeable material. The caprock and reservoir samples are nearly identical metagraywackes with slight mineralogical differences which appear to have little effect on hydrology. The late stage microfractures are suspected of being artifacts. The capillary pressure curves for 3 cores are fit by power-law relations which can be used to estimate relative permeability curves for the matrix rocks.

Persoff, P. [Lawrence Berkeley National Lab., CA (United States); Hulen, J.B. [Univ. of Utah, Salt Lake City, UT (United States). Earth Sciences and Resources Institute

1996-01-01T23:59:59.000Z

186

Containment, Equivalence and Coreness from CSP to QCSP and beyond  

E-Print Network (OSTI)

The constraint satisfaction problem (CSP) and its quantified extensions, whether without (QCSP) or with disjunction (QCSP_or), correspond naturally to the model checking problem for three increasingly stronger fragments of positive first-order logic. Their complexity is often studied when parameterised by a fixed model, the so-called template. It is a natural question to ask when two templates are equivalent, or more generally when one "contain" another, in the sense that a satisfied instance of the first will be necessarily satisfied in the second. One can also ask for a smallest possible equivalent template: this is known as the core for CSP. We recall and extend previous results on containment, equivalence and "coreness" for QCSP_or before initiating a preliminary study of cores for QCSP which we characterise for certain structures and which turns out to be more elusive.

Madelaine, Florent

2012-01-01T23:59:59.000Z

187

International Disaster Medical Sciences Fellowship: Model Curriculum and Key Considerations for Establishment of an Innovative International Educational Program  

E-Print Network (OSTI)

Sciences Fellowship: Model Curriculum and Key Considerationsand a model core curriculum based on current evidence-basedand a model core curriculum. The same Disaster Medical

Koenig, Kristi L; Bey, Tareg; Schultz, Carl H

2009-01-01T23:59:59.000Z

188

XCDCC: Core Excitation in the Breakup of Exotic Nuclei  

E-Print Network (OSTI)

The eXtended Continuum Discretized Coupled Channel (XCDCC) method is developed to treat reactions where core degrees of freedom play a role. The projectile is treated as a multi-configuration coupled channels system generated from a valence particle coupled to a deformed core which is allowed to excite. The coupled channels initial state breaks up into a coupled channels continuum which is discretized into bins, similarly to the original CDCC method. Core collective degrees of freedom are also included in the interaction of the core and the target, so that dynamical effects can occur during the reaction. We present results for the breakup of $^{17}$C=$^{16}$C+n and $^{11}$Be=$^{10}$Be+n on $^{9}$Be. Results show that the total cross section increases with core deformation. More importantly, the relative percentage of the various components of the initial state are modified during the reaction process through dynamical effects. This implies that comparing spectroscopic factors from structure calculations with experimental cross sections requires more detailed reaction models that go beyond the single particle model.

N. C. Summers; F. M. Nunes; I. J. Thompson

2006-02-10T23:59:59.000Z

189

TMI-2 core shipping preparations  

SciTech Connect

Shipping the damaged core from the Unit 2 reactor of Three Mile Island Nuclear Power Station near Harrisburg, PA, to the Idaho National Engineering Laboratory near Idaho Falls, ID, required development and implementation of a completely new spent fuel transportation system. This paper describes the equipment developed, the planning and activities used to implement the hardware systems into the facilities, and the planning involved in making the rail shipments. It also includes a summary of recommendations resulting from this experience.

Ball, L.J.; (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Barkanic, R.J. (Bechtel North American Power Corporation (United States)); Conaway, W.T. II (GPU Nuclear Corporation, Three Mile Island, Middletown, PA (United States)); Schmoker, D.S. (Nuclear Packaging, Inc., Federal Way, WA (United States))

1988-01-01T23:59:59.000Z

190

Climate Simulations with an Isentropic Finite Volume Dynamical Core  

SciTech Connect

This paper discusses the impact of changing the vertical coordinate from a hybrid pressure to a hybrid-isentropic coordinate within the finite volume dynamical core of the Community Atmosphere Model (CAM). Results from a 20-year climate simulation using the new model coordinate configuration are compared to control simulations produced by the Eulerian spectral and FV dynamical cores of CAM which both use a pressure-based ({sigma}-p) coordinate. The same physical parameterization package is employed in all three dynamical cores. The isentropic modeling framework significantly alters the simulated climatology and has several desirable features. The revised model produces a better representation of heat transport processes in the atmosphere leading to much improved atmospheric temperatures. We show that the isentropic model is very effective in reducing the long standing cold temperature bias in the upper troposphere and lower stratosphere, a deficiency shared among most climate models. The warmer upper troposphere and stratosphere seen in the isentropic model reduces the global coverage of high clouds which is in better agreement with observations. The isentropic model also shows improvements in the simulated wintertime mean sea-level pressure field in the northern hemisphere.

Chen, Chih-Chieh; Rasch, Philip J.

2012-04-15T23:59:59.000Z

191

Coring in deep hardrock formations  

DOE Green Energy (OSTI)

The United States Department of Energy is involved in a variety of scientific and engineering feasibility studies requiring extensive drilling in hard crystalline rock. In many cases well depths extend from 6000 to 20,000 feet in high-temperature, granitic formations. Examples of such projects are the Hot Dry Rock well system at Fenton Hill, New Mexico and the planned exploratory magma well near Mammoth Lakes, California. In addition to these programs, there is also continuing interest in supporting programs to reduce drilling costs associated with the production of geothermal energy from underground sources such as the Geysers area near San Francisco, California. The overall progression in these efforts is to drill deeper holes in higher temperature, harder formations. In conjunction with this trend is a desire to improve the capability to recover geological information. Spot coring and continuous coring are important elements in this effort. It is the purpose of this report to examine the current methods used to obtain core from deep wells and to suggest projects which will improve existing capabilities. 28 refs., 8 figs., 2 tabs.

Drumheller, D.S.

1988-08-01T23:59:59.000Z

192

Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities (Book), Large-Scale Renewable Energy Guide, Federal Energy Management Program (FEMP)  

NLE Websites -- All DOE Office Websites (Extended Search)

LARGE-SCALE RENEWABLE ENERGY GUIDE LARGE-SCALE RENEWABLE ENERGY GUIDE Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities A Practical Guide to Getting Large-Scale Renewable Energy Projects Financed with Private Capital Cover photos, clockwise from the top: Installing mirrored parabolic trough collectors - (January 19, 2012) Crews work around the clock installing mirrored parabolic trough collectors, built on site, that will cover 3 square miles at Abengoa's Solana Plant. Solana a 280 megawatt utility scale solar power plant (CSP) under construction in Gila Bend, Arizona, USA. When finished it will generate 280 MW 's of clean, sustainable power serving over 70,000 Arizona homes. Photo by Dennis Schroeder, NREL 20097 Dry Lake Wind Power Project in Arizona; Suzlon S88 wind turbines - The 63-MW Dry Lake Wind Power Project in Arizona is the first

193

Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities (Book), Large-Scale Renewable Energy Guide, Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LARGE-SCALE RENEWABLE ENERGY GUIDE LARGE-SCALE RENEWABLE ENERGY GUIDE Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities A Practical Guide to Getting Large-Scale Renewable Energy Projects Financed with Private Capital Cover photos, clockwise from the top: Installing mirrored parabolic trough collectors - (January 19, 2012) Crews work around the clock installing mirrored parabolic trough collectors, built on site, that will cover 3 square miles at Abengoa's Solana Plant. Solana a 280 megawatt utility scale solar power plant (CSP) under construction in Gila Bend, Arizona, USA. When finished it will generate 280 MW 's of clean, sustainable power serving over 70,000 Arizona homes. Photo by Dennis Schroeder, NREL 20097 Dry Lake Wind Power Project in Arizona; Suzlon S88 wind turbines - The 63-MW Dry Lake Wind Power Project in Arizona is the first

194

Core collapse supernovae in the QCD phase diagram  

SciTech Connect

We compare two classes of hybrid equations of state with a hadron-to-quark matter phase transition in their application to core collapse supernova simulations. The first one uses the quark bag model and describes the transition to three-flavor quark matter at low critical densities. The second one employs a Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model with parameters describing a phase transition to two-flavor quark matter at higher critical densities. These models possess a distinctly different temperature dependence of their transition densities which turns out to be crucial for the possible appearance of quark matter in supernova cores. During the early post-bounce accretion phase quark matter is found only if the phase transition takes place at sufficiently low densities as in the study based on the bag model. The increase critical density with increasing temperature, as obtained for our PNJL parametrization, prevents the formation of quark matter. The further evolution of the core collapse supernova as obtained applying the quark bag model leads to a structural reconfiguration of the central protoneutron star where, in addition to a massive pure quark matter core, a strong hydrodynamic shock wave forms and a second neutrino burst is released during the shock propagation across the neutrinospheres. We discuss the severe constraints in the freedom of choice of quark matter models and their parametrization due to the recently observed 2M{sub Circled-Dot-Operator} pulsar and their implications for further studies of core collapse supernovae in the QCD phase diagram.

Fischer, T., E-mail: t.fischer@gsi.de [Helmholtzzentrum fuer Schwerionenforschung GmbH, GSI (Germany); Blaschke, D. [University of Wroclaw, Institute for Theoretical Physics (Poland); Hempel, M. [University of Basel, Department of Physics (Switzerland); Klaehn, T.; Lastowiecki, R. [University of Wroclaw, Institute for Theoretical Physics (Poland); Liebendoerfer, M. [University of Basel, Department of Physics (Switzerland); Martinez-Pinedo, G. [Helmholtzzentrum fuer Schwerionenforschung GmbH, GSI (Germany); Pagliara, G.; Sagert, I. [Ruprecht-Karls-Universitaet, Institut fuer Theoretische Physik (Germany); Sandin, F. [Lulea Tekniska Universitet, Department of Computer Science and Electrical Engineering, EISLAB (Sweden); Schaffner-Bielich, J. [Ruprecht-Karls-Universitaet, Institut fuer Theoretische Physik (Germany); Typel, S. [Helmholtzzentrum fuer Schwerionenforschung GmbH, GSI (Germany)

2012-05-15T23:59:59.000Z

195

Progress towards accelerating HOMME on hybrid multi-core systems  

Science Conference Proceedings (OSTI)

The suitability of a spectral element based dynamical core (HOMME) within the Community Atmospheric Model (CAM) for GPU-based architectures is examined and initial performance results are reported. This work was done within a project to enable CAM to ... Keywords: CAM, GPU, HOMME, scalability, tracer

I. Carpenter, R.K. Archibald, K.J. Evans, J. Larkin, P. Micikevicius, M. Norman, J. Rosinski, J. Schwarzmeier, M.A. Taylor

2013-08-01T23:59:59.000Z

196

HyCore | Open Energy Information  

Open Energy Info (EERE)

icon Twitter icon HyCore Jump to: navigation, search Name HyCore Place Norway Sector Hydro, Solar Product JV between Umicore and Norsk Hydro to manufacture solar-grade silicon....

197

Definition: Core Holes | Open Energy Information  

Open Energy Info (EERE)

Holes Jump to: navigation, search Dictionary.png Core Holes A core hole is a well that is drilled using a hallow drill bit coated with synthetic diamonds for the purposes of...

198

NETL: SECA Core Technology Program Review  

NLE Websites -- All DOE Office Websites (Extended Search)

SECA Core Technology Program Review SECA Core Technology Program Review February 19-20, 2003 Table of Contents Disclaimer Papers and Presentations Materials & Manufacturing Simulation and Modeling Fuel Processing Power Electronics, Sensors, Controls & Diagnostics Final Agenda [PDF-78KB] Peer Review Rating Results Summary [PDF-192KB] Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

199

Office of Fossil EnergyDetailed Core Procedures Manual Volume 1 – Core Acquisition  

E-Print Network (OSTI)

This “Core Procedures Manual, Volume 1 ” contains a description of proposed best practices for use during coring operations for the Barrow Gas Hydrate Test Well Program. This document is designed to describe the responsibilities of well site operations personnel, primarily the core acquisition contractor and coring fluids contractor, Weatherford/Omni and Halliburton/Baroid

Barrow Gas Fields

2009-01-01T23:59:59.000Z

200

Model 220 Programmable Current Source Instruction Manual-  

E-Print Network (OSTI)

OLCF-3 / DARPA 20 PF Future system 100­250 PF Cray XT4 119 TF Cray XT3 Dual-core 54 TF Cray XT4 Quad 2015 2018 Cray "Baker" 6-core, dual- socket SMP ~1000 TF 100TB, 2.5PB OLCF-3 / DARPA 20 PF Future larger memory · 3x larger and 4x faster file system · 10 MW of power Potential OLCF-3 system description

McCombe, Bruce D.

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DOE CYBER SECURITY EBK: MINIMUM CORE COMPETENCY TRAINING REQUIREMENTS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MINIMUM CORE COMPETENCY TRAINING REQUIREMENTS DOE CYBER SECURITY EBK: MINIMUM CORE COMPETENCY TRAINING REQUIREMENTS MINIMUM CORE COMPETENCY TRAINING REQUIREMENTS DOE CYBER SECURITY...

202

DOE CYBER SECURITY EBK: CORE COMPETENCY TRAINING REQUIREMENTS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CORE COMPETENCY TRAINING REQUIREMENTS: CA DOE CYBER SECURITY EBK: CORE COMPETENCY TRAINING REQUIREMENTS: CA DOE CYBER SECURITY EBK: CORE COMPETENCY TRAINING REQUIREMENTS. Key Cyber...

203

DOE CYBER SECURITY EBK: MINIMUM CORE COMPETENCY TRAINING REQUIREMENTS...  

NLE Websites -- All DOE Office Websites (Extended Search)

CYBER SECURITY EBK: MINIMUM CORE COMPETENCY TRAINING REQUIREMENTS DOE CYBER SECURITY EBK: MINIMUM CORE COMPETENCY TRAINING REQUIREMENTS DOE CYBER SECURITY EBK: CORE COMPETENCY...

204

Hanford People Core (HCP) PIA, Richland Operations Office | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford People Core (HCP) PIA, Richland Operations Office Hanford People Core (HCP) PIA, Richland Operations Office Hanford People Core (HCP) PIA, Richland Operations Office...

205

Hanford People Core (HCP) PIA, Richland Operations Office | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

People Core (HCP) PIA, Richland Operations Office Hanford People Core (HCP) PIA, Richland Operations Office Hanford People Core (HCP) PIA, Richland Operations Office Hanford People...

206

Performance of jet substructure techniques for large-R jets in proton-proton collisions at $\\sqrt{s}$ = 7 TeV using the ATLAS detector  

E-Print Network (OSTI)

This paper presents the application of a variety of techniques to study jet substructure. The performance of various modified jet algorithms, or jet grooming techniques, for several jet types and event topologies is investigated for jets with transverse momentum larger than 300 GeV. Properties of jets subjected to the mass-drop filtering, trimming, and pruning algorithms are found to have reduced sensitivity to multiple proton-proton interactions, are more stable at high luminosity and improve the physics potential of searches for heavy boosted objects. Studies of the expected discrimination power of jet mass and jet substructure observables in searches for new physics are also presented. Event samples enriched in boosted W and Z bosons and top-quark pairs are used to study both the individual jet invariant mass scales and the efficacy of algorithms to tag boosted hadronic objects. The analyses presented use the full 2011 ATLAS dataset, corresponding to an integrated luminosity of 4.7 $\\pm$ 0.1 /fb from proto...

Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asbah, Nedaa; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Astbury, Alan; Atkinson, Markus; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Bertella, Claudia; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Bittner, Bernhard; Black, Curtis; Black, James; Black, Kevin; Blair, Robert

2013-01-01T23:59:59.000Z

207

SoCore Energy | Open Energy Information  

Open Energy Info (EERE)

SoCore Energy SoCore Energy Jump to: navigation, search Name SoCore Energy Place Chicago, Illinois Zip 60601 Sector Solar Product Chicago-based solar installer and mounting solution company that also arranges for solar loans and PPAs. References SoCore Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SoCore Energy is a company located in Chicago, Illinois . References ↑ "SoCore Energy" Retrieved from "http://en.openei.org/w/index.php?title=SoCore_Energy&oldid=351218" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs

208

DIODE STEERED MANGETIC-CORE MEMORY  

DOE Patents (OSTI)

A word-arranged magnetic-core memory is designed for use in a digital computer utilizing the reverse or back current property of the semi-conductor diodes to restore the information in the memory after read-out. In order to ob tain a read-out signal from a magnetic core storage unit, it is necessary to change the states of some of the magnetic cores. In order to retain the information in the memory after read-out it is then necessary to provide a means to return the switched cores to their states before read-out. A rewrite driver passes a pulse back through each row of cores in which some switching has taken place. This pulse combines with the reverse current pulses of diodes for each column in which a core is switched during read-out to cause the particular cores to be switched back into their states prior to read-out. (AEC)

Melmed, A.S.; Shevlin, R.T.; Laupheimer, R.

1962-09-18T23:59:59.000Z

209

MODELING OBSERVATIONAL CONSTRAINTS FOR DARK MATTER HALOS  

SciTech Connect

Observations show that the underlying rotation curves at intermediate radii in spiral and low-surface-brightness galaxies are nearly universal. Further, in these same galaxies, the product of the central density and the core radius ({rho}{sub 0} r{sub 0}) is constant. An empirically motivated model for dark matter halos that incorporates these observational constraints is presented and shown to be in accord with the observations. A model fit to the observations of the galaxy cluster A611 shows that {rho}{sub 0} r{sub 0} for the dark matter halo in this more massive structure is larger by a factor of {approx}20 over that assumed for the galaxies. The model maintains the successful Navarro-Frenk-White form in the outer regions, although the well-defined differences in the inner regions suggest that modifications to the standard cold dark matter picture are required.

Hartwick, F. D. A. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 3P6 (Canada)

2012-12-01T23:59:59.000Z

210

Electron-positron pairs production in a macroscopic charged core  

E-Print Network (OSTI)

Classical and semi-classical energy states of relativistic electrons bounded by a massive and charged core with the charge-mass-radio Q/M and macroscopic radius R_c are discussed. We show that the energies of semi-classical (bound) states can be much smaller than the negative electron mass-energy (-mc^2), and energy-level crossing to negative energy continuum occurs. Electron-positron pair production takes place by quantum tunneling, if these bound states are not occupied. Electrons fill into these bound states and positrons go to infinity. We explicitly calculate the rate of pair-production, and compare it with the rates of electron-positron production by the Sauter-Euler-Heisenberg-Schwinger in a constant electric field. In addition, the pair-production rate for the electro-gravitational balance ratio Q/M = 10^{-19} is much larger than the pair-production rate due to the Hawking processes.

Ruffini, Remo

2011-01-01T23:59:59.000Z

211

Electron-positron pairs production in a macroscopic charged core  

E-Print Network (OSTI)

Classical and semi-classical energy states of relativistic electrons bounded by a massive and charged core with the charge-mass-radio Q/M and macroscopic radius R_c are discussed. We show that the energies of semi-classical (bound) states can be much smaller than the negative electron mass-energy (-mc^2), and energy-level crossing to negative energy continuum occurs. Electron-positron pair production takes place by quantum tunneling, if these bound states are not occupied. Electrons fill into these bound states and positrons go to infinity. We explicitly calculate the rate of pair-production, and compare it with the rates of electron-positron production by the Sauter-Euler-Heisenberg-Schwinger in a constant electric field. In addition, the pair-production rate for the electro-gravitational balance ratio Q/M = 10^{-19} is much larger than the pair-production rate due to the Hawking processes.

Remo Ruffini; She-Sheng Xue

2011-06-24T23:59:59.000Z

212

Neutronic analysis of pebble-bed cores with transuranics  

E-Print Network (OSTI)

At the brink of nuclear waste repository crises, viable alternatives for the long term radiotoxic wastes are seriously being considered worldwide. Minor actinides serve as one of these targeted wastes. Partitioning and transmutation in fission reactors is one possible incineration option and could potentially serve as a source of nuclear fuel required for sustainability of energy resources. The objective of this research was to evaluate the neutronic performance of the pebble-bed Very High Temperature Reactor (VHTR) configurations with various fuel loadings. The configuration adjustments and design sensitivity studies specifically targeted the achievability of spectral variations. The development of several realistic full-core 3D models and validation of all modeling techniques used was a major part of this research effort. In addition, investigating design sensitivities helped identify the parameters of primary interest. The full-core 3D models representing the prototype and large scale cores were created for use with SCALE 5.0 and SCALE 5.1 code systems. Initially the models required the external calculation of a Dancoff correction factor; however, the recent release of SCALE 5.1 encompassed inherent double heterogeneity modeling capabilities. The full core 3D models with multi-heterogeneity treatments are in agreement with available pebble-bed High Temperature Test Reactor data and were validated through benchmark studies. Analyses of configurations with various fuel loadings have indicated promising performance and safety characteristics. It was found that through small configuration adjustments, the pebble-bed design can be tweaked to produce desirable spectral shifts. The future operation of Generation IV nuclear energy systems would be greatly facilitated by the utilization of minor actinides as a fuel component. This would offer development of new fuel cycles, and support sustainability of a fuel source.

Pritchard, Megan Leigh

2007-12-01T23:59:59.000Z

213

Nuclear core and fuel assemblies  

DOE Patents (OSTI)

A fast flux nuclear core of a plurality of rodded, open-lattice assemblies having a rod pattern rotated relative to a rod support structure pattern. Elongated fuel rods are oriented on a triangular array and laterally supported by grid structures positioned along the length of the assembly. Initial inter-assembly contact is through strongbacks at the corners of the support pattern and peripheral fuel rods between adjacent assemblies are nested so as to maintain a triangular pitch across a clearance gap between the other portions of adjacent assemblies. The rod pattern is rotated relative to the strongback support pattern by an angle .alpha. equal to sin .sup.-1 (p/2c), where p is the intra-assembly rod pitch and c is the center-to-center spacing among adjacent assemblies.

Downs, Robert E. (Monroeville, PA)

1981-01-01T23:59:59.000Z

214

Over Core Stress | Open Energy Information  

Open Energy Info (EERE)

Over Core Stress Over Core Stress Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Over Core Stress Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Over Core Stress: No definition has been provided for this term. Add a Definition Related Techniques Rock Lab Analysis Core Analysis Cuttings Analysis Isotopic Analysis- Rock Over Core Stress Paleomagnetic Measurements Petrography Analysis Rock Density X-Ray Diffraction (XRD) X-Ray Fluorescence (XRF) References Page Area Activity Start Date Activity End Date Reference Material

215

COMET solutions to whole core CANDU-6 benchmark problems  

SciTech Connect

In this paper, the coarse mesh transport code COMET is used to solve CANDU-6 benchmark problems in two and three dimensional geometry. These problems are representative of a simplified quarter core reactor model. The COMET solutions, the core eigenvalue and the fuel pin fission density distribution, are compared to those from the Monte Carlo code MCNP using two-group cross sections. COMET decomposes the core volume into a set of non-overlapping sub-volumes (coarse meshes) and uses pre-computed heterogeneous response functions that are constructed using Legendre polynomials as boundary conditions to generate a user selected whole core solution (e.g., the core eigenvalue and fuel pin fission density distribution). These response functions are pre-computed by performing fixed source calculations with a modified version of MCNP in only the unique coarse meshes in the core. Reference solutions are calculated by MCNP5 with a two-group energy library generated with the HELIOS lattice code. In the 2-D problem, the angular current on the coarse mesh interfaces in COMET is expanded to 2. order in both spatial and angular variables. The COMET eigenvalue error is 0.09%. The corresponding average error in the fission density over all 3515 fuel pins is 0.5%. The maximum error observed is 2.0%. For the 3-D case, with 4. order expansion in space and azimuthal angle and 2. order expansion in the cosine of the polar angle, the eigenvalue differs from the reference solution by 0.05%. The average fission density error over the 42180 fuel pins is 0.7% with a maximum error of 3.3%. (authors)

Forget, B.; Rahnema, F. [Nuclear and Radiological Engineering / Medical Physics Programs, George W. Woodruff School, Georgia Inst. of Technology, Atlanta, GA 30332-0405 (United States)

2006-07-01T23:59:59.000Z

216

Interactions of Cold- and Warm-Core Rings with Environmental Shear  

Science Conference Proceedings (OSTI)

A two-layer analytical model of cold- and warm-core rings has been constructed to explore steady interactions of isolated eddies with horizontally sheared flows around and below the eddies. Steady inviscid solutions to the quasi-geostrophic ...

Doron Nof; Chuan Shi

1989-07-01T23:59:59.000Z

217

Pair superfluid and supersolid of correlated hard-core bosons on a triangular lattice  

E-Print Network (OSTI)

We have systematically studied the hard-core Bose-Hubbard model with correlated hopping on a triangular lattice using the density-matrix renormalization group method. A rich ground-state phase diagram is determined. In ...

