Powered by Deep Web Technologies
Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY – SYSTEM SIMULATION AND ECONOMICS  

SciTech Connect

A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

2009-05-01T23:59:59.000Z

2

Carbon Molecular Sieve Membrane as a True One Box Unit for Large Scale Hydrogen Production  

SciTech Connect

IGCC coal-fired power plants show promise for environmentally-benign power generation. In these plants coal is gasified to syngas then processed in a water gas-shift (WGS) reactor to maximize the hydrogen/CO{sub 2} content. The gas stream can then be separated into a hydrogen rich stream for power generation and/or further purified for sale as a chemical and a CO{sub 2} rich stream for the purpose of carbon capture and storage (CCS). Today, the separation is accomplished using conventional absorption/desorption processes with post CO{sub 2} compression. However, significant process complexity and energy penalties accrue with this approach, accounting for ~20% of the capital cost and ~27% parasitic energy consumption. Ideally, a â??one-boxâ? process is preferred in which the syngas is fed directly to the WGS reactor without gas pre-treatment, converting the CO to hydrogen in the presence of H{sub 2}S and other impurities and delivering a clean hydrogen product for power generation or other uses. The development of such a process is the primary goal of this project. Our proposed "one-box" process includes a catalytic membrane reactor (MR) that makes use of a hydrogen-selective, carbon molecular sieve (CMS) membrane, and a sulfur-tolerant Co/Mo/Al{sub 2}O{sub 3} catalyst. The membrane reactorâ??s behavior has been investigated with a bench top unit for different experimental conditions and compared with the modeling results. The model is used to further investigate the design features of the proposed process. CO conversion >99% and hydrogen recovery >90% are feasible under the operating pressures available from IGCC. More importantly, the CMS membrane has demonstrated excellent selectivity for hydrogen over H{sub 2}S (>100), and shown no flux loss in the presence of a synthetic "tar"-like material, i.e., naphthalene. In summary, the proposed "one-box" process has been successfully demonstrated with the bench-top reactor. In parallel we have successfully designed and fabricated a full-scale CMS membrane and module for the proposed application. This full-scale membrane element is a 3" diameter with 30"L, composed of ~85 single CMS membrane tubes. The membrane tubes and bundles have demonstrated satisfactory thermal, hydrothermal, thermal cycling and chemical stabilities under an environment simulating the temperature, pressure and contaminant levels encountered in our proposed process. More importantly, the membrane module packed with the CMS bundle was tested for over 30 pressure cycles between ambient pressure and >300 -600 psi at 200 to 300°C without mechanical degradation. Finally, internal baffles have been designed and installed to improve flow distribution within the module, which delivered â?¥90% separation efficiency in comparison with the efficiency achieved with single membrane tubes. In summary, the full-scale CMS membrane element and module have been successfully developed and tested satisfactorily for our proposed one-box application; a test quantity of elements/modules have been fabricated for field testing. Multiple field tests have been performed under this project at National Carbon Capture Center (NCCC). The separation efficiency and performance stability of our full-scale membrane elements have been verified in testing conducted for times ranging from 100 to >250 hours of continuous exposure to coal/biomass gasifier off-gas for hydrogen enrichment with no gas pre-treatment for contaminants removal. In particular, "tar-like" contaminants were effectively rejected by the membrane with no evidence of fouling. In addition, testing was conducted using a hybrid membrane system, i.e., the CMS membrane in conjunction with the palladium membrane, to demonstrate that 99+% H{sub 2} purity and a high degree of CO{sub 2} capture could be achieved. In summary, the stability and performance of the full-scale hydrogen selective CMS membrane/module has been verified in multiple field tests in the presence of coal/biomass gasifier off-gas under this project. A promi

Paul Liu

2012-05-01T23:59:59.000Z

3

On Methods for the Large-Scale Production of Hydrogen from Water  

Science Journals Connector (OSTI)

Off-peak power would give sufficiently cheap hydrogen with classical electrolyzers. Emerging technology could produce it at between $0.85 and $2.90 (106 Btu)-1 for electricity costs (bulk purchase) between 2 and ...

J. O’M. Bockris

1975-01-01T23:59:59.000Z

4

Evaluation of the Potential Environmental Impacts from Large-Scale Use and Production of Hydrogen in Energy and Transportation Applications  

SciTech Connect

The purpose of this project is to systematically identify and examine possible near and long-term ecological and environmental effects from the production of hydrogen from various energy sources based on the DOE hydrogen production strategy and the use of that hydrogen in transportation applications. This project uses state-of-the-art numerical modeling tools of the environment and energy system emissions in combination with relevant new and prior measurements and other analyses to assess the understanding of the potential ecological and environmental impacts from hydrogen market penetration. H2 technology options and market penetration scenarios will be evaluated using energy-technology-economics models as well as atmospheric trace gas projections based on the IPCC SRES scenarios including the decline in halocarbons due to the Montreal Protocol. Specifically we investigate the impact of hydrogen releases on the oxidative capacity of the atmosphere, the long-term stability of the ozone layer due to changes in hydrogen emissions, the impact of hydrogen emissions and resulting concentrations on climate, the impact on microbial ecosystems involved in hydrogen uptake, and criteria pollutants emitted from distributed and centralized hydrogen production pathways and their impacts on human health, air quality, ecosystems, and structures under different penetration scenarios

Wuebbles, D.J.; Dubey, M.K., Edmonds, J.; Layzell, D.; Olsen, S.; Rahn, T.; Rocket, A.; Wang, D.; Jia, W.

2010-06-01T23:59:59.000Z

5

Parametric Evaluation of Large-Scale High-Temperature Electrolysis Hydrogen Production Using Different Advanced Nuclear Reactor Heat Sources  

SciTech Connect

High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the sweep gas loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycles producing the highest efficiencies varied depending on the temperature range considered.

Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

2009-09-01T23:59:59.000Z

6

Large-Scale Liquid Hydrogen Handling Equipment  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Jerry Gillette of Argonne National Laboratory at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007

7

Large-Scale Cotton Production in Texas.  

E-Print Network (OSTI)

introduction of tractor power and improved farm machinery in cotton-growing, the new methods in cotton har- vesting, and the recent improvements in machinery for ex- tracting the burs and cleaning the lint in the ginning process, mark the beginning of a new.... Specifically, it seeks: (1) to describe the common practices and show the ac- complishn~ents in the principal operations involved in large- scale cotton production, (2) to compare the use of animal and tractor power, (3) to point out the influence...

Gabbard, L. P. (Letcher P.); Jones, Fred Rufus

1927-01-01T23:59:59.000Z

8

Chapter 9 - Large-Scale Hydrogen Energy Storage  

Science Journals Connector (OSTI)

Abstract Storage technologies are essential for the integration of fluctuating renewable energies. Large scale storage provides grid stability, which are fundamental for a reliable energy systems and the energy balancing in hours to weeks time ranges to match demand and supply. Our system analysis showed that storage needs are in the two-digit terawatt hour and gigawatt range. Other reports confirm that assessment by stating that by 2040, 40 TWh would be required for this application. The present chapter outlines the general components and functions as well as the economics of a large-scale hydrogen energy storage system.

Erik Wolf

2015-01-01T23:59:59.000Z

9

ARM - Evaluation Product - Vertical Air Motion during Large-Scale  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsVertical Air Motion during Large-Scale ProductsVertical Air Motion during Large-Scale Stratiform Rain Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Vertical Air Motion during Large-Scale Stratiform Rain Site(s) NIM SGP General Description The Vertical Air Motion during Large-Scale Stratiform Rain (VERVELSR) value-added product (VAP) uses the unique properties of a 95-GHz radar Doppler velocity spectra to produce vertical profiles of air motion during low-to-moderate (1-20 mm/hr) rainfall events It is designed to run at ARM sites that include a W-band ARM cloud radar (WACR) radar with spectra data processing. The VERVELSR VAP, based on the work of Giangrande et al. (2010), operates by exploiting a resonance effect that occurs in

10

Running Large Scale Jobs  

NLE Websites -- All DOE Office Websites (Extended Search)

Running Large Scale Jobs Running Large Scale Jobs Users face various challenges with running and scaling large scale jobs on peta-scale production systems. For example, certain...

11

Visualizing a Large-Scale Structure of Production Network by N-Body Simulation  

Science Journals Connector (OSTI)

......forming specialized production flows. An example...Air-Water Industrial Gas (17/18), Kyowa...Large-Scale Structure of Production Network 171 4...the computational cost is largest for the...the calculation cost being preferred...Large-Scale Structure of Production Network 173 Fig......

Yoshi Fujiwara

2009-03-01T23:59:59.000Z

12

ARM - PI Product - Large Scale Ice Water Path and 3-D Ice Water Content  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsLarge Scale Ice Water Path and 3-D Ice Water ProductsLarge Scale Ice Water Path and 3-D Ice Water Content Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Large Scale Ice Water Path and 3-D Ice Water Content Site(s) SGP TWP General Description Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the

13

Economic analysis of large-scale hydrogen storage for renewable utility applications.  

SciTech Connect

The work reported here supports the efforts of the Market Transformation element of the DOE Fuel Cell Technology Program. The portfolio includes hydrogen technologies, as well as fuel cell technologies. The objective of this work is to model the use of bulk hydrogen storage, integrated with intermittent renewable energy production of hydrogen via electrolysis, used to generate grid-quality electricity. In addition the work determines cost-effective scale and design characteristics and explores potential attractive business models.

Schoenung, Susan M.

2011-08-01T23:59:59.000Z

14

Critical Perspectives on Large-Scale Distributed Applications and Production Grids  

E-Print Network (OSTI)

that utilize production Grid infrastructure. Along the way, we aim to provide an appreciation for the fact that developing distributed applications and the theory and practise of production Grid infrastructure have oftenCritical Perspectives on Large-Scale Distributed Applications and Production Grids Shantenu Jha1

Weissman, Jon

15

The impact of large scale biomass production on ozone air pollution in Joost B. Beltman a  

E-Print Network (OSTI)

The impact of large scale biomass production on ozone air pollution in Europe Joost B. Beltman a , Carlijn Hendriks a , Markus Tum b , Martijn Schaap a,* a TNO, Department of Climate, Air by up to 25% and 40%. Air pollution mitigation strategies should consider land use management. a r t i

Utrecht, Universiteit

16

Parameter identification in large-scale models for oil and gas production  

E-Print Network (OSTI)

Parameter identification in large-scale models for oil and gas production Jorn F.M. Van Doren: Models used for model-based (long-term) operations as monitoring, control and optimization of oil and gas information to the identification problem. These options are illustrated with examples taken from oil and gas

Van den Hof, Paul

17

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

18

Large scale production of carbon nanotube arrays on the sphere surface from liquefied petroleum gas at low cost  

Science Journals Connector (OSTI)

Liquefied petroleum gas (LPG), a cheap industrial material, ... and good mobility, leading to the mass production of CNT arrays continuously. The arrays obtained ... easily be produced on large scale at low cost.

Qiang Zhang; JiaQi Huang; Fei Wei; GuangHui Xu; Yao Wang…

2007-11-01T23:59:59.000Z

19

Scenario Development and Analysis of Hydrogen as a Large-Scale Energy Storage Medium (Presentation)  

SciTech Connect

The conclusions from this report are: (1) hydrogen has several important advantages over competing technologies, including - very high storage energy density (170 kWh/m{sup 3} vs. 2.4 for CAES and 0.7 for pumped hydro) which allows for potential economic viability of above-ground storage and relatively low environmental impact in comparison with other technologies; and (2) the major disadvantage of hydrogen energy storage is cost but research and deployment of electrolyzers and fuel cells may reduce cost significantly.

Steward, D. M.

2009-06-10T23:59:59.000Z

20

Constraints on ionising photon production from the large-scale Lyman-alpha forest  

E-Print Network (OSTI)

Recent work has shown that the z~2.5 Lyman-alpha forest on large scales encodes information about the galaxy and quasar populations that keep the intergalactic medium photoionized. We present the first forecasts for constraining the populations with data from current and next-generation surveys. At a minimum the forest should tell us whether galaxies or, conversely, quasars dominate the photon production. The number density and clustering strength of the ionising sources might be estimated to sub-10% precision with a DESI-like survey if degeneracies (e.g., with the photon mean-free-path, small-scale clustering power normalization and potentially other astrophysical effects) can be broken by prior information. We demonstrate that, when inhomogeneous ionisation is correctly handled, constraints on dark energy do not degrade.

Pontzen, Andrew; Peiris, Hiranya; Verde, Licia

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Selection of components for the IDEALHY preferred cycle for the large scale liquefaction of hydrogen  

SciTech Connect

In a future energy scenario, in which storage and transport of liquid hydrogen in large quantities will be used, the efficiency of the liquefaction of hydrogen will be of utmost importance. The goal of the IDEALHY working party is to identify the most promising process for a 50 t/d plant and to select the components, with which such a process can be realized. In the first stage the team has compared several processes, which have been proposed or realized in the past. Based on this information a process has been selected, which is thermodynamically most promising and for which it could be assumed that good components already exist or can be developed in the foreseeable future. Main features of the selected process are the compression of the feed stream to a relatively high pressure level, o-p conversion inside plate-fin heat exchangers and expansion turbines in the supercritical region. Precooling to a temperature between 150 and 100 K will be obtained from a mixed refrigerant cycle similar to the systems used successfully in natural gas liquefaction plants. The final cooling will be produced by two Brayton cycles, both having several expansion turbines in series. The selected overall process has still a number of parameters, which can be varied. The optimum, i.e. the final choice will depend mainly on the quality of the available components. Key components are the expansion turbines of the two Brayton cycles and the main recycle compressor, which may be common to both Brayton cycles. A six-stage turbo-compressor with intercooling between the stages is expected to be the optimum choice here. Each stage may consist of several wheels in series. To make such a high efficient and cost-effective compressor feasible, one has to choose a refrigerant, which has a higher molecular weight than helium. The present preferred choice is a mixture of helium and neon with a molecular weight of about 8 kg/kmol. Such an expensive refrigerant requires that the whole refrigeration loop is extremely tight.

Quack, H.; Seemann, I.; Klaus, M.; Haberstroh, Ch. [Technische Universitaet Dresden, Dresden (Germany); Berstad, D.; Walnum, H. T.; Neksa, P. [SINTEF Energy Research, Trondheim (Norway); Decker, L. [Linde Kryotechnik AG, Pfungen (Switzerland)

2014-01-29T23:59:59.000Z

22

NETL: News Release - DOE Advances Production of Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

6 , 2006 6 , 2006 DOE Advances Production of Hydrogen from Coal Projects Selected to Address Technological Challenges of Hydrogen Production in Large-Scale Facilities WASHINGTON, DC - The Department of Energy today announced the selection of six research and development projects that will promote the production of hydrogen from coal at large-scale facilities. This central approach will combat climate change by allowing for the capture - and subsequent sequestration - of carbon dioxide generated during hydrogen production. The selections support President Bush's Hydrogen Fuel Initiative, which provides funding for research and technology development to realize a future hydrogen economy that minimizes America's dependence on foreign oil and reduces greenhouse gas emissions.

23

Emergy analysis of grain production systems on large-scale farms in the North China Plain based on LCA  

Science Journals Connector (OSTI)

Abstract Traditionally, primary grain production systems in China have been on a small scale and are associated with high costs and low labor productivity. Therefore, the substitution of small-scale farming with large-scale farming has been discussed in recent years. The North China Plain (NCP) is one of the primary grain production areas in China, and the winter wheat–summer maize double-cropping system dominates the region. Emergy evaluation based on life cycle assessment (LCA) was introduced in a farm case study to explore the ecological and economic effects of the wheat–maize double-cropping system on large-scale grain production compared with small-scale production. The results indicated that the emergy efficiency of maize production on the large-scale farm was 67.4–88.5% higher than that of common maize production systems, and the emergy efficiency of wheat production in the same farm decreased by 23.5–43.0% compared to other wheat production systems. The emergy sustainability index (ESI) of the double-cropping system was 64.0–84.5% lower than that reported by household farms. This is caused by large-scale farming requiring enormous emergy inputs from irrigation, fertilizers, and labor at the pre-sowing and growth stages of wheat production. Nevertheless, the scenario analysis results showed that the emergy efficiency and ESI of wheat production could be improved by 14.7–59.1% and 18.2–123.3%, respectively, using appropriate water, nutrient, and agronomic management measures. We found that the emergy efficiency of wheat production in this large-scale farm was 41.5% higher than in household farms in the same area if comprehensive improvement measures were applied. In conclusion, the ESI value of the double-cropping system in the NCP needs to be modified to increase the emergy efficiency of large-scale grain production farms. If this is accomplished, the large-scale farming pattern may be applicable for grain production in the NCP.

Xiaolong Wang; Yuanquan Chen; Peng Sui; Wangsheng Gao; Feng Qin; Jiansheng Zhang; Xia Wu

2014-01-01T23:59:59.000Z

24

FCT Hydrogen Production: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Hydrogen Production: Basics on Facebook Tweet about FCT Hydrogen Production: Basics on Twitter Bookmark FCT Hydrogen Production: Basics on Google Bookmark FCT Hydrogen Production: Basics on Delicious Rank FCT Hydrogen Production: Basics on Digg Find More places to share FCT Hydrogen Production: Basics on AddThis.com... Home Basics Central Versus Distributed Production Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of hydrogen production in photobioreactor Hydrogen, chemical symbol "H", is the simplest element on earth. An atom of hydrogen has only one proton and one electron. Hydrogen gas is a diatomic

25

Hydrogen Production from Nuclear Energy via High Temperature Electrolysis  

SciTech Connect

This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.

