Powered by Deep Web Technologies
Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

VP 100: New Facility in Boston to Test Large-Scale Wind Blades | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VP 100: New Facility in Boston to Test Large-Scale Wind Blades VP 100: New Facility in Boston to Test Large-Scale Wind Blades VP 100: New Facility in Boston to Test Large-Scale Wind Blades July 23, 2010 - 1:19pm Addthis Boston's Wind Technology Testing Center, funded in part with Recovery Act funds, will be first in U.S. to test blades up to 300 feet long. | Photo Courtesy of Massachusetts Clean Energy Center Boston's Wind Technology Testing Center, funded in part with Recovery Act funds, will be first in U.S. to test blades up to 300 feet long. | Photo Courtesy of Massachusetts Clean Energy Center Stephen Graff Former Writer & editor for Energy Empowers, EERE America's first-of-its-kind wind blade testing facility - capable of testing a blade as long as a football field - almost never was. Because of funding woes, the Massachusetts Clean Energy Center (MassCEC),

2

Large-Scale Offshore Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Large-Scale Offshore Wind Power in the United States EXECUTIVE SUMMARY September 2010 NOTICE This report was prepared as an account of work sponsored by an agency of the United...

3

Superconductivity for Large Scale Wind Turbines  

SciTech Connect

A conceptual design has been completed for a 10MW superconducting direct drive wind turbine generator employing low temperature superconductors for the field winding. Key technology building blocks from the GE Wind and GE Healthcare businesses have been transferred across to the design of this concept machine. Wherever possible, conventional technology and production techniques have been used in order to support the case for commercialization of such a machine. Appendices A and B provide further details of the layout of the machine and the complete specification table for the concept design. Phase 1 of the program has allowed us to understand the trade-offs between the various sub-systems of such a generator and its integration with a wind turbine. A Failure Modes and Effects Analysis (FMEA) and a Technology Readiness Level (TRL) analysis have been completed resulting in the identification of high risk components within the design. The design has been analyzed from a commercial and economic point of view and Cost of Energy (COE) calculations have been carried out with the potential to reduce COE by up to 18% when compared with a permanent magnet direct drive 5MW baseline machine, resulting in a potential COE of 0.075 $/kWh. Finally, a top-level commercialization plan has been proposed to enable this technology to be transitioned to full volume production. The main body of this report will present the design processes employed and the main findings and conclusions.

R. Fair; W. Stautner; M. Douglass; R. Rajput-Ghoshal; M. Moscinski; P. Riley; D. Wagner; J. Kim; S. Hou; F. Lopez; K. Haran; J. Bray; T. Laskaris; J. Rochford; R. Duckworth

2012-10-12T23:59:59.000Z

4

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...  

Open Energy Info (EERE)

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

5

SERI advanced wind turbine blades  

DOE Green Energy (OSTI)

The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

6

SERI advanced wind turbine blades  

DOE Green Energy (OSTI)

The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

7

Large-scale structure of the fast solar wind  

E-Print Network (OSTI)

2001), Connecting the Sun and the Solar Wind: Comparison of592: Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere,scenario, the fast solar wind from the quiet Sun wind would

Bisi, M. M.; Fallows, R. A.; Breen, A. R.; Habbal, S. Rifai; Jones, R. A.

2007-01-01T23:59:59.000Z

8

Large-scale structure of the fast solar wind  

E-Print Network (OSTI)

measurements of Solar Wind velocity, in press, Journal of1992), The Ulysses solar wind plasma experiment, AstronomyA. Hewish (1967), The solar wind outside the plane of the

Bisi, M. M.; Fallows, R. A.; Breen, A. R.; Habbal, S. Rifai; Jones, R. A.

2007-01-01T23:59:59.000Z

9

Potential Climatic Impacts and Reliability of Very Large-Scale Wind Farms  

E-Print Network (OSTI)

Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has ...

Wang, Chien

10

Variability of Load and Net Load in Case of Large Scale Distributed Wind Power  

Science Conference Proceedings (OSTI)

Large scale wind power production and its variability is one of the major inputs to wind integration studies. This paper analyses measured data from large scale wind power production. Comparisons of variability are made across several variables: time scale (10-60 minute ramp rates), number of wind farms, and simulated vs. modeled data. Ramp rates for Wind power production, Load (total system load) and Net load (load minus wind power production) demonstrate how wind power increases the net load variability. Wind power will also change the timing of daily ramps.

Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Gomez-Lazaro, E.; Rawn, B.; Dobschinski, J.; Meibom, P.; Lannoye, E.; Aigner, T.; Wan, Y. H.; Milligan, M.

2011-01-01T23:59:59.000Z

11

Wind Turbine Blade Structural Health Monitoring  

Science Conference Proceedings (OSTI)

Structural health monitoring (SHM) is the automated inspection and evaluation of structures such as wind turbine blades. This report examines the current state-of-the-art blade SHM systems, identifies future trends, and outlines a methodology for probabilistic cost-benefit analysis of the application of SHM systems to wind turbine blades. The reliability of wind turbine blades is an ongoing concern for the wind industry. Applying SHM to blades may be one way to reduce blade failure rates and reduce the d...

2010-12-31T23:59:59.000Z

12

Structural Health Monitoring of Wind Turbine Blades  

Science Conference Proceedings (OSTI)

Presentation Title, Structural Health Monitoring of Wind Turbine Blades. Author(s) ... is mandatory for the cost-effective operation of an offshore wind power plant.

13

Large-scale structure of the fast solar wind  

E-Print Network (OSTI)

Scintillation measurements of Solar Wind velocity, in press,K. Sakurai (1992), The Ulysses solar wind plasma experiment,Telescope for the SOHO Mission, Solar Physics, 162, 291–312.

Bisi, M. M.; Fallows, R. A.; Breen, A. R.; Habbal, S. Rifai; Jones, R. A.

2007-01-01T23:59:59.000Z

14

Effect of Large-Scale Wind Farm on Transient Stability  

Science Conference Proceedings (OSTI)

Faced with the sever situation about the environment and the fuel under the earth, people are now resorting to clean energy, especially the wind power because of their many advantages, to meet their ever increasing demand for power electricity. Therefore, ... Keywords: wind farm, transient stability, voltage oscillations, network structures, wind power penetration level, critical clearing time (CCT)

Yanxu Chen; Zifa Liu

2010-06-01T23:59:59.000Z

15

Wooden wind turbine blade manufacturing process  

DOE Patents (OSTI)

A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis.

Coleman, Clint (Warren, VT)

1986-01-01T23:59:59.000Z

16

The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource  

E-Print Network (OSTI)

The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over on Wind Energy Resource over Europe and its Intermittency Pascal Kriesche* and Adam Schlosser* Abstract In times of increasing importance of wind power in the world's energy mix, this study focuses on a better

17

Blade Testing at NREL's National Wind Technology Center (NWTC) (Presentation)  

DOE Green Energy (OSTI)

Presentation of Blade Testing at NREL's National Wind Technology Center for the 2010 Sandia National Laboratories Blade Testing Workshop.

Hughes, S.

2010-07-20T23:59:59.000Z

18

Announcement of a Cooperative Research and Development Agreement (CRADA) Opportunity for a Large-Scale Blade Test Facility Partnership  

DOE Green Energy (OSTI)

The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) is seeking government, private, or non-profit partners to design, construct, and assist in operating one or more wind turbine blade test facilities capable of testing blades up to at least 70 m (230 ft) in length. DOE/NREL encourages interested parties to respond to this CRADA announcement with a proposal by September 1, 2006.

Not Available

2006-05-01T23:59:59.000Z

19

Announcement of a Cooperative Research and Development Agreement (CRADA) Opportunity for a Large-Scale Blade Test Facility Partnership  

SciTech Connect

The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) is seeking government, private, or non-profit partners to design, construct, and assist in operating one or more wind turbine blade test facilities capable of testing blades up to at least 70 m (230 ft) in length. DOE/NREL encourages interested parties to respond to this CRADA announcement with a proposal by September 1, 2006.

2006-05-01T23:59:59.000Z

20

NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354  

DOE Green Energy (OSTI)

This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

Hughes, S.

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fatigue of Wind Blade Laminates:Fatigue of Wind Blade Laminates: Effects of Resin and Fabric Structure  

E-Print Network (OSTI)

Fatigue of Wind Blade Laminates:Fatigue of Wind Blade Laminates: Effects of Resin and Fabric University MCARE 2012 #12;Outline · Overview of MSU Fatigue Program on Wind Blade MaterialsWind Blade Wind Blade Component Materials Acknowledgements: Sandia National Laboratories/DOE (Joshua Paquette

22

Load attenuating passively adaptive wind turbine blade  

DOE Patents (OSTI)

A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

Veers, Paul S. (Albuquerque, NM); Lobitz, Donald W. (Albuquerque, NM)

2003-01-01T23:59:59.000Z

23

Applications: Wind turbine and blade design  

E-Print Network (OSTI)

Capability Applications: Wind turbine and blade design optimization Energy production enhancement Summary: As the wind energy industry works to provide the infra- structure necessary for wind turbine develops a means to aug- ment power production with wind-derived energy. Turbines have become massive

24

Large-Scale Wind Integration Studies in the United States: Preliminary Results  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory, under the sponsorship of the U.S. Department of Energy, is managing two large-scale wind integration studies. The Western Wind and Solar Integration Study (WWSIS) covers the footprint of WestConnect, a group of transmission owners that covers most of Colorado, New Mexico, Arizona, Nevada, and Wyoming. The Eastern Wind Integration and Transmission Study (EWITS) covers a large part of the Eastern Interconnection, and leverages a large-scale transmission study known as the Joint Coordinated System Plan (JCSP). Both studies analyze the impact of 20-30% wind energy penetration within the study footprint based on energy. This paper discusses key results that have emerged so far from each study, focusing primarily on simulation results based on hourly production simulations. Results from both studies show that high wind penetrations can be successfully integrated into the power system, but depend on sufficient transmission and significant changes in operations.

Milligan, M.; Lew, D.; Corbus, D.; Piwko, R.; Miller, N.; Clark, K.; Jordan, G.; Freeman, L.; Zavadil, B.; Schuerger, M.

2009-01-01T23:59:59.000Z

25

Cost Study for Large Wind Turbine Blades  

SciTech Connect

The cost study for large wind turbine blades reviewed three blades of 30 meters, 50 meters, and 70 meters in length. Blade extreme wind design loads were estimated in accordance with IEC Class I recommendations. Structural analyses of three blade sizes were performed at representative spanwise stations assuming a stressed shell design approach and E-glass/vinylester laminate. A bill of materials was prepared for each of the three blade sizes using the laminate requirements prepared during the structural analysis effort. The labor requirements were prepared for twelve major manufacturing tasks. TPI Composites developed a conceptual design of the manufacturing facility for each of the three blade sizes, which was used for determining the cost of labor and overhead (capital equipment and facilities). Each of the three potential manufacturing facilities was sized to provide a constant annual rated power production (MW per year) of the blades it produced. The cost of the production tooling and overland transportation was also estimated. The results indicate that as blades get larger, materials become a greater proportion of total cost, while the percentage of labor cost is decreased. Transportation costs decreased as a percentage of total cost. The study also suggests that blade cost reduction efforts should focus on reducing material cost and lowering manufacturing labor, because cost reductions in those areas will have the strongest impact on overall blade cost.

ASHWILL, THOMAS D.

2003-05-01T23:59:59.000Z

26

The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over Europe and its Intermittency  

E-Print Network (OSTI)

In times of increasing importance of wind power in the world’s energy mix, this study focuses on a better understanding of the influences of large-scale climate variability on wind power resource over Europe. The impact ...

Kriesche, Pascal

27

Department of Energy to Invest up to $4 Million for Wind Turbine Blade  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

up to $4 Million for Wind Turbine up to $4 Million for Wind Turbine Blade Testing Facilities Department of Energy to Invest up to $4 Million for Wind Turbine Blade Testing Facilities June 25, 2007 - 2:07pm Addthis New facilities in Massachusetts and Texas will bring cutting-edge technology to wind research WASHINGTON, DC - The U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE has selected the Commonwealth of Massachusetts Partnership in Massachusetts, and the Lone Star Wind Alliance in Texas, to each receive up to $2 million in test equipment to develop large-scale wind blade test facilities, accelerating the commercial availability of wind energy. These consortia have been selected to negotiate cooperative research and development agreements (CRADAs) to

28

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine  

Open Energy Info (EERE)

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name Sinomatech Wind Power Blade (aka Sinoma Science & Technology Wind Turbine Blade Co Ltd) Place Nanjing, Jiangsu Province, China Zip 210012 Sector Wind energy Product Jiangsu-based wind turbine blade manufactuer. Coordinates 32.0485°, 118.778969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.0485,"lon":118.778969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

TECHNICALADVANCES IN EPOXY TECHNOLOGY FOR WIND TURBINE BLADE COMPOSITE FABRICATION  

E-Print Network (OSTI)

TECHNICALADVANCES IN EPOXY TECHNOLOGY FOR WIND TURBINE BLADE COMPOSITE FABRICATION George C. Jacob reliability in many demanding applications including components for aerospace and wind turbine blades. While in operation, wind turbine blades are subjected to significant stresses from their movement, wind and other

30

Baoding Tianwei Wind Power Blade Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Tianwei Wind Power Blade Co Ltd Tianwei Wind Power Blade Co Ltd Jump to: navigation, search Name Baoding Tianwei Wind Power Blade Co Ltd Place Hebei Province, China Sector Wind energy Product Wind turbine blade maker. References Baoding Tianwei Wind Power Blade Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Baoding Tianwei Wind Power Blade Co Ltd is a company located in Hebei Province, China . References ↑ "Baoding Tianwei Wind Power Blade Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Baoding_Tianwei_Wind_Power_Blade_Co_Ltd&oldid=342529" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

31

Methods of making wind turbine rotor blades  

DOE Patents (OSTI)

A method of manufacturing a root portion of a wind turbine blade includes, in an exemplary embodiment, providing an outer layer of reinforcing fibers including at least two woven mats of reinforcing fibers, providing an inner layer of reinforcing fibers including at least two woven mats of reinforcing fibers, and positioning at least two bands of reinforcing fibers between the inner and outer layers, with each band of reinforcing fibers including at least two woven mats of reinforcing fibers. The method further includes positioning a mat of randomly arranged reinforcing fibers between each pair of adjacent bands of reinforcing fibers, introducing a polymeric resin into the root potion of the wind turbine blade, infusing the resin through the outer layer, the inner layer, each band of reinforcing fibers, and each mat of random reinforcing fibers, and curing the resin to form the root portion of the wind turbine blade.

Livingston, Jamie T. (Pensacola, FL); Burke, Arthur H. E. (Gulf Breeze, FL); Bakhuis, Jan Willem (Nijverdal, NL); Van Breugel, Sjef (Enschede, NL); Billen, Andrew (Daarlerveen, NL)

2008-04-01T23:59:59.000Z

32

EFFECTS OF FIBER WAVINESS ON COMPOSITES FOR WIND TURBINE BLADES  

E-Print Network (OSTI)

EFFECTS OF FIBER WAVINESS ON COMPOSITES FOR WIND TURBINE BLADES J.F. Mandell D.D. Samborsky and L Composite materials of interest for wind turbine blades use relatively low cost fibers, resins and processes WORDS: Composite Materials, Fiber Waviness, Compressive Strength #12;1. INTRODUCTION Wind turbine blades

33

Method of making a wooden wind turbine blade  

DOE Patents (OSTI)

A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis.

Coleman, Clint (Warren, VT)

1984-01-01T23:59:59.000Z

34

Method of making a wooden wind turbine blade  

DOE Patents (OSTI)

A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis. 8 figs.

Coleman, C.

1984-08-14T23:59:59.000Z

35

Wind blade spar cap and method of making  

DOE Patents (OSTI)

A wind blade spar cap for strengthening a wind blade including an integral, unitary three-dimensional woven material having a first end and a second end, corresponding to a root end of the blade and a tip end of the blade, wherein the material tapers in width from the first to the second end while maintaining a constant thickness and decreasing weight therebetween, the cap being capable of being affixed to the blade for providing increased strength with controlled variation in weight from the root end to the tip end based upon the tapered width of the material thereof. The present inventions also include the method of making the wind blade spar cap and a wind blade including the wind blade spar cap.

Mohamed, Mansour H. (Raleigh, NC)

2008-05-27T23:59:59.000Z

36

NREL: Wind Research - National Wind Technology Center Blade Testing Video  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Blade Testing Video (Text Version) Center Blade Testing Video (Text Version) Below is the text version for the National Wind Technology Center Blade Testing Video. The video opens with the NREL and NWTC logos, surrounded by black screen and including the title: "NWTC Test Facility Introduction, Dr. Fort Felker, Director of the National Wind Technology Center, TRT 1:42, May 29, 2013." Fort Felker is in a yellow helmet and vest, standing in the NWTC's testing facility. There is a railing to his left, construction cones behind him, and a ladder to his right. Fort Felker: "I'm Fort Felker, I'm the director at the Department of Energy's National Wind Technology Center." Fort's name and title cut in on the right. Fort walks toward the camera while talking. Fort Felker: "Here at the NWTC, we have been conducting structural testing

37

Vertical axis wind turbine with continuous blade angle adjustment  

E-Print Network (OSTI)

The author presents a concept for a vertical axis wind turbine that utilizes each blade's entire rotational cycle for power generation. Each blade has its own vertical axis of rotation and is constrained to rotate at the ...

Weiss, Samuel Bruce

2010-01-01T23:59:59.000Z

38

Dynamic stall on wind turbine blades  

DOE Green Energy (OSTI)

Dynamic loads must be predicted accurately in order to estimate the fatigue life of wind turbines operating in turbulent environments. Dynamic stall contributes to increased dynamic loads during normal operation of all types of horizontal-axis wind turbine (HAWTs). This report illustrates how dynamic stall varies throughout the blade span of a 10 m HAWT during yawed and unyawed operating conditions. Lift, drag, and pitching moment coefficients during dynamics stall are discussed. Resulting dynamic loads are presented, and the effects of dynamic stall on yaw loads are demonstrated using a yaw loads dynamic analysis (YAWDYN). 12 refs., 22 figs., 1 tab.

Butterfield, C.P.; Simms, D.; Scott, G. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Hansen, A.C. [Utah Univ., Salt Lake City, UT (United States)] [Utah Univ., Salt Lake City, UT (United States)

1991-12-01T23:59:59.000Z

39

ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration  

DOE Green Energy (OSTI)

The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An intelligent controller that increases battery life within hybrid energy storage systems for wind application was developed. Comprehensive studies have been conducted and simulation results are analyzed. A permanent magnet synchronous generator, coupled with a variable speed wind turbine, is connected to a power grid (14-bus system). A rectifier, a DC-DC converter and an inverter are used to provide a complete model of the wind system. An Energy Storage System (ESS) is connected to a DC-link through a DC-DC converter. An intelligent controller is applied to the DC-DC converter to help the Voltage Source Inverter (VSI) to regulate output power and also to control the operation of the battery and supercapacitor. This ensures a longer life time for the batteries. The detailed model is simulated in PSCAD/EMTP. Additionally, economic analysis has been done for different methods that can reduce the wind power output fluctuation. These methods are, wind power curtailment, dumping loads, battery energy storage system and hybrid energy storage system. From the results, application of single advanced HESS can save more money for wind turbines owners. Generally the income would be the same for most of methods because the wind does not change and maximum power point tracking can be applied to most systems. On the other hand, the cost is the key point. For short term and small wind turbine, the BESS is the cheapest and applicable method while for large scale wind turbines and wind farms the application of advanced HESS would be the best method to reduce the power fluctuation. The key outcomes of this project include a new intelligent controller that can reduce energy exchanged between the battery and DC-link, reduce charging/discharging cycles, reduce depth of discharge and increase time interval between charge/discharge, and lower battery temperature. This improves the overall lifetime of battery energy storages. Additionally, a new design method based on probability help optimize the power capacity specification for BESS and super-capacitors. Recommendations include experimental imp

David Wenzhong Gao

2012-09-30T23:59:59.000Z

40

NREL: Wind Research - Fabric-Covered Blades Could Make Wind Turbines...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabric-Covered Blades Could Make Wind Turbines Cheaper and More Efficient A photo of a crew of workers watching as a wind blade is hauled up to a turbine for assembly. A new...

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Help Wanted at Kansas Wind Blade Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Help Wanted at Kansas Wind Blade Company Help Wanted at Kansas Wind Blade Company Help Wanted at Kansas Wind Blade Company July 12, 2010 - 12:00pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE Last year, Israel Sanchez, a 31-year-old Newton, Kan., resident, was painting the blades of wind turbines for Enertech, Inc., a small-scale wind manufacturer. Now he's assembling the entire system. "They promoted me," says Sanchez, taking a quick break from the assembly line in the 10,000 square-foot plant in Newton. "It's a new field for me, but I'm excited because it's all new experiences every day." Sanchez is assembling Enertech's new wind models using an innovative blade design licensed from the National Renewable Energy Laboratory (NREL) in Golden, Colo., on its 40 kW turbines.

42

Help Wanted at Kansas Wind Blade Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wanted at Kansas Wind Blade Company Wanted at Kansas Wind Blade Company Help Wanted at Kansas Wind Blade Company July 12, 2010 - 12:00pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE Last year, Israel Sanchez, a 31-year-old Newton, Kan., resident, was painting the blades of wind turbines for Enertech, Inc., a small-scale wind manufacturer. Now he's assembling the entire system. "They promoted me," says Sanchez, taking a quick break from the assembly line in the 10,000 square-foot plant in Newton. "It's a new field for me, but I'm excited because it's all new experiences every day." Sanchez is assembling Enertech's new wind models using an innovative blade design licensed from the National Renewable Energy Laboratory (NREL) in Golden, Colo., on its 40 kW turbines.

43

Techno-economic Modeling of the Integration of 20% Wind and Large-scale Energy Storage in ERCOT by 2030  

SciTech Connect

This study�¢����s objective is to examine interrelated technical and economic avenues for the Electric Reliability Council of Texas (ERCOT) grid to incorporate up to and over 20% wind generation by 2030. Our specific interests are to look at the factors that will affect the implementation of both high level of wind power penetration (> 20% generation) and installation of large scale storage.

Ross Baldick; Michael Webber; Carey King; Jared Garrison; Stuart Cohen; Duehee Lee

2012-12-21T23:59:59.000Z

44

First wind turbine blade delivered to Pantex | National Nuclear...  

National Nuclear Security Administration (NNSA)

Work crews began to erect the first of five wind turbines that will make up the Pantex Renewable Energy Project (PREP). The first wind turbine blade was delivered to the site...

45

The use of carbon fibers in wind turbine blade design: A SERI-8 blade example  

DOE Green Energy (OSTI)

The benefit of introducing carbon fibers in a wind turbine blade was evaluated. The SERI-8 wind turbine blade was used as a baseline for study. A model of the blade strength and stiffness properties was created using the 3D-Beam code; the predicted geometry and structural properties were validated against available data and static test results. Different enhanced models, which represent different volumes of carbon fibers in the blade, were also studied for two design options: with and without bend-twist coupling. Studies indicate that hybrid blades have excellent structural properties compared to the all-glass SERI-8 blade. Recurring fabrication costs were also included in the study. The cost study highlights the importance of the labor-cost to material-cost ratio in the cost benefits and penalties of fabrication of a hybrid glass and carbon blade.

ONG,CHENG-HUAT; TSAI,STEPHEN W.

2000-03-01T23:59:59.000Z

46

Small Solar Wind Transients and Their Connection to the Large-Scale Coronal Structure  

E-Print Network (OSTI)

I.G. : 2006, In situ solar wind and magnetic ?eld signaturesE. : 2008, The IMPACT Solar Wind Electron Analyzer (SWEA).Heliospheric images of the solar wind at Earth. Astrophys.

2009-01-01T23:59:59.000Z

47

Small Solar Wind Transients and Their Connection to the Large-Scale Coronal Structure  

E-Print Network (OSTI)

I.G. : 2006, In situ solar wind and magnetic ?eld signaturesPenou, E. : 2008, The IMPACT Solar Wind Electron Analyzer (Heliospheric images of the solar wind at Earth. Astrophys.

2009-01-01T23:59:59.000Z

48

Model and Seismic Analysis of Large-scale Wind Turbine Tower Structure  

Science Conference Proceedings (OSTI)

The working condition of wind turbine tower structure with a massive engine room and revolving wind wheels is very complex. The paper simplify the wind turbine tower model with finite element analysis software --ANSYS, completed modal analysis firstly, ... Keywords: wind turbine tower, model analysis, resonance, time-history analysis, dynamic

Xiang Liu; Jiangtao Kong

2012-05-01T23:59:59.000Z

49

User's Guide to MBC3: Multi-Blade Coordinate Transformation Code for 3-Bladed Wind Turbine  

DOE Green Energy (OSTI)

This guide explains how to use MBC3, a MATLAB-based script NREL developed to perform multi-blade coordinate transformation of system matrices for three-bladed wind turbines. In its current form, MBC3 can be applied to system matrices generated by FAST.2.

Bir, G. S.

2010-09-01T23:59:59.000Z

50

Huayi Wind Blade Research Center | Open Energy Information  

Open Energy Info (EERE)

Huayi Wind Blade Research Center Huayi Wind Blade Research Center Jump to: navigation, search Name Huayi Wind Blade Research Center Place Baoding, Hebei Province, China Zip 71051 Sector Wind energy Product China's first research center for wind turbine blade. Coordinates 38.855011°, 115.480217° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.855011,"lon":115.480217,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Innovative design approaches for large wind turbine blades : final report.  

SciTech Connect

The goal of the Blade System Design Study (BSDS) was investigation and evaluation of design and manufacturing issues for wind turbine blades in the one to ten megawatt size range. A series of analysis tasks were completed in support of the design effort. We began with a parametric scaling study to assess blade structure using current technology. This was followed by an economic study of the cost to manufacture, transport and install large blades. Subsequently we identified several innovative design approaches that showed potential for overcoming fundamental physical and manufacturing constraints. The final stage of the project was used to develop several preliminary 50m blade designs. The key design impacts identified in this study are: (1) blade cross-sections, (2) alternative materials, (3) IEC design class, and (4) root attachment. The results show that thick blade cross-sections can provide a large reduction in blade weight, while maintaining high aerodynamic performance. Increasing blade thickness for inboard sections is a key method for improving structural efficiency and reducing blade weight. Carbon/glass hybrid blades were found to provide good improvements in blade weight, stiffness, and deflection when used in the main structural elements of the blade. The addition of carbon resulted in modest cost increases and provided significant benefits, particularly with respect to deflection. The change in design loads between IEC classes is quite significant. Optimized blades should be designed for each IEC design class. A significant portion of blade weight is related to the root buildup and metal hardware for typical root attachment designs. The results show that increasing the number of blade fasteners has a positive effect on total weight, because it reduces the required root laminate thickness.

2004-05-01T23:59:59.000Z

52

Innovative Design Approaches for Large Wind Turbine Blades  

SciTech Connect

The primary goal of the WindPACT Blade System Design Study (BSDS) was investigation and evaluation of design and manufacturing issues for wind turbine blades in the one to ten megawatt size range. The initial project task was to assess the fundamental physical and manufacturing issues that govern and constrain large blades and entails three basic elements: (1) a parametric scaling study to assess blade structure using current technology, (2) an economic study of the cost to manufacture, transport, and install large blades, and (3) identification of promising innovative design approaches that show potential for overcoming fundamental physical and manufacturing constraints. This report discusses several innovative design approaches and their potential for blade cost reduction. During this effort we reviewed methods for optimizing the blade cross-section to improve structural and manufacturing characteristics. We also analyzed and compared a number of composite materials and evaluated their relative merits for use in large wind turbine blades in the range from 30 meters to 70 meters. The results have been summarized in dimensional and non-dimensional format to aid in interpretation. These results build upon earlier parametric and blade cost studies, which were used as a guide for the innovative design approaches explored here.

ASHWILL, THOMAS D.

2003-03-01T23:59:59.000Z

53

Large-Scale Offshore Wind Power in the United States: Executive Summary  

DOE Green Energy (OSTI)

This document provides a summary of a 236-page NREL report that provides a broad understanding of today's offshore wind industry, the offshore wind resource, and the associated technology challenges, economics, permitting procedures, and potential risks and benefits.

Musial, W.; Ram, B.

2010-09-01T23:59:59.000Z

54

Diagnostic Downscaling of Large-Scale Wind Fields to Compute Local-Scale Trajectories  

Science Conference Proceedings (OSTI)

This paper describes a simple method, based on routine meteorological data, to produce high-resolution wind analyses throughout the planetary boundary layer (PBL). It is a new way to interpolate wind measurements. According to this method, high-...

Andreas Stohl; Kathrin Baumann; Gerhard Wotawa; Matthias Langer; Bruno Neininger; Martin Piringer; Herbert Formayer

1997-07-01T23:59:59.000Z

55

Wooden wind turbine blade manufacturing process  

SciTech Connect

A laminated wooden rotor blade is described having a flatbottomed air foil, comprising a two-sided tapered laminate composed of compression bonded parallel layers of wood having a convex side in a predetermined contour to which all of the layers of wood are approximately parallel over the entire length of the blade and a flat twisted side, the surface of which at any point along the length of the blade is rectilinear in cross section but of varying orientation along the length of the blade according to a predetermined twist schedule, the flat side cutting across the laminae of the blade to reveal the parallel edges thereof.

Coleman, C.

1986-07-01T23:59:59.000Z

56

Reaction Injection Molded 7.5 Meter Wind Turbine Blade  

DOE Green Energy (OSTI)

An optimized small turbine blade (7.5m radius) was designed and a partial section molded with the RIM (reaction-injection molded polymer) process for mass production. The intended market is for generic three-bladed wind turbines, 100 kilowatts or less, for grid-assist end users with rural and semi-rural sites, such as the farm/ranch market, having low to moderate IEC Class 3-4 wind regimes. This blade will have substantial performance improvements over, and be cheaper than, present-day 7.5m blades. This is made possible by the injection-molding process, which yields high repeatability, accurate geometry and weights, and low cost in production quantities. No wind turbine blade in the 7.5m or greater size has used this process. The blade design chosen uses a RIM skin bonded to a braided infused carbon fiber/epoxy spar. This approach is attractive to present users of wind turbine blades in the 5-10m sizes. These include rebladeing California wind farms, refurbishing used turbines for the Midwest farm market, and other manufacturers introducing new turbines in this size range.

David M. Wright; DOE Project Officer - Keith Bennett

2007-07-31T23:59:59.000Z

57

Passive aeroelastic tailoring of wind turbine blades : a numerical analysis  

E-Print Network (OSTI)

This research aims to have an impact towards a sustainable energy supply. In wind power generation losses occur at tip speed ratios which the rotor was not designed for. Since the ideal blade shape changes nonlinearly with ...

Deilmann, Christian

2009-01-01T23:59:59.000Z

58

Aerodynamic testing of a rotating wind turbine blade  

DOE Green Energy (OSTI)

Aerodynamic, load, flow-visualization, and inflow measurements were taken on a downwind horizontal-axis wind turbine (HAWT). A video camera mounted on the rotor recorded video images of tufts attached to the low-pressure side of the blade. Strain gages, mounted every 10% of the blade's span, provided load and pressure measurements. Pressure taps at 32 chordwise positions recorded pressure distributions. Wind inflow was measured via a vertical-plane array of anemometers located 10 m upwind. The objectives of the test were to address whether airfoil pressure distributions measured on a rotating blade differed from those measured in the wind tunnel, if radial flow near or in the boundary layer of the airfoil affected pressure distributions, if dynamic stall could result in increased dynamic loads, and if the location of the separation boundary measured on the rotating blade agreed with that measured in two-dimensional flow in the wind tunnel. 6 refs., 9 figs., 1 tab.

Butterfield, C.P.; Nelsen, E.N.

1990-01-01T23:59:59.000Z

59

An evolutionary environment for wind turbine blade design  

Science Conference Proceedings (OSTI)

The aerodynamic design of wind turbine blades is carried out by means of evolutionary techniques within an automatic design environment based on evolution. A simple, fast, and robust aerodynamic simulator is embedded in the design environment to predict ...

V. Díaz Casás; F. Lopez Peña; A. Lamas; R. J. Duro

2005-06-01T23:59:59.000Z

60

The role of hydroelectric generation in electric power systems with large scale wind generation.  

E-Print Network (OSTI)

??An increasing awareness of the operational challenges created by intermittent generation of electricity from policy-mandated renewable resources, such as wind and solar, has led to… (more)

Hagerty, John Michael

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Large-Scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers  

DOE Green Energy (OSTI)

This paper assesses the potential for U.S. offshore wind to meet the energy needs of many coastal and Great Lakes states.

Musial, W.; Ram, B.

2010-09-01T23:59:59.000Z

62

1) INTRODUCTION Reliable and save grid integration of large-scale offshore wind  

E-Print Network (OSTI)

of these results with load profiles and conventional power generation will give insight into crossboarder flows production, forecasted wind power and deviations in the load forecast. Spatial forecast error smoothing. However, the accurate modeling of the vertical wind profile gains importance as in general much higher

Heinemann, Detlev

63

ELECTRIC VEHICLE BASED BATTERY STORAGES FOR LARGE SCALE WIND POWER INTEGRATION  

E-Print Network (OSTI)

Coherent Energy and Environment System Analysis CHP Combined Heat and Power CPP Condensing Power Plant DPL system and the thermal based power systems of Europe through Germany. The Western part of Denmark includes 6500MW of wind power plants (4000MW from distributed onshore wind farms and 2500MW from offshore

Pillai, Jayakrishnan Radhakrishna

64

Large-Scale Offshore Wind Power in the United States: Executive Summary  

SciTech Connect

This document provides a summary of a 236-page NREL report that provides a broad understanding of today's offshore wind industry, the offshore wind resource, and the associated technology challenges, economics, permitting procedures, and potential risks and benefits.

Musial, W.; Ram, B.

2010-09-01T23:59:59.000Z

65

Estimating Probabilities of Hurricane Wind Speeds Using a Large-Scale Empirical Model  

Science Conference Proceedings (OSTI)

A new method is presented for estimating the probability of exceeding a given wind speed in 1 year at any given location in the Atlantic tropical cyclone basin. The method is especially appropriate for wind speeds with return periods of 100 years ...

R. W. R. Darling

1991-10-01T23:59:59.000Z

66

Blade Testing at NREL's National Wind Technology Center (NWTC) (Presentation)  

SciTech Connect

Presentation of Blade Testing at NREL's National Wind Technology Center for the 2010 Sandia National Laboratories Blade Testing Workshop.

Hughes, S.

2010-07-20T23:59:59.000Z

67

Potential Climatic Impacts and Reliability of Large-Scale Offshore Wind Farms  

E-Print Network (OSTI)

The vast availability of wind power has fueled substantial interest in this renewable energy source as a potential near-zero greenhouse gas emission technology for meeting future world energy needs while addressing the ...

Wang, Chien

68

On the Role of Antarctic Katabatic Winds in Forcing Large-Scale Tropospheric Motions  

Science Conference Proceedings (OSTI)

Katabatic winds are a dominant feature of the lower atmosphere over Antarctica. The radial diffluence displayed by the drainage flows implies that a continental-scale subsidence is present over Antarctica. From mass continuity considerations, a ...

Thomas R. Parish

1992-08-01T23:59:59.000Z

69

Large-Scale Circulation and Production of Stratification: Effects of Wind, Geometry, and Diffusion  

Science Conference Proceedings (OSTI)

The combined effects of wind, geometry, and diffusion on the stratification and circulation of the ocean are explored by numerical and analytical methods. In particular, the production of deep stratification in a simply configured numerical model ...

Geoffrey K. Vallis

2000-05-01T23:59:59.000Z

70

Large-Scale Wind Integration Studies in the United States: Preliminary Results; Preprint  

SciTech Connect

The National Renewable Energy Laboratory is managing two large regional wind integration studies on behalf of the United States Department of Energy. These two studies are believed to be the largest ever undertaken in the United States.

Milligan, M.; Lew, D.; Corbus, D.; Piwko, R.; Miller, N.; Clark, K.; Jordan, G.; Freeman, L.; Zavadil, B.; Schuerger, M.

2009-09-01T23:59:59.000Z

71

The role of hydroelectric generation in electric power systems with large scale wind generation  

E-Print Network (OSTI)

An increasing awareness of the operational challenges created by intermittent generation of electricity from policy-mandated renewable resources, such as wind and solar, has led to increased scrutiny of the public policies ...