Fu, Liang

218

A Finite-Difference GCM Dynamical Core with a Variable-Resolution Stretched Grid  

Science Conference Proceedings (OSTI)

A finite-difference atmospheric model dynamics, or dynamical core using variable resolution, or stretched grids, is developed and used for regional–global medium-term and long-term integrations.

Michael S. Fox-Rabinovitz; Georgiy L. Stenchikov; Max J. Suarez; Lawrence L. Takacs

1997-11-01T23:59:59.000Z

219

Core/Shell Nanophosphors for LED Lighting  

Science Conference Proceedings (OSTI)

Symposium, Symposium H: Advanced Ceramics. Presentation Title, Core/Shell Nanophosphors for LED Lighting. Author(s), Jinkyu Han, Gustavo Hirata, Jan B ...

220

Material with core-shell structure  

DOE Patents (OSTI)

Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.

Luhrs, Claudia (Rio Rancho, NM); Richard, Monique N. (Ann Arbor, MI); Dehne, Aaron (Maumee, OH); Phillips, Jonathan (Rio Rancho, NM); Stamm, Kimber L. (Ann Arbor, MI); Fanson, Paul T. (Brighton, MI)

2011-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

SECA Core Technology Program Seal Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

SECA Core Technology Program (SECA CTP) led workshop on the topical area titled "SOFC seal: Technology, Challenges and Future Directions" was held on August 10, 2007 at...

222

SECA Core Technology Program - SOFC Interconnect Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Core Technology Program - SOFC Interconnect Meeting July 28-29, 2004 Table of Contents Disclaimer Participants PDF-17KB Presentations Products Disclaimer This report was prepared...

223

Experimental and Analytic Study on the Core Bypass Flow in a Very High Temperature Reactor  

SciTech Connect

Core bypass flow has been one of key issues in the very high temperature reactor (VHTR) design for securing core thermal margins and achieving target temperatures at the core exit. The bypass flow in a prismatic VHTR core occurs through the control element holes and the radial and axial gaps between the graphite blocks for manufacturing and refueling tolerances. These gaps vary with the core life cycles because of the irradiation swelling/shrinkage characteristic of the graphite blocks such as fuel and reflector blocks, which are main components of a core's structure. Thus, the core bypass flow occurs in a complicated multidimensional way. The accurate prediction of this bypass flow and counter-measures to minimize it are thus of major importance in assuring core thermal margins and securing higher core efficiency. Even with this importance, there has not been much effort in quantifying and accurately modeling the effect of the core bypass flow. The main objectives of this project were to generate experimental data for validating the software to be used to calculate the bypass flow in a prismatic VHTR core, validate thermofluid analysis tools and their model improvements, and identify and assess measures for reducing the bypass flow. To achieve these objectives, tasks were defined to (1) design and construct experiments to generate validation data for software analysis tools, (2) determine the experimental conditions and define the measurement requirements and techniques, (3) generate and analyze the experimental data, (4) validate and improve the thermofluid analysis tools, and (5) identify measures to control the bypass flow and assess its performance in the experiment.

Richard Schultz

2012-04-01T23:59:59.000Z

224

Geostrophic Vortex Merger and Streamer Development in the Ocean with Special Reference to the Merger of Kuroshio Warm Core Rings  

Science Conference Proceedings (OSTI)

A simple, quasigeostrophic, two-layer model was used to study the interactions of two like-signed vortices and streamer development in the ocean. In particular, models corresponding to the observed merger of two Kuroshio warm core rings were ...

Ichiro Yasuda

1995-05-01T23:59:59.000Z

225

Idealized Test Cases for Dynamical Core Experiments  

E-Print Network (OSTI)

Idealized Test Cases for Dynamical Core Experiments Christiane Jablonowski (University of Michigan-13/2006 #12;Motivation · Test cases for 3D dynamical cores on the sphere ­ are hard to find in the literature groups ­ lack standardized & easy-to-use analysis techniques · Idea: Establish a collection of test cases

Jablonowski, Christiane

226

Method and apparatus for recovering unstable cores  

DOE Patents (OSTI)

A method and apparatus suitable for stabilizing hydrocarbon cores are given. Such stabilized cores have not previously been obtainable for laboratory study, and such study is believed to be required before the hydrate reserves can become a utilizable resource. The apparatus can be built using commercially available parts and is very simple and safe to operate.

McGuire, P.L.; Barraclough, B.L.

1981-04-01T23:59:59.000Z

227

Core equivalence in economy for modal logic  

Science Conference Proceedings (OSTI)

We investigate a pure exchange economy under uncertainty with emphasis on the logical point of view; the traders are assumed to have a multi-modal logic with non-partitional information structures.We propose a generalized notion of rational expectations ... Keywords: core equivalence theorem, ex-post core, multi-modal logic, pure exchange economy under reflexive information structure, rational expectations equilibrium

Takashi Matsuhisa

2003-06-01T23:59:59.000Z

228

Moving core beam energy absorber and converter  

SciTech Connect

A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

Degtiarenko, Pavel V.

2012-12-18T23:59:59.000Z

229

Module Handbook Core Univ. of Oldenburg  

E-Print Network (OSTI)

, DMS (strain gauge?) Test bridge, Fatigue Extrapolation · Wind Diesel Systeme in kleinen Inselnetzen/EUREC Course 2008/2009 #12;EUREC Core Courses at University of Oldenburg, 1st Semester Wind Energy Module Module Description: Wind Energy Field: Core Oldenburg Courses: Wind Energy Wind Energy

Habel, Annegret

230

Method and apparatus for recovering unstable cores  

SciTech Connect

A method and apparatus suitable for stabilizing hydrocarbon cores are given. Such stabilized cores have not previously been obtainable for laboratory study, and such study is believed to be required before the hydrate reserves can become a utilizable resource. The apparatus can be built using commercially available parts and is very simple and safe to operate.

McGuire, Patrick L. (Los Alamos, NM); Barraclough, Bruce L. (Los Alamos, NM)

1983-01-01T23:59:59.000Z

231

Core Science Requirement Final Document Page 1 THE CORE SCIENCE REQUIREMENT and  

E-Print Network (OSTI)

Core Science Requirement ­ Final Document ­ Page 1 THE CORE SCIENCE REQUIREMENT and MENDEL SCIENCE EXPERIENCE COURSES Core requirement of 2 semesters of science with laboratory; requirement to be met by the end of the sophomore year Rationale Science literacy is an integral part of the intellectual

Lagalante, Anthony F.

232

Core File Settings | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Core File Settings Core File Settings The following environment variables control core file creation and contents. Specify regular (non-script) jobs using the qsub argument --env (Note: two dashes). Specify script jobs (--mode script) using the --envs (Note: two dashes) or --exp_env (Note: two dashes) options of runjob. For additional information about setting environment variables in your job, visit http://www.alcf.anl.gov/user-guides/running-jobs#environment-variables. Generation The following environment variables control conditions of core file generation and naming: BG_COREDUMPONEXIT=1 Creates a core file when the application exits. This is useful when the application performed an exit() operation and the cause and location of the exit() is not known. BG_COREDUMPONERROR=1

233

Magnetic nuclear core restraint and control  

DOE Patents (OSTI)

A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

Cooper, Martin H. (Monroeville, PA)

1979-01-01T23:59:59.000Z

234

Configuration adjustment potential of the Very High Temperature Reactor prismatic cores with advanced actinide fuels  

E-Print Network (OSTI)

Minor actinides represent the long-term radiotoxicity of nuclear wastes. As one of their potential incineration options, partitioning and transmutation in fission reactors are seriously considered worldwide. If implemented, these technologies could also be a source of nuclear fuel materials required for sustainability of nuclear energy. The objective of this research was to evaluate performance characteristics of Very High Temperature Reactors (VHTRs) and their variations due to configuration adjustments targeting achievability of spectral variations. The development of realistic whole-core 3D VHTR models and their benchmarking against experimental data was an inherent part of the research effort. Although the performance analysis was primarily focused on prismatic core configurations, 3D pebble-bed core models were also created and analyzed. The whole-core 3D models representing the prismatic block and pebble-bed cores were created for use with the SCALE 5.0 code system. Each of the models required the Dancoff correction factor to be externally calculated. The code system DANCOFF-MCThe whole-core/system 3D models with multi-heterogeneity treatments were validated by the benchmark problems. Obtained results are in agreement with the available High Temperature Test Reactor data. Preliminary analyses of actinide-fueled VHTR configurations have indicated promising performance characteristics. Utilization of minor actinides as a fuel component would facilitate development of new fuel cycles and support sustainability of a fuel source for nuclear energy assuring future operation of Generation IV nuclear energy systems. was utilized to perform the Dancoff factor calculations.

Ames, David E, II

2006-08-01T23:59:59.000Z

235

Unified nuclear core activity map reconstruction using heterogeneous instruments with data assimilation  

E-Print Network (OSTI)

Evaluating the neutronic state of the whole nuclear core is a very important topic that have strong implication for nuclear core management and for security monitoring. The core state is evaluated using measurements. Usually, part of the measurements are used, and only one kind of instruments are taken into account. However, the core state evaluation should be more accurate when more measurements are collected in the core. But using information from heterogeneous sources is at glance a difficult task. This difficulty can be overcome by Data Assimilation techniques. Such a method allows to combine in a coherent framework the information coming from model and the one coming from various type of observations. Beyond the inner advantage to use heterogeneous instruments, this leads to obtain a significant increasing of the quality of neutronic global state reconstruction with respect to individual use of measures. In order to present this approach, we will introduce here the basic principles of data assimilation f...

Bouriquet, Bertrand; Erhard, Patrick; Ponçot, Angélique

2011-01-01T23:59:59.000Z

236

Analyses of Greek Research Reactor with mixed HEU-LEU Be reflected core  

SciTech Connect

The fuel-cycle analyses presented in this paper provide specific steps to be taken in the transition from a 36-element water-reflected HEU core to a 33-element LEU equilibrium core with a Be reflector on two faces. The first step will be to install the Be reflector and remove the highest burnup HEU fuel. The smaller Be-reflected core will be refueled with LEU fuel. All analyses were performed using a planar 5-group REBUS3 model benchmarked to VIM Monte Carlo. In addition to fuel cycle results, the control rod worth, reactivity response to increased fuel and water temperature and decreased water density were compared for the transition core and the reference HEU core.

Deen, J.R.; Snelgrove, J.L. [Argonne National Lab., IL (United States); Papastergiou, K. [National Center for Scientific Research, Athens (Greece)

1993-12-31T23:59:59.000Z

237

Two dynamical core formulation flaws exposed by a baroclinic instability test case  

E-Print Network (OSTI)

or climate simulations if physical parameterizations or model components, like the ocean or ice, compensate General Circulation Model (GCM) in isolation from the physical parameterization package is an essential stepping stone during the model devel- opment and evaluation phase. The dynamical core tests have

Jablonowski, Christiane

238

THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD  

Science Conference Proceedings (OSTI)

The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle and Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root N statistical fluctuations, increasing with H.

Parravano, Antonio [Centro De Fisica Fundamental, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Sanchez, Nestor [S. D. Astronomia y Geodesia, Fac. CC. Matematicas, Universidad Complutense de Madrid (Spain); Alfaro, Emilio J. [Instituto de Astrofisica de Andalucia (CSIC), Granada (Spain)

2012-08-01T23:59:59.000Z

239

Transport of Magnetic Fields in Convective, Accreting Supernova Cores  

E-Print Network (OSTI)

We consider the amplification and transport of a magnetic field in the collapsed core of a massive star, including both the region between the neutrinosphere and the shock, and the central, opaque core. An analytical argument explains why rapid convective overturns persist within a newly formed neutron star for roughly 10 seconds ($> 10^3$ overturns), consistent with recent numerical models. A dynamical balance between turbulent and magnetic stresses within this convective layer corresponds to flux densities in excess of $10^{15}$G. Material accreting onto the core is heated by neutrinos and also becomes strongly convective. We compare the expected magnetic stresses in this convective `gain layer' with those deep inside the neutron core. Buoyant motions of magnetized fluid are greatly aided by the intense neutrino flux. We calculate the transport rate through a medium containing free neutrons protons, and electrons, in the limiting cases of degenerate or non-degenerate nucleons. Fields stronger than $\\sim 10^{13}$ G are able to rise through the outer degenerate layers of the neutron core during the last stages of Kelvin-Helmholtz cooling (up to 10 seconds post-collapse), even though these layers have become stable to convection. We also find the equilibrium shape of a thin magnetic flux rope in the dense hydrostatic atmosphere of the neutron star, along with the critical separation of the footpoints above which the rope undergoes unlimited expansion against gravity. The implications of these results for pulsar magnetism are summarized, and applied to the case of late fallback over the first 1,000-10,000 s of the life of a neutron star

Christopher Thompson; Norman Murray

2001-05-24T23:59:59.000Z

240

Oak Ridge National Laboratory Core Competencies  

Science Conference Proceedings (OSTI)

A core competency is a distinguishing integration of capabilities which enables an organization to deliver mission results. Core competencies represent the collective learning of an organization and provide the capacity to perform present and future missions. Core competencies are distinguishing characteristics which offer comparative advantage and are difficult to reproduce. They exhibit customer focus, mission relevance, and vertical integration from research through applications. They are demonstrable by metrics such as level of investment, uniqueness of facilities and expertise, and national impact. The Oak Ridge National Laboratory (ORNL) has identified four core competencies which satisfy the above criteria. Each core competency represents an annual investment of at least $100M and is characterized by an integration of Laboratory technical foundations in physical, chemical, and materials sciences; biological, environmental, and social sciences; engineering sciences; and computational sciences and informatics. The ability to integrate broad technical foundations to develop and sustain core competencies in support of national R&D goals is a distinguishing strength of the national laboratories. The ORNL core competencies are: 9 Energy Production and End-Use Technologies o Biological and Environmental Sciences and Technology o Advanced Materials Synthesis, Processing, and Characterization & Neutron-Based Science and Technology. The distinguishing characteristics of each ORNL core competency are described. In addition, written material is provided for two emerging competencies: Manufacturing Technologies and Computational Science and Advanced Computing. Distinguishing institutional competencies in the Development and Operation of National Research Facilities, R&D Integration and Partnerships, Technology Transfer, and Science Education are also described. Finally, financial data for the ORNL core competencies are summarized in the appendices.

Roberto, J.B.; Anderson, T.D.; Berven, B.A.; Hildebrand, S.G.; Hartman, F.C.; Honea, R.B.; Jones, J.E. Jr.; Moon, R.M. Jr.; Saltmarsh, M.J.; Shelton, R.B. [and others

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Apparatus for controlling molten core debris. [LMFBR  

DOE Patents (OSTI)

Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures.

Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

1977-07-19T23:59:59.000Z

242

Apparatus for controlling molten core debris  

DOE Patents (OSTI)

Apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed.

Golden, Martin P. (Trafford, PA); Tilbrook, Roger W. (Monroeville, PA); Heylmun, Neal F. (Pittsburgh, PA)

1977-07-19T23:59:59.000Z

243

OpenEI:Core content policies | Open Energy Information  

Open Energy Info (EERE)

content policies content policies Jump to: navigation, search OpenEI models its core content policies after those established by the Wikipedia.[1] Specifically, the OpenEI core content policies are: Neutral point of view - Content must have a neutral point of view, giving unbiased, equal, and proportional representation to all significant views. Verifiability - Any content coming from elsewhere must give attribution to it's source. Any content that is likely to be challenged must be attributed to a reliable and verifiable source. No original research - OpenEI is not a platform for original research. All content should come from and be attributed a verifiable source. These policies are not meant to be considered independently, but as a group. Anyone contributing to the platform should be familiar with each of

244

Core Analysis At International Geothermal Area, Indonesia (Laney, 2005) |  

Open Energy Info (EERE)

International Geothermal Area International Geothermal Area Indonesia (Laney, 2005) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Improving Exploration Models of Andesite-Hosted Geothermal Systems, Allis, Browne, Bruton, Christensen, Hulen, Lutz, Mindenhall, Nemcok, Norman, Powell and Stimac. The approach we are using is to characterize the petrology, geochemistry and fractures in core and cuttings samples and then integrate these data with measured downhole temperatures and pressures and with the compositions of the reservoir fluids. Our investigations represent cooperative efforts with the Karaha-Bodas Co. LLC (a subsidiary of Caithness Energy) at Karaha-Telaga Bodas, Indonesia and with Philippine

245

All Metal Iron Core For A Low Aspect Ratio Tokamak  

Science Conference Proceedings (OSTI)

A novel concept for incorporating a iron core transformer within a axisymmetric toroidal plasma containment device with a high neutron flux is described. This design enables conceptual design of low aspect ratio devices which employ standard transformer-driven plasma startup by using all-metal high resistance separators between the toroidal field windings. This design avoids the inherent problems of a multiturn air core transformer which will inevitably suffer from strong neutron bombardment and hence lose the integrity of its insulation, both through long term material degradation and short term neutron- induced conductivity.. A full 3-dimensional model of the concept has been developed within the MAXWELL program and the resultant loop voltage calculated. The utility of the result is found to be dependent on the resistivity of the high resistance separators. Useful loop voltage time histories have been obtained using achievable resistivities.

D.A. Gates, C. Jun, I. Zatz, A. Zolfaghari

2010-06-02T23:59:59.000Z

246

A DOUBLE CLUSTER AT THE CORE OF 30 DORADUS  

SciTech Connect

Based on an analysis of data obtained with the Wide Field Camera 3 on the Hubble Space Telescope we report the identification of two distinct stellar populations in the core of the giant H II region 30 Doradus in the Large Magellanic Cloud. The most compact and richest component coincides with the center of R136 and is {approx}1 Myr younger than a second more diffuse clump, located {approx}5.4 pc toward the northeast. We note that published spectral types of massive stars in these two clumps lend support to the proposed age difference. The morphology and age difference between the two sub-clusters suggests that an ongoing merger may be occurring within the core of 30 Doradus. This finding is consistent with the predictions of models of hierarchical fragmentation of turbulent giant molecular clouds, according to which star clusters would be the final products of merging smaller sub-structures.

Sabbi, E.; De Mink, S. E.; Walborn, N. R.; Anderson, J.; Bellini, A.; Panagia, N.; Van der Marel, R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Lennon, D. J. [ESA/STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gieles, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Apellaniz, J. Maiz, E-mail: sabbi@stsci.edu [Instituto de Astrofisica de Andalucia-CSIC, Glorieta de la Astronomia s/n, E-18008, Granada (Spain)

2012-08-01T23:59:59.000Z

247

Using Vulcan to Recreate Planetary Cores  

Science Conference Proceedings (OSTI)

An accurate equation of state (EOS) for planetary constituents at extreme conditions is the key to any credible model of planets or low mass stars. However, experimental validation has been carried out on at high pressure (>few Mbar), and then only on the principal Hugoniot. For planetary and stellar interiors, compression occurs from gravitational force so that material states follow a line of isentropic compression (ignoring phase separation) to ultra-high densities. An example of the predicted states for water along the isentrope for Neptune is shown in a figure. The cutaway figure on the left is from Hubbard, and the phase diagram on the right is from Cavazzoni et al. Clearly these states lie at quite a bit lower temperature and higher density than single shock Hugoniot states but they are at higher temperature than can be achieved with accurate diamond anvil experiments. At extreme densities, material states are predicted to have quite unearthly properties such as high temperature superconductivity and low temperature fusion. High density experiments on Earth are achieved with either static compression techniques (i.e.diamond anvil cells) or dynamic compression techniques using large laser facilities, gas guns, or explosives. A major thrust of this work is to develop techniques to create and characterize material states that exists primarily at the core of giant planets and brown dwarf stars. Typically, models used to construct planetary isentropes are constrained by only the planet radius, outer atmospheric spectroscopy, and space probe gravitational moment and magnetic field data. Thus any data, which provide rigid constraints for these models will have a significant impact on a broad community of planetary and condensed matter scientists. Recent laser shock wave experiments have made great strides in recreating material states that exist in the outer 25% (in radius) of the Jovian planets and at the exterior of low-mass stars. Large laser facilities have been used to compressed materials to ultra-high pressures and characterize their thermodynamic and transport properties (plastic Hugoniot to 40 Mbar, deuterium Hugoniot to 3 Mbar, metallization of ''atomic'' deuterium on the Hugoniot). To probe materials properties at these high pressures, several experimental techniques were developed high resolution radiography, optical reflectance, pyrometry, and velocity/displacement sensitive interferometry are some of the diagnostics currently used in laser-generated shock EOS experiments. During our experiments at Vulcan we developed and tested precompressed and multiple shock experimental techniques which allowed us to recreate the extreme core states of giant plants. These experiments compressed water to densities higher than accessible by single shock Hugoniot techniques and showed that the metal-insulator transition of shocked precompressed water is suppressed significantly as compared to uncompressed water. Further, as predicted the temperature of shocked precompressed water is lower than the temperature of uncompressed water enabling us to determine the metallization mechanism for water near the Hugoniot.

Collins, G.W.; Celliers, P.M.; Hicks, D.G.; Mackinnon, A.J.; Moon, S.J.; Cauble, R.; DaSilva, L.B.; Koening, M.; Benuzzi-Mounaix, A.; Huser, G.; Jeanloz, R.; Lee, K.M.; Benedetti, L.R.; Henry, E.; Batani, D.; Willi, O.; Pasley, J.; Gessner, H.; Neely, D.; Notley, M.; Danson, C.

2001-08-15T23:59:59.000Z

248

Conceptual design of air-core superconducting power transformer for cable transmission system  

Science Conference Proceedings (OSTI)

The air-core superconducting transformer, which has a large magnetizing current, has been proposed as a power transformer that has the function as a shunt reactor. In this paper, the basic design procedure for the air-core superconducting transformer is presented. By using this procedure, 500/{radical}(3kV)--66/{radical}(3kV)--300 MVA single phase air-core transformer is designed for a model cable transmission system. Then, the performance of this transformer in the model cable transmission system is analyzed, and it is confirmed that the air-core superconducting transformer can function as a shunt reactor in addition to the principal as a power transformer.

Yamaguchi, Hiroshi; Sato, Yukihiko; Kataoka, Teruo [Tokyo Inst. of Tech. (Japan). Dept. of Electrical and Electronic Engineering

1996-04-01T23:59:59.000Z

249

GreenCore Capital | Open Energy Information  

Open Energy Info (EERE)

GreenCore Capital GreenCore Capital Jump to: navigation, search Logo: GreenCore Capital Name GreenCore Capital Address 10509 Vista Sorrento Parkway Place San Diego, California Zip 92121 Region Southern CA Area Product Invests in developing promising renewable energy companies Website http://www.greencorecapital.co Coordinates 32.898095°, -117.215736° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.898095,"lon":-117.215736,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

KSI's Cross Insulated Core Transformer Technology  

Science Conference Proceedings (OSTI)

Cross Insulated Core Transformer (CCT) technology improves on Insulated Core Transformer (ICT) implementations. ICT systems are widely used in very high voltage, high power, power supply systems. In an ICT transformer ferrite core sections are insulated from their neighboring ferrite cores. Flux leakage is present at each of these insulated gaps. The flux loss is raised to the power of stages in the ICT design causing output voltage efficiency to taper off with increasing stages. KSI's CCT technology utilizes a patented technique to compensate the flux loss at each stage of an ICT system. Design equations to calculate the flux compensation capacitor value are presented. CCT provides corona free operation of the HV stack. KSI's CCT based High Voltage power supply systems offer high efficiency operation, high frequency switching, low stored energy and smaller size over comparable ICT systems.

Uhmeyer, Uwe [Kaiser Systems, Inc, 126 Sohier Road, Beverly, MA 01915 (United States)

2009-08-04T23:59:59.000Z

251

Unearthing the Composition of Our Planet's Core  

NLE Websites -- All DOE Office Websites (Extended Search)

Unearthing the Composition of Our Planet's Core Unearthing the Composition of Our Planet's Core The chemical composition of the Earth's core is surprisingly complicated, according to high-temperature, high-pressure experiments conducted by University of Chicago scientists using the William M. Keck High Pressure Laboratory at the GSECARS facility, APS sector 13. This research has produced experimental evidence suggesting that the Earth's inner core largely consists of two exotic forms of iron (rather than one as previously thought) that appear to be alloyed with silicon. Backscattered electron image of the quenched laser-heated diamond anvil cell sample from 31 GPa and 1976K. ( J.-F. Lin et al.) Above: Backscattered electron image of the quenched laser-heated diamond anvil cell sample from 31 GPa and 1976K. ( J.-F. Lin et al.)

252

The systems biology simulation core algorithm  

E-Print Network (OSTI)

Keller et al. : The systems biology simulation core algo-rithm. BMC Systems Biology 2013 7:55. Page 16 of 16 SubmitMacilwain C: Systems biology: evolving into the mainstream.