James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

2006-04-01T23:59:59.000Z

26

Parametric Study Of Large-Scale Production Of Syngas Via High Temperature Co-Electrolysis  

SciTech Connect

A process model has been developed to evaluate the potential performance of a largescale high-temperature co-electrolysis plant for the production of syngas from steam and carbon dioxide. The co-electrolysis process allows for direct electrochemical reduction of the steam – carbon dioxide gas mixture, yielding hydrogen and carbon monoxide, or syngas. The process model has been developed using the Honeywell UniSim systems analysis code. Using this code, a detailed process flow sheet has been defined that includes all the components that would be present in an actual plant such as pumps, compressors, heat exchangers, turbines, and the electrolyzer. Since the electrolyzer is not a standard UniSim component, a custom one-dimensional co-electrolysis model was developed for incorporation into the overall UniSim process flow sheet. The one dimensional co-electrolysis model assumes local chemical equilibrium among the four process-gas species via the gas shift reaction. The electrolyzer model allows for the determination of co-electrolysis outlet temperature, composition (anode and cathode sides); mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. The one-dimensional electrolyzer model was validated by comparison with results obtained from a fully three dimensional computational fluid dynamics model developed using FLUENT, and by comparison to experimental data. This paper provides representative results obtained from the UniSim flow sheet model for a 300 MW co-electrolysis plant, coupled to a high-temperature gas-cooled nuclear reactor. The coelectrolysis process, coupled to a nuclear reactor, provides a means of recycling carbon dioxide back into a useful liquid fuel. If the carbon dioxide source is based on biomass, the overall process, from production through utilization, would be climate neutral.

J. E. O'Brien; M. G. McKellar; C. M. Stoots; J. S. Herring; G. L. Hawkes

2007-11-01T23:59:59.000Z

27

Hydrogen Production by the Photosynthetic Bacterium Rhodospirillum rubrum  

Science Journals Connector (OSTI)

...00/0 Hydrogen Production by the Photosynthetic...Continuous photosynthetic production ofhydrogen by Rhodospirillum...dry weight) of cells with whey as a hydrogen...processing specific organic wastes could be...in large-scale production ofhydrogen together...organisms that can use solar energy offer several...

Hans Zürrer; Reinhard Bachofen

1979-05-01T23:59:59.000Z

28

Hydrogen Production- Current Technology  

Energy.gov (U.S. Department of Energy (DOE))

The development of clean, sustainable, and cost-competitive hydrogen production processes is key to a viable future clean energy economy. Hydrogen production technologies fall into three general...

29

HyLights-- Tools to Prepare the Large-Scale European Demonstration Projects on Hydrogen for Transport  

Energy.gov (U.S. Department of Energy (DOE))

Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

30

Large-scale altitudinal gradient of natural rubber production in Vietnam  

Science Journals Connector (OSTI)

Investigation of elevation dependence of latex productivity of natural rubber (NR, Hevea brasiliensis Mull. Arg.) plantations and determination of elevation thresholds for landuse management are an urgent need of study. The current study was, therefore, conducted, aiming to investigate attitudinal gradient of NR production in Vietnam. The study was based on 146,000 ha of harvested NR plantations located from the southeast region to highland. There were 45 NR clones planted in the areas studied and GT1, the clone planted with a largest portion, was examined separately from the other 44 clones, combined in processing (the Rest). Three main variables, latex productivity, individual yield and tapping density were calculated for two tapping periods, from year 1 to 10 (1–10) and from year 11 to 20 (11–20). Over the investigated elevation range, 15–738 m, the latex productivity declined at different rates, 109 for GT1 (1–10), 127 for GT1 (11–20), 110 for the Rest (1–10) and 117 kg ha?1 year?1 for the Rest (11–20) for every 100-m increase in elevation. An S-like curve, obtained by fitting latex productivity along the altitudinal gradient using 3-order polynomial could be separated into three stages, of which the first and the last stages were characterized with a rapid drop of, and the middle was with a stability of, latex productivity. With a rise in elevation, tapping density (tapped tree ha?1) and individual yield (kg tree?1 year?1) significantly declined. As tapping density increased, individual yield declined whereas latex productivity rose. The results indicated that not all lands are suitable for a good NR production and that only areas with elevation under a certain magnitude depending on individual NR clones should be considered for NR cultivation. The altitudinal gradient of NR production could involve a number of soil and climatic variables, which need to be further investigated.

Binh Thanh Nguyen

2013-01-01T23:59:59.000Z

31

Issues in strategic management of large-scale software product line development  

E-Print Network (OSTI)

This thesis reflects on the issues and challenges large software product engineering managers face. Software is hard to engineer on a small scale, but at a larger scale, engineering and management tasks are even more ...

Nivoit, Jean-Baptiste (Jean-Baptiste Henri)

2013-01-01T23:59:59.000Z

32

Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis  

SciTech Connect

A broad perspective of pyrolysis technology as it relates to converting biomass substrates to a liquid bio-oil product and a detailed technical and economic assessment of a fast pyrolysis plant.

Ringer, M.; Putsche, V.; Scahill, J.

2006-11-01T23:59:59.000Z

33

FCT Hydrogen Production: Hydrogen Production R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production R&D Hydrogen Production R&D Activities to someone by E-mail Share FCT Hydrogen Production: Hydrogen Production R&D Activities on Facebook Tweet about FCT Hydrogen Production: Hydrogen Production R&D Activities on Twitter Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Google Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Delicious Rank FCT Hydrogen Production: Hydrogen Production R&D Activities on Digg Find More places to share FCT Hydrogen Production: Hydrogen Production R&D Activities on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts

34

Solar Hydrogen Production  

Science Journals Connector (OSTI)

The common methods of hydrogen production impose many concerns regarding the decline in...2...emission, and ecological impacts. Subsequently, all the downstream industries that consume hydrogen involve the aforem...

Ibrahim Dincer; Anand S. Joshi

2013-01-01T23:59:59.000Z

35

Economics of large-scale thorium oxide production: assessment of domestic resources  

SciTech Connect

The supply curve illustrates that sufficient amounts of thorium exist supply a domestic thorium-reactor economy. Most likely costs of production range from $3 to $60/lb ThO/sub 2/. Near-term thorium oxide resources include the stockpiles in Ohio, Maryland, and Tennessee and the thorite deposits at Hall Mountain, Idaho. Costs are under $10/lb thorium oxide. Longer term economic deposits include Wet Mountain, Colorado; Lemhi Pass, Idaho; and Palmer, Michigan. Most likely costs are under $20/lb thorium oxide. Long-term deposits include Bald Mountain, Wyoming; Bear Lodge, Wyoming; and Conway, New Hampshire. Costs approximately equal or exceed $50/lb thorium oxide.

Young, J.K.; Bloomster, C.H.; Enderlin, W.I.; Morgenstern, M.H.; Ballinger, M.Y.; Drost, M.K.; Weakley, S.A.

1980-02-01T23:59:59.000Z

36

Hydrogen Energy System and Hydrogen Production Methods  

Science Journals Connector (OSTI)

Hydrogen is being considered as a synthetic fuel ... . This paper contains an overview of the hydrogen production methods, those being commercially available today as well...

F. Barbir; T. N. Veziro?lu

1992-01-01T23:59:59.000Z

37

Hydrogen Production from Thermocatalytic Hydrogen Sulfide Decomposition  

Science Journals Connector (OSTI)

Experimental data on hydrogen production from hydrogen sulfide decomposition over various solid catalysts at ... The possibilities given by surface modification by vacuum methods (electron beam evaporation and ma...

O. K. Alexeeva

2002-01-01T23:59:59.000Z

38

A Concept of Large-Scale Artificial Ridges Using a New Hardened Product Made from Coal Ash  

Science Journals Connector (OSTI)

This report describes one concept for developing a new type of fishing ground. The idea is to form a large-scale artificial ridge on the bottom of the sea, using coal ash which is produced in large quantities by

T. Suzuki

1985-01-01T23:59:59.000Z

39

FCT Hydrogen Production: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to Current Technology to someone by E-mail Share FCT Hydrogen Production: Current Technology on Facebook Tweet about FCT Hydrogen Production: Current Technology on Twitter Bookmark FCT Hydrogen Production: Current Technology on Google Bookmark FCT Hydrogen Production: Current Technology on Delicious Rank FCT Hydrogen Production: Current Technology on Digg Find More places to share FCT Hydrogen Production: Current Technology on AddThis.com... Home Basics Current Technology Thermal Processes Electrolytic Processes Photolytic Processes R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology The development of clean, sustainable, and cost-competitive hydrogen

40

Hydrogen Production Methods  

Science Journals Connector (OSTI)

As hydrogen appears to be a potential solution for a carbon-free society, its production plays a critical role in showing how well it fulfills the criteria of being environmentally benign and sustainable. Of c...

Ibrahim Dincer; Anand S. Joshi

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hydrogen Production Methods  

Science Journals Connector (OSTI)

Commercially available hydrogen production methods such as steam reforming of natural gas, ... process that are based on fossil hydrocarbons and methods in the stage of development, like thermolysis ... radiolysi...

Y. Yürüm

1995-01-01T23:59:59.000Z

42

Bacterial Fermentative Hydrogen Production  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Melanie Mormile, Missouri University of Science and Technology, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

43

NREL: Learning - Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production The simplest and most common element, hydrogen is all around us, but always as a compound with other elements. To make it usable in fuel cells or otherwise provide energy, we must expend energy or modify another energy source to extract it from the fossil fuel, biomass, water, or other compound in which it is found. Nearly all hydrogen production in the United States today is by steam reformation of natural gas. This, however, releases carbon dioxide in the process and trades one relatively clean fuel for another, with associated energy loss, so it does little to meet national energy needs. Hydrogen can also be produced by electrolysis-passing an electrical current through water to break it into hydrogen and oxygen-but electrolysis is inefficient and is only as clean

44

Hydrogen Production Infrastructure Options Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on hydrogen production and infrastructure options presented at the DOE Transition Workshop.

45

Hydrogen Production Fact Sheet | Department of Energy  

Energy Savers (EERE)

Production Fact Sheet Hydrogen Production Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen production. Hydrogen Production More Documents &...

46

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Large-Scale Industrial Project Begins Carbon Capture Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

47

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Large-Scale Industrial Project Begins Carbon Capture Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

48

Resource Assessment for Hydrogen Production: Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Administration ERR Estimated Recoverable Reserves FCEV fuel cell electric vehicle GHG greenhouse gas GW gigawatt GWh gigawatt-hour GWdt gigawatt-days thermal H2A Hydrogen...

49

Fossil-Based Hydrogen Production  

E-Print Network (OSTI)

) Fossil-Based Hydrogen Production Praxair Praxair SNL TIAX · Integrated Ceramic Membrane System for H2

50

DOE Hydrogen Analysis Repository: Hydrogen Production by  

NLE Websites -- All DOE Office Websites (Extended Search)

Production by Photovoltaic-powered Electrolysis Production by Photovoltaic-powered Electrolysis Project Summary Full Title: Production of Hydrogen by Photovoltaic-powered Electrolysis Project ID: 91 Principal Investigator: D.L. Block Keywords: Hydrogen production; electrolysis; photovoltaic (PV) Purpose To evaluate hydrogen production from photovoltaic (PV)-powered electrolysis. Performer Principal Investigator: D.L. Block Organization: Florida Solar Energy Center Address: 1679 Clearlake Road Cocoa, FL 32922 Telephone: 321-638-1001 Email: block@fsec.ucf.edu Sponsor(s) Name: Michael Ashworth Organization: Florida Energy Office Name: Neil Rossmeissl Organization: DOE/Advanced Utilities Concepts Division Name: H.T. Everett Organization: NASA/Kennedy Space Center Project Description Type of Project: Analysis Category: Hydrogen Fuel Pathways

51

Latest developments in the large-scale production of adeno-associated virus vectors in insect cells toward the treatment of neuromuscular diseases  

Science Journals Connector (OSTI)

Adeno-associated viral (AAV) vectors are gene vectors of choice for the development of gene therapy treatments for many rare diseases affecting various tissues including retina, central nervous system, liver, and muscle. The AAV based gene therapy approach became conceivable only after the development of easily scalable production systems including the Sf9 cell/baculovirus expression system. Since the establishment of the production of AAV in the Sf9/baculovirus system by the group of Rob Kotin, this new production system has largely been developed for optimizing the large scale production of different serotypes of AAV for preclinical and clinical purposes. Today this manufacturing system allows for the production of purified vector genome (vg) quantities of up to 2 × 1015 for AAV1 using a 50 L reactor and the scale up to larger reactor volumes is paralleled by a corresponding increase in the vector yield. This review presents the principles and achievements of the Sf9/baculovirus system for the production of AAV in comparison to other expression systems based on mammalian cells. In addition, new developments and improvements, which have not yet been implemented at a large scale, and perspectives for further optimization of this production system will be discussed. All of these achievements as well as further process intensifications are urgently needed for the production of clinical doses for the treatment of neuromuscular diseases for which estimated doses of up to 1014 vg/kg body mass are required.

Lionel Galibert; Otto-Wilhelm Merten

2011-01-01T23:59:59.000Z

52

Advancing Cellulosic Ethanol for Large Scale Sustainable Transportation  

E-Print Network (OSTI)

Advancing Cellulosic Ethanol for Large Scale SustainableHydrogen Batteries Nuclear By Lee Lynd, Dartmouth Ethanol •Ethanol, ethyl alcohol, fermentation ethanol, or just “

Wyman, C

2007-01-01T23:59:59.000Z

53

Effect of Water Transport on the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer  

E-Print Network (OSTI)

be developed that provides efficient production of clean hydrogen. The methods existing today for large-scale produc- tion of hydrogen typically involve hydrocarbon reforming of natural gas or coal gasification% , the overall efficiency is 40%.7 Two issues remain, however, that make the future of this technology un

Weidner, John W.

54

Maximizing Light Utilization Efficiency and Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in Microalgal Cultures, DOE Hydrogen Program FY 2010 Annual Progress Report Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures, DOE Hydrogen...

55

Ultraviolet stimulation of hydrogen peroxide production using...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultraviolet stimulation of hydrogen peroxide production using aminoindazole, diaminopyridine, and phenylenediamine solid polymer Ultraviolet stimulation of hydrogen peroxide...

56

Waste/By-Product Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

WASTE/BY-PRODUCT HYDROGEN WASTE/BY-PRODUCT HYDROGEN Ruth Cox DOE/DOD Workshop January 13, 2011 January 13, 2011 Fuel Cell and Hydrogen Energy Association The Fuel Cell and Hydrogen Energy Association FCHEA ƒ Trade Association for the industry ƒ Member driven - Market focused ƒ Developers, suppliers, customers, nonprofits, government Ad ƒ Advocacy ƒ Safety and standardization ƒ Education ƒ Strategic Alliances Fuel Cell and Hydrogen Energy Association O M b Our Members 5 W t /B d t H d Waste/By-product Hydrogen Overview Overview ƒ Growing populations, rising standards of living, and increased urbanization leads to a escalating volume of waste leads to a escalating volume of waste. ƒ Huge volumes of waste are collected in dumps, creating a major environmental issue. ƒ ƒ Wastewater treatment plants generate noxious gasses that are released in Wastewater treatment plants generate noxious gasses that are released in

57

Evaluation of landfill gas production and emissions in a MSW large-scale Experimental Cell in Brazil  

Science Journals Connector (OSTI)

Landfill gas (LFG) emissions from municipal solid waste (MSW) landfills are an important environmental concern in Brazil due to the existence of several uncontrolled disposal sites. A program of laboratory and field tests was conducted to investigate gas generation in and emission from an Experimental Cell with a 36,659-ton capacity in Recife/PE – Brazil. This investigation involved waste characterisation, gas production and emission monitoring, and geotechnical and biological evaluations and was performed using three types of final cover layers. The results obtained in this study showed that waste decomposes 4–5 times faster in a tropical wet climate than predicted by traditional first-order models using default parameters. This fact must be included when considering the techniques and economics of projects developed in tropical climate countries. The design of the final cover layer and its geotechnical and biological behaviour proved to have an important role in minimising gas emissions to the atmosphere. Capillary and methanotrophic final cover layers presented lower CH4 flux rates than the conventional layer.

Felipe Jucá Maciel; José Fernando Thomé Jucá

2011-01-01T23:59:59.000Z

58

Hydrogen Production & Delivery  

Energy Savers (EERE)

* Address key materials needs for P&D: Membranes, Catalysts, PEC Devices, Reactors, and Tanks Hydrogen from Coal * Complete laboratory-scale development of separation and...

59

Hydrogen Production & Delivery  

Energy.gov (U.S. Department of Energy (DOE))

"2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation H2 and Fuel Cells Plenary "

60

NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production and Delivery Hydrogen Production and Delivery Most of the hydrogen in the United States is produced by steam reforming of natural gas. For the near term, this production method will continue to dominate. Researchers at NREL are developing advanced processes to produce hydrogen economically from sustainable resources. NREL's hydrogen production and delivery R&D efforts, which are led by Huyen Dinh, focus on the following topics: Biological Water Splitting Fermentation Conversion of Biomass and Wastes Photoelectrochemical Water Splitting Solar Thermal Water Splitting Renewable Electrolysis Hydrogen Dispenser Hose Reliability Hydrogen Production and Delivery Pathway Analysis. Biological Water Splitting Certain photosynthetic microbes use light energy to produce hydrogen from

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NETL: News Release - Projects Selected to Address Challenges of Large-Scale  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 2008 3, 2008 Projects Selected to Address Challenges of Large-Scale Hydrogen Production from Coal and Coal-Biomass WASHINGTON, D. C. - The U.S. Department of Energy (DOE) announced today the selection of six projects that will address challenges facing the large-scale production of hydrogen from coal and coal-biomass mixtures. The ability of hydrogen to fuel transportation, power generation and industrial processes with only water as a by-product makes it an efficient and clean fuel to meet growing U.S. energy demands while assuring energy security. The National Academies affirmed in a 2004 report that hydrogen could fundamentally transform U.S. energy systems, but coal must be a significant component for making very large amounts of the gas. To address the challenges of large-scale production of hydrogen from coal, the Hydrogen Fuel Initiative was launched in 2003, announcing a $1.2 billion commitment to a hydrogen economy that minimizes America's dependence on foreign oil and reduces greenhouse gas emissions. The Presidential initiative also provides funding for hydrogen research and development (R&D).

62

NREL: Hydrogen and Fuel Cells Research - Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Cost adjusted to 2007 dollars, accurate to two significant figures. Printable Version Hydrogen & Fuel Cells Research Home Projects Fuel Cells Hydrogen Production & Delivery...