Hagerty, John Michael

2012-01-01T23:59:59.000Z

72

Dynamically Adjustable Wind Turbine Blades: Adaptive Turbine Blades, Blown Wing Technology for Low-Cost Wind Power  

SciTech Connect

Broad Funding Opportunity Announcement Project: Caitin is developing wind turbines with a control system that delivers compressed air from special slots located in the surface of its blades. The compressed air dynamically adjusts the aerodynamic performance of the blades, and can essentially be used to control lift, drag, and ultimately power. This control system has been shown to exhibit high levels of control in combination with an exceptionally fast response rate. The deployment of such a control system in modern wind turbines would lead to better management of the load on the system during peak usage, allowing larger blades to be deployed with a resulting increase in energy production.

2010-02-02T23:59:59.000Z

73

Impacts of Large-Scale Wind Generators Penetration on the Voltage Stability of Power Systems  

E-Print Network (OSTI)

by 2020 and 300 GW of installed wind power capacity in Europe by 2030. An overview of the historical to make energy available economically with reduced carbon emission using renewable energy sources-limiting factor. FACTS controllers have been used for solving various power system steady-state control problems

Pota, Himanshu Roy

74

Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine Blades  

DOE Green Energy (OSTI)

As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts LLC (GEC) is performing a study concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The project team for this work includes experts in all areas of wind turbine blade design, analysis, manufacture, and testing. Constraints to cost-effective scaling-up of the current commercial blade designs and manufacturing methods are identified, including self-gravity loads, transportation, and environmental considerations. A trade-off study is performed to evaluate the incremental changes in blade cost, weight, and stiffness for a wide range of composite materials, fabric types, and manufacturing processes. Fiberglass/carbon fiber hybrid blades are identified as having a promising combination of cost, weight, stiffness and fatigue resistance. Vacuum-assisted resin transfer molding, resin film infision, and pre-impregnated materials are identified as having benefits in reduced volatile emissions, higher fiber content, and improved laminate quality relative to the baseline wet lay-up process. Alternative structural designs are identified, including jointed configurations to facilitate transportation. Based on the results to date, recommendations are made for further evaluation and testing under this study to verify the predicted material and structural performance.

GRIFFIN, DAYTON A.; ASHWILL, THOMAS D.

2002-07-01T23:59:59.000Z

75

Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine Blades  

SciTech Connect

As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts LLC (GEC) is performing a study concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The project team for this work includes experts in all areas of wind turbine blade design, analysis, manufacture, and testing. Constraints to cost-effective scaling-up of the current commercial blade designs and manufacturing methods are identified, including self-gravity loads, transportation, and environmental considerations. A trade-off study is performed to evaluate the incremental changes in blade cost, weight, and stiffness for a wide range of composite materials, fabric types, and manufacturing processes. Fiberglass/carbon fiber hybrid blades are identified as having a promising combination of cost, weight, stiffness and fatigue resistance. Vacuum-assisted resin transfer molding, resin film infision, and pre-impregnated materials are identified as having benefits in reduced volatile emissions, higher fiber content, and improved laminate quality relative to the baseline wet lay-up process. Alternative structural designs are identified, including jointed configurations to facilitate transportation. Based on the results to date, recommendations are made for further evaluation and testing under this study to verify the predicted material and structural performance.

GRIFFIN, DAYTON A.; ASHWILL, THOMAS D.

2002-07-01T23:59:59.000Z

76

Aeroelastic tailoring in wind-turbine blade applications  

DOE Green Energy (OSTI)

This paper reviews issues related to the use of aeroelastic tailoring as a cost-effective, passive means to shape the power curve and reduce loads. Wind turbine blades bend and twist during operation, effectively altering the angle of attack, which in turn affects loads and energy production. There are blades now in use that have significant aeroelastic couplings, either on purpose or because of flexible and light-weight designs. Since aeroelastic effects are almost unavoidable in flexible blade designs, it may be desirable to tailor these effects to the authors advantage. Efforts have been directed at adding flexible devices to a blade, or blade tip, to passively regulate power (or speed) in high winds. It is also possible to build a small amount of desirable twisting into the load response of a blade with proper asymmetric fiber lay up in the blade skin. (Such coupling is akin to distributed {delta}{sub 3} without mechanical hinges.) The tailored twisting can create an aeroelastic effect that has payoff in either better power production or in vibration alleviation, or both. Several research efforts have addressed different parts of this issue. Research and development in the use of aeroelastic tailoring on helicopter rotors is reviewed. Potential energy gains as a function of twist coupling are reviewed. The effects of such coupling on rotor stability have been studied and are presented here. The ability to design in twist coupling with either stretching or bending loads is examined also.

Veers, P.; Lobitz, D. [Sandia National Labs., Albuquerque, NM (United States); Bir, G. [National Renewable Energy Lab., Golden, CO (United States). National Wind Technology Center

1998-04-01T23:59:59.000Z

77

WIND TURBINE BLADE DESIGN BASED ON DURABILITY AND DAMAGE TOLERANCE  

DOE Green Energy (OSTI)

The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints and closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the tests. The results show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. A computational simulation for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties was performed. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. D&DT analyses were then validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence on the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. Structural benefits obtained with the use of enhanced matrix properties through nanoparticles infusion were also assessed. Thin unidirectional fiberglass layers enriched with silica nanoparticles were applied to the outer surfaces of a wind blade to improve its overall structural performance and durability. The wind blade was a 9-meter prototype structure manufactured and tested subject to three saddle static loading at Sandia National Laboratory (SNL). The blade manufacturing did not include the use of any nano-material. With silica nanoparticles in glass composite applied to the exterior surfaces of the blade, the durability and damage tolerance (D&DT) results from multi-scale PFA showed an increase in ultimate load of the blade by 9.2% as compared to baseline structural performance (without nano). The use of nanoparticles lead to a delay in the onset of delamination. Load-displacement relati

Galib Abumeri; Frank Abdi (PhD)

2012-02-16T23:59:59.000Z

78

Vibration and Structural Response of Hybrid Wind Turbine Blades  

E-Print Network (OSTI)

Renewable energy is a serious alternative to deliver the energy needs of an increasing world population and improve economic activity. Wind energy provides better environmental and economic benefits in comparison with the other renewable energy sources. Wind energy is capable of providing 72 TW (TW = 10^12 W) of electric power, which is approximately four and half times the world energy consumption of 15.8 TW as reported in 2006. Since power output extracted from wind turbines is proportional to the square of the blade length and the cube of the wind speed, wind turbine size has grown rapidly in the last two decades to match the increase in power output. As the blade length increases, so does its weight opening up design possibilities to introduce hybrid glass and carbon fiber composite materials as lightweight structural load bearing alternatives. Herein, we investigate the feasibility of introducing modular composite tubulars as well as hybrid sandwich composite skins in the next generation blades. After selecting a target energy output, 8 MW with 80 m blade, airfoil geometry and the layup for the skin as well as internal reinforcements are proposed. They are incorporated into the computational blade via linear shell elements for the skin, and linear beam elements for the composite tubulars to assess the relationship between weight reduction and structural performance. Computational simulations are undertaken to understand the static and dynamic regimes; specifically, displacements, stresses, and vibration modes. The results showed that the composite layers did not exhibit any damage. However, in the balsa core of the sandwich skin, the von Mises stress exceeded its allowable at wind speeds ranging from 11.0 m/sec to 12.6 m/sec. In the blades with composite tubular reinforcement, two different types of damage are observed: a. Stress concentrations at the tubular-skin attachments, and b. Highest von Mises stress caused by the flapping bending moment. The vibration studies revealed a strong coupling mode, bending and twist, at the higher natural frequencies of the blade with tubular truss configuration. The weight saving measures in developing lighter blades in this study did not detract from the blades structural response for the selected load cases.

Nanami, Norimichi

2010-12-01T23:59:59.000Z

79

An evaluation of wind turbine blade cross section analysis techniques.  

SciTech Connect

The blades of a modern wind turbine are critical components central to capturing and transmitting most of the load experienced by the system. They are complex structural items composed of many layers of fiber and resin composite material and typically, one or more shear webs. Large turbine blades being developed today are beyond the point of effective trial-and-error design of the past and design for reliability is always extremely important. Section analysis tools are used to reduce the three-dimensional continuum blade structure to a simpler beam representation for use in system response calculations to support full system design and certification. One model simplification approach is to analyze the two-dimensional blade cross sections to determine the properties for the beam. Another technique is to determine beam properties using static deflections of a full three-dimensional finite element model of a blade. This paper provides insight into discrepancies observed in outputs from each approach. Simple two-dimensional geometries and three-dimensional blade models are analyzed in this investigation. Finally, a subset of computational and experimental section properties for a full turbine blade are compared.

Paquette, Joshua A.; Griffith, Daniel Todd; Laird, Daniel L.; Resor, Brian Ray

2010-03-01T23:59:59.000Z

80

Simulation of winds as seen by a rotating vertical axis wind turbine blade  

DOE Green Energy (OSTI)

The objective of this report is to provide turbulent wind analyses relevant to the design and testing of Vertical Axis Wind Turbines (VAWT). A technique was developed for utilizing high-speed turbulence wind data from a line of seven anemometers at a single level to simulate the wind seen by a rotating VAWT blade. Twelve data cases, representing a range of wind speeds and stability classes, were selected from the large volume of data available from the Clayton, New Mexico, Vertical Plane Array (VPA) project. Simulations were run of the rotationally sampled wind speed relative to the earth, as well as the tangential and radial wind speeds, which are relative to the rotating wind turbine blade. Spectral analysis is used to compare and assess wind simulations from the different wind regimes, as well as from alternate wind measurement techniques. The variance in the wind speed at frequencies at or above the blade rotation rate is computed for all cases, and is used to quantitatively compare the VAWT simulations with Horizontal Axis Wind Turbine (HAWT) simulations. Qualitative comparisons are also made with direct wind measurements from a VAWT blade.

George, R.L.

1984-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Spanwise aerodynamic loads on a rotating wind turbine blade  

DOE Green Energy (OSTI)

Wind turbine performance and load predictions depend on accurate airfoil performance data. Wind tunnel test data are typically used which accurately describe two-dimensional airfoil performance characteristics. Usually these data are only available for a range of angles of attack from 0 to 15 deg, which excludes the stall characteristics. Airfoils on stall-controlled wind turbines operate in deep stall in medium to high winds. Therefore it is very important to know how the airfoil will perform in these high load conditions. Butterfield et al. have shown that three-dimensional effects and rotation of the blade modify the two-dimensional performance of the airfoil. These effects are modified to different degrees throughout the blade span. The Solar Energy Research Institute (SERI) has conducted a series of tests to measure the spanwise variation of airfoil performance characteristics on a rotating wind turbine blade. Maximum lift coefficients were measured to be 200% greater than wind tunnel results at the 30% span. Stall characteristics were generally modified throughout the span. Lift characteristics were unmodified for low to medium angles of attack. This paper discusses these test results for four spanwise locations. 8 refs., 12 figs.

Butterfield, C.P.; Simms, D.; Musial, W.; Scott, G.

1990-10-01T23:59:59.000Z

82

Application of BSTRAIN software for wind turbine blade testing  

DOE Green Energy (OSTI)

NREL currently operates the largest structural testing facility in US for testing wind turbine blades. A data acquisition system was developed to measure blade response and monitor test status; it is called BSTRAIN (Blade Structural Test Real-time Acquisition Interface Network). Software objectives were to develop a robust, easy-to-use computer program that could automatically collect data from static and fatigue blade tests without missing any significant events or overloading the computer with excess data. The program currently accepts inputs from up to 32 channels but can be expanded to over 1000 channels. In order to reduce the large amount of data collected during long fatigue tests, options for real-time data processing were developed including peak-valley series collection, peak-valley decimation, block decimation, and continuous recording of all data. Other BSTRAIN features include automated blade stiffness checks, remote terminal access to blade test status, and automated VCR control for continuous test recording. Results from tests conducted with the software revealed areas for improvement including test accuracy, post-processing analysis, and further data reduction.

Musial, W D; Clark, M E [National Renewable Energy Lab., Golden, CO (United States); Stensland, T [Stensland (T.), Lakewood, CO (United States)

1996-07-01T23:59:59.000Z

83

Aluminum-blade development for the Mod-0A 200-kilowatt wind turbine  

DOE Green Energy (OSTI)

This report documents the operating experience with two aluminum blades used on the DOE/NASA Mod-0A 200-kilowatt wind turbine located at Clayton, New Mexico. Each Mod-0A aluminum blade is 59.9 feet long and weighs 2360 pounds. The aluminum Mod-0A blade design requirements, the selected design, fabrication procedures, and the blade analyses are discussed. A detailed chronology is presented on the operating experience of the Mod-0A aluminum blades used at Clayton, New Mexico. Blade structural damage was experienced. Inspection and damage assessment were required. Structural modifications that were incorporated to the blades successfully extended the useful operating life of the blades. The aluminum blades completed the planned 2 years of operation of the Clayton wind turbine. The blades were removed from service in August 1980 to allow testing of advanced technology wood composite blades.

Linscott, B.S.; Shaltens, R.K.; Eggers, A.G.

1981-12-01T23:59:59.000Z

84

Blades of Glory: Wind Technology Bringing Us Closer To a Clean Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blades of Glory: Wind Technology Bringing Us Closer To a Clean Blades of Glory: Wind Technology Bringing Us Closer To a Clean Energy Future Blades of Glory: Wind Technology Bringing Us Closer To a Clean Energy Future July 17, 2012 - 2:14pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this project do? The Energy Department is supporting the validation of newly developed technologies at wind testing facilities across America. There's a simple truth in wind energy -- the bigger the blade, the more watts generated. 

In the 1980s, blades were typically 65 feet long. Today, as the wind industry continues to grow, blades measure over 150 feet. Looking down the road, the next generation of wind turbine blades is expected to span beyond the length of a football field.



85

NREL: Technology Transfer - Fabric-Covered Blades Could Make Wind Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabric-Covered Blades Could Make Wind Turbines Cheaper and More Efficient Fabric-Covered Blades Could Make Wind Turbines Cheaper and More Efficient A photo of a crew of workers watching as a wind blade is hauled up to a turbine for assembly. A new fabric-wrapped wind blade could eventually replace the traditional fiberglass blade, providing for lighter turbine components that could be built and assembled on site. January 2, 2013 A new design that calls for wrapping architectural fabric around metal wind turbine blades-instead of the traditional fiberglass-could be the latest revolution in dramatically reducing the cost of wind-produced power. That's the focus of a new project that partners NREL with General Electric (GE) and Virginia Polytechnic Institute & State University. Together, they are rethinking the way wind blades are designed,

86

Test evaluation of a laminated wood wind turbine blade concept  

SciTech Connect

Because of the high stiffness and fatigue strength of wood (as compared to density) along with the low cost manufacturing techniques available, a laminated wood wind turbine blade application has been studied. This report presents the results of the testing performed on elements of the wood blade-to-hub transition section which uses steel studs cast into a laminated wood spar with a filled epoxy. Individual stud samples were tested for both ultimate load carrying capability and fatigue strength. A one-time pull-out load of 78,000 lb was achieved for a 15 in. long stud with a diameter of 1 in. Tension-tension fatigue indicated that peak loads on the order of 40% of ultimate could be maintained as an endurance limit (mean load = 20,000 lb, cyclic load = +-15,000 lb). Following the individual stud testing, a full-scale inboard blade section (20 ft in length) was tested.

Faddoul, J.R.

1981-05-01T23:59:59.000Z

87

FATIGUE RESISTANT FIBERGLASS LAMINATES FOR WIND TURBINE BLADES (published for Wind Energy 1996, ASME, pp. 46-51)  

E-Print Network (OSTI)

FATIGUE RESISTANT FIBERGLASS LAMINATES FOR WIND TURBINE BLADES (published for Wind Energy 1996/MSU database to lifetime prediction as described in Ref. [1]. INTRODUCTION Most U.S. fiberglass wind turbine Turbine Blade Lifetime Predictions" Proc. 1996 ASME Wind Energy Symposium. (To be published) 2. J

88

Incipient Crack Detection in Composite Wind Turbine Blades  

DOE Green Energy (OSTI)

This paper presents some analysis results for incipient crack detection in a 9-meter CX-100 wind turbine blade that underwent fatigue loading to failure. The blade was manufactured to standard specifications, and it underwent harmonic excitation at its first resonance using a hydraulically-actuated excitation system until reaching catastrophic failure. This work investigates the ability of an ultrasonic guided wave approach to detect incipient damage prior to the surfacing of a visible, catastrophic crack. The blade was instrumented with piezoelectric transducers, which were used in an active, pitchcatch mode with guided waves over a range of excitation frequencies. The performance results in detecting incipient crack formation in the fiberglass skin of the blade is assessed over the range of frequencies in order to determine the point at which the incipient crack became detectable. Higher excitation frequencies provide consistent results for paths along the rotor blade's carbon fiber spar cap, but performance falls off with increasing excitation frequencies for paths off of the spar cap. Lower excitation frequencies provide more consistent performance across all sensor paths.

Taylor, Stuart G. [Los Alamos National Laboratory; Choi, Mijin [Chonbuk National University, Korea; Jeong, Hyomi [Chonbuk National University, Korea; Jang, Jae Kyeong [Chonbuk National University, Korea; Park, Gyuhae [Chonnam National University, Korea; Farinholt, Kevin [Commonwealth Center for Advanced Manufacturing, VA; Farrar, Charles R. [Los Alamos National Laboratory; Ammerman, Curtt N. [Los Alamos National Laboratory; Todd, Michael D. [Los Alamos National Laboratory; Lee, Jung-Ryul [Chonbuk National University, Korea

2012-08-28T23:59:59.000Z

89

Preform spar cap for a wind turbine rotor blade  

DOE Patents (OSTI)

A spar cap for a wind turbine rotor blade. The spar cap may include multiple preform components. The multiple preform components may be planar sheets having a swept shape with a first end and a second end. The multiple preform components may be joined by mating the first end of a first preform component to the second end of a next preform component, forming the spar cap.

Livingston, Jamie T. (Simpsonville, SC); Driver, Howard D. (Greer, SC); van Breugel, Sjef (Enschede, NL); Jenkins, Thomas B. (Cantonment, FL); Bakhuis, Jan Willem (Nijverdal, NL); Billen, Andrew J. (Daarlerveen, NL); Riahi, Amir (Pensacola, FL)

2011-07-12T23:59:59.000Z

90

Estimation of Blade and Tower Properties for the Gearbox Research Collaborative Wind Turbine  

SciTech Connect

This report documents the structural and modal properties of the blade and tower of a 3-bladed 750-kW upwind turbine to develop an aeroelastic model of the wind turbine.

Bir, G.S.; Oyague, F.

2007-11-01T23:59:59.000Z

91

Energy harvesting to power sensing hardware onboard wind turbine blade  

SciTech Connect

Wind turbines are becoming a larger source of renewable energy in the United States. However, most of the designs are geared toward the weather conditions seen in Europe. Also, in the United States, manufacturers have been increasing the length of the turbine blades, often made of composite materials, to maximize power output. As a result of the more severe loading conditions in the United States and the material level flaws in composite structures, blade failure has been a more common occurrence in the U.S. than in Europe. Therefore, it is imperative that a structural health monitoring system be incorporated into the design of the wind turbines in order to monitor flaws before they lead to a catastrophic failure. Due to the rotation of the turbine and issues related to lightning strikes, the best way to implement a structural health monitoring system would be to use a network of wireless sensor nodes. In order to provide power to these sensor nodes, piezoelectric, thermoelectric and photovoltaic energy harvesting techniques are examined on a cross section of a CX-100 wind turbine blade in order to determine the feasibility of powering individual nodes that would compose the sensor network.

Carlson, Clinton P [Los Alamos National Laboratory; Schichting, Alexander D [Los Alamos National Laboratory; Quellette, Scott [Los Alamos National Laboratory; Faringolt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

92

A simple method of estimating wind turbine blade fatigue at potential wind turbine sites  

SciTech Connect

This paper presents a technique of estimating blade fatigue damage at potential wind turbine sites. The cornerstone of this technique is a simple model for the blade`s root flap bending moment. The model requires as input a simple set of wind measurements which may be obtained as part of a routine site characterization study. By using the model to simulate a time series of the root flap bending moment, fatigue damage rates may be estimated. The technique is evaluated by comparing these estimates with damage estimates derived from actual bending moment data; the agreement between the two is quite good. The simple connection between wind measurements and fatigue provided by the model now allows one to readily discriminate between damaging and more benign wind environments.

Barnard, J.C.; Wendell, L.L.

1995-06-01T23:59:59.000Z

93

Wind Turbine Blade Test Definition of the DeWind DW90 Rotor Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-326  

DOE Green Energy (OSTI)

This CRADA was developed as a funds-in CRADA with DeWind to assess the suitability of facilities and equipment at the NWTC for performing certification blade testing on wind turbine blades made from advanced materials. DeWind produces a wind turbine blade which includes the use of high-strength and stiffness materials. NREL and DeWind had a mutual interest in defining the necessary facilities, equipment, and test methods for testing large wind turbine blades which incorporate advanced materials and adaptive structures, as the demands on test equipment and infrastructure are greater than current capabilities. Work under this CRADA would enable DeWind to verify domestic capability for certification-class static and fatigue testing, while NREL would be able to identify and develop specialized test capabilities based on the test requirements.

Hughes, S.

2012-05-01T23:59:59.000Z

94

Surface Layer Transport of Sulfate Particles in the Western United States by the Large-Scale Wind Field  

Science Conference Proceedings (OSTI)

The transport patterns of fine sulfur aerosols in the western United States are shown. The large-scale resultant horizontal flux was computed in terms of that contributed by the mean flux versus that contributed by a turbulence, or eddy, ...

Lowell L. Ashbaugh; Leonard O. Myrup; Robert G. Flocchini

1984-05-01T23:59:59.000Z

95

Modal testing of the TX-100 wind turbine blade.  

DOE Green Energy (OSTI)

This test report covers the SNL modal test results for two nominally identical TX-100 wind turbine blades. The TX-100 blade design is unique in that it features a passive braking, force-shedding mechanism where bending and torsion are coupled to produce desirable aerodynamic characteristics. A specific aim of this test is to characterize the coupling between bending and torsional dynamics. The results of the modal tests and the subsequent analysis characterize the natural frequencies, damping, and mode shapes of the individual blades. The results of this report are expected to be used for model validation--the frequencies and mode shapes from the experimental analysis can be compared with those of a finite-element analysis. Damping values are included in the results of these tests to potentially improve the fidelity of numerical simulations, although numerical finite element models typically have no means of predicting structural damping characteristics. Thereafter, an additional objective of the test is achieved in evaluating the test to test and unit variation in the modal parameters of the two blades.

Reese, Sarah; Griffith, Daniel Todd; Casias, Miguel; Simmermacher, Todd William; Smith, Gregory A.

2006-05-01T23:59:59.000Z

96

Design studies for twist-coupled wind turbine blades.  

SciTech Connect

This study presents results obtained for four hybrid designs of the Northern Power Systems (NPS) 9.2-meter prototype version of the ERS-100 wind turbine rotor blade. The ERS-100 wind turbine rotor blade was designed and developed by TPI composites. The baseline design uses e-glass unidirectional fibers in combination with {+-}45-degree and random mat layers for the skin and spar cap. This project involves developing structural finite element models of the baseline design and carbon hybrid designs with and without twist-bend coupling. All designs were evaluated for a unit load condition and two extreme wind conditions. The unit load condition was used to evaluate the static deflection, twist and twist-coupling parameter. Maximum deflections and strains were determined for the extreme wind conditions. Linear and nonlinear buckling loads were determined for a tip load condition. The results indicate that carbon fibers can be used to produce twist-coupled designs with comparable deflections, strains and buckling loads to the e-glass baseline.

Valencia, Ulyses (Wichita State University, Wichita, KS); Locke, James (Wichita State University, Wichita, KS)

2004-06-01T23:59:59.000Z

97

Manufacturing Defects Common to Composite Wind Turbine Blades: Effects of Defects  

E-Print Network (OSTI)

1 Manufacturing Defects Common to Composite Wind Turbine Blades: Effects of Defects Jared W. Nelson The Blade Reliability Collaborative has been formed to perform comprehensive studies to improve wind turbine uni-directional wind turbine fiber-reinforced composite material with an epoxy resin were utilized

98

PREDICTION OF DELAM INATION IN WIND TURBINE BLADE STRUCTURAL DETAILS John F. Mandell, Douglas S. Cairns  

E-Print Network (OSTI)

in Reference 3, available on the Sandia web site www.sandia.gov/Renewable_Energy/Wind_Energy/. DELAMINATION1 PREDICTION OF DELAM INATION IN WIND TURBINE BLADE STRUCTURAL DETAILS John F. Mandell, Douglas S materials structures such as wind turbine blades. Design methodologies to prevent such failures have

99

The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to  

E-Print Network (OSTI)

turbine blades up to 90 meters in length. A critical factor to wind turbine design and development is the ability to test new designs, components, and materials. In addition, wind turbine blade manufacturers the blades millions of times to simulate what a blade goes through in its lifetime on a wind turbine

100

Structural Testing of 9 m Carbon Fiber Wind Turbine Research Blades: Preprint  

DOE Green Energy (OSTI)

This paper outlines the results of tests conducted on three 9-m carbon fiber wind turbine blades designed through a research program initiated by Sandia National Laboratories.

Paquette, J.; van Dam, J.; Hughes, S.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Wind energy conversion. Volume X. Aeroelastic stability of wind turbine rotor blades  

DOE Green Energy (OSTI)

The nonlinear equations of motion of a general wind turbine rotor blade are derived from first principles. The twisted, tapered blade may be preconed out of the plane of rotation, and its root may be offset from the axis of rotation by a small amount. The aerodynamic center, center of mass, shear center, and area centroid are distinct in this derivation. The equations are applicable to studies of forced response or of aeroelastic flutter, however, neither gravity forcing, nor wind shear and gust forcing are included. The equations derived are applied to study the aeroelastic stability of the NASA-ERDA 100 kW wind turbine, and solved using the Galerkin method. The numerical results are used in conjunction with a mathematical comparison to prove the validity of an equivalent hinge model developed by the Wind Energy Conversion Project at the Massachusetts Institute of Technology.

Wendell, J.

1978-09-01T23:59:59.000Z

102

Wind turbine composite blade manufacturing : the need for understanding defect origins, prevalence, implications and reliability.  

DOE Green Energy (OSTI)

Renewable energy is an important element in the US strategy for mitigating our dependence on non-domestic oil. Wind energy has emerged as a viable and commercially successful renewable energy source. This is the impetus for the 20% wind energy by 2030 initiative in the US. Furthermore, wind energy is important on to enable a global economy. This is the impetus for such rapid, recent growth. Wind turbine blades are a major structural element of a wind turbine blade. Wind turbine blades have near aerospace quality demands at commodity prices; often two orders of magnitude less cost than a comparable aerospace structure. Blade failures are currently as the second most critical concern for wind turbine reliability. Early blade failures typically occur at manufacturing defects. There is a need to understand how to quantify, disposition, and mitigate manufacturing defects to protect the current wind turbine fleet, and for the future. This report is an overview of the needs, approaches, and strategies for addressing the effect of defects in wind turbine blades. The overall goal is to provide the wind turbine industry with a hierarchical procedure for addressing blade manufacturing defects relative to wind turbine reliability.

Cairns, Douglas S. (Montana State University, Bozeman, MT); Riddle, Trey (Montana State University, Bozeman, MT); Nelson, Jared (Montana State University, Bozeman, MT)

2011-02-01T23:59:59.000Z

103

Multi-piece wind turbine rotor blades and wind turbines incorporating same  

DOE Patents (OSTI)

A multisection blade for a wind turbine includes a hub extender having a pitch bearing at one end, a skirt or fairing having a hole therethrough and configured to mount over the hub extender, and an outboard section configured to couple to the pitch bearing.

Moroz; Emilian Mieczyslaw (San Diego, CA)

2008-06-03T23:59:59.000Z

104

Large Scale, Low Frequency Variability of the 1979 FGGE Surface Buoy Drifts and Winds over the Southern Hemisphere  

Science Conference Proceedings (OSTI)

The surface response of the Southern Hemisphere's oceans to the large spatial scale, interseasonal changes in wind forcing during the FGGE year of 1979 is investigated. The primary data are the analyzed daily wind fields, and the trajectories of ...

W. G. Large; H. Van Loon

1989-02-01T23:59:59.000Z

105

Proof-of-Concept Manufacturing and Testing of Composite Wind Generator Blades Made by HCBMP (High Compression Bladder Molded Prepreg)  

DOE Green Energy (OSTI)

Proof-of-Concept Manufacturing and Testing of Composite Wind Generator Blades Made by HCBMP (High Compression Bladder Molded Prepreg)

William C. Leighty; DOE Project Officer - Keith Bennett

2005-10-04T23:59:59.000Z

106

Composite Wind Turbine Blade Effects of Defects: Part B--Progressive Damage Modeling of Fiberglass/Epoxy  

E-Print Network (OSTI)

Composite Wind Turbine Blade Effects of Defects: Part B-- Progressive Damage Modeling of Fiberglass for the reliability of modern composite wind turbine blades. The DOE has sponsored a comprehensive study to a wind turbine blade reliability infrastructure. To support this development of a reliability

107

Approach to the fatigue analysis of vertical-axis wind-turbine blades  

DOE Green Energy (OSTI)

A cursory analysis of the stress history of wind turbine blades indicates that a single stress level at each wind speed does not adequately describe the blade stress history. A statistical description is required. Blade stress data collected from the DOE/ALCOA Low Cost experimental turbines indicate that the Rayleigh probability density function adequately describes the distribution of vibratory stresses at each wind speed. The Rayleigh probability density function allows the distribution of vibratory stresses to be described by the RMS of the stress vs. time signal. With the RMS stress level described for all wind speeds, the complete stress history of the turbine blades is known. Miner's linear cumulative damage rule is used as a basis for summing the fatigue damage over all operating conditions. An analytical expression is derived to predict blade fatigue life.

Veers, P.S.

1981-09-01T23:59:59.000Z

108

Reduced Order Structural Modeling of Wind Turbine Blades  

E-Print Network (OSTI)

Conventional three dimensional structural analysis methods prove to be expensive for the preliminary design of wind turbine blades. However, wind turbine blades are large slender members with complex cross sections. They can be accurately modeled using beam models. The accuracy in the predictions of the structural behavior using beam models depends on the accuracy in the prediction of their effective section properties. Several techniques were proposed in the literature for predicting the effective section properties. Most of these existing techniques have limitations because of the assumptions made in their approaches. Two generalized beam theories, Generalized Timoshenko and Generalized Euler-Bernoulli, for the static analysis based on the principles of the simple 1D-theories are developed here. Homogenization based on the strain energy equivalence principle is employed to predict the effective properties for these generalized beam theories. Two efficient methods, Quasi-3D and Unit Cell, are developed which can accurately predict the 3D deformations in beams under the six fundamental deformation modes: extension, two shears, torsion and two flexures. These methods help in predicting the effective properties using the homogenization technique. Also they can recover the detailed 3D deformations from the predictions of 1D beam analysis. The developed tools can analyze two types of slender members 1) slender members with invariant geometric features along the length and 2) slender members with periodically varying geometric features along the length. Several configurations were analyzed for the effective section properties and the predictions were validated using the expensive 3D analysis, strength of materials and Variational Asymptotic Beam Section Analysis (VABS). The predictions from the new tools showed excellent agreement with full 3D analysis. The predictions from the strength of materials showed disagreement in shear and torsional properties. Explanations for the same are provided recalling the assumptions made in the strength of materials approach.

Jonnalagadda, Yellavenkatasunil

2011-08-01T23:59:59.000Z

109

Coupled Dynamic Analysis of Large-Scale Mono-Column Offshore Wind Turbine with a Single Tether Hinged in Seabed  

E-Print Network (OSTI)

The increased interest in the offshore wind resource in both industry and academic and the extension of the wind field where offshore wind turbine can be deployed has stimulated quite a number of offshore wind turbines concepts. This thesis presents a design of mono-column platform supported for 5 MW baseline wind turbine developed by the National Renewable Energy Laboratory (NREL), with a single tether anchored to the seabed. The design, based on the pioneer concept SWAY, results from parametric optimized design processes which account for important design considerations in the static and dynamic view, such as the stability, natural frequency, performance requirements as well as the economic feasibility. Fully coupled aero-hydro-servo-elastic model is established in the time-domain simulation tool FAST (Fatigue, Aerodynamics, Structures, and Turbulence) with the hydrodynamic coefficients from HydroGen, an indoor program providing same outputs as the commercial software WAMIT. The optimized model is verified by imitating the frequency-domain approach in FAST and thus comparing the results with the frequency-domain calculations. A number of simulations with various wind and wave conditions are run to explore the effect of wind speed and wave significant height in various water depths. By modifying the optimized model to a downwind turbine with the nacelle rigidly mounted on the tower and the single tether connected to the platform by a subsea swivel, the modified models are more closed to the original SWAY-concept wind turbine. These models are compared based on the platform motion, tether tension, displacement, nacelle velocity and acceleration, resonant behavior as well as the damping of the coupled systems. The results of these comparisons prove the advantage of the modified model in performance. The modified model has also clarified itself a good candidate for deep water deployment.

Chen, Jieyan

2012-08-01T23:59:59.000Z

110

Wuxi Bamboo Wind Turbine Blade Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Wuxi Bamboo Wind Turbine Blade Technology Co Ltd Wuxi Bamboo Wind Turbine Blade Technology Co Ltd Jump to: navigation, search Name Wuxi Bamboo Wind Turbine Blade Technology Co Ltd Place Wuxi, Jiangsu Province, China Sector Wind energy Product Chinese wind turbine blade manufacturer. Coordinates 31.574011°, 120.288223° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.574011,"lon":120.288223,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

76 IEEE SYSTEMS JOURNAL, VOL. 6, NO. 1, MARCH 2012 Investigation of the Impacts of Large-Scale Wind  

E-Print Network (OSTI)

with higher installed capacity than the connected conventional generation. This increased amount of wind available economically with reduced carbon emission using renewable energy sources. In recent years, power transmission system (FACTS) controllers have been used for solving various power system steady-state control

Pota, Himanshu Roy

112

Structural damage identification in wind turbine blades using piezoelectric active sensing with ultrasonic validation  

SciTech Connect

This paper gives a brief overview of a new project at LANL in structural damage identification for wind turbines. This project makes use of modeling capabilities and sensing technology to understand realistic blade loading on large turbine blades, with the goal of developing the technology needed to automatically detect early damage. Several structural health monitoring (SHM) techniques using piezoelectric active materials are being investigated for the development of wireless, low power sensors that interrogate sections of the wind turbine blade using Lamb wave propagation data, frequency response functions (FRFs), and time-series analysis methods. The modeling and sensor research will be compared with extensive experimental testing, including wind tunnel experiments, load and fatigue tests, and ultrasonic scans - on small- to mid-scale turbine blades. Furthermore, this study will investigate the effect of local damage on the global response of the blade by monitoring low-frequency response changes.

Claytor, Thomas N [Los Alamos National Laboratory; Ammerman, Curtt N [Los Alamos National Laboratory; Park, Gyu Hae [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory; Atterbury, Marie K [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

113

Blade Offset and Pitch Effects on a High Solidity Vertical Axis Wind Turbine  

E-Print Network (OSTI)

ABSTRACT A high solidity, small scale, 2.5m diameter by 3m high Vertical Axis Wind Turbine (VAWT, performance 1. INTRODUCTION Small scale vertical axis wind turbines (VAWTs) show potential for urban rooftop turbines. Keywords: Vertical Axis Wind Turbine, VAWT, airfoil, pitch, blade, mount, offset, high solidity

Tullis, Stephen

114

Modal analysis and SHM investigation of CX-100 wind turbine blade  

DOE Green Energy (OSTI)

This paper presents the dynamic characterization of a CX-100 wind turbine blade using modal testing. Obtaining a thorough dynamic characterization of turbine blades is important because they are complex structures, making them very difficult to accurately model without supplementing with experimental data. The results of this dynamic characterization can be used to validate a numerical model and understand the effect of structural damage on the performance of the blades. Also covered is an exploration into Structural Health Monitoring (SHM) techniques employed on the blade surface to detect changes in the blade dynamic properties. SHM design parameters such as traveling distance of the wave were examined . Results obtained during modal and SHM testing will provide a baseline for future work in blade damage detection and mitigation.