2013-01-01T23:59:59.000Z

253

Multiple network interface core apparatus and method  

DOE Patents (OSTI)

A network interface controller and network interface control method comprising providing a single integrated circuit as a network interface controller and employing a plurality of network interface cores on the single integrated circuit.

Underwood, Keith D. (Albuquerque, NM); Hemmert, Karl Scott (Albuquerque, NM)

2011-04-26T23:59:59.000Z

254

Armor systems including coated core materials  

DOE Patents (OSTI)

An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

Chu, Henry S. (Idaho Falls, ID); Lillo, Thomas M. (Idaho Falls, ID); McHugh, Kevin M. (Idaho Falls, ID)

2012-07-31T23:59:59.000Z

255

Armor systems including coated core materials  

SciTech Connect

An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

2013-10-08T23:59:59.000Z

256

Inner Core Strength of Atlantic Tropical Cyclones  

Science Conference Proceedings (OSTI)

The evolution of the wind field beyond the radius of maximum winds is studied for 18 Atlantic tropical cyclones (TCs) with 989 research and reconnaissance flight legs. Inner core strength, defined as the storm relative mean tangential wind from ...

Mark Croxford; Gary M. Barnes

2002-01-01T23:59:59.000Z

257

RADIOACTIVITY IN EARTH'S CORE Definition ... - Springer  

Science Conference Proceedings (OSTI)

pressures: implications for uranium solubility in planetary cores. ...... Kamiokande cavity in a horizontal mine drift in the Japa- nese Alps. The detector is ...... in aerial or space imagery. Tectonics. A field of study within geology concerned gen

258

Environmental impact of various kayak core materials  

E-Print Network (OSTI)

This thesis compares the environmental impact of fiberglass, Kevlar, carbon fiber, and cork. A kayak company is interested in using cork as a core material, and would like to claim that it is the most environmentally ...

Kirkland, David R. (David Roger)

2008-01-01T23:59:59.000Z

259

Granular Dynamics in Pebble Bed Reactor Cores  

E-Print Network (OSTI)

flow in a pebble-bed nuclear reactor,” Phys. Rev. E, vol.from the current fleet of nuclear reactors far outweigh thethrough the core of a nuclear reactor. This regime includes

Laufer, Michael Robert

2013-01-01T23:59:59.000Z

260

MODULAR CORE UNITS FOR A NEUTRONIC REACTOR  

DOE Patents (OSTI)

A modular core unit for use in a nuclear reactor is described. Many identical core modules can be placed next to each other to make up a complete core. Such a module includes a cylinder of moderator material surrounding a fuel- containing re-entrant coolant channel. The re-entrant channel provides for the circulation of coolant such as liquid sodium from one end of the core unit, through the fuel region, and back out through the same end as it entered. Thermal insulation surrounds the moderator exterior wall inducing heat to travel inwardly to the coolant channel. Spaces between units may be used to accommodate control rods and support structure, which may be cooled by a secondary gas coolant, independently of the main coolant. (AEC)

Gage, J.F. Jr.; Sherer, D.B.

1964-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Panelized wall system with foam core insulation  

DOE Patents (OSTI)

A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

Kosny, Jan (Oak Ridge, TN); Gaskin, Sally (Houston, TX)

2009-10-20T23:59:59.000Z

262

Incorporation of silica into baroplastic core-shell nanoparticles  

E-Print Network (OSTI)

Core-shell baroplastics are nanophase materials that exhibit pressure-induced flow at low temperatures and high pressures. Core-shell baroplastics used in this work are comprised of a low Tg poly(butyl acrylate) (PBA) core ...

Hewlett, Sheldon A

2006-01-01T23:59:59.000Z

263

Argonne CNM Highlight: Complexity in Core-Shell Nanomagnets  

NLE Websites -- All DOE Office Websites (Extended Search)

Complexity in Core-Shell Nanomagnets Magnetgic hysteresis of core-shell nanoparticles (curves) Magnetic hysteresis of core-shell Fe@Fe3O4 nanoparticles at 5 K under field cooling...

264

Probing Core-Hole Localization in Molecular Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Core-Hole Localization in Molecular Nitrogen Probing Core-Hole Localization in Molecular Nitrogen Print Wednesday, 25 February 2009 00:00 The behavior of the core hole...

265

Atomic data for the ITER Core Imaging X-ray Spectrometer  

SciTech Connect

The parameters of the ITER core plasmas will be measured using the Core Imaging X-ray Spectrometer (CIXS), a high-resolution crystal spectrometer focusing on the L-shell spectra of highly ionized tungsten atoms. In order to correctly infer the plasma properties accurate atomic data are required. Here, some aspects of the underlying physics are discussed using experimental data and theoretical predictions from modeling.

Clementson, J; Beiersdorfer, P; Biedermann, C; Bitter, M; Delgado-Aparicio, L F; Graf, A; Gu, M F; Hill, K W; Barnsley, R

2012-06-15T23:59:59.000Z

266

BNL program in support of LWR degraded-core accident analysis  

SciTech Connect

Two major sources of loading on dry watr reactor containments are steam generatin from core debris water thermal interactions and molten core-concrete interactions. Experiments are in progress at BNL in support of analytical model development related to aspects of the above containment loading mechanisms. The work supports development and evaluation of the CORCON (Muir, 1981) and MARCH (Wooton, 1980) computer codes. Progress in the two programs is described in this paper. 8 figures.

Ginsberg, T.; Greene, G.A.

1982-01-01T23:59:59.000Z

267

Features of the electronic spectrum in a type-I core - shell quantum dot  

Science Conference Proceedings (OSTI)

The model is proposed, which allows one to solve the problem of finding the energy spectrum and the wave function of an electron in a type-I core - shell quantum dot. It is shown that the size of the core and shell can serve as control parameters for the optimisation of the energy structure of the quantum dot in order to obtain the real structures with desired electrophysical and optical properties. (quantum dots)

Igoshina, S E; Karmanov, A A [Penza State University, Penza (Russian Federation)

2013-01-31T23:59:59.000Z

268

NETL: Control Technology: ElectroCore Separator  

NLE Websites -- All DOE Office Websites (Extended Search)

ElectroCore Separator ElectroCore Separator LSR Technologies and its subcontractors designed and installed a 8,500 m3/hr (5,000 acfm) Advanced ElectroCore system and a dry sulfur scrubber to test it using an exhaust gas slipstream at Alabama Power Company's Gaston Steam Plant. Shakedown is scheduled for August 15, 2001. The exhaust gas will be from Unit #4 of a 270 MWe sub-critical, pulverized coal boiler burning a low-sulfur bituminous coal. The Advanced ElectroCore system will consist of a conventional upstream ESP, a dry SO2 scrubber, a particle precharger and an Advanced ElectroCore separator. Particle concentrations and size distributions will be measured at the ESP inlet, at the dry scrubber outlet and at the ElectroCore outlet. The concentration of 12 common HAPs will be measured at these locations as well. For purposes of project organization and monitoring, the work will be divided into nine (9) tasks described below.

269

Solid oxide fuel cell having monolithic core  

DOE Patents (OSTI)

A solid oxide fuel cell is described for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick.

Ackerman, J.P.; Young, J.E.

1983-10-12T23:59:59.000Z

270

FORMED CORE SAMPLER HYDRAULIC CONDUCTIVITY TESTING  

SciTech Connect

A full-scale formed core sampler was designed and functionally tested for use in the Saltstone Disposal Facility (SDF). Savannah River National Laboratory (SRNL) was requested to compare properties of the formed core samples and core drilled samples taken from adjacent areas in the full-scale sampler. While several physical properties were evaluated, the primary property of interest was hydraulic conductivity. Differences in hydraulic conductivity between the samples from the formed core sampler and those representing the bulk material were noted with respect to the initial handling and storage of the samples. Due to testing conditions, the site port samples were exposed to uncontrolled temperature and humidity conditions prior to testing whereas the formed core samples were kept in sealed containers with minimal exposure to an uncontrolled environment prior to testing. Based on the results of the testing, no significant differences in porosity or density were found between the formed core samples and those representing the bulk material in the test stand.

Miller, D.; Reigel, M.

2012-09-25T23:59:59.000Z

271

Core-Shell Structured Magnetic Ternary Nanocubes  

DOE Green Energy (OSTI)

While transition metal-doped ferrite nanoparticles constitute an important class of soft magnetic nanomaterials with spinel structures, the ability to control the shape and composition would enable a wide range of applications in homogeneous or heterogeneous reactions such as catalysis and magnetic separation of biomolecules. This report describes novel findings of an investigation of core-shell structured MnZn ferrite nanocubes synthesized in organic solvents by manipulating the reaction temperature and capping agent composition in the absence of the conventionally-used reducing agents. The core-shell structure of the highly-monodispersed nanocubes (~20 nm) are shown to consist of an Fe3O4 core and an (Mn0.5Zn0.5)(Fe0.9, Mn1.1)O4 shell. In comparison with Fe3O4 and other binary ferrite nanoparticles, the core-shell structured nanocubes were shown to display magnetic properties regulated by a combination of the core-shell composition, leading to a higher coercivity (~350 Oe) and field-cool/zero-field-cool characteristics drastically different from many regular MnZn ferrite nanoparticles. The findings are discussed in terms of the unique core-shell composition, the understanding of which has important implication to the exploration of this class of soft magnetic nanomaterials in many potential applications such as magnetic resonance imaging, fuel cells, and batteries.

Wang, Lingyan; Wang, Xin; Luo, Jin; Wanjala, Bridgid N.; Wang, Chong M.; Chernova, Natalya; Engelhard, Mark H.; Liu, Yao; Bae, In-Tae; Zhong, Chuan-Jian

2010-12-01T23:59:59.000Z

272

Thermionic phenomena of the Earth's core and its effect on the geomagnetic field  

E-Print Network (OSTI)

In this model, we will show that the high-density quasi-plasma forms at the outer surface of the outer core and accounts for the geomagnetic field. The level of thermo-ionization at the outer surface of Earth's outer core is investigated. The density and the frequency of the plasma formed by the thermion are obtained. The high-density plasma formed by ionization can block the electromagnetic field and prevent it from penetrating the outer core. Thermion has been well researched by physicists. In general, most of metals have large thermionic emissions when their temperatures are above 1500K. The Emission Current Density of iron at this temperature is ~10?¹ A/m² and rise sharply with temperature increases. The earth's outer core is liquid and consists primarily of iron with temperatures in excess of 4000K. The core mantle boundary temperature might reach 4800K or even higher and the emission current density for iron at this temperature is over 10?A /m². Equilibrium between electron emission from the outer core and electron attracted to the outer core is reached when the surface positive charge density is around 10?³ to 10?? C/m² at the surface of the outer core. The electrons within the mantle may form high-density plasma around the outer surface of the outer core, diffuse into the mantle and the crust or return to the core. The relative motion between the electrons and cations produces magnetic field. The magnitude of this magnetic field is direct ratio of their relative velocity. If the geomagnetic field is mainly produced by this way, the relative circular velocity between the ions and the electrons should be ~0.1 (rad/s).

Cao, Jiang

2001-01-01T23:59:59.000Z

273

Star formation in molecular cores III. The effect of the turbulent power spectrum  

E-Print Network (OSTI)

We investigate the effect of the turbulent power spectrum (P(k) \\propto k^{-n}, with n=3, 4 or 5) on the fragmentation of low-mass cores, by means of SPH simulations. We adopt initial density profiles and low levels of turbulence based on observation, and for each n-value we conduct an ensemble of simulations with different initial seeds for the turbulent velocity field, so as to obtain reasonable statistics. We find that when power is concentrated at larger scales (i.e. for larger n), more protostellar objects form and there is a higher proportion of low-mass stars and brown dwarfs. This is in direct contrast with the recent results of Delgado Donate et al., presumably because they adopted much higher levels of turbulence.

S. P. Goodwin; A. P. Whitworth; D. Ward-Thompson

2006-02-28T23:59:59.000Z

274

Power distributions in fresh and depleted LEU and HEU cores of the MITR reactor.  

Science Conference Proceedings (OSTI)

The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (UMo) is expected to allow the conversion of U.S. domestic high performance reactors like the MITR-II reactor. Toward this goal, core geometry and power distributions are presented. Distributions of power are calculated for LEU cores depleted with MCODE using an MCNP5 Monte Carlo model. The MCNP5 HEU and LEU MITR models were previously compared to experimental benchmark data for the MITR-II. This same model was used with a finer spatial depletion in order to generate power distributions for the LEU cores. The objective of this work is to generate and characterize a series of fresh and depleted core peak power distributions, and provide a thermal hydraulic evaluation of the geometry which should be considered for subsequent thermal hydraulic safety analyses.

Wilson, E.H.; Horelik, N.E.; Dunn, F.E.; Newton, T.H., Jr.; Hu, L.; Stevens, J.G. (Nuclear Engineering Division); (2MIT Nuclear Reactor Laboratory and Nuclear Science and Engineering Department)

2012-04-04T23:59:59.000Z

275

Structural mechanics of fast spectrum nuclear reactor cores  

NLE Websites -- All DOE Office Websites (Extended Search)

mechanics of fast spectrum nuclear reactor cores A fast reactor core is composed of a closely packed hexagonal arrangement of fuel, control, blanket , and shielding assemblies....

276

Recovery Act - Solid-State Lighting Core Technologies Funding...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act - Solid-State Lighting Core Technologies Funding Opportunity Recovery Act - Solid-State Lighting Core Technologies Funding Opportunity A report detailling the Solid State...

277

Historical Carbon Dioxide Record from the Vostok Ice Core  

NLE Websites -- All DOE Office Websites (Extended Search)

Vostok Ice Core Historical Carbon Dioxide Record from the Vostok Ice Core graphics Graphics data Data Investigators J.-M. Barnola, D. Raynaud, C. Lorius Laboratoire de Glaciologie...

278

Historical Carbon Dioxide Record from the Siple Station Ice Core  

NLE Websites -- All DOE Office Websites (Extended Search)

Siple Station Ice Core Historical Carbon Dioxide Record from the Siple Station Ice Core graphics Graphics data Data Investigators A. Neftel, H. Friedli, E. Moor, H. Ltscher, H....

279

Phase-locked antiguided multiple-core ribbon fiber - IEEE ...  

With the evanescent technique, the field energy is localized on the gain cores, and nearest neighbor cores are cou- ... guide components as discussed above, ...

280

Probing Core-Hole Localization in Molecular Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Core-Hole Localization in Molecular Nitrogen Print The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with...

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

SECURITY CORE FUNCTION AND DEFINITION REPORT | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SECURITY CORE FUNCTION AND DEFINITION REPORT SECURITY CORE FUNCTION AND DEFINITION REPORT The first phase of the Lemnos Interoperable Security Program shall lay the foundation for...

282

Hybrid Parallelism for Volume Rendering on Large, Multi- and Many-core Systems  

SciTech Connect

With the computing industry trending towards multi- and many-core processors, we study how a standard visualization algorithm, ray-casting volume rendering, can benefit from a hybrid parallelism approach. Hybrid parallelism provides the best of both worlds: using distributed-memory parallelism across a large numbers of nodes increases available FLOPs and memory, while exploiting shared-memory parallelism among the cores within each node ensures that each node performs its portion of the larger calculation as efficiently as possible. We demonstrate results from weak and strong scaling studies, at levels of concurrency ranging up to 216,000, and with datasets as large as 12.2 trillion cells. The greatest benefit from hybrid parallelism lies in the communication portion of the algorithm, the dominant cost at higher levels of concurrency. We show that reducing the number of participants with a hybrid approach significantly improves performance.

Howison, Mark; Bethel, E. Wes; Childs, Hank

2011-01-01T23:59:59.000Z

283

Size of the group IVA iron meteorite core: Constraints from the age and composition of Muonionalusta  

E-Print Network (OSTI)

The group IVA fractionally crystallized iron meteorites display a diverse range of metallographic cooling rates. These have been attributed to their formation in a metallic core, approximately 150 km in radius, that cooled to crystallization in the absence of any appreciable insulating mantle. Here we build upon this formation model by incorporating several new constraints. These include (i) a recent U-Pb radiometric closure age of solar system formation for the group IVA iron Muonionalusta, (ii) new measurements and modeling of highly siderophile element compositions for a suite of IVAs, and (iii) consideration of the thermal effects of heating by the decay of the short-lived radionuclide 60Fe. Our model for the thermal evolution of the IVA core suggests that it was approximately 50 - 110 km in radius after being collisionally exposed. This range is due to uncertainties in the initial abundance of live 60Fe incorporated into the IVA core. Our models define a relationship between cooling rat...

Moskovitz, Nicholas A

2011-01-01T23:59:59.000Z

284

Resolving Convection in a Global Hypohydrostatic Model  

Science Conference Proceedings (OSTI)

Convection cannot be explicitly resolved in general circulation models given their typical grid size of 50 km or larger. However, by multiplying the vertical acceleration in the equation of motion by a constant larger than unity, the horizontal ...

S. T. Garner; D. M. W. Frierson; I. M. Held; O. Pauluis; G. K. Vallis

2007-06-01T23:59:59.000Z

285

Overview on Hydrate Coring, Handling and Analysis  

SciTech Connect

Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

2003-06-30T23:59:59.000Z

286

Core Excitation in 98Cd  

Science Conference Proceedings (OSTI)

Using a {sup 58}Ni({sup 46}Ti, {alpha}2n) reaction, a total of 24 different residual nuclei were identified. Among them were {sup 98}Cd and {sup 97}Ag. The level scheme of {sup 98}Cd was extended to J{sup {pi}}=(15{sup +}). An isomeric state at 6634 keV excitation energy was confirmed. This state decays by a 4207 keV transition feeding the known 8{sup +} state. The level scheme of {sup 97}Ag was also extended to J{sup {pi}}=(33/2{sup +}) and the half-lives of two isomeric states were measured. Experimental energies of the excited states were compared with the results of ab initio shell-model calculations based on a realistic two-nucleon interaction. The Gammasphere Ge array, coupled with the Microball and the Neutron Shell ancillary particle detectors, was used at the 88 inch cyclotron at Lawrence Berkeley National Laboratory, USA.

Vencelj, Matjaz [ORNL; Baktash, Cyrus [ORNL; Fallon, Paul [ORNL; Hausladen, Paul [ORNL; Likar, A. [Oak Ridge National Laboratory (ORNL); Lipoglavsek, Matej [ORNL; Yu, Chang-Hong [ORNL

2006-07-01T23:59:59.000Z

287

Collaboration between varied organizations develops larger, more...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the interactions of neutrinos, to allow researchers to learn more about the building blocks of matter and how the universe evolved. Photodetectors are also used in homeland...

288

A core ontology on events for representing occurrences in the real world  

Science Conference Proceedings (OSTI)

Events are central aspect of many semantic ambient media applications such as surveillance, smart homes, automobiles, and others. Existing models for events typically do not follow a systematic development approach, are conceptually narrow with respect ... Keywords: Core ontologies, Events, Models, Pattern-oriented ontology design, Principles

Ansgar Scherp; Thomas Franz; Carsten Saathoff; Steffen Staab

2012-05-01T23:59:59.000Z

289

Viscosity and Rotation in Core-Collapse Supernovae  

E-Print Network (OSTI)

We construct models of core-collapse supernovae in one spatial dimension, including rotation, angular momentum transport, and viscous dissipation employing an alpha-prescription. We compare the evolution of a fiducial 11 M_sun non-rotating progenitor with its evolution including a wide range of imposed initial rotation profiles (1.25core). This range of P_0 covers the region of parameter space from where rotation begins to modify the dynamics (P_0~8 s) to where angular velocities at collapse approach Keplerian (P_0~1 s). Assuming strict angular momentum conservation, all models in this range leave behind neutron stars with spin periods <10 ms, shorter than those of most radio pulsars, but similar to those expected theoretically for magnetars at birth. A fraction of the gravitational binding energy of collapse is stored in the free energy of differential rotation. This energy source may be tapped by viscous processes, providing a mechanism for energy deposition that is not strongly coupled to the mass accretion rate through the stalled supernova shock. This effect yields qualitatively new dynamics in models of supernovae. We explore several potential mechanisms for viscosity in the core-collapse environment: neutrino viscosity, turbulent viscosity caused by the magnetorotational instability (MRI), and turbulent viscosity by entropy- and composition-gradient-driven convection. We argue that the MRI is the most effective. We find that for rotation periods in the range P_0<~5 s, and a range of viscous stresses, that the post-bounce dynamics is significantly effected by the inclusion of this extra energy deposition mechanism; in several cases we obtain strong supernova explosions.

Todd A. Thompson; Eliot Quataert; Adam Burrows

2004-03-09T23:59:59.000Z

290

CA Core Competency Worksheet August 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CA Core Competency Worksheet August 2010 CA Core Competency Worksheet August 2010 1 DOE CYBER SECURITY EBK: CORE COMPETENCY TRAINING REQUIREMENTS Key Cyber Security Role: Certification Agent (CA) (Also referred to as Security Control Assessor) Role Definition: The CA is the individual responsible for assessing the management, operational, assurance, and technical security controls implemented on an information system via security testing and evaluation (ST&E) methods. This individual must be independent of system development, operation, and deficiency mitigation. Competency Area: Data Security Functional Requirement: Design Competency Definition: Refers to the application of the principles, policies, and procedures necessary to ensure the confidentiality, integrity, availability, and privacy of data in all forms of media (i.e., electronic

291

NEUTRONIC REACTOR FUEL ELEMENT AND CORE SYSTEM  

DOE Patents (OSTI)

This patent relates to neutronic reactors and in particular to an improved fuel element and a novel reactor core system for facilitating removal of contaminating fission products, as they are fermed, from association with the flssionable fuel, so as to mitigate the interferent effects of such fission products during reactor operation. The fuel elements are comprised of tubular members impervious to fluid and contatning on their interior surfaces a thin layer of fissionable material providing a central void. The core structure is comprised of a plurality of the tubular fuel elements arranged in parallel and a closed manifold connected to their ends. In the reactor the core structure is dispersed in a water moderator and coolant within a pressure vessel, and a means connected to said manifuld is provided for withdrawing and disposing of mobile fission product contamination from the interior of the feel tubes and manifold.

Moore, W.T.

1958-09-01T23:59:59.000Z

292

Fuel fabrication acceptance report FSV: initial core  

SciTech Connect

The fabrication of the Fort St. Vrain initial core is described. Detailed summaries of the final fuel element metal loadings and other properties are given. Problems that occurred during fabrication and their resolutions have been given special attention, including the results of analyses made prior to their adoption. A final substantiation for the Fort St. Vrain initial core was provided by a full-core, three-dimensional analysis considering control rod insertion and fuel depletion and with explicit representation of the as-built fuel elements. The calculated power distributions from the three dimensional analysis are well within the limits specified for the reference design. During fabrication of the initial core fuel elements, some difficulties with assayed quantities of uranium and thorium were encountered. These difficulties resulted from changes in the fuel rod standards used in assay equipment calibration and in the techniques employed for assaying fuel particles and fuel rods. As a result the apparent values for the average metal loadings for some fuel rods and fuel elements changed. For certain blends some already-assembled fuel elements were outside the tolerances given in the fuel specification. A study was undertaken to make recommendations on the disposition of already-fabricated fuel and adjustments for the remainder of fuel fabrication. This study focused on utilizing, as much as possible, already-fabricated fuel without compromising the performance of the core. A variety of adjustments were considered and used in some instances, but the most successful method was the imposition of a layer location on fuel elements. By use of this additional core assembly requirement, a distribution of high metal load and low metal load fuel elements was obtained that assured that power perturbations would be small and localized and that temperature perturbations would be small and confined to axial layers where temperatures are nominally low. (auth)

Kapernick, R.J.; Nirschl, R.J.

1973-12-01T23:59:59.000Z

293

Analytical Chemistry Core Capability Assessment - Preliminary Report  

Science Conference Proceedings (OSTI)

The concept of 'core capability' can be nebulous one. Even at a fairly specific level, where core capability equals maintaining essential services, it is highly dependent upon the perspective of the requestor. Samples are submitted to analytical services because the requesters do not have the capability to conduct adequate analyses themselves. Some requests are for general chemical information in support of R and D, process control, or process improvement. Many analyses, however, are part of a product certification package and must comply with higher-level customer quality assurance requirements. So which services are essential to that customer - just those for product certification? Does the customer also (indirectly) need services that support process control and improvement? And what is the timeframe? Capability is often expressed in terms of the currently utilized procedures, and most programmatic customers can only plan a few years out, at best. But should core capability consider the long term where new technologies, aging facilities, and personnel replacements must be considered? These questions, and a multitude of others, explain why attempts to gain long-term consensus on the definition of core capability have consistently failed. This preliminary report will not try to define core capability for any specific program or set of programs. Instead, it will try to address the underlying concerns that drive the desire to determine core capability. Essentially, programmatic customers want to be able to call upon analytical chemistry services to provide all the assays they need, and they don't want to pay for analytical chemistry services they don't currently use (or use infrequently). This report will focus on explaining how the current analytical capabilities and methods evolved to serve a variety of needs with a focus on why some analytes have multiple analytical techniques, and what determines the infrastructure for these analyses. This information will be useful in defining a roadmap for what future capability needs to look like.