63

Green methods for hydrogen production  

Science Journals Connector (OSTI)

This paper discusses environmentally benign and sustainable, as green, methods for hydrogen production and categorizes them based on the driving sources and applications. Some potential sources are electrical, thermal, biochemical, photonic, electro-thermal, photo-thermal, photo-electric, photo-biochemical, and thermal-biochemical. Such forms of energy can be derived from renewable sources, nuclear energy and from energy recovery processes for hydrogen production purposes. These processes are analyzed and assessed for comparison purposes. Various case studies are presented to highlight the importance of green hydrogen production methods and systems for practical applications.

Ibrahim Dincer

2012-01-01T23:59:59.000Z

64

DOE Hydrogen and Fuel Cells Program: Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Systems Integration U.S. Department of Energy Search help Home > Hydrogen Production Printable Version Hydrogen Production Hydrogen can be produced from diverse domestic feedstocks using a variety of process technologies. Hydrogen-containing compounds such as fossil fuels, biomass or even water can be a source of hydrogen. Thermochemical processes can be used to produce hydrogen from biomass and from fossil fuels such as coal, natural gas and petroleum. Power generated from sunlight, wind and nuclear sources can be used to produce hydrogen electrolytically. Sunlight alone can also drive photolytic production of

65

Hydrogen production costs -- A survey  

SciTech Connect

Hydrogen, produced using renewable resources, is an environmentally benign energy carrier that will play a vital role in sustainable energy systems. The US Department of Energy (DOE) supports the development of cost-effective technologies for hydrogen production, storage, and utilization to facilitate the introduction of hydrogen in the energy infrastructure. International interest in hydrogen as an energy carrier is high. Research, development, and demonstration (RD and D) of hydrogen energy systems are in progress in many countries. Annex 11 of the International Energy Agency (IEA) facilitates member countries to collaborate on hydrogen RD and D projects. The United States is a member of Annex 11, and the US representative is the Program Manager of the DOE Hydrogen R and D Program. The Executive Committee of the Hydrogen Implementing Agreement in its June 1997 meeting decided to review the production costs of hydrogen via the currently commercially available processes. This report compiles that data. The methods of production are steam reforming, partial oxidation, gasification, pyrolysis, electrolysis, photochemical, photobiological, and photoelectrochemical reactions.

Basye, L.; Swaminathan, S.

1997-12-04T23:59:59.000Z

66

Distributed Hydrogen Production from Natural Gas: Independent...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Distributed Hydrogen Production from Natural Gas: Independent Review Panel Report Distributed Hydrogen Production from Natural Gas: Independent Review Panel Report Independent...

67

Hydrogen Production - Current Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Current Technology Hydrogen Production - Current Technology The development of clean, sustainable, and cost-competitive hydrogen production processes is key to a viable future...

68

Sustainable Hydrogen Production  

Science Journals Connector (OSTI)

...Today, hydrogen is mainly produced from natural gas via steam methane reforming, and although this process can sustain an initial...operating, or maintenance costs are included in the calculation. HHV, higher heating value. System efficiencies of commercial electrolyzers...

John A. Turner

2004-08-13T23:59:59.000Z

69

Hydrogen Production from Solar Energy  

Science Journals Connector (OSTI)

Solar energy is potentially the most abundant renewable energy resource available to us and hydrogen production from solar energy is considered to be ... ultimate solution for sustainable energy. The various methods

Engin Ture

2007-01-01T23:59:59.000Z

70

Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions  

SciTech Connect

This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

Dooley, James J.; Dahowski, Robert T.

2008-11-18T23:59:59.000Z

71

10 - Thermochemical production of hydrogen  

Science Journals Connector (OSTI)

Abstract: The growing interest in hydrogen as a chemical reactant and energy carrier requires evaluation of all possible conversion processes for its production. This chapter analyses the different processes currently used for hydrogen production, together with the most promising approaches currently under development. Among the latter are thermochemical water-splitting cycles powered by renewable (sustainable) energy sources. A simplified description of the basic thermodynamic aspects of this process is presented, and some examples are presented.

A. Giaconia

2014-01-01T23:59:59.000Z

72

PHOTOCATALYTIC AND PHOTOELECTROCHEMICAL HYDROGEN PRODUCTION ON STRONTIUM TITANATE SINGLE CRYSTALS  

E-Print Network (OSTI)

HYDROGEN PRODUCTION ON STRONTIUM TITANATE SINGLE CRYSTALS F.HYDROGEN PRODUCTION ON STRONTIUM TITANATE SINGLE CRYSTALS

Wagner, F.T.

2012-01-01T23:59:59.000Z

73

8 - Photocatalytic production of hydrogen  

Science Journals Connector (OSTI)

Abstract: The photocatalytic production of hydrogen represents a fascinating way to convert and store solar energy as chemical energy, in the form of renewable hydrogen, the ideal fuel for the future. Hydrogen can be produced either by direct water splitting or by photo-reforming of organics in either liquid or gas phase. Both methods are reviewed in this chapter. Starting with a brief historical background, the most recent achievements in the field of photocatalytic hydrogen production are discussed, concerning both the development of innovative materials able to exploit a larger portion of the solar spectrum compared to traditional photocatalytic materials, and the different set-ups and devices which have been developed and tested.

G.L. Chiarello; E. Selli

2014-01-01T23:59:59.000Z

74

Low-Cost Large-Scale PEM Electrolysis for Renewable Energy Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Dr. Katherine Ayers (Primary Contact), Chris Capuano Proton Energy Systems d/b/a Proton OnSite 10 Technology Drive Wallingford, CT 06492 Phone: (203) 678-2190 Email: kayers@protononsite.com DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Contract Number: DE-SC0001338 Subcontractors: * 3M, Minneapolis, MN * University of Wyoming, Laramie, WY Project Start Date: June 19, 2010 (Phase 1) Project End Date: August 18, 2013 (with Phase 2 continuation) Fiscal Year (FY) 2012 Project Objectives Demonstrate optimal membrane electrode assembly * (MEA) efficiency through: Refinement of catalyst compositions based on -

75

Photoelectrochemical Hydrogen Production  

SciTech Connect

The objectives of this project, covering two phases and an additional extension phase, were the development of thin film-based hybrid photovoltaic (PV)/photoelectrochemical (PEC) devices for solar-powered water splitting. The hybrid device, comprising a low-cost photoactive material integrated with amorphous silicon (a-Si:H or a-Si in short)-based solar cells as a driver, should be able to produce hydrogen with a 5% solar-to-hydrogen conversion efficiency (STH) and be durable for at least 500 hours. Three thin film material classes were studied and developed under this program: silicon-based compounds, copper chalcopyrite-based compounds, and metal oxides. With the silicon-based compounds, more specifically the amorphous silicon carbide (a-SiC), we achieved a STH efficiency of 3.7% when the photoelectrode was coupled to an a-Si tandem solar cell, and a STH efficiency of 6.1% when using a crystalline Si PV driver. The hybrid PV/a-SiC device tested under a current bias of -3~4 mA/cm{sup 2}, exhibited a durability of up to ~800 hours in 0.25 M H{sub 2}SO{sub 4} electrolyte. Other than the PV driver, the most critical element affecting the photocurrent (and hence the STH efficiency) of the hybrid PV/a-SiC device was the surface energetics at the a-SiC/electrolyte interface. Without surface modification, the photocurrent of the hybrid PEC device was ~1 mA/cm{sup 2} or lower due to a surface barrier that limits the extraction of photogenerated carriers. We conducted an extensive search for suitable surface modification techniques/materials, of which the deposition of low work function metal nanoparticles was the most successful. Metal nanoparticles of ruthenium (Ru), tungsten (W) or titanium (Ti) led to an anodic shift in the onset potential. We have also been able to develop hybrid devices of various configurations in a monolithic fashion and optimized the current matching via altering the energy bandgap and thickness of each constituent cell. As a result, the short-circuit photocurrent density of the hybrid device (measured in a 2-electrode configuration) increased significantly without assistance of any external bias, i.e. from ?1 mA/cm{sup 2} to ~5 mA/cm{sup 2}. With the copper chalcopyrite compounds, we have achieved a STH efficiency of 3.7% in a coplanar configuration with 3 a-Si solar cells and one CuGaSe{sub 2} photocathode. This material class exhibited good durability at a photocurrent density level of -4 mA/cm{sup 2} (“5% STH” equivalent) at a fixed potential (-0.45 VRHE). A poor band-edge alignment with the hydrogen evolution reaction (HER) potential was identified as the main limitation for high STH efficiency. Three new pathways have been identified to solve this issue. First, PV driver with bandgap lower than that of amorphous silicon were investigated. Crystalline silicon was identified as possible bottom cell. Mechanical stacks made with one Si solar cell and one CuGaSe{sub 2} photocathode were built. A 400 mV anodic shift was observed with the Si cell, leading to photocurrent density of -5 mA/cm{sup 2} at 0VRHE (compared to 0 mA/cm{sup 2} at the same potential without PV driver). We also investigated the use of p-n junctions to shift CuGaSe{sub 2} flatband potential anodically. Reactively sputtered zinc oxy-sulfide thin films was evaluated as n-type buffer and deposited on CuGaSe{sub 2}. Ruthenium nanoparticles were then added as HER catalyst. A 250 mV anodic shift was observed with the p-n junction, leading to photocurrent density at 0VRHE of -1.5 mA/cm{sup 2}. Combining this device with a Si solar cell in a mechanical stack configuration shifted the onset potential further (+400 mV anodically), leading to photocurrent density of -7 mA/cm{sup 2} at 0VRHE. Finally, we developed wide bandgap copper chalcopyrite thin film materials. We demonstrated that Se can be substituted with S using a simple annealing step. Photocurrent densities in the 5-6 mA/cm{sub 2} range were obtained with red 2.0eV CuInGaS{sub 2} photocathodes. With the metal oxide compounds, we have demonstrated that a WO{sub 3}-based hybrid p

Hu, Jian

2013-12-23T23:59:59.000Z

76

DOE Hydrogen Analysis Repository: Production of Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Hydrogen from Coal Production of Hydrogen from Coal Project Summary Full Title: Production of High Purity Hydrogen from Domestic Coal: Assessing the Techno-Economic Impact of Emerging Technologies Project ID: 265 Principal Investigator: Kristin Gerdes Brief Description: This report assesses the improvements in cost and performance of hydrogen production from domestic coal when employing emerging technologies funded by DOE. Keywords: Hydrogen production; Coal Purpose This analysis specifically evaluates replacing conventional acid gas removal (AGR) and hydrogen purification with warm gas cleanup (WGCU) and a high-temperature hydrogen membrane (HTHM) that meets DOE's 2010 and 2015 performance and cost research and development (R&D) targets. Performer Principal Investigator: Kristin Gerdes

77

Hydrogen Production Cost Estimate Using Biomass Gasification  

E-Print Network (OSTI)

Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory% postconsumer waste #12;i Independent Review Panel Summary Report September 28, 2011 From: Independent Review Panel, Hydrogen Production Cost Estimate Using Biomass Gasification To: Mr. Mark Ruth, NREL, DOE

78

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network (OSTI)

powered by solar thermal energy for hydrogen production. TheHydrogen Production by Concentrated Solar Energy,” Energy,for hydrogen production driven by solar thermal energy is a

Luc, Wesley Wai

79

COMBINATORIAL DISCOVERY OF PHOTOCATALYSTS FOR HYDROGEN PRODUCTION  

E-Print Network (OSTI)

the development of economical and environmentally benign hydrogen production methods and reliable storage systemsCOMBINATORIAL DISCOVERY OF PHOTOCATALYSTS FOR HYDROGEN PRODUCTION Theodore Mill, Albert Hirschon materials rapidly with appropriate band- gaps and screen them for efficient hydrogen production. The goal

80

DOE Hydrogen and Fuel Cells Program Record 12024: Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

12024 Date: September 19, 2012 Title: Hydrogen Production Cost Using Low-Cost Natural Gas Originator: Sara Dillich, Todd Ramsden & Marc Melaina Approved by: Sunita Satyapal Date:...

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Webinar: Hydrogen Production by Polymer Electrolyte Membrane...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotligh...

82

Low Cost Hydrogen Production Platform  

SciTech Connect

A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high temperature component was conducted to identify any potential design deficiency related to the concept. The analysis showed that no fundamental design flaw existed with the concept, but additional simulations and prototypes would be required to verify the design prior to fabricating a production unit. These identified risks were addressed in detail during Phase II of the development program. Along with the models of the high temperature components, a detailed process and 3D design model of the remainder of system, including PSA, compression, controls, water treatment and instrumentation was developed and evaluated. Also, in Phase II of the program, laboratory/fullscale testing of the high temperature components was completed and stable operation/control of the system was verified. The overall design specifications and test results were then used to develop accurate hydrogen costs for the optimized system. Praxair continued development and testing of the system beyond the Phase II funding provided by the DOE through the end of 2008. This additional testing is not documented in this report, but did provide significant additional data for development of a prototype system as detailed in the Phase III proposal. The estimated hydrogen product costs were developed (2007 basis) for the 4.8 kg/h system at production rates of 1, 5, 10, 100 and 1,000 units built per year. With the low cost SMR approach, the product hydrogen costs for the 4.8 kg/h units at 50 units produced per year were approximately $3.02 per kg. With increasing the volume production to 1,000 units per year, the hydrogen costs are reduced by about 12% to $2.67 per kg. The cost reduction of only 12% is a result of significant design and fabrication efficiencies being realized in all levels of production runs through utilizing the DFMA principles. A simplified and easily manufactured design does not require large production volumes to show significant cost benefits. These costs represent a significant improvement and a new benchmark in the cost to produce small volume on-site hydrogen using existing process technologies. The cost mo

Timothy M. Aaron, Jerome T. Jankowiak

2009-10-16T23:59:59.000Z

83

Hydrogen Production Technical Team Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies -BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Hydrogen Production Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to enable

84

Hydrogen and Sulfur Production from Hydrogen Sulfide Wastes  

E-Print Network (OSTI)

HYDROGEN AND SULFUR PRODUCTION FROM HYDROGEN SULFIDE WASTES? John B.L. Harkness and Richard D. Doctor, Argonne National Laboratory, Argonne. IL ABSTRACT A new hydrogen sulfide waste-treatment process that uses microwave plasma... to be economically competitive. In addition, the experiments show-that. typical refinery acid-gas streams are compatible with the plasma process and that all by-products can be treated with existing technology. BACKGROUND In 1987, Argonne staff found the first...

Harkness, J.; Doctor, R. D.

85

Air Products Hydrogen Energy Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kiczek,Edward F. [KICZEKEF@airproducts.com] Kiczek,Edward F. [KICZEKEF@airproducts.com] Sent: Monday, April 18, 2011 7:40 PM To: Gopstein, Avi (S4) Subject: Hydrogen Infrastructure Latest Advancements Attachments: Air Products Written Comments to 2011 2012 AB118 Investment Plan.pdf Follow Up Flag: Follow up Flag Status: Flagged Categories: QTR Transparency Avi, You may recall we met in DC when the McKinsey team from Germany came to discuss the EU study on hydrogen infrastructure. At that time I mention a significant advance in infrastructure that would be announced soon. Attached is our testimony to the California Energy Commission on deploying that technology. We were awarded the project to build 9 stations in southern California with the backing of

86

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

NLE Websites -- All DOE Office Websites (Extended Search)

28, 2013 28, 2013 Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization DOE-Supported Project in Texas Demonstrates Viability of CCUS Technology Washington, D.C. - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). MORE INFO Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

87

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network (OSTI)

station” is one method of hydrogen production at small andstation” is one method of hydrogen production at small and

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

88

DOE Hydrogen Analysis Repository: Photobiological Hydrogen Production from  

NLE Websites -- All DOE Office Websites (Extended Search)

Photobiological Hydrogen Production from Green Algae Cost Analysis Photobiological Hydrogen Production from Green Algae Cost Analysis Project Summary Full Title: Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report Project ID: 110 Principal Investigator: Wade Amos Purpose This report updates the 1999 economic analysis of NREL's photobiological hydrogen production from Chlamydomonas reinhardtii. The previous study had looked mainly at incident light intensities, batch cycles and light adsorption without directly attempting to model the saturation effects seen in algal cultures. This study takes a more detailed look at the effects that cell density, light adsorption and light saturation have on algal hydrogen production. Performance estimates based on actual solar data are

89

High Efficiency CdTe/CdS Thin Film solar Cells by a Process Suitable for Large Scale Production. N. Romeo, A. Bosio, A. Romeo, M. Bianucci, L. Bonci, C. Lenti  

E-Print Network (OSTI)

High Efficiency CdTe/CdS Thin Film solar Cells by a Process Suitable for Large Scale Production. N-mail:Nicola.Romeo@fis.unipr.it ABSTRACT: It has been demonstrated that CdTe/CdS thin film solar cells can exhibit an efficiency around 16 Film. 1 INTRODUCTION CdTe/CdS thin film solar cells have a good possibility to be produced on large

Romeo, Alessandro

90

System for thermochemical hydrogen production  

DOE Patents (OSTI)

Method and apparatus are described for joule boosting a SO/sub 3/ decomposer using electrical instead of thermal energy to heat the reactants of the high temperature SO/sub 3/ decomposition step of a thermochemical hydrogen production process driven by a tandem mirror reactor. Joule boosting the decomposer to a sufficiently high temperature from a lower temperature heat source eliminates the need for expensive catalysts and reduces the temperature and consequent materials requirements for the reactor blanket. A particular decomposer design utilizes electrically heated silicon carbide rods, at a temperature of 1250/sup 0/K, to decompose a cross flow of SO/sub 3/ gas.

Werner, R.W.; Galloway, T.R.; Krikorian, O.H.

1981-05-22T23:59:59.000Z

91

Optimization of Metabolic Capacity and Flux through Environmental Cues To Maximize Hydrogen Production by the Cyanobacterium “Arthrospira (Spirulina) maxima”  

Science Journals Connector (OSTI)

...that grow to high cell densities at high...from 2.8 to 9.4 solar-to-biomass energy...Zarrouks medium under solar irradiation (27...candidate to serve as a cell factory for large-scale hydrogen production because (i) Arthrospira...low-molecular-weight organic acids autofermentatively...