Deines, Krystal E [Los Alamos National Laboratory; Marinone, Timothy [Los Alamos National Laboratory; Schultz, Ryan A [Los Alamos National Laboratory; Farinholt, Kevin R [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

2010-11-08T23:59:59.000Z

115

Fatigue Testing of 9 m Carbon Fiber Wind Turbine Research Blades  

SciTech Connect

Fatigue testing was conducted on Carbon Experimental and Twist-Bend Experimental (CX-100 and TX-100) 9-m wind turbine research blades. The CX-100 blade was designed to investigate the use of a carbon spar cap to reduce weight and increase stiffness while being incorporated using conventional manufacturing techniques. The TX-100 blade used carbon in the outboard portion of the skin to produce twist-bend coupling to passively alleviate aerodynamic loads. In the fatigue tests, the CX-100 blade was loaded by a single hydraulic cylinder while the TX-100 blade was loaded via a hydraulically-actuated resonant loading system called the Universal Resonant Exciter. The blades were outfitted with approximately 30 strain gages as well as displacement and load sensors. Both blades survived to cycle counts sufficient to demonstrate a 20-year operational life. The CX-100 blade failed at approximately 1.6 million cycles because of a buckle and crack that formed and grew just outboard of max-chord. The TX-100 blade failed because of a crack that grew from the termination point of the spar cap at the midspan of the blade. This paper covers the results of the fatigue tests.

Paquette, J.; van Dam, J.; Hughes, S.; Johnson, J.

2008-01-01T23:59:59.000Z

116

Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Project Report  

DOE Green Energy (OSTI)

Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Report Global Energy Concepts, LLC (GEC) has performed a conceptual design study concerning aeroelastic tailoring of small wind turbine blades. The primary objectives were to evaluate ways that blade/rotor geometry could be used to enable cost-of-energy reductions by enhancing energy capture while constraining or mitigating blade costs, system loads, and related component costs. This work builds on insights developed in ongoing adaptive-blade programs but with a focus on application to small turbine systems with isotropic blade material properties and with combined blade sweep and pre-bending/pre-curving to achieve the desired twist coupling. Specific goals of this project are to: (A) Evaluate and quantify the extent to which rotor geometry can be used to realize load-mitigating small wind turbine rotors. Primary aspects of the load mitigation are: (1) Improved overspeed safety affected by blades twisting toward stall in response to speed increases. (2) Reduced fatigue loading affected by blade twisting toward feather in response to turbulent gusts. (B) Illustrate trade-offs and design sensitivities for this concept. (C) Provide the technical basis for small wind turbine manufacturers to evaluate this concept and commercialize if the technology appears favorable. The SolidWorks code was used to rapidly develop solid models of blade with varying shapes and material properties. Finite element analyses (FEA) were performed using the COSMOS code modeling with tip-loads and centripetal accelerations. This tool set was used to investigate the potential for aeroelastic tailoring with combined planform sweep and pre-curve. An extensive matrix of design variables was investigated, including aerodynamic design, magnitude and shape of planform sweep, magnitude and shape of blade pre-curve, material stiffness, and rotor diameter. The FEA simulations resulted in substantial insights into the structural response of these blades. The trends were used to identify geometries and rotor configurations that showed the greatest promise for achieving beneficial aeroelastic response. The ADAMS code was used to perform complete aeroelastic simulations of selected rotor configurations; however, the results of these simulations were not satisfactory. This report documents the challenges encountered with the ADAMS simulations and presents recommendations for further development of this concept for aeroelastically tailored small wind turbine blades.

Griffin, Dayton A.

2005-09-29T23:59:59.000Z

117

7th International Workshop on Large-Scale Integration of Wind Power and on Transmission Networks for Offshore Wind Farms Models for HLI analysis of power systems with  

E-Print Network (OSTI)

export? BACKGROUND The last decade has seen a remarkable increase in the number of wind installations. In Europe, Denmark is amongst the leading countries in wind generation in terms of installed capacity the consequences and challenges of high rates of wind generation from both a technical and economic perspective

Bak-Jensen, Birgitte

118

Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry (Presentation)  

DOE Green Energy (OSTI)

This briefing provides an overview of supply chain developments in the global wind industry and a detailed assessment of blade manufacturing considerations for U.S. end-markets. The report discusses the international trade flows of wind power equipment, blade manufacturing and logistical costs, and qualitative issues that often influence factory location decisions. To help guide policy and research and development strategy decisions, this report offers a comprehensive perspective of both quantitative and qualitative factors that affect selected supply chain developments in the growing wind power industry.

James, T.; Goodrich, A.

2013-12-01T23:59:59.000Z

119

Structural health monitoring of wind turbine blades : SE 265 Final Project.  

DOE Green Energy (OSTI)

ACME Wind Turbine Corporation has contacted our dynamic analysis firm regarding structural health monitoring of their wind turbine blades. ACME has had several failures in previous years. Examples are shown in Figure 1. These failures have resulted in economic loss for the company due to down time of the turbines (lost revenue) and repair costs. Blade failures can occur in several modes, which may depend on the type of construction and load history. Cracking and delamination are some typical modes of blade failure. ACME warranties its turbines and wishes to decrease the number of blade failures they have to repair and replace. The company wishes to implement a real time structural health monitoring system in order to better understand when blade replacement is necessary. Because of warranty costs incurred to date, ACME is interested in either changing the warranty period for the blades in question or predicting imminent failure before it occurs. ACME's current practice is to increase the number of physical inspections when blades are approaching the end of their fatigue lives. Implementation of an in situ monitoring system would eliminate or greatly reduce the need for such physical inspections. Another benefit of such a monitoring system is that the life of any given component could be extended since real conditions would be monitored. The SHM system designed for ACME must be able to operate while the wind turbine is in service. This means that wireless communication options will likely be implemented. Because blade failures occur due to cyclic stresses in the blade material, the sensing system will focus on monitoring strain at various points.

Barkley, W. C. (Walter C.); Jacobs, Laura D.; Rutherford, A. C. (Amanda C.); Puckett, Anthony

2006-03-23T23:59:59.000Z

120

Structural health monitoring of wind turbine blades : SE 265 Final Project.  

SciTech Connect

ACME Wind Turbine Corporation has contacted our dynamic analysis firm regarding structural health monitoring of their wind turbine blades. ACME has had several failures in previous years. Examples are shown in Figure 1. These failures have resulted in economic loss for the company due to down time of the turbines (lost revenue) and repair costs. Blade failures can occur in several modes, which may depend on the type of construction and load history. Cracking and delamination are some typical modes of blade failure. ACME warranties its turbines and wishes to decrease the number of blade failures they have to repair and replace. The company wishes to implement a real time structural health monitoring system in order to better understand when blade replacement is necessary. Because of warranty costs incurred to date, ACME is interested in either changing the warranty period for the blades in question or predicting imminent failure before it occurs. ACME's current practice is to increase the number of physical inspections when blades are approaching the end of their fatigue lives. Implementation of an in situ monitoring system would eliminate or greatly reduce the need for such physical inspections. Another benefit of such a monitoring system is that the life of any given component could be extended since real conditions would be monitored. The SHM system designed for ACME must be able to operate while the wind turbine is in service. This means that wireless communication options will likely be implemented. Because blade failures occur due to cyclic stresses in the blade material, the sensing system will focus on monitoring strain at various points.

Barkley, W. C.(Walter C.); Jacobs, Laura D.; Rutherford, A. C.(Amanda C.); Puckett, Anthony

2006-03-23T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Mechanical Design, Analysis, and Testing of a Two-Bladed Wind Turbine Hub  

DOE Green Energy (OSTI)

Researchers at the National Wind Technology Center (NWTC) in Golden, Colorado, began performing the Unsteady Aerodynamics Experiment in 1993 to better understand the unsteady aerodynamics and structural responses of horizontal-axis wind turbines. The experiment consists of an extensively instrumented, downwind, three-bladed, 20-kilowatt wind turbine. In May 1995, I received a request from the NWTC to design a two-bladed hub for the experiment. For my thesis, I present the results of the mechanical design, analysis, and testing of the hub. The hub I designed is unique because it runs in rigid, teetering, or independent blade-flapping modes. In addition, the design is unusual because it uses two servomotors to pitch the blades independently. These features are used to investigate new load reduction, noise reduction, blade pitch optimization, and yaw control techniques for two-bladed turbines. I used a methodology by G. Phal and W. Bietz to design the hub. The hub meets all the performance specifications except that it achieves only 90% of the specified teeter range. In my thesis, I focus on the analysis and testing of the hub body. I performed solid-mechanics calculations, ran a finite-element analysis simulation, and experimentally investigated the structural integrity of the hub body.

Cotrell, J.

2002-06-01T23:59:59.000Z

122

Application of piezoelectric active-sensors for SHM of wind turbine blades  

DOE Green Energy (OSTI)

The goal of this study is to characterize the dynamic response of a CX-100 wind blade and the design parameters of SHM techniques as they apply to wind turbine blades, and to investigate the performance of high-frequency active-sensing SHM techniques, including lamb wave and frequency response functions, as a way to monitor the health of a wind turbine blade. The results of the dynamic characterization will be used to validate a numerical model and understand the effect of structural damage on the performance of the blades. The focus of SHM study is to assess and compare the performance of each method in identifying incipient damage, with a special consideration given to field deployability. For experiments, a 9-m CX-100 blade was used. Overall, the methods yielded sufficient damage detection to warrant further investigation into field deployment. This paper also summarizes the SHM results of a full-scale fatigue test of 9-m CX-100 blade using piezoelectric active-sensors.

Park, Gyuhae [Los Alamos National Laboratory; Taylor, Stuart G. [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory

2010-10-04T23:59:59.000Z

123

Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions, Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions, and Eco-Driving Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions, and Eco-Driving July 23, 2010 - 5:17pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs On Thursday, Secretary Chu announced six projects that aim to find ways of convert captured carbon dioxide (CO2) emissions from industrial sources into useful products. The innovative projects - funded with $106 million from the American Recovery and Reinvestment Act and matched with $156 million in private cost-share - will seek to use CO2 emissions from industrial sources to create useful products such as fuel, plastics, cement, and fertilizers. Find out more here.

124

Fiber-Optic Defect and Damage Locator System for Wind Turbine Blades  

DOE Green Energy (OSTI)

IFOS in collaboration with Auburn University demonstrated the feasibility of a Fiber Bragg Grating (FBG) integrated sensor system capable of providing real time in-situ defect detection, localization and quantification of damage. In addition, the system is capable of validating wind turbine blade structural models, using recent advances in non-contact, non-destructive dynamic testing of composite structures. This new generation method makes it possible to analyze wind turbine blades not only non-destructively, but also without physically contacting or implanting intrusive electrical elements and transducers into the structure. Phase I successfully demonstrated the feasibility of the technology with the construction of a 1.5 kHz sensor interrogator and preliminary instrumentation and testing of both composite material coupons and a wind turbine blade.

Dr. Vahid Sotoudeh; Dr. Richard J. Black; Dr. Behzad Moslehi; Mr. Aleks Plavsic

2010-10-30T23:59:59.000Z

125

Large-Scale Hydropower  

Energy.gov (U.S. Department of Energy (DOE))

Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 MW in size, and there is more than 80,000 MW...

126

Potential for Reducing Blade-Tip Acoustic Emissions for Small Wind Turbines: June 1, 2007 - July 31, 2008  

DOE Green Energy (OSTI)

This report provides results of wind tunnel aroacoustic tests conducted on a small wind turbine blade in the open-jet test section of the Georgia Tech Research Institute Flight Simulation Facility.

Migliore, P.

2009-02-01T23:59:59.000Z

127

ADVANCED COMPOSITE WIND TURBINE BLADE DESIGN BASED ON DURABILITY AND DAMAGE TOLERANCE  

Science Conference Proceedings (OSTI)

The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints and closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the tests. The results show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. A computational simulation for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties was performed. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. D&DT analyses were then validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence on the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. Structural benefits obtained with the use of enhanced matrix properties through nanoparticles infusion were also assessed. Thin unidirectional fiberglass layers enriched with silica nanoparticles were applied to the outer surfaces of a wind blade to improve its overall structural performance and durability. The wind blade was a 9-meter prototype structure manufactured and tested subject to three saddle static loading at Sandia National Laboratory (SNL). The blade manufacturing did not include the use of any nano-material. With silica nanoparticles in glass composite applied to the exterior surfaces of the blade, the durability and damage tolerance (D&DT) results from multi-scale PFA showed an increase in ultimate load of the blade by 9.2% as compared to baseline structural performance (without nano). The use of nanoparticles lead to a delay in the onset of delamination. Load-displacement relati

Galib Abumeri; Frank Abdi (PhD)

2012-02-16T23:59:59.000Z

128

Recent results from data analysis of dynamic stall on wind turbine blades  

DOE Green Energy (OSTI)

Wind turbines are subjected to dynamic loading from a variety of different sources. Wind shear and turbulence cause time-varying inflow that results in unsteady airloads. Tower shadow, upwind turbine wakes, and yaw angles also introduce unsteady inflow to wind turbine rotors. Wind turbine designers must predict these loads accurately in order to adequately design blades, hubs, and the remaining support structure to achieve a 30-year life. Structural analysts have not been able to predict mean or dynamic loads accurately enough to predict the fatigue life of major wind turbine components with confidence. Part of the problem is due to uncertainty in the stochastic wind environments as mentioned earlier. Another important part of the problem is the lack of basic knowledge of rotary wing airfoil stall performance. There is mounting evidence that dynamic stall may be related to dynamic loads that are greater than predictions. This paper describes some results of investigations of unsteady aerodynamic loads measured on a wind turbine blade. The objective of the investigation is to understand the steady and unsteady stall behavior of wind turbine blades. 13 refs.

Butterfield, C.P.; Simms, D. [National Renewable Energy Lab., Golden, CO (United States); Huyer, S. [Colorado Univ., Boulder, CO (United States)

1992-01-01T23:59:59.000Z

129

The application of non-destructive techniques to the testing of a wind turbine blade  

DOE Green Energy (OSTI)

NonDestructive Testing (NDT), also called NonDestructive Evaluation (NDE), is commonly used to monitor structures before, during, and after testing. This paper reports on the use of two NDT techniques to monitor the behavior of a typical wind turbine blade during a quasi-static test-to-failure. The two NDT techniques used were acoustic emission and coherent optical. The former monitors the acoustic energy produced by the blade as it is loaded. The latter uses electron shearography to measure the differences in surface displacements between two load states. Typical results are presented to demonstrate the ability of these two techniques to locate and monitor both high damage regions and flaws in the blade structure. Furthermore, this experiment highlights the limitations in the techniques that must be addressed before one or both can be transferred, with a high probability of success, to the inspection and monitoring of turbine blades during the manufacturing process and under normal operating conditions.

Sutherland, H.; Beattie, A.; Hansche, B. [Sandia National Labs., Albuquerque, NM (United States); Musial, W.; Allread, J.; Johnson, J. [National Renewable Energy Lab., Golden, CO (United States); Summers, M. [United Technologies, West Palm Beach, FL (United States)

1994-06-01T23:59:59.000Z

130

Modal analysis and SHM investigation of CX-100 wind turbine blade  

DOE Green Energy (OSTI)

This paper presents the dynamic characterization of a CX100 blade using modal testing. Obtaining a thorough dynamic characterization of these turbine blades is important because they are complex structures, making them difficult to monitor for damage initiation and subsequent growth. This dynamic characterization was compared to a numerical model developed for validation. Structural Health Monitoring (SHM) techniques involving Lamb wave propagation, frequency response functions, and impedance based methods were also used to provide insight into blade dynamic response. SHM design parameters such as traveling distance of the wave, sensing region of the sensor and the power requirements were examined. Results obtained during modal and SHM testing will provide a baseline for future damage detection and mitigation techniques for wind turbine blades.

Deines, Krystal E [Los Alamos National Laboratory; Marinone, Timothy [Los Alamos National Laboratory; Schultz, Ryan A [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

2011-01-24T23:59:59.000Z

131

Fluid flow modeling of resin transfer molding for composite material wind turbine blade structures.  

SciTech Connect

Resin transfer molding (RTM) is a closed mold process for making composite materials. It has the potential to produce parts more cost effectively than hand lay-up or other methods. However, fluid flow tends to be unpredictable and parts the size of a wind turbine blade are difficult to engineer without some predictive method for resin flow. There were five goals of this study. The first was to determine permeabilities for three fabrics commonly used for RTM over a useful range of fiber volume fractions. Next, relations to estimate permeabilities in mixed fabric lay-ups were evaluated. Flow in blade substructures was analyzed and compared to predictions. Flow in a full-scale blade was predicted and substructure results were used to validate the accuracy of a full-scale blade prediction.

Cairns, Douglas S. (Montana State University, Bozeman, MT); Rossel, Scott M. (Montana State University, Bozeman, MT)

2004-06-01T23:59:59.000Z

132

Fatigue of Composite Material Beam Elements Representative of Wind Turbine Blade Substructure  

DOE Green Energy (OSTI)

The database and analysis methods used to predict wind turbine blade structural performance for stiffness, static strength, dynamic response,and fatigue lifetime are validated through the design, fabrication, and testing of substructural elements. We chose a test specimen representative of wind turbine blade primary substructure to represent the spar area of a typical wind turbine blade. We then designed an I-beam with flanges and web to represent blade structure, using materials typical of many U.S.-manufactured blades. Our study included the fabrication and fatigue testing of 52 beams and many coupons of beam material. Fatigue lifetimes were consistent with predictions based on the coupon database. The final beam specimen proved to be a very useful tool for validating strength and lifetime predictions for a variety of flange and web materials, and is serving as a test bed to ongoing studies of structural details and the interaction between manufacturing and structural performance. Th e beam test results provide a significant validation of the coupon database and the methodologies for predicting fatigue of composite material beam elements.

Mandell, J. F.; Samborsky, D. D.; Combs, D. W.; Scott, M. E.; Cairns, D. S. (Department of Chemical Engineering, Montana State University)

1998-01-11T23:59:59.000Z

133

Wind turbine blade fatigue tests: lessons learned and application to SHM system development  

DOE Green Energy (OSTI)

This paper presents experimental results of several structural health monitoring (SHM) methods applied to a 9-meter CX-100 wind turbine blade that underwent fatigue loading. The blade was instrumented with piezoelectric transducers, accelerometers, acoustic emission sensors, and foil strain gauges. It underwent harmonic excitation at its first natural frequency using a hydraulically actuated resonant excitation system. The blade was initially excited at 25% of its design load, and then with steadily increasing loads until it failed. Various data were collected between and during fatigue loading sessions. The data were measured over multiple frequency ranges using a variety of acquisition equipment, including off-the-shelf systems and specially designed hardware developed by the authors. Modal response, diffuse wave-field transfer functions, and ultrasonic guided wave methods were applied to assess the condition of the wind turbine blade. The piezoelectric sensors themselves were also monitored using a sensor diagnostics procedure. This paper summarizes experimental procedures and results, focusing particularly on fatigue crack detection, and concludes with considerations for implementing such damage identification systems, which will be used as a guideline for future SHM system development for operating wind turbine blades.

Taylor, Stuart G. [Los Alamos National Laboratory; Farinholt, Kevin M. [Los Alamos National Laboratory; Jeong, Hyomi [Chonbuk National University, Korea; Jang, JaeKyung [Chonbuk National University, Korea; Park, Gyu Hae [Los Alamos National Laboratory; Todd, Michael D. [Los Alamos National Laboratory; Farrar, Charles R. [Los Alamos National Laboratory; Ammerman, Curtt N. [Los Alamos National Laboratory

2012-06-28T23:59:59.000Z

134

Design of a 3 kW wind turbine generator with thin airfoil blades  

SciTech Connect

Three blades of a 3 kW prototype wind turbine generator were designed with thin airfoil and a tip speed ratio of 3. The wind turbine has been controlled via two control methods: the variable pitch angle and by regulation of the field current of the generator and examined under real wind conditions. The characteristics of the thin airfoil, called ''Seven arcs thin airfoil'' named so because the airfoil is composed of seven circular arcs, are analyzed with the airfoil design and analysis program XFOIL. The thin airfoil blade is designed and calculated by blade element and momentum theory. The performance characteristics of the machine such as rotational speed, generator output as well as stability for wind speed changes are described. In the case of average wind speeds of 10 m/s and a maximum of 19 m/s, the automatically controlled wind turbine ran safely through rough wind conditions and showed an average generator output of 1105 W and a power coefficient 0.14. (author)

Ameku, Kazumasa; Nagai, Baku M.; Roy, Jitendro Nath [Faculty of Mechanical Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213 (Japan)

2008-09-15T23:59:59.000Z

135

WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor  

SciTech Connect

The United States Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL) implemented the Wind Partnership for Advanced Component Technologies (WindPACT) program. As part of the WindPACT program, Global Energy Concepts, LLC (GEC), was awarded contract number YAM-0-30203-01 to examine Technical Area 1-Blade Scaling, Technical Area 2-Turbine Rotor and Blade Logistics, and Technical Area 3-Self-Erecting Towers. This report documents the results of GEC's Technical Area 1-Blade Scaling. The primary objectives of the Blade-Scaling Study are to assess the scaling of current materials and manufacturing technologies for blades of 40 to 60 meters in length, and to develop scaling curves of estimated cost and mass for rotor blades in that size range.

Griffin, D.A.

2001-04-30T23:59:59.000Z

136

Necessity and Requirements of a Collaborative Effort to Develop a Large Wind Turbine Blade Test Facility in North America  

DOE Green Energy (OSTI)

The wind power industry in North America has an immediate need for larger blade test facilities to ensure the survival of the industry. Blade testing is necessary to meet certification and investor requirements and is critical to achieving the reliability and blade life needed for the wind turbine industry to succeed. The U.S. Department of Energy's (DOE's) Wind Program is exploring options for collaborating with government, private, or academic entities in a partnership to build larger blade test facilities in North America capable of testing blades up to at least 70 m in length. The National Renewable Energy Laboratory (NREL) prepared this report for DOE to describe the immediate need to pursue larger blade test facilities in North America, categorize the numerous prospective partners for a North American collaboration, and document the requirements for a North American test facility.

Cotrell, J.; Musial, W.; Hughes, S.

2006-05-01T23:59:59.000Z

137

Application of the U.S. high cycle fatigue data base to wind turbine blade lifetime predictions  

DOE Green Energy (OSTI)

This paper demonstrates a methodology for predicting the service lifetime of wind turbine blades using the high-cycle fatigue data base for typical U.S. blade materials developed by Mandell, et al. (1995). The first step in the analysis is to normalize the data base (composed primarily of data obtained from specialized, relatively small coupons) with fatigue data from typical industrial laminates to obtain a Goodman Diagram that is suitable for analyzing wind turbine blades. The LIFE2 fatigue analysis code for wind turbines is then used for the fatigue analysis of a typical turbine blade with a known load spectrum. In the analysis, a linear damage model, Miner`s Rule, is used to demonstrate the prediction of the service lifetime for a typical wind turbine blade under assumed operating strain ranges and stress concentration factors. In contrast to typical European data, the asymmetry in this data base predicts failures under typical loads to be compressive.

Sutherland, H.J. [Sandia National Labs., Albuquerque, NM (United States); Mandell, J.F. [Montana State Univ., Bozeman, MT (United States)

1995-12-01T23:59:59.000Z

138

Experimental Study of Stability Limits for Slender Wind Turbine Blades.  

E-Print Network (OSTI)

??There is a growing interest in extracting more power per turbine by increasing the rotor size in offshore wind turbines. As a result, the turbine… (more)

Ladge, Shruti

2012-01-01T23:59:59.000Z

139

Pages that link to "Tianjin Dongqi Wind Turbine Blade Engineering...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History...

140

Pages that link to "Wuxi Bamboo Wind Turbine Blade Technology...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History...

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A Comparison of Two and Three Bladed Floating Wind Turbines.  

E-Print Network (OSTI)

??A possible solution to the limitations of current offshore wind technology would be the utilization of a floating platform. Floating platforms are not a new… (more)

Andersen, Brett

2010-01-01T23:59:59.000Z

142

Survey of techniques for reduction of wind turbine blade trailing edge noise.  

DOE Green Energy (OSTI)

Aerodynamic noise from wind turbine rotors leads to constraints in both rotor design and turbine siting. The primary source of aerodynamic noise on wind turbine rotors is the interaction of turbulent boundary layers on the blades with the blade trailing edges. This report surveys concepts that have been proposed for trailing edge noise reduction, with emphasis on concepts that have been tested at either sub-scale or full-scale. These concepts include trailing edge serrations, low-noise airfoil designs, trailing edge brushes, and porous trailing edges. The demonstrated noise reductions of these concepts are cited, along with their impacts on aerodynamic performance. An assessment is made of future research opportunities in trailing edge noise reduction for wind turbine rotors.

Barone, Matthew Franklin

2011-08-01T23:59:59.000Z

143

Design and fabrication of a composite wind turbine blade  

SciTech Connect

This paper describes the design considerations leading to the innovative combination of materials used for the MOD-I wind turbine generator rotor and the fabrication processes which were required to accomplish it.

Brown, R.A. (Boeing Engineering and Construction, Seattle, WA); Haley, R.G.

1980-01-01T23:59:59.000Z

144

Changes related to "Tianjin Dongqi Wind Turbine Blade Engineering...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind View New Pages Recent Changes All...

145

Changes related to "Wuxi Bamboo Wind Turbine Blade Technology...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind View New Pages Recent Changes All...

146

Tianjin Dongqi Wind Turbine Blade Engineering Co Ltd | Open Energy...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source...

147

Guidelines for reducing dynamic loads in two-bladed teetering-hub downwind wind turbines  

DOE Green Energy (OSTI)

A major goal of the federal Wind Energy Program is the rapid development and validation of structural models to determine loads and response for a wide variety of different wind turbine configurations operating under extreme conditions. Such codes are crucial to the successful design of future advanced wind turbines. In previous papers the authors described steps they took to develop a model of a two-bladed teetering-hub downwind wind turbine using ADAMS{reg_sign} (Automatic Dynamic Analysis of Mechanical Systems), as well as comparison of model predictions to test data. In this paper they show the use of this analytical model to study the influence of various turbine parameters on predicted system loads. They concentrate their study on turbine response in the frequency range of six to ten times the rotor rotational frequency (6P to 10P). Their goal is to identify the most important parameters which influence the response of this type of machine in this frequency range and give turbine designers some general design guidelines for designing two-bladed teetering-hub machines to be less susceptible to vibration. They study the effects of such parameters as blade edgewise and flapwise stiffness, tower top stiffness, blade tip-brake mass, low-speed shaft stiffness, nacelle mass momenta of inertia, and rotor speed. They show which parameters can be varied in order to make the turbine less responsive to such atmospheric inputs as wind shear and tower shadow. They then give designers a set of design guidelines in order to show how these machines can be designed to be less responsive to these inputs.

Wright, A.D.; Bir, G.S.; Butterfield, C.D.

1995-06-01T23:59:59.000Z

148

Wind turbine rotor blade with in-plane sweep and devices using same, and methods for making same  

DOE Patents (OSTI)

A wind turbine includes a rotor having a hub and at least one blade having a torsionally rigid root, an inboard section, and an outboard section. The inboard section has a forward sweep relative to an elastic axis of the blade and the outboard section has an aft sweep.

Wetzel, Kyle Kristopher (Lawrence, KS)

2008-03-18T23:59:59.000Z

149

The application of nondestructive techniques to the testing of a wind turbine blade  

DOE Green Energy (OSTI)

NonDestructive Testing (NDT) is commonly used to monitor structures before, during and after testing. This paper reports on the use of two NDT techniques to monitor the behavior of a typical wind turbine blade during a quasi-static test-to-failure. The test used a three-point spanwise load distribution to load a 7.9-m blade to failure. The two NDT techniques used were acoustic emission and coherent optical. The former monitors the acoustic energy produced by the blade as it is loaded. The latter uses electronic shearography to measure the differences in surface displacements between two load states with an accuracy of a few microns. Typical results are presented to demonstrate the ability of these two techniques to locate and monitor both high damage regions and flaws in the blade structure. Further, this experiment highlights the limitations in the techniques that must be addressed before one or both can be transferred, with a high probability of success, to the inspection and monitoring of turbine blades during the manufacturing process and under normal operating conditions.

Sutherland, H.J. [Sandia National Labs., Albuquerque, NM (US); Musial, W. [National Renewable Energy Lab., Golden, CO (US)

1993-07-01T23:59:59.000Z

150

Comparison of strength and load-based methods for testing wind turbine blades  

DOE Green Energy (OSTI)

The purpose of this paper is to compare two methods of blade test loading and show how they are applied in an actual blade test. Strength and load-based methods were examined to determine the test load for an Atlantic Orient Corporation (AOC) 15/50 wind turbine blade for fatigue and static testing. Fatigue load-based analysis was performed using measured field test loads extrapolated for extreme rare events and scaled to thirty-year spectra. An accelerated constant amplitude fatigue test that gives equivalent damage at critical locations was developed using Miner`s Rule and the material S-N curves. Test load factors were applied to adjust the test loads for uncertainties, and differences between the test and operating environment. Similar analyses were carried, out for the strength-based fatigue test using the strength of the blade and the material properties to determine the load level and number of constant amplitude cycles to failure. Static tests were also developed using load and strength criteria. The resulting test loads were compared and contrasted. The analysis shows that, for the AOC 15/50 blade, the strength-based test loads are higher than any of the static load-based cases considered but were exceeded in the fatigue analysis for a severe hot/wet environment.

Musial, W.D.; Clark, M.E.; Egging, N. [and others

1996-11-01T23:59:59.000Z

151

Base excitation testing system using spring elements to pivotally mount wind turbine blades  

DOE Patents (OSTI)

A system (1100) for fatigue testing wind turbine blades (1102) through forced or resonant excitation of the base (1104) of a blade (1102). The system (1100) includes a test stand (1112) and a restoring spring assembly (1120) mounted on the test stand (1112). The restoring spring assembly (1120) includes a primary spring element (1124) that extends outward from the test stand (1112) to a blade mounting plate (1130) configured to receive a base (1104) of blade (1102). During fatigue testing, a supported base (1104) of a blad (1102) may be pivotally mounted to the test stand (1112) via the restoring spring assembly (1120). The system (1100) may include an excitation input assembly (1140) that is interconnected with the blade mouting plate (1130) to selectively apply flapwise, edgewise, and/or pitch excitation forces. The restoring spring assemply (1120) may include at least one tuning spring member (1127) positioned adjacent to the primary spring element (1124) used to tune the spring constant or stiffness of the primary spring element (1124) in one of the excitation directions.

Cotrell, Jason; Hughes, Scott; Butterfield, Sandy; Lambert, Scott

2013-12-10T23:59:59.000Z

152

Evaluation of Hand Lay-Up and Resin Transfer Molding in Composite Wind Turbine Blade Manufacturing  

DOE Green Energy (OSTI)

The majority of the wind turbine blade industry currently uses low cost hand lay-up manufacturing techniques to process composite blades. While there are benefits to the hand lay-up process, drawbacks inherent to this process along with advantages of other techniques suggest that better manufacturing alternatives may be available. Resin Transfer Molding (RTM) was identified as a processing alternative and shows promise in addressing the shortcomings of hand lay-up. This report details a comparison of the RTM process to hand lay-up of composite wind turbine blade structures. Several lay-up schedules and critical turbine blade structures were chosen for comparison of their properties resulting from RTM and hand lay-up processing. The geometries investigated were flat plate, thin and thick flanged T-stiffener, I-beam, and root connection joint. It was found that the manufacturing process played an important role in laminate thickness, fiber volume, and weight for the geometries investigated. RTM was found to reduce thickness and weight and increase fiber volumes for all substructures. RTM resulted in tighter material transition radii and eliminated the need for most secondary bonding operations. These results would significantly reduce the weight of wind turbine blades. Hand lay-up was consistently slower in fabrication times for the structures investigated. A comparison of mechanical properties showed no significant differences after employing fiber volume normalization techniques to account for geometry differences resulting from varying fiber volumes. The current root specimen design does not show significant mechanical property differences according to process and exceeds all static and fatigue requirements.

CAIRNS,DOUGLAS S.; SHRAMSTAD,JON D.

2000-06-01T23:59:59.000Z

153

Low Speed Technology for Small Turbine Development Reaction Injection Molded 7.5 Meter Wind Turbine Blade  

Science Conference Proceedings (OSTI)

An optimized small turbine blade (7.5m radius) was designed and a partial section molded with the RIM (reaction-injection molded polymer) process for mass production. The intended market is for generic three-bladed wind turbines, 100 kilowatts or less, for grid-assist end users with rural and semi-rural sites, such as the farm/ranch market, having low to moderate IEC Class 3-4 wind regimes. This blade will have substantial performance improvements over, and be cheaper than, present-day 7.5m blades. This is made possible by the injection-molding process, which yields high repeatability, accurate geometry and weights, and low cost in production quantities. No wind turbine blade in the 7.5m or greater size has used this process. The blade design chosen uses a RIM skin bonded to a braided infused carbon fiber/epoxy spar. This approach is attractive to present users of wind turbine blades in the 5-10m sizes. These include rebladeing California wind farms, refurbishing used turbines for the Midwest farm market, and other manufacturers introducing new turbines in this size range.

David M. Wright; DOE Project Officer - Keith Bennett

2007-07-31T23:59:59.000Z

154

CFD analysis of rotating two-bladed flatback wind turbine rotor.  

DOE Green Energy (OSTI)

The effects of modifying the inboard portion of the NREL Phase VI rotor using a thickened, flatback version of the S809 design airfoil are studied using a three-dimensional Reynolds-averaged Navier-Stokes method. A motivation for using such a thicker airfoil design coupled with a blunt trailing edge is to alleviate structural constraints while reducing blade weight and maintaining the power performance of the rotor. The calculated results for the baseline Phase VI rotor are benchmarked against wind tunnel results obtained at 10, 7, and 5 meters per second. The calculated results for the modified rotor are compared against those of the baseline rotor. The results of this study demonstrate that a thick, flatback blade profile is viable as a bridge to connect structural requirements with aerodynamic performance in designing future wind turbine rotors.

van Dam, C.P. (University of California, David, CA); Chao, David D.; Berg, Dale E. (University of California, David, CA)

2008-04-01T23:59:59.000Z

155

Distrubance Tracking and Blade Load Control of Wind Turbines in Variable-Speed Operation: Preprint  

DOE Green Energy (OSTI)

A composite state-space controller was developed for a multi-objective problem in the variable-speed operation of wind turbines. Disturbance Tracking Control theory was applied to the design of a torque controller to optimize energy capture under the influence of persistent wind disturbances. A limitation in the theory for common multi-state models is described, which led to the design of a complementary pitch controller. The goal of the independent blade pitch design was to minimize blade root fatigue loads. Simulation results indicate an 11% reduction in fatigue damage using the proposed controllers, compared to a conventional torque-only design. Meanwhile, energy capture is almost identical, partly because of nonlinear effects.

Stol, K. A.

2003-01-01T23:59:59.000Z

156

Lidar measurement of wind velocity turbulence spectra encountered by a rotating turbine blade  

DOE Green Energy (OSTI)

A homodyne CO/sub 2/ lidar system beam was conically scanned around a horizontal axis to measure the wind speed and turbulence characteristics encountered by a rotating turbine blade. Turbulence spectra obtained from the scanning lidar differed considerably from those calculated from fixed-point anemometer measurements, showing a redistribution of energy from lower to higher frequencies. The differences appeared more pronounced during periods when the atmosphere was stable.

Hardesty, R.M.; Korrell, J.A.; Hall, F.F. Jr.

1982-01-01T23:59:59.000Z

157

Examination, evaluation, and repair of laminated wood blades after service on the Mod-OA wind turbine  

SciTech Connect

As a result of about 7 years of effort at the NASA Lewis Research Center, laminated wood blades were designed, fabricated, and installed on a 200-kW wind turbine (Mod-OA). The machine uses a two-blade rotor with a diameter of 38.1 m (125 ft). Each blade weighs less than 1361 kg (3000 lb). After operating in the field, two blade sets were returned for inspection. One set had been in Hawaii for 17 months (7844 h of operation) and the other had been at Block Island, Rhode Island, for 26 months (22 months operating - 7564 h). The Hawaii set was returned because one of the studs that holds the blade to the hub had failed. This was found to be caused by a combination of improper installation and inadequate corrosion protection. No other problems were found. The broken stud (along with four others that were badly corroded) was replaced and the blades are now in storage. The Block Island set of blades was returned at the completion of the test program, but one blade was found to have developed a crack in the leading edge along the entire span. This crack was found to be the result of a manufacturing process problem but was not structurally critical. When a load-deflection test was conducted on the cracked blade, the response was identical to that measured before installation. In general, the laminate quality of both blade sets was excellent. No significant internal delamination or structural defects were found in any blade. The stud bonding process requires close tolerance control and adequate corrosion protection, but studs can be removed and replaced without major problems. Moisture content stabilization does not appear to be a problem, and laminated wood blades are satisfactory for long-term operation on Mod-OA wind turbines.

Faddoul, J.R.