Barr, Mary E. [Los Alamos National Laboratory; Farish, Thomas J. [Los Alamos National Laboratory

2012-05-16T23:59:59.000Z

294

ACOUSTIC SIGNATURES OF THE HELIUM CORE FLASH  

SciTech Connect

All evolved stars with masses M {approx}< 2 M{sub Sun} undergo an initiating off-center helium core flash in their M{sub c} Almost-Equal-To 0.48 M{sub Sun} He core as they ascend the red giant branch (RGB). This off-center flash is the first of a few successive helium shell subflashes that remove the core electron degeneracy over 2 Myr, converting the object into a He-burning star. Though characterized by Thomas over 40 years ago, this core flash phase has yet to be observationally probed. Using the Modules for Experiments in Stellar Astrophysics (MESA) code, we show that red giant asteroseismology enabled by space-based photometry (i.e., Kepler and CoRoT) can probe these stars during the flash. The rapid ({approx}< 10{sup 5} yr) contraction of the red giant envelope after the initiating flash dramatically improves the coupling of the p-modes to the core g-modes, making the detection of l = 1 mixed modes possible for these 2 Myr. This duration implies that 1 in 35 stars near the red clump in the H-R diagram will be in their core flash phase. During this time, the star has a g-mode period spacing of {Delta}P{sub g} Almost-Equal-To 70-100 s, lower than the {Delta}P{sub g} Almost-Equal-To 250 s of He-burning stars in the red clump, but higher than the RGB stars at the same luminosity. This places them in an underpopulated part of the large frequency spacing ({Delta}{nu}) versus {Delta}P{sub g} diagram that should ease their identification among the thousands of observed red giants.

Bildsten, Lars; Paxton, Bill; Moore, Kevin; Macias, Phillip J. [Kavli Institute for Theoretical Physics and Department of Physics Kohn Hall, University of California, Santa Barbara, CA 93106 (United States)

2012-01-15T23:59:59.000Z

295

SECA Core Technology Program Seal Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

SECA Core Technology Program Seal Workshop Workshop held at Hyatt Regency, San Antonio August 10, 2007 Workshop organized by: Dr. Ayyakkannu Manivannan, National Energy technology Laboratory Morgantown, WV Dr. Prabhakar Singh Pacific Northwest National Laboratory Richland, WA 1 2 Table of Content * Executive Summary * Meeting Agenda * Presentations * List of Attendees 3 Executive Summary SECA Core Technology Program (SECA CTP) led workshop on the topical area titled "SOFC seal: Technology, Challenges and Future Directions" was held on August 10, 2007 at Hyatt Regency, San Antonio, TX. The workshop was attended by scientists and engineers presently involved in the development, engineering, fabrication, and testing of

296

Apparatus for controlling nuclear core debris  

DOE Patents (OSTI)

Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.

Jones, Robert D. (Irwin, PA)

1978-01-01T23:59:59.000Z

297

Reactor Core Assembly - HFIR Technical Parameters | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home › Facilities › HFIR › Reactor Core Assembly Home › Facilities › HFIR › Reactor Core Assembly Reactor Core Assembly The reactor core assembly is contained in an 8-ft (2.44-m)-diameter pressure vessel located in a pool of water. The top of the pressure vessel is 17 ft (5.18 m) below the pool surface, and the reactor horizontal mid-plane is 27.5 ft (8.38 m) below the pool surface. The control plate drive mechanisms are located in a subpile room beneath the pressure vessel. These features provide the necessary shielding for working above the reactor core and greatly facilitate access to the pressure vessel, core, and reflector regions. In-core irradiation and experiment locations (cross section at horizontal midplane) Reactor core assembly Reactor core assembly: (1) in-core irradiation and experiment locations,

298

CN-Cycle Solar Neutrinos and Sun's Primordial Core Metalicity  

E-Print Network (OSTI)

We argue that it may be possible to exploit neutrinos from the CN cycle and pp chain to determine the primordial solar core abundances of C and N at an interesting level of precision. Such a measurement would allow a comparison of the Sun's deep interior composition with it surface, testing a key assumption of the standard solar model (SSM), a homogeneous zero-age Sun. It would also provide a cross-check on recent photospheric abundance determinations that have altered the once excellent agreement between the SSM and helioseismology. As further motivation, we discuss a speculative possibility in which photospheric abundance/helioseismology puzzle is connected with the solar-system metal differentiation that accompanied formation of the gaseous giant planets. The theoretical relationship between core C and N and the 13N and 15O solar neutrino fluxes can be made more precise (and more general) by making use of the Super-Kamiokande and SNO 8B neutrino capture rates, which calibrate the temperature of the solar core. The primordial C and N abundances can then be obtained from these neutrino fluxes and from a product of nuclear rates, with little residual solar model dependence. We describe some of the recent experimental advances that could allow this comparison to be made (theoretically) at about the 9% level, and note that this uncertainty may be reduced further due to ongoing work on the S-factor for 14N(p,gamma). The envisioned measurement might be possible in deep, large-volume detectors using organic scintillator, e.g., Borexino or SNO+

W. C. Haxton; A. M. Serenelli

2008-05-14T23:59:59.000Z

299

Active galactic nuclei and massive galaxy cores  

E-Print Network (OSTI)

(Context) Central active galactic nuclei (AGN) are supposed to play a key role in the evolution of their host galaxies. In particular, the dynamical and physical properties of the gas core must be affected by the injected energy. (Aims) Our aim is to study the effects of an AGN on the dark matter profile and on the central stellar light distribution in massive early type galaxies. (Methods) By performing self-consistent N-body simulations, we assume in our analysis that periodic bipolar outbursts from a central AGN can induce harmonic oscillatory motions on both sides of the gas core. (Results) Using realistic AGN properties, we find that the motions of the gas core, driven by such feedback processes, can flatten the dark matter and/or stellar profiles after 4-5 Gyr. These results are consistent with recent observational studies that suggest that most giant elliptical galaxies have cores or are "missing light" in their inner part. Since stars behave as a "collisionless" fluid similar to dark matter, the density profile both of stars and dark matter should be affected in a similar way, leading to an effective reduction in the central brightness.

Sebastien Peirani; Scott Kay; Joe Silk

2006-12-16T23:59:59.000Z

300

The Sinking of Warm-Core Rings  

Science Conference Proceedings (OSTI)

Intense cooling of a warm-core ring or warming of the fluids surrounding a ring can increase the density of that ring relative to the surrounding fluids. This increase in density can cause the ring to sink under the surrounding fluids. A simple ...

Rick Chapman; Doron Nof

1988-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

IS ACTIVE REGION CORE VARIABILITY AGE DEPENDENT?  

Science Conference Proceedings (OSTI)

The presence of both steady and transient loops in active region cores has been reported from soft X-ray and extreme-ultraviolet observations of the solar corona. The relationship between the different loop populations, however, remains an open question. We present an investigation of the short-term variability of loops in the core of two active regions in the context of their long-term evolution. We take advantage of the nearly full Sun observations of STEREO and Solar Dynamics Observatory spacecraft to track these active regions as they rotate around the Sun multiple times. We then diagnose the variability of the active region cores at several instances of their lifetime using EIS/Hinode spectral capabilities. We inspect a broad range of temperatures, including for the first time spatially and temporally resolved images of Ca XIV and Ca XV lines. We find that the active region cores become fainter and steadier with time. The significant emission measure at high temperatures that is not correlated with a comparable increase at low temperatures suggests that high-frequency heating is viable. The presence, however, during the early stages, of an enhanced emission measure in the ''hot'' (3.0-4.5 MK) and ''cool'' (0.6-0.9 MK) components suggests that low-frequency heating also plays a significant role. Our results explain why there have been recent studies supporting both heating scenarios.

Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

2012-12-10T23:59:59.000Z

302

Alternative Transport Architecture for Core ATM Networks  

Science Conference Proceedings (OSTI)

In order to remain competitive in an increasingly aggressive market-place, it is essential that network operators deliver cost-effective, resilient bulk transport. This will enable the unit costs of circuit delivery in the core network to be reduced, ...

P. A. Veitch

1998-07-01T23:59:59.000Z

303

On-chip COMA cache-coherence protocol for microgrids of microthreaded cores  

E-Print Network (OSTI)

This paper describes an on-chip COMA cache coherency protocol to support the microthread model of concurrent program composition. The model gives a sound basis for building multi-core computers as it captures concurrency, abstracts communication and identifies resources, such as processor groups explicitly and where mapping and scheduling is performed dynamically. The result is a model where binary compatibility is guaranteed over arbitrary numbers of cores and where backward binary compatibility is also assured. We present the design of a memory system with relaxed synchronisation and consistency constraints that matches the characteristics of this model. We exploit an on-chip COMA organisation, which provides a flexible and transparent partitioning between processors and memory. This paper describes the coherency protocol and consistency model and describes work undertaken on the validation of the model and the development of a co-simulator to the Microgrid CMP emulator. 1

Li Zhang; Chris Jesshope

2007-01-01T23:59:59.000Z

304

Carbon-Supported IrNi Core-Shell Nanoparticles: Synthesis Characterization and Catalytic Activity  

Science Conference Proceedings (OSTI)

We synthesized carbon-supported IrNi core-shell nanoparticles by chemical reduction and subsequent thermal annealing in H{sub 2}, and verified the formation of Ir shells on IrNi solid solution alloy cores by various experimental methods. The EXAFS analysis is consistent with the model wherein the IrNi nanoparticles are composed of two-layer Ir shells and IrNi alloy cores. In situ XAS revealed that the Ir shells completely protect Ni atoms in the cores from oxidation or dissolution in an acid electrolyte under elevated potentials. The formation of Ir shell during annealing due to thermal segregation is monitored by time-resolved synchrotron XRD measurements, coupled with Rietveld refinement analyses. The H{sub 2} oxidation activity of the IrNi nanoparticles was found to be higher than that of a commercial Pt/C catalyst. This is predominantly due to Ni-core-induced Ir shell contraction that makes the surface less reactive for IrOH formation, and the resulting more metallic Ir surface becomes more active for H{sub 2} oxidation. This new class of core-shell nanoparticles appears promising for application as hydrogen anode fuel cell electrocatalysts.

K Sasaki; K Kuttiyiel; L Barrio; D Su; A Frenkel; N Marinkovic; D Mahajan; R Adzic

2011-12-31T23:59:59.000Z

305

Unified nuclear core activity map reconstruction using heterogeneous instruments with data assimilation  

E-Print Network (OSTI)

Evaluating the neutronic state of the whole nuclear core is a very important topic that have strong implication for nuclear core management and for security monitoring. The core state is evaluated using measurements. Usually, part of the measurements are used, and only one kind of instruments are taken into account. However, the core state evaluation should be more accurate when more measurements are collected in the core. But using information from heterogeneous sources is at glance a difficult task. This difficulty can be overcome by Data Assimilation techniques. Such a method allows to combine in a coherent framework the information coming from model and the one coming from various type of observations. Beyond the inner advantage to use heterogeneous instruments, this leads to obtain a significant increasing of the quality of neutronic global state reconstruction with respect to individual use of measures. In order to present this approach, we will introduce here the basic principles of data assimilation focusing on BLUE (Best Unbiased Linear Estimation). Then we will present the configuration of the method within the nuclear core problematic. Finally, we will present the results obtained on nuclear measurement coming from various instruments.

Bertrand Bouriquet; Jean-Philippe Argaud; Patrick Erhard; Angélique Ponçot

2011-08-30T23:59:59.000Z

306

Coring unconsolidated sands in the Gulf of Mexico  

SciTech Connect

Diamant Board Stratabit has achieved coring recovery rates in soft, unconsolidated formations as high as 99 percent. These rates are achieved using conventional coring equipment in a special configuration to minimize frictional resistance to the core as it passes through the bit and core catcher assembly and enters the inner barrel. This paper describes DBS's coring experience with its Maximum Core Protection System, which has been used at depths from 3000 ft to below 20,000 ft and in deviated holes up to 57 degrees. In the Gulf of Mexico, the system cored over 5800 ft from Matagorda Island to Charlotte Harbor, with an overall recovery rate of 93 percent. In most applications, the hole size dictates the core barrel and core size. Through 9 5/8-in. casing with an 8 1/2-in. by 4-in. core bit, the 6 3/4-in. by 4-in. by 30-ft conventional core barrel will be used with a Fibertube inner barrel to replace the steel inner barrel, allowing a full 4-in. core to be cut. In smaller hole sizes, other equipment with the Maximum Core Protection System will be used. With a top drive unit or long Kelly, a 45-ft or 60-ft barrel may be used. Many times an unconsolidated formation will not support more than 30 ft of core, therefore 30-ft barrels are normally used.

Wilcox, J.

1988-09-01T23:59:59.000Z

307

PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle  

Science Conference Proceedings (OSTI)

This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade {sup 233}U-Thorium (U{sub 3}ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade {sup 233}U extracted from burnt PuThOX fuel was used to fabrication of U{sub 3}ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U{sub 3}ThOX mixed core, the well designed U{sub 3}ThOX FAs with 1.94 w/o fissile uranium (mainly {sup 233}U) were located on the periphery of core as a blanket region. U{sub 3}ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U{sub 3}ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U{sub 3}ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U{sub 3}ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U{sub 3}ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared with reference full UOX core. The fuel cycle analysis has shown that {sup 233}U mono-recycling with U{sub 3}ThOX fuel could save 13% of natural uranium resource compared with UOX once through fuel cycle, slightly more than that of Plutonium single-recycling with MOX fuel. If {sup 233}U multi-recycling with U{sub 3}ThOX fuel is implemented, more natural uranium resource would be saved. (authors)

Bi, G.; Liu, C.; Si, S. [Shanghai Nuclear Engineering Research and Design Inst., No. 29, Hongcao Road, Shanghai, 200233 (China)

2012-07-01T23:59:59.000Z

308

Models  

E-Print Network (OSTI)

• A very typical statistical/econometric model assumes something like yt ? i.i.d. f (y, x, ?) (1) where f (·) is a parametric family known up to parameters ?. • Parameter estimation: maximum likelihood ˆ?n = arg max ? ln f (Yt, Xt, ?) (2) t • What if the basic model assumptions of (1) are violated? The parametric family may not contain the true model f0(x, y) that generated the data; or the data may not be i.i.d.; etc. Misspecified

Stas Kolenikov; U Of Missouri; U Of Missouri

2007-01-01T23:59:59.000Z

309

ZPR-6 assembly 7 high {sup 240}Pu core experiments : a fast reactor core with mixed (Pu,U)-oxide fuel and a centeral high{sup 240}Pu zone.  

Science Conference Proceedings (OSTI)

ZPR-6 Assembly 7 (ZPR-6/7) encompasses a series of experiments performed at the ZPR-6 facility at Argonne National Laboratory in 1970 and 1971 as part of the Demonstration Reactor Benchmark Program (Reference 1). Assembly 7 simulated a large sodium-cooled LMFBR with mixed oxide fuel, depleted uranium radial and axial blankets, and a core H/D near unity. ZPR-6/7 was designed to test fast reactor physics data and methods, so configurations in the Assembly 7 program were as simple as possible in terms of geometry and composition. ZPR-6/7 had a very uniform core assembled from small plates of depleted uranium, sodium, iron oxide, U{sub 3}O{sub 8} and Pu-U-Mo alloy loaded into stainless steel drawers. The steel drawers were placed in square stainless steel tubes in the two halves of a split table machine. ZPR-6/7 had a simple, symmetric core unit cell whose neutronic characteristics were dominated by plutonium and {sup 238}U. The core was surrounded by thick radial and axial regions of depleted uranium to simulate radial and axial blankets and to isolate the core from the surrounding room. The ZPR-6/7 program encompassed 139 separate core loadings which include the initial approach to critical and all subsequent core loading changes required to perform specific experiments and measurements. In this context a loading refers to a particular configuration of fueled drawers, radial blanket drawers and experimental equipment (if present) in the matrix of steel tubes. Two principal core configurations were established. The uniform core (Loadings 1-84) had a relatively uniform core composition. The high {sup 240}Pu core (Loadings 85-139) was a variant on the uniform core. The plutonium in the Pu-U-Mo fuel plates in the uniform core contains 11% {sup 240}Pu. In the high {sup 240}Pu core, all Pu-U-Mo plates in the inner core region (central 61 matrix locations per half of the split table machine) were replaced by Pu-U-Mo plates containing 27% {sup 240}Pu in the plutonium component to construct a central core zone with a composition closer to that in an LMFBR core with high burnup. The high {sup 240}Pu configuration was constructed for two reasons. First, the composition of the high {sup 240}Pu zone more closely matched the composition of LMFBR cores anticipated in design work in 1970. Second, comparison of measurements in the ZPR-6/7 uniform core with corresponding measurements in the high {sup 240}Pu zone provided an assessment of some of the effects of long-term {sup 240}Pu buildup in LMFBR cores. The uniform core version of ZPR-6/7 is evaluated in ZPR-LMFR-EXP-001. This document only addresses measurements in the high {sup 240}Pu core version of ZPR-6/7. Many types of measurements were performed as part of the ZPR-6/7 program. Measurements of criticality, sodium void worth, control rod worth and reaction rate distributions in the high {sup 240}Pu core configuration are evaluated here. For each category of measurements, the uncertainties are evaluated, and benchmark model data are provided.

Lell, R. M.; Morman, J. A.; Schaefer, R.W.; McKnight, R.D.; Nuclear Engineering Division

2009-02-23T23:59:59.000Z

310

Gravitational Radiation from Standing Accretion Shock Instability in Core-Collapse Supernovae  

E-Print Network (OSTI)

We present the results of numerical experiments, in which we study how the asphericities induced by the growth of the standing accretion shock instability (SASI) produce the gravitational waveforms in the postbounce phase of core-collapse supernovae. To obtain the neutrino-driven explosions, we parameterize the neutrino fluxes emitted from the central protoneutron star and approximate the neutrino transfer by a light-bulb scheme. We find that the waveforms due to the anisotropic neutrino emissions show the monotonic increase with time, whose amplitudes are up to two order-of-magnitudes larger than the ones from the convective matter motions outside the protoneutron stars. We point out that the amplitudes begin to become larger when the growth of the SASI enters the nonlinear phase, in which the deformation of the shocks and the neutrino anisotropy become large. From the spectrum analysis of the waveforms, we find that the amplitudes from the neutrinos are dominant over the ones from the matter motions at the frequency below $\\sim 100$ Hz, which are suggested to be within the detection limits of the detectors in the next generation such as LCGT and the advanced LIGO for a supernova at 10 kpc. As a contribution to the gravitational wave background, we show that the amplitudes from this source could be larger at the frequency above $\\sim$ 1 Hz than the primordial gravitational wave backgrounds, but unfortunately, invisible to the proposed space-based detectors.

Kei Kotake; Naofumi Ohnishi; Shoichi Yamada

2006-07-11T23:59:59.000Z

311

Assessing Tracer Transport Algorithms and the Impact of Vertical Resolution in a Finite-Volume Dynamical Core  

Science Conference Proceedings (OSTI)

Modeling the transport of trace gases is an essential part of any atmospheric model. The tracer transport scheme in the Community Atmosphere Model finite-volume dynamical core (CAM-FV), which is part of the National Center for Atmospheric Research’...

James Kent; Christiane Jablonowski; Jared P. Whitehead; Richard B. Rood

2012-05-01T23:59:59.000Z

312

Assessment of CRBR core disruptive accident energetics  

Science Conference Proceedings (OSTI)

The results of an independent assessment of core disruptive accident energetics for the Clinch River Breeder Reactor are presented in this document. This assessment was performed for the Nuclear Regulatory Commission under the direction of the CRBR Program Office within the Office of Nuclear Reactor Regulation. It considered in detail the accident behavior for three accident initiators that are representative of three different classes of events; unprotected loss of flow, unprotected reactivity insertion, and protected loss of heat sink. The primary system's energetics accommodation capability was realistically, yet conservatively, determined in terms of core events. This accommodation capability was found to be equivalent to an isentropic work potential for expansion to one atmosphere of 2550 MJ or a ramp rate of about 200 $/s applied to a classical two-phase disassembly.

Theofanous, T.G.; Bell, C.R.

1984-03-01T23:59:59.000Z

313

Mox fuel arrangement for nuclear core  

DOE Patents (OSTI)

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion. characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

2001-05-15T23:59:59.000Z

314

MOX fuel arrangement for nuclear core  

DOE Patents (OSTI)

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly. 38 figs.

Kantrowitz, M.L.; Rosenstein, R.G.

1998-10-13T23:59:59.000Z

315

MOX fuel arrangement for nuclear core  

DOE Patents (OSTI)

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

1998-01-01T23:59:59.000Z

316

MOX fuel arrangement for nuclear core  

DOE Patents (OSTI)

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

2001-07-17T23:59:59.000Z

317

Next Generation CANDU Core Physics Innovations  

SciTech Connect

NG CANDU is the 'Next Generation' CANDU{sup R} reactor, aimed at producing electrical power at a capital cost significantly less than that of the current reactor designs. A key element of cost reduction is the use of H{sub 2}O as coolant and Slightly Enriched Uranium fuel in a tight D{sub 2}O-moderated lattice. The innovations in the CANDU core physics result in substantial improvements in economics as well as significant enhancements in reactor licensability, controllability, and waste reduction. The full-core coolant-void reactivity in NG CANDU is about -3 mk. Power coefficient is substantially negative. Fuel burnup is about three times the current natural-uranium burnup. (authors)

Chan, P.S.W.; Hopwood, J.M.; Love, J.W. [Atomic Energy of Canada Ltd., Ontario (Canada)

2002-07-01T23:59:59.000Z

318

PRESSURIZED WATER REACTOR CORE WITH PLUTONIUM BURNUP  

DOE Patents (OSTI)

A pressurized water reactor is described having a core containing Pu/sup 240/ in which the effective microscopic neutronabsorption cross section of Pu/sup 240/ in unconverted condition decreases as the time of operation of the reactor increases, in order to compensate for loss of reactivity resulting from fission product buildup during reactor operation. This means serves to improve the efficiency of the reactor operation by reducing power losses resulting from control rods and burnable poisons. (AEC)

Puechl, K.H.

1963-09-24T23:59:59.000Z

319

Nuclear reactor core and fuel element therefor  

SciTech Connect

This patent describes a nuclear reactor core. This core consists of vertical columns of disengageable fuel elements stacked one atop another. These columns are arranged in side-by-side relationship to form a substantially continuous horizontal array. Each of the fuel elements include a block of refractory material having relatively good thermal conductivity and neutron moderating characteristics. The block has a pair of parallel flat top and bottom end faces and sides which are substantially prependicular to the end faces. The sides of each block is aligned vertically within a vertical column, with the sides of vertically adjacent blocks. Each of the blocks contains fuel chambers, including outer rows containing only fuel chambers along the sides of the block have nuclear fuel material disposed in them. The blocks also contain vertical coolant holes which are located inside the fuel chambers in the outer rows and the fuel chambers which are not located in the outer rows with the fuel chambers and which extend axially completely through from end face to end face and form continuous vertical intracolumn coolant passageways in the reactor core. The blocks have vertical grooves extending along the sides of the blocks form interblock channels which align in groups to form continuous vertical intercolumn coolant passsageways in the reactor core. The blocks are in the form of a regular hexagonal prism with each side of the block having vertical gooves defining one half of one of the coolant interblock channels, six corner edges on the blocks have vertical groves defining one-third of an interblock channel, the vertical sides of the blocks defining planar vertical surfaces.

Fortescue, P.

1986-02-11T23:59:59.000Z

320

NEUTRONIC REACTOR OPERATIONAL METHOD AND CORE SYSTEM  

DOE Patents (OSTI)

Homogeneous neutronic reactor systems are described wherein an aqueous fuel solution is continuously circulated through a spherical core tank. The pumped fuel solution-is injected tangentially into the hollow spherical interior, thereby maintaining vigorous rotation of the solution within the tank in the form of a vortex; gaseous radiolytic decomposition products concentrate within the axial vortex cavity. The evolved gas is continuously discharged through a gas- outlet port registering with an extremity of the vortex cavity. and the solution stream is discharged through an annular liquid outlet port concentrically encircling the gas outlet by virtue of which the vortex and its cavity are maintained precisely axially aligned with the gas outlet. A primary heat exchanger extracts useful heat from the hot effluent fuel solution before its recirculation into the core tank. Hollow cylinders and other alternative core- tank configurations defining geometric volumes of revolution about a principal axis are also covered. AEC's Homogeneous Reactor Experiment No. 1 is a preferred embodiment.