Gennady Ananyev; Damian Carrieri; G. Charles Dismukes

2008-08-01T23:59:59.000Z

92

IONICALLY CONDUCTING MEMBRANES FOR HYDROGEN PRODUCTION AND  

E-Print Network (OSTI)

operating experience. #12;ELTRON RESEARCH INC. Syngas Production Rate ­ 60 mL/min cm2 @ 900°C Equivalent O2IONICALLY CONDUCTING MEMBRANES FOR HYDROGEN PRODUCTION AND SEPARATION Presented by Tony Sammells for Hydrogen Production ­ Compositions ­ Feedstocks ­ Performance ­ Key Technical Hurdles · Membranes

93

Autofermentative Biological Hydrogen Production by Cyanobacteria  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Charles Dismukes, Rutgers University, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

94

Hydrogen (H2) Production by Oxygenic Phototrophs  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Eric Hegg, Michigan State University, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

95

Hydrogenases and Barriers for Biotechnological Hydrogen Production...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. bioh2workshoppeters.pdf More Documents &...

96

Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This report documents the engineering and cost characteristics of four PEC hydrogen production systems selected by DOE to represent canonical embodiments of future systems.

97

Electrolytic Hydrogen Production Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OnSite High Temperature Electrolysis for Efficient Hydrogen Production from Nuclear Energy, Jim O'Brien, Idaho National Laboratory Reversible Solid Oxide Electrolysis, Randy...

98

An Overview of Hydrogen Production Technologies  

SciTech Connect

Currently, hydrogen is primarily used in the chemical industry, but in the near future it will become a significant fuel. There are many processes for hydrogen production. This paper reviews reforming (steam, partial oxidation, autothermal, plasma, and aqueous phase), pyrolysis, hydrogen from biomass, electrolysis and other methods for generating hydrogen from water, and hydrogen storage. In addition, desulfurization, water-gas-shift, and hydrogen purification methods are discussed. Basics of these processes are presented with a large number of references for the interested reader to learn more.

Holladay, Jamie D.; Hu, Jianli; King, David L.; Wang, Yong

2009-01-30T23:59:59.000Z

99

Production of Hydrogen from Peanut Shells  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Hydrogen from Peanut Shells Production of Hydrogen from Peanut Shells The goal of this project is the production of renewable hydrogen from agricultural residues, in the near-term time frame (~three years) and at a comparable cost to existing methane reforming technologies. The hydrogen produced will be blended with CNG and used to power a bus in Albany, GA. Our strategy is to produce hydrogen from biomass pyrolysis oils in conjunction with high value co-products. Activated carbon can be made from agricultural residues in a two- stage process: (1) slow pyrolysis of biomass to produce charcoal, and (2) high temperature processing to form activated carbon. The vapor by-products from the first step can be steam reformed into hydrogen. NREL has developed the technology for bio-

100

Exergetic assessment of solar hydrogen production methods  

Science Journals Connector (OSTI)

Hydrogen is a sustainable fuel option and one of the potential solutions for the current energy and environmental problems. Its eco-friendly production is really crucial for better environment and sustainable development. In this paper, various types of hydrogen production methods namely solar thermal (high temperature and low temperature), photovoltaic, photoelecrtolysis, biophotolysis etc are discussed. A brief study of various hydrogen production processes have been carried out. Various solar-based hydrogen production processes are assessed and compared for their merits and demerits in terms of exergy efficiency and sustainability factor. For a case study the exergy efficiency of hydrogen production process and the hydrogen system is discussed in terms of sustainability.

Anand S. Joshi; Ibrahim Dincer; Bale V. Reddy

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hydrogen production from microbial strains  

DOE Patents (OSTI)

The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

Harwood, Caroline S; Rey, Federico E

2012-09-18T23:59:59.000Z

102

Fuel Cell Technologies Office: Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production Photo of hydrogen researcher. Hydrogen can be produced using diverse, domestic resources including fossil fuels, such as natural gas and coal (with carbon sequestration); nuclear; biomass; and other renewable energy technologies, such as wind, solar, geothermal, and hydro-electric power. The overall challenge to hydrogen production is cost reduction. For cost-competitive transportation, a key driver for energy independence, hydrogen must be comparable to conventional fuels and technologies on a per-mile basis in order to succeed in the commercial marketplace. Learn more about DOE's hydrogen cost goal and the analysis used in projecting the future cost of hydrogen. The U.S. Department of Energy supports the research and development of a wide range of technologies to produce hydrogen economically and in environmentally friendly ways.

103

DOE Hydrogen Analysis Repository: Resource Analysis for Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Analysis for Hydrogen Production Resource Analysis for Hydrogen Production Project Summary Full Title: Resource Analysis for Hydrogen Production Project ID: 282 Principal Investigator: Marc Melaina Brief Description: Analysis involves estimating energy resources required to support part of the demand generated by 100 million fuel cell electric vehicles in 2040. Performer Principal Investigator: Marc Melaina Organization: National Renewable Energy Laboratory (NREL) Address: 15013 Denver West Parkway Golden, CO 80401 Telephone: 303-275-3836 Email: marc.melaina@nrel.gov Website: http://www.nrel.gov/ Sponsor(s) Name: Fred Joseck Organization: DOE/EERE/FCTO Telephone: 202-586-7932 Email: Fred.Joseck@ee.doe.gov Website: http://www.hydrogen.energy.gov/ Period of Performance Start: October 2009 Project Description

104

WASTE/BY-PRODUCT HYDROGEN DOE/DOD Workshop  

E-Print Network (OSTI)

; 6 Waste/Byproduct HydrogenWaste/By product Hydrogen Waste H2 sources include: Waste biomass: biogas Waste/Byproduct Hydrogen Waste/By product Hydrogen Fuel FlexibilityFuel Flexibility Biogas: generated

105

Dynamic simulation of nuclear hydrogen production systems  

E-Print Network (OSTI)

Nuclear hydrogen production processes have been proposed as a solution to rising CO 2 emissions and low fuel yields in the production of liquid transportation fuels. In these processes, the heat of a nuclear reactor is ...

Ramírez Muñoz, Patricio D. (Patricio Dario)

2011-01-01T23:59:59.000Z

106

Alternative Fuels Data Center: Hydrogen Production and Retail Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Production Hydrogen Production and Retail Requirements to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Production and Retail Requirements on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Production and Retail Requirements on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Production and Retail Requirements on Google Bookmark Alternative Fuels Data Center: Hydrogen Production and Retail Requirements on Delicious Rank Alternative Fuels Data Center: Hydrogen Production and Retail Requirements on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Production and Retail Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Production and Retail Requirements

107

DOE Hydrogen Analysis Repository: Centralized Hydrogen Production from Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Wind Project Summary Full Title: Well-to-Wheels Case Study: Centralized Hydrogen Production from Wind Project ID: 214 Principal Investigator: Fred Joseck Keywords: Wind; hydrogen production; well-to-wheels (WTW); fuel cell vehicles (FCV); electrolysis Purpose Provide well-to-wheels energy use and emissions data on a potential pathway for producing hydrogen from wind via centralized water electrolysis. This data was used in developing the U.S. Department of Energy Hydrogen Posture Plan. Performer Principal Investigator: Fred Joseck Organization: DOE/EERE/HFCIT Address: 1000 Independence Avenue, SW Washington, DC 20585 Telephone: 202-586-7932 Email: Fred.Joseck@ee.doe.gov Additional Performers: Margaret Mann, National Renewable Energy Laboratory; Michael Wang, Argonne National Laboratory

108

DOE Hydrogen Analysis Repository: Distributed Hydrogen Production from Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

from Wind from Wind Project Summary Full Title: Well-to-Wheels Case Study: Distributed Hydrogen Production from Wind Project ID: 216 Principal Investigator: Fred Joseck Keywords: Wind; hydrogen production; well-to-wheels (WTW); fuel cell vehicles (FCV); electrolysis Purpose Provide well-to-wheels energy use and emissions data on a potential pathway for producing hydrogen from wind via distributed water electrolysis. This data was used in developing the U.S. Department of Energy Hydrogen Posture Plan. Performer Principal Investigator: Fred Joseck Organization: DOE/EERE/HFCIT Address: 1000 Independence Avenue, SW Washington, DC 20585 Telephone: 202-586-7932 Email: Fred.Joseck@ee.doe.gov Additional Performers: Margaret Mann, National Renewable Energy Laboratory; Michael Wang, Argonne National Laboratory

109

Waste/By-Product Hydrogen  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Ruth Cox, Fuel Cell and Hydrogen Energy Association, at the DOE-DOD Waste-to-Energy using Fuel Cells Workshop held Jan. 13, 2011

110

Enzymatic Hydrogen Production:? Conversion of Renewable Resources for Energy Production  

Science Journals Connector (OSTI)

Enzymatic Hydrogen Production:? Conversion of Renewable Resources for Energy Production ... Steam-exploded aspen wood containing 60% cellulose was a gift from Michael Himmel of the National Renewable Energy Laboratory, Golden, Colorado. ... The previous data demonstrate that the two primary components of renewable sources of energy such as biomassglucose and xyloseare capable of oxidiation by GDH, resulting in hydrogen production if hydrogenase is present. ...

Jonathan Woodward; Kimberley A. Cordray; Robert J. Edmonston; Maria Blanco-Rivera; Susan M. Mattingly; Barbara R. Evans

1999-11-20T23:59:59.000Z

111

Conundrum of the Large Scale Streaming  

E-Print Network (OSTI)

The etiology of the large scale peculiar velocity (large scale streaming motion) of clusters would increasingly seem more tenuous, within the context of the gravitational instability hypothesis. Are there any alternative testable models possibly accounting for such large scale streaming of clusters?

T. M. Malm

1999-09-12T23:59:59.000Z

112

Hydrogen Production and Delivery Research  

SciTech Connect

In response to DOE's Solicitation for Grant Applications DE-PS36-03GO93007, 'Hydrogen Production and Delivery Research', SRI International (SRI) proposed to conduct work under Technical Topic Area 5, Advanced Electrolysis Systems; Sub-Topic 5B, High-Temperature Steam Electrolysis. We proposed to develop a prototype of a modular industrial system for low-cost generation of H{sub 2} (<$2/kg) by steam electrolysis with anodic depolarization by CO. Water will be decomposed electrochemically into H{sub 2} and O{sub 2} on the cathode side of a high-temperature electrolyzer. Oxygen ions will migrate through an oxygen-ion-conductive solid oxide electrolyte. Gas mixtures on the cathode side (H{sub 2} + H{sub 2}O) and on the anode side (CO + CO{sub 2}) will be reliably separated by the solid electrolyte. Depolarization of the anodic process will decrease the electrolysis voltage, and thus the electricity required for H{sub 2} generation and the cost of produced H{sub 2}. The process is expected to be at least 10 times more energy-efficient than low-temperature electrolysis and will generate H{sub 2} at a cost of approximately $1-$1.5/kg. The operating economics of the system can be made even more attractive by deploying it at locations where waste heat is available; using waste heat would reduce the electricity required for heating the system. Two critical targets must be achieved: an H{sub 2} production cost below $2/kg, and scalable design of the pilot H{sub 2} generation system. The project deliverables would be (1) a pilot electrolysis system for H{sub 2} generation, (2) an economic analysis, (3) a market analysis, and (4) recommendations and technical documentation for field deployment. DOE was able to provide only 200K out of 1.8M (or about 10% of awarded budget), so project was stopped abruptly.

Iouri Balachov, PhD

2007-10-15T23:59:59.000Z

113

Overview of High-Temperature Electrolysis for Hydrogen Production  

SciTech Connect

Over the last five years there has been a growing interest in the use of hydrogen as an energy carrier, particularly to augment transportation fuels and thus reduce our dependence on imported petroleum. Hydrogen is now produced primarily via steam reforming of methane. However, in the long term, methane reforming is not a viable process for the large-scale hydrogen production since such fossil fuel conversion processes consume non-renewable resources and emit greenhouse gases. Nuclear energy can be used to produce hydrogen without consuming fossil fuels and without emitting greenhouse gases through the splitting of water into hydrogen and oxygen. The Nuclear Hydrogen Initiative of the DOE Office of Nuclear Energy is developing three general categories of high temperature processes for hydrogen production: thermochemical, electrolytic and hybrid thermo-electrolytic. This paper introduces the work being done in the development of high temperature electrolysis of steam. High Temperature Electrolysis (HTE) is built on the technology of solid oxide fuel cells (SOFCs), which were invented over a century ago, but which have been most vigorously developed during the last twenty years. SOFCs consume hydrogen and oxygen and produce steam and electricity. Solid Oxide Electrolytic Cells (SOECs) consume electricity and steam and produce hydrogen and oxygen. The purpose of the HTE research is to solve those problems unique to the electrolytic mode of operation, while building further on continuing fuel cell development. ORGANIZATION Experiments have been conducted for the last three years at the Idaho National Laboratory and at Ceramatec, Inc. on the operation of button cells and of progressively larger stacks of planar cells. In addition, the INL has been performing analyses of the cell-scale fluid dynamics and plant-scale flowsheets in order to determine optimum operating conditions and plant configurations. Argonne National Laboratory has been performing experiments for the development of new electrode materials, as well as modeling of the fluid dynamics and flowsheets for comparison with the work being done at the INL. ANL has also been performing diagnostic measures on components form long-duration tests at the INL and Ceramatec to determine the causes for the slow degradation in cell performance. Oak Ridge National Laboratory has been developing high temperature porous membranes for the separation of hydrogen from the residual steam, thus avoiding the need to condense and reheat the steam. The University of Nevada at Las Vegas has been collaborating with ANL on the development of electrode and electrolyte materials and will soon begin to investigate the causes of cell degradation. HTE research also includes NERI projects at the Virginia Polytechnic Institute on the development of toughened SOEC composite seals and at the Georgia Institute of Technology on the microstructural design of SOEC materials. EXPERIMENTAL RESULTS The most recent large-scale test of HTE was performed from June 28 through Sept 22, 2006 at the Ceramatec plant in Salt Lake City. The test apparatus consists of two stacks of 60 cells each in a configuration that will be used in the Integrated Laboratory Scale (ILS) experiment during FY-07. The ILS will contain three modules of four stacks each. The “Half-Module” initially produced 1.2 normal m3of H2/hour and 0.65 Nm3/hr at the end of the 2040-hour continuous test.

Herring, J. S.; O'Brien, J. E.; Stoots, C. M.; Hartvigsen, J. J.; Petri, M. C.; Carter, J. D.; Bischoff, B. L.

2007-06-01T23:59:59.000Z

114

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network (OSTI)

11]. One method for hydrogen production is a water-splittingof various methods of hydrogen production, the Department ofOne method of reducing the cost of hydrogen production is to

Luc, Wesley Wai

115

Author's personal copy Hydrogen production by Clostridium acetobutylicum ATCC  

E-Print Network (OSTI)

. However, this method (40% headspace) has been shown to result in reduced hydrogen gas productionAuthor's personal copy Hydrogen production by Clostridium acetobutylicum ATCC 824 and megaplasmid September 2009 Available online 21 October 2009 Keywords: Fermentative hydrogen production Clostridium

116

Production of Hydrogen from Underground Coal Gasification  

DOE Patents (OSTI)

A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

Upadhye, Ravindra S. (Pleasanton, CA)

2008-10-07T23:59:59.000Z

117

HYDROGEN PRODUCTION THROUGH ELECTROLYSIS Robert J. Friedland  

E-Print Network (OSTI)

HYDROGEN PRODUCTION THROUGH ELECTROLYSIS Robert J. Friedland A. John Speranza Proton Energy Systems of the Department of Energy (DOE). Proton's goal is to drive the cost of PEM electrolysis to levels of $600 per years of the cost reduction efforts for the HOGEN 40 hydrogen generator on this program are in line

118

Fluidizable Catalysts for Hydrogen Production from Biomass  

E-Print Network (OSTI)

Fluidizable Catalysts for Hydrogen Production from Biomass Pyrolysis/Steam Reforming K. Magrini/Objective Develop and demonstrate technology to produce hydrogen from biomass at $2.90/kg plant gate price based Bio-oil aqueous fraction CO H2 CO2 H2O Trap grease Waste plastics textiles Co-processing Pyrolysis

119

Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Mass Production Cost Estimation of Direct Hydrogen PEM Fuel...

120

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report Photoelectrochemical Hydrogen Production  

E-Print Network (OSTI)

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 1 addresses the following technical barriers from the Hydrogen Production section of the Hydrogen, Fuel Cells Photoelectrodes ." #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 2

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Renewable Hydrogen Production from Biological Systems  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Matthew Posewitz, Colorado School of Mines, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

122

Hydrogen Fuel Production by Transgenic Microalgae  

Science Journals Connector (OSTI)

This chapter summarizes the state-of-art in the field of green algal H2-production and examines physiological and genetic engineering approaches by which to improve the hydrogen metabolism characteristics of thes...