1983-01-01T23:59:59.000Z

158

Effect of Load Phase Angle on Wind Turbine Blade Fatigue Damage: Preprint  

DOE Green Energy (OSTI)

This paper examines the importance of phase angle variations with respect to fatigue damage. The operating loads on a generic conventional three-bladed upwind 1.5-MW wind turbine blade were analyzed over a range of operating conditions, and an aggregate probability distribution for the actual phase angles between the in-plane (lead-lag) and out-of-plane (flap) loads was determined. Using a finite element model of a generic blade and Miner's Rule, the accumulated theoretical damage (based on axial strains) resulting from a fatigue test with variable phase angles was compared to the damage resulting from a fatigue test with a constant phase angle. The nodal damage distribution at specific blade cross-sections are compared for the constant and variable phase angle cases. The sequence effects of various phase angle progressions were also considered. For this analysis, the finite element results were processed using the nonlinear Marco-Starkey damage accumulation model. Each phase angle sequence was constrained to have the same overall phase angle distribution and the same total number of cycles but the order in which the phase angles were applied was varied.

White, D. L.; Musial, W. D.

2003-11-01T23:59:59.000Z

159

Comprehensive testing of Nedwind 12-Meter wind turbine blades at NREL  

DOE Green Energy (OSTI)

This paper describes the structural testing of two NedWind 25 12-m blades at the National Renewable Energy Laboratory (NREL). The tests were conducted under the Standards, Measurement and Testing (SMT) Program in conjunction with tests conducted by four European laboratories to develop a common database of blade testing methods. All of the laboratories tested duplicate copies of blades taken from series production. Blade properties, including weight, center of gravity, natural frequencies, stiffness, and damping, were determined. Static load tests were performed at 110% of the extreme design load for strain verification. NREL performed single-axis and two-axis fatigue tests using business-as-usual testing practices. The single-axis test combined equivalent life loading for the edge and flap spectra into a single resultant load. The two-axis test applied the edge and flap components independently at a phase angle of 90{degree}. Damage areas were observed at (1) the trailing edge, which cracked near the maximum chord; (2) between the steel root collar and the composite, where circumferential cracking was noted; and (3) along the top of the spar between the 2,500-mm and 4,200-mm stations, where a notable increase in acoustic emissions was detected. NREL observed that the onset of damage occurred earlier in the single-axis test.

Larwood, S.; Musial, W.

2000-03-13T23:59:59.000Z

160

Analysis of SNL/MSU/DOE fatigue database trends for wind turbine blade materials.  

DOE Green Energy (OSTI)

This report presents an analysis of trends in fatigue results from the Montana State University program on the fatigue of composite materials for wind turbine blades for the period 2005-2009. Test data can be found in the SNL/MSU/DOE Fatigue of Composite Materials Database which is updated annually. This is the fifth report in this series, which summarizes progress of the overall program since its inception in 1989. The primary thrust of this program has been research and testing of a broad range of structural laminate materials of interest to blade structures. The report is focused on current types of infused and prepreg blade materials, either processed in-house or by industry partners. Trends in static and fatigue performance are analyzed for a range of materials, geometries and loading conditions. Materials include: sixteen resins of three general types, five epoxy based paste adhesives, fifteen reinforcing fabrics including three fiber types, three prepregs, many laminate lay-ups and process variations. Significant differences in static and fatigue performance and delamination resistance are quantified for particular materials and process conditions. When blades do fail, the likely cause is fatigue in the structural detail areas or at major flaws. The program is focused strongly on these issues in addition to standard laminates. Structural detail tests allow evaluation of various blade materials options in the context of more realistic representations of blade structure than do the standard test methods. Types of structural details addressed in this report include ply drops used in thickness tapering, and adhesive joints, each tested over a range of fatigue loading conditions. Ply drop studies were in two areas: (1) a combined experimental and finite element study of basic ply drop delamination parameters for glass and carbon prepreg laminates, and (2) the development of a complex structured resin-infused coupon including ply drops, for comparison studies of various resins, fabrics and pry drop thicknesses. Adhesive joint tests using typical blade adhesives included both generic testing of materials parameters using a notched-lap-shear test geometry developed in this study, and also a series of simulated blade web joint geometries fabricated by an industry partner.

Mandell, John F. (Montana State University, Bozeman, MT); Ashwill, Thomas D.; Wilson, Timothy J. (Montana State University, Bozeman, MT); Sears, Aaron T. (Montana State University, Bozeman, MT); Agastra, Pancasatya (Montana State University, Bozeman, MT); Laird, Daniel L.; Samborsky, Daniel D. (Montana State University, Bozeman, MT)

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Application of a wireless sensor node to health monitoring of operational wind turbine blades  

Science Conference Proceedings (OSTI)

Structural health monitoring (SHM) is a developing field of research with a variety of applications including civil structures, industrial equipment, and energy infrastructure. An SHM system requires an integrated process of sensing, data interrogation and statistical assessment. The first and most important stage of any SHM system is the sensing system, which is traditionally composed of transducers and data acquisition hardware. However, such hardware is often heavy, bulky, and difficult to install in situ. Furthermore, physical access to the structure being monitored may be limited or restricted, as is the case for rotating wind turbine blades or unmanned aerial vehicles, requiring wireless transmission of sensor readings. This study applies a previously developed compact wireless sensor node to structural health monitoring of rotating small-scale wind turbine blades. The compact sensor node collects low-frequency structural vibration measurements to estimate natural frequencies and operational deflection shapes. The sensor node also has the capability to perform high-frequency impedance measurements to detect changes in local material properties or other physical characteristics. Operational measurements were collected using the wireless sensing system for both healthy and damaged blade conditions. Damage sensitive features were extracted from the collected data, and those features were used to classify the structural condition as healthy or damaged.

Taylor, Stuart G [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory; Todd, Michael D [UCSD

2009-01-01T23:59:59.000Z

162

Task 4.1 Intelligent Manufacturing of Hybrid Carbon-Glass Fiber-Reinforced Composite Wind Turbine Blades  

DOE Green Energy (OSTI)

EXECUTIVE SUMARY In this subtask, the manufacturability of hybrid carbon-glass fiber-reinforced composite wind turbine blades using Vacuum-Assisted Resin Transfer Molding (VARTM) was investigated. The objective of this investigation was to study the VARTM process and its parameters to manufacture cost-effective wind turbine blades with no defects (mainly eliminate dry spots and reduce manufacturing time). A 2.5-dimensional model and a 3-dimensional model were developed to simulate mold filling and part curing under different conditions. These conditions included isothermal and non-isothermal filling, curing of the part during and after filling, and placement of injection gates at different locations. Results from this investigation reveal that the process can be simulated and also that manufacturing parameters can be optimized to eliminate dry spot formation and reduce the manufacturing time. Using computer-based models is a cost-effective way to simulate manufacturing of wind turbine blades. The approach taken herein allows the design of the wind blade manufacturing processes without physically running trial-and-error experiments that are expensive and time-consuming; especially for larger blades needed for more demanding environmental conditions. This will benefit the wind energy industry by reducing initial design and manufacturing costs which can later be passed down to consumers and consequently make the wind energy industry more competitive.

Janet M Twomey, PhD

2010-04-30T23:59:59.000Z

163

Effects of blade configurations on flow distribution and power output of a Zephyr vertical axis wind turbine  

Science Conference Proceedings (OSTI)

Numerical simulations with FLUENT software were conducted to investigate the fluid flow through a novel vertical axis wind turbine (VAWT). Simulation of flow through the turbine rotor was performed with the aim of predicting the performance characteristics ... Keywords: blade configuration, power output, rotor, simulation, vertical axis wind turbine

J. O. Ajedegba; G. F. Naterer; M. A. Rosen; E. Tsang

2008-02-01T23:59:59.000Z

164

Sensitivity of Low-Level Winds Simulated by the WRF Model in California’s Central Valley to Uncertainties in the Large-Scale Forcing and Soil Initialization  

Science Conference Proceedings (OSTI)

The sensitivity of the Weather and Research Forecasting (WRF) model-simulated low-level winds in the Central Valley (CV) of California to uncertainties in the atmospheric forcing and soil initialization is investigated using scatter diagrams for ...

Sara A. Michelson; Jian-Wen Bao

2008-12-01T23:59:59.000Z

165

WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor and Blade Logistics  

SciTech Connect

Through the National Renewable Energy Laboratory (NREL), the United States Department of Energy (DOE) implemented the Wind Partnership for Advanced Component Technologies (WindPACT) program. This program will explore advanced technologies that may reduce the cost of energy (COE) from wind turbines. The initial step in the WindPACT program is a series of preliminary scaling studies intended to determine the optimum sizes for future turbines, help define sizing limits for certain critical technologies, and explore the potential for advanced technologies to contribute to reduced COE as turbine scales increase. This report documents the results of Technical Area 2-Turbine Rotor and Blade Logistics. For this report, we investigated the transportation, assembly, and crane logistics and costs associated with installation of a range of multi-megawatt-scale wind turbines. We focused on using currently available equipment, assembly techniques, and transportation system capabilities and limitations to hypothetically transport and install 50 wind turbines at a facility in south-central South Dakota.

Smith, K.

2001-07-16T23:59:59.000Z

166

Measured and predicted rotor performance for the SERI advanced wind turbine blades  

DOE Green Energy (OSTI)

Measured and predicted rotor performance for the SERI advanced wind turbine blades were compared to assess the accuracy of predictions and to identify the sources of error affecting both predictions and measurements. An awareness of these sources of error contributes to improved prediction and measurement methods that will ultimately benefit future rotor design efforts. Propeller/vane anemometers were found to underestimate the wind speed in turbulent environments such as the San Gorgonio Pass wind farm area. Using sonic or cup anemometers, good agreement was achieved between predicted and measured power output for wind speeds up to 8 m/sec. At higher wind speeds an optimistic predicted power output and the occurrence of peak power at wind speeds lower than measurements resulted from the omission of turbulence and yaw error. In addition, accurate two-dimensional (2-D) airfoil data prior to stall and a post stall airfoil data synthesization method that reflects three-dimensional (3-D) effects were found to be essential for accurate performance prediction. 11 refs.

Tangler, J.; Smith, B.; Kelley, N.; Jager, D.

1992-02-01T23:59:59.000Z

167

A wind turbine blade is ready to be lifted into place at the Windy Point Wind Farm in the Columbia River Gorge. Photo: C. Bruce Forster  

E-Print Network (OSTI)

A wind turbine blade is ready to be lifted into place at the Windy Point Wind Farm in the Columbia with juvenile bypass systems to keep the smolts out of the turbines. But given the gravity of the [salmon 1956 12 MW Chief Joseph Columbia, WA 1958 2,458 MW Cougar McKenzie, OR 1963 25 MW Detroit Santiam

168

Self-organization of large-scale ULF electromagnetic wave structures in their interaction with nonuniform zonal winds in the ionospheric E region  

Science Conference Proceedings (OSTI)

A study is made of the generation and subsequent linear and nonlinear evolution of ultralow-frequency planetary electromagnetic waves in the E region of a dissipative ionosphere in the presence of a nonuniform zonal wind (a sheared flow). Hall currents flowing in the E region and such permanent global factors as the spatial nonuniformity of the geomagnetic field and of the normal component of the Earth's angular velocity give rise to fast and slow planetary-scale electromagnetic waves. The efficiency of the linear amplification of planetary electromagnetic waves in their interaction with a nonuniform zonal wind is analyzed. When there are sheared flows, the operators of linear problems are non-self-conjugate and the corresponding eigenfunctions are nonorthogonal, so the canonical modal approach is poorly suited for studying such motions and it is necessary to utilize the so-called nonmodal mathematical analysis. It is shown that, in the linear evolutionary stage, planetary electromagnetic waves efficiently extract energy from the sheared flow, thereby substantially increasing their amplitude and, accordingly, energy. The criterion for instability of a sheared flow in an ionospheric medium is derived. As the shear instability develops and the perturbation amplitude grows, a nonlinear self-localization mechanism comes into play and the process ends with the self-organization of nonlinear, highly localized, solitary vortex structures. The system thus acquires a new degree of freedom, thereby providing a new way for the perturbation to evolve in a medium with a sheared flow. Depending on the shape of the sheared flow velocity profile, nonlinear structures can be either purely monopole vortices or vortex streets against the background of the zonal wind. The accumulation of such vortices can lead to a strongly turbulent state in an ionospheric medium.

Aburjania, G. D. [Tbilisi State University, I. Vekua Institute of Applied Mathematics (Georgia); Chargazia, Kh. Z. [Nodia Institute of Geophysics (Georgia)

2011-02-15T23:59:59.000Z

169

An Innovative Technique for Evaluating the Integrity and Durability of Wind Turbine Blade Composites  

SciTech Connect

Wind turbine blades are subjected to complex multiaxial stress states during operation. A review of the literature suggests that mixed mode fracture toughness can be significantly less than that of the tensile opening mode (Mode I), implying that fracture failure can occur at a much lower load capacity if the structure is subject to mixed-mode loading. Thus, it will be necessary to identify the mechanisms that might lead to failure in blade materials under mixed-mode loading conditions. Meanwhile, wind turbine blades are typically fabricated from fiber reinforced polymeric materials, e.g. fiber glass composites. Due to the large degree of anisotropy in mechanical properties that is usually associated with laminates, the fracture behavior of these composite materials is likely to be strongly dependent on the loading conditions. This may further strengthen the need to study the effect of mixed-mode loading on the integrity and durability of the wind turbine blade composites. To quantify the fracture behavior of composite structures under mixed mode loading conditions, particularly under combined Mode I (flexural or normal tensile stress) and Mode III (torsional shear stress) loading, a new testing technique is proposed based on the spiral notch torsion test (SNTT). As a 2002 R&D 100 Award winner, SNTT is a novel fracture testing technology. SNTT has many advantages over conventional fracture toughness methods and has been used to determine fracture toughness values on a wide spectrum of materials. The current project is the first attempt to utilize SNTT on polymeric and polymer-based composite materials. It is expected that mixed-mode failure mechanisms of wind turbine blades induced by typical in-service loading conditions, such as delamination, matrix cracking, fiber pull-out and fracture, can be effectively and economically investigated by using this methodology. This project consists of two phases. The Phase I (FY2010) effort includes (1) preparation of testing material and testing equipment set-up, including calibration of associated instruments/sensors, (2) development of design protocols for the proposed SNTT samples for both polymer and composite materials, such as sample geometries and fabrication techniques, (3) manufacture of SNTT samples, and (4) fracture toughness testing using the SNTT method. The major milestone achieved in Phase I is the understanding of fracture behaviors of polymeric matrix materials from testing numerous epoxy SNTT samples. Totals of 30 epoxy SNTT samples were fabricated from two types of epoxy materials provided by our industrial partners Gougeon Brothers, Inc. and Molded Fiber Glass Companies. These samples were tested with SNTT in three groups: (1) fracture due to monotonic loading, (2) fracture due to fatigue cyclic loading, and (3) monotonic loading applied to fatigue-precracked samples. Brittle fractures were observed on all tested samples, implying linear elastic fracture mechanics analysis can be effectively used to estimate the fracture toughness of these materials with confidence. Appropriate fatigue precracking protocols were established to achieve controllable crack growth using the SNTT approach under pure torsion loading. These fatigue protocols provide the significant insights of the mechanical behavior of epoxy polymeric materials and their associated rate-dependent characteristics. Effects of mixed-mode loading on the fracture behavior of epoxy materials was studied. It was found that all epoxy samples failed in brittle tensile failure mode; the fracture surfaces always follow a 45o spiral plane that corresponded to Mode I tensile failure, even when the initial pitch angle of the machined spiral grooves was not at 45o. In addition, general observation from the fatigue experiments implied that loading rate played an important role determining the fracture behavior of epoxy materials, such that a higher loading rate resulted in a shorter fatigue life. A detailed study of loading rate effect will be continued in the Phase II. On the other hand, analytical finite element ana

Wang, Jy-An John [ORNL; Ren, Fei [ORNL

2010-09-01T23:59:59.000Z

170

Nitrogen isotopes in the recent solar wind from the analysis of genesis targets: evidence for large scale isotope heterogeneity in the nascent solar system  

DOE Green Energy (OSTI)

Nitrogen, the fifth most abundant element in the universe, displays the largest stable isotope variations in the solar system reservoirs after hydrogen. Yet the value of isotopic composition of solar nitrogen, presumably the best proxy of the protosolar nebula composition, is not known. Nitrogen isotopes trapped in Genesis spacecraft target material indicate a 40 % depletion of {sup 15}N in solar wind N relative to inner planets and meteorites, and define a composition for the present-day Sun undistinguishable from that of Jupiter's atmosphere. These results indicate that the isotopic composition of of nitrogen in the outer convective zone of the Sun (OCZ) has not changed through time, and is representative of the protosolar nebula. Large {sup 15}N enrichments during e.g., irradiation, or contributions from {sup 15}N-rich presolar components, are required to account for planetary values.

Wiens, Roger C [Los Alamos National Laboratory; Marty, Bernard [INSU-CNRS; Zimmermann, Laurent [INSU-CNRS; Burnard, Peter G [INSU-CNRS; Burnett, Donald L [CALTECH; Heber, Veronika S [ETH ZURICH; Wieler, Rainer [ETH ZURICH; Bochsler, Peter [UNIV OV BERN

2009-01-01T23:59:59.000Z

171

An Innovative Technique for Evaluating the Integrity and Durability of Wind Turbine Blade Composites - Final Project Report  

DOE Green Energy (OSTI)

To build increasingly larger, lightweight, and robust wind turbine blades for improved power output and cost efficiency, durability of the blade, largely resulting from its structural composites selection and aerodynamic shape design, is of paramount concern. The safe/reliable operation of structural components depends critically on the selection of materials that are resistant to damage and failure in the expected service environment. An effective surveillance program is also necessary to monitor the degradation of the materials in the course of service. Composite materials having high specific strength/stiffness are desirable for the construction of wind turbines. However, most high-strength materials tend to exhibit low fracture toughness. That is why the fracture toughness of the composite materials under consideration for the manufacture of the next generation of wind turbines deserves special attention. In order to achieve the above we have proposed to develop an innovative technology, based on spiral notch torsion test (SNTT) methodology, to effectively investigate the material performance of turbine blade composites. SNTT approach was successfully demonstrated and extended to both epoxy and glass fiber composite materials for wind turbine blades during the performance period. In addition to typical Mode I failure mechanism, the mixed-mode failure mechanism induced by the wind turbine service environments and/or the material mismatch of the composite materials was also effectively investigated using SNTT approach. The SNTT results indicate that the proposed protocol not only provides significant advance in understanding the composite failure mechanism, but also can be readily utilized to assist the development of new turbine blade composites.

Wang, Jy-An John [ORNL; Ren, Fei [ORNL; Tan, Ting [ORNL; Mandell, John [Montana State University; Agastra, Pancasatya [Montana State University

2011-11-01T23:59:59.000Z

172

Evaluation of the New B-REX Fatigue Testing System for Multi-Megawatt Wind Turbine Blades: Preprint  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) recently developed a new hybrid fatigue testing system called the Blade Resonance Excitation (B-REX) test system. The new system uses 65% less energy to test large wind turbine blades in half the time of NREL's dual-axis forced-displacement test method with lower equipment and operating costs. The B-REX is a dual-axis test system that combines resonance excitation with forced hydraulic loading to reduce the total test time required while representing the operating strains on the critical inboard blade stations more accurately than a single-axis test system. The analysis and testing required to fully implement the B-REX was significant. To control unanticipated blade motion and vibrations caused by dynamic coupling between the flap, lead-lag, and torsional directions, we needed to incorporate additional test hardware and control software. We evaluated the B-REX test system under stable operating conditions using a combination of various sensors. We then compared our results with results from the same blade, tested previously using NREL's dual-axis forced-displacement test method. Experimental results indicate that strain levels produced by the B-REX system accurately replicated the forced-displacement method. This paper describes the challenges we encountered while developing the new blade fatigue test system and the experimental results that validate its accuracy.

White, D.; Musial, W.; Engberg, S.

2004-12-01T23:59:59.000Z

173

A Kind of Innovative Design Methodology of Wind Turbine Blade Based on Natural Structure  

Science Conference Proceedings (OSTI)

Based on the mid axis pattern configuration, the topology adaption of the plant leaf vein is discussed in the first place., Secondly, combined with the blade principal stress field distribution cases, the adaptive design is applied in the blade structure ... Keywords: adaptation, blade, hybrid composites, mid axis pattern, stress field

Wangyu Liu; Jiaxing Gong; Xifeng Liu; Xin Zhang

2009-05-01T23:59:59.000Z

174

Architectural Wind Fact Sheet Harvard Green Campus Initiative  

E-Print Network (OSTI)

. There are a few different types of wind turbine options: · Large scale: capacities of 1,000 kW or more · Small scale: capacities of 100kW or less · Architectural: smaller turbines that are placed directly turbines convert the energy created by the wind's rotation of turbine blades into electricity by means

Paulsson, Johan

175

Low-Order Modelling of Blade-Induced Turbulence for RANS Actuator Disk Computations of Wind and Tidal Turbines  

E-Print Network (OSTI)

Modelling of turbine blade-induced turbulence (BIT) is discussed within the framework of three-dimensional Reynolds-averaged Navier-Stokes (RANS) actuator disk computations. We first propose a generic (baseline) BIT model, which is applied only to the actuator disk surface, does not include any model coefficients (other than those used in the original RANS turbulence model) and is expected to be valid in the limiting case where BIT is fully isotropic and in energy equilibrium. The baseline model is then combined with correction functions applied to the region behind the disk to account for the effect of rotor tip vortices causing a mismatch of Reynolds shear stress between short- and long-time averaged flow fields. Results are compared with wake measurements of a two-bladed wind turbine model of Medici and Alfredsson [Wind Energy, Vol. 9, 2006, pp. 219-236] to demonstrate the capability of the new model.

Nishino, Takafumi

2012-01-01T23:59:59.000Z

176

WindPACT Turbine Design Scaling Studies Technical Area 1ÂŒComposite Blades for 80- to 120-Meter Rotor  

NLE Websites -- All DOE Office Websites (Extended Search)

1 * NREL/SR-500-29492 1 * NREL/SR-500-29492 Dayton A. Griffin Global Energy Concepts Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor March 21, 2000 - March 15, 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 April 2001 * NREL/SR-500-29492 WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor March 21, 2000 - March 15, 2001 Dayton A. Griffin Global Energy Concepts Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory

177

Stress and Fracture Analysis of a Class of Bonded Joints in Wind Turbine Blades  

E-Print Network (OSTI)

A simplified model is proposed to investigate the stress fields and the strain energy release rate (SERR) associated with cracks in bonded joints in wind turbine blades. The proposed two-dimensional model consists of nonparallel upper and lower shells with adhesive between the shells at the tapered end. Nonlinear finite element analysis (FEA) is performed in a systematic parametric study of material and geo- metric properties. Two failure modes and their locations are predicted at different combinations of parameters: yielding at the outside end of the adhesive and interface cracking at the inside end of the bondline. Effect of the shell curvature on the stress fields is also considered. Based on the classic beam theory and the beam-on-elastic-foundation (BOEF) assumption, stress and displacement fields of the adhesively-bonded joint were determined by a new theoretical model to support the results from the numerical computation. The failure analysis is continued by studying the effects of manufacturing defects in the adhesive bond. Single and multiple voids are embedded to simulate air bubble trapped in the interface. The numerical and analytical studies are conducted to investigate SERR associated with the voids and results are provided to illustrate the effects of void position and void size.

Chen, Chang

2013-05-01T23:59:59.000Z

178

An Experimental Investigation on the Control of Tip Vortices from Wind Turbine Blade.  

E-Print Network (OSTI)

??Wind turbine dynamics, wake effects and environmental impacts have been identified the most significant research topics needed for wind resource characterization and wind power generation.… (more)

Ning, Zhe

2013-01-01T23:59:59.000Z

179

Sustainable Energy Solutions Task 4.1 Intelligent Manufacturing of Hybrid Carbon-Glass Fiber-Reinforced Composite Wind Turbine Blades  

SciTech Connect

EXECUTIVE SUMARY In this subtask, the manufacturability of hybrid carbon-glass fiber-reinforced composite wind turbine blades using Vacuum-Assisted Resin Transfer Molding (VARTM) was investigated. The objective of this investigation was to study the VARTM process and its parameters to manufacture cost-effective wind turbine blades with no defects (mainly eliminate dry spots and reduce manufacturing time). A 2.5-dimensional model and a 3-dimensional model were developed to simulate mold filling and part curing under different conditions. These conditions included isothermal and non-isothermal filling, curing of the part during and after filling, and placement of injection gates at different locations. Results from this investigation reveal that the process can be simulated and also that manufacturing parameters can be optimized to eliminate dry spot formation and reduce the manufacturing time. Using computer-based models is a cost-effective way to simulate manufacturing of wind turbine blades. The approach taken herein allows the design of the wind blade manufacturing processes without physically running trial-and-error experiments that are expensive and time-consuming; especially for larger blades needed for more demanding environmental conditions. This will benefit the wind energy industry by reducing initial design and manufacturing costs which can later be passed down to consumers and consequently make the wind energy industry more competitive.

Janet M Twomey, PhD

2010-04-30T23:59:59.000Z

180

Design of a self-regulating composite bearingless blade wind turbine. Final report, October 15, 1976-August 15, 1977  

DOE Green Energy (OSTI)

A study was undertaken to design a 40-ft diameter wind turbine employing the UTRC/ERDA Self-Regulating Composite Bearingless Rotor (CBR) concept. The CBR concept was developed at United Technologies for rotary wing applications and is now in use on Sikorsky helicopters. The concept was further developed for wind turbine applications at UTRC under an ERDA contract in 1975-76. Successful wind tunnel tests were conducted during that contract, which demonstrated the self-starting and self-regulating features. The latest contract was to design a 40-ft system in the 5 kW - 15 kW power range. This effort included performance tradeoff studies, stress analyses of the blade and tower structure, a stability investigation, and engineering drawings of the complete system. However an overall cost analysis was not performed in this study.

Spierings, P.A.M.; Cheney, M.C.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

LIDAR Wind Speed Measurement Analysis and Feed-Forward Blade Pitch Control for Load Mitigation in Wind Turbines: January 2010--January 2011  

SciTech Connect

This report examines the accuracy of measurements that rely on Doppler LIDAR systems to determine their applicability to wind turbine feed-forward control systems and discusses feed-forward control system designs that use preview wind measurements. Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feed-forward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. The first half of this report examines the accuracy of different measurement scenarios that rely on coherent continuous-wave or pulsed Doppler LIDAR systems to determine their applicability to feed-forward control. In particular, the impacts of measurement range and angular offset from the wind direction are studied for various wind conditions. A realistic case involving a scanning LIDAR unit mounted in the spinner of a wind turbine is studied in depth with emphasis on choices for scan radius and preview distance. The effects of turbulence parameters on measurement accuracy are studied as well. Continuous-wave and pulsed LIDAR models based on typical commercially available units were used in the studies present in this report. The second half of this report discusses feed-forward control system designs that use preview wind measurements. Combined feedback/feed-forward blade pitch control is compared to industry standard feedback control when simulated in realistic turbulent above-rated winds. The feed-forward controllers are designed to reduce fatigue loads, increasing turbine lifetime and therefore reducing the cost of energy. Three feed-forward designs are studied: non-causal series expansion, Preview Control, and optimized FIR filter. The input to the feed-forward controller is a measurement of incoming wind speeds that could be provided by LIDAR. Non-causal series expansion and Preview Control methods reduce blade root loads but increase tower bending in simulation results. The optimized FIR filter reduces loads overall, keeps pitch rates low, and maintains rotor speed regulation and power capture, while using imperfect wind measurements provided by the spinning continuous-wave LIDAR model.

Dunne, F.; Simley, E.; Pao, L.Y.

2011-10-01T23:59:59.000Z

182

Application of Resin Transfer Molding to the Manufacture of Wind Turbine Blade Substructures. Final Report  

DOE Green Energy (OSTI)

The U.S. has generally lacked the capability for an iterative process of detailed structural design, manufacturing, and testing at the full blade level to achieve specific structural performance, cost, and weight targets. This project examined the effects that different composites processing methods had on the performance of representative blade substructures. In addition, the results of the testing of these substructures was used to validate NuMAD, the design tool developed at Sandia National Laboratories.

Hedley, C. W.; Ritter, W. J.; Ashwill, T.

2001-07-26T23:59:59.000Z

183

LQG control of horizontal wind turbines for blades and tower loads alleviation  

E-Print Network (OSTI)

a profoundly irregular primary source, the wind. The characteristics of the wind energy source are important in different aspects regarding wind energy exploitation. The energy available in the wind varies with the cube, by a continuous essay to significantly improve all aspects of a wind energy conversion system. Many research works

184

Large scale meteorological influence during the Geysers 1979 field experiment  

DOE Green Energy (OSTI)

A series of meteorological field measurements conducted during July 1979 near Cobb Mountain in Northern California reveals evidence of several scales of atmospheric circulation consistent with the climatic pattern of the area. The scales of influence are reflected in the structure of wind and temperature in vertically stratified layers at a given observation site. Large scale synoptic gradient flow dominates the wind field above about twice the height of the topographic ridge. Below that there is a mixture of effects with evidence of a diurnal sea breeze influence and a sublayer of katabatic winds. The July observations demonstrate that weak migratory circulations in the large scale synoptic meteorological pattern have a significant influence on the day-to-day gradient winds and must be accounted for in planning meteorological programs including tracer experiments.

Barr, S.

1980-01-01T23:59:59.000Z

185

Energy Basics: Large-Scale Hydropower  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

186

Wind Turbine Blade Flow Fields and Prospects for Active Aerodynamic Control: Preprint  

DOE Green Energy (OSTI)

This paper describes wind turbine flow fields that can cause adverse aerodynamic loading and can impact active aerodynamic control methodologies currently contemplated for wind turbine applications.

Schreck, S.; Robinson, M.

2007-08-01T23:59:59.000Z

187

Virtual screening on large scale grids  

Science Conference Proceedings (OSTI)

Large scale grids for in silico drug discovery open opportunities of particular interest to neglected and emerging diseases. In 2005 and 2006, we have been able to deploy large scale virtual docking within the framework of the WISDOM initiative against ... Keywords: Avian influenza, Large scale grids, Malaria, Virtual screening

Nicolas Jacq; Vincent Breton; Hsin-Yen Chen; Li-Yung Ho; Martin Hofmann; Vinod Kasam; Hurng-Chun Lee; Yannick Legré; Simon C. Lin; Astrid Maaí; Emmanuel Medernach; Ivan Merelli; Luciano Milanesi; Giulio Rastelli; Matthieu Reichstadt; Jean Salzemann; Horst Schwichtenberg; Ying-Ta Wu; Marc Zimmermann

2007-05-01T23:59:59.000Z

188

A comparison of spanwise aerodynamic loads estimated from measured bending moments versus direct pressure measurements on horizontal axis wind turbine blades  

DOE Green Energy (OSTI)

Two methods can be used to determine aerodynamic loads on a rotating wind turbine blade. The first is to make direct pressure measurements on the blade surface. This is a difficult process requiring costly pressure instrumentation. The second method uses measured flap bending moments in conjunction with analytical techniques to estimate airloads. This method, called ALEST, was originally developed for use on helicopter rotors and was modified for use on horizontal axis wind turbine blades. Estimating airloads using flap bending moments in much simpler and less costly because measurements can be made with conventional strain gages and equipment. This paper presents results of airload estimates obtained using both methods under a variety of operating conditions. Insights on the limitations and usefulness of the ALEST bending moment technique are also included. 10 refs., 6 figs.

Simms, D A; Butterfield, C P

1991-10-01T23:59:59.000Z

189

Wind Turbine Post-Stall Airfoil Performance Characteristics Guidelines for Blade-Element Momentum Methods: Preprint  

DOE Green Energy (OSTI)

The objective of this study was to provide post-stall airfoil data input guidelines for the prediction of peak and post-peak rotor power when using blade-element momentum theory. A steady-state data set from the Unsteady Aerodynamic Experiment (UAE) rotor test was used to provide guidelines for the development of a global post-stall method for the prediction of post-stall 3-D airfoil characteristics to be used with 2-D airfoil data. Based on these UAE data, methods to emulate the 3-D aerodynamics in the post-stall region were explored. Also suggested are experimental tests needed to better understand the 3-D flow physics and to quantify needed theory or empirical factors for a global post-stall approach to support blade-element momentum methods.

Tangler, J. L.; Kocurek, J. D.

2004-10-01T23:59:59.000Z

190

Computer subroutine for estimating aerodynamic blade loads on Darrieus vertical axis wind turbines. [FORCE code  

DOE Green Energy (OSTI)

An important aspect of structural design of the Darrieus rotor is the determination of aerodynamic blade loads. This report describes a load generator which has been used at Sandia for quasi-static and dynamic rotor analyses. The generator is based on the single streamtube aerodynamic flow model and is constructed as a FORTRAN IV subroutine to facilitate its use in finite element structural models. Input and output characteristics of the subroutine are described and a complete listing is attached as an appendix.

Sullivan, W. N.; Leonard, T. M.

1980-11-01T23:59:59.000Z

191

Implementation of a Two-Axis Servo-Hydraulic System for Full-Scale Fatigue Testing of Wind Turbine Blades  

DOE Green Energy (OSTI)

Recently, the blade fatigue testing capabilities at NREL were upgraded from single-axis to two-axis loading. To implement this, several practical challenges were addressed, as hardware complexity increased dramatically with two actuators applying the loads at right angles to each other. A custom bellcrank was designed and implemented to minimize the load angle errors and to prevent actuator side loading. The control system was upgraded to accept load and displacement feedback from two actuators. The inherent long strokes uniquely associated with wind turbine blade-tests required substantial real-time corrections for both the control and data systems. A custom data acquisition and control system was developed using a National Instruments LabVIEW platform that interfaces with proprietary servo-hydraulic software developed by MTS Corporation. Before testing, the program is run under quasi-static (slow speed) conditions and iterates to determine the correct operational control parameters for the controller, taking into consideration geometry, test speed, and phase angle errors between the two actuators. Comparisons are made between single-axis and two-axis test loads using actual test load data and load uncertainties are qualitatively described. To date, two fatigue tests have been completed and another is currently ongoing using NREL's two-axis capability.

Hughes, S. D.; Musial, W. D. [National Renewable Energy Lab., Golden, CO (US); Stensland, T. [Stensland Technologies (US)

1999-09-09T23:59:59.000Z

192

Effect of Blade Torsion on Modeling Results for the Small Wind Research Turbine (SWRT): Preprint  

DOE Green Energy (OSTI)

This paper summarizes modeling results from both the FAST and ADAMS aeroelastic simulators characterizing small wind turbine loads and dynamic behavior.

Corbus, D.; Hansen, A. C.; Minnema, J.

2006-01-01T23:59:59.000Z

193

Modern, three-blade wind turbines are 50 to 90 meters in diameter...  

NLE Websites -- All DOE Office Websites (Extended Search)

of trained and qualified workers to manufacture, construct, operate, and maintain the wind energy facilities. In addition, the nation will continue to need skilled scientists...

194

In-field use of laser Doppler vibrometer on a wind turbine blade  

DOE Green Energy (OSTI)

One of our primary goals was to determine how well a laser Doppler vibrometer (LDV) could measure the structural dynamic response of a wind turbine that was parked in the field. We performed a series of preliminary tests in the lab to determine the basic limitations of the LDV for this application. We then instrumented an installed parked horizontal axis wind turbine with accelerometers to determine the natural frequencies, damping, and mode shapes of the wind turbine and rotor as a baseline for the LDV and our other tests. We also wanted to determine if LDV modal information could be obtained from a naturally (wind) excited wind turbine. We compared concurrently obtained accelerometer and LDV data in an attempt to assess the quality of the LDV data. Our test results indicate the LDV can be successfully used in the field environment of an installed wind turbine, but with a few restrictions. We were successful in obtaining modal information from a naturally (wind) excited wind turbine in the field, but the data analysis requires a large number of averaged data sets to obtain reasonable results. An ultimate goal of this continuing project is to develop a technique that will monitor the health of a structure, detect damage, and hopefully predict an impending component failure.

Rumsey, M.; Hurtado, J.; Hansche, B. [and others

1998-12-31T23:59:59.000Z

195

Simulation of the Manufacturing of Non-Crimp Fabric-Reinforced Composite Wind Turbine Blades to Predict the Formation of Wave Defects  

SciTech Connect

NCFs (Non-Crimp Fabrics) are commonly used in the design of wind turbine blades and other complex systems due to their ability to conform to complex shapes without the wrinkling that is typically experienced with woven fabrics or prepreg tapes. In the current research, a form of vacuum assisted resin transfer molding known as SCRIMP registered is used to manufacture wind turbine blades. Often, during the compacting of the fabric layers by the vacuum pressure, several plies may bunch together out-of-plane and form wave defects. When the resin is infused, the areas beneath the waves become resin rich and can compromise the structural integrity of the blade. A reliable simulation tool is valuable to help predict where waves and other defects may appear as a result of the manufacturing process. Forming simulations often focus on the in-plane shearing and tensile behavior of fabrics and do not necessarily consider the bending stiffness of the fabrics, which is important to predict the formation of wrinkles and/or waves. This study incorporates experimentally determined in-plane shearing, tensile, and bending stiffness information of NCFs into a finite element model (ABAQUS/Explicit) of a 9-meter wind turbine blade to investigate the mechanical behaviors that can lead to the formation of waves as a result of the manufacturing process.