Winters, C.E.; Graham, C.B.; Culver, J.S.; Wilson, R.H.

1960-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Use of Solid Hydride Fuel for Improved long-Life LWR Core Designs  

Science Conference Proceedings (OSTI)

The primary objective of this project was to assess the feasibility of improving the performance of PWR and BWR cores by using solid hydride fuels instead of the commonly used oxide fuel. The primary measure of performance considered is the bus-bar cost of electricity (COE). Additional performance measures considered are safety, fuel bundle design simplicity – in particular for BWR’s, and plutonium incineration capability. It was found that hydride fuel can safely operate in PWR’s and BWR’s without restricting the linear heat generation rate of these reactors relative to that attainable with oxide fuel. A couple of promising applications of hydride fuel in PWR’s and BWR’s were identified: (1) Eliminating dedicated water moderator volumes in BWR cores thus enabling to significantly increase the cooled fuel rods surface area as well as the coolant flow cross section area in a given volume fuel bundle while significantly reducing the heterogeneity of BWR fuel bundles thus achieving flatter pin-by-pin power distribution. The net result is a possibility to significantly increase the core power density – on the order of 30% and, possibly, more, while greatly simplifying the fuel bundle design. Implementation of the above modifications is, though, not straightforward; it requires a design of completely different control system that could probably be implemented only in newly designed plants. It also requires increasing the coolant pressure drop across the core. (2) Recycling plutonium in PWR’s more effectively than is possible with oxide fuel by virtue of a couple of unique features of hydride fuel – reduced inventory of U-238 and increased inventory of hydrogen. As a result, the hydride fuelled core achieves nearly double the average discharge burnup and the fraction of the loaded Pu it incinerates in one pass is double that of the MOX fuel. The fissile fraction of the Pu in the discharged hydride fuel is only ~2/3 that of the MOX fuel and the discharged hydride fuel is more proliferation resistant. Preliminary feasibility assessment indicates that by replacing some of the ZrH1.6 by ThH2 it will be possible to further improve the plutonium incineration capability of PWR’s. Other possibly promising applications of hydride fuel were identified but not evaluated in this work. A number of promising oxide fueled PWR core designs were also found as spin-offs of this study: (1) The optimal oxide fueled PWR core design features smaller fuel rod diameter of D=6.5 mm and a larger pitch-to-diameter ratio of P/D=1.39 than presently practiced by industry – 9.5mm and 1.326. This optimal design can provide a 30% increase in the power density and a 24% reduction in the cost of electricity (COE) provided the PWR could be designed to have the coolant pressure drop across the core increased from the reference 29 psia to 60 psia. (2) Using wire wrapped oxide fuel rods in hexagonal fuel assemblies it is possible to design PWR cores to operate at 54% higher power density than the reference PWR design that uses grid spacers and a square lattice, provided 60 psia coolant pressure drop across the core could be accommodated. Uprating existing PWR’s to use such cores could result in 40% reduction in the COE. The optimal lattice geometry is D = 8.08 mm and P/D = 1.41. The most notable advantages of wire wraps over grid spacers are their significant lower pressure drop, higher critical heat flux and improved vibrations characteristics.

Greenspan, E

2006-04-30T23:59:59.000Z

322

A Preferred Scale for Warm-Core Instability in a Nonconvective Moist Basic State  

Science Conference Proceedings (OSTI)

The existence, scale, and growth rates of subsynoptic-scale warm-core circulations are investigated with a simple parameterization for latent heat release in a nonconvective basic state using a linear two-layer shallow-water model. For a range of ...

Brian H. Kahn; Douglas M. Sinton

2008-09-01T23:59:59.000Z

323

Using metadata schema registry as a core function to enhance usability and reusability of metadata schemas  

Science Conference Proceedings (OSTI)

Metadata schema registries have great potential to enhance usability and reusability of metadata schemas. Application profiles are a key concept for Dublin Core, and have a crucial role in promoting reuse of metadata schemas. This paper discusses basic ... Keywords: application profile, metadata schema interoperability, metadata schema model, metadata schema registry, reusability of metadata schemas

Mitsuharu Nagamori; Shigeo Sugimoto

2007-08-01T23:59:59.000Z

324

Simulant-material experimental investigation of flow dynamics in the CRBR Upper-Core Structure  

Science Conference Proceedings (OSTI)

The results of a simulant-material experimental investigation of flow dynamics in the Clinch River Breeder Reactor (CRBR) Upper Core Structure are described. The methodology used to design the experimental apparatus and select test conditions is detailed. Numerous comparisons between experimental data and SIMMER-II Code calculations are presented with both advantages and limitations of the SIMMER modeling features identified.

Wilhelm, D.; Starkovich, V.S.; Chapyak, E.J.

1982-09-01T23:59:59.000Z

325

On the dynamics of edge-core coupling T. S. Hahma  

E-Print Network (OSTI)

toroidal code Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, Science 281, 1835 1998 and its of the edge-core boundary is both uncertain and dynamic and usually posited in an ad hoc manner in trans- port" used in modeling codes. II. GYROKINETIC SIMULATION OF TURBULENCE SPREADING FROM EDGE In this paper

Lin, Zhihong

326

A Two-Way Nested Global-Regional Dynamical Core on the Cubed-Sphere Grid  

Science Conference Proceedings (OSTI)

A nested-grid model is constructed using the Geophysical Fluid Dynamics Laboratory finite-volume dynamical core on the cubed sphere. The use of a global grid avoids the need for externally imposed lateral boundary conditions, and the use of the ...

Lucas M. Harris; Shian-Jiann Lin

2013-01-01T23:59:59.000Z

327

Two Dynamical Core Formulation Flaws Exposed by a Baroclinic Instability Test Case  

Science Conference Proceedings (OSTI)

Two flaws in the semi-Lagrangian algorithm originally implemented as an optional dynamical core in the NCAR Community Atmosphere Model (CAM3.1) are exposed by steady-state and baroclinic instability test cases. Remedies are demonstrated and have ...

David L. Williamson; Jerry G. Olson; Christiane Jablonowski

2009-02-01T23:59:59.000Z

328

Extended core for motor/generator - Energy Innovation Portal  

An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses ...

329

Armored spring-core superconducting cable and method of construction  

DOE Patents (OSTI)

An armored spring-core superconducting cable (12) is provided. The armored spring-core superconducting cable (12) may include a spring-core (20), at least one superconducting strand (24) wound onto the spring-core (20), and an armored shell (22) that encases the superconducting strands (24). The spring-core (20) is generally a perforated tube that allows purge gases and cryogenic liquids to be circulated through the armored superconducting cable (12), as well as managing the internal stresses within the armored spring-core superconducting cable (12). The armored shell (22) manages the external stresses of the armored spring-core superconducting cable (12) to protect the fragile superconducting strands (24). The armored spring-core superconducting cable (12) may also include a conductive jacket (34) formed outwardly of the armored shell (22).

McIntyre, Peter M. (611 Montclair, College Station, TX 77840); Soika, Rainer H. (1 Hensel, #X4C, College Station, TX 77840)

2002-01-01T23:59:59.000Z

330

Real-Time Out-of-Core Rendering  

E-Print Network (OSTI)

Hierarchical levels of details (HLODs) have proven to be an efficient way to visualize complex environments and models even in an out-of-core system. Large objects are partitioned into a spatial hierarchy and for each node a level of detail is generated for efficient view-dependent rendering. To ensure correct matching between adjacent nodes in the hierarchy care has to be taken to prevent cracks along the cuts. This either leads to severe simplification constraints at the cuts and thus to a significantly higher number of triangles or the need for a costly runtime stitching of these nodes. In this paper we present an out-of-core visualization algorithm that overcomes this problem by filling the cracks generated by the simplification algorithm with appropriately shaded Fat Borders. Furthermore, several minor yet important improvements of previous approaches are made. This way we come up with a simple nevertheless efficient viewdependent rendering technique which allows for the natural incorporation of state-of-theart culling, simplification, compression and prefetching techniques leading to real-time rendering performance of the overall system. Several examples demonstrate the efficiency of our approach.

Michael Guthe; Pavel Borodin; Reinhard Klein

2004-01-01T23:59:59.000Z

331

Efficient view-dependent out-of-core visualization  

E-Print Network (OSTI)

Hierarchical levels of details (HLODs) have proven to be an efficient way to visualize complex environments and models even in an out-of-core system. Large objects are partitioned into a spatial hierarchy and on each node a level of detail is generated for efficient view-dependent rendering. To ensure correct matching between adjacent nodes in the hierarchy care has to be taken to prevent cracks along the cuts. This either leads to severe simplification constraints at the cuts and thus to a significantly higher number of triangles or the need for a costly runtime stitching of these nodes. In this paper we present an out-of-core visualization algorithm that overcomes this problem by filling the cracks generated by the simplification algorithm with appropriately shaded fat borders. Furthermore, several minor yet important improvements of previous approaches are made. This way we come up with a simple nevertheless efficient view-dependent rendering technique which allows for the natural incorporation of state-of-the-art culling, simplification, compression and prefetching techniques. 1.

Michael Guthe; Pavel Borodin; Reinhard Klein

2003-01-01T23:59:59.000Z

332

Heterogeneous integration to simplify many-core architecture simulations  

Science Conference Proceedings (OSTI)

The EU Apple-CORE project has explored the design and implementation of novel general-purpose many-core chips featuring hardware microthreading and hardware support for concurrency management. The introduction of the latter in the cores ISA has required ... Keywords: hardware multithreading, hardware/software co-design, many-core architecture, simulation, system design, system evaluation, system-on-chip design, vertical approach

Raphael Poss; Mike Lankamp; M. Irfan Uddin; Jaroslav Sýkora; Leoš Kafka

2012-01-01T23:59:59.000Z

333

Core Analysis At International Geothermal Area, Indonesia (Boitnott...  

Open Energy Info (EERE)

Indonesia (Boitnott, 2003) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Core Analysis Activity Date Usefulness not indicated...

334

THERMAL PROPERTIES OF GABLE MOUNTAIN BASALT CORES HANFORD NUCLEAR RESERVATION  

E-Print Network (OSTI)

1974. 7. Atlantic Richfield Hanford Company, Research andGABLE MOUNTAIN BASALT CORES HANFORD NUCLEAR RESERVATION L.

Martinez-Baez, L.F.

2011-01-01T23:59:59.000Z

335

Fabrication of Highly Luminescent Graded Core/Shell ...  

Paul Alivisatos, Erik Scher, and Liberato Manna have grown graded shells on CdSe core nanorods. Traditional techniques have ...

336

Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory  

Science Conference Proceedings (OSTI)

Technical Paper / Advances in Nuclear Fuel Management - Core Physics and Fuel Management Methods, Analytical Tools, and Benchmarks

Hany S. Abdel-Khalik; Paul J. Turinsky

337

Star Clusters with Primordial Binaries: II. Dynamical Evolution of Models in a Tidal Field  

E-Print Network (OSTI)

[abridged] We extend our analysis of the dynamical evolution of simple star cluster models, in order to provide comparison standards that will aid in interpreting the results of more complex realistic simulations. We augment our previous primordial-binary simulations by introducing a tidal field, and starting with King models of different central concentrations. We present the results of N-body calculations of the evolution of equal-mass models, starting with primordial binary fractions of 0 - 100 %, and N values from 512 to 16384. We also attempt to extrapolate some of our results to the larger number of particles that are necessary to model globular clusters. We characterize the steady-state `deuterium main sequence' phase in which primordial binaries are depleted in the core in the process of `gravitationally burning'. In this phase we find that the ratio of the core to half-mass radius, r_c/r_h, is similar to that measured for isolated systems. In addition to the generation of energy due to hardening and depletion of the primordial binary population, the overall evolution of the star clusters is driven by a competing process: the tidal disruption of the system. We find that the depletion of primordial binaries before tidal dissolution of the system is possible only if the initial number is below 0.05 N, in the case of a King model with W_0=7 and N=4096 (which is one of our longest living models). We compare our findings, obtained by means of direct N-body simulations but scaled, where possible, to larger N, with similar studies carried out by means of Monte Carlo methods.

M. Trenti; D. C. Heggie; P. Hut

2006-02-17T23:59:59.000Z

338

Precursors to potential severe core damage accidents: 1992, A status report. Volume 17, Main report and Appendix A  

SciTech Connect

Twenty-seven operational events with conditional probabilities of subsequent severe core damage of 1.0 {times} 10E-06 or higher occurring at commercial light-water reactors during 1992 are considered to be precursors to potential core damage. These are described along with associated significance estimates, categorization, and subsequent analyses. The report discusses (1) the general rationale for this study, (2) the selection and documentation of events as precursors, (3) the estimation and use of conditional probabilities of subsequent severe core damage to rank precursor events, and (4) the plant models used in the analysis process.

Cox, D.F.; Cletcher, J.W.; Copinger, D.A.; Cross-Dial, A.E.; Morris, R.H.; Vanden Heuvel, L.N. [Oak Ridge National Lab., TN (United States); Dolan, B.W.; Jansen, J.M.; Minarick, J.W. [Science Applications International Corp., Oak Ridge, TN (United States); Lau, W.; Salyer, W.D. [Reliability and Performance Associates (United States)

1993-12-01T23:59:59.000Z

339

Comparison of a NuScale SMR conceptual core design using CASMO5/simulate5 and MCNP5  

Science Conference Proceedings (OSTI)

A key issue during the initial start-ups of new Small Modular Reactors (SMRs) is the lack of operational data for reactor model validation. To help better understand the accuracy of the reactor analysis codes CASMO5 and SIMULATE5, higher order comparisons to MCNP5 have been performed. These comparisons are for an initial core conceptual design of the NuScale reactor. The data have been evaluated at Hot Zero Power (HZP) conditions. Comparisons of core reactivity, fuel temperature coefficient (FTC), and moderator temperature coefficients (MTC) have been performed. Comparison results show good agreement between CASMO5/SIMULATE5 and MCNP5 for the conceptual initial core design. (authors)

Haugh, B. [Studsvik Scandpower Inc., 1015 Ashes Drive, Wilmington, NC 28405 (United States); Mohamed, A. [NuScale Power Inc., 1100 NE Circle Blvd, Corvallis, OR 97330 (United States)

2012-07-01T23:59:59.000Z

340

Analysis of dynamic power management on multi-core processors  

Science Conference Proceedings (OSTI)

Power management of multi-core processors is extremely important because it allows power/energy savings when all cores are not used. OS directed power management according to ACPI (Advanced Power and Configurations Interface) specifications is the common ... Keywords: ACPI, multi-core, operating system, performance, power management

W. Lloyd Bircher; Lizy K. John

2008-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Using `core documents' for the representation of clusters and topics  

Science Conference Proceedings (OSTI)

The notion of `core documents', first introduced in the context of co-citation analysis and later re-introduced for bibliographic coupling, refers to the representation of the core of a publication set according to given criteria. In the present study, ... Keywords: Bibliographic coupling, Cluster analysis, Core documents, Hybrid clustering, Text mining

Wolfgang Glänzel; Bart Thijs

2011-07-01T23:59:59.000Z

342

Using `core documents' for detecting and labelling new emerging topics  

Science Conference Proceedings (OSTI)

The notion of `core documents', first introduced in the context of co-citation analysis and later re-introduced for bibliographic coupling and extended to hybrid approaches, refers to the representation of the core of a document set according to given ... Keywords: Bibliographic coupling, Core documents, Emerging topics, Hybrid clustering, Text mining

Wolfgang Glänzel; Bart Thijs

2012-05-01T23:59:59.000Z

343

The 48-core SCC Processor: the Programmer's View  

Science Conference Proceedings (OSTI)

The number of cores integrated onto a single die is expected to climb steadily in the foreseeable future. This move to many-core chips is driven by a need to optimize performance per watt. How best to connect these cores and how to program the resulting ...

Timothy G. Mattson; Michael Riepen; Thomas Lehnig; Paul Brett; Werner Haas; Patrick Kennedy; Jason Howard; Sriram Vangal; Nitin Borkar; Greg Ruhl; Saurabh Dighe

2010-11-01T23:59:59.000Z

344

Kirkpatrick's Learning Evaluation Model  

Energy.gov (U.S. Department of Energy (DOE))

One of the core principles of training evaluation is the model based on four sequential levels that was developed by Donald Kirkpatrick. The levels, 1) Reaction, 2) Learning, 3) Behavior, and 4)...

345

Gas-like state of $?$ clusters around $^{16}$O core in $^{24}$Mg  

E-Print Network (OSTI)

We have studied gas-like states of $\\alpha$ clusters around an $^{16}$O core in $^{24}$Mg based on a microscopic $\\alpha$-cluster model. This study was performed by introducing a Monte Carlo technique for the description of the THSR (Tohsaki Horiuchi Schuck R\\"{o}pke) wave function, and the coupling effect to other low-lying cluster states was taken into account. A large isoscalar monopole ($E0$) transition strength from the ground to the gas-like state is discussed. The gas-like state of two $\\alpha$ clusters in $^{24}$Mg around the $^{16}$O core appears slightly below the 2$\\alpha$-threshold e

T. Ichikawa; N. Itagaki; T. Kawabata; Tz. Kokalova; W. von Oertzen

2011-02-08T23:59:59.000Z

346

Dislocation cores and hardness polarity of 4H-SiC  

DOE Green Energy (OSTI)

The hardness of opposite basal faces of 4H-SiC single crystals has been measured in the temperature range 25--1,200 C. A strong hardness anisotropy between the silicon-terminated (0001) and carbon-terminated (000{bar 1}) faces of this polar crystal has been found. Transmission electron microscopy investigation of the dislocations in the plastic zone of the 1,200 C indentations shows that they lie predominantly on the basal planes parallel to the indented face, and the extra-half planes of the nonscrew dislocations originate from the indented face. It is also found that, when the (0001) Si-terminated face is indented, the dislocations are either widely dissociated, with the width of the stacking fault ribbon much larger than the equilibrium value, or else they are single leading partials, with the corresponding trailing partials absent. In this case, all the leading partials are found to have a silicon core. On the other hand, the dislocations in the plastic zone of the carbon-terminated face are in the form of dissociated dislocations, with the width of the associated stacking fault ribbons appreciably less than the equilibrium value. Moreover, the leading partials of these dissociated dislocations have a carbon core. The results indicate that the hardness of the polar basal faces of 4H-SiC at elevated temperatures is partly determined by the nature of the dislocation cores nucleated by the indentation process. It is argued that this is due to the influence of the core on the generation and glide of the leading partial dislocations.

Ning, X.J.; Huvey, N.; Pirouz, P. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Materials science and Engineering

1997-07-01T23:59:59.000Z

347

Process-Dependent Properties in Colloidally Synthesized “Giant” Core/Shell Nanocrystal Quantum Dots  

SciTech Connect

Due to their characteristic bright and stable photoluminescence, semiconductor nanocrystal quantum dots (NQDs) have attracted much interest as efficient light emitters for applications from single-particle tracking to solid-state lighting. Despite their numerous enabling traits, however, NQD optical properties are frustratingly sensitive to their chemical environment, exhibit fluorescence intermittency ('blinking'), and are susceptible to Auger recombination, an efficient nonradiative decay process. Previously, we showed for the first time that colloidal CdSe/CdS core/shell nanocrystal quantum dots (NQDs) comprising ultrathick shells (number of shell monolayers, n, > 10) grown by protracted successive ionic layer adsorption and reaction (SILAR) leads to remarkable photostability and significantly suppressed blinking behavior as a function of increasing shell thickness. We have also shown that these so-called 'giant' NQDs (g-NQDs) afford nearly complete suppression of non-radiative Auger recombination, revealed in our studies as long biexciton lifetimes and efficient multiexciton emission. The unique behavior of this core/shell system prompted us to assess correlations between specific physicochemical properties - beyond shell thickness - and functionality. Here, we demonstrate the ability of particle shape/faceting, crystalline phase, and core size to determine ensemble and single-particle optical properties (quantum yield/brightness, blinking, radiative lifetimes). Significantly, we show how reaction process parameters (surface-stabilizing ligands, ligand:NQD ratio, choice of 'inert' solvent, and modifications to the SILAR method itself) can be tuned to modify these function-dictating NQD physical properties, ultimately leading to an optimized synthetic approach that results in the complete suppression of blinking. We find that the resulting 'guiding principles' can be applied to other NQD compositions, allowing us to achieve non-blinking behavior in the near-infrared. Lastly, in addition to realizing novel light-emission properties by refining nanoscale architectures at the single-NQD level, we also investigate collective properties by assembling our core/shell NQDs into larger scale arrays.

Hollingsworth, Jennifer A. [Los Alamos National Laboratory; Ghosh, Yagnaseni [Los Alamos National Laboratory; Dennis, Allison M. [Los Alamos National Laboratory; Mangum, Benjamin D. [Los Alamos National Laboratory; Park, Young-Shin [Los Alamos National Laboratory; Kundu, Janardan [Los Alamos National Laboratory; Htoon, Han [Los Alamos National Laboratory

2012-06-07T23:59:59.000Z

348

Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

ALE-AMR ALE-AMR code Wangyi Liu, John Bernard, Alex Friedman, Nathan Masters, Aaron Fisher, Velemir Mlaker, Alice Koniges, David Eder June 4, 2011 Abstract In this paper we describe an implementation of a single-fluid inter- face model in the ALE-AMR code to simulate surface tension effects. The model does not require explicit information on the physical state of the two phases. The only change to the existing fluid equations is an additional term in the stress tensor. We show results of applying the model to an expanding Al droplet surrounded by an Al vapor, where additional droplets are created. 1 Introduction The Neutralized Drift Compression Experiment II (NDCX II) is an induction accelerator planned for initial commissioning in 2012. The final design calls for a 3 MeV, Li+ ion beam, delivered in a bunch with characteristic pulse duration of 1 ns, and transverse dimension of order 1 mm. The

349

CN Neutrinos and the Sun's Primordial Core Metalicity  

E-Print Network (OSTI)

I discuss the use of neutrinos from the CN cycle and pp chain to constrain the primordial solar core abundances of C and N at an interesting level of precision. A comparison of the Sun's deep interior and surface compositions would test a key assumption of the standard solar model (SSM), a homogeneous zero-age Sun. It would also provide a cross-check on recent photospheric abundance determinations that have altered the once excellent agreement between the SSM and helioseismology. Motivated by the discrepancy between convective-zone abundances and helioseismology, I discuss the possibility that a two-zone Sun could emerge from late-stage metal differentiation in the solar nebula connected with formation of the gaseous giant planets.

Haxton, W C

2008-01-01T23:59:59.000Z

350

Core transport studies in fusion devices  

E-Print Network (OSTI)

The turbulence in magnetically confined fusion plasmas has important and non-trivial effects on the quality of the energy confinement. These effects are hard to make a quantitative assessment of analytically. The problem investigated in this article is the transport of energy and particles, in particular impurities, in a Tokamak plasma. Impurities from the walls of the plasma vessel cause energy losses if they reach the plasma core. It is therefore important to understand the transport mechanisms to prevent impurity accumulation and minimize losses. This is an area of research where turbulence plays a major role and is intimately associated with the performance of future fusion reactors, such as ITER.

Strand, Pär; Nordman, Hans

2010-01-01T23:59:59.000Z

351

Nuclear Physics in Core-Collapse Supernovae  

SciTech Connect

Core-collapse and the launch of a supernova explosion form a very short episode of few seconds in the evolution of a massive star, during which an enormous gravitational energy of several times 1053 erg is transformed into observable neutrino-, kinetic-, and electromagnetic radiation energy. We emphasize the wide range of matter conditions that prevail in a supernova event and sort the conditions into distinct regimes in the density and entropy phase diagram to briefly discuss their different impact on the neutrino signal, gravitational wave emission, and ejecta.

Liebendoerfer, Matthias [Universitat Basel, Switzerland; Fischer, T. [University of Basel; Froelich, C. [University of Chicago; Hix, William Raphael [ORNL; Langanke, Karlheinz [Gesellschaft fur Schwerionenforschung (GSI), Germany; Martinez-Pinedo, Gabriel [Gesellschaft fur Schwerionenforschung (GSI), Germany; Mezzacappa, Anthony [ORNL; Scheidegger, Simon [Universitat Basel, Switzerland; Thielemann, Friedrich-Karl W. [Universitat Basel, Switzerland; Whitehouse, Stuart [Universitat Basel, Switzerland

2008-01-01T23:59:59.000Z

352

Nuclear Physics in Core-Collapse Supernovae  

SciTech Connect

Core collapse and the launch of a supernova explosion form a very short episode of a few seconds in the evolution of a massive star, during which an enormous gravitational energy of several times 10^{51} erg is transformed into observable neutrino, kinetic, and optical energy. We emphasize the wide range of matter conditions that prevail in a supernova event and sort the conditions into distinct regimes in the density and entropy phase diagram to briefly discuss their different impact on the neutrino signal, gravitational wave emission, and ejecta.