Anastasios Melis; Michael Seibert…

2007-01-01T23:59:59.000Z

123

DOE Hydrogen Analysis Repository: Transition to Hydrogen Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transition to Hydrogen Transportation Fuel Transition to Hydrogen Transportation Fuel Project Summary Full Title: A Smooth Transition to Hydrogen Transportation Fuel Project ID: 87 Principal Investigator: Gene Berry Brief Description: This project contrasts the options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Keywords: Infrastructure; costs; hydrogen production Purpose The case for hydrogen-powered transportation requires an assessment of present and prospective methods for producing, storing, and delivering hydrogen. This project examines one potential pathway: on-site production of hydrogen to fuel light-duty vehicles. Performer Principal Investigator: Gene Berry Organization: Lawrence Livermore National Laboratory (LLNL)

124

Fuel Cell Technologies Office: Biological Hydrogen Production Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Hydrogen Biological Hydrogen Production Workshop to someone by E-mail Share Fuel Cell Technologies Office: Biological Hydrogen Production Workshop on Facebook Tweet about Fuel Cell Technologies Office: Biological Hydrogen Production Workshop on Twitter Bookmark Fuel Cell Technologies Office: Biological Hydrogen Production Workshop on Google Bookmark Fuel Cell Technologies Office: Biological Hydrogen Production Workshop on Delicious Rank Fuel Cell Technologies Office: Biological Hydrogen Production Workshop on Digg Find More places to share Fuel Cell Technologies Office: Biological Hydrogen Production Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings

125

Alternative Fuels Data Center: Hydrogen Production and Distribution  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Production and Distribution on Google Bookmark Alternative Fuels Data Center: Hydrogen Production and Distribution on Delicious Rank Alternative Fuels Data Center: Hydrogen Production and Distribution on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Production and Distribution on AddThis.com... More in this section... Hydrogen Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives

126

Efficient Hydrogen Production Using Enzymes of the Pentose Phosphate Pathway  

E-Print Network (OSTI)

initiated on a novel method for practical implementation of enzymes for production of hydrogen Methods of Hydrogen Production The currently used commercial methods for the production of hydrogen are inadequate for utilization of hydrogen as a fuel for transportation and electricity production. These methods

127

Hydrogen Production: Overview of Technology Options, January 2009  

Fuel Cell Technologies Publication and Product Library (EERE)

Overview of technology options for hydrogen production, its challenges and research needs and next steps

128

Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect

The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents results of system analyses performed to optimize the design and to determine required plant performance and operating conditions.

Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

2010-06-01T23:59:59.000Z

129

Fuel Cell Technologies Office: Biological Hydrogen Production Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Hydrogen Production Workshop Biological Hydrogen Production Workshop The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) held a Biological Hydrogen Production Workshop on September 24-25, 2013, in Golden, Colorado. The workshop featured 29 participants representing academia, government, and national laboratories with expertise in the relevant fields. The objective of the Biological Hydrogen Production Workshop was to share information and identify issues, barriers, and research and development needs for biological hydrogen production to enable hydrogen production that meets cost goals. Proceedings 2013 Biological Hydrogen Production Workshop Final Report Presentations Introductory Session Fuel Cell Technologies Office Overview, Sara Dillich, DOE Fuel Cell Technologies Office

130

Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production  

E-Print Network (OSTI)

the lowest cost hydrogen production method, supplying aroundcommon method of industrial and refinery hydrogen production

Yang, Christopher; Ogden, Joan M

2005-01-01T23:59:59.000Z

131

Microfluidic Large-Scale Integration: The Evolution  

E-Print Network (OSTI)

Microfluidic Large-Scale Integration: The Evolution of Design Rules for Biological Automation, polydimethylsiloxane Abstract Microfluidic large-scale integration (mLSI) refers to the develop- ment of microfluidic, are discussed. Several microfluidic components used as building blocks to create effective, complex, and highly

Quake, Stephen R.

132

Four products from Escherichia coli pseudogenes increase hydrogen production q  

E-Print Network (OSTI)

Article history: Received 26 August 2013 Available online 8 September 2013 Keywords: Biohydrogen hydrogen deficiency in minimal media which suggested that the role of YlcE is associated with cell growth, and production of hydrogen as a renewable fuel is important as a means to address the problems associated

Wood, Thomas K.

133

Biological Hydrogen Production Using Synthetic Wastewater Biotin and glutamic acid are not required for biological hydrogen production.  

E-Print Network (OSTI)

Biological Hydrogen Production Using Synthetic Wastewater Conclusion ·Biotin and glutamic acid are not required for biological hydrogen production. ·MgSO4 .7H2O is a required nutrient, but hydrogen production work should focus on minimizing the lag time in biological hydrogen production, by varying nutrient

Barthelat, Francois

134

DLFM library tools for large scale dynamic applications.  

NLE Websites -- All DOE Office Websites (Extended Search)

DLFM library tools for large scale dynamic applications DLFM library tools for large scale dynamic applications Large scale Python and other dynamic applications may spend huge...

135

Role of large scale storage in a UK low carbon energy future Philipp Grunewalda  

E-Print Network (OSTI)

round trip efficiency, both compressed air energy storage and hydrogen storage could become potentialRole of large scale storage in a UK low carbon energy future Philipp Gr¨unewalda , Tim Cockerilla Large scale storage offers the prospect of using excess electricity within a low carbon energy system

136

Biological Hydrogen Production Using Chloroform-treated Methanogenic Granules  

Science Journals Connector (OSTI)

In fermentative hydrogen production, the low-hydrogen-producing bacteria retention rate limits the suspended ... maintain adequate bacteria population. Traditional bacteria immobilization methods such as calcium ...

Bo Hu; Shulin Chen

2008-01-01T23:59:59.000Z

137

Biological Hydrogen Production Using Chloroform-treated Methanogenic Granules  

Science Journals Connector (OSTI)

In fermentative hydrogen production, the low-hydrogen-producing bacteria retention rate limits the suspended ... maintain adequate bacteria population. Traditional bacteria immobilization methods such as calcium ...

Bo Hu; Shulin Chen

2008-03-01T23:59:59.000Z

138

Method for the enzymatic production of hydrogen  

DOE Patents (OSTI)

The present invention is an enzymatic method for producing hydrogen comprising the steps of: (a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch; the reaction mixture also comprising an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; (b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and (c) detecting the hydrogen produced from the reaction mixture. 8 figs.

Woodward, J.; Mattingly, S.M.

1999-08-24T23:59:59.000Z

139

Hydrogen Production Infrastructure Options Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production Infrastructure Options Analysis January 26, 2006 Brian D. James Julie Perez Peter Schmidt (703) 243 - 3383 Brian_James@DirectedTechnologies.com Directed Technologies, Inc. Page 1 of 39 26 January 2006 2006-1-26 DOE Transition Workshop Agenda 1. Project Description and Objective 2. Team Members 3. Approach 4. Model Theory, Structure and Assumptions 5. Model Description 1. Logic 2. Features 3. Cost Components (Production, Delivery & Dispensing) 6. Los Angeles Transitional Example 7. Model Flexibility Page 2 of 39 26 January 2006 2006-1-26 DOE Transition Workshop Team Members & Interactions Start: May 2005 (effective) End: Summer 2007 * Directed Technologies, Inc.- Prime * Sentech, Inc., Research Partner * Air Products, Industrial Gas Supplier * Advisory Board * Graham Moore, Chevron Technology Ventures

140

Optical pumping production of spin polarized hydrogen  

SciTech Connect

There has been much interest recently in the production of large quantities of spin polarized hydrogen in various fields, including controlled fusion, quantum fluids, high energy, and nuclear physics. One promising method for the development of large quantities of spin polarized hydrogen is the utilization of optical pumping with a laser. Optical pumping is a process in which photon angular momentum is converted into electron and nuclear spin. The advent of tunable CW dye lasers (approx. 1 watt) allows the production of greater than 10/sup 18/ polarized atoms/sec. We have begun a program at Princeton to investigate the physics and technology of using optical pumping to produce large quantities of spin polarized hydrogen. Initial experiments have been done in small closed glass cells. Eventually, a flowing system, open target, or polarized ion source could be constructed.

Knize, R.J.; Happer, W.; Cecchi, J.L.

1984-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Program Management for Large Scale Engineering Programs  

E-Print Network (OSTI)

The goal of this whitepaper is to summarize the LAI research that applies to program management. The context of most of the research discussed in this whitepaper are large-scale engineering programs, particularly in the ...

Oehmen, Josef

142

Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolysis Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings to someone by E-mail Share Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings on Facebook Tweet about Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings on Twitter Bookmark Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings on Google Bookmark Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings on Delicious Rank Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings on Digg Find More places to share Fuel Cell Technologies Office:

143

Chemical Looping for Combustion and Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

ChemiCal looping for Combustion and ChemiCal looping for Combustion and hydrogen produCtion Objective The objective of this project is to determine the benefits of chemical looping technology used with coal to reduce CO 2 emissions. Background Chemical looping is a new method to convert coal or gasified coal to energy. In chemical looping, there is no direct contact between air and fuel. The chemical looping process utilizes oxygen from metal oxide oxygen carrier for fuel combustion, or for making hydrogen by "reducing" water. In combustion applications, the products of chemical looping are CO 2 and H 2 O. Thus, once the steam is condensed, a relatively pure stream of CO 2 is produced ready for sequestration. The production of a sequestration ready CO 2 stream does not require any additional separation units

144

DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2024: Hydrogen Production Cost Using Low-Cost Natural Gas DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas This program record...

145

Solar and Wind Technologies for Hydrogen Production Report to Congress  

Fuel Cell Technologies Publication and Product Library (EERE)

DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

146

An overview of hydrogen gas production from solar energy  

Science Journals Connector (OSTI)

Hydrogen production plays a very important role in the development of hydrogen economy. Hydrogen gas production through solar energy which is abundant, clean and renewable is one of the promising hydrogen production approaches. This article overviews the available technologies for hydrogen generation using solar energy as main source. Photochemical, electrochemical and thermochemical processes for producing hydrogen with solar energy are analyzed from a technological environmental and economical point of view. It is concluded that developments of improved processes for hydrogen production via solar resource are likely to continue in order to reach competitive hydrogen production costs. Hybrid thermochemical processes where hydrocarbons are exclusively used as chemical reactants for the production of syngas and the concentrated solar radiation is used as a heat source represent one of the most promising alternatives: they combine conventional and renewable energy representing a proper transition towards a solar hydrogen economy.

Simon Koumi Ngoh; Donatien Njomo

2012-01-01T23:59:59.000Z

147

Hydrogen Production Roadmap: Technology Pathways to the Future, January 2009  

Fuel Cell Technologies Publication and Product Library (EERE)

Roadmap to identify key challenges and priority R&D needs associated with various hydrogen fuel production technologies.

148

APPLIED GENETICS AND MOLECULAR BIOTECHNOLOGY Enhanced hydrogen production from glucose  

E-Print Network (OSTI)

(Das and Vezirolu 2001). Use of biological methods of hydrogen production should significantly reduceAPPLIED GENETICS AND MOLECULAR BIOTECHNOLOGY Enhanced hydrogen production from glucose of the metabolically engineered strains, BW25113 hyaB hybC hycA fdoG frdC ldhA aceE, increased hydrogen production 4

Wood, Thomas K.

149

Roles of cocatalysts in semiconductor-based photocatalytic hydrogen production  

Science Journals Connector (OSTI)

...cocatalyst|hydrogen production|water splitting...Photocatalytic hydrogen generation...promising way for H2 production. For water splitting...solid-state reaction method [12]. Y2O3...versus normal hydrogen electrode, negative...of CdS for H2 production could be increased...hydrothermal method through loading...

2013-01-01T23:59:59.000Z

150

Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol and Hydrogen Ethanol and Hydrogen Production Facility Permits to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Google Bookmark Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Delicious Rank Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

151

Michelangelo Network recommendations on nuclear hydrogen production  

Science Journals Connector (OSTI)

The Michelangelo Network (MICANET) was started within the 5th EURATOM Framework Programme (FP5) with the objective to elaborate a general European R&D strategy for the further development of the nuclear industry in the short, medium, and long term. To broaden the application range of nuclear power beyond dedicated electricity generation, the network proposed an orientation for future EURATOM R&D programmes including new industrial aspects of nuclear energy, such as combined heat and power and, particularly, the production of hydrogen or other fuels as a link to CO2-free energy sources. MICANET is acting as the European counterpart and partner to the Generation IV International Forum. The MICANET project ended in November 2005. Goals achieved related to nuclear hydrogen production and other non-electrical nuclear applications are outlined in this paper.

Karl Verfondern; Werner Von Lensa

2006-01-01T23:59:59.000Z

152

Startech Hydrogen Production Final Technical Report  

SciTech Connect

The assigned work scope includes the modification and utilization of the Plasma Converter System, Integration of a StarCell{trademark} Multistage Ceramic Membrane System (StarCell), and testing of the integrated systems towards DOE targets for gasification and membrane separation. Testing and evaluation was performed at the Startech Engineering and Demonstration Test Center in Bristol, CT. The Objectives of the program are as follows: (1) Characterize the performance of the integrated Plasma Converter and StarCell{trademark} Systems for hydrogen production and purification from abundant and inexpensive feedstocks; (2) Compare integrated hydrogen production performance to conventional technologies and DOE benchmarks; (3) Run pressure and temperature testing to baseline StarCell's performance; and (4) Determine the effect of process contaminants on the StarCell{trademark} system.

Startech Engineering Department

2007-11-27T23:59:59.000Z

153

Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint  

SciTech Connect

To determine the potential for hydrogen production via renewable electricity sources, three aspects of the system are analyzed: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices.

Levene, J. I.; Mann, M. K.; Margolis, R.; Milbrandt, A.

2005-09-01T23:59:59.000Z

154

Heat Transfer Limitations in Hydrogen Production Via Steam Reformation: The Effect of Reactor Geometry  

E-Print Network (OSTI)

Hydrogen Production and Utilization Laboratory ABSTRACT Hydrogen can be produced in a variety of methods

Vernon, David R.; Davieau, David D.; Dudgeon, Bryce A.; Erickson, Paul A.

2006-01-01T23:59:59.000Z

155

7, 1553315563, 2007 Large-scale  

E-Print Network (OSTI)

the Pacific, correlations with CO, CO2, CH4, and C2Cl4 were dif- fuse overall, but recognizable on flights out Chemistry and Physics Discussions Factors influencing the large-scale distribution of Hg in the Mexico City the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) cam- paign in spring 2006. Flights were conducted

Paris-Sud XI, Université de

156

Integrated Ceramic Membrane System for Hydrogen Production  

SciTech Connect

Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to increase CO conversion and produce more hydrogen than a standard water gas shift reactor would. Substantial improvements in substrate and membrane performance were achieved in another DOE project (DE-FC26-07NT43054). These improved membranes were used for testing in a water gas shift environment in this program. The amount of net H2 generated (defined as the difference of hydrogen produced and fed) was greater than would be produced at equilibrium using conventional water gas shift reactors up to 75 psig because of the shift in equilibrium caused by continuous hydrogen removal. However, methanation happened at higher pressures, 100 and 125 psig, and resulted in less net H2 generated than would be expected by equilibrium conversion alone. An effort to avoid methanation by testing in more oxidizing conditions (by increasing CO2/CO ratio in a feed gas) was successful and net H2 generated was higher (40-60%) than a conventional reactor at equilibrium at all pressures tested (up to 125 psig). A model was developed to predict reactor performance in both cases with and without methanation. The required membrane area depends on conditions, but the required membrane area is about 10 ft2 to produce about 2000 scfh of hydrogen. The maximum amount of hydrogen that can be produced in a membrane reactor decreased significantly due to methanation from about 2600 scfh to about 2400 scfh. Therefore, it is critical to eliminate methanation to fully benefit from the use of a membrane in the reaction. Other modeling work showed that operating a membrane reactor at higher temperature provides an opportunity to make the reactor smaller and potentially provides a significant capital cost savings compared to a shift reactor/PSA combination.

Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

2010-08-05T23:59:59.000Z

157

Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feasibility Study of Hydrogen Production at Existing Nuclear Power Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants A funding opportunity announcement of the cost shared feasibility studies of nuclear energy based production of hydrogen using available technology. The objective of this activity is to select and conduct project(s) that will utilize hydrogen production equipment and nuclear energy as necessary to produce data and analysis on the economics of hydrogen production with nuclear energy. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants More Documents & Publications https://e-center.doe.gov/iips/faopor.nsf/UNID/E67E46185A67EBE68 Microsoft Word - FOA cover sheet.doc Microsoft Word - hDE-FOA-0000092.rtf

158

Impact of Hydrogen Production on U.S. Energy Markets  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production on Impact of Hydrogen Production on Hydrogen Production on Impact of Hydrogen Production on U.S. Energy Markets U.S. Energy Markets Presented to: Presented to: DOE Hydrogen Transition DOE Hydrogen Transition Analysis Workshop Analysis Workshop Washington DC Washington DC January 26, 2006 January 26, 2006 Prepared by: Prepared by: E. Harry Vidas, Energy and Environmental Analysis, Inc. E. Harry Vidas, Energy and Environmental Analysis, Inc. Paul Friley, Brookhaven National Laboratory Paul Friley, Brookhaven National Laboratory AZ CA Project Scope Project Scope * Focus will be on competition between hydrogen production and distribution technologies with respect to hydrogen fuel demand, technology cost, regional mix, and impact on feedstock prices. * Evaluate impacts on U.S. energy markets including price

159

Electrochemical treatment of human waste coupled with molecular hydrogen production  

E-Print Network (OSTI)

in a hydrogen fuel cell. Herein, we report on the efficacy of a laboratory-scale wastewater electrolysis cell an electrolysis cell for on-site wastewater treatment coupled with molecular hydrogen production for useElectrochemical treatment of human waste coupled with molecular hydrogen production Kangwoo Cho

Heaton, Thomas H.

160

Energy Department Applauds Nation's First Large-Scale Industrial...  

Office of Environmental Management (EM)

Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage...

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hybrid Parallelism for Volume Rendering at Large Scale at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Volume Rendering at Large Scale Hybrid Parallelism for Volume Rendering at Large Scale volrend-swes.png We studied the performance and scalability characteristics of hybrid''...

162

Production of hydrogen from oil shale  

SciTech Connect

A process for production of hydrogen from oil shale fines by direct introduction of the oil shale fines into a fluidized bed at temperatures about 1200/sup 0/ to about 2000/sup 0/ F. to obtain rapid heating of the oil shale. The bed is fluidized by upward passage of steam and oxygen, the steam introduced in the weight ratio of about 0.1 to about 10 on the basis of the organic carbon content of the oil shale and the oxygen introduced in less than the stoichiometric quantity for complete combustion of the organic carbonaceous kerogen content of the oil shale. Embodiments are disclosed for heat recovery from the spent shale and heat recovery from the spent shale and product gas wherein the complete process and heat recovery is carried out in a single reaction vessel. The process of this invention provides high conversion of organic carbon component of oil shale and high production of hydrogen from shale fines which when used in combination with a conventional oil shale hydroconversion process results in increased overall process efficiency of greater than 15 percent.

Schora, F. C.; Feldkirchner, H. L.; Janka, J. C.