Fetfatsidis, K. A.; Sherwood, J. A. [Department of Mechanical Engineering, University of Massachusetts, Lowell One University Ave., Lowell, MA 01854 (United States)

2011-05-04T23:59:59.000Z

196

Study on mechanical properties of cork composites in a sandwich panel for wind turbine blade material  

E-Print Network (OSTI)

Wind energy has become one of the most promising energy sources due to its environmentally friendliness, unlimited amounts. To become competitive energy source among other sustainable and clean energy, such as solar cell, ...

Kim, Sungmin, Mech. E. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

197

Program Management for Large Scale Engineering Programs  

E-Print Network (OSTI)

The goal of this whitepaper is to summarize the LAI research that applies to program management. The context of most of the research discussed in this whitepaper are large-scale engineering programs, particularly in the ...

Oehmen, Josef

198

Energy Basics: Large-Scale Hydropower  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

These plants are more than 30 MW in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a...

199

Large-Scale Hydrogen Combustion Experiments  

Science Conference Proceedings (OSTI)

Large-scale combustion experiments show that deliberate ignition can limit hydrogen accumulation in reactor containments. The collected data allow accurate evaluation of containment pressures and temperatures associated with hydrogen combustion.

1988-10-18T23:59:59.000Z

200

Large-Scale Dynamics and Global Warming  

Science Conference Proceedings (OSTI)

Predictions of future climate change raise a variety of issues in large-scale atmospheric and oceanic dynamics. Several of these are reviewed in this essay, including the sensitivity of the circulation of the Atlantic Ocean to increasing ...

Isaac M. Held

1993-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Interannual Variability of Tropical Cyclones in the Australian Region: Role of Large-Scale Environment  

Science Conference Proceedings (OSTI)

This study investigates the role of large-scale environmental factors, notably sea surface temperature (SST), low-level relative vorticity, and deep-tropospheric vertical wind shear, in the interannual variability of November–April tropical ...

Hamish A. Ramsay; Lance M. Leslie; Peter J. Lamb; Michael B. Richman; Mark Leplastrier

2008-03-01T23:59:59.000Z

202

Blade shape for a tropskien type of vertical-axis wind turbine  

SciTech Connect

The equations derived to define a troposkien (the shape a completely flexible cable assumes when it is spun at a constant angular velocity about a vertical axis to which its two ends are attached) are described. The implications of the solutions on the design of a vertical-axis wind turbine are discussed for cases where gravity is neglected.

Blackwell, B.F.; Reis, G.E.

1977-03-01T23:59:59.000Z

203

Blade Manufacturing Improvement: Remote Blade Manufacturing Demonstration  

DOE Green Energy (OSTI)

The objective of this program was to investigate manufacturing improvements for wind turbine blades. The program included a series of test activities to evaluate the strength, deflection, performance, and loading characteristics of the prototype blades. The original contract was extended in order to continue development of several key blade technologies identified in the project. The objective of the remote build task was to demonstrate the concept of manufacturing wind turbine blades at a temporary manufacturing facility in a rural environment. TPI Composites successfully completed a remote manufacturing demonstration in which four blades were fabricated. The remote demonstration used a manufacturing approach which relied upon material ''kits'' that were organized in the factory and shipped to the site. Manufacturing blades at the wind plant site presents serious logistics difficulties and does not appear to be the best approach. A better method appears to be regional manufacturing facilities, which will eliminate most of the transportation cost, without incurring the logistical problems associated with fabrication directly onsite. With this approach the remote facilities would use commonly available industrial infrastructure such as enclosed workbays, overhead cranes, and paved staging areas. Additional fatigue testing of the M20 root stud design was completed with good results. This design provides adhesive bond strength under fatigue loading that exceeds that of the fastener. A new thru-stud bonding concept was developed for the M30 stud design. This approach offers several manufacturing advantages; however, the test results were inconclusive.

ASHWILL, THOMAS D.

2003-05-01T23:59:59.000Z

204

Blade Manufacturing Improvement: Remote Blade Manufacturing Demonstration  

SciTech Connect

The objective of this program was to investigate manufacturing improvements for wind turbine blades. The program included a series of test activities to evaluate the strength, deflection, performance, and loading characteristics of the prototype blades. The original contract was extended in order to continue development of several key blade technologies identified in the project. The objective of the remote build task was to demonstrate the concept of manufacturing wind turbine blades at a temporary manufacturing facility in a rural environment. TPI Composites successfully completed a remote manufacturing demonstration in which four blades were fabricated. The remote demonstration used a manufacturing approach which relied upon material ''kits'' that were organized in the factory and shipped to the site. Manufacturing blades at the wind plant site presents serious logistics difficulties and does not appear to be the best approach. A better method appears to be regional manufacturing facilities, which will eliminate most of the transportation cost, without incurring the logistical problems associated with fabrication directly onsite. With this approach the remote facilities would use commonly available industrial infrastructure such as enclosed workbays, overhead cranes, and paved staging areas. Additional fatigue testing of the M20 root stud design was completed with good results. This design provides adhesive bond strength under fatigue loading that exceeds that of the fastener. A new thru-stud bonding concept was developed for the M30 stud design. This approach offers several manufacturing advantages; however, the test results were inconclusive.

ASHWILL, THOMAS D.

2003-05-01T23:59:59.000Z

205

Blade Manufacturing Improvement Project: Final Report  

SciTech Connect

The Blade Manufacturing Improvement Project explores new, unique and improved materials integrated with innovative manufacturing techniques that promise substantial economic enhancements for the fabrication of wind turbine blades. The primary objectives promote the development of advanced wind turbine blade manufacturing in ways that lower blade costs, cut rotor weight, reduce turbine maintenance costs, improve overall turbine quality and increase ongoing production reliability. Foam Matrix (FMI) has developed a wind turbine blade with an engineered foam core, incorporating advanced composite materials and using Resin Transfer Molding (RTM) processes to form a monolithic blade structure incorporating a single molding tool. Patented techniques are employed to increase blade load bearing capability and insure the uniform quality of the manufactured blade. In production quantities, FMI manufacturing innovations may return a sizable per blade cost reduction when compared to the cost of producing comparable blades with conventional methods.

SHERWOOD, KENT

2002-10-01T23:59:59.000Z

206

WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics; March 27, 2000 to December 31, 2000  

NLE Websites -- All DOE Office Websites (Extended Search)

1 * NREL/SR-500-29439 1 * NREL/SR-500-29439 Kevin Smith Global Energy Concepts LLC Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics March 27, 2000 to December 31, 2000 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 June 2001 * NREL/SR-500-29439 WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics March 27, 2000 to December 31, 2000 Kevin Smith Global Energy Concepts LLC Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory

207

Analysis and test results for a two-bladed, passive cycle pitch, horizontal-axis wind turbine in free and controlled yaw  

SciTech Connect

This report surveys the analysis and tests performed at Washington University in St. Louis, Missouri, on a horizontal-axis, two-laded wind turbine with teeter hub. The introduction is a brief account of results obtained during the 5-year period ending December 1985. The wind tunnel model and the test turbine (7.6 m [25 ft.] in diameter) at Washington University`s Tyson Research Center had a 67{degree} delta-three angle of the teeter axis. The introduction explains why this configuration was selected and named the passive cycle pitch (PCP) wind turbine. Through the analysis was not limited to the PCP rotor, all tests, including those done from 1986 to 1994, wee conducted with the same teetered wind rotor. The blades are rather stiff and have only a small elastic coning angle and no precone.

Holenemser, K.H. [Washington Univ., St. Louis, MO (United States)

1995-10-01T23:59:59.000Z

208

Distributed large-scale natural graph factorization  

Science Conference Proceedings (OSTI)

Natural graphs, such as social networks, email graphs, or instant messaging patterns, have become pervasive through the internet. These graphs are massive, often containing hundreds of millions of nodes and billions of edges. While some theoretical models ... Keywords: asynchronous algorithms, distributed optimization, graph algorithms, graph factorization, large-scale machine learning, matrix factorization

Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, Alexander J. Smola

2013-05-01T23:59:59.000Z

209

Scaling Issues for Large-Scale Grids  

E-Print Network (OSTI)

· ESNet Can Play a Very Important Role in the Science Grid � Security Aspects of Grids · ESNet Can Provide will be important and very useful for managing large-scale virtual org. structures #12;·ESNet Can Play a Very Important Role in the Science Grid · ESNet can provide a rooted and managed namespace, and a place to home

210

A multi-scale approach to statistical and model-based structural health monitoring with application to embedded sensing for wind energy  

E-Print Network (OSTI)

in a composite wind turbine rotor blade," Structural Healthmonitoring of wind turbine rotor blades," in progress 2013.in a composite wind turbine rotor blade." The dissertation

Taylor, Stuart Glynn

2013-01-01T23:59:59.000Z

211

A multi-scale approach to statistical and model-based structural health monitoring with application to embedded sensing for wind energy  

E-Print Network (OSTI)

in a composite wind turbine rotor blade," Structural Healthdetection in composite wind turbine blades," Journal offor structural monitoring of wind turbine rotor blades," in

Taylor, Stuart Glynn

2013-01-01T23:59:59.000Z

212

Building State-of-the-Art Wind Technology Testing Facilities (Fact Sheet)  

DOE Green Energy (OSTI)

The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to 90 meters in length. A critical factor to wind turbine design and development is the ability to test new designs, components, and materials. In addition, wind turbine blade manufacturers are required to test their blades as part of the turbine certification process. The National Renewable Energy Laboratory (NREL) partnered with the U.S. Department of Energy (DOE) Wind Program and the Massachusetts Clean Energy Center (MassCEC) to design, construct, and operate the Wind Technology Center (WTTC) in Boston, Massachusetts. The WTTC offers a full suite of certification tests for turbine blades up to 90 meters in length. NREL worked closely with MTS Systems Corporation to develop the novel large-scale test systems needed to conduct the static and fatigue tests required for certification. Static tests pull wind turbine blades horizontally and vertically to measure blade deflection and strains. Fatigue tests cycle the blades millions of times to simulate what a blade goes through in its lifetime on a wind turbine. For static testing, the WTTC is equipped with servo-hydraulic winches and cylinders that are connected to the blade through cables to apply up to an 84-mega Newton meter maximum static bending moment. For fatigue testing, MTS developed a commercial version of NREL's patented resonant excitation system with hydraulic cylinders that actuate linear moving masses on the blade at one or more locations. This system applies up to a 21-meter tip-to-tip fatigue test tip displacement to generate 20-plus years of cyclic field loads in a matter of months. NREL also developed and supplied the WTTC with an advanced data acquisition system capable of measuring and recording hundreds of data channels at very fast sampling rates while communicating with test control systems.

Not Available

2012-03-01T23:59:59.000Z

213

Nondestructive evaluation (NDE) of composite-to-metal bond interface of a wind turbine blade using an acousto-ultrasonic technique  

Science Conference Proceedings (OSTI)

An acousto-ultrasonic inspection technique was developed to evaluate the structural integrity of the epoxy bond interface between a metal insert and the fiber glass epoxy composite of a wind turbine blade. Data was generated manually as well as with a PC based data acquisition and display system. C-scan imaging using a portable ultrasonic scanning system provided an area mapping of the delamination or disbond due to fatigue testing and normal field operation conditions of the turbine blade. Comparison of the inspection data with a destructive visual examination of the bond interface to determine the extent of the disbond showed good agreement between the acousto-ultrasonic inspection data and the visual data.

Gieske, J.H.; Rumsey, M.A.

1996-12-31T23:59:59.000Z

214

Large-Scale Renewable Energy Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Guide Renewable Energy Guide Brad Gustafson, FEMP 2 Large-scale RE Guide Large-scale RE Guide: Developing Renewable Energy Projects Larger than 10 MWs at Federal Facilities Introduction and Overview Federal Utility Partnership Working Group May 22, 2013 Federal Energy Management Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy 3 Federal Energy Management Program FEMP works with key individuals to accomplish energy change within organizations by bringing expertise from all levels of project and policy implementation to enable Federal Agencies to meet energy related goals and to provide energy leadership to the country. 4 FEMP Renewable Energy * Works to increase the proportion of renewable energy in the Federal government's energy mix.

215

Strategies to Finance Large-Scale Deployment of Renewable Energy...  

Open Energy Info (EERE)

Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Jump to: navigation, search Name Strategies to Finance Large-Scale...

216

Large Scale Computing and Storage Requirements for Advanced Scientific...  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2014 ASCRFrontcover.png Large Scale Computing and Storage Requirements for...

217

MTC Envelope: Defining the Capability of Large Scale Computers...  

NLE Websites -- All DOE Office Websites (Extended Search)

MTC Envelope: Defining the Capability of Large Scale Computers in the Context of Parallel Scripting Applications Title MTC Envelope: Defining the Capability of Large Scale...

218

NREL: Computational Science - Wind Energy Simulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Simulations Wind Energy Simulations Scientists in the Computational Science Center at the National Renewable Energy Laboratory (NREL) are performing wind-farm computational fluid dynamics (CFD) and structural dynamics simulations that will provide a better understanding of the interactions of wind turbine wakes with one another, with the surrounding winds, and with the loads they impose on turbine blades and other components. Large-scale wind power generation deployment is a realistic and largely inevitable proposition as energy security, supply uncertainties, and global climate concerns drive the U.S. to develop diverse sources of domestic, clean, and renewable energy. The U.S. is currently on a path to produce 20% of its electricity from wind energy by 2030, which is a 10-fold increase

219

Large-Scale PV Integration Study  

DOE Green Energy (OSTI)

This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

2011-07-29T23:59:59.000Z

220

NREL: Technology Transfer - CRADA Opportunity for Blade ...  

... seeks one or more CRADA partners to develop testing technologies and equipment for static and fatigue testing of wind turbine blades up to ...

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The large scale clustering of radio sources  

E-Print Network (OSTI)

The observed two-point angular correlation function, w(theta), of mJy radio sources exhibits the puzzling feature of a power-law behaviour up to very large (almost 10 degrees) angular scales which cannot be accounted for in the standard hierarchical clustering scenario for any realistic redshift distribution of such sources. After having discarded the possibility that the signal can be explained by a high density local source population, we find no alternatives to assuming that - at variance with all the other extragalactic populations studied so far, and in particular with optically selected quasars - radio sources responsible for the large-scale clustering signal were increasingly less clustered with increasing look-back time, up to at least z=1. The data are accurately accounted for in terms of a bias function which decreases with increasing redshift, mirroring the evolution with cosmic time of the characteristic halo mass, M_{star}, entering the non linear regime. In the framework of the `concordance cosmology', the effective halo mass controlling the bias parameter is found to decrease from about 10^{15} M_{sun}/h at z=0 to the value appropriate for optically selected quasars, 10^{13} M_{sun}/h, at z=1.5. This suggests that, in the redshift range probed by the data, the clustering evolution of radio sources is ruled by the growth of large-scale structure, and that they are associated with the densest environments virializing at any cosmic epoch. The data provide only loose constraints on radio source clustering at z>1 so we cannot rule out the possibility that at these redshifts the clustering evolution of radio sources enters a different regime, perhaps similar to that found for optically selected quasars. The dependence of w(theta) on cosmological parameters is also discussed.

M. Negrello; M. Magliocchetti; G. De Zotti

2006-02-13T23:59:59.000Z

222

Large-scale structure of the fast solar wind  

E-Print Network (OSTI)

Sciences, University of California, San Diego, 9500 GilmanPh.D. Thesis, Univer- sity of California, San Diego (UCSD).at the University of California, San Diego and we are

Bisi, M. M.; Fallows, R. A.; Breen, A. R.; Habbal, S. Rifai; Jones, R. A.

2007-01-01T23:59:59.000Z

223

Massachusetts Large Blade Test Facility Final Report  

DOE Green Energy (OSTI)

Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

Rahul Yarala; Rob Priore

2011-09-02T23:59:59.000Z

224

Federal Energy Management Program: Large-scale Renewable Energy Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Large-scale Large-scale Renewable Energy Projects (Larger than 10 MWs) to someone by E-mail Share Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on Facebook Tweet about Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on Twitter Bookmark Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on Google Bookmark Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on Delicious Rank Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on Digg Find More places to share Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on

225

Energy Department Loan Guarantee Would Support Large-Scale Rooftop...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S....

226

Locations of Smart Grid Demonstration and Large-Scale Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Map of the United States...

227

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

Director Editors Richard Gerber Harvey Wasserman NERSC UserServices Group NERSC User Services Group Large ScaleNERSC

Gerber, Richard A.

2011-01-01T23:59:59.000Z

228

Effects of blade configuration on flow distribution and power output of a zephyr vertical axis wind turbine.  

E-Print Network (OSTI)

??Worldwide interest in renewable energy systems has increased dramatically, due to environmental concerns like climate change and other factors. Wind power is a major source… (more)

Ajedegba, John Oviemuno

2008-01-01T23:59:59.000Z

229

Algorithms for Large-Scale Internet Measurements  

E-Print Network (OSTI)

As the Internet has grown in size and importance to society, it has become increasingly difficult to generate global metrics of interest that can be used to verify proposed algorithms or monitor performance. This dissertation tackles the problem by proposing several novel algorithms designed to perform Internet-wide measurements using existing or inexpensive resources. We initially address distance estimation in the Internet, which is used by many distributed applications. We propose a new end-to-end measurement framework called Turbo King (T-King) that uses the existing DNS infrastructure and, when compared to its predecessor King, obtains delay samples without bias in the presence of distant authoritative servers and forwarders, consumes half the bandwidth, and reduces the impact on caches at remote servers by several orders of magnitude. Motivated by recent interest in the literature and our need to find remote DNS nameservers, we next address Internet-wide service discovery by developing IRLscanner, whose main design objectives have been to maximize politeness at remote networks, allow scanning rates that achieve coverage of the Internet in minutes/hours (rather than weeks/months), and significantly reduce administrator complaints. Using IRLscanner and 24-hour scan durations, we perform 20 Internet-wide experiments using 6 different protocols (i.e., DNS, HTTP, SMTP, EPMAP, ICMP and UDP ECHO). We analyze the feedback generated and suggest novel approaches for reducing the amount of blowback during similar studies, which should enable researchers to collect valuable experimental data in the future with significantly fewer hurdles. We finally turn our attention to Intrusion Detection Systems (IDS), which are often tasked with detecting scans and preventing them; however, it is currently unknown how likely an IDS is to detect a given Internet-wide scan pattern and whether there exist sufficiently fast stealth techniques that can remain virtually undetectable at large-scale. To address these questions, we propose a novel model for the windowexpiration rules of popular IDS tools (i.e., Snort and Bro), derive the probability that existing scan patterns (i.e., uniform and sequential) are detected by each of these tools, and prove the existence of stealth-optimal patterns.

Leonard, Derek Anthony

2010-12-01T23:59:59.000Z

230

NREL: Wind Research - Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Photo of a large wind turbine blade sticking out of the structural testing laboratory; it is perpendicular to a building at the National Wind Technology Center. A...

231

Structural health and prognostics management for offshore wind turbines : case studies of rotor fault and blade damage with initial O&M cost modeling.  

SciTech Connect

Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Based on simulations of damage in the turbine model, the operational measurements that demonstrated the highest sensitivity to the damage/faults were the blade tip accelerations and local pitching moments for both imbalance and shear web disbond. The initial cost model provided a great deal of insight into the estimated savings in operations and maintenance costs due to the implementation of an effective SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.

Myrent, Noah J. [Purdue Center for Systems Integrity, Lafayette, IN; Kusnick, Joshua F. [Purdue Center for Systems Integrity, Lafayette, IN; Barrett, Natalie C. [Purdue Center for Systems Integrity, Lafayette, IN; Adams, Douglas E. [Purdue Center for Systems Integrity, Lafayette, IN; Griffith, Daniel Todd

2013-04-01T23:59:59.000Z

232

Total Cost Per MwH for all common large scale power generation sources |  

Open Energy Info (EERE)

Total Cost Per MwH for all common large scale power generation sources Total Cost Per MwH for all common large scale power generation sources Home > Groups > DOE Wind Vision Community In the US DOEnergy, are there calcuations for real cost of energy considering the negative, socialized costs of all commercial large scale power generation soruces ? I am talking about the cost of mountain top removal for coal mined that way, the trip to the power plant, the sludge pond or ash heap, the cost of the gas out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs and so on. What I am tring to get at is the 'real cost' per MWh or KWh for the various sources ? I suspect that the costs commonly quoted for fossil fuels and nucelar are

233

Wind Power Ltd | Open Energy Information  

Open Energy Info (EERE)

Power Ltd Place Wickam Market, United Kingdom Sector Wind energy Product Conducting research into alternative, large scale wind turbine design. References Wind Power Ltd1...

234

Large Scale Computing and Storage Requirements for Fusion Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

at NERSC HPC Requirements Reviews Requirements for Science: Target 2014 Fusion Energy Sciences (FES) Large Scale Computing and Storage Requirements for Fusion Energy...

235

Solving large scale polynomial convex problems on \\ell_1/nuclear ...  

E-Print Network (OSTI)

Oct 24, 2012 ... Solving large scale polynomial convex problems on \\ell_1/nuclear norm balls by randomized first-order algorithms. Aharon Ben-Tal (abental ...

236

Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and Other Large Systems Event Sponsor: Leadership Computing Facility Seminar Start Date: Dec 5 2013 - 2:00pm...

237

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

outlined in the 2011 DOE Strategic Plan†. † U.S. Departmentstrategic plans. Large Scale Computing and Storage Requirements for Nuclear Physics DOE  

Gerber, Richard A.

2012-01-01T23:59:59.000Z

238

Large Scale Computing and Storage Requirements for Basic Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

at NERSC HPC Requirements Reviews Requirements for Science: Target 2014 Basic Energy Sciences (BES) Large Scale Computing and Storage Requirements for Basic Energy...

239

Effects of Materials Parameters and Design Details on the Fatigue of Composite Materials for Wind Turbine Blades  

DOE Green Energy (OSTI)

This paper presents an analysis of the results of nine years of fatigue testing represented in the USDOE/Montana State University (DOE/MSU) Composite Materials Fatigue Database. The focus of the program has been to explore a broad range of glass-fiber-based materials parameters encompassing over 4500 data points for 130 materials systems. Significant trends and transitions in fatigue resistance are shown as the fiber content and fabric architecture are varied. The effects of structural details including ply drops, bonded stiffeners, and other geometries that produce local variations in fiber packing and geometry are also described. Fatigue tests on composite beam structures are then discussed; these show generally good correlation with coupon fatigue data in the database. Goodman diagrams for fatigue design are presented, and their application to predicting the service lifetime of blades is described.

Mandell, J.F.; Samborsky, D.D.; Sutherland, H.J.

1999-03-04T23:59:59.000Z

240

Large-Scale Eucalyptus Energy Farms and Power Cogeneration1  

E-Print Network (OSTI)

Large-Scale Eucalyptus Energy Farms and Power Cogeneration1 Robert C. Noronla2 The initiation of a large-scale cogeneration project, especially one that combines construction of the power generation supplemental fuel source must be sought if the cogeneration facility will consume more fuel than

Standiford, Richard B.

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A large scale study of text-messaging use  

Science Conference Proceedings (OSTI)

Text messaging has become a popular form of communication with mobile phones worldwide. We present findings from a large scale text messaging study of 70 university students in the United States. We collected almost 60, 000 text messages over a period ... Keywords: large-scale study, mobile device, short message service, sms, text messaging, texting

Agathe Battestini; Vidya Setlur; Timothy Sohn

2010-09-01T23:59:59.000Z

242

Large-Scale Hydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Hydropower Basics Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the stored water is released, it passes through and rotates turbines, which spin generators to produce electricity. Water stored in a reservoir can be accessed quickly for use during times when the demand for electricity is high. Dammed hydropower projects can also be built as power storage facilities.

243

Large-Scale Hydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Hydropower Basics Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the stored water is released, it passes through and rotates turbines, which spin generators to produce electricity. Water stored in a reservoir can be accessed quickly for use during times when the demand for electricity is high. Dammed hydropower projects can also be built as power storage facilities.

244

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network (OSTI)

the passing wind. The blade pitch is continuously adjustedconditions as it has a ?xed blade pitch and is designed todue to the variation in the blade pitch. As the wind speed

Prowell, I.

2011-01-01T23:59:59.000Z

245

NREL: Technology Transfer - DOE/NREL/MASSCEC Develop New Blade ...  

... was formed between NREL and the Massachusetts Clean Energy Center (MASSCEC) to produce the nation’s largest wind turbine blade testing facility.

246

Snubber Assembly for Turbine Blades - Energy Innovation Portal  

Wind Energy; Partners (27) Visual Patent Search; Success Stories; News; Events; Snubber Assembly for Turbine Blades United States Patent Application *** PATENT ...

247

COOLED SNUBBER STRUCTURE FOR TURBINE BLADES - Energy Innovation Portal  

Wind Energy; Partners (27) Visual Patent Search; Success Stories; News; Events; COOLED SNUBBER STRUCTURE FOR TURBINE BLADES United States Patent Application ...

248

DOE Completes Large-Scale Carbon Sequestration Project Awards | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Large-Scale Carbon Sequestration Project Awards Completes Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards November 17, 2008 - 4:58pm Addthis Regional Partner to Demonstrate Safe and Permanent Storage of 2 Million Tons of CO2 at Wyoming Site WASHINGTON, DC - Completing a series of awards through its Regional Carbon Sequestration Partnership Program, the U.S. Department of Energy (DOE) today awarded $66.9 million to the Big Sky Regional Carbon Sequestration Partnership for the Department's seventh large-scale carbon sequestration project. Led by Montana State University-Bozeman, the Partnership will conduct a large-volume test in the Nugget Sandstone formation to demonstrate the ability of a geologic formation to safely, permanently and economically

249

Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Industrial Carbon Capture, Storage Plant Begins Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration project funded by the American Recovery and Reinvestment Act (ARRA) to move into the construction phase. Led by the Archer Daniels Midland Company (ADM), a member of DOE's Midwest Geological Sequestration Consortium, the Illinois-ICCS project is designed to sequester approximately 2,500 metric tons of carbon dioxide

250

Energy Department Applauds Nation's First Large-Scale Industrial Carbon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nation's First Large-Scale Industrial Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility August 24, 2011 - 6:23pm Addthis Washington, D.C. - The U.S. Department of Energy issued the following statement in support of today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur, Illinois. Supported by the 2009 economic stimulus legislation - the American Recovery and Reinvestment Act - the ambitious project will capture and store one million tons of carbon dioxide (CO2) per year produced as the result of processing corn into fuel-grade ethanol from the nearby Archer Daniels Midland biofuels plant. Since all of

251

DOE Completes Large-Scale Carbon Sequestration Project Awards | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Completes Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards November 17, 2008 - 4:58pm Addthis Regional Partner to Demonstrate Safe and Permanent Storage of 2 Million Tons of CO2 at Wyoming Site WASHINGTON, DC - Completing a series of awards through its Regional Carbon Sequestration Partnership Program, the U.S. Department of Energy (DOE) today awarded $66.9 million to the Big Sky Regional Carbon Sequestration Partnership for the Department's seventh large-scale carbon sequestration project. Led by Montana State University-Bozeman, the Partnership will conduct a large-volume test in the Nugget Sandstone formation to demonstrate the ability of a geologic formation to safely, permanently and economically

252

ARM - Evaluation Product - Vertical Air Motion during Large-Scale  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsVertical Air Motion during Large-Scale ProductsVertical Air Motion during Large-Scale Stratiform Rain Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Vertical Air Motion during Large-Scale Stratiform Rain Site(s) NIM SGP General Description The Vertical Air Motion during Large-Scale Stratiform Rain (VERVELSR) value-added product (VAP) uses the unique properties of a 95-GHz radar Doppler velocity spectra to produce vertical profiles of air motion during low-to-moderate (1-20 mm/hr) rainfall events It is designed to run at ARM sites that include a W-band ARM cloud radar (WACR) radar with spectra data processing. The VERVELSR VAP, based on the work of Giangrande et al. (2010), operates by exploiting a resonance effect that occurs in

253

Energy Department Applauds Nation's First Large-Scale Industrial Carbon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Applauds Nation's First Large-Scale Industrial Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility August 24, 2011 - 6:23pm Addthis Washington, D.C. - The U.S. Department of Energy issued the following statement in support of today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur, Illinois. Supported by the 2009 economic stimulus legislation - the American Recovery and Reinvestment Act - the ambitious project will capture and store one million tons of carbon dioxide (CO2) per year produced as the result of processing corn into fuel-grade ethanol from the nearby Archer Daniels Midland biofuels plant. Since all of

254

Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Industrial Carbon Capture, Storage Plant Begins Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration project funded by the American Recovery and Reinvestment Act (ARRA) to move into the construction phase. Led by the Archer Daniels Midland Company (ADM), a member of DOE's Midwest Geological Sequestration Consortium, the Illinois-ICCS project is designed to sequester approximately 2,500 metric tons of carbon dioxide

255

Large-Scale Industrial CCS Projects Selected for Continued Testing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Industrial CCS Projects Selected for Continued Testing Large-Scale Industrial CCS Projects Selected for Continued Testing Large-Scale Industrial CCS Projects Selected for Continued Testing June 10, 2010 - 1:00pm Addthis Washington, DC - Three Recovery Act funded projects have been selected by the U.S. Department of Energy (DOE) to continue testing large-scale carbon capture and storage (CCS) from industrial sources. The projects - located in Texas, Illinois, and Louisiana - were initially selected for funding in October 2009 as part of a $1.4 billion effort to capture carbon dioxide (CO2) from industrial sources for storage or beneficial use. The first phase of research and development (R&D) included $21.6 million in Recovery Act funding and $22.5 million in private funding for a total initial investment of $44.1 million.

256

DOE Awards First Three Large-Scale Carbon Sequestration Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Three Large-Scale Carbon Sequestration Projects First Three Large-Scale Carbon Sequestration Projects DOE Awards First Three Large-Scale Carbon Sequestration Projects October 9, 2007 - 3:14pm Addthis U.S. Projects Total $318 Million and Further President Bush's Initiatives to Advance Clean Energy Technologies to Confront Climate Change WASHINGTON, DC - In a major step forward for demonstrating the promise of clean energy technology, U.S Deputy Secretary of Energy Clay Sell today announced that the Department of Energy (DOE) awarded the first three large-scale carbon sequestration projects in the United States and the largest single set in the world to date. The three projects - Plains Carbon Dioxide Reduction Partnership; Southeast Regional Carbon Sequestration Partnership; and Southwest Regional Partnership for Carbon

257

Large-Scale Aspects of the United States Hydrologic Cycle  

Science Conference Proceedings (OSTI)

A large-scale, gridpoint, atmospheric, hydrologic climatology consisting of atmospheric precipitable water, precipitation, atmospheric moisture flux convergence, and a residual evaporation for the conterminous United States is described. A large-...

John O. Roads; Shyh-C. Chen; Alexander K. Guetter; Konstantine P. Georgakakos

1994-09-01T23:59:59.000Z

258

Large-Scale Meteorology and Deep Convection during TRMM KWAJEX  

Science Conference Proceedings (OSTI)

An overview of the large-scale behavior of the atmosphere during the Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX) is presented. Sounding and ground radar data collected during KWAJEX, and several routinely available ...

Adam H. Sobel; Sandra E. Yuter; Christopher S. Bretherton; George N. Kiladis

2004-02-01T23:59:59.000Z

259

Data mining techniques for large-scale gene expression analysis  

E-Print Network (OSTI)

Modern computational biology is awash in large-scale data mining problems. Several high-throughput technologies have been developed that enable us, with relative ease and little expense, to evaluate the coordinated expression ...

Palmer, Nathan Patrick

2011-01-01T23:59:59.000Z

260

Student Pages: RFP-Large-Scale Diversion of Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Supplying Our Water Needs H2O Request For Proposal Large Scale Diversion of Water U.S. Army Corp of Engineers-Chicago District online Be sure to submit the online sign-off each...

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Materialized community ground models for large-scale earthquake simulation  

Science Conference Proceedings (OSTI)

Large-scale earthquake simulation requires source datasets which describe the highly heterogeneous physical characteristics of the earth in the region under simulation. Physical characteristic datasets are the first stage in a simulation pipeline which ...

Steven W. Schlosser; Michael P. Ryan; Ricardo Taborda; Julio López; David R. O'Hallaron; Jacobo Bielak

2008-11-01T23:59:59.000Z

262

Advanced concepts in large-scale network simulation  

Science Conference Proceedings (OSTI)

This tutorial paper reviews existing concepts and future directions in selected areas related to simulation of large-scale networks. It covers specifically topics in traffic modeling, simulation of routing, network emulation, and real-time simulation.

David M. Nicol; Michael Liljenstam; Jason Liu

2005-12-01T23:59:59.000Z

263

Infrastructure for large-scale tests in marine autonomy  

E-Print Network (OSTI)

This thesis focuses on the development of infrastructure for research with large-scale autonomous marine vehicle fleets and the design of sampling trajectories for compressive sensing (CS). The newly developed infrastructure ...

Hummel, Robert A. (Robert Andrew)

2012-01-01T23:59:59.000Z

264

On solving large scale polynomial convex problems by randomized ...  

E-Print Network (OSTI)

plications), the (unimprovable in the large-scale case) rate of convergence of FOM's ...... mjnj min[mj,nj]) a.o.) and eigenvalue decomposition of a matrix from Sm.

265

Platforms and real options in large-scale engineering systems  

E-Print Network (OSTI)

This thesis introduces a framework and two methodologies that enable engineering management teams to assess the value of real options in programs of large-scale, partially standardized systems implemented a few times over ...

Kalligeros, Konstantinos C., 1976-

2006-01-01T23:59:59.000Z

266

Technoeconomic Evaluation of Large-Scale Electrolytic Hydrogen Production Technologies  

Science Conference Proceedings (OSTI)

Large-scale production of electrolytic hydrogen and oxygen could increase use of baseload and off-peak surplus power. To be competitive, however, water electrolysis will require low-cost electricity.

1985-09-20T23:59:59.000Z

267

Decomposition methods for large scale stochastic and robust optimization problems  

E-Print Network (OSTI)

We propose new decomposition methods for use on broad families of stochastic and robust optimization problems in order to yield tractable approaches for large-scale real world application. We introduce a new type of a ...

Becker, Adrian Bernard Druke

2011-01-01T23:59:59.000Z

268

Blade reliability collaborative : collection of defect, damage and repair data.  

SciTech Connect

The Blade Reliability Collaborative (BRC) was started by the Wind Energy Technologies Department of Sandia National Laboratories and DOE in 2010 with the goal of gaining insight into planned and unplanned O&M issues associated with wind turbine blades. A significant part of BRC is the Blade Defect, Damage and Repair Survey task, which will gather data from blade manufacturers, service companies, operators and prior studies to determine details about the largest sources of blade unreliability. This report summarizes the initial findings from this work.

Ashwill, Thomas D.; Ogilvie, Alistair B.; Paquette, Joshua A.

2013-04-01T23:59:59.000Z

269

UMass Lowell Smoothing Out Wrinkles in Blade Manufacturing Process |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UMass Lowell Smoothing Out Wrinkles in Blade Manufacturing Process UMass Lowell Smoothing Out Wrinkles in Blade Manufacturing Process UMass Lowell Smoothing Out Wrinkles in Blade Manufacturing Process August 4, 2010 - 2:04pm Addthis Researchers at the University of Massachusetts Lowell work on a wind blade project. | Photo courtesy of University of Massachusetts Lowell Researchers at the University of Massachusetts Lowell work on a wind blade project. | Photo courtesy of University of Massachusetts Lowell Stephen Graff Former Writer & editor for Energy Empowers, EERE A research team at the University of Massachusetts Lowell is ironing out the kinks in blade manufacturing to make way for safer, lighter and cheaper blades. The Wind Turbine Research Group (WTRG) at UMass Lowell has received $401,885 in American Recovery and Reinvestment Act funds to figure out

270

Blade system design studies volume II : preliminary blade designs and recommended test matrix.  

DOE Green Energy (OSTI)

As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts, LLC is performing a Blade System Design Study (BSDS) concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The BSDS Volume I project report addresses issues and constraints identified to scaling conventional blade designs to the megawatt size range, and evaluated candidate materials, manufacturing and design innovations for overcoming and improving large blade economics. The current report (Volume II), presents additional discussion of materials and manufacturing issues for large blades, including a summary of current trends in commercial blade manufacturing. Specifications are then developed to guide the preliminary design of MW-scale blades. Using preliminary design calculations for a 3.0 MW blade, parametric analyses are performed to quantify the potential benefits in stiffness and decreased gravity loading by replacement of a baseline fiberglass spar with carbon-fiberglass hybrid material. Complete preliminary designs are then presented for 3.0 MW and 5.0 MW blades that incorporate fiberglass-to-carbon transitions at mid-span. Based on analysis of these designs, technical issues are identified and discussed. Finally, recommendations are made for composites testing under Part I1 of the BSDS, and the initial planned test matrix for that program is presented.