Liebendoerfer, M. [University of Basel; Fischer, T. [University of Basel; Froelich, C. [University of Chicago, Chicago, IL; Hix, William Raphael [ORNL; Langanke, Karlheinz [Gesellschaft f?r Schwerionenforschung (GSI), Germany; Mart?nez-Pinedo, Gabriel [Gesellschaft f?r Schwerionenforschung (GSI), Germany; Mezzacappa, Anthony [ORNL; Scheidegger, Simon [Universit?t Basel, Switzerland; Thielemann, F.-K. [University of Basel; Whitehouse, S. [University of Basel

2008-10-01T23:59:59.000Z

353

Hunton Group core workshop and field trip  

SciTech Connect

The Late Ordovician-Silurian-Devonian Hunton Group is a moderately thick sequence of shallow-marine carbonates deposited on the south edge of the North American craton. This rock unit is a major target for petroleum exploration and reservoir development in the southern Midcontinent. The workshop described here was held to display cores, outcrop samples, and other reservoir-characterization studies of the Hunton Group and equivalent strata throughout the region. A field trip was organized to complement the workshop by allowing examination of excellent outcrops of the Hunton Group of the Arbuckle Mountains.

Johnson, K.S. [ed.

1993-12-31T23:59:59.000Z

354

Hydrogen issue in Core Collapse Supernovae  

E-Print Network (OSTI)

We discuss results of analyzing a time series of selected photospheric-optical spectra of core collapse supernovae (CCSNe). This is accomplished by means of the parameterized supernovae synthetic spectrum (SSp) code ``SYNOW''. Special attention is addressed to traces of hydrogen at early phases, especially for the stripped-envelope SNe (i.e. SNe Ib-c). A thin low mass hydrogen layer extending to very high ejection velocities above the helium shell, is found to be the most likely scenario for Type Ib SNe.

A. Elmhamdi; I. J. Danziger; D. Branch; B. Leibundgut

2006-11-06T23:59:59.000Z

355

CoreFlow Scientific Solutions Ltd | Open Energy Information  

Open Energy Info (EERE)

CoreFlow Scientific Solutions Ltd CoreFlow Scientific Solutions Ltd Jump to: navigation, search Name CoreFlow Scientific Solutions Ltd Place Yoqneam, Israel Zip 20692 Sector Solar Product Israel-based manufacturer of non-contact substrate processing, handling, and testing equipments for Flat Panel Display (FPD), semiconductor, and solar industries. References CoreFlow Scientific Solutions Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CoreFlow Scientific Solutions Ltd is a company located in Yoqneam, Israel . References ↑ "CoreFlow Scientific Solutions Ltd" Retrieved from "http://en.openei.org/w/index.php?title=CoreFlow_Scientific_Solutions_Ltd&oldid=343913" Categories:

356

Aggregation Kinetics of Metal Chalcogenide Nanocrystals: Generation of Transparent CdSe(ZnS) Core(Shell) Gels  

Science Conference Proceedings (OSTI)

Transparent CdSe (ZnS) core (shell) sol–gel materials have potential uses in optoelectronic applications such as light-emitting diodes (LEDs) due to their strong luminescence properties and the potential for charge transport through the prewired nanocrystal (NC) network of the gel. However, typical syntheses of metal chalcogenide gels yield materials with poor transparency. In this work, the mechanism and kinetics of aggregation of two sizes of CdSe (ZnS) core (shell) NCs, initiated by removal of surface thiolate ligands using tetranitromethane (TNM) as an oxidant, were studied by means of time-resolved dynamic light scattering (TRDLS); the characteristics of the resultant gels were probed by optical absorption, transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). At low concentrations of NCs (ca. 4 × 10{sup –7} M), the smaller, green-emitting NCs aggregate faster than the larger, orange-emitting NCs, for a specific oxidant concentration. The kinetics of aggregation have a significant impact on the macroscopic properties (i.e., transparency) of the resultant gels, with the transparency of the gels decreasing with the increase of oxidant concentration due the formation of larger clusters at the gel point and a shift away from a reaction-limited cluster-aggregation (RLCA) mechanism. This is further confirmed by analyses of the gel structures by SAXS and TEM. Likewise, the larger orange-emitting particles also produce larger aggregates at the gel point, leading to lower transparency. The ability to control the transparency of chalcogenide gels will enable their properties to be tuned in order to address application-specific needs in optoelectronics.

Korala, Lasantha; Brock, Stephanie

2012-01-01T23:59:59.000Z

357

Caldicellulosiruptor Core and Pangenomes Reveal Determinants for  

Science Conference Proceedings (OSTI)

Extremely thermophilic bacteria of the genus Caldicellulosiruptor utilize carbohydrate components of plant cell walls, including cellulose and hemicellulose, facilitated by a diverse set of glycoside hydrolases (GHs). From a biofuel perspective, this capability is crucial for deconstruction of plant biomass into fermentable sugars. While all species from the genus grow on xylan and acidpretreated switchgrass, growth on crystalline cellulose is variable. The basis for this variability was examined using microbiological, genomic, and proteomic analyses of eight globally diverse Caldicellulosiruptor species. The open Caldicellulosiruptor pangenome (4,009 open reading frames [ORFs]) encodes 106 GHs, representing 43 GH families, but only 26 GHs from 17 families are included in the core (noncellulosic) genome (1,543 ORFs). Differentiating the strongly cellulolytic Caldicellulosiruptor species from the others is a specific genomic locus that encodes multidomain cellulases from GH families 9 and 48, which are associated with cellulose-binding modules. This locus also encodes a novel adhesin associated with type IV pili, which was identified in the exoproteome bound to crystalline cellulose. Taking into account the core genomes, pangenomes, and individual genomes, the ancestral Caldicellulosiruptor was likely cellulolytic and evolved, in some cases, into species that lost the ability to degrade crystalline cellulose while maintaining the capacity to hydrolyze amorphous cellulose and hemicellulose.

Blumer-Schuette, Sara E. [North Carolina State University; Giannone, Richard J [ORNL; Zurawski, Jeffrey V [North Carolina State University; Ozdemir, Inci [North Carolina State University; Ma, Qin [University of Georgia, Athens, GA; Yin, Yanbin [University of Georgia, Athens, GA; Xu, Ying [University of Georgia, Athens, GA; Kataeva, Irena [University of Georgia, Athens, GA; Poole, Farris [University of Georgia, Athens, GA; Adams, Michael W. W. [University of Georgia, Athens, GA; Hamilton-Brehm, Scott [ORNL; Elkins, James G [ORNL; Larimer, Frank W [ORNL; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Cottingham, Robert W [ORNL; Hettich, Robert {Bob} L [ORNL; Kelly, Robert M [North Carolina State University

2012-01-01T23:59:59.000Z

358

Power-aware multi-core simulation for early design stage hardware/software co-optimization  

Science Conference Proceedings (OSTI)

Stringent performance targets and power constraints push designers towards building specialized workload-optimized systems across a broad spectrum of the computing arena, including supercomputing applications as exemplified by the IBM BlueGene and Intel ... Keywords: design space exploration, hardware/software co-design, multi-core processor, performance modeling, power modeling

Wim Heirman; Souradip Sarkar; Trevor E. Carlson; Ibrahim Hur; Lieven Eeckhout

2012-09-01T23:59:59.000Z

359

Improved core recovery in laminated sand and shale sequences  

SciTech Connect

Coring and core analysis are essential to the exploration, development, and production phases of the oil and gas industry. Large-diameter (4-in. (10-cm)) core provides engineers and geologists with direct means to measure physical properties of reservoir rocks at both the microscopic and macroscopic levels. This information provides engineers with clues to improve their understanding of the reservoir and prediction of its performance. If stored properly, core may assist in development of the reservoir many years after the well is drilled. In microlaminated reservoirs, laboratory core analysis is very important because of inherent limitations in wireline log resolution. In these cases, petrophysical information, such as saturation, porosity, and net feet of pay, cannot be calculated from wireline data. Instead, these data must be measured directly from core plugs in the laboratory. Historically, core recovery in these types of reservoirs has not been good (Fig. 1A) using methods designed for firmly consolidated formations. These methods did not achieve satisfactory recovery in unconsolidated sand interbedded with hard shale stringers for two reasons: unconsolidated sand was eroded by mechanical or hydraulic means and shale ''jammed'' in the core barrel, thereby preventing more core from entering. Changes in coring strategies and equipment have nearly eliminated recovery problems in unconsolidated sand while reducing jams in shale (Fig. 1B). This paper discusses several of these changes and presents ideas for further improvements.

Bradburn, F.R.; Cheatham, C.A. (Shell Offshore Inc. (US))

1988-12-01T23:59:59.000Z

360

Heat transfer in sunspot penumbrae. Origin of dark-cored penumbral filaments  

E-Print Network (OSTI)

Context: Observations at 0.1" have revealed the existence of dark cores in the bright filaments of sunspot penumbrae. Expectations are high that such dark-cored filaments are the basic building blocks of the penumbra, but their nature remains unknown. Aims: We investigate the origin of dark cores in penumbral filaments and the surplus brightness of the penumbra. To that end we use an uncombed penumbral model. Methods: The 2D stationary heat transfer equation is solved in a stratified atmosphere consisting of nearly horizontal magnetic flux tubes embedded in a stronger and more vertical field. The tubes carry an Evershed flow of hot plasma. Results: This model produces bright filaments with dark cores as a consequence of the higher density of the plasma inside the tubes, which shifts the surface of optical depth unity toward higher (cooler) layers. Our calculations suggest that the surplus brightness of the penumbra is a natural consequence of the Evershed flow, and that magnetic flux tubes about 250 km in diameter can explain the morphology of sunspot penumbrae.

B. Ruiz Cobo; L. R. Bellot Rubio

2008-06-04T23:59:59.000Z

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Bayesian reconstruction of gravitational wave burst signals from simulations of rotating stellar core collapse and bounce  

SciTech Connect

Presented in this paper is a technique that we propose for extracting the physical parameters of a rotating stellar core collapse from the observation of the associated gravitational wave signal from the collapse and core bounce. Data from interferometric gravitational wave detectors can be used to provide information on the mass of the progenitor model, precollapse rotation, and the nuclear equation of state. We use waveform libraries provided by the latest numerical simulations of rotating stellar core collapse models in general relativity, and from them create an orthogonal set of eigenvectors using principal component analysis. Bayesian inference techniques are then used to reconstruct the associated gravitational wave signal that is assumed to be detected by an interferometric detector. Posterior probability distribution functions are derived for the amplitudes of the principal component analysis eigenvectors, and the pulse arrival time. We show how the reconstructed signal and the principal component analysis eigenvector amplitude estimates may provide information on the physical parameters associated with the core collapse event.

Roever, Christian [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), 30167 Hannover (Germany); Bizouard, Marie-Anne [Laboratoire de l'Accelerateur Lineaire, Universite Paris Sud, 91898 Orsay (France); Christensen, Nelson [Physics and Astronomy, Carleton College, Northfield, Minnesota 55057 (United States); Dimmelmeier, Harald [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Heng, Ik Siong [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Meyer, Renate [Department of Statistics, University of Auckland, Auckland 1142 (New Zealand)

2009-11-15T23:59:59.000Z

362

Framework Application for Core Edge Transport Simulation (FACETS)  

SciTech Connect

The goal of the FACETS project (Framework Application for Core-Edge Transport Simulations) was to provide a multiphysics, parallel framework application (FACETS) that will enable whole-device modeling for the U.S. fusion program, to provide the modeling infrastructure needed for ITER, the next step fusion confinement device. Through use of modern computational methods, including component technology and object oriented design, FACETS is able to switch from one model to another for a given aspect of the physics in a flexible manner. This enables use of simplified models for rapid turnaround or high-fidelity models that can take advantage of the largest supercomputer hardware. FACETS does so in a heterogeneous parallel context, where different parts of the application execute in parallel by utilizing task farming, domain decomposition, and/or pipelining as needed and applicable. ParaTools, Inc. was tasked with supporting the performance analysis and tuning of the FACETS components and framework in order to achieve the parallel scaling goals of the project. The TAU Performance System�������������������������������® was used for instrumentation, measurement, archiving, and profile / tracing analysis. ParaTools, Inc. also assisted in FACETS performance engineering efforts. Through the use of the TAU Performance System, ParaTools provided instrumentation, measurement, analysis and archival support for the FACETS project. Performance optimization of key components has yielded significant performance speedups. TAU was integrated into the FACETS build for both the full coupled application and the UEDGE component. The performance database provided archival storage of the performance regression testing data generated by the project, and helped to track improvements in the software development.

Dr. Allen D. Malony; Dr. Sameer S. Shende; Dr. Kevin A. Huck; Mr. Alan Morris, and Mr. Wyatt Spear

2012-03-14T23:59:59.000Z

363

STAR FORMATION EFFICIENCY IN THE COOL CORES OF GALAXY CLUSTERS  

SciTech Connect

We have assembled a sample of high spatial resolution far-UV (Hubble Space Telescope Advanced Camera for Surveys/Solar Blind Channel) and H{alpha} (Maryland-Magellan Tunable Filter) imaging for 15 cool core galaxy clusters. These data provide a detailed view of the thin, extended filaments in the cores of these clusters. Based on the ratio of the far-UV to H{alpha} luminosity, the UV spectral energy distribution, and the far-UV and H{alpha} morphology, we conclude that the warm, ionized gas in the cluster cores is photoionized by massive, young stars in all but a few (A1991, A2052, A2580) systems. We show that the extended filaments, when considered separately, appear to be star forming in the majority of cases, while the nuclei tend to have slightly lower far-UV luminosity for a given H{alpha} luminosity, suggesting a harder ionization source or higher extinction. We observe a slight offset in the UV/H{alpha} ratio from the expected value for continuous star formation which can be modeled by assuming intrinsic extinction by modest amounts of dust (E(B - V) {approx} 0.2) or a top-heavy initial mass function in the extended filaments. The measured star formation rates vary from {approx}0.05 M{sub sun} yr{sup -1} in the nuclei of non-cooling systems, consistent with passive, red ellipticals, to {approx}5 M{sub sun} yr{sup -1} in systems with complex, extended, optical filaments. Comparing the estimates of the star formation rate based on UV, H{alpha}, and infrared luminosities to the spectroscopically determined X-ray cooling rate suggests a star formation efficiency of 14{sup +18}{sub -8}%. This value represents the time-averaged fraction, by mass, of gas cooling out of the intracluster medium, which turns into stars and agrees well with the global fraction of baryons in stars required by simulations to reproduce the stellar mass function for galaxies. This result provides a new constraint on the efficiency of star formation in accreting systems.

McDonald, Michael; Veilleux, Sylvain; Mushotzky, Richard; Reynolds, Christopher [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Rupke, David S. N., E-mail: mcdonald@astro.umd.edu, E-mail: veilleux@astro.umd.edu [Department of Physics, Rhodes College, Memphis, TN 38112 (United States)

2011-06-20T23:59:59.000Z

364

FIRST ACETIC ACID SURVEY WITH CARMA IN HOT MOLECULAR CORES  

Science Conference Proceedings (OSTI)

Acetic acid (CH{sub 3}COOH) has been detected mainly in hot molecular cores where the distribution between oxygen (O) and nitrogen (N) containing molecular species is cospatial within the telescope beam. Previous work has presumed that similar cores with cospatial O and N species may be an indicator for detecting acetic acid. However, does this presumption hold as higher spatial resolution observations of large O- and N-containing molecules become available? As the number of detected acetic acid sources is still low, more observations are needed to support this postulate. In this paper, we report the first acetic acid survey conducted with the Combined Array for Research in Millimeter-wave Astronomy at 3 mm wavelengths toward G19.61-0.23, G29.96-0.02, and IRAS 16293-2422. We have successfully detected CH{sub 3}COOH via two transitions toward G19.61-0.23 and tentatively confirmed the detection toward IRAS 16293-2422 A. The determined column density of CH{sub 3}COOH is 2.0(1.0) x 10{sup 16} cm{sup -2} and the abundance ratio of CH{sub 3}COOH to methyl formate (HCOOCH{sub 3}) is 2.2(0.1) x 10{sup -1} toward G19.61-0.23. Toward IRAS 16293 A, the determined column density of CH{sub 3}COOH is {approx}1.6 x 10{sup 15} cm{sup -2} and the abundance ratio of CH{sub 3}COOH to methyl formate (HCOOCH{sub 3}) is {approx}1.0 x 10{sup -1}, both of which are consistent with abundance ratios determined toward other hot cores. Finally, we model all known line emission in our passband to determine physical conditions in the regions and introduce a new metric to better reveal weak spectral features that are blended with stronger lines or that may be near the 1{sigma}-2{sigma} detection limit.

Shiao, Y.-S. Jerry; Looney, Leslie W.; Snyder, Lewis E.; Friedel, Douglas N. [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Remijan, Anthony J., E-mail: jshiao@phys.ntu.edu.t, E-mail: aremijan@nrao.ed [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

2010-06-10T23:59:59.000Z

365

From New York to California, SECA's Core  

NLE Websites -- All DOE Office Websites (Extended Search)

From New York to California, SECA's Core Technology Program is working on dozens of fuel cell projects, led by the brightest minds from leading universities, national laboratories and businesses across the country. These competitively selected projects work together to provide vital R&D and testing support to the six Industry Teams. SECA R&D: Where Competition Meets Collaboration SECA R&D: Where Competition Meets Collaboration SECA Cost Reduction: The Power of a Goal SECA Cost Reduction: The Power of a Goal The SECA program's Industry Teams are hard at work on the design and manufacture of a variety of low-cost fuel cell prototypes. Recent testing of these prototypes has demonstrated giant leaps made toward fuel cell commercialization.

366

Test report for core drilling ignitability testing  

DOE Green Energy (OSTI)

Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing.

Witwer, K.S.

1996-08-08T23:59:59.000Z

367

AMD Core Math Library (ACML) at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

ACML ACML ACML Description The AMD Core Math Library (ACML) module is available on Hopper but is no longer loaded as part of the default PrgEnv environment. Instead, BLAS and LAPACK functionality is now provided by Cray LibSci. However, if you need ACML for FFT functions, math functions, or random number generators, you can load the library using the acml modulefile. ACML includes: A suite of Fast Fourier Transform (FFT) routines for real and complex data Fast scalar, vector, and array math transcendental library routines optimized for high performance A comprehensive random number generator suite: Base generators plus a user-defined generator Distribution generators Multiple-stream support ACML's internal timing facility uses the clock() function. If you run an

368

Rotary Mode Core Sample System availability improvement  

SciTech Connect

The Rotary Mode Core Sample System (RMCSS) is used to obtain stratified samples of the waste deposits in single-shell and double-shell waste tanks at the Hanford Site. The samples are used to characterize the waste in support of ongoing and future waste remediation efforts. Four sampling trucks have been developed to obtain these samples. Truck I was the first in operation and is currently being used to obtain samples where the push mode is appropriate (i.e., no rotation of drill). Truck 2 is similar to truck 1, except for added safety features, and is in operation to obtain samples using either a push mode or rotary drill mode. Trucks 3 and 4 are now being fabricated to be essentially identical to truck 2.

Jenkins, W.W.; Bennett, K.L.; Potter, J.D. [Westinghouse Hanford Co., Richland, WA (United States); Cross, B.T.; Burkes, J.M.; Rogers, A.C. [Southwest Research Institute (United States)

1995-02-28T23:59:59.000Z

369

Design and formation mechanism of self-organized core/shell structure composite powder in immiscible liquid system  

Science Conference Proceedings (OSTI)

Under the guidance of the calculation of phase diagrams method, the self-organized Cu alloy/stainless steel composite powders with a core/shell microstructure were developed based on the gas atomization process, and the formation evolution of self-organized core/shell structure composite powders was modeled by the phase field method. This paper gives a more detailed explanation for the formation of self-organized core/shell structure composite powders from the viewpoints of thermodynamics and kinetics. Such core/shell structure composite powders have good combination of high strength and corrosion resistance (Fe-rich phase) and high electric and thermal conductivities (Cu-rich phase) with many potential advanced applications in electronic devices.

Wang Cuiping; Liu Xingjun; Shi Rongpei; Shen Chen; Wang Yunzhi; Ohnuma, Ikuo; Kainuma, Ryosuke; Ishida, Kiyohito [Department of Materials Science and Engineering, Xiamen University, Xiamen 361005 (China); Department of Materials Science and Engineering, Ohio State University, 2041 College Road, Columbus, Ohio 43210 (United States); Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan)

2007-10-01T23:59:59.000Z

370

Generator Stator Core Condition Monitoring by Tracking Shaft Voltage and Grounding Current  

Science Conference Proceedings (OSTI)

In order to identify repairable problems early, generator core monitoring must be improved. The primary risks to core integrity are 1) deterioration of core lamination insulation, which results in electrical currents circulating through the core material, causing it to severely overheat and melt, and 2) relaxation of core pressure, which results in fatigue cracking of core laminations. Generator core condition monitors provide strong indicators of severe overheating of the core insulation. The indication...

2010-02-23T23:59:59.000Z

371

Benchmark Evaluation of the NRAD Reactor LEU Core Startup Measurements  

Science Conference Proceedings (OSTI)

The Neutron Radiography (NRAD) reactor is a 250-kW TRIGA-(Training, Research, Isotope Production, General Atomics)-conversion-type reactor at the Idaho National Laboratory; it is primarily used for neutron radiography analysis of irradiated and unirradiated fuels and materials. The NRAD reactor was converted from HEU to LEU fuel with 60 fuel elements and brought critical on March 31, 2010. This configuration of the NRAD reactor has been evaluated as an acceptable benchmark experiment and is available in the 2011 editions of the International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP Handbook) and the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). Significant effort went into precisely characterizing all aspects of the reactor core dimensions and material properties; detailed analyses of reactor parameters minimized experimental uncertainties. The largest contributors to the total benchmark uncertainty were the 234U, 236U, Er, and Hf content in the fuel; the manganese content in the stainless steel cladding; and the unknown level of water saturation in the graphite reflector blocks. A simplified benchmark model of the NRAD reactor was prepared with a keff of 1.0012 {+-} 0.0029 (1s). Monte Carlo calculations with MCNP5 and KENO-VI and various neutron cross section libraries were performed and compared with the benchmark eigenvalue for the 60-fuel-element core configuration; all calculated eigenvalues are between 0.3 and 0.8% greater than the benchmark value. Benchmark evaluations of the NRAD reactor are beneficial in understanding biases and uncertainties affecting criticality safety analyses of storage, handling, or transportation applications with LEU-Er-Zr-H fuel.

J. D. Bess; T. L. Maddock; M. A. Marshall

2011-09-01T23:59:59.000Z

372

Graded core/shell semiconductor nanorods and nanorod barcodes  

DOE Patents (OSTI)

Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

Alivisatos, A. Paul (Oakland, CA); Scher, Erik C. (San Francisco, CA); Manna, Liberato (Lecce, IT)

2010-12-14T23:59:59.000Z

373

Graded core/shell semiconductor nanorods and nanorod barcodes  

DOE Patents (OSTI)

Graded core/shell semiconductor nanorods and shapped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

2013-03-26T23:59:59.000Z

374

{sup 13}CO CORES IN THE TAURUS MOLECULAR CLOUD  

SciTech Connect

Young stars form in molecular cores, which are dense condensations within molecular clouds. We have searched for molecular cores traced by {sup 13}CO J = 1 {yields} 0 emission in the Taurus molecular cloud and studied their properties. Our data set has a spatial dynamic range (the ratio of linear map size to the pixel size) of about 1000 and spectrally resolved velocity information, which together allow a systematic examination of the distribution and dynamic state of {sup 13}CO cores in a large contiguous region. We use empirical fit to the CO and CO{sub 2} ice to correct for depletion of gas-phase CO. The {sup 13}CO core mass function ({sup 13}CO CMF) can be fitted better with a log-normal function than with a power-law function. We also extract cores and calculate the {sup 13}CO CMF based on the integrated intensity of {sup 13}CO and the CMF from Two Micron All Sky Survey. We demonstrate that core blending exists, i.e., combined structures that are incoherent in velocity but continuous in column density. The core velocity dispersion (CVD), which is the variance of the core velocity difference {delta}v, exhibits a power-law behavior as a function of the apparent separation L: CVD (km s{sup -1}) {proportional_to}L(pc){sup 0.7}. This is similar to Larson's law for the velocity dispersion of the gas. The peak velocities of {sup 13}CO cores do not deviate from the centroid velocities of the ambient {sup 12}CO gas by more than half of the line width. The low velocity dispersion among cores, the close similarity between CVD and Larson's law, and the small separation between core centroid velocities and the ambient gas all suggest that molecular cores condense out of the diffuse gas without additional energy from star formation or significant impact from converging flows.