1985-12-24T23:59:59.000Z

163

The economics of biological methods of hydrogen production  

E-Print Network (OSTI)

The costs to produce and utilize hydrogen are extremely high per unit of energy when compared to fossil fuel energy sources such as natural gas or gasoline. The cheapest hydrogen production approaches today are also the ...

Resnick, Richard J. (Richard Jay), 1971-

2004-01-01T23:59:59.000Z

164

Hydrogen Production R&D Activities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

R&D Activities Hydrogen Production R&D Activities An important advantage to using hydrogen as an energy carrier is that it can be produced from a variety of abundant and domestic...

165

Large-Scale Renewable Energy Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Guide Renewable Energy Guide Brad Gustafson, FEMP 2 Large-scale RE Guide Large-scale RE Guide: Developing Renewable Energy Projects Larger than 10 MWs at Federal Facilities Introduction and Overview Federal Utility Partnership Working Group May 22, 2013 Federal Energy Management Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy 3 Federal Energy Management Program FEMP works with key individuals to accomplish energy change within organizations by bringing expertise from all levels of project and policy implementation to enable Federal Agencies to meet energy related goals and to provide energy leadership to the country. 4 FEMP Renewable Energy * Works to increase the proportion of renewable energy in the Federal government's energy mix.

166

The large-scale structure of vacuum  

E-Print Network (OSTI)

The vacuum state in quantum field theory is known to exhibit an important number of fundamental physical features. In this work we explore the possibility that this state could also present a non-trivial space-time structure on large scales. In particular, we will show that by imposing the renormalized vacuum energy-momentum tensor to be conserved and compatible with cosmological observations, the vacuum energy of sufficiently heavy fields behaves at late times as non-relativistic matter rather than as a cosmological constant. In this limit, the vacuum state supports perturbations whose speed of sound is negligible and accordingly allows the growth of structures in the vacuum energy itself. This large-scale structure of vacuum could seed the formation of galaxies and clusters very much in the same way as cold dark matter does.

Albareti, F D; Maroto, A L

2014-01-01T23:59:59.000Z

167

2013 Biological Hydrogen Production Workshop Summary Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is accepted as the practical maximum hydrogen yield from fermentation and actual hydrogen conversions are often even less. Other disadvantages mentioned were the impurity of the...

168

Water Consumption Footprint and Land Requirements of Large-Scale Alternative  

E-Print Network (OSTI)

Water Consumption Footprint and Land Requirements of Large-Scale Alternative Diesel and Jet Fuel Consumption Footprint and Land Requirements of Large- Scale Alternative Diesel and Jet Fuel Production Mark D and the economic and social implications of policy alternatives. Ronald G. Prinn and John M. Reilly, Program Co

169

Analysis of Reference Design for Nuclear-Assisted Hydrogen Production at 750°C Reactor Outlet Temperature  

SciTech Connect

The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using a high-temperature gas-cooled reactor (HTGR) to provide the process heat and electricity to drive the electrolysis process. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This report describes the resulting new INL reference design coupled to two alternative HTGR power conversion systems, a Steam Rankine Cycle and a Combined Cycle (a Helium Brayton Cycle with a Steam Rankine Bottoming Cycle). Results of system analyses performed to optimize the design and to determine required plant performance and operating conditions when coupled to the two different power cycles are also presented. A 600 MWt high temperature gas reactor coupled with a Rankine steam power cycle at a thermal efficiency of 44.4% can produce 1.85 kg/s of hydrogen and 14.6 kg/s of oxygen. The same capacity reactor coupled with a combined cycle at a thermal efficiency of 42.5% can produce 1.78 kg/s of hydrogen and 14.0 kg/s of oxygen.

Michael G. McKellar; Edwin A. Harvego

2010-05-01T23:59:59.000Z

170

Basic Research for Hydrogen Production, Storage and Use  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells DOE Hydrogen and Fuel Cells Coordination Meeting 6/2/2003 DOE DOE - - BES Sponsored Workshop on BES Sponsored Workshop on Basic Research for Hydrogen Basic Research for Hydrogen Production, Storage and Use Production, Storage and Use Walter J. Stevens Walter J. Stevens Director Director Chemical Sciences, Geosciences, and Biosciences Division Chemical Sciences, Geosciences, and Biosciences Division Office of Basic Energy Sciences Office of Basic Energy Sciences Workshop dates: May 13-15, 2003 A follow-on workshop to BESAC-sponsored workshop on "Basic Research Needs to Assure a Secure Energy Future" Basic Energy Sciences Basic Energy Sciences Workshop on Hydrogen Production, Storage, and Use Workshop on Hydrogen Production, Storage, and Use DOE Hydrogen and Fuel Cells

171

Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays  

Science Journals Connector (OSTI)

Recently world has been confused by issues of energy resourcing including fossil fuel use global warming and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end?users particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN?IV reactors nuclear projects (HTGRs HTR VHTR) is also can produce hydrogen from the process. In the present study hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

2010-01-01T23:59:59.000Z

172

Hydrogen Production by Polymer Electrolyte Membrane (PEM)Electrolysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on Giner and Proton Presentation slides and speaker biographies from the DOE Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte Membrane...

173

Energy Department Invests $20 Million to Advance Hydrogen Production...  

Energy Savers (EERE)

fuel cell hydrogen energy station in Fountain Valley, California. | Photo courtesy of Air Products and Chemicals. Fuel Station of the Future- Innovative Approach to Fuel Cell...

174

Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation.

175

Hydrogenases and Barriers for Biotechnological Hydrogen Production Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by John Peters, Montana State University, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

176

Hydrogen Production and Storage for Fuel Cells: Current Status  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Hydrogen Production and Storage for Fuel Cells, February 2, 2011.

177

Mesoporous electrodes for hydrogen production | Center for Bio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Center News Research Highlights Center Research News Media about Center Center Video Library Bisfuel Picture Gallery Mesoporous electrodes for hydrogen production 24 Oct 2012...

178

THERMODYNAMIC EVALUATION OF PROCESSES FOR HYDROGEN PRODUCTION FROM CARBONACEOUS FUEL.  

E-Print Network (OSTI)

??This research work presents the thermodynamic analysis of hydrogen production using steam methane reforming process at different conditions. The model is developed using HSC 4.1… (more)

Kaini, Bhanu

2010-01-01T23:59:59.000Z

179

Summary of Electrolytic Hydrogen Production: Milestone Completion Report  

Energy.gov (U.S. Department of Energy (DOE))

This report provides an overview of the current state of electrolytic hydrogen production techonologies and an economic analysis of the processes and systems available as of December 2003.

180

Co-production of Hydrogen and Electricity (A Developer's Perspective)  

Energy.gov (U.S. Department of Energy (DOE))

FuelCell Energy Overview, Direct Fuel Cell (DFC) Technology Status, Hydrogen Co-production Technology, Benefits and Status, Strategic Input

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network (OSTI)

Hydrogen Production Plant Heat Exchangers Turbines Electrolyzer Pumps and Compressors NaCl Storage Separators Thermochemical Reactors + Chemical Absorber Figure 6.2: Equipment Cost

Luc, Wesley Wai

182

Fermentation and Electrohydrogenic Approaches to Hydrogen Production (Presentation)  

SciTech Connect

This work describes the development of a waste biomass fermentation process using cellulose-degrading bacteria for hydrogen production. This process is then integrated with an electrohydrogenesis process via the development of a microbial electrolysis cell reactor, during which fermentation waste effluent is further converted to hydrogen to increase the total output of hydrogen from biomass.

Maness, P. C.; Thammannagowda, S.; Magnusson, L.; Logan, B.

2010-06-01T23:59:59.000Z

183

Author's personal copy Photoelectrochemical hydrogen production from water/  

E-Print Network (OSTI)

coal and gasoline [3]. Moreover, hydrogen can be used in fuel cells to generate electricity, or directly as a transportation fuel [4]. Hydrogen can be generated from hydrocarbons and water resourcesAuthor's personal copy Photoelectrochemical hydrogen production from water/ methanol decomposition

Wood, Thomas K.

184

Methane Decomposition: Production of Hydrogen and Carbon Filaments  

E-Print Network (OSTI)

for hydrogen is to power fuel cells. Major automobile manufac- turers are currently working towards developing ppm in the preferential oxidation reactor (PROX). The hydrogen can be introduced in the fuel cell only for the performance of PEM fuel cells.6 Other conventional process of hydrogen production such as partial oxidation

Goodman, Wayne

185

DOE Science Showcase - Hydrogen Production | OSTI, US Dept of Energy,  

Office of Scientific and Technical Information (OSTI)

Hydrogen Production Hydrogen Production Hydrogen Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org More information Making molecular hydrogen more efficiently Breaking Up (Hydrogen) No Longer As Hard To Do Hydrogen and Our Energy Future Fuel Cell Animation Hydrogen & Fuel Cells Increase your Hydrogen IQ Visit the Science Showcase homepage. OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services OSTI Facebook OSTI Twitter OSTI Google+ Bookmark and Share (Link will open in a new window) Go to Videos Loading... Stop news scroll Most Visited Adopt-A-Doc DOE Data Explorer DOE Green Energy DOepatents DOE R&D Accomplishments .EDUconnections Energy Science and Technology Software Center E-print Network

186

Hydrogen production during processing of radioactive sludge containing noble metals  

SciTech Connect

Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 {times}10{sup {minus}7} g H{sub 2}/hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 {times}10{sup {minus}4} g H{sub 2}/hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges.

Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

1992-09-01T23:59:59.000Z

187

Hydrogen production during processing of radioactive sludge containing noble metals  

SciTech Connect

Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 {times}10{sup {minus}7} g H{sub 2}/hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 {times}10{sup {minus}4} g H{sub 2}/hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges.

Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

1992-01-01T23:59:59.000Z

188

Hydrogen Production and Dispensing Facility Opens at W. Va. Airport |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Production and Dispensing Facility Opens at W. Va. Airport Hydrogen Production and Dispensing Facility Opens at W. Va. Airport Hydrogen Production and Dispensing Facility Opens at W. Va. Airport August 19, 2009 - 1:00pm Addthis Major General Allen Tackett of the National Guard's 130th Airlift Wing dispenses the first fill-up of hydrogen fuel from the Yeager facility. Major General Allen Tackett of the National Guard's 130th Airlift Wing dispenses the first fill-up of hydrogen fuel from the Yeager facility. Washington, D.C. -- A hydrogen production and dispensing station constructed and operated with support from the Office of Fossil Energy's National Energy Technology Laboratory (NETL) was officially opened Monday at the Yeager Airport in Charleston, W.Va. The facility is an example of how domestically produced fuels may be used to power a variety of vehicles

189

Renewable Hydrogen Production Using Sugars and Sugar Alcohols (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Working Group Meeting Working Group Meeting 11/06/2007 Renewable Hydrogen Production Using Renewable Hydrogen Production Using Sugars and Sugar Alcohols Sugars and Sugar Alcohols * * Problem: Problem: Need Need to develop renewable to develop renewable hydrogen production technologies using hydrogen production technologies using diverse diverse feedstocks feedstocks 10 15 20 CH 4 : C 6 H 14 ln(P) * * Description: Description: The BioForming The BioForming TM TM process uses process uses aqueous phase reforming to cost effectively aqueous phase reforming to cost effectively produce hydrogen from a range of feedstocks, produce hydrogen from a range of feedstocks, including glycerol and sugars. The key including glycerol and sugars. The key breakthrough is a proprietary catalyst that breakthrough is a proprietary catalyst that

190

Hydrogen Production from Hydrogen Sulfide in IGCC Power Plants  

SciTech Connect

IGCC power plants are the cleanest coal-based power generation facilities in the world. Technical improvements are needed to help make them cost competitive. Sulfur recovery is one procedure in which improvement is possible. This project has developed and demonstrated an electrochemical process that could provide such an improvement. IGCC power plants now in operation extract the sulfur from the synthesis gas as hydrogen sulfide. In this project H{sub 2}S has been electrolyzed to yield sulfur and hydrogen (instead of sulfur and water as is the present practice). The value of the byproduct hydrogen makes this process more cost effective. The electrolysis has exploited some recent developments in solid state electrolytes. The proof of principal for the project concept has been accomplished.

Elias Stefanakos; Burton Krakow; Jonathan Mbah

2007-07-31T23:59:59.000Z

191

Development of Efficient Flowsheet and Transient Modeling for Nuclear Heat Coupled Sulfur Iodine Cyclefor Hydrogen Production  

SciTech Connect

The realization of the hydrogen as an energy carrier for future power sources relies on a practical method of producing hydrogen in large scale with no emission of green house gases. Hydrogen is an energy carrier which can be produced by a thermochemical water splitting process. The Sulfur-Iodine (SI) process is an example of a water splitting method using iodine and sulfur as recycling agents.

Shripad T. Revankar; Nicholas R. Brown; Cheikhou Kane; Seungmin Oh

2010-05-01T23:59:59.000Z

192

Anti-reflective nanoporous silicon for efficient hydrogen production  

DOE Patents (OSTI)

Exemplary embodiments are disclosed of anti-reflective nanoporous silicon for efficient hydrogen production by photoelectrolysis of water. A nanoporous black Si is disclosed as an efficient photocathode for H.sub.2 production from water splitting half-reaction.

Oh, Jihun; Branz, Howard M

2014-05-20T23:59:59.000Z

193

Parametric study of solar hydrogen production from saline water electrolysis  

Science Journals Connector (OSTI)

The purpose of this work is to study the electrolysis of water for the production of hydrogen. A number of parameters, including salinity, voltage, current density and quantity of electricity, were investigated, and their effect on hydrogen production using a modified simple Hoffman electrolysis cell is reported.

S.M. El-Haggar; M. Khalil

1997-01-01T23:59:59.000Z

194

Autofermentative Biological Hydrogen Production by Cyanobacteria  

NLE Websites -- All DOE Office Websites (Extended Search)

BioSolarH BioSolarH 2  Autofermentative biological hydrogen production by cyanobacteria G.C. Dismukes Rutgers University Waksman Institute and Department of Chemistry & Chemical Biology DOE Biohydrogen Production Workshop NREL October, 2013 -BioSolarH 2  Ghirardi et al., 2007 Tamagnini et al., 2007 Soluble NiFe hydrogenase (SH) Group 5 AH in Ralstonia eutropha H16 Schäfer et al., 2013 Formate dehydrogenase Hydrogenase Bagramyan et al., 2003 Ferredoxin Km (MV) = 16.1µM Kcat (MV) = 1242 s -1 (Francis et al., 1990) K i (O 2 ) = 1% (McIntosh et al., 2011) Km (C 2 H 2 ) = 1.8*10 -3 atms (Hallenbeck et al. 1979) Km (H 2 ) =6.1µM Kcat (H 2 ) = 238 s -1 ( Schäfer et al., 2013) K i (O 2 ) = 47.5% (Lenz et al., 2010) Km (H 2 ) =3.5µM Kcat (H 2 ) = 0.5 s -1 ( Oxygen insensitive (Schäfer et al., 2013)

195

Hydrogen production from water: Recent advances in photosynthesis research  

SciTech Connect

The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

Greenbaum, E.; Lee, J.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

1997-12-31T23:59:59.000Z

196

NETL: News Release - Hydrogen Production and Dispensing Facility Opens at  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production and Dispensing Facility Opens at West Virginia Airport Hydrogen Production and Dispensing Facility Opens at West Virginia Airport Station Provides Transportation Fuel from Domestic Resources for Hydrogen-Fueled Vehicles Washington, D.C. - A hydrogen production and dispensing station constructed and operated with support from the Office of Fossil Energy's National Energy Technology Laboratory (NETL) was officially opened Monday at the Yeager Airport in Charleston, W.Va. The facility is an example of how domestically produced fuels may be used to power a variety of vehicles and equipment, lessening U.S. dependence on foreign oil. The facility will produce, compress, store and dispense hydrogen as a fuel source for vehicles that have been converted to run on hydrogen, as well as other types of ground equipment at the airport.

197

Determination of Optimal Process Flowrates and Reactor Design for Autothermal Hydrogen Production in a Heat-Integrated Ceramic Microchannel Network  

E-Print Network (OSTI)

emissions [19]. Hence, hydrogen can be produced on large scale from biomass feedstocks in centralized facilities and subsequently distributed at fueling stations and/or community locations as a universal clean fuel for transportation and power...

Damodharan, Shalini

2012-07-16T23:59:59.000Z

198

Sandia National Laboratories: Solar Thermochemical Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

the chemical and physical transformations occurring in materials used to convert solar energy into hydrogen and develop and test novel reactor concepts at relevant scales....

199

Federal Energy Management Program: Large-scale Renewable Energy Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Large-scale Large-scale Renewable Energy Projects (Larger than 10 MWs) to someone by E-mail Share Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on Facebook Tweet about Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on Twitter Bookmark Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on Google Bookmark Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on Delicious Rank Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on Digg Find More places to share Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on

200

Locations of Smart Grid Demonstration and Large-Scale Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Map of the United States...

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy...  

Energy Savers (EERE)

FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects August 21, 2013 - 12:00am...

202

Lessons from Large-Scale Renewable Energy Integration Studies...  

NLE Websites -- All DOE Office Websites (Extended Search)

including 10% post consumer waste. 1 WREF 2012: LESSONS FROM LARGE-SCALE RENEWABLE ENERGY INTEGRATION STUDIES A number of large-scale studies have been conducted in the...

203

Synchronization of coupled large-scale Boolean networks  

SciTech Connect

This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

Li, Fangfei, E-mail: li-fangfei@163.com [Department of Mathematics, East China University of Science and Technology, No. 130, Meilong Road, Shanghai, Shanghai 200237 (China)] [Department of Mathematics, East China University of Science and Technology, No. 130, Meilong Road, Shanghai, Shanghai 200237 (China)

2014-03-15T23:59:59.000Z

204

Hydrogen production comes naturally to ocean microbe  

Science Journals Connector (OSTI)

... a multitasker — it can not only photosynthesize, but can also produce large amounts of hydrogen, opening up a potential way to make the gas cheaply for fuel. The single ... to make the gas cheaply for fuel. The single-celled cyanobacterium Cyanothece 51142 can make hydrogen in air, Himadri Pakrasi of Washington University in St Louis, Missouri, and his ...