Griffin, Dayton A. (Global Energy Concepts, LLC, Kirkland, WA)

2004-06-01T23:59:59.000Z

271

Blade system design studies volume II : preliminary blade designs and recommended test matrix.  

SciTech Connect

As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts, LLC is performing a Blade System Design Study (BSDS) concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The BSDS Volume I project report addresses issues and constraints identified to scaling conventional blade designs to the megawatt size range, and evaluated candidate materials, manufacturing and design innovations for overcoming and improving large blade economics. The current report (Volume II), presents additional discussion of materials and manufacturing issues for large blades, including a summary of current trends in commercial blade manufacturing. Specifications are then developed to guide the preliminary design of MW-scale blades. Using preliminary design calculations for a 3.0 MW blade, parametric analyses are performed to quantify the potential benefits in stiffness and decreased gravity loading by replacement of a baseline fiberglass spar with carbon-fiberglass hybrid material. Complete preliminary designs are then presented for 3.0 MW and 5.0 MW blades that incorporate fiberglass-to-carbon transitions at mid-span. Based on analysis of these designs, technical issues are identified and discussed. Finally, recommendations are made for composites testing under Part I1 of the BSDS, and the initial planned test matrix for that program is presented.

Griffin, Dayton A. (Global Energy Concepts, LLC, Kirkland, WA)

2004-06-01T23:59:59.000Z

272

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Large-Scale Industrial Project Begins Carbon Capture Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

273

Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and Other Large Systems Event Sponsor: Leadership Computing Facility Seminar Start Date: Dec 5 2013 - 2:00pm Building/Room: Building 240/Room 4301 Location: Argonne National Laboratory Speaker(s): Dmitri G. Fedorov Speaker(s) Title: National Institute of Advanced Industrial Science and Technology (AIST) Host: Yuri Alexeev Our approach to large scale calculations is based on fragmenting a molecular system into pieces, and performing quantum-mechanical calculations of these fragments and their pairs in the fragment molecular orbital method (FMO). After a brief summary of the methodology, some typical applications to protein-ligand complexes, chemical reactions in explicit solvent, and nanomaterials (silicon nanowires, zeolites.

274

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Large-Scale Industrial Project Begins Carbon Capture Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

275

Nevada Weatherizes Large-Scale Complex | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Weatherizes Large-Scale Complex Nevada Weatherizes Large-Scale Complex Nevada Weatherizes Large-Scale Complex July 1, 2010 - 10:11am Addthis What does this project do? This nonprofit weatherized a 22-unit low-income multifamily complex, reducing the building's duct leakage from 90 percent to just 5 percent. The weatherization program of the Rural Nevada Development Corporation (RNDC) reached a recent success in its eleven counties-wide territory. In June, the nonprofit finished weatherizing a 22-unit low-income multifamily complex, reducing the building's duct leakage from 90 percent to just 5 percent. "That is one big savings and is why I am proud of this project," says Dru Simerson, RNDC Weatherization Manager. RNDC's crew replaced all windows and 17 furnaces and installed floor

276

COMMENTS OF THE LARGE-SCALE SOLAR ASSOCIATION TO DEPARTMENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMENTS OF THE LARGE-SCALE SOLAR ASSOCIATION TO DEPARTMENT COMMENTS OF THE LARGE-SCALE SOLAR ASSOCIATION TO DEPARTMENT OF ENERGY'S RAPID RESPONSE TEAM FOR TRANSMISSION'S REQUEST FOR INFORMATION Submitted by electronic mail to: Lamont.Jackson@hq.doe.gov The Large-scale Solar Association appreciates this opportunity to respond to the Department of Energy's (DOE) Rapid Response Team for Transmission's (RRTT) Request for Information. 1 We applaud the DOE for creating the RRTT and continuing to advance the efforts already made under the Memorandum of Understanding (MOU) entered into by nine Federal agencies in 2009 to expedite electric transmission construction. We also applaud the federal and state agencies that have expanded the Renewable Energy Policy Group and the Renewable Energy Action Team in California to focus on transmission, and hope that the tremendous

277

Metal hydride based isotope separation: Large-scale operations  

DOE Green Energy (OSTI)

A program to develop a metal hydride based hydrogen isotope separation process began at the Savannah River Laboratory in 1980. This semi-continuous gas chromatographic separation process will be used in new tritium facilities at the Savannah River Site. A tritium production unit is scheduled to start operation in 1993. An experimental, large-scale unit is currently being tested using protium and deuterium. Operation of the large-scale unit has demonstrated separation of mixed hydrogen isotopes (55% protium and 45% deuterium), resulting in protium and deuterium product streams with purities better than 99.5%. 3 refs., 4 figs.

Horen, A.S.; Lee, Myung W.

1991-01-01T23:59:59.000Z

278

Metal hydride based isotope separation: Large-scale operations  

DOE Green Energy (OSTI)

A program to develop a metal hydride based hydrogen isotope separation process began at the Savannah River Laboratory in 1980. This semi-continuous gas chromatographic separation process will be used in new tritium facilities at the Savannah River Site. A tritium production unit is scheduled to start operation in 1993. An experimental, large-scale unit is currently being tested using protium and deuterium. Operation of the large-scale unit has demonstrated separation of mixed hydrogen isotopes (55% protium and 45% deuterium), resulting in protium and deuterium product streams with purities better than 99.5%. 3 refs., 4 figs.

Horen, A.S.; Lee, Myung W.

1991-12-31T23:59:59.000Z

279

Performance and Vibratory Loads Data From a Wind-Tunnel Test of a Model Helicopter MainRotor Blade With a Paddle-Type Tip  

E-Print Network (OSTI)

this report as a "BERP-type" blade. The intent of using these two blade sets was to evaluate the effect of the BERP planform geometry on performance and loads, not to conduct an exhaustive study of the BERP concept. The baseline and paddle-type tip blades were compared with regard to rotor performance, oscillatory pitch-link loads, and 4-per-rev vertical fixed-system loads. Data were obtained in hover and forward flight over a nominal range of advance ratios from 0.15 to 0.425. Results indicate that the paddle-type tip offers no performance improvements in either hover or forward flight. Pitchlink oscillatory loads for the paddle-type tip are higher than for the baseline blade, whereas 4-per-rev vertical fixed-system loads are generally lower.

William T. Yeager, Jr.; Kevin W. Noonan; Jeffrey D. Singleton; Matthew L. Wilbur; Paul H. Mirick

1997-01-01T23:59:59.000Z

280

Wind turbine ring/shroud drive system - Energy Innovation Portal  

A wind turbine capable of driving multiple electric generators having a ring or shroud structure for reducing blade root bending moments, hub loads, blade fastener ...

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Lessons from Large-Scale Renewable Energy Integration Studies: Preprint  

Science Conference Proceedings (OSTI)

In general, large-scale integration studies in Europe and the United States find that high penetrations of renewable generation are technically feasible with operational changes and increased access to transmission. This paper describes other key findings such as the need for fast markets, large balancing areas, system flexibility, and the use of advanced forecasting.

Bird, L.; Milligan, M.

2012-06-01T23:59:59.000Z

282

A holonic approach to model and deploy large scale simulations  

Science Conference Proceedings (OSTI)

Multi-Agent Based Simulations (MABS) for real-world problems may require a large number of agents. A possible solution is to distribute the simulation in multiple machines. Thus, we are forced to consider how Large Scale MABS can be deployed in order ...

Sebastian Rodriguez; Vincent Hilaire; Abder Koukam

2006-05-01T23:59:59.000Z

283

A Simulator for Large-Scale Parallel Computer Architectures  

Science Conference Proceedings (OSTI)

Efficient design of hardware and software for large-scale parallel execution requires detailed understanding of the interactions between the application, computer, and network. The authors have developed a macro-scale simulator SST/macro that permits ... Keywords: Computer Architecture Simulation, Macro-scale Simulator, Message Passing Interface, Network Congestion, Network Models

Helgi Adalsteinsson; Scott Cranford; David A. Evensky; Joseph P. Kenny; Jackson Mayo; Ali Pinar; Curtis L. Janssen

2010-04-01T23:59:59.000Z

284

Believability in simplifications of large scale physically based simulation  

Science Conference Proceedings (OSTI)

We verify two hypotheses which are assumed to be true only intuitively in many rigid body simulations. I: In large scale rigid body simulation, viewers may not be able to perceive distortion incurred by an approximated simulation method. II: ... Keywords: 3D graphics and realism, animation, physically based simulation

Donghui Han; Shu-wei Hsu; Ann McNamara; John Keyser

2013-08-01T23:59:59.000Z

285

Computational challenges in large-scale air pollution modelling  

Science Conference Proceedings (OSTI)

Many difficulties must be overcome when large-scale air pollution models are treated numerically, because the physical and chemical processes in the atmosphere are very fast. This is why it is necessary to use a large space domain in order ... Keywords: air pollution models, finite elements, ordinary differential equations, parallel computational, partial differential equations, quasi-steady-state-approximation

Tzvetan Ostromsky; Wojciech Owczarz; Zahari Zlatev

2001-06-01T23:59:59.000Z

286

A root cause localization model for large scale systems  

Science Conference Proceedings (OSTI)

Root cause localization, the process of identifying the source of problems in a system using purely external observations, is a significant challenge in many large-scale systems. In this paper, we propose an abstract model that captures the common issues ...

Emre Kiciman; Lakshminarayanan Subramanian

2005-06-01T23:59:59.000Z

287

Predictive discrete latent factor models for large scale dyadic data  

Science Conference Proceedings (OSTI)

We propose a novel statistical method to predict large scale dyadic response variables in the presence of covariate information. Our approach simultaneously incorporates the effect of covariates and estimates local structure that is induced by interactions ... Keywords: co-clustering, dyadic data, generalized linear regression, latent factor modeling

Deepak Agarwal; Srujana Merugu

2007-08-01T23:59:59.000Z

288

The cube: a very large-scale interactive engagement space  

Science Conference Proceedings (OSTI)

"The Cube" is a unique facility that combines 48 large multi-touch screens and very large-scale projection surfaces to form one of the world's largest interactive learning and engagement spaces. The Cube facility is part of the Queensland University ... Keywords: interactive wall displays, multi-touch, very large displays

Markus Rittenbruch, Andrew Sorensen, Jared Donovan, Debra Polson, Michael Docherty, Jeff Jones

2013-10-01T23:59:59.000Z

289

In Situ Visualization for Large-Scale Combustion Simulations  

Science Conference Proceedings (OSTI)

As scientific supercomputing moves toward petascale and exascale levels, in situ visualization stands out as a scalable way for scientists to view the data their simulations generate. This full picture is crucial particularly for capturing and understanding ... Keywords: in situ visualization, large-scale simulation, parallel rendering, supercomputing, scalability, computer graphics, graphics and multimedia

Hongfeng Yu; Chaoli Wang; Ray W. Grout; Jacqueline H. Chen; Kwan-Liu Ma

2010-05-01T23:59:59.000Z

290

Ceramic blade attachment system  

SciTech Connect

A retainer ring is arranged to mount turbine blades to a turbine disk so that aerodynamic forces produced by a gas turbine engine are transferred from the turbine blades to the turbine disk to cause the turbine blades and turbine disk to rotate, but so that centrifugal forces of the turbine blades resulting from the rotation of the turbine blades and turbine disk are not transferred from the turbine blades to the turbine disk.

Boyd, Gary L. (Alpine, CA)

1995-01-01T23:59:59.000Z

291

Ceramic blade attachment system  

DOE Patents (OSTI)

A retainer ring is arranged to mount turbine blades to a turbine disk so that aerodynamic forces produced by a gas turbine engine are transferred from the turbine blades to the turbine disk to cause the turbine blades and turbine disk to rotate, but so that centrifugal forces of the turbine blades resulting from the rotation of the turbine blades and turbine disk are not transferred from the turbine blades to the turbine disk. 6 figures.

Boyd, G.L.

1995-04-11T23:59:59.000Z

292

Best Practices and Tools for Large-scale Deployment of Renewable Energy and  

Open Energy Info (EERE)

Best Practices and Tools for Large-scale Deployment of Renewable Energy and Best Practices and Tools for Large-scale Deployment of Renewable Energy and Energy Efficiency Techniques Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Best Practices and Tools for Large-scale Deployment of Renewable Energy and Energy Efficiency Techniques in ESCWA Agency/Company /Organization: United Nations Economic and Social Commission for Western Asia Focus Area: Energy Efficiency, Renewable Energy, Solar, Wind Topics: Implementation, Policies/deployment programs, Background analysis Resource Type: Lessons learned/best practices Website: www.escwa.un.org/information/publications/edit/upload/sdpd-09-TP3.pdf Country: Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Sudan, Syria, United Arab Emirates, Yemen UN Region: "Western Asia & North Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

293

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

Wiser, Ryan

2010-01-01T23:59:59.000Z

294

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

al. 2010. Large-scale Offshore Wind for the United States:assistance with the offshore wind energy discussion; DonnaTechnologies Market Report Offshore Wind Power Project and

Wiser, Ryan

2010-01-01T23:59:59.000Z

295

A Climatology of Tropical Anvil and Its Relationship to the Large-Scale Circulation  

E-Print Network (OSTI)

This dissertation uses multiple tools to investigate tropical anvil, i.e., thick, non-precipitating cloud associated with deep convection with the main objectives to provide a climatology of tropics-wide anvil properties and a better understanding of anvil formation, and to provide a more realistic assessment of the radiative impact of tropical anvil on the large-scale circulation. Based on 10 years (1998-2007) of observations, anvil observed by the Tropical Rainfall Measuring Mission (TRMM) Precipitation (PR) shows significant geographical variations, which can be linked to variations in the parent convection. Strong upper level wind shear appears to assist the generation of anvil and may further explain the different anvil statistics over land and ocean. Variations in the large-scale environment appear to play a more important role in anvil production in regions where convection regularly attains heights greater than 7 km. For regions where convection is less deep, variations in the depth of the convection and the large-scale environment likely contribute more equally to anvil generation. Anvil radiative heating profiles are estimated by extrapolating millimeter cloud radar (MMCR) radiative properties from Manus to the 10-year TRMM PR record. When the unconditional anvil areal coverage is taken into account, the anvil radiative heating becomes quite weak, increasing the PR latent heating profile by less than 1 percent at mid and upper levels. Stratiform rain and cirrus radiative heating contributions increase the upper level latent heating by 12 percent. This tropical radiative heating only slightly enhances the latent heating driven model response throughout the tropics, but more significantly over the East Pacific. These modest circulation changes suggest that previous studies may have overemphasized the importance of radiative heating in terms of Walker and Hadley circulation variations. Further, the relationship of cloud radiative heating to latent heating needs to be taken into account for more realistic studies of cloud radiative forcing on the large-scale circulation.

Li, Wei

2009-12-01T23:59:59.000Z

296

Large-Scale Renewable Energy Development on Public Lands  

NLE Websites -- All DOE Office Websites (Extended Search)

Large-Scale Renewable Energy Large-Scale Renewable Energy Development on Public Lands Boyan Kovacic boyan.kovacic@ee.doe.gov 5/2/12 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov * BLM RE Drivers * BLM RE Programs * BLM Permitting and Revenues * Case Studies * Withdrawn Military Land Outline 3 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov BLM: Bureau of Land Management BO: Biological Opinion CSP: Concentrating Solar Power DOE: Department of Energy DOI: Department of Interior EA: Environmental Assessment EIS: Environmental Impact Statement FONSI: Finding of No Significant Impact FS: U.S. Forrest Service IM: Instruction Memorandum MPDS: Maximum Potential Development Scenario NEPA: National Environmental Policy Act NOI: Notice of Intent NOP: Notice to Proceed

297

Large-Scale Renewable Energy Development on Public Lands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Renewable Energy Large-Scale Renewable Energy Development on Public Lands Boyan Kovacic boyan.kovacic@ee.doe.gov 5/2/12 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov * BLM RE Drivers * BLM RE Programs * BLM Permitting and Revenues * Case Studies * Withdrawn Military Land Outline 3 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov BLM: Bureau of Land Management BO: Biological Opinion CSP: Concentrating Solar Power DOE: Department of Energy DOI: Department of Interior EA: Environmental Assessment EIS: Environmental Impact Statement FONSI: Finding of No Significant Impact FS: U.S. Forrest Service IM: Instruction Memorandum MPDS: Maximum Potential Development Scenario NEPA: National Environmental Policy Act NOI: Notice of Intent NOP: Notice to Proceed

298

The Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)  

NLE Websites -- All DOE Office Websites (Extended Search)

LBA (Amazon) LBA (Amazon) The Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) Overview [LBA Logo] The Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) is an international research initiative conducted from 1995-2005 and led by Brazil. The LBA Project encompasses several scientific disciplines, or components. The LBA-ECO component focuses on the question: "How do tropical forest conversion, regrowth, and selective logging influence carbon storage, nutrient dynamics, trace gas fluxes, and the prospect for sustainable land use in Amazonia?" The Amazon rain forest or Amazonia, is the largest remaining expanse of tropical rain forest on Earth, harboring approximately one-third of all Earth's species. Although the rain forest's area is so large that it

299

Advanced Blade Manufacturing Project - Final Report  

SciTech Connect

The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

POORE, ROBERT Z.

1999-08-01T23:59:59.000Z

300

Safety aspects of large-scale handling of hydrogen  

DOE Green Energy (OSTI)

Since the decade of the 1950s, there has been a large increase in the quantity of hydrogen, especially liquid hydrogen, that has been produced, transported, and used. The technology of hydrogen, as it relates to safety, has also developed at the same time. The possible sources of hazards that can arise in the large-scale handling of hydrogen are recognized, and for the most part, sufficiently understood. These hazard sources are briefly discussed. 26 refs., 4 figs.

Edeskuty, F.J.; Stewart, W.F.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Phoenix series large scale LNG pool fire experiments.  

SciTech Connect

The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

2010-12-01T23:59:59.000Z

302

Parallel I/O Software Infrastructure for Large-Scale Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Parallel IO Software Infrastructure for Large-Scale Systems Parallel IO Software Infrastructure for Large-Scale Systems | Tags: Math & Computer Science Choudhary.png An...

303

Wind turbine  

DOE Patents (OSTI)

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

304

Lightning protection system for a wind turbine  

DOE Patents (OSTI)

In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

Costin, Daniel P. (Chelsea, VT); Petter, Jeffrey K. (Williston, VT)

2008-05-27T23:59:59.000Z

305

Airfoils for wind turbine  

DOE Patents (OSTI)

Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

1996-01-01T23:59:59.000Z

306

Airfoils for wind turbine  

DOE Patents (OSTI)

Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

Tangler, J.L.; Somers, D.M.

1996-10-08T23:59:59.000Z

307

LM Wind Power formerly LM Glasfiber AS | Open Energy Information  

Open Energy Info (EERE)

LM Glasfiber AS LM Glasfiber AS Jump to: navigation, search Name LM Wind Power (formerly LM Glasfiber AS) Place Kolding, Denmark Zip 6000 Sector Wind energy Product Denmark-based manufacturer of blades for large-scale wind turbines. Coordinates 55.486405°, 9.473455° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.486405,"lon":9.473455,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

308

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of a crane lifting the blades onto a wind turbine that reads 'U.S. Department of Energy, NREL.' You can learn more about horizontal axis turbines from the EERE Wind Program's...

309

Large-Scale Renewable Energy Producers Property Tax Abatement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

up to 20 years for real and personal property used to generate electricity from renewable energy resources including solar, wind, biomass*, fuel cells, geothermal or hydro....

310

DOE Wind Program Update: June 4, 2006;  

SciTech Connect

The DOE Wind Program Update provides WindPower Conference attendees with information about recent DOE events, including Assistant Secretary Karsner, a wind turbine blade test facility CRADA, and 2005 Wind Energy Award recipients.

2006-06-01T23:59:59.000Z

311

Large-scale sodium spray fire code validation (SOFICOV) test  

Science Conference Proceedings (OSTI)

A large-scale, sodium, spray fire code validation test was performed in the HEDL 850-m/sup 3/ Containment System Test Facility (CSTF) as part of the Sodium Spray Fire Code Validation (SOFICOV) program. Six hundred fifty eight kilograms of sodium spray was sprayed in an air atmosphere for a period of 2400 s. The sodium spray droplet sizes and spray pattern distribution were estimated. The containment atmosphere temperature and pressure response, containment wall temperature response and sodium reaction rate with oxygen were measured. These results are compared to post-test predictions using SPRAY and NACOM computer codes.

Jeppson, D.W.; Muhlestein, L.D.

1985-01-01T23:59:59.000Z

312

Solar cycle variations of large scale flows in the Sun  

E-Print Network (OSTI)

Using data from the Michelson Doppler Imager (MDI) instrument on board the Solar and Heliospheric Observatory (SOHO), we study the large-scale velocity fields in the outer part of the solar convection zone using the ring diagram technique. We use observations from four different times to study possible temporal variations in flow velocity. We find definite changes in both the zonal and meridional components of the flows. The amplitude of the zonal flow appears to increase with solar activity and the flow pattern also shifts towards lower latitude with time.

Sarbani Basu; H. M. Antia

2000-01-17T23:59:59.000Z

313

Large Scale Deployment of Renewables for Electricity Generation  

E-Print Network (OSTI)

-cellulose material. Anaerobic digestion or gasification of biomass produces gas that can be used in similar applications to natural gas. Small-scale biogas production is now a well-established technology and large-scale application is in the advanced stages... of development. The possibility of using biogas in fuel cells exists, but there are a number of technical difficulties that remain to be overcome in this area. Source: www.britishbiogen.co.uk and WEA (2000). 5 All figures refer to electricity.Where necessary...

Neuhoff, Karsten

2006-03-14T23:59:59.000Z

314

PHASE TRANSITION GENERATED COSMOLOGICAL MAGNETIC FIELD AT LARGE SCALES  

SciTech Connect

We constrain a primordial magnetic field (PMF) generated during a phase transition (PT) using the big bang nucleosynthesis bound on the relativistic energy density. The amplitude of the PMF at large scales is determined by the shape of the PMF spectrum outside its maximal correlation length scale. Even if the amplitude of the PMF at 1 Mpc is small, PT-generated PMFs can leave observable signatures in the potentially detectable relic gravitational wave background if a large enough fraction (1%-10%) of the thermal energy is converted into the PMF.

Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 (United States); Tevzadze, Alexander G. [Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave., Tbilisi 0160 (Georgia); Ratra, Bharat, E-mail: tinatin@phys.ksu.edu, E-mail: aleko@tevza.org, E-mail: ratra@phys.ksu.edu [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506 (United States)

2011-01-10T23:59:59.000Z

315

Solving Large-scale Eigenvalue Problems in SciDACApplications  

SciTech Connect

Large-scale eigenvalue problems arise in a number of DOE applications. This paper provides an overview of the recent development of eigenvalue computation in the context of two SciDAC applications. We emphasize the importance of Krylov subspace methods, and point out its limitations. We discuss the value of alternative approaches that are more amenable to the use of preconditioners, and report the progression using the multi-level algebraic sub-structuring techniques to speed up eigenvalue calculation. In addition to methods for linear eigenvalue problems, we also examine new approaches to solving two types of non-linear eigenvalue problems arising from SciDAC applications.

Yang, Chao

2005-06-29T23:59:59.000Z

316

Large scale obscuration and related climate effects open literature bibliography  

SciTech Connect

Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ``Nuclear Winter Controversy`` in the early 1980`s. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest.

Russell, N.A.; Geitgey, J.; Behl, Y.K.; Zak, B.D.

1994-05-01T23:59:59.000Z

317

3X-100 blade field test.  

DOE Green Energy (OSTI)

In support of a Work-For-Other (WFO) agreement between the Wind Energy Technology Department at Sandia National Laboratories and 3TEX, one of the three Micon 65/13M wind turbines at the USDA Agriculture Research Service (ARS) center in Bushland, Texas, has been used to test a set of 9 meter wind turbine blades, manufactured by TPI composites using the 3TEX carbon material for the spar cap. Data collected from the test has been analyzed to evaluate both the aerodynamic performance and the structural response from the blades. The blades aerodynamic and structural performance, the meteorological inflow and the wind turbine structural response has been monitored with an array of 57 instruments: 15 to characterize the blades, 13 to characterize inflow, and 15 to characterize the time-varying state of the turbine. For the test, data was sampled at a rate of 40 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow, as well as both modeling and field testing results.

Zayas, Jose R.; Johnson, Wesley D.

2008-03-01T23:59:59.000Z

318

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

strategic plans. Large  Scale  Computing  and  Storage  Requirements  for  Fusion  Energy  Sciences   DOE  

Gerber, Richard

2012-01-01T23:59:59.000Z

319

Wrought TiAl Blades  

Science Conference Proceedings (OSTI)

First forged blades have been HPC blades of the Rolls-Royce BR715 engine from Gamma-TAB. The following evolution step was HPC blades for the ...

320

NREL: Learning - Wind Energy Basics: How Wind Turbines Work  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Basics: How Wind Turbines Work Wind Energy Basics: How Wind Turbines Work We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent wind. Turbines catch the wind's energy with their propeller-like blades. Usually, two or three blades are mounted on a shaft to form a rotor. A blade acts much like an airplane wing. When the wind blows, a pocket of low-pressure air forms on the downwind side of the blade. The low-pressure

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities (Book), Large-Scale Renewable Energy Guide, Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LARGE-SCALE RENEWABLE ENERGY GUIDE LARGE-SCALE RENEWABLE ENERGY GUIDE Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities A Practical Guide to Getting Large-Scale Renewable Energy Projects Financed with Private Capital Cover photos, clockwise from the top: Installing mirrored parabolic trough collectors - (January 19, 2012) Crews work around the clock installing mirrored parabolic trough collectors, built on site, that will cover 3 square miles at Abengoa's Solana Plant. Solana a 280 megawatt utility scale solar power plant (CSP) under construction in Gila Bend, Arizona, USA. When finished it will generate 280 MW 's of clean, sustainable power serving over 70,000 Arizona homes. Photo by Dennis Schroeder, NREL 20097 Dry Lake Wind Power Project in Arizona; Suzlon S88 wind turbines - The 63-MW Dry Lake Wind Power Project in Arizona is the first

322

Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities (Book), Large-Scale Renewable Energy Guide, Federal Energy Management Program (FEMP)  

NLE Websites -- All DOE Office Websites (Extended Search)

LARGE-SCALE RENEWABLE ENERGY GUIDE LARGE-SCALE RENEWABLE ENERGY GUIDE Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities A Practical Guide to Getting Large-Scale Renewable Energy Projects Financed with Private Capital Cover photos, clockwise from the top: Installing mirrored parabolic trough collectors - (January 19, 2012) Crews work around the clock installing mirrored parabolic trough collectors, built on site, that will cover 3 square miles at Abengoa's Solana Plant. Solana a 280 megawatt utility scale solar power plant (CSP) under construction in Gila Bend, Arizona, USA. When finished it will generate 280 MW 's of clean, sustainable power serving over 70,000 Arizona homes. Photo by Dennis Schroeder, NREL 20097 Dry Lake Wind Power Project in Arizona; Suzlon S88 wind turbines - The 63-MW Dry Lake Wind Power Project in Arizona is the first

323

Large Scale GSHP as Alternative Energy for American Farmers Geothermal  

Open Energy Info (EERE)

GSHP as Alternative Energy for American Farmers Geothermal GSHP as Alternative Energy for American Farmers Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Large Scale GSHP as Alternative Energy for American Farmers Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description We propose a large scale demonstration of solar assisted GSHP systems on two poultry farms in mid-Missouri. The heating load of Farm A with 4 barns will be 510 tons and Farm B with 5 barns will be 440 tons. Solar assisted GSHP systems will be installed, and new utility business model will be applied to both farms. Farm A will be constructed with commercial products in order to bring immediate impact to the industry. Farm B will also have a thermal energy storage system installed, and improved solar collectors will be used. A comprehensive energy analysis and economic study will be conducted.

324

Exploring Cloud Computing for Large-scale Scientific Applications  

Science Conference Proceedings (OSTI)

This paper explores cloud computing for large-scale data-intensive scientific applications. Cloud computing is attractive because it provides hardware and software resources on-demand, which relieves the burden of acquiring and maintaining a huge amount of resources that may be used only once by a scientific application. However, unlike typical commercial applications that often just requires a moderate amount of ordinary resources, large-scale scientific applications often need to process enormous amount of data in the terabyte or even petabyte range and require special high performance hardware with low latency connections to complete computation in a reasonable amount of time. To address these challenges, we build an infrastructure that can dynamically select high performance computing hardware across institutions and dynamically adapt the computation to the selected resources to achieve high performance. We have also demonstrated the effectiveness of our infrastructure by building a system biology application and an uncertainty quantification application for carbon sequestration, which can efficiently utilize data and computation resources across several institutions.

Lin, Guang; Han, Binh; Yin, Jian; Gorton, Ian

2013-06-27T23:59:59.000Z

325

BLADED IMPELLER FOR TURBOBLOWERS  

DOE Patents (OSTI)

A means is given of holding open-sided impeller blades in a turbo-rotor. Two half blades, with dovetail roots of sufficient weight to contain the center of gravity, are fitted into slots cut in the rotor so as to form the desired angle between the blade faces. The adjoining edges of the half blades are welded to form one solid blade that is securely locked an the rotor. This design permits the manufacture of a V shaped impeller blade without the need of machining the entire V shaped contour from a single blank, and furthermore provides excellent locking characteristics for attachment to the rotor.

Baumann, K.

1949-10-01T23:59:59.000Z

326

Structure of Large-Scale Convective Anomalies over Tropical Oceans  

Science Conference Proceedings (OSTI)

Geographical variations in the variance and cross-correlation of monthly mean sea surface temperature (SST), outgoing longwave radiation (OLR, a proxy for deep convection and vertical motion), and convergence of winds at the surface and at 850 mb ...

David S. Gutzler; Tamara M. Wood

1990-04-01T23:59:59.000Z

327

Rotationally Augmented Flow Structures and Time Varying Loads on Turbine Blades: Preprint  

DOE Green Energy (OSTI)

To better understand wind turbine flow physics, time dependent blade surface pressure data were acquired from the NREL Unsteady Aerodynamics Experiment.

Schreck, S. J.

2007-01-01T23:59:59.000Z

328

Angel wing seals for blades of a gas turbine and methods for ...  

Wind Energy; Partners (27) Visual Patent Search; Success Stories; News; Events; Angel wing seals for blades of a gas turbine and methods for determining angel wing ...

329

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

NLE Websites -- All DOE Office Websites (Extended Search)

28, 2013 28, 2013 Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization DOE-Supported Project in Texas Demonstrates Viability of CCUS Technology Washington, D.C. - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). MORE INFO Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

330

Large-Scale Analyses of Glycosylation in Cellulases  

NLE Websites -- All DOE Office Websites (Extended Search)

Article Article Large-Scale Analyses of Glycosylation in Cellulases Fengfeng Zhou 1,2 , Victor Olman 1,2 , and Ying Xu 1,2 * 1 Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology / Institute of Bioinformatics, University of Georgia, Athens, GA 30602-7229, USA; 2 BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830-8050, USA. *Corresponding author. E-mail: xyn@bmb.uga.edu DOI: 10.1016/S1672-0229(08)60049-2 Cellulases are important glycosyl hydrolases (GHs) that hydrolyze cellulose poly- mers into smaller oligosaccharides by breaking the cellulose β (1→4) bonds, and they are widely used to produce cellulosic ethanol from the plant biomass. N-linked and O-linked glycosylations were proposed to impact the catalytic ef f iciency, cel- lulose binding af f inity and the stability of cellulases based on observations

331

Large Scale Geothermal Exchange System for Residential, Office and Retail  

Open Energy Info (EERE)

Geothermal Exchange System for Residential, Office and Retail Geothermal Exchange System for Residential, Office and Retail Development Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Large Scale Geothermal Exchange System for Residential, Office and Retail Development Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description RiverHeath will be a new neighborhood, with residences, shops, restaurants, and offices. The design incorporates walking trails, community gardens, green roofs, and innovative stormwater controls. A major component of the project is our reliance on renewable energy. One legacy of the land's industrial past is an onsite hydro-electric facility which formerly powered the paper factories. The onsite hydro is being refurbished and will furnish 100% of the project's electricity demand.

332

Atypical Behavior Identification in Large Scale Network Traffic  

SciTech Connect

Cyber analysts are faced with the daunting challenge of identifying exploits and threats within potentially billions of daily records of network traffic. Enterprise-wide cyber traffic involves hundreds of millions of distinct IP addresses and results in data sets ranging from terabytes to petabytes of raw data. Creating behavioral models and identifying trends based on those models requires data intensive architectures and techniques that can scale as data volume increases. Analysts need scalable visualization methods that foster interactive exploration of data and enable identification of behavioral anomalies. Developers must carefully consider application design, storage, processing, and display to provide usability and interactivity with large-scale data. We present an application that highlights atypical behavior in enterprise network flow records. This is accomplished by utilizing data intensive architectures to store the data, aggregation techniques to optimize data access, statistical techniques to characterize behavior, and a visual analytic environment to render the behavioral trends, highlight atypical activity, and allow for exploration.

Best, Daniel M.; Hafen, Ryan P.; Olsen, Bryan K.; Pike, William A.

2011-10-23T23:59:59.000Z

333

Lightweight computational steering of very large scale molecular dynamics simulations  

Science Conference Proceedings (OSTI)

We present a computational steering approach for controlling, analyzing, and visualizing very large scale molecular dynamics simulations involving tens to hundreds of millions of atoms. Our approach relies on extensible scripting languages and an easy to use tool for building extensions and modules. The system is extremely easy to modify, works with existing C code, is memory efficient, and can be used from inexpensive workstations and networks. We demonstrate how we have used this system to manipulate data from production MD simulations involving as many as 104 million atoms running on the CM-5 and Cray T3D. We also show how this approach can be used to build systems that integrate common scripting languages (including Tcl/Tk, Perl, and Python), simulation code, user extensions, and commercial data analysis packages.

Beazley, D.M. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Computer Science; Lomdahl, P.S. [Los Alamos National Lab., NM (United States)

1996-09-01T23:59:59.000Z

334

A New Scalable Directory Architecture for Large-Scale Multiprocessors  

E-Print Network (OSTI)

The memory overhead introduced by directories constitutes a major hurdle in the scalability of cc-NUMA architectures, which makes the shared-memory paradigm unfeasible for very large-scale systems. This work is focused on improving the scalability of shared-memory multiprocessors by significantly reducing the size of the directory. We propose multilayer clustering as an effective approach to reduce the directory-entry width. Detailed evaluation for 64 processors shows that using this approach we can drastically reduce the memory overhead, while suffering a performance degradation very similar to previous compressed schemes (such as Coarse Vector). In addition, a novel two-level directory architecture is proposed in order to eliminate the penalty caused by these compressed directories. This organization consists of a small Full-Map firstlevel directory (which provides precise information for the most recently referenced lines) and a compressed secondlevel directory (which provides in-ex...

Manuel E. Acacio; José González; José M. García; José Duato

2001-01-01T23:59:59.000Z

335

Grid infrastructure to support science portals for large scale instruments.  

SciTech Connect

Soon, a new generation of scientific workbenches will be developed as a collaborative effort among various research institutions in the US. These scientific workbenches will be accessed in the Web via portals. Reusable components are needed to build such portals for different scientific disciplines, allowing uniform desktop access to remote resources. Such components will include tools and services enabling easy collaboration, job submission, job monitoring, component discovery, and persistent object storage. Based on experience gained from Grand Challenge applications for large-scale instruments, we demonstrate how Grid infrastructure components can be used to support the implementation of science portals. The availability of these components will simplify the prototype implementation of a common portal architecture.

von Laszewski, G.; Foster, I.

1999-09-29T23:59:59.000Z

336

Unified architecture for large-scale attested metering  

E-Print Network (OSTI)

We introduce a secure architecture called an attested meter for advanced metering that supports large-scale deployments, flexible configurations, and enhanced protection for consumer privacy and metering integrity. Our study starts with a threat analysis for advanced metering networks and formulates protection requirements for those threats. The attested meter satisfies these through a unified set of system interfaces based on virtual machines and attestation for the software agents of various parties that use the meter. We argue that this combination provides a well-adapted architecture for advanced metering and we take a step towards demonstrating its feasibility with a prototype implementation based on the Trusted Platform Module (TPM) and Xen Virtual Machine Monitor (VMM). This is the first effort use virtual machines and attestation in an advanced meter. 1.