Qian Lei; Li Di [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Goldsmith, Paul F., E-mail: lqian@nao.cas.cn, E-mail: ithaca.li@gmail.com [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States)

2012-12-01T23:59:59.000Z

375

Engineering Fundamentals - Core Protection Version 2.0  

Science Conference Proceedings (OSTI)

The Core Protection module of Engineering Fundamentals provides a basic overview of this topic applicable to all engineering disciplines beginning their career in the nuclear power industry. This module covers basic terms and concepts, and methods used to ensure core protection in nuclear power plants. This course will help new engineers understand the importance of core protection, high equipment reliability and system integrity. This module is intended for use as orientation training for new ...

2012-11-19T23:59:59.000Z

376

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared  

Open Energy Info (EERE)

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Abstract Infrared spectroscopy is particularly good at identifying awide variety of hydrothermally altered minerals with no samplepreparation, and is especially helpful in discrimination amongclay minerals. We have performed several promising pilot studieson geothermal drill core and cuttings that suggest the efficiencyof the technique to sample continuously and provide alterationlogs similar to geophysical logs. We have successfully identifiedlayered silicates, zeolites, opal, calcite, and iron oxides and

377

View from the Core: 1663 Science and Technology Magazine | Los...  

NLE Websites -- All DOE Office Websites (Extended Search)

for weapons or power production-sometimes requires staring straight into the heart of the matter, into the core where nuclear reactions actually take place. But there's...

378

New Insights Into Deep Convective Core Vertical Velocities Using...  

NLE Websites -- All DOE Office Websites (Extended Search)

Insights Into Deep Convective Core Vertical Velocities Using ARM UHF Wind Profilers For original submission and image(s), see ARM Research Highlights http:www.arm.govscience...

379

Geothermal: Sponsored by OSTI -- Study of core chips from the...  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Study of core chips from the State of California, Well No. 1 in the Salton Sea Geothermal Field using petrographic,...

380

Core Analysis At Newberry Caldera Area (Carothers, Et Al., 1987...  

Open Energy Info (EERE)

H. Mariner, Terry E. C. Keith (1987) Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon Retrieved from "http:en.openei.orgwindex.php?titleCoreAnaly...

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Core Analysis For The Development And Constraint Of Physical...  

Open Energy Info (EERE)

At Geysers Area (Boitnott, 2003) Core Analysis At International Geothermal Area, Indonesia (Boitnott, 2003) Geysers Geothermal Area International Geothermal Area Indonesia...

382

Getting to the Core of Sustainability (EStar Award - Change Agents...  

NLE Websites -- All DOE Office Websites (Extended Search)

Getting to the Core of Sustainability (EStar Award - Change Agents) SUSTAINABILITY ASSISTANCE NETWORK (SAN) 1 Mike Moran & Jennifer Su-Coker March 15, 2012 Outline 2 2 PNNL...

383

Disassembly and defueling of the upper core support assembly  

SciTech Connect

During normal operation of the reactor plant, the upper core support assembly (UCSA) holds the fuel assemblies in a defined geometry and establishes the flow path of the reactor coolant in the reactor vessel. Sometime during the course of the Three Mile Island Unit 2 accident, molten core material melted through a portion of the UCSA and flowed outside the confines of the core region into normally inaccessible areas. As a result, the UCSA must now be disassembled to remove the relocated core material. The paper includes UCSA description, a discussion of equipment design basis, and a discussion of the defueling approach.

Rodabaugh, J.M.

1988-01-01T23:59:59.000Z

384

Mechanical Testing of Core Fast Reactor Materials for the Advanced ...  

Science Conference Proceedings (OSTI)

To achieve this goal, the core fast reactor materials (cladding and duct) must be ... in situ Mechanical Test Methods in the US Fusion Reactor Materials Program.

385

Core-Shell Type Nanowires for Electrodes of Flexible ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Highly conductive oxide core-thin anode material shell nanowire ... yet flexible electrode with large surface area and high electric conductivity, ...

386

Core Analysis At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Alum Geothermal Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding...

387

Core Analysis At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Colrado Area (DOE GTP) Exploration Activity Details Location Colado Geothermal Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding Unknown...

388

Core Analysis At Mcgee Mountain Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Mcgee Mountain Area (DOE GTP) Exploration Activity Details Location Mcgee Mountain Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding...

389

Core Analysis At Flint Geothermal Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Flint Geothermal Area (DOE GTP) Exploration Activity Details Location Flint Geothermal Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding...

390

Core Holes At Hot Sulphur Springs Area (Goranson, 2005) | Open...  

Open Energy Info (EERE)

Springs Area (Goranson, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Hot Sulphur Springs Area (Goranson, 2005)...

391

Interaction of hot solid core debris with concrete  

SciTech Connect

The Hot Solid program is intended to measure, model, and assess the thermal, gas evolution, and fission product source terms produced as a consequence of hot, solid, core debris-concrete interactions. Two preliminary experiments, HSS-1 and HSS-3, were performed in order to compare hot solid UO/sub 2/-concrete and hot solid steel-concrete interactions. The HSS-1 experiment ablated 6 cm of limestone-common sand concrete in a little more than three hours using a 9 kg slug of 304 stainless steel at an average debris temperature of 1350/sup 0/C. The HSS-3 experiment ablated 6.5 cm of limestone-common sand concrete in four hours using a 10 kg slug of 80% UO/sub 2/-20% ZrO/sub 2/ at an average debris temperature of 1650/sup 0/C. Both experiments were inductively heated and contained in a 22 cm alumina sleeve to simulate one-dimensional axial erosion. The HOTROX computer code model was evaluated using the results from the HSS tests. HOTROX is a 1-D concrete ablation model that calculates transient conduction and gas release in the concrete as well as heatup of the hot solid slug. Using the HSS-1 power input history and geometry, HOTROX calculates 6.2 cm of concrete erosion in 200 minutes. Using the HSS-3 input conditions, HOTROX predicts 6.8 cm of erosion in 190 minutes. These results compare favorably with the experimental erosion rates. The calculated thermal response of the concrete is also close to experimentally measured values. The information from the Hot Solid Program will be used both to expand the post-accident phenomena data base and to extend the range of applicability of current accident analysis computer models such as CORCON and CONTAIN.

Copus, E.R.; Bradley, D.R.

1986-06-01T23:59:59.000Z

392

TOWARD REALISTIC PROGENITORS OF CORE-COLLAPSE SUPERNOVAE  

SciTech Connect

Two-dimensional (2D) hydrodynamical simulations of progenitor evolution of a 23 M{sub sun} star, close to core collapse (in {approx}1 hr in one dimension (1D)), with simultaneously active C, Ne, O, and Si burning shells, are presented and contrasted to existing 1D models (which are forced to be quasi-static). Pronounced asymmetries and strong dynamical interactions between shells are seen in 2D. Although instigated by turbulence, the dynamic behavior proceeds to sufficiently large amplitudes that it couples to the nuclear burning. Dramatic growth of low-order modes is seen as well as large deviations from spherical symmetry in the burning shells. The vigorous dynamics is more violent than that seen in earlier burning stages in the three-dimensional (3D) simulations of a single cell in the oxygen burning shell, or in 2D simulations not including an active Si shell. Linear perturbative analysis does not capture the chaotic behavior of turbulence (e.g., strange attractors such as that discovered by Lorenz), and therefore badly underestimates the vigor of the instability. The limitations of 1D and 2D models are discussed in detail. The 2D models, although flawed geometrically, represent a more realistic treatment of the relevant dynamics than existing 1D models, and present a dramatically different view of the stages of evolution prior to collapse. Implications for interpretation of SN1987A, abundances in young supernova remnants, pre-collapse outbursts, progenitor structure, neutron star kicks, and fallback are outlined. While 2D simulations provide new qualitative insight, fully 3D simulations are needed for a quantitative understanding of this stage of stellar evolution. The necessary properties of such simulations are delineated.

David Arnett, W.; Meakin, Casey, E-mail: wdarnett@gmail.com, E-mail: casey.meakin@gmail.com [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

2011-06-01T23:59:59.000Z

393

Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of Historical and Projected Future Changes  

Science Conference Proceedings (OSTI)

We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States, but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching >1300 mgN/m2/yr averaged over regional to continental scale regions in RCP 2.6 and 8.5, ~30-50% larger than the values in any region currently (2000). Despite known issues, the new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

Lamarque, Jean-Francois; Dentener, Frank; McConnell, J.R.; Ro, C-U; Shaw, Mark; Vet, Robert; Bergmann, D.; Cameron-Smith, Philip; Dalsoren, S.; Doherty, R.; Faluvegi, G.; Ghan, Steven J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, David; Shindell, Drew; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Zeng, G.; Curran, M.; Dahl-Jensen, D.; Das, S.; Fritzsche, D.; Nolan, M.

2013-08-20T23:59:59.000Z

394

Full Core 3-D Simulation of a Partial MOX LWR Core  

Science Conference Proceedings (OSTI)

A comparative analysis and comparison of results obtained between 2-D lattice calculations and 3-D full core nodal calculations, in the frame of MOX fuel design, was conducted. This study revealed a set of advantages and disadvantages, with respect to each method, which can be used to guide the level of accuracy desired for future fuel and fuel cycle calculations. For the purpose of isotopic generation for fuel cycle analyses, the approach of using a 2-D lattice code (i.e., fuel assembly in infinite lattice) gave reasonable predictions of uranium and plutonium isotope concentrations at the predicted 3-D core simulation batch average discharge burnup. However, it was found that the 2-D lattice calculation can under-predict the power of pins located along a shared edge between MOX and UO2 by as much as 20%. In this analysis, this error did not occur in the peak pin. However, this was a coincidence and does not rule out the possibility that the peak pin could occur in a lattice position with high calculation uncertainty in future un-optimized studies. Another important consideration in realistic fuel design is the prediction of the peak axial burnup and neutron fluence. The use of 3-D core simulation gave peak burnup conditions, at the pellet level, to be approximately 1.4 times greater than what can be predicted using back-of-the-envelope assumptions of average specific power and irradiation time.

S. Bays; W. Skerjanc; M. Pope

2009-05-01T23:59:59.000Z

395

ON THE SURVIVABILITY AND METAMORPHISM OF TIDALLY DISRUPTED GIANT PLANETS: THE ROLE OF DENSE CORES  

Science Conference Proceedings (OSTI)

A large population of planetary candidates in short-period orbits have been found recently through transit searches, mostly with the Kepler mission. Radial velocity surveys have also revealed several Jupiter-mass planets with highly eccentric orbits. Measurements of the Rossiter-McLaughlin effect indicate that the orbital angular momentum vector of some planets is inclined relative to the spin axis of their host stars. This diversity could be induced by post-formation dynamical processes such as planet-planet scattering, the Kozai effect, or secular chaos which brings planets to the vicinity of their host stars. In this work, we propose a novel mechanism to form close-in super-Earths and Neptune-like planets through the tidal disruption of gas giant planets as a consequence of these dynamical processes. We model the core-envelope structure of gas giant planets with composite polytropes which characterize the distinct chemical composition of the core and envelope. Using three-dimensional hydrodynamical simulations of close encounters between Jupiter-like planets and their host stars, we find that the presence of a core with a mass more than 10 times that of the Earth can significantly increase the fraction of envelope which remains bound to it. After the encounter, planets with cores are more likely to be retained by their host stars in contrast with previous studies which suggested that coreless planets are often ejected. As a substantial fraction of their gaseous envelopes is preferentially lost while the dense incompressible cores retain most of their original mass, the resulting metallicity of the surviving planets is increased. Our results suggest that some gas giant planets can be effectively transformed into either super-Earths or Neptune-like planets after multiple close stellar passages. Finally, we analyze the orbits and structure of known planets and Kepler candidates and find that our model is capable of producing some of the shortest-period objects.

Liu, Shang-Fei; Lin, Douglas N. C. [Kavli Institute for Astronomy and Astrophysics and Department of Astronomy, Peking University, Beijing 100871 (China)] [Kavli Institute for Astronomy and Astrophysics and Department of Astronomy, Peking University, Beijing 100871 (China); Guillochon, James; Ramirez-Ruiz, Enrico, E-mail: liushangfei@pku.edu.cn [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)] [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

2013-01-01T23:59:59.000Z

396

Can a Long Nanoflare Storm Explain the Observed Emission Measure Distributions in Active Region Cores?  

E-Print Network (OSTI)

All theories that attempt to explain the heating of the high temperature plasma observed in the solar corona are based on short bursts of energy. The intensities and velocities measured in the cores of quiescent active regions, however, can be steady over many hours of observation. One heating scenario that has been proposed to reconcile such observations with impulsive heating models is the "long nanoflare storm," where short duration heating events occur infrequently on many sub-resolutions strands; the emission of the strands is then averaged together to explain the observed steady structures. In this Letter, we examine the emission measure distribution predicted for such a long nanoflare storm by modeling an arcade of strands in an active region core. Comparisons of the computed emission measure distributions with recent observations indicate that that the long nanoflare storm scenario implies greater than 5 times more 1 MK emission than is actually observed for all plausible combinations of loop lengths,...

Mulu-Moore, Fana M; Warren, Harry P

2012-01-01T23:59:59.000Z

397

NETL: SECA Core Technology Program Review Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

18-19, 2002 Table of Contents Disclaimer Papers and Presentations Modeling & Simulation Power Electronics Controls & Diagnostics Fuel Processing Materials & Manufacturing Merit...

398

Soft-core meson-baryon interactions. II. $?N$ and $K^+ N$ scattering  

E-Print Network (OSTI)

The $\\pi N$ potential includes the t-channel exchanges of the scalar-mesons $\\sigma$ and f_0, vector-meson $\\rho$, tensor-mesons f_2 and f_2' and the Pomeron as well as the s- and u-channel exchanges of the nucleon N and the resonances $\\Delta$, Roper and S_{11}. These resonances are not generated dynamically. We consider them as, at least partially, genuine three-quark states and we treat them in the same way as the nucleon. The latter two resonances were needed to find the proper behavior of the phase shifts at higher energies in the corresponding partial waves. The soft-core $\\pi N$-model gives an excellent fit to the empirical $\\pi N$ S- and P-wave phase shifts up to T_{lab}=600 MeV. Also the scattering lengths have been reproduced well and the soft-pion theorems for low-energy $\\pi N$ scattering are satisfied. The soft-core model for the $K^+ N$ interaction is an SU_f(3)-extension of the soft-core $\\pi N$-model. The $K^+ N$ potential includes the t-channel exchanges of the scalar-mesons a_0, $\\sigma$ and f_0, vector-mesons $\\rho$, $\\omega$ and $\\phi$, tensor-mesons a_2, f_2 and f_2' and the Pomeron as well as u-channel exchanges of the hyperons $\\Lambda$ and $\\Sigma$. The fit to the empirical $K^+ N$ S-, P- and D-wave phase shifts up to T_{lab}=600 MeV is reasonable and certainly reflects the present state of the art. Since the various $K^+ N$ phase shift analyses are not very consistent, also scattering observables are compared with the soft-core $K^+ N$-model. A good agreement for the total and differential cross sections as well as the polarizations is found.

H. Polinder; Th. A. Rijken

2005-05-31T23:59:59.000Z

399

Lifetime embrittlement of reactor core materials  

DOE Green Energy (OSTI)

Over a core lifetime, the reactor materials Zircaloy-2, Zircaloy-4, and hafnium may become embrittled due to the absorption of corrosion- generated hydrogen and to neutron irradiation damage. Results are presented on the effects of fast fluence on the fracture toughness of wrought Zircaloy-2, Zircaloy-4, and hafnium; Zircaloy-4 to hafnium butt welds; and hydrogen precharged beta treated and weld metal Zircaloy-4 for fluences up to a maximum of approximately 150 x 10{sup 24} n/M{sup 2} (> 1 Mev). While Zircaloy-4 did not exhibit a decrement in K{sub IC} due to irradiation, hafnium and butt welds between hafnium and Zircaloy-4 are susceptible to embrittlement with irradiation. The embrittlement can be attributed to irradiation strengthening, which promotes cleavage fracture in hafnium and hafnium-Zircaloy welds, and, in part, to the lower chemical potential of hydrogen in Zircaloy-4 compared to hafnium, which causes hydrogen, over time, to drift from the hafnium end toward the Zircaloy-4 end and to precipitate at the interface between the weld and base-metal interface. Neutron radiation apparently affects the fracture toughness of Zircaloy-2, Zircaloy-4, and hafnium in different ways. Possible explanations for these differences are suggested. It was found that Zircaloy-4 is preferred over Zircaloy-2 in hafnium-to- Zircaloy butt-weld applications due to its absence of a radiation- induced reduction in K{sub IC} plus its lower hydrogen absorption characteristics compared with Zircaloy-2.

Kreyns, P.H..; Bourgeois, W.F.; Charpentier, P.L.; Kammenzind, B.F.; Franklin, D.G. [Bettis Atomic Power Lab., West Mifflin, PA (United States); White, C.J. [Knolls Atomic Power Lab., Schenectady, NY (United States)

1994-08-01T23:59:59.000Z

400

Solid oxide fuel cell with monolithic core  

DOE Patents (OSTI)

A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700 C and 1,100 C. 8 figs.

McPheeters, C.C.; Mrazek, F.C.

1988-08-02T23:59:59.000Z

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advanced High Temperature Reactor Neutronic Core Design  

Science Conference Proceedings (OSTI)

The AHTR is a 3400 MW(t) FHR class reactor design concept intended to serve as a central generating station type power plant. While significant technology development and demonstration remains, the basic design concept appears sound and tolerant of much of the remaining performance uncertainty. No fundamental impediments have been identified that would prevent widespread deployment of the concept. This paper focuses on the preliminary neutronic design studies performed at ORNL during the fiscal year 2011. After a brief presentation of the AHTR design concept, the paper summarizes several neutronic studies performed at ORNL during 2011. An optimization study for the AHTR core is first presented. The temperature and void coefficients of reactivity are then analyzed for a few configurations of interest. A discussion of the limiting factors due to the fast neutron fluence follows. The neutronic studies conclude with a discussion of the control and shutdown options. The studies presented confirm that sound neutronic alternatives exist for the design of the AHTR to maintain full passive safety features and reasonable operation conditions.

Ilas, Dan [ORNL; Holcomb, David Eugene [ORNL; Varma, Venugopal Koikal [ORNL

2012-01-01T23:59:59.000Z

402

Advanced Core Design And Fuel Management For Pebble-Bed Reactors  

Science Conference Proceedings (OSTI)

A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

2004-10-01T23:59:59.000Z

403

CO2 flood tests on whole core samples of the Mt. Simon sandstone, Illinois Basin  

SciTech Connect

Geological sequestration of CO2, whether by enhanced oil recovery (EOR), coal-bed methane (CBM) recovery, or saline aquifer injection is a promising near-term sequestration methodology. While tremendous experience exists for EOR, and CBM recovery has been demonstrated in existing fields, saline aquifer injection studies have only recently been initiated. Studies evaluating the availability of saline aquifers suitable for CO2 injection show great potential, however, the long-term fate of the CO2 injected into these ancient aqueous systems is still uncertain. For the subject study, a series of laboratory-scale CO2 flood tests were conducted on whole core samples of the Mt. Simon sandstone from the Illinois Basin. By conducting these tests on whole core samples rather than crushed core, an evaluation of the impact of the CO2 flood on the rock mechanics properties as well as the geochemistry of the core and brine solution has been possible. This empirical data could provide a valuable resource for the validation of reservoir models under development for these engineered CO2 systems.

O'Connor, William K.; Rush, Gilbert E.

2005-09-01T23:59:59.000Z

404

Ally: OS-Transparent Packet Inspection Using Sequestered Cores  

Science Conference Proceedings (OSTI)

This paper presents Ally, a server platform architecture that supports compute-intensive management services on multi-core processors. Ally introduces simple hardware mechanisms to sequester cores to run a separate software environment dedicated to management ... Keywords: multicore, packet inspection, isolation, computer architecture, multicore partitioning

Jen-Cheng Huang; Matteo Monchiero; Yoshio Turner; Hsien-Hsin S. Lee

2011-10-01T23:59:59.000Z

405

Weighted trapezoidal approximation-preserving cores of a fuzzy number  

Science Conference Proceedings (OSTI)

Recently, various researchers have proved that approximations of fuzzy numbers may fail to be fuzzy numbers. In this contribution, we suggest a new weighted trapezoidal approximation of an arbitrary fuzzy number, which preserves its cores. We prove that ... Keywords: Core of fuzzy number, Fuzzy numbers, Trapezoidal fuzzy numbers, Weighted approximation

S. Abbasbandy; T. Hajjari

2010-05-01T23:59:59.000Z

406

An Efficient Algorithm for Out-of-Core Matrix Transposition  

Science Conference Proceedings (OSTI)

Efficient transposition of Out-of-core matrices has been widely studied. These efforts have focused on reducing the number of I/O operations. However, in state-of-the-art architectures, memory-memory data transfer time and index computation time are ... Keywords: matrix transpose, data transfer time, index computation time, I/O time, out-of-core, execution time

J. Suh; V. K. Prasanna

2002-04-01T23:59:59.000Z

407

MetaCore: An Application Specific DSP Development System  

E-Print Network (OSTI)

This paper describes the MeteCore system which is an ASIP(Application-Specific Instruction set Processor) deveL opmen system targeted for DSP applications. The goal of MeteCore system is to offer an efficient design methodology meeting specifications given as a combination of perorm ance, cost and design turnaround time.

Jin-Hyuk Yang; Byonng-kbon Kim; Sang-Jun Nam; Jang-Ho Cho; Sung-Won Seo; Chang-Ho Ryu; Young-Su Kwon; Dae-Hyun Lee; Jong-Yeol Lee; Jong-Sun Kim; Hyun-Dhong Yoon; Jae-Yeol Kim; Kun-Moo Lee

1998-01-01T23:59:59.000Z

408

FlexCore: Utilizing Exposed Datapath Control for Efficient Computing  

Science Conference Proceedings (OSTI)

We introduce FlexCore, the first exemplar of an architecture based on the FlexSoC framework. Comprising the same datapath units found in a conventional five-stage pipeline, the FlexCore has an exposed datapath control and a flexible interconnect to allow ... Keywords: Computer architecture, Flexible, Interconnect, Reconfigurable

Martin Thuresson; Magnus Själander; Magnus Björk; Lars Svensson; Per Larsson-Edefors; Per Stenstrom

2009-10-01T23:59:59.000Z

409

Proving Hard-Core Predicates Using List Decoding  

Science Conference Proceedings (OSTI)

We introduce a unifying framework for proving that predicate P is hard-core for a one-way function f, and apply it to a broad family of functions and predicates, reproving old results in an entirely different way as well as showing new hard-core predicates ...

Adi Akavia; Shafi Goldwasser; Samuel Safra

2003-10-01T23:59:59.000Z

410

AirCore: An Innovative Atmospheric Sampling System  

Science Conference Proceedings (OSTI)

This work describes the AirCore, a simple and innovative atmospheric sampling system. The AirCore used in this study is a 150-m-long stainless steel tube, open at one end and closed at the other, that relies on positive changes in ambient ...

Anna Karion; Colm Sweeney; Pieter Tans; Timothy Newberger

2010-11-01T23:59:59.000Z

411

Nested parallelism for multi-core HPC systems using Java  

Science Conference Proceedings (OSTI)

Since its introduction in 1993, the Message Passing Interface (MPI) has become a de facto standard for writing High Performance Computing (HPC) applications on clusters and Massively Parallel Processors (MPPs). The recent emergence of multi-core processor ... Keywords: Java MPI, MPJ, MPJ express, Multi-core messaging

Aamir Shafi; Bryan Carpenter; Mark Baker

2009-06-01T23:59:59.000Z

412

MCSE: Microsoft Windows 2000 Core Exam Set Readiness Review  

Science Conference Proceedings (OSTI)

From the Publisher:Test your readiness for core MCSE Exams 70-210, 70-215, 70-216, and 70-217 with this all-in-one set! With the Readiness Review core exam set including a companion CD, candidates of certification in Windows 2000 can sharpen their ...