Katharine Sanderson

2010-12-14T23:59:59.000Z

205

Process for the production of hydrogen peroxide  

DOE Patents (OSTI)

An integrated membrane-based process method for producing hydrogen peroxide is provided comprising oxidizing hydrogenated anthraquinones with air bubbles which were created with a porous membrane, and then contacting the oxidized solution with a hydrophilic membrane to produce an organics free, H{sub 2}O{sub 2} laden permeate. 1 fig.

Datta, R.; Randhava, S.S.; Tsai, S.P.

1997-09-02T23:59:59.000Z

206

NETL: News Release - NETL Building Hydrogen Production and Dispensing  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2009 5, 2009 NETL Building Hydrogen Production and Dispensing Facility at Yeager Airport Morgantown, WV- The Department of Energy's National Energy Technology Laboratory (NETL) today announced its plans to construct and operate a hydrogen fuel production-and-dispensing facility at the Yeager Airport in Charleston, W.Va. According to U.S. Senator Robert C. Byrd, D-W.Va., "This project is a great example of the wonderful potential of coal. Coal can produce hydrogen fuel, which can greatly reduce greenhouse gases and our need to import foreign oil. Coal is abundant and remarkably versatile - particularly hydrogen produced from coal through gasification or coal-based power used to split water that provides a secure source of hydrogen fuel that will compete with imported petroleum. I am very pleased to be involved in helping this new hydrogen facility in West Virginia become a reality."

207

Ionically Conducting Membranes for Hydrogen Production and Separation  

NLE Websites -- All DOE Office Websites (Extended Search)

IONICALLY CONDUCTING MEMBRANES IONICALLY CONDUCTING MEMBRANES FOR HYDROGEN PRODUCTION AND SEPARATION Presented by Tony Sammells Eltron Research Inc. Boulder, Colorado www.eltronresearch.com Presented at DOE Hydrogen Separations Workshop Arlington, Virginia September 8, 2004 ELTRON RESEARCH INC. TO BE DISCUSSED * Membranes for Hydrogen Production - Compositions - Feedstocks - Performance - Key Technical Hurdles * Membranes for Hydrogen Separation - Compositions - Ex Situ vs. In Situ WGS - Performance - Key Technical Hurdles ELTRON RESEARCH INC. OVERALL SCHEME FOR CONVERTING FEEDSTOCK TO HYDROGEN WITH SIMULTANEOUS CARBON DIOXIDE SEQUESTRATION Oxygen Transport Membrane Hydrogen Transport Membrane Natural Gas Coal Biomass Syngas CO/H 2 WGS H 2 O CO 2 /H 2 1618afs.dsf H 2 CO 2 ELTRON RESEARCH INC. INCENTIVES FOR OXYGEN TRANSPORT MEMBRANES FOR

208

Impact of Hydrogen Production on U.S. Energy Markets | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Impact of Hydrogen Production on U.S. Energy Markets Impact of Hydrogen Production on U.S. Energy Markets Presentation on the Impact of Hydrogen Production on U.S. Energy Markets...

209

Production of Large Amounts of Hydrogen Peroxide by Human Tumor Cells  

Science Journals Connector (OSTI)

...spectrophotometric method. Mouse fibroblasts...metastasis. Production of large amounts of hydrogen peroxide...sources of hydrogen peroxide production in these...MATERIALS AND METHODS Cell Lines...modified method of Ding and...width. 794 PRODUCTION OF HYDROGEN PEROXIDE...

Ted P. Szatrowski and Carl F. Nathan

1991-02-01T23:59:59.000Z

210

Hydroxyl Radical Production and Human DNA Damage Induced by Ferric Nitrilotriacetate and Hydrogen Peroxide  

Science Journals Connector (OSTI)

...to radical production by using...NTA plus hydrogen peroxide...MATERIALS AND METHODS Materials...described method (17, 18...hydroxyl radical production from hydrogen peroxide...Hydroxyl Radical Production from Hydrogen Peroxide...trapping methods were used...

Sumiko Inoue and Shosuke Kawanishi

1987-12-15T23:59:59.000Z

211

Theoretical Tools for Large Scale Structure  

E-Print Network (OSTI)

We review the main theoretical aspects of the structure formation paradigm which impinge upon wide angle surveys: the early universe generation of gravitational metric fluctuations from quantum noise in scalar inflaton fields; the well understood and computed linear regime of CMB anisotropy and large scale structure (LSS) generation; the weakly nonlinear regime, where higher order perturbation theory works well, and where the cosmic web picture operates, describing an interconnected LSS of clusters bridged by filaments, with membranes as the intrafilament webbing. Current CMB+LSS data favour the simplest inflation-based $\\Lambda$CDM models, with a primordial spectral index within about 5% of scale invariant and $\\Omega_\\Lambda \\approx 2/3$, similar to that inferred from SNIa observations, and with open CDM models strongly disfavoured. The attack on the nonlinear regime with a variety of N-body and gas codes is described, as are the excursion set and peak-patch semianalytic approaches to object collapse. The ingredients are mixed together in an illustrative gasdynamical simulation of dense supercluster formation.

J. R. Bond; L. Kofman; D. Pogosyan; J. Wadsley

1998-10-06T23:59:59.000Z

212

Hydrogen production with coal using a pulverization device  

DOE Patents (OSTI)

A method for producing hydrogen from coal is described wherein high temperature steam is brought into contact with coal in a pulverizer or fluid energy mill for effecting a steam-carbon reaction to provide for the generation of gaseous hydrogen. The high temperature steam is utilized to drive the coal particles into violent particle-to-particle contact for comminuting the particulates and thereby increasing the surface area of the coal particles for enhancing the productivity of the hydrogen.

Paulson, Leland E. (Morgantown, WV)

1989-01-01T23:59:59.000Z

213

Cost Analysis of a Concentrator Photovoltaic Hydrogen Production System  

SciTech Connect

The development of efficient, renewable methods of producing hydrogen are essential for the success of the hydrogen economy. Since the feedstock for electrolysis is water, there are no harmful pollutants emitted during the use of the fuel. Furthermore, it has become evident that concentrator photovoltaic (CPV) systems have a number of unique attributes that could shortcut the development process, and increase the efficiency of hydrogen production to a point where economics will then drive the commercial development to mass scale.

Thompson, J. R.; McConnell, R. D.; Mosleh, M.

2005-08-01T23:59:59.000Z

214

Process for the production of hydrogen from water  

DOE Patents (OSTI)

A method and device for the production of hydrogen from water and electricity using an active metal alloy. The active metal alloy reacts with water producing hydrogen and a metal hydroxide. The metal hydroxide is consumed, restoring the active metal alloy, by applying a voltage between the active metal alloy and the metal hydroxide. As the process is sustainable, only water and electricity is required to sustain the reaction generating hydrogen.

Miller, William E. (Naperville, IL); Maroni, Victor A. (Naperville, IL); Willit, James L. (Batavia, IL)

2010-05-25T23:59:59.000Z

215

Assessment of a new integrated solar energy system for hydrogen production  

Science Journals Connector (OSTI)

Abstract In this paper, a novel integrated system that combines photocatalysis, photovoltaics, thermal engine and chemical energy storage for better solar energy harvesting is assessed using energy and exergy methods. The system generates hydrogen and sulfur from sulfurous waters specific to chemical and petrochemical industries. The solar light is split into three spectra using optical surfaces covered with selected dielectric coatings: (i) the high energy spectrum, consisting of photons with wavelengths shorter than ?500 nm, is used to generate hydrogen from water photolysis, (ii) the middle spectrum with wavelengths between ?500 nm and ?800 nm is used to generate electricity with photovoltaic (PV) arrays and (iii) the long wave spectrum of low energy photons with wavelengths longer than ?800 nm is used to generate electricity with a thermally driven Rankine engine (RE). The electricity generated by PV and RE is employed to generate additional hydrogen by electrolysis and to drive auxiliary devices within the system. A model is developed based on conservation equations and transport equations applied for each essential component of the system. The model allows for assessment of system performance and the comparison with other solar hydrogen production systems. A case study for an oil sands exploitation area where sulfurous aqueous wastes and hydrogen demand exist – Calgary (Alberta) – is presented. A solar tower configuration is selected as the best choice for a large scale system with 500 MW light harvesting heliostat field. Hourly predictions of system output are obtained. The devised system requires 5526 acres of land for the solar field and produces 41.4 t hydrogen per day. If a conventional solar tower would be used instead which generates power and is coupled to a water electrolysis system the hydrogen production is lower, namely 28.7 t/day. An economic scenario is considered by assuming that the co-produced sulfur and hydrogen are both valorized on the market for 25 years with a levelized price of 1.65 $/kg out of which 10% represents operation and maintenance costs. It is shown that the system is feasible provided that the required equity investment of capital is inferior to M$ 500.

C. Zamfirescu; I. Dincer

2014-01-01T23:59:59.000Z

216

Role prioritization of hydrogen production technologies for promoting hydrogen economy in the current state of China  

Science Journals Connector (OSTI)

Abstract Hydrogen production technologies play an important role in the hydrogen economy of China. However, the roles of different technologies played in promoting the development of hydrogen economy are different. The role prioritization of various hydrogen production technologies is of vital importance for the stakeholders/decision-makers to plan the development of hydrogen economy in China and to allocate the finite R&D budget reasonably. In this study, DPSIR framework was firstly used to identify the key factors concerning the priorities of various hydrogen production technologies; then, a fuzzy group decision-making method by incorporating fuzzy AHP and fuzzy TOPSIS was proposed to prioritize the roles of different technologies. The proposed method is capable of allowing multiple groups of stakeholders/decision-makers to participate in the decision-making and addressing problems with uncertainty and imprecise information. The prioritization results by using the proposed method demonstrated that the technologies of coal gasification with CO2 capture and storage and hydropower-based water electrolysis were regarded as the two most important hydrogen production pathways for promoting the development of hydrogen economy in China among the five assessed technologies.

Jingzheng Ren; Suzhao Gao; Shiyu Tan; Lichun Dong; Antonio Scipioni; Anna Mazzi

2015-01-01T23:59:59.000Z

217

6 - Hydrogen production by water electrolysis  

Science Journals Connector (OSTI)

Abstract: An electrolyzer combines an oxidation and a reduction reaction, driven by electricity, to produce separate streams of hydrogen gas and oxygen gas by a process called electrolysis. The hydrogen contains a portion of the electrical energy, and it can be used to generate electricity in a fuel cell by a process that is the reverse of electrolysis. If water electrolysis is driven by renewable electricity, it can be used in fuel-cell electric vehicles to displace petroleum, increase vehicle efficiency, and reduce the environmental impact of vehicles. The fundamental aspects of electrolytic hydrogen and its use as energy carrier are discussed.

N.A. Kelly

2014-01-01T23:59:59.000Z

218

On-Board Hydrogen Gas Production System For Stirling Engines  

DOE Patents (OSTI)

A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

Johansson, Lennart N. (Ann Arbor, MI)

2004-06-29T23:59:59.000Z

219

Large Scale GSHP as Alternative Energy for American Farmers Geothermal  

Open Energy Info (EERE)

GSHP as Alternative Energy for American Farmers Geothermal GSHP as Alternative Energy for American Farmers Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Large Scale GSHP as Alternative Energy for American Farmers Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description We propose a large scale demonstration of solar assisted GSHP systems on two poultry farms in mid-Missouri. The heating load of Farm A with 4 barns will be 510 tons and Farm B with 5 barns will be 440 tons. Solar assisted GSHP systems will be installed, and new utility business model will be applied to both farms. Farm A will be constructed with commercial products in order to bring immediate impact to the industry. Farm B will also have a thermal energy storage system installed, and improved solar collectors will be used. A comprehensive energy analysis and economic study will be conducted.

220

Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy  

Science Journals Connector (OSTI)

Biological methods of hydrogen production are preferable to chemical methods because of the possibility to use sunlight,...2...and organic wastes as substrates for environmentally benign conversions, under modera...

Mark D. Redwood; Marion Paterson-Beedle…

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A Compact and Efficient Steam Methane Reformer for Hydrogen Production.  

E-Print Network (OSTI)

??A small-scale steam-methane reforming system for localized, distributed production of hydrogen offers improved performance and lower cost by integrating the following technologies developed at the… (more)

Quon, Willard

2012-01-01T23:59:59.000Z

222

Hydrogen (H2) Production by Anoxygenic Purple Nonsulfur Bacteria  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Jake McKinlay, Indiana University, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

223

Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review  

Energy.gov (U.S. Department of Energy (DOE))

This independent review report assesses the 2009 state-of-the-art and 2020 projected capital cost, energy efficiency, and levelized cost for hydrogen production from biomass via gasification.

224

Photo-induced hydrogen production in a helical peptide incorporating...  

NLE Websites -- All DOE Office Websites (Extended Search)

Photo-induced hydrogen production in a helical peptide incorporating a FeFe hydrogenase active site mimic Authors: Roy, A., Madden, C., and Ghirlanda, G. Title: Photo-induced...

225

Vacancy Announcements Posted for Hydrogen Production and Delivery Program  

Energy.gov (U.S. Department of Energy (DOE))

The Fuel Cell Technologies Office has posted two vacancy announcements for a position to serve as Program Manager for the Hydrogen Production and Delivery Program in the DOE EERE Fuel Cell Technologies Office. The closing date is October 28, 2014.

226

Highly Active Steam Reforming Catalyst for Hydrogen and Syngas Production  

Science Journals Connector (OSTI)

Toyo Engineering Corporation developed a steam reforming catalyst, which is four times as active as conventional catalysts, for hydrogen and syngas production from light natural gas. The catalyst has...3 plant. B...

Toru Numaguchi

2001-11-01T23:59:59.000Z

227

DOE Hydrogen and Fuel Cells Program Record 12014: Current U.S. Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

12014 Date: June 18, 2012 12014 Date: June 18, 2012 Title: Current U.S. Hydrogen Production Originator: Fred Joseck Approved by: Sunita Satyapal Date: June 26, 2012 Item: The United States currently produces about 9 million metric tons of hydrogen per year, enough to power approximately ~36-41 million FCEVs. References/Calculations:  "...9 million metric tons of hydrogen per year" The United States produces about 9 million metric tons per year for the captive and merchant markets. U.S. Hydrogen Production By Merchant & Captive Types 2009-2016 (Thousand Metric Tons) 1 Source: MarketsandMarkets, GLOBAL HYDROGEN GENERATION MARKET BY MERCHANT & CAPTIVE TYPE, DISTRIBUTED & CENTRALIZED GENERATION, APPLICATION & TECHNOLOGY - TRENDS &

228

Production of Hydrogen from Peanut Shells The goal of this project is the production of renewable hydrogen from agricultural  

E-Print Network (OSTI)

developed the technology for bio- oil to hydrogen via catalytic steam reforming and shift conversion-Tech, the National Renewable Energy Laboratory has demonstrated the production of hydrogen from biomass at a flow ratio of 1.5:1 was used as a carrier gas and also as a reactant in the reformer. The test

229

NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010  

SciTech Connect

This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

Charles V Park

2011-01-01T23:59:59.000Z

230

Process Intensification in Hydrogen Production from Biomass-Derived Syngas  

Science Journals Connector (OSTI)

Process Intensification in Hydrogen Production from Biomass-Derived Syngas ... A “one-box” process has been proposed and studied in order to economically produce pure hydrogen from biomass-derived syngas in the presence of its common impurities through the use of the water gas shift (WGS) reaction. ... (1) Hydrogen burns cleanly and produces more energy on a per mass basis than any other fuel; if widely adopted for both mobile and stationary power generation, it would reduce the emissions of pollutants typically associated with power production, and would potentially diminish the prospect of global warming. ...

Mitra Abdollahi; Jiang Yu; Hyun Tae Hwang; Paul K. T. Liu; Richard Ciora; Muhammad Sahimi; Theodore T. Tsotsis

2010-09-15T23:59:59.000Z

231

Variability of Load and Net Load in Case of Large Scale Distributed Wind Power  

SciTech Connect

Large scale wind power production and its variability is one of the major inputs to wind integration studies. This paper analyses measured data from large scale wind power production. Comparisons of variability are made across several variables: time scale (10-60 minute ramp rates), number of wind farms, and simulated vs. modeled data. Ramp rates for Wind power production, Load (total system load) and Net load (load minus wind power production) demonstrate how wind power increases the net load variability. Wind power will also change the timing of daily ramps.

Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Gomez-Lazaro, E.; Rawn, B.; Dobschinski, J.; Meibom, P.; Lannoye, E.; Aigner, T.; Wan, Y. H.; Milligan, M.

2011-01-01T23:59:59.000Z

232

Clean Energy Solutions Large Scale CHP and Fuel Cells Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Solutions Large Scale CHP and Fuel Cells Program Clean Energy Solutions Large Scale CHP and Fuel Cells Program Clean Energy Solutions Large Scale CHP and Fuel Cells Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Maximum Rebate CHP: $3,000,000 or 30% of project costs Fuel Cells: $3,000,000 or 45% of project costs Program Info Start Date 01/17/2013 State New Jersey Program Type State Grant Program Rebate Amount CHP greater than 1 MW-3 MW: $0.55/wattt CHP > 3 MW: $0.35/watt Fuel Cells > 1 MW with waste heat utilization: $2.00/watt Fuel Cells > 1 MW without waste heat utilization: $1.50/watt

233

Large-scale fuel ethanol from lignocellulose  

Science Journals Connector (OSTI)

Ethanol produced from lignocellulose is considered as a ... foreseeable technology. These are: conversion and production energy balances, suitability of ethanol as a transportation fuel, air quality impacts, raw ...

Lee R. Lynd

234

ARTICLE IN PRESS Modeling hydrogen sulfide emissions across the gas liquid interface  

E-Print Network (OSTI)

production methods in the US have led to the emergence of large- scale commeARTICLE IN PRESS Modeling hydrogen sulfide emissions across the gas­ liquid interface-film theory Hydrogen sulfide Process-based model Lagoon flux Mass transfer a b s t r a c t Hydrogen sulfide (H

Aneja, Viney P.