Michael Lemay; George Gross; Carl A. Gunter; Sanjam Garg

2007-01-01T23:59:59.000Z

337

Modeling The Large Scale Bias of Neutral Hydrogen  

E-Print Network (OSTI)

We present analytical estimates of the large scale bias of neutral Hydrogen (HI) based on the Halo Occupation Distribution formalism. We use a simple, non-parametric model which monotonically relates the total mass of a halo with its HI mass at zero redshift; for earlier times we assume limiting models for the HI density parameter evolution, consistent with the data presently available, as well as two main scenarios for the evolution of our HI mass - Halo mass relation. We find that both the linear and the first non-linear bias terms exhibit a remarkable evolution with redshift, regardless of the specific limiting model assumed for the HI evolution. These analytical predictions are then shown to be consistent with measurements performed on the Millennium Simulation. Additionally, we show that this strong bias evolution does not sensibly affect the measurement of the HI Power Spectrum.

Marin, Felipe; Seo, Hee-Jong; Vallinotto, Alberto

2009-01-01T23:59:59.000Z

338

Hydrogen-combustion analyses of large-scale tests  

DOE Green Energy (OSTI)

This report uses results of the large-scale tests with turbulence performed by the Electric Power Research Institute at the Nevada Test Site to evaluate hydrogen burn-analysis procedures based on lumped-parameter codes like COMPARE-H2 and associated burn-parameter models. The test results: (1) confirmed, in a general way, the procedures for application to pulsed burning, (2) increased significantly our understanding of the burn phenomenon by demonstrating that continuous burning can occur, and (3) indicated that steam can terminate continuous burning. Future actions recommended include: (1) modification of the code to perform continuous-burn analyses, which is demonstrated, (2) analyses to determine the type of burning (pulsed or continuous) that will exist in nuclear containments and the stable location if the burning is continuous, and (3) changes to the models for estimating burn parameters.

Gido, R.G.; Koestel, A.

1986-01-01T23:59:59.000Z

339

Planning under uncertainty solving large-scale stochastic linear programs  

Science Conference Proceedings (OSTI)

For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.

Infanger, G. (Stanford Univ., CA (United States). Dept. of Operations Research Technische Univ., Vienna (Austria). Inst. fuer Energiewirtschaft)

1992-12-01T23:59:59.000Z

340

Nuclear-pumped lasers for large-scale applications  

SciTech Connect

Efficient initiation of large-volume chemical lasers may be achieved by neutron induced reactions which produce charged particles in the final state. When a burst mode nuclear reactor is used as the neutron source, both a sufficiently intense neutron flux and a sufficiently short initiation pulse may be possible. Proof-of-principle experiments are planned to demonstrate lasing in a direct nuclear-pumped large-volume system; to study the effects of various neutron absorbing materials on laser performance; to study the effects of long initiation pulse lengths; to demonstrate the performance of large-scale optics and the beam quality that may be obtained; and to assess the performance of alternative designs of burst systems that increase the neutron output and burst repetition rate. 21 refs., 8 figs., 5 tabs.

Anderson, R.E.; Leonard, E.M.; Shea, R.F.; Berggren, R.R.

1989-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cosmological Simulations for Large-Scale Sky Surveys | Argonne Leadership  

NLE Websites -- All DOE Office Websites (Extended Search)

Instantaneous velocity magnitude in a flow through an open valve in a valve/piston assembly. Instantaneous velocity magnitude in a flow through an open valve in a valve/piston assembly. Instantaneous velocity magnitude in a flow through an open valve in a valve/piston assembly. Christos Altantzis, MIT, and Martin Schmitt, LAV. All the images were generated from their work at LAV. Cosmological Simulations for Large-Scale Sky Surveys PI Name: Christos Frouzakis PI Email: frouzakis@lav.mavt.ethz.ch Institution: Swiss Federal Institute of Technology Zurich Allocation Program: INCITE Allocation Hours at ALCF: 100 Million Year: 2014 Research Domain: Chemistry The combustion of coal and petroleum-based fuels supply most of the energy needed to meet the world's transportation and power generation demands. To address the anticipated petroleum shortage, along with increasing energy

342

Training a Large Scale Classifier with the Quantum Adiabatic Algorithm  

E-Print Network (OSTI)

In a previous publication we proposed discrete global optimization as a method to train a strong binary classifier constructed as a thresholded sum over weak classifiers. Our motivation was to cast the training of a classifier into a format amenable to solution by the quantum adiabatic algorithm. Applying adiabatic quantum computing (AQC) promises to yield solutions that are superior to those which can be achieved with classical heuristic solvers. Interestingly we found that by using heuristic solvers to obtain approximate solutions we could already gain an advantage over the standard method AdaBoost. In this communication we generalize the baseline method to large scale classifier training. By large scale we mean that either the cardinality of the dictionary of candidate weak classifiers or the number of weak learners used in the strong classifier exceed the number of variables that can be handled effectively in a single global optimization. For such situations we propose an iterative and piecewise approach in which a subset of weak classifiers is selected in each iteration via global optimization. The strong classifier is then constructed by concatenating the subsets of weak classifiers. We show in numerical studies that the generalized method again successfully competes with AdaBoost. We also provide theoretical arguments as to why the proposed optimization method, which does not only minimize the empirical loss but also adds L0-norm regularization, is superior to versions of boosting that only minimize the empirical loss. By conducting a Quantum Monte Carlo simulation we gather evidence that the quantum adiabatic algorithm is able to handle a generic training problem efficiently.

Hartmut Neven; Vasil S. Denchev; Geordie Rose; William G. Macready

2009-12-04T23:59:59.000Z

343

ESS 2012 Peer Review - Nitrogen-Oxygen Battery for Large Scale Energy Storage - Frank Delnick, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

US DOE Energy Storage Systems Research Program US DOE Energy Storage Systems Research Program Peer Review, Washington, DC Sept. 26-28, 2012 Frank Delnick, David Ingersoll, Karen Waldrip, Peter Feibelman Nitrogen/Oxygen Battery A Transformational Architecture for Large Scale Energy Storage Power Sources Technology Group Sandia National Laboratories Albuquerque, NM SAND2012-7881P N 2 /O 2 Battery Project Overview  Air/Air battery.  N 2 electrochemistry enables the redefinition of a gas (diffusion) electrode and the three phase interface.  Operated as redox flow battery.  Provide a very high energy density, very low cost, environmentally benign electrochemical platform for load leveling and for grid-integrated storage of energy generated by wind, solar and other sustainable but intermittent sources.

344

Improving Performance of Power Systems with Large-scale Variable Generation Additions  

Science Conference Proceedings (OSTI)

A power system with large-scale renewable resources, like wind and solar generation, creates significant challenges to system control performance and reliability characteristics because of intermittency and uncertainties associated with variable generation. It is important to quantify these uncertainties, and then incorporate this information into decision-making processes and power system operations. This paper presents three approaches to evaluate the flexibility needed from conventional generators and other resources in the presence of variable generation as well as provide this flexibility from a non-traditional resource – wide area energy storage system. These approaches provide operators with much-needed information on the likelihood and magnitude of ramping and capacity problems, and the ability to dispatch available resources in response to such problems.

Makarov, Yuri V.; Etingov, Pavel V.; Samaan, Nader A.; Lu, Ning; Ma, Jian; Subbarao, Krishnappa; Du, Pengwei; Kannberg, Landis D.

2012-07-22T23:59:59.000Z

345

Wake Turbulence of Two NREL 5-MW Wind Turbines Immersed in a Neutral Atmospheric Boundary-Layer Flow  

E-Print Network (OSTI)

The fluid dynamics video considers an array of two NREL 5-MW turbines separated by seven rotor diameters in a neutral atmospheric boundary layer (ABL). The neutral atmospheric boundary-layer flow data were obtained from a precursor ABL simulation using a Large-Eddy Simulation (LES) framework within OpenFOAM. The mean wind speed at hub height is 8m/s, and the surface roughness is 0.2m. The actuator line method (ALM) is used to model the wind turbine blades by means of body forces added to the momentum equation. The fluid dynamics video shows the root and tip vortices emanating from the blades from various viewpoints. The vortices become unstable and break down into large-scale turbulent structures. As the wakes of the wind turbines advect further downstream, smaller-scale turbulence is generated. It is apparent that vortices generated by the blades of the downstream wind turbine break down faster due to increased turbulence levels generated by the wake of the upstream wind turbine.

Bashioum, Jessica L; Schmitz, Sven; Duque, Earl P N

2013-01-01T23:59:59.000Z

346

PPG and MAG Team Up for Turbine Blade Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PPG and MAG Team Up for Turbine Blade Research PPG and MAG Team Up for Turbine Blade Research PPG and MAG Team Up for Turbine Blade Research May 14, 2010 - 12:39pm Addthis Lindsay Gsell For more than 15 years, PPG Industries has been supplying fiberglass to the wind turbine production industry. Now, with more than $700,000 in Recovery Act funds, PPG and partner MAG Industrial Automation Systems are researching materials and processes that could result in stronger and more reliable wind blades. "Current materials need to be optimized to meet the demanding performance needs of today's largest wind blade designs," said Cheryl Richards, PPG global marketing manager in wind energy. According to Cheryl, wind turbine blades are produced by combining dry fiber glass fabrics with a strong resin to form a composite. This method is widely used in production,

347

EERE News: Energy Report: U.S. Wind Energy Production and Manufacturin...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

blades has steadily improved wind turbine performance and increased the efficiency of power generation from wind energy. At the same time, wind project capital and maintenance...

348

Wind Characteristics in Southern Wyoming  

Science Conference Proceedings (OSTI)

Measurements of wind from a network of surface anemometers and a 107 m tower have been analyzed for southern Wyoming where a project for large-scale generation of electricity from wind power is underway. Topographically forced channeling of ...

Brooks E. Martner; John D. Marwitz

1982-12-01T23:59:59.000Z

349

Large-Scale Spray Releases: Additional Aerosol Test Results  

SciTech Connect

One of the events postulated in the hazard analysis for the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak event involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids that behave as a Newtonian fluid. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and in processing facilities across the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are mostly absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale testing. The small-scale testing and resultant data are described in Mahoney et al. (2012b), and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used to mimic the relevant physical properties projected for actual WTP process streams.

Daniel, Richard C.; Gauglitz, Phillip A.; Burns, Carolyn A.; Fountain, Matthew S.; Shimskey, Rick W.; Billing, Justin M.; Bontha, Jagannadha R.; Kurath, Dean E.; Jenks, Jeromy WJ; MacFarlan, Paul J.; Mahoney, Lenna A.

2013-08-01T23:59:59.000Z

350

Ferroelectric opening switches for large-scale pulsed power drivers.  

DOE Green Energy (OSTI)

Fast electrical energy storage or Voltage-Driven Technology (VDT) has dominated fast, high-voltage pulsed power systems for the past six decades. Fast magnetic energy storage or Current-Driven Technology (CDT) is characterized by 10,000 X higher energy density than VDT and has a great number of other substantial advantages, but it has all but been neglected for all of these decades. The uniform explanation for neglect of CDT technology is invariably that the industry has never been able to make an effective opening switch, which is essential for the use of CDT. Most approaches to opening switches have involved plasma of one sort or another. On a large scale, gaseous plasmas have been used as a conductor to bridge the switch electrodes that provides an opening function when the current wave front propagates through to the output end of the plasma and fully magnetizes the plasma - this is called a Plasma Opening Switch (POS). Opening can be triggered in a POS using a magnetic field to push the plasma out of the A-K gap - this is called a Magnetically Controlled Plasma Opening Switch (MCPOS). On a small scale, depletion of electron plasmas in semiconductor devices is used to affect opening switch behavior, but these devices are relatively low voltage and low current compared to the hundreds of kilo-volts and tens of kilo-amperes of interest to pulsed power. This work is an investigation into an entirely new approach to opening switch technology that utilizes new materials in new ways. The new materials are Ferroelectrics and using them as an opening switch is a stark contrast to their traditional applications in optics and transducer applications. Emphasis is on use of high performance ferroelectrics with the objective of developing an opening switch that would be suitable for large scale pulsed power applications. Over the course of exploring this new ground, we have discovered new behaviors and properties of these materials that were here to fore unknown. Some of these unexpected discoveries have lead to new research directions to address challenges.

Brennecka, Geoffrey L.; Rudys, Joseph Matthew; Reed, Kim Warren; Pena, Gary Edward; Tuttle, Bruce Andrew; Glover, Steven Frank

2009-11-01T23:59:59.000Z

351

The Oceanic Response to Large-Scale Atmospheric Disturbances  

Science Conference Proceedings (OSTI)

This paper is an analytical and numerical study of the response of the ocean to the fluctuating component of the wind stress as computed from twice-daily weather maps for the period 1973 to 1976. The results are described in terms of (time) mean ...

J. Willebrand; S. G. H. Philander; R. C. Pacanowski

1980-03-01T23:59:59.000Z

352

A New Scalable Directory Architecture for Large-Scale Multiprocessors  

E-Print Network (OSTI)

The memory overhead introduced by directories constitutes a major hurdle in the scalability of cc-NUMA architectures, which makes the shared-memory paradigm unfeasible for very large-scale systems. This work is focused on improving the scalability of shared-memory multiprocessors by significantly reducing the size of the directory. We propose multilayer clustering as an effective approach to reduce the directory-entry width. Detailed evaluation for 64 processors shows that using this approach we can drastically reduce the memory overhead, while suffering a performance degradation very similar to previous compressed schemes (such as Coarse Vector). In addition, a novel two-level directory architecture is proposed in order to eliminate the penalty caused by these compressed directories. This organization consists of a small Full-Map firstlevel directory (which provides precise information for the most recently referenced lines) and a compressed secondlevel directory (which provides in-excess information). Results show that a system with this directory architecture can achieve the same performance as a multiprocessor with a big and non-scalable Full-Map directory, with a very significant reduction of the memory overhead.

Manuel Acacio Jos; José González; José M. García

2001-01-01T23:59:59.000Z

353

Parallel Index and Query for Large Scale Data Analysis  

SciTech Connect

Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies are critical for facilitating interactive exploration of large datasets, but numerous challenges remain in terms of designing a system for process- ing general scientific datasets. The system needs to be able to run on distributed multi-core platforms, efficiently utilize underlying I/O infrastructure, and scale to massive datasets. We present FastQuery, a novel software framework that address these challenges. FastQuery utilizes a state-of-the-art index and query technology (FastBit) and is designed to process mas- sive datasets on modern supercomputing platforms. We apply FastQuery to processing of a massive 50TB dataset generated by a large scale accelerator modeling code. We demonstrate the scalability of the tool to 11,520 cores. Motivated by the scientific need to search for inter- esting particles in this dataset, we use our framework to reduce search time from hours to tens of seconds.

Chou, Jerry; Wu, Kesheng; Ruebel, Oliver; Howison, Mark; Qiang, Ji; Prabhat,; Austin, Brian; Bethel, E. Wes; Ryne, Rob D.; Shoshani, Arie

2011-07-18T23:59:59.000Z

354

Applications of large-scale computation to particle accelerators  

SciTech Connect

The rapid growth in the power of large-scale computers has had a revolutionary effect on the study of charged-particle accelerators that is similar to the impact of smaller computers on everyday life. Before an accelerator is built, it is now the absolute rule to simulate every component and subsystem by computer to establish modes of operation and tolerances. We will bypass the important and fruitful areas of control and operation, and consider only application to design and diagnostic interpretation. Applications of computers can be divided into separate categories including: component design, system design, stability studies, cost optimization, and operating condition simulation. For the purposes of this report, we will choose a few examples from the above categories to illustrate the methods used, and discuss the significance of the work to the project. We also briefly discuss the accelerator project itself. The examples that will be discussed are: The design of accelerator structures for electron-positron linear colliders and circular colliding beam systems, simulation of the wake fields from multibunch electron beams for linear colliders. Particle-in-cell simulation of space-charge dominated beams for an experimental linear induction accelerator for Heavy Ion Fusion.

Herrmannsfeldt, W.B.

1991-05-01T23:59:59.000Z

355

Safety aspects of large-scale combustion of hydrogen  

DOE Green Energy (OSTI)

Recent hydrogen-safety investigations have studied the possible large-scale effects from phenomena such as the accumulation of combustible hydrogen-air mixtures in large, confined volumes. Of particular interest are safe methods for the disposal of the hydrogen and the pressures which can arise from its confined combustion. Consequently, tests of the confined combustion of hydrogen-air mixtures were conducted in a 2100 m/sup 3/ volume. These tests show that continuous combustion, as the hydrogen is generated, is a safe method for its disposal. It also has been seen that, for hydrogen concentrations up to 13 vol %, it is possible to predict maximum pressures that can occur upon ignition of premixed hydrogen-air atmospheres. In addition information has been obtained concerning the survivability of the equipment that is needed to recover from an accident involving hydrogen combustion. An accident that involved the inadvertent mixing of hydrogen and oxygen gases in a tube trailer gave evidence that under the proper conditions hydrogen combustion can transit to a detonation. If detonation occurs the pressures which can be experienced are much higher although short in duration.

Edeskuty, F.J.; Haugh, J.J.; Thompson, R.T.

1986-01-01T23:59:59.000Z

356

Planning and implementing a large-scale polymer flood  

Science Conference Proceedings (OSTI)

The motive for the Eliasville polymerflood originated while planning a waterflood in this light oil, limestone reservoir. Adverse reservoir waterflood characteristics were identified prior to unitization and laboratory work was undertaken to demonstrate the benefits of reducing water mobility by increasing water vicosity with several different polyacrylamides. Computer simulations incorporating polymer properties from laboratory work and known Caddo waterflood performance were used to design the polymerflood. Three injection tests were conducted to determine polymer injectivity. Pressure transient tests were used to measure the in-situ polymer viscosity. One of the injection tests included an off-pattern producing well which permitted an estimation of polymer retention and incremental oil recovery in a short time. Based on the injection tests and simulation work a large scale polymer project was implemented. The optimum slug size required 30,000,000 lb of emulsion polymer. Facilities used to mix and feed this large amount of polymer are described. A low-shear polymer flow control method was developed to insure maximum fluid viscosity at the formation perforations. Product specifications were verified prior to accepting delivery and injection fluid quality was monitored in laboratories constructed for the project. Early production response to field wide polymer injection is comparable to that observed at the off-pattern producing well during the injection test. While the early field response is encouraging, the effects of salt water injection on slug integrity and increased pattern size on oil recovery are still to be determined.

Weiss, W.W.; Baldwin, R.W.

1984-04-01T23:59:59.000Z

357

LARGE SCALE METHOD FOR THE PRODUCTION AND PURIFICATION OF CURIUM  

DOE Patents (OSTI)

A large-scale process for production and purification of Cm/sup 242/ is described. Aluminum slugs containing Am are irradiated and declad in a NaOH-- NaHO/sub 3/ solution at 85 to 100 deg C. The resulting slurry filtered and washed with NaOH, NH/sub 4/OH, and H/sub 2/O. Recovery of Cm from filtrate and washings is effected by an Fe(OH)/sub 3/ precipitation. The precipitates are then combined and dissolved ln HCl and refractory oxides centrifuged out. These oxides are then fused with Na/sub 2/CO/sub 3/ and dissolved in HCl. The solution is evaporated and LiCl solution added. The Cm, rare earths, and anionic impurities are adsorbed on a strong-base anfon exchange resin. Impurities are eluted with LiCl--HCl solution, rare earths and Cm are eluted by HCl. Other ion exchange steps further purify the Cm. The Cm is then precipitated as fluoride and used in this form or further purified and processed. (T.R.H.)

Higgins, G.H.; Crane, W.W.T.

1959-05-19T23:59:59.000Z

358

DOE Awards $126.6 Million for Two More Large-Scale Carbon Sequestratio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

126.6 Million for Two More Large-Scale Carbon Sequestration Projects DOE Awards 126.6 Million for Two More Large-Scale Carbon Sequestration Projects May 6, 2008 - 11:30am Addthis...

359

Energy Department Awards $66.7 Million for Large-Scale Carbon...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

66.7 Million for Large-Scale Carbon Sequestration Project Energy Department Awards 66.7 Million for Large-Scale Carbon Sequestration Project December 18, 2007 - 4:58pm Addthis...

360

The Distinction between Large-Scale and Mesoscale Contribution to Severe Convection: A Case Study Example  

Science Conference Proceedings (OSTI)

Using a case study of a relatively modest severe weather event as an example, a framework for understanding the large-scale-mesoscale interaction is developed and discussed. Large-scale processes are limited, by definition, to those which are ...

Charles A. Doswell III

1987-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Large-Scale SST Variability in the Western North Atlantic Subtropical Convergence Zone during FASINEX. Part II: Upper Ocean Heat Balance and Frontogenesis  

Science Conference Proceedings (OSTI)

We analyzed the influence of wind-deriven horizontal heat advection on the large-scale [O(1000) km wavelength] variability of both the upper-ocean mixed-layer heat content and the subtropical frontal zone (SFZ) within an 11° by 10° domain in the ...

George R. Halliwell Jr.; Peter Cornillon

1990-02-01T23:59:59.000Z

362

The Large-Scale Circulation and Heat Sources over the Tibetan Plateau and Surrounding Areas during the Early Summer of 1979. Part I: Precipitation and Kinematic Analyses  

Science Conference Proceedings (OSTI)

The time evolution of the large-scale precipitation, low-level (850 mb) wind, moisture and vertical motion fields over the Tibetan Plateau and surrounding areas during a 40-day period from late May to early July 1979 is studied based on the ...

Huibang Luo; Michio Yanai

1983-05-01T23:59:59.000Z

363

Wind Turbine Design Using A Free-wake Vortex Method With Winglet Application.  

E-Print Network (OSTI)

??Wind turbine blades are traditionally designed with blade element momentum theory (BEMT). This method is incapable of accurately analyzing non-conventional or non-planar blade planforms. Modern… (more)

Maniaci, David

2013-01-01T23:59:59.000Z

364

Large-Scale Spray Releases: Initial Aerosol Test Results  

Science Conference Proceedings (OSTI)

One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and rectangular slots. The round holes ranged in size from 0.2 to 4.46 mm. The slots ranged from (width × length) 0.3 × 5 to 2.74 × 76.2 mm. Most slots were oriented longitudinally along the pipe, but some were oriented circumferentially. In addition, a limited number of multi-hole test pieces were tested in an attempt to assess the impact of a more complex breach. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. The purpose of this report is to present the experimental results and analyses for the aerosol measurements obtained in the large-scale test stand. The report includes a description of the simulants used and their properties, equipment and operations, data analysis methodology, and test results. The results of tests investigating the role of slurry particles in plugging of small breaches are reported in Mahoney et al. 2012a. The results of the aerosol measurements in the small-scale test stand are reported in Mahoney et al. (2012b).

Schonewill, Philip P.; Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Kurath, Dean E.; Adkins, Harold E.; Billing, Justin M.; Burns, Carolyn A.; Davis, James M.; Enderlin, Carl W.; Fischer, Christopher M.; Jenks, Jeromy WJ; Lukins, Craig D.; MacFarlan, Paul J.; Shutthanandan, Janani I.; Smith, Dennese M.

2012-12-01T23:59:59.000Z

365

Advanced Planning Method for Integrating Large-Scale Variable Generation  

Science Conference Proceedings (OSTI)

As the penetration and size of renewable generation resources increase, the industry must expand transmission infrastructure to accommodate increasing renewable resource output. Conventional transmission expansion planning requires sufficient transmission capacities to transfer the full name plate capacity of all power plants to load centers at the same time. However, renewable resources, such as wind and solar, have highly variable output and are spatially diversified. Thus, transmission expansion plann...

2009-12-22T23:59:59.000Z

366

GAS MIXING ANALYSIS IN A LARGE-SCALED SALTSTONE FACILITY  

SciTech Connect

Computational fluid dynamics (CFD) methods have been used to estimate the flow patterns mainly driven by temperature gradients inside vapor space in a large-scaled Saltstone vault facility at Savannah River site (SRS). The purpose of this work is to examine the gas motions inside the vapor space under the current vault configurations by taking a three-dimensional transient momentum-energy coupled approach for the vapor space domain of the vault. The modeling calculations were based on prototypic vault geometry and expected normal operating conditions as defined by Waste Solidification Engineering. The modeling analysis was focused on the air flow patterns near the ventilated corner zones of the vapor space inside the Saltstone vault. The turbulence behavior and natural convection mechanism used in the present model were benchmarked against the literature information and theoretical results. The verified model was applied to the Saltstone vault geometry for the transient assessment of the air flow patterns inside the vapor space of the vault region using the potential operating conditions. The baseline model considered two cases for the estimations of the flow patterns within the vapor space. One is the reference nominal case. The other is for the negative temperature gradient between the roof inner and top grout surface temperatures intended for the potential bounding condition. The flow patterns of the vapor space calculated by the CFD model demonstrate that the ambient air comes into the vapor space of the vault through the lower-end ventilation hole, and it gets heated up by the Benard-cell type circulation before leaving the vault via the higher-end ventilation hole. The calculated results are consistent with the literature information. Detailed results and the cases considered in the calculations will be discussed here.

Lee, S

2008-05-28T23:59:59.000Z

367

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

SciTech Connect

IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

Gerber, Richard A.; Wasserman, Harvey J.

2012-03-02T23:59:59.000Z

368

Bayesian Uncertainty Quantification for Large Scale Spatial Inverse Problems  

E-Print Network (OSTI)

We considered a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a high dimension spatial field. The Bayesian approach contains a natural mechanism for regularization in the form of prior information, can incorporate information from heterogeneous sources and provides a quantitative assessment of uncertainty in the inverse solution. The Bayesian setting casts the inverse solution as a posterior probability distribution over the model parameters. Karhunen-Lo'eve expansion and Discrete Cosine transform were used for dimension reduction of the random spatial field. Furthermore, we used a hierarchical Bayes model to inject multiscale data in the modeling framework. In this Bayesian framework, we have shown that this inverse problem is well-posed by proving that the posterior measure is Lipschitz continuous with respect to the data in total variation norm. The need for multiple evaluations of the forward model on a high dimension spatial field (e.g. in the context of MCMC) together with the high dimensionality of the posterior, results in many computation challenges. We developed two-stage reversible jump MCMC method which has the ability to screen the bad proposals in the first inexpensive stage. Channelized spatial fields were represented by facies boundaries and variogram-based spatial fields within each facies. Using level-set based approach, the shape of the channel boundaries was updated with dynamic data using a Bayesian hierarchical model where the number of points representing the channel boundaries is assumed to be unknown. Statistical emulators on a large scale spatial field were introduced to avoid the expensive likelihood calculation, which contains the forward simulator, at each iteration of the MCMC step. To build the emulator, the original spatial field was represented by a low dimensional parameterization using Discrete Cosine Transform (DCT), then the Bayesian approach to multivariate adaptive regression spline (BMARS) was used to emulate the simulator. Various numerical results were presented by analyzing simulated as well as real data.

Mondal, Anirban

2011-08-01T23:59:59.000Z

369

Large-Scale Data Challenges in Future Power Grids  

Science Conference Proceedings (OSTI)

This paper describes technical challenges in supporting large-scale real-time data analysis for future power grid systems and discusses various design options to address these challenges. Even though the existing U.S. power grid has served the nation remarkably well over the last 120 years, big changes are in the horizon. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components. The whole system becomes highly dynamic and needs constant adjustments based on real time data. Even though millions of sensors such as phase measurement units (PMUs) and smart meters are being widely deployed, a data layer that can support this amount of data in real time is needed. Unlike the data fabric in cloud services, the data layer for smart grids must address some unique challenges. This layer must be scalable to support millions of sensors and a large number of diverse applications and still provide real time guarantees. Moreover, the system needs to be highly reliable and highly secure because the power grid is a critical piece of infrastructure. No existing systems can satisfy all the requirements at the same time. We examine various design options. In particular, we explore the special characteristics of power grid data to meet both scalability and quality of service requirements. Our initial prototype can improve performance by orders of magnitude over existing general-purpose systems. The prototype was demonstrated with several use cases from PNNL’s FPGI and was shown to be able to integrate huge amount of data from a large number of sensors and a diverse set of applications.

Yin, Jian; Sharma, Poorva; Gorton, Ian; Akyol, Bora A.

2013-03-25T23:59:59.000Z

370

PATHWAYS OF LARGE-SCALE MAGNETIC COUPLINGS BETWEEN SOLAR CORONAL EVENTS  

SciTech Connect

The high-cadence, comprehensive view of the solar corona by SDO/AIA shows many events that are widely separated in space while occurring close together in time. In some cases, sets of coronal events are evidently causally related, while in many other instances indirect evidence can be found. We present case studies to highlight a variety of coupling processes involved in coronal events. We find that physical linkages between events do occur, but concur with earlier studies that these couplings appear to be crucial to understanding the initiation of major eruptive or explosive phenomena relatively infrequently. We note that the post-eruption reconfiguration timescale of the large-scale corona, estimated from the extreme-ultraviolet afterglow, is on average longer than the mean time between coronal mass ejections (CMEs), so that many CMEs originate from a corona that is still adjusting from a previous event. We argue that the coronal field is intrinsically global: current systems build up over days to months, the relaxation after eruptions continues over many hours, and evolving connections easily span much of a hemisphere. This needs to be reflected in our modeling of the connections from the solar surface into the heliosphere to properly model the solar wind, its perturbations, and the generation and propagation of solar energetic particles. However, the large-scale field cannot be constructed reliably by currently available observational resources. We assess the potential of high-quality observations from beyond Earth's perspective and advanced global modeling to understand the couplings between coronal events in the context of CMEs and solar energetic particle events.

Schrijver, Carolus J.; Title, Alan M.; DeRosa, Marc L. [Lockheed Martin Advanced Technology Center, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Yeates, Anthony R. [Department of Mathematical Sciences, Durham University, Science Laboratories, South Road, Durham DH1 3LE (United Kingdom)

2013-08-20T23:59:59.000Z

371

Regional climate consequences of large-scale cool roof and photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

climate consequences of large-scale cool roof and photovoltaic climate consequences of large-scale cool roof and photovoltaic array deployment Title Regional climate consequences of large-scale cool roof and photovoltaic array deployment Publication Type Journal Article Year of Publication 2011 Authors Millstein, Dev, and Surabi Menon Journal Environmental Research Letters Volume 6 Start Page 1 Pagination 9 Date Published 07/2011 Keywords co2 offsets, cool roof, photovoltaics, radiative forcing, urban environment Abstract Modifications to the surface albedo through the deployment of cool roofs and pavements (reflective materials) and photovoltaic arrays (low reflection) have the potential to change radiative forcing, surface temperatures, and regional weather patterns. In this work we investigate the regional climate and radiative effects of modifying surface albedo to mimic massive deployment of cool surfaces (roofs and pavements) and, separately, photovoltaic arrays across the United States. We use a fully coupled regional climate model, the Weather Research and Forecasting (WRF) model, to investigate feedbacks between surface albedo changes, surface temperature, precipitation and average cloud cover. With the adoption of cool roofs and pavements, domain-wide annual average outgoing radiation increased by 0.16 ± 0.03 W m-2 (mean ± 95% C.I.) and afternoon summertime temperature in urban locations was reduced by 0.11-0.53 "C, although some urban areas showed no statistically significant temperature changes. In response to increased urban albedo, some rural locations showed summer afternoon temperature increases of up to +0.27 "C and these regions were correlated with less cloud cover and lower precipitation. The emissions offset obtained by this increase in outgoing radiation is calculated to be 3.3 ± 0.5 Gt CO2 (mean ± 95% C.I.). The hypothetical solar arrays were designed to be able to produce one terawatt of peak energy and were located in the Mojave Desert of California. To simulate the arrays, the desert surface albedo was darkened, causing local afternoon temperature increases of up to +0.4 "C. Due to the solar arrays, local and regional wind patterns within a 300 km radius were affected. Statistically significant but lower magnitude changes to temperature and radiation could be seen across the domain due to the introduction of the solar arrays. The addition of photovoltaic arrays caused no significant change to summertime outgoing radiation when averaged over the full domain, as interannual variation across the continent obscured more consistent local forcing.

372

Regional climate consequences of large-scale cool roof and photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

climate consequences of large-scale cool roof and photovoltaic climate consequences of large-scale cool roof and photovoltaic array deployment Title Regional climate consequences of large-scale cool roof and photovoltaic array deployment Publication Type Journal Article Year of Publication 2011 Authors Millstein, Dev, and Surabi Menon Journal Environmental Research Letters Volume 6 Start Page 1 Pagination 9 Date Published 07/2011 Keywords co2 offsets, cool roofs, photovoltaics, radiative forcing, urban environment Abstract Modifications to the surface albedo through the deployment of cool roofs and pavements (reflective materials) and photovoltaic arrays (low reflection) have the potential to change radiative forcing, surface temperatures, and regional weather patterns. In this work we investigate the regional climate and radiative effects of modifying surface albedo to mimic massive deployment of cool surfaces (roofs and pavements) and, separately, photovoltaic arrays across the United States. We use a fully coupled regional climate model, the Weather Research and Forecasting (WRF) model, to investigate feedbacks between surface albedo changes, surface temperature, precipitation and average cloud cover. With the adoption of cool roofs and pavements, domain-wide annual average outgoing radiation increased by 0.16 ± 0.03 W m-2 (mean ± 95% C.I.) and afternoon summertime temperature in urban locations was reduced by 0.11-0.53 "C, although some urban areas showed no statistically significant temperature changes. In response to increased urban albedo, some rural locations showed summer afternoon temperature increases of up to +0.27 "C and these regions were correlated with less cloud cover and lower precipitation. The emissions offset obtained by this increase in outgoing radiation is calculated to be 3.3 ± 0.5 Gt CO2 (mean ± 95% C.I.). The hypothetical solar arrays were designed to be able to produce one terawatt of peak energy and were located in the Mojave Desert of California. To simulate the arrays, the desert surface albedo was darkened, causing local afternoon temperature increases of up to +0.4 "C. Due to the solar arrays, local and regional wind patterns within a 300 km radius were affected. Statistically significant but lower magnitude changes to temperature and radiation could be seen across the domain due to the introduction of the solar arrays. The addition of photovoltaic arrays caused no significant change to summertime outgoing radiation when averaged over the full domain, as interannual variation across the continent obscured more consistent local forcing.

373

2009 ASME WIND ENERGY SYMPOSIUM Static and Fatigue Testing of Thick Adhesive Joints for  

E-Print Network (OSTI)

1 2009 ASME WIND ENERGY SYMPOSIUM Static and Fatigue Testing of Thick Adhesive Joints for Wind as wind blade size has increased. Typical blade joints use paste adhesives several millimeters thick aircraft, which are also of relevance to wind blades in many instances. The strengths of lap-shear and many

374

DOE Hydrogen Analysis Repository: Wind Power Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Summary Full Title: Large-Scale Integration of Wind Power into Different Energy Systems Project ID: 124 Principal Investigator: Henrik Lund Purpose The analysis...

375

Coupling Wind Generators with Deferrable Loads  

NLE Websites -- All DOE Office Websites (Extended Search)

existing deregulated power markets and demand side flexibility could support large scale integration of wind power without significant impacts on grid operations and without the...

376

Determining effects of turbine blades on fluid motion  

DOE Patents (OSTI)

Disclosed is a technique for simulating wind interaction with wind turbines. A turbine blade is divided into radial sections. The effect that each of these radial sections has on the velocities in Eulerian computational cells they overlap is determined. The effect is determined using Lagrangian techniques such that the calculations need not include wind components in the radial direction. A force on each radial section of turbine blade is determined. This force depends on the axial and azimuthal components of the fluid flow in the computational cell and the geometric properties of the turbine blade. The force on the turbine blade is fed back to effect the fluid flow in the computational cell for the next time step.

Linn, Rodman Ray (Los Alamos, NM); Koo, Eunmo (Los Alamos, NM)

2011-05-31T23:59:59.000Z

377

Determining effects of turbine blades on fluid motion  

DOE Patents (OSTI)

Disclosed is a technique for simulating wind interaction with wind turbines. A turbine blade is divided into radial sections. The effect that each of these radial sections has on the velocities in Eulerian computational cells they overlap is determined. The effect is determined using Lagrangian techniques such that the calculations need not include wind components in the radial direction. A force on each radial section of turbine blade is determined. This force depends on the axial and azimuthal components of the fluid flow in the computational cell and the geometric properties of the turbine blade. The force on the turbine blade is fed back to effect the fluid flow in the computational cell for the next time step.

Linn, Rodman Ray (Los Alamos, NM); Koo, Eunmo (Los Alamos, NM)

2012-05-01T23:59:59.000Z

378

CX-100 and TX-100 blade field tests.  

SciTech Connect

In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

Holman, Adam (USDA-Agriculture Research Service, Bushland, TX); Jones, Perry L.; Zayas, Jose R.