Microsoft Corporation

2001-03-01T23:59:59.000Z

413

DOE Regional Partnership Begins Core Sampling for Large-Volume  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Partnership Begins Core Sampling for Large-Volume Regional Partnership Begins Core Sampling for Large-Volume Sequestration Test DOE Regional Partnership Begins Core Sampling for Large-Volume Sequestration Test May 22, 2009 - 1:00pm Addthis Washington, DC - The Plains CO2 Reduction (PCOR) Partnership, one of seven members of the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has begun collecting core samples from a new characterization well near Spectra Energy's Fort Nelson natural gas processing plant in British Columbia, Canada. Core sampling, along with a sophisticated well logging program that the partnership is conducting, is an important step in proving the viability of carbon storage in brine-saturated formations. The Fort Nelson project is on track to become one of the first

414

Core Analysis At Valles Caldera - Sulphur Springs Area (Woldegabriel &  

Open Energy Info (EERE)

Woldegabriel & Woldegabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Samples for age dating taken from core hole VC-2B in the Suphur Springs area of the Valles Caldera. References Giday WoldeGabriel, Fraser Goff (1992) K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New Mexico And Their Relation To Alteration In A Large Hydrothermal System Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Valles_Caldera_-_Sulphur_Springs_Area_(Woldegabriel_%26_Goff,_1992)&oldid=387687"

415

DOE Regional Partnership Begins Core Sampling for Large-Volume  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Partnership Begins Core Sampling for Large-Volume Regional Partnership Begins Core Sampling for Large-Volume Sequestration Test DOE Regional Partnership Begins Core Sampling for Large-Volume Sequestration Test May 22, 2009 - 1:00pm Addthis Washington, DC - The Plains CO2 Reduction (PCOR) Partnership, one of seven members of the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has begun collecting core samples from a new characterization well near Spectra Energy's Fort Nelson natural gas processing plant in British Columbia, Canada. Core sampling, along with a sophisticated well logging program that the partnership is conducting, is an important step in proving the viability of carbon storage in brine-saturated formations. The Fort Nelson project is on track to become one of the first

416

Core Technology Ventures Services CTV | Open Energy Information  

Open Energy Info (EERE)

Technology Ventures Services CTV Technology Ventures Services CTV Jump to: navigation, search Name Core Technology Ventures Services (CTV) Place Co Durham, United Kingdom Zip DL13 3DS Sector Hydro, Hydrogen Product An independent advisory team focused on seed and early stage companies developing fuel cell systems and hydrogen storage technologies. References Core Technology Ventures Services (CTV)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Core Technology Ventures Services (CTV) is a company located in Co Durham, United Kingdom . References ↑ "Core Technology Ventures Services (CTV)" Retrieved from "http://en.openei.org/w/index.php?title=Core_Technology_Ventures_Services_CTV&oldid=34391

417

Core Vessel Insert Handling Robot for the Spallation Neutron Source  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source provides the world's most intense pulsed neutron beams for scientific research and industrial development. Its eighteen neutron beam lines will eventually support up to twenty-four simultaneous experiments. Each beam line consists of various optical components which guide the neutrons to a particular instrument. The optical components nearest the neutron moderators are the core vessel inserts. Located approximately 9 m below the high bay floor, these inserts are bolted to the core vessel chamber and are part of the vacuum boundary. They are in a highly radioactive environment and must periodically be replaced. During initial SNS construction, four of the beam lines received Core Vessel Insert plugs rather than functional inserts. Remote replacement of the first Core Vessel Insert plug was recently completed using several pieces of custom-designed tooling, including a highly complicated Core Vessel Insert Robot. The design of this tool are discussed.

Graves, Van B [ORNL; Dayton, Michael J [ORNL

2011-01-01T23:59:59.000Z

418

Core Analysis At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

9) 9) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis Permitted the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes 1) Microcracks were observed in core samples. A set of observable characteristics of microcracks were discovered in racks from geothermal regions that appears to be unique and to have considerable potential for exploration for geothermal regions. Both permeability and electrical conductivity were measured for a suite of samples with a range of microcracks characteristics. A partial set of samples were collected to study migration of radioactive elements. 2) Laboratory analyses of cores

419

Model of detached plasmas  

SciTech Connect

Recently a tokamak plasma was observed in TFTR that was not limited by a limiter or a divertor. A model is proposed to explain this equilibrium, which is called a detached plasma. The model consists of (1) the core plasma where ohmic heating power is lost by anomalous heat conduction and (2) the shell plasma where the heat from the core plasma is radiated away by the atomic processes of impurity ions. A simple scaling law is proposed to test the validity of this model.

Yoshikawa, S.; Chance, M.

1986-07-01T23:59:59.000Z

420

MAGNETIZATION OF CLOUD CORES AND ENVELOPES AND OTHER OBSERVATIONAL CONSEQUENCES OF RECONNECTION DIFFUSION  

SciTech Connect

Recent observational results for magnetic fields in molecular clouds reviewed by Crutcher seem to be inconsistent with the predictions of the ambipolar diffusion theory of star formation. These include the measured decrease in mass to flux ratio between envelopes and cores, the failure to detect any self-gravitating magnetically subcritical clouds, the determination of the flat probability distribution function (PDF) of the total magnetic field strengths implying that there are many clouds with very weak magnetic fields, and the observed scaling B{proportional_to}{rho}{sup 2/3} that implies gravitational contraction with weak magnetic fields. We consider the problem of magnetic field evolution in turbulent molecular clouds and discuss the process of magnetic field diffusion mediated by magnetic reconnection. For this process that we termed 'reconnection diffusion', we provide a simple physical model and explain that this process is inevitable in view of the present-day understanding of MHD turbulence. We address the issue of the expected magnetization of cores and envelopes in the process of star formation and show that reconnection diffusion provides an efficient removal of magnetic flux that depends only on the properties of MHD turbulence in the core and the envelope. We show that as the amplitude of turbulence as well as the scale of turbulent motions decrease from the envelope to the core of the cloud, the diffusion of the magnetic field is faster in the envelope. As a result, the magnetic flux trapped during the collapse in the envelope is being released faster than the flux trapped in the core, resulting in much weaker fields in envelopes than in cores, as observed. We provide simple semi-analytical model calculations which support this conclusion and qualitatively agree with the observational results. Magnetic reconnection is also consistent with the lack of subcritical self-gravitating clouds, with the observed flat PDF of field strengths, and with the scaling of field strength with density. In addition, we demonstrate that the reconnection diffusion process can account for the empirical Larson relations and list a few other implications of the reconnection diffusion concept. We argue that magnetic reconnection provides a solution to the magnetic flux problem of star formation that agrees better with observations than the long-standing ambipolar diffusion paradigm. Due to the illustrative nature of our simplified model we do not seek quantitative agreement, but discuss the complementary nature of our approach to the three-dimensional MHD numerical simulations.

Lazarian, A. [Astronomy Department, University of Wisconsin, Madison, WI 53706 (United States); Esquivel, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510 Mexico D.F. (Mexico); Crutcher, R. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801 (United States)

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Matrix Acidizing Core Flooding Apparatus: Equipment and Procedure Description  

E-Print Network (OSTI)

Core flooding is a commonly used experimental procedure in the petroleum industry. It involves pressurizing a reservoir rock and flowing fluid through it in the laboratory. The cylindrical rock, called a core, can be cut from the reservoir during a separate core drilling operation or a formation outcrop. A core flooding apparatus suitable for matrix acidizing was designed and assembled. Matrix acidizing is a stimulation technique in which hydrochloric acid (HCl) is injected down the wellbore below formation fracture pressure to dissolve carbonate (CaCO3) rock creating high permeability streaks called wormholes. The main components of the apparatus include a continuous flow syringe pump, three core holders, a hydraulic hand pump, two accumulators, a back pressure regulator, and two pressure transducers connected through a series of tubing and valves. Due to the corrosive nature of the acid, the apparatus features Hastelloy which is a corrosion resistant metal alloy. Another substantial feature of the apparatus is the ability to apply 3000psi back pressure. This is the pressure necessary to keep CO2, a product of the CaCO3 and HCl reaction, in solution at elevated temperatures. To perform experiments at temperature, the core holder is wrapped with heating tape and surrounded by insulation. Tubing is wrapped around a heating band with insulation to heat the fluid before it enters the core. A LabVIEW graphical programming code was written to control heaters as well as record temperature and pressure drop across the core. Other considerations for the design include minimizing footprint, operational ease by the user, vertical placement of the accumulators and core holders to minimize gravity effects, and air release valves. Core floods can be performed at varying injection rates, temperatures and pressures up to 5000psi and 250 degF. The apparatus can handle small core plugs, 1’’ diameter X 1’’ length, up to 4’’ X 20’’ cores. The equipment description includes the purpose, relevant features, and connections to the system for each component. Finally documented is the procedure to run a core flooding test to determine permeability and inject acid complete with an analysis of pressure response data.

Grabski, Elizabeth 1985-

2012-12-01T23:59:59.000Z

422

Development of a multicell methodology to account for heterogeneous core effects in the core-analysis diffusion code  

Science Conference Proceedings (OSTI)

In CANDU R reactor calculations, the lattice-cell cross sections are calculated with WIMS-AECL, and the three-dimensional core neutron-flux and power distributions are calculated with RFSP-IST. The lattice-cell cross sections employed in RFSP-IST and in many other commercial core-analysis diffusion codes are usually based on the use of single-lattice-cell calculations, without considering the effects of the environment. This approximation is not sufficiently accurate for heterogeneous core configurations in the ACR-1000{sup TM}. A multicell correction method is therefore developed in RFSP-IST to account for heterogeneous core effects in the design and analysis of ACR-1000. The calculation results show that the multicell methodology developed in RFSP-IST is effective, generic, and it works well for ACR core analysis. (authors)

Shen, W. [Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ont. L5K 1B2 (Canada)

2006-07-01T23:59:59.000Z

423

Articular human joint modelling  

Science Conference Proceedings (OSTI)

The work reported in this paper encapsulates the theories and algorithms developed to drive the core analysis modules of the software which has been developed to model a musculoskeletal structure of anatomic joints. Due to local bone surface and contact ... Keywords: 6DOF, Joint Modelling, Software, Tissue wrapping, bilateral, constraints, forced contact based articulation, unilateral

Ibrahim i. Esat; Neviman Ozada

2010-03-01T23:59:59.000Z

424

PWR core and spent fuel pool analysis using scale and nestle  

SciTech Connect

The SCALE nuclear analysis code system [SCALE, 2011], developed and maintained at Oak Ridge National Laboratory (ORNL) is widely recognized as high quality software for analyzing nuclear systems. The SCALE code system is composed of several validated computer codes and methods with standard control sequences, such as the TRITON/NEWT lattice physics sequence, which supplies dependable and accurate analyses for industry, regulators, and academia. Although TRITON generates energy-collapsed and space-homogenized few group cross sections, SCALE does not include a full-core nodal neutron diffusion simulation module within. However, in the past few years, the open-source NESTLE core simulator [NESTLE, 2003], originally developed at North Carolina State Univ. (NCSU), has been updated and upgraded via collaboration between ORNL and the Univ. of Tennessee (UT), so it now has a growingly seamless coupling to the TRITON/NEWT lattice physics [Galloway, 2010]. This study presents the methodology used to couple lattice physics data between TRITON and NESTLE in order to perform a three-dimensional full-core analysis employing a 'real-life' Duke Energy PWR as the test bed. The focus for this step was to compare the key parameters of core reactivity and radial power distribution versus plant data. Following the core analysis, following a three cycle burn, a spent fuel pool analysis was done using information generated from NESTLE for the discharged bundles and was compared to Duke Energy spent fuel pool models. The KENO control module from SCALE was employed for this latter stage of the project. (authors)

Murphy, J. E.; Maldonado, G. I. [Dept. of Nuclear Engineering, Univ. of Tennessee, Knoxville, TN 37996-2300 (United States); St Clair, R.; Orr, D. [Duke Energy, 526 S. Church St, Charlotte, NC 28202 (United States)

2012-07-01T23:59:59.000Z

425

WIMS/PANTHER analysis of UO{sub 2}/MOX cores using embedded super-cells  

Science Conference Proceedings (OSTI)

This paper describes a method of analysing PWR UO{sub 2}MOX cores with WIMS/PANTHER. Embedded super-cells, run within the reactor code, are used to correct the standard methodology of using 2-group smeared data from single assembly lattice calculations. In many other codes the weakness of this standard approach has been improved for MOX by imposing a more realistic environment in the lattice code, or by improving the sophistication of the reactor code. In this approach an intermediate set of calculations is introduced, leaving both lattice and reactor calculations broadly unchanged. The essence of the approach is that the whole core is broken down into a set of 'embedded' super-cells, each extending over just four quarter assemblies, with zero leakage imposed at the assembly mid-lines. Each supercell is solved twice, first with a detailed multi-group pin-by-pin solution, and then with the standard single assembly approach. Correction factors are defined by comparing the two solutions, and these can be applied in whole core calculations. The restriction that all such calculations are modelled with zero leakage means that they are independent of each other and of the core-wide flux shape. This allows parallel pre-calculation for the entire cycle once the loading pattern has been determined, in much the same way that single assembly lattice calculations can be pre-calculated once the range of fuel types is known. Comparisons against a whole core pin-by-pin reference demonstrates that the embedding process does not introduce a significant error, even after burnup and refuelling. Comparisons against a WIMS reference demonstrate that a pin-by-pin multi-group diffusion solution is capable of capturing the main interface effects. This therefore defines a practical approach for achieving results close to lattice code accuracy, but broadly at the cost of a standard reactor calculation. (authors)

Knight, M.; Bryce, P. [EDF Energy, Barnett Way, Barnwood, Gloucester (United Kingdom); Hall, S. [Advanced Modelling and Computation Group, Imperial College, London (United Kingdom)

2012-07-01T23:59:59.000Z

426

Concentric core optical fiber with multiple-mode signal transmission  

DOE Patents (OSTI)

A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion. 3 figs.

Muhs, J.D.

1997-05-06T23:59:59.000Z

427

Preliminary engineering design of sodium-cooled CANDLE core  

Science Conference Proceedings (OSTI)

The CANDLE burning process is characterized by the autonomous shifting of burning region with constant reactivity and constant spacial power distribution. Evaluations of such critical burning process by using widely used neutron diffusion and burning codes under some realistic engineering constraints are valuable to confirm the technical feasibility of the CANDLE concept and to put the idea into concrete core design. In the first part of this paper, it is discussed that whether the sustainable and stable CANDLE burning process can be reproduced even by using conventional core analysis tools such as SLAROM and CITATION-FBR. As a result, it is certainly possible to demonstrate it if the proper core configuration and initial fuel composition required as CANDLE core are applied to the analysis. In the latter part, an example of a concrete image of sodium cooled, metal fuel, 2000MWt rating CANDLE core has been presented by assuming an emerging inevitable technology of recladding. The core satisfies engineering design criteria including cladding temperature, pressure drop, linear heat rate, and cumulative damage fraction (CDF) of cladding, fast neutron fluence and sodium void reactivity which are defined in the Japanese FBR design project. It can be concluded that it is feasible to design CANDLE core by using conventional codes while satisfying some realistic engineering design constraints assuming that recladding at certain time interval is technically feasible.

Takaki, Naoyuki; Namekawa, Azuma; Yoda, Tomoyuki; Mizutani, Akihiko; Sekimoto, Hiroshi [Department of Nuclear Engineering, Tokai University, Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); AISA, Fuchu, Ishioka, Ibaraki 315-0013 (Japan); Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550 (Japan)

2012-06-06T23:59:59.000Z

428

Concentric core optical fiber with multiple-mode signal transmission  

DOE Patents (OSTI)

A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion.

Muhs, Jeffrey D. (Lenoir City, TN)

1997-01-01T23:59:59.000Z

429

Ru L[subscript 2,3] XANES theoretical simulation with DFT: A test of the core-hole treatment  

SciTech Connect

Density functional theory (DFT)-based relativistic calculations were performed to model the Ru L-edge X-ray absorption near edge structure (XANES) spectra of the hexaammineruthenium complex [Ru(NH{sub 3}){sub 6}]{sup 3+} and 'blue dimer' water oxidation catalyst, cis,cis- [(bpy){sub 2}(H{sub 2}O)Ru{sup III}ORu{sup III}(OH{sub 2})(bpy){sub 2}]{sup 4+} (bpy is 2,2-bipyridine). Two computational approaches were compared: simulations without the core-hole and by modeling of the core-hole within the Z+1 approximation. Good agreement between calculated and experimental XANES spectra is achieved without including the core-hole. Simulations with algorithms beyond the Z+1 approximation were only possible in a framework of the scalar relativistic treatment. Time-dependent DFT (TD-DFT) was used to compute the Ru L-edge spectrum for [Ru(NH{sub 3}){sub 6}]{sup 3+} model compound. Three different core-hole treatments were compared in a real-space full multiple scattering XANES modeling within the Green function formalism (implemented in the FEFF9.5 package) for the [Ru(Mebimpy)(bpm)(H{sub 2}O)]{sup 2+} complex. The latter approaches worked well in cases where spin-orbit treatment of relativistic effects is not required.

Alperovich, Igor; Moonshiram, Dooshaye; Soldatov, Alexander; Pushkar, Yulia (SFU-Russia); (Purdue)

2012-10-09T23:59:59.000Z

430

Core Analysis At Raft River Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

6) 6) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Fracture analysis to determine if sealing or open fractures exist Notes Core samples show diagenesis superimposed on episodic fracturing and fracture sealing. The minerals that fill fractures show significant temporal variations. Fracture sealing and low fracture porosity imply that only the most recently formed fractures are open to fluids. References Michael L. Batzle; Gene Simmons (1 January 1976) Microfractures in rocks from two geothermal areas Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Raft_River_Geothermal_Area_(1976)&oldid=47383

431

Core Analysis At Dunes Geothermal Area (1976) | Open Energy Information  

Open Energy Info (EERE)

Dunes Geothermal Area (1976) Dunes Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Dunes Geothermal Area (1976) Exploration Activity Details Location Dunes Geothermal Area Exploration Technique Core Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Fracture analysis to determine if sealing or open fractures exist Notes Core samples show diagenesis superimposed on episodic fracturing and fracture sealing. The minerals that fill fractures show significant temporal variations. Fracture sealing and low fracture porosity imply that only the most recently formed fractures are open to fluids. References Michael L. Batzle; Gene Simmons (1 January 1976) Microfractures in rocks from two geothermal areas

432

Probing the Sun's inner core using solar neutrinos: a new diagnostic method  

E-Print Network (OSTI)

The electronic density in the Sun's inner core is inferred from the 8B, 7Be and pep neutrino flux measurements of the Super-Kamiokande, SNO and Borexino experiments. We have developed a new method in which we use the KamLAND detector determinations of the neutrino fundamental oscillation parameters: the mass difference and the vacuum oscillation angle. Our results suggest that the solar electronic density in the Sun's inner core (for a radius smaller than 10% of the solar radius) is well above the current prediction of the standard solar model, and by as much as 25%. A potential confirmation of these preliminary findings can be achieved when neutrino detectors are able to reduce the error of the electron-neutrino survival probability by a factor of 15.

Ilídio Lopes

2013-08-15T23:59:59.000Z

433

Localization of electric field distribution in graded core-shell metamaterials  

E-Print Network (OSTI)

The local electric field distribution has been investigated in a core-shell cylindrical metamaterial structure under the illumination of a uniform incident optical field. The structure consists of a homogeneous dielectric core, a shell of graded metal-dielectric metamaterial, embedded in a uniform matrix. In the quasi-static limit, the permittivity of the metamaterial is given by the graded Drude model. The local electric potentials and hence the electric fields have been derived exactly and analytically in terms of hyper-geometric functions. Our results showed that the peak of the electric field inside the cylindrical shell can be confined in a desired position by varying the frequency of the optical field and the parameters of the graded profiles. Thus, by fabricating graded metamaterials, it is possible to control electric field distribution spatially. We offer an intuitive explanation for the gradation-controlled electric field distribution.

Wei, En-Bo; 10.1103/PhysRevE.80.046607

2009-01-01T23:59:59.000Z

434

Probing the Sun's inner core using solar neutrinos: a new diagnostic method  

E-Print Network (OSTI)

The electronic density in the Sun's inner core is inferred from the 8B, 7Be and pep neutrino flux measurements of the Super-Kamiokande, SNO and Borexino experiments. We have developed a new method in which we use the KamLAND detector determinations of the neutrino fundamental oscillation parameters: the mass difference and the vacuum oscillation angle. Our results suggest that the solar electronic density in the Sun's inner core (for a radius smaller than 10% of the solar radius) is well above the current prediction of the standard solar model, and by as much as 25%. A potential confirmation of these preliminary findings can be achieved when neutrino detectors are able to reduce the error of the electron-neutrino survival probability by a factor of 15.

Lopes, Ilídio

2013-01-01T23:59:59.000Z

435

The National Energy Modeling System: An Overview 1998 - Macroeconomic...  

Gasoline and Diesel Fuel Update (EIA)

of the Underlying Core Models Macroeconomic assessment at EIA involves several modes of analysis. The first type of analysis, used in forecasting the Annual Energy Outlook where...

436

Core Analysis At Fenton Hill Hdr Geothermal Area (Laughlin, Et...  

Open Energy Info (EERE)

Activity Date Usefulness useful DOE-funding Unknown Notes A few cores (see Table I), cuttings collected at 1.5- or 3-m intervals, and random samples from a "junk basket" run...

437

Core Analysis At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

2011) 2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Explore for development of an EGS demonstration project Notes Core was obtained from RRG-3C. The sample is a brecciated and altered siltstone from the base of the Tertiary sequence and is similar to rocks at the base of the Tertiary deposits in RRG-9. The results of thermal and quasi-static mechanical property measurements that were conducted on the core sample are presented. References Jones, C.; Moore, J.; Teplow, W.; Craig, S. (1 January 2011) GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Raft_River_Geothermal_Area_(2011)&oldid=473834

438

Probing Core-Hole Localization in Molecular Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Core-Hole Localization in Molecular Nitrogen Print Probing Core-Hole Localization in Molecular Nitrogen Print The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum question-whether the core hole is localized or delocalized-has remained elusive for diatomic molecules in which both atoms are the same element. An international team of scientists from the University of Frankfurt in Germany, Berkeley Lab, Kansas State University, and Auburn University has now resolved the issue with an appropriate twist of quantum fuzziness. By means of coincident detection of the photoelectron ejected from molecular nitrogen and the Auger electron emitted femtoseconds later, the team found that how the measurements are done determines which description-localized or delocalized-is valid.

439

Mineral Deformation at Earth's Core-Mantle Boundary  

NLE Websites -- All DOE Office Websites (Extended Search)

Mineral Deformation at Earth's Core-Mantle Boundary Print Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of the constituent minerals. To understand the deformation mechanisms of mineral phases at this depth, researchers from Yale and UC Berkeley re-created the ultrahigh pressures of the deep Earth at ALS Beamline 12.2.2 while conducting in situ x-ray diffraction experiments to probe changes in crystal orientations.

440

Core Analysis At Coso Geothermal Area (1980) | Open Energy Information  

Open Energy Info (EERE)

Core Analysis At Coso Geothermal Area (1980) Core Analysis At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Core Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the heat transfer mechanism Notes In an investigation of the thermal regime of this Basin and Range geothermal area, temperature measurements were made in 25 shallow and 1 intermediate depth borehole. Thermal conductivity measurements were made on 312 samples from cores and drill cuttings. The actual process by which heat is transferred is rather complex; however, the heat flow determinations can be divided into two groups. The first group, less than 4.0 HFU, are indicative of regions with primarily conductive regimes, although

Note: This page contains sample records for the topic "larger core models" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Probing Core-Hole Localization in Molecular Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Core-Hole Localization in Molecular Nitrogen Print Probing Core-Hole Localization in Molecular Nitrogen Print The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum question-whether the core hole is localized or delocalized-has remained elusive for diatomic molecules in which both atoms are the same element. An international team of scientists from the University of Frankfurt in Germany, Berkeley Lab, Kansas State University, and Auburn University has now resolved the issue with an appropriate twist of quantum fuzziness. By means of coincident detection of the photoelectron ejected from molecular nitrogen and the Auger electron emitted femtoseconds later, the team found that how the measurements are done determines which description-localized or delocalized-is valid.

442

Mineral Deformation at Earth's Core-Mantle Boundary  

NLE Websites -- All DOE Office Websites (Extended Search)

Mineral Deformation at Earth's Core-Mantle Boundary Print Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of the constituent minerals. To understand the deformation mechanisms of mineral phases at this depth, researchers from Yale and UC Berkeley re-created the ultrahigh pressures of the deep Earth at ALS Beamline 12.2.2 while conducting in situ x-ray diffraction experiments to probe changes in crystal orientations.

443

Hanging core support system for a nuclear reactor. [LMFBR  

DOE Patents (OSTI)

For holding the reactor core in the confining reactor vessel, a support is disclosed that is structurally independent of the vessel, that is dimensionally accurate and stable, and that comprises tandem tension linkages that act redundantly of one another to maintain stabilized core support even in the unlikely event of the complete failure of one of the linkages. The core support has a mounting platform for the reactor core, and unitary structure includi