2005-12-01T23:59:59.000Z

379

Ceramic blade attachment system  

DOE Patents (OSTI)

A turbine blade having a preestablished rate of thermal expansion is attached to a turbine disc having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade and forms a turbine assembly. The turbine blade has a root portion defining a pair of sides having a pair of grooves therein. The turbine assembly includes a pair of flanges between which the turbine blades are positioned. Each of the pair of flanges has a plurality of grooves defined therein. The grooves within the pair of flanges are aligned with the grooves in the blades and have a space formed therebetween. A plurality of spherical balls are positioned within the space. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade.

Shaffer, James E. (Maitland, FL)

1995-01-01T23:59:59.000Z

380

Ceramic blade attachment system  

DOE Patents (OSTI)

A turbine blade having a preestablished rate of thermal expansion is attached to a turbine disc having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade and forms a turbine assembly. The turbine blade has a root portion defining a pair of sides having a pair of grooves therein. The turbine assembly includes a pair of flanges between which the turbine blades are positioned. Each of the pair of flanges has a plurality of grooves defined therein. The grooves within the pair of flanges are aligned with the grooves in the blades and have a space formed therebetween. A plurality of spherical balls are positioned within the space. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade. 4 figs.

Shaffer, J.E.

1995-07-11T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NREL: Wind Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Photo of the non-torque loading system at the National Wind Technology Center. Photo of the non-torque loading system at the National Wind Technology Center. New NWTC Test Facility to Improve Wind Turbines Testing the performance of multimegawatt wind turbine drivetrains Illustration showing mountains, several wind turbines, a power plant, a crane setting up a turbine blade, and two semi-trucks carrying turbine blades. The concept is to show all the pieces and parts of a complete wind energy system and how they work together. NWTC Systems Engineering Initiative Analysis Platform New platform helps analyze and integrate entire wind energy systems Short video featuring Fort Felker, Center Director of the National Wind Technology Center, highlighting the NWTC's dual-axis resonant blade testing capabilities. Images from this video include Fort speaking, the static turbine blade in the testing facility, and flapwise and edgewise testing in action.

382

Blade Testing Equipment Development and Commercialization: Cooperative Research and Development Final Report, CRADA Number CRD-09-346  

DOE Green Energy (OSTI)

Blade testing is required to meet wind turbine design standards, reduce machine cost, and reduce the technical and financial risk of deploying mass-produced wind turbine models. NREL?s National Wind Technology Center (NWTC) in Colorado is the only blade test facility in the U.S. capable of performing full-scale static and fatigue testing of multi-megawatt-scale wind turbine blades. Rapid growth in wind turbine size over the past two decades has outstripped the size capacity of the NWTC blade test facility leaving the U.S. wind industry without a suitable means of testing blades for large land-based and offshore turbines. This CRADA will develop and commercialize testing technologies and test equipment, including scaling up, value engineering, and testing of equipment to be used at blade testing facilities in the U.S. and around the world.

Snowberg, D.; Hughes, S.

2013-04-01T23:59:59.000Z

383

Large Scale Computing and Storage Requirements for High Energy Physics  

Science Conference Proceedings (OSTI)

The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.

Gerber, Richard A.; Wasserman, Harvey

2010-11-24T23:59:59.000Z

384

Blade Alloys - TMS  

Science Conference Proceedings (OSTI)

PDF PRESENTATION: Evolution of Ni-Based Superalloy Turbine Blades Highlights alloy development programs, as well as various processes, 1, 1272, Lynette ...

385

Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint  

DOE Green Energy (OSTI)

Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

2012-06-01T23:59:59.000Z

386

Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint  

SciTech Connect

Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

2012-06-01T23:59:59.000Z

387

PROPERTIES IMPORTANT TO MIXING FOR WTP LARGE SCALE INTEGRATED TESTING  

Science Conference Proceedings (OSTI)

Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i.e., Newtonian or non-Newtonian). The most important properties for testing with Newtonian slurries are the Archimedes number distribution and the particle concentration. For some test objectives, the shear strength is important. In the testing to collect data for CFD V and V and CFD comparison, the liquid density and liquid viscosity are important. In the high temperature testing, the liquid density and liquid viscosity are important. The Archimedes number distribution combines effects of particle size distribution, solid-liquid density difference, and kinematic viscosity. The most important properties for testing with non-Newtonian slurries are the slurry yield stress, the slurry consistency, and the shear strength. The solid-liquid density difference and the particle size are also important. It is also important to match multiple properties within the same simulant to achieve behavior representative of the waste. Other properties such as particle shape, concentration, surface charge, and size distribution breadth, as well as slurry cohesiveness and adhesiveness, liquid pH and ionic strength also influence the simulant properties either directly or through other physical properties such as yield stress.

Koopman, D.; Martino, C.; Poirier, M.

2012-04-26T23:59:59.000Z

388

Passive load control for large wind turbines.  

DOE Green Energy (OSTI)

Wind energy research activities at Sandia National Laboratories focus on developing large rotors that are lighter and more cost-effective than those designed with current technologies. Because gravity scales as the cube of the blade length, gravity loads become a constraining design factor for very large blades. Efforts to passively reduce turbulent loading has shown significant potential to reduce blade weight and capture more energy. Research in passive load reduction for wind turbines began at Sandia in the late 1990's and has moved from analytical studies to blade applications. This paper discusses the test results of two Sandia prototype research blades that incorporate load reduction techniques. The TX-100 is a 9-m long blade that induces bend-twist coupling with the use of off-axis carbon in the skin. The STAR blade is a 27-m long blade that induces bend-twist coupling by sweeping the blade in a geometric fashion.

Ashwill, Thomas D.

2010-05-01T23:59:59.000Z

389

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network (OSTI)

and R. H. Socolow. 2007. Baseload wind energy: modeling theand S. Zhang.1998. Large-scale baseload wind power in China.

Mills, Andrew D.

2009-01-01T23:59:59.000Z

390

Ceramic blade attachment system  

DOE Patents (OSTI)

A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a first groove and a second groove therein. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings has a first groove and a second groove therein. The space or void formed between the first grooves and the second grooves has a plurality of spherical balls positioned therein. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade.

Shaffer, James E. (Maitland, FL)

1995-01-01T23:59:59.000Z

391

Ceramic blade attachment system  

DOE Patents (OSTI)

A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a first groove and a second groove therein. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings has a first groove and a second groove therein. The space or void formed between the first grooves and the second grooves has a plurality of spherical balls positioned therein. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade. 4 figures.

Shaffer, J.E.

1995-01-10T23:59:59.000Z

392

New England Wind Forum: Wind Power Technology  

Wind Powering America (EERE)

Wind Power Technology Wind Power Technology Modern wind turbines have become sophisticated power plants while the concept of converting wind energy to electrical energy remains quite simple. Follow these links to learn more about the science behind wind turbine technology. Wind Power Animation An image of a scene from the wind power animation. The animation shows how moving air rotates a wind turbine's blades and describes how the internal components work to produce electricity. It shows small and large wind turbines and the differences between how they are used, as stand alone or connected to the utility grid. How Wind Turbines Work Learn how wind turbines make electricity; what are the types, sizes, and applications of wind turbines; and see an illustration of the components inside a wind turbine.

393

Rotationally sampled wind characteristics and correlations with MOD-OA wind turbine response  

SciTech Connect

This report presents results of a comprehensive wind and wind turbine measurement program: the Clayton, New Mexico, vertical plane array/MOD-OA project. In this experiment, the turbulent wind was measured for a large array of fixed anemometers located two blade diameters upwind of a 200-kW horizontal-axis wind turbine (HAWT). Simultaneously, key wind turbine response parameters were also measured. The first of two major objectives of this experiment was to determine the turbulent wind, rotationally sampled to emulate the motion of the wind turbine blade, for the range of different wind speeds and stability classes actually experienced by the wind turbine. The second major objective was to correlate this rotationally sampled wind with the wind turbine blade stress and power, in order to assess the usefulness of the wind measurements for wind turbine loads testing a prediction. Time series of rotationally sampled winds and wind turbine blade bending moments and power were converted to frequency spectra using Fourier transform techniques. These spectra were used as the basis for both qualitative and quantitative comparisons among the various cases. A quantitative comparison between the rotationally sampled wind input and blade bending response was made, using the Fourier spectra to estimate the blade transfer function. These transfer functions were then used to calculate an approximate damping coefficient for the MOD-OA fiberglass blade.

George, R.L.; Connell, J.R.

1984-09-01T23:59:59.000Z

394

Definition of a 5-MW Reference Wind Turbine for Offshore System Development  

SciTech Connect

This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology.

Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G.

2009-02-01T23:59:59.000Z

395

Department of Energy to Invest up to $4 Million for Wind Turbine...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy to Invest up to 4 Million for Wind Turbine Blade Testing Facilities Department of Energy to Invest up to 4 Million for Wind Turbine Blade Testing Facilities...

396

NETL: News Release - DOE Awards First Three Large-Scale Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2007 DOE Awards First Three Large-Scale Carbon Sequestration Projects U.S. Projects Total 318 Million and Further President Bush's Initiatives to Advance Clean Energy...

397

Large-scale solar projects in the United States have made great...  

NLE Websites -- All DOE Office Websites (Extended Search)

the United States have made great progress in delivering competitively priced renewable electricity September 2013 The price at which electricity from large-scale solar power...

398

A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion  

E-Print Network (OSTI)

comparison of terascale combustion simulation data. Mathe-premixed hydrogen ?ames. Combustion and Flame, [7] J. L.of Large Scale Turbulent Combustion Peer-Timo Bremer 1 ,

Bremer, Peer-Timo

2010-01-01T23:59:59.000Z

399

A Tractable Approach to Understanding the Results from Large-Scale 3D Transient  

E-Print Network (OSTI)

) problems or NASA's HPCC (High Performance Computing & Communication) grand challenges, can easily. Introduction Large-scale simulations of physical phenomena on high performance computing systems (often on mas

Peraire, Jaime

400

ESS 2012 Peer Review - Nitrogen-Oxygen Battery for Large Scale...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 Frank Delnick, David Ingersoll, Karen Waldrip, Peter Feibelman NitrogenOxygen Battery A Transformational Architecture for Large Scale Energy Storage Power Sources...

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NIChE Workshop on Materials for Large-Scale Energy ...  

Science Conference Proceedings (OSTI)

... Workshop on Materials for Large-Scale Energy Storage. Purpose: This workshop will delve into the end-use applications and market drivers for large ...

2010-10-05T23:59:59.000Z

402

NREL: News - NREL Offers an Open-Source Solution for Large-Scale...  

NLE Websites -- All DOE Office Websites (Extended Search)

Version News Release NR-3613 NREL Offers an Open-Source Solution for Large-Scale Energy Data Collection and Analysis June 18, 2013 The Energy Department's National...

403

System aspects of large scale implementation of a photovoltaic power plant.  

E-Print Network (OSTI)

?? In this thesis the static and dynamic behavior of large scale grid connected PV power plants are analyzed. A model of a 15 MW… (more)

Ruiz, Álvaro

2011-01-01T23:59:59.000Z

404

Technical R eport A practical method for solving large-scale TRS  

E-Print Network (OSTI)

R eport. University of Patras. Department of Mathematics. GR-265 04 Patras, Greece. http://www.math.upatras.gr/. A practical method for solving large-scale TRS.

405

Agent Based Modeling of large- scale socio-technical metal networks  

Science Conference Proceedings (OSTI)

17-02-10. Challenge the future. Delft. University of. Technology. Agent Based Modeling of large- scale socio-technical metal networks. Dr. Igor Nikolic, A.

406

POWER BALANCING CONTROL WITH LARGE SCALE WIND POWER INTEGRATION IN DENMARK  

E-Print Network (OSTI)

kV transmission system with the HVDC connections to Nordel systems (Norway and Sweden) in the north power exchange. Earlier studies in [4] have shown that the power exchange through the HVDC links plants and the power exchange via the HVDC connections. The overall model includes the power gradient

Bak-Jensen, Birgitte

407

Large-Scale Offshore Wind Power in the United States: Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nantucket Cable, which runs underwater from Nantucket to Cape Cod; and the natural geomagnetic field of the earth. BIOLOGICAL Terrestrial Vegetation Characterization of salt...

408

Harnessing the Wind with Carbon Nanotubes  

Science Conference Proceedings (OSTI)

Aug 7, 2009 ... The overall goal of the project, “Carbon Nanotube Reinforced Polyurethane Composites for Wind Turbine Blades,” is to help accelerate ...

409

The Economic Optimization of Wind Turbine Design .  

E-Print Network (OSTI)

??This thesis studies the optimization of a variable speed, three blade, horizontal-axis wind turbine. The design parameters considered are the rotor diameter, hub height and… (more)

Schmidt, Michael Frank

2007-01-01T23:59:59.000Z

410

NREL: Wind Research - Systems and Controls Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Research Turbines (CARTs). NWTC researchers are also studying blade pitch and generator torque, and employing advanced sensors to optimize power capture and reduce wind...

411

PowerBlades GmbH | Open Energy Information  

Open Energy Info (EERE)

PowerBlades GmbH PowerBlades GmbH Jump to: navigation, search Name PowerBlades GmbH Place Lemwerder, Hamburg, Germany Zip 27809 Sector Wind energy Product Developement and production of in-house offshore rotor blades for wind energy turbines. Coordinates 53.160455°, 8.61374° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.160455,"lon":8.61374,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

DeWind GmbH | Open Energy Information  

Open Energy Info (EERE)

GmbH Place Lubeck, Germany Zip D - 23569 Sector Wind energy Product Germany-based large scale wind turbine manufacturer. References DeWind GmbH1 LinkedIn Connections CrunchBase...

413

Fully coupled dynamic analysis of a floating wind turbine system  

E-Print Network (OSTI)

The use of wind power is in a period of rapid growth worldwide and wind energy systems have emerged as a promising technology for utilizing offshore wind resources for the large scale generation of electricity. Drawing ...

Withee, Jon E

2004-01-01T23:59:59.000Z

414

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network (OSTI)

Evaluation of Global Wind Power." Journal of Geophysical2008. "The Economics of Wind Power with Energy Storage."Economics of Large-Scale Wind Power in a Carbon Constrained

Wiser, Ryan H

2010-01-01T23:59:59.000Z

415

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

416

Introduction to a Large-Scale Biogas Plant in a Dairy Farm  

Science Conference Proceedings (OSTI)

This article describes a large-scale biogas plant in a dairy farm located in the Tongzhou District of Beijing. It is has a treatment capacity of 30t manure and 30t wastewater per day, a total of 60t/d with a residence time of 20 days. Input material ... Keywords: Large scale biogas plant, CHP, Biogas storage within digestor

Xiaolin Fan; Zifu Li; Tingting Wang; Fubin Yin; Xin Jin

2010-12-01T23:59:59.000Z

417

Structural fatigue assessment and management of large-scale port logistics equipments  

Science Conference Proceedings (OSTI)

With the advances of port enterprises, much intensive research has been gradually involved in the structural fatigue assessment and management of port logistics equipments. However, relevant work on large-scale port logistics equipments is still ... Keywords: S-N curve, crack formation, crack propagation life, fatigue assessment, fracture mechanics, gantry cranes, large-scale port logistics equipment, structural safety assessment

Yuan Liu; Weijian Mi; Huiqiang Zheng

2008-11-01T23:59:59.000Z

418

A time management optimization framework for large-scale distributed hardware-in-the-loop simulation  

Science Conference Proceedings (OSTI)

Large-scale distributed HIL(Hardware-In-The-Loop) simulation is an important and indispensable method for testing and verifying complex engineering systems. An important necessary condition for realizing HIL simulation is that the speedup ratio of full-speed ... Keywords: hardware-in-the-loop simulation, large-scale distributed simulation, optimization framework, speedup ratio of simulation, time management

Wei Dong

2013-05-01T23:59:59.000Z

419

A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion  

E-Print Network (OSTI)

A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion Peer a new topological framework for the analysis of large scale, time-varying, turbulent combustion consumption thresh- olds for an entire time-dependent combustion simulation. By computing augmented merge

Tierny, Julien

420

Large scale continuous visual event recognition using max-margin Hough transformation framework  

Science Conference Proceedings (OSTI)

In this paper we propose a novel method for continuous visual event recognition (CVER) on a large scale video dataset using max-margin Hough transformation framework. Due to high scalability, diverse real environmental state and wide scene variability ... Keywords: Continuous visual event, Event detection, Large scale, Max-margin Hough transform

Bhaskar Chakraborty, Jordi Gonzílez, F. Xavier Roca

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A study of dynamic meta-learning for failure prediction in large-scale systems  

Science Conference Proceedings (OSTI)

Despite years of study on failure prediction, it remains an open problem, especially in large-scale systems composed of vast amount of components. In this paper, we present a dynamic meta-learning framework for failure prediction. It intends to not only ... Keywords: Blue Gene, Dynamic techniques, Failure prediction, Large-scale systems, Meta-learning

Zhiling Lan; Jiexing Gu; Ziming Zheng; Rajeev Thakur; Susan Coghlan

2010-06-01T23:59:59.000Z

422

Level-of-detail rendering of large-scale irregular volume datasets using particles  

Science Conference Proceedings (OSTI)

This paper describes a level-of-detail rendering technique for large-scale irregular volume datasets. It is well known that the memory bandwidth consumed by visibility sorting becomes the limiting factor when carrying out volume rendering of such datasets. ... Keywords: large-scale irregular volume, level-of-detail, volume rendering of unstructured meshes

Takuma Kawamura; Naohisa Sakamoto; Koji Koyamada

2010-09-01T23:59:59.000Z

423

Remote visualization of large scale data for ultra-high resolution display environments  

Science Conference Proceedings (OSTI)

ParaView is one of the most widely used scientific tools that support parallel visualization of large scale data. The Scalable Adaptive Graphics Environment (SAGE) is a graphics middleware that enables real-time streaming of ultra-high resolution visual ... Keywords: ParaView, SAGE, large-scale data, remote visualization, ultra-high resolution visualization

Sungwon Nam; Byungil Jeong; Luc Renambot; Andrew Johnson; Kelly Gaither; Jason Leigh

2009-11-01T23:59:59.000Z

424

Online job provisioning for large scale science experiments over an optical grid infrastructure  

Science Conference Proceedings (OSTI)

Many emerging science experiments require that the massive data generated by big instruments be accessible and analyzed by a large number of geographically dispersed users. Such large scale science experiments are enabled by an Optical Grid infrastructure ... Keywords: WDM network, grid, job provisioning, large scale science experiment, resource co-scheduling

Xiang Yu; Chunming Qiao; Dantong Yu

2009-04-01T23:59:59.000Z

425

The Roles of Mean Meridional Motions and Large-Scale Eddies in Zonally Averaged Circulations  

Science Conference Proceedings (OSTI)

A hierarchy of zonally averaged atmospheric models is used to study the role of mean meridional motions and large-scale eddies in determining the zonal climate. Five models are developed: a radiative-convective equilibrium model (no large-scale ...

Karl E. Taylor

1980-01-01T23:59:59.000Z

426

Large-Scale Integration of Deferrable Demand and Renewable Energy Sources  

E-Print Network (OSTI)

1 Large-Scale Integration of Deferrable Demand and Renewable Energy Sources Anthony Papavasiliou model for assessing the impacts of the large-scale integration of renewable energy sources. In order to accurately assess the impacts of renewable energy integration and demand response integration

Oren, Shmuel S.

427

U.S. Energy Infrastructure Investment: Large-Scale Integrated Smart Grid  

E-Print Network (OSTI)

U.S. Energy Infrastructure Investment: Large-Scale Integrated Smart Grid Solutions with High: LargeScale Integrated Smart Grid Solutions with High Penetration of Renewable Resources, Dispersed- ing electricity grid. Much attention is being given to smart grid development in the U.S. and around

428

AIAA-2003-0694 QUANTIFICATION OF PROCESSING PARAMETERS FOR WIND TURBINE  

E-Print Network (OSTI)

AIAA-2003-0694 QUANTIFICATION OF PROCESSING PARAMETERS FOR WIND TURBINE BLADES Douglas Cairns, John of processing techniques and can be useful to wind turbine blade manufacturers to prepare processing conditions-3]. This is a consequence of the typical material architectures that are used in wind turbine blades. Figure 1

429

Ceramic blade attachment system  

DOE Patents (OSTI)

A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a pair of recessed portions thereon. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings have a pair of grooves therein in which are positioned a pair of pins having a generally rectangular cross-section and a reaction surface thereon. A pair of cylindrical rollers interposed respective ones of the pair of reaction surfaces and the pair of recessed portions. The attachment system or turbine assembly provides an economical, reliable and effective attachment of a component having a preestablished rate of thermal expansion to a component having a greater preestablished rate of thermal expansion.

Boyd, Gary L. (Alpine, CA)

1994-01-01T23:59:59.000Z

430

Ceramic blade attachment system  

DOE Patents (OSTI)

A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a pair of recessed portions thereon. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings have a pair of grooves therein in which are positioned a pair of pins having a generally rectangular cross-section and a reaction surface thereon. A pair of cylindrical rollers interposed respective ones of the pair of reaction surfaces and the pair of recessed portions. The attachment system or turbine assembly provides an economical, reliable and effective attachment of a component having a preestablished rate of thermal expansion to a component having a greater preestablished rate of thermal expansion. 3 figures.

Boyd, G.L.

1994-12-13T23:59:59.000Z

431

Large-scale Renewable Energy Projects (Larger than 10 MWs) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-scale Renewable Energy Projects (Larger than 10 MWs) Large-scale Renewable Energy Projects (Larger than 10 MWs) Large-scale Renewable Energy Projects (Larger than 10 MWs) October 7, 2013 - 9:32am Addthis Renewable energy projects larger than 10 megawatts (MW) are complex and typically require private-sector financing. The Federal Energy Management Program (FEMP) developed a guide to help Federal agencies, and the developers and financiers that work with them, to successfully install these projects at Federal facilities. The Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger than 10 MWs at Federal Facilities: A Practical Guide to Getting Large-Scale Renewable Energy Projects Financed with Private Capital provides a framework to allow the Federal Government, private developers, and financiers to work in a

432

Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit  

Open Energy Info (EERE)

Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme Jump to: navigation, search Name Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme Agency/Company /Organization European Climate Foundation Sector Energy Focus Area Energy Efficiency, Buildings, - Building Energy Efficiency Topics Co-benefits assessment, Background analysis Resource Type Publications Website http://3csep.ceu.hu/sites/defa Country Hungary UN Region Eastern Europe References Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme[1] Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme Screenshot "The goal of the present research was to gauge the net employment impacts of a largescale deep building energy-efficiency renovation programme in

433

Strategies to Finance Large-Scale Deployment of Renewable Energy Projects:  

Open Energy Info (EERE)

Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Agency/Company /Organization: International Energy Agency (IEA) Sector: Energy Focus Area: Renewable Energy Topics: Finance, Implementation, Policies/deployment programs Resource Type: Publications Website: iea-retd.org/archives/publications/finance-re Cost: Free Language: English Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Screenshot References: Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach[1]

434

Value Capture in the Global Wind Energy Industry  

E-Print Network (OSTI)

of large wind turbine (REpower MM92) Tower Rotor blades GearLiberty turbine, 2008 Component Tower Rotor blades/hub/turbine, 2008 Component Supplier Supplier HQ Tower Gamesa Spain Rotor

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

435

IEA Wind Annex XX: HAWT Aerodynamics and Models from Wind Tunnel Measurements; Final Report  

DOE Green Energy (OSTI)

This work characterizes undocumented physical relationships that govern aerodynamic force time variations that take place in connection with rotational augmentation on rotating wind turbine blades.

Schreck, S.

2008-12-01T23:59:59.000Z

436

How Does a Wind Turbine Work?  

Energy.gov (U.S. Department of Energy (DOE))

Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to...

437

Ceramic blade attachment system  

DOE Patents (OSTI)

A turbine blade having a preestablished rate of thermal expansion is attached to a turbine flange having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine flange includes a first upstanding flange and a second upstanding flange having a groove formed therebetween. The turbine flange further includes a recess. Each of the first and second upstanding flanges have a plurality of bores therein. A turbine blade has a first member and a second member positioned in one of the groove and the recess. Each of the first member and the second member have a plurality of bores therein. And, a pin is positioned in respective ones of the plurality of bores in the first and second upstanding members and the first and second members and attach the blade to the turbine flange. The pin has a preestablished rate of thermal expansion being substantially equal to the rate of thermal expansion of the blade.

Frey, deceased, Gary A. (late of Poway, CA); Jimenez, Oscar D. (Escondia, CA)

1996-01-01T23:59:59.000Z

438

Ceramic blade attachment system  

DOE Patents (OSTI)

A turbine blade having a preestablished rate of thermal expansion is attached to a turbine flange having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine flange includes a first upstanding flange and a second upstanding flange having a groove formed between them. The turbine flange further includes a recess. Each of the first and second upstanding flanges have a plurality of bores therein. A turbine blade has a first member and a second member positioned in one of the groove and the recess. Each of the first member and the second member have a plurality of bores therein. A pin is positioned in respective ones of the plurality of bores in the first and second upstanding members and the first and second members and attach the blade to the turbine flange. The pin has a preestablished rate of thermal expansion being substantially equal to the rate of thermal expansion of the blade. 4 figs.

Frey, G.A.; Jimenez, O.D.

1996-12-03T23:59:59.000Z

439

Energy Department Awards $66.7 Million for Large-Scale Carbon Sequestration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

66.7 Million for Large-Scale Carbon 66.7 Million for Large-Scale Carbon Sequestration Project Energy Department Awards $66.7 Million for Large-Scale Carbon Sequestration Project December 18, 2007 - 4:58pm Addthis Regional Partner to Demonstrate Safe and Permanent Storage of One Million Tons of CO2 at Illinois Site WASHINGTON, DC - Following closely on the heels of three recent awards through the Department of Energy's (DOE) Regional Carbon Sequestration Partnership Program, DOE today awarded $66.7 million to the Midwest Geological Sequestration Consortium (MGSC) for the Department's fourth large-scale carbon sequestration project. The Partnership led by the Illinois State Geological Survey will conduct large volume tests in the Illinois Basin to demonstrate the ability of a geologic formation to

440

DOE's Office of Science Seeks Proposals for Expanded Large-Scale Scientific  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seeks Proposals for Expanded Large-Scale Seeks Proposals for Expanded Large-Scale Scientific Computing DOE's Office of Science Seeks Proposals for Expanded Large-Scale Scientific Computing May 16, 2005 - 12:47pm Addthis WASHINGTON, D.C. -- Secretary of Energy Samuel W. Bodman announced today that DOE's Office of Science is seeking proposals to support innovative, large-scale computational science projects to enable high-impact advances through the use of advanced computers not commonly available in academia or the private sector. Projects currently funded are helping to reduce engine pollution and to improve our understanding of the stars and solar systems and human genetics. Successful proposers will be given the use of substantial computer time and data storage at the department's scientific

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

DOE Awards $126.6 Million for Two More Large-Scale Carbon Sequestration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$126.6 Million for Two More Large-Scale Carbon $126.6 Million for Two More Large-Scale Carbon Sequestration Projects DOE Awards $126.6 Million for Two More Large-Scale Carbon Sequestration Projects May 6, 2008 - 11:30am Addthis Projects in California and Ohio Join Four Others in Effort to Drastically Reduce Greenhouse Gas Emissions WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced awards of more than $126.6 million to the West Coast Regional Carbon Sequestration Partnership (WESTCARB) and the Midwest Regional Carbon Sequestration Partnership (MRCSP) for the Department's fifth and sixth large-scale carbon sequestration projects. These industry partnerships, which are part of DOE's Regional Carbon Sequestration Partnership, will conduct large volume tests in California and Ohio to demonstrate the ability of a geologic

442

DOE's Office of Science Seeks Proposals for Expanded Large-Scale Scientific  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Office of Science Seeks Proposals for Expanded Large-Scale DOE's Office of Science Seeks Proposals for Expanded Large-Scale Scientific Computing DOE's Office of Science Seeks Proposals for Expanded Large-Scale Scientific Computing May 16, 2005 - 12:47pm Addthis WASHINGTON, D.C. -- Secretary of Energy Samuel W. Bodman announced today that DOE's Office of Science is seeking proposals to support innovative, large-scale computational science projects to enable high-impact advances through the use of advanced computers not commonly available in academia or the private sector. Projects currently funded are helping to reduce engine pollution and to improve our understanding of the stars and solar systems and human genetics. Successful proposers will be given the use of substantial computer time and data storage at the department's scientific

443

First U.S. Large-Scale CO2 Storage Project Advances | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First U.S. Large-Scale CO2 Storage Project Advances First U.S. Large-Scale CO2 Storage Project Advances First U.S. Large-Scale CO2 Storage Project Advances April 6, 2009 - 1:00pm Addthis Washington, DC - Drilling nears completion for the first large-scale carbon dioxide (CO2) injection well in the United States for CO2 sequestration. This project will be used to demonstrate that CO2 emitted from industrial sources - such as coal-fired power plants - can be stored in deep geologic formations to mitigate large quantities of greenhouse gas emissions. The Archer Daniels Midland Company (ADM) hosted an event April 6 for a CO2 injection test at their Decatur, Ill. ethanol facility. The injection well is being drilled into the Mount Simon Sandstone to a depth more than a mile beneath the surface. This is the first drilling into the sandstone geology

444

Large-Scale Residential Energy Efficiency Programs Based on CFLs | Open  

Open Energy Info (EERE)

Large-Scale Residential Energy Efficiency Programs Based on CFLs Large-Scale Residential Energy Efficiency Programs Based on CFLs Jump to: navigation, search Tool Summary Name: Large-Scale Residential Energy Efficiency Programs Based on CFLs Agency/Company /Organization: Energy Sector Management Assistance Program of the World Bank Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Implementation, Policies/deployment programs Website: www.esmap.org/filez/pubs/216201021421_CFL_Toolkit_Web_Version_021610_R References: Large-Scale Residential Energy Efficiency Programs Based on CFLs[1] Overview "The World Bank Group and its Energy Sector Management Assitance Progamme (ESMAP) have produced a toolkit for efficient lighting programmes, based on compact fluorescent lamps, that compiles and shares operational (design,

445

Estimating Large-Scale Precipitation Minus Evapotranspiration from GRACE Satellite Gravity Measurements  

Science Conference Proceedings (OSTI)

Currently, observations of key components of the earth's large-scale water and energy budgets are sparse or even nonexistent. One key component, precipitation minus evapotranspiration (P ? ET), remains largely unmeasured due to the absence of ...

Sean Swenson; John Wahr

2006-04-01T23:59:59.000Z

446

Observed Large-Scale Structures and Diabatic Heating and Drying Profiles during TWP-ICE  

Science Conference Proceedings (OSTI)

This study documents the characteristics of the large-scale structures and diabatic heating and drying profiles observed during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), which was conducted in January–February 2006 in ...

Shaocheng Xie; Timothy Hume; Christian Jakob; Stephen A. Klein; Renata B. McCoy; Minghua Zhang

2010-01-01T23:59:59.000Z

447

Horizontal Structure and Seasonality of Large-Scale Circulations Associated with Submonthly Tropical Convection  

Science Conference Proceedings (OSTI)

The relationship between deep tropical convection and large-scale atmospheric circulation in the 6–30-day period range is examined. Regression relationships between filtered outgoing longwave radiation at various locations in the Tropics and 200- ...

George N. Kiladis; Klaus M. Weickmann

1997-09-01T23:59:59.000Z

448

Conjugate-Gradient Methods for Large-Scale Minimization in Meteorology  

Science Conference Proceedings (OSTI)

During the last few years new meteorological variational analysis methods have evolved, requiring large-scale minimization of a nonlinear objective function described in terms of discrete variables. The conjugate-gradient method was found to ...

I. M. Navon; David M. Legler

1987-08-01T23:59:59.000Z

449

How Well Do Large-Scale Models Reproduce Regional Hydrological Extremes in Europe?  

Science Conference Proceedings (OSTI)

This paper presents a new methodology for assessing the ability of gridded hydrological models to reproduce large-scale hydrological high and low flow events (as a proxy for hydrological extremes) as described by catalogues of historical droughts [...

Christel Prudhomme; Simon Parry; Jamie Hannaford; Douglas B. Clark; Stefan Hagemann; Frank Voss

2011-12-01T23:59:59.000Z

450

Built-in data-flow integration testing in large-scale component-based systems  

Science Conference Proceedings (OSTI)

Modern large-scale component-based applications and service ecosystems are built following a number of different component models and architectural styles, such as the data-flow architectural style. In this style, each building block receives data from ...

Éric Piel; Alberto Gonzalez-Sanchez; Hans-Gerhard Gross

2010-11-01T23:59:59.000Z

451

Large-Scale Vertical Eddy Diffusion in the Main Pycnocline of the Central North Pacific  

Science Conference Proceedings (OSTI)

Indirect procedures are used to estimate the latitudinal distribution of the large-scale vertical eddy diffusivity coefficient in the main pycnocline from the interannual change in T?, ?? structure of the water column in the central midlatitude ...

Warren White; Robert Bernstein

1981-04-01T23:59:59.000Z

452

A case study in meta-simulation design and performance analysis for large-scale networks  

Science Conference Proceedings (OSTI)

Simulation and emulation techniques are fundamental to aid the process of large-scale protocol design and network operations. However, the results from these techniques are often view with a great deal of skepticism from the networking community. Criticisms ...

David Bauer; Garrett Yaun; Christopher D. Carothers; Murat Yuksel; Shivkumar Kalyanaraman

2004-12-01T23:59:59.000Z

453

Tropical Instability Wave Variability in the Pacific and Its Relation to Large-Scale Currents  

Science Conference Proceedings (OSTI)

Shipboard acoustic Doppler current profiler (ADCP)-derived zonal currents from 170° to 110°W are assembled into composite seasonal and ENSO cycles to produce detailed representations of large-scale ocean flow regimes that favor tropical ...

Eric S. Johnson; Jeffrey A. Proehl

2004-10-01T23:59:59.000Z

454

On the Completeness of Multi-Variate Optimum Interpolation for Large-Scale Meteorological Analysis  

Science Conference Proceedings (OSTI)

The Baer-Tribbia nonlinear modal initialization method implies that large-scale meteorological analyses should focus on analysis of slow mode fields. An idealized multi-variate optimum interpolation analysis is shown to produce grid point results ...

Norman A. Phillips

1982-10-01T23:59:59.000Z

455

A Hybrid Kalman Filter Algorithm for Large-Scale Atmospheric Chemistry Data Assimilation  

Science Conference Proceedings (OSTI)

In the past, a number of algorithms have been introduced to solve data assimilation problems for large-scale applications. Here, several Kalman filters, coupled to the European Operational Smog (EUROS) atmospheric chemistry transport model, are ...

R. G. Hanea; G. J. M. Velders; A. J. Segers; M. Verlaan; A. W. Heemink

2007-01-01T23:59:59.000Z

456

Energy Transmission by Barotropic Rossby Waves across Large-Scale Topography  

Science Conference Proceedings (OSTI)

An analytical study investigates the energy transmission by free, barotropic, linear Rossby waves across a large scale bottom topography when topographic and beta-effects have the same order of magnitude. In open ocean regions which are not ...

Bernard Barnier

1984-02-01T23:59:59.000Z

457

Comparing Large-Scale Hydrological Model Simulations to Observed Runoff Percentiles in Europe  

Science Conference Proceedings (OSTI)

Large-scale hydrological models describing the terrestrial water balance at continental and global scales are increasingly being used in earth system modeling and climate impact assessments. However, because of incomplete process understanding and ...

Lukas Gudmundsson; Lena M. Tallaksen; Kerstin Stahl; Douglas B. Clark; Egon Dumont; Stefan Hagemann; Nathalie Bertrand; Dieter Gerten; Jens Heinke; Naota Hanasaki; Frank Voss; Sujan Koirala

2012-04-01T23:59:59.000Z

458

On-demand computation of policy based routes for large-scale network simulation  

Science Conference Proceedings (OSTI)

Routing table storage demands pose a significant obstacle for large-scale network simulation. On-demand computation of routes can alleviate those problems for models that do not require representation of routing dynamics. However, policy based routes, ...

Michael Liljenstam; David M. Nicol

2004-12-01T23:59:59.000Z

459

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network (OSTI)

and are added to the utility’s rate base. Large-scale EE2009a, 2009b, 2009c). utility’s rate base, and the utilityto the grid at a higher rate if the utility does not face

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

460

Sensitivity of Tropical Convection to Sea Surface Temperature in the Absence of Large-Scale Flow  

Science Conference Proceedings (OSTI)

The response of convection to changing sea surface temperature (SST) in the absence of large-scale flow is examined, using a three-dimensional cloud resolving model. The model includes a five-category bulk microphysical scheme representing snow, ...

Adrian M. Tompkins; George C. Craig

1999-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale wind blades" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.