235

Effect of different gas releasing methods on anaerobic fermentative hydrogen production in batch cultures  

Science Journals Connector (OSTI)

Decreasing hydrogen partial pressure can not only increase the activity of the hydrogen enzyme but also decrease the products inhibition, so it is an appropriate method to enhance the fermentative hydrogen production

Sheng Chang; Jianzheng Li; Feng Liu; Ze Yu

2012-12-01T23:59:59.000Z

236

ECONOMIC FEASIBILITY ANALYSIS OF HYDROGEN PRODUCTION BY  

E-Print Network (OSTI)

. Shah and Raymond F. Drnevich Praxair, Inc. P.O. Box 44 Tonawanda, NY 14151 Abstract Praxair has on oxygen transport membrane (OTM) and hydrogen transport membrane (HTM). This system has a potential process option, both the OTM and the HTM were integrated into a single unit such that various processing

237

Solving large scale polynomial convex problems on \\ell_1/nuclear ...  

E-Print Network (OSTI)

Oct 24, 2012 ... Solving large scale polynomial convex problems on \\ell_1/nuclear norm balls by randomized first-order algorithms. Aharon Ben-Tal (abental ...

Aharon Ben-Tal

2012-10-24T23:59:59.000Z

238

Optimization Online - Large-Scale Linear Programming Techniques ...  

E-Print Network (OSTI)

Large-Scale Linear Programming Techniques for the Design of Protein Folding Potentials. Michael Wagner (mwagner ***at*** odu.edu) Jaroslaw Meller (jmeller

Michael Wagner

239

Large Scale Computing and Storage Requirements for Nuclear Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Science at NERSC HPC Requirements Reviews Requirements for Science: Target 2014 Nuclear Physics (NP) Large Scale Computing and Storage Requirements for Nuclear Physics:...

240

Microsoft Word - Vit Plant Large Scale Testing_20110901.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Sept. 1, 2011 Hanford Waste Treatment Plant awards large-scale testing subcontract to local engineering firm Testing will enable project to finalize safe mixing design MEDIA...

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Large Scale GSHP as Alternative Energy for American Farmers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large Scale GSHP as Alternative Energy for American Farmers Shawn Yunsheng Xu University of Missouri May 18, 2010 This presentation does not contain any proprietary confidential,...

242

Large Scale GSHP as Alternative Energy for American Farmers Geothermal...  

Open Energy Info (EERE)

Scale GSHP as Alternative Energy for American Farmers Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Large Scale GSHP as Alternative...

243

Auxiliary basis expansions for large-scale electronic structure calculations  

E-Print Network (OSTI)

large-scale electronic structure calculations. Yousung Jungcost of electronic structure calculations is to employIntroduction. Electronic structure calculations are normally

Jung, Yousung; Sodt, Alexander; Gill, Peter W.M.; Head-Gordon, Martin

2005-01-01T23:59:59.000Z

244

NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind to Hydrogen Project: Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Hydrogen Technologies and Systems Center Todd Ramsden, Kevin Harrison, Darlene Steward November 16, 2009 NREL/PR-560-47432 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL Wind2H2 RD&D Project * The National Renewable Energy Laboratory in partnership with Xcel Energy and DOE has designed, operates, and continues to perform testing on the wind-to-hydrogen (Wind2H2) project at the National Wind Technology Center in Boulder * The Wind2H2 project integrates wind turbines, PV arrays and electrolyzers to produce from renewable energy

245

Hydrogen production by the decomposition of water  

DOE Patents (OSTI)

How to produce hydrogen from water was a problem addressed by this invention. The solution employs a combined electrolytical-thermochemical sulfuric acid process. Additionally, high purity sulfuric acid can be produced in the process. Water and SO.sub.2 react in electrolyzer (12) so that hydrogen is produced at the cathode and sulfuric acid is produced at the anode. Then the sulfuric acid is reacted with a particular compound M.sub.r X.sub.s so as to form at least one water insoluble sulfate and at least one water insoluble oxide of molybdenum, tungsten, or boron. Water is removed by filtration; and the sulfate is decomposed in the presence of the oxide in sulfate decomposition zone (21), thus forming SO.sub.3 and reforming M.sub.r X.sub.s. The M.sub.r X.sub.s is recycled to sulfate formation zone (16). If desired, the SO.sub.3 can be decomposed to SO.sub.2 and O.sub.2 ; and the SO.sub.2 can be recycled to electrolyzer (12) to provide a cycle for producing hydrogen.

Hollabaugh, Charles M. (Los Alamos, NM); Bowman, Melvin G. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

246

Coupling a hydrogen production process to a nuclear reactor  

Science Journals Connector (OSTI)

Work is currently underway to define a pre-conceptual design of a hydrogen production plant. The reference case is a VHTR dedicated to hydrogen production using the sulphur-iodine process. The chemical part of the plant is based on a very detailed flow-sheet where all components are listed. Considering the volume and flow-rates of the circulating products, a detailed image of the chemical plant is drawn with several shops in parallel. A coupling circuit using gases was also studied with two intermediate heat exchangers at very high temperature. A specific heat transfer circuit is added inside the chemical part to distribute heat at the correct temperature. Optimisation of this circuit should lead to an increase in the overall efficiency of the process. Finally a methodology is proposed for the safety of the hydrogen production plant.

Pascal Anzieu; Patrick Aujollet; Dominique Barbier; Anne Bassi; Frederic Bertrand; Alain Le Duigou; Jean Leybros; Gilles Rodriguez

2008-01-01T23:59:59.000Z

247

Hydrogen Production from Carbohydrates: A Mini-Review  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Hydrogen Production from Carbohydrates: A Mini-Review Y.-H. Percival Zhang *,1,2,3 1 Department of Biological Systems Engineering, Virginia Tech, 210-A Seitz Hall, Blacksburg, VA 24061, USA 2 Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, Blacksburg, VA 24061, USA 3 DOE BioEnergy Science Center (BESC), Oak Ridge, TN 37831, USA * Tel: 540-231-7414. Fax: 540-231-7414. Email: ypzhang@vt.edu. The hydrogen economy promises a clean energy future featuring higher energy utilization ef ciency and fewer pollutants compared to liquid fuel/internal combustion engines. Hydrogen production from the enriched low-cost biomass carbohydrates would achieve nearly zero carbon emissions in a whole life cycle. In this book chapter, we present latest advances of hydrogen generation from biomass carbohydrates by chemical catalysis (e.g., gasi cation,

248

Life cycle assessment of various hydrogen production methods  

Science Journals Connector (OSTI)

A comprehensive life cycle assessment (LCA) is reported for five methods of hydrogen production, namely steam reforming of natural gas, coal gasification, water electrolysis via wind and solar electrolysis, and thermochemical water splitting with a Cu–Cl cycle. Carbon dioxide equivalent emissions and energy equivalents of each method are quantified and compared. A case study is presented for a hydrogen fueling station in Toronto, Canada, and nearby hydrogen resources close to the fueling station. In terms of carbon dioxide equivalent emissions, thermochemical water splitting with the Cu–Cl cycle is found to be advantageous over the other methods, followed by wind and solar electrolysis. In terms of hydrogen production capacities, natural gas steam reforming, coal gasification and thermochemical water splitting with the Cu–Cl cycle methods are found to be advantageous over the renewable energy methods.

E. Cetinkaya; I. Dincer; G.F. Naterer

2012-01-01T23:59:59.000Z

249

POWER SYSTEMS STABILITY WITH LARGE-SCALE WIND POWER PENETRATION  

E-Print Network (OSTI)

of offshore wind farms, wind power fluctuations may introduce several challenges to reliable power system behaviour due to natural wind fluctuations. The rapid power fluctuations from the large scale wind farms Generation Control (AGC) system which includes large- scale wind farms for long-term stability simulation

Bak-Jensen, Birgitte

250

Ethics, Logs and Videotape: Ethics in Large Scale User Trials  

E-Print Network (OSTI)

Ethics, Logs and Videotape: Ethics in Large Scale User Trials and User Generated Content Abstract ethical responsibilities we have towards participants. This workshop brings together researchers to discuss the ethical issues of running large-scale user trials, and to provide guidance for future research

Paris-Sud XI, Université de

251

Large Scale Parameter Sweep Studies Using Distributed Matlab  

E-Print Network (OSTI)

1 Large Scale Parameter Sweep Studies Using Distributed Matlab Vikas Argod Graduate Assistant 225. The implementation is done in Matlab. The discussion extends to large scale problems of similar type using distributed matlab. Use of distributed matlab reduced computation time significantly

Bjørnstad, Ottar Nordal

252

MEMORY MANAGEMENT FOR LARGE-SCALE NUMA MULTIPROCESSORS  

E-Print Network (OSTI)

MEMORY MANAGEMENT FOR LARGE-SCALE NUMA MULTIPROCESSORS Thomas J. LeBlanc Brian D. Marsh Michael L@cs.rochester.edu marsh@cs.rochester.edu scott@cs.rochester.edu March 1989 Abstract Large-scale shared-memory multiprocessors such as the BBN Butterfly and IBM RP3 Introduce a new level In the memory hierarchy: multiple

Scott, Michael L.

253

Large-Scale Hydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Hydropower Basics Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the stored water is released, it passes through and rotates turbines, which spin generators to produce electricity. Water stored in a reservoir can be accessed quickly for use during times when the demand for electricity is high. Dammed hydropower projects can also be built as power storage facilities.

254

Large-Scale Hydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Hydropower Basics Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the stored water is released, it passes through and rotates turbines, which spin generators to produce electricity. Water stored in a reservoir can be accessed quickly for use during times when the demand for electricity is high. Dammed hydropower projects can also be built as power storage facilities.

255

Discovery of Photocatalysts for Hydrogen Production  

SciTech Connect

This project for DOE was designed to address these materials-related issues through a combination of high-throughput screening of semiconductor candidates and theoretical modeling of nanostructures. High-throughput screening is an effective and economical way to examine a large number of candidates and identify those worthy of further study. Unfortunately, in the course of this project, we discovered no semiconductor candidates that can meet the DOE’s stringent requirements for an economically feasible photoelectrochemical process. However, some of our results indicated that several systems may have potential if further optimized. In particular, the published theoretical modeling work indicates that core-shell nanorod structures, if properly engineered, have the potential to overcome the shortfalls of current semiconductors. Although the synthesis of the designed core-shell nanorod structures proved to be beyond the current capabilities of our laboratories, recent advances in the synthesis of core-shell nanorod structures imply that the designed structures can be synthesized. SRI is confident that once these materials are made they will validate our models and lead to economical and environmentally friendly hydrogen from sunlight and water. The high-throughput photolysis analysis module developed at SRI will also have utility in applications such as identifying catalysts for photo-assisted chemical detoxification, as well as non-photolytic applications such as hydrogen storage, which can take advantage of the ability of the analysis module to monitor pressure over time.

D. Brent MacQueen

2006-10-01T23:59:59.000Z

256

Linearly Scaling 3D Fragment Method for Large-Scale Electronic Structure Calculations  

E-Print Network (OSTI)

for large scale electronic structure calculations. J. Phys.large-scale electronic struc- ture calculations. Phys. Rev.Large-Scale Electronic Structure Calculations Lin-Wang Wang,

Wang, Lin-Wang

2008-01-01T23:59:59.000Z

257

Linear scaling 3D fragment method for large-scale electronic structure calculations  

E-Print Network (OSTI)

large-scale electronic structure calculations. Phys. Rev. B,for large scale electronic structure calculations. J. Phys.Large-Scale Electronic Structure Calculations Lin-Wang Wang,

Wang, Lin-Wang

2008-01-01T23:59:59.000Z

258

Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings Wind and hydropower are currently being evaluated in the U.S. and abroad as electricity sources that could enable large volume production of renewable hydrogen for use in transportation and distributed power applications. To further explore this prospect the Fuel Cell Technologies Office, and the Wind and Hydropower Technologies Program at the Department of Energy held a workshop to bring together stakeholders from wind, hydropower, and the electrolysis industries on September 9-10, 2003. The main objectives of the workshop were to: 1) discuss with stakeholders their current activities related to hydrogen, 2) explore with industry opportunities for low-cost hydrogen production through integration between wind and hydropower, water electrolysis and the electricity grid, and 3) review and provide feedback on a current Department of Energy/National Renewable Energy Laboratory analysis efforts to study opportunities for wind electrolysis and other renewable electricity sources.

259

Idaho National Laboratory Experimental Research In High Temperature Electrolysis For Hydrogen And Syngas Production  

SciTech Connect

The Idaho National Laboratory (Idaho Falls, Idaho, USA), in collaboration with Ceramatec, Inc. (Salt Lake City, Utah, USA), is actively researching the application of solid oxide fuel cell technology as electrolyzers for large scale hydrogen and syngas production. This technology relies upon electricity and high temperature heat to chemically reduce a steam or steam / CO2 feedstock. Single button cell tests, multi-cell stack, as well as multi-stack testing has been conducted. Stack testing used 10 x 10 cm cells (8 x 8 cm active area) supplied by Ceramatec and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to ~15 kW testing capacity (H2 production rate based upon lower heating value).

Carl M. Stoots; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

2008-09-01T23:59:59.000Z

260

Solar-Powered Production of Molecular Hydrogen from Water  

Science Journals Connector (OSTI)

At the present time, the majority of industrial-scale hydrogen is produced by steam?methane reformation (SMR), even though the high-temperature conversion of methane to hydrogen results in the concomitant production of carbon monoxide and carbon dioxide. ... 7-9 The PV arrays are used to convert solar light to electricity in order to power alkaline (e.g., 27% KOH at pH 14.7) electrolyzers for producing hydrogen gas. ... Narayanan et al. describe a DC-powered hybrid system that drives a methanol fuel cell in reverse,10 while Soler et al. report on a solar-powered photo-Fenton process that produces hydrogen noncatalytically under severe conditions with a limited number of organic substrates. ...

Hyunwoong Park; Chad D. Vecitis; Wonyong Choi; Oleh Weres; Michael R. Hoffmann

2008-01-04T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Hydrogen Production from the Next Generation Nuclear Plant  

SciTech Connect

The Next Generation Nuclear Plant (NGNP) is a high temperature gas-cooled reactor that will be capable of producing hydrogen, electricity and/or high temperature process heat for industrial use. The project has initiated the conceptual design phase and when completed will demonstrate the viability of hydrogen generation using nuclear produced process heat. This paper explains how industry and the U.S. Government are cooperating to advance nuclear hydrogen technology. It also describes the issues being explored and the results of recent R&D including materials development and testing, thermal-fluids research, and systems analysis. The paper also describes the hydrogen production technologies being considered (including various thermochemical processes and high-temperature electrolysis).

M. Patterson; C. Park

2008-03-01T23:59:59.000Z

262

Ultrastructural Localization of Hydrogen Peroxide Production in Ligninolytic Phanerochaete chrysosporium Cells  

Science Journals Connector (OSTI)

...that H202 production activity...MATERIALS AND METHODS Organism...OF H.O. PRODUCTION IN P. CHRYSOSPORIUM...reaction, hydrogen peroxide...1972. Production of extracellular hydrogen peroxide...cytochemical methods for en...

Larry J. Forney; C. A. Reddy; H. Stuart Pankratz

1982-09-01T23:59:59.000Z

263

Hydrogen (H2) Production by Oxygenic Phototrophs  

NLE Websites -- All DOE Office Websites (Extended Search)

Production by Oxygenic Phototrophs Eric L. Hegg Michigan State University Great Lakes Bioenergy Research Center Bioresour. Technol. 2011, 102, 8589-8604 Major Challenges to H 2 Photoproduction Biological Challenges * Poor efficiency of H 2 production * Poor heterologous expression of H 2 -forming enzymes * Low quantum yields * Competition for reducing equivalents; poor electron coupling * Sensitivity of H 2 -forming enzymes to O 2 M. Ghirardi, Abstract #1751, Honolulu PRiME 2012 Technical Challenges * Mixture of H 2 and O 2 ; H 2 separation and storage * CO 2 addition and overall reactor design Overcoming Low Efficiency: Improving ET * Eliminate or down-regulate pathways competing for ele * Production of organic acids * Formation of NADPH/carbon fixation

264

Stabilization of Large Scale Structure by Adhesive Gravitational Clustering  

E-Print Network (OSTI)

The interplay between gravitational and dispersive forces in a multi-streamed medium leads to an effect which is exposed in the present note as the genuine driving force of stabilization of large-scale structure. The conception of `adhesive gravitational clustering' is advanced to interlock the fairly well-understood epoch of formation of large-scale structure and the onset of virialization into objects that are dynamically in equilibrium with their large-scale structure environment. The classical `adhesion model' is opposed to a class of more general models traced from the physical origin of adhesion in kinetic theory.

Thomas Buchert

1999-08-13T23:59:59.000Z

265

Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Cost Estimate Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory 1617 Cole Boulevard * Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 Independent Review Published for the U.S. Department of Energy Hydrogen and Fuel Cells Program NREL/BK-6A10-51726 October 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

266

CAPITAL AND OPERATING COST OF HYDROGEN PRODUCTION FROM COAL GASIFICATION  

NLE Websites -- All DOE Office Websites (Extended Search)

CAPITAL AND OPERATING COST OF HYDROGEN CAPITAL AND OPERATING COST OF HYDROGEN PRODUCTION FROM COAL GASIFICATION Final Report April 2003 Prepared for: The United States Department of Energy National Energy Technology Laboratory (NETL) under: Contract No. DE-AM26-99FT40465 between the NETL and Concurrent Technologies Corporation (CTC) Subcontract No. 990700362 between CTC and Parsons Infrastructure & Technology Group Inc. Task 50611 DOE Task Managers: James R. Longanbach Gary J. Stiegel Parsons Project Manager: Michael D. Rutkowski Principal Investigators: Thomas L. Buchanan Michael G. Klett Ronald L. Schoff PARSONS Capital and Operating Cost of Hydrogen Production from Coal Gasification Page i April 2003 TABLE OF CONTENTS Section Title Page List of Tables iii List of Figures iii

267

Bio-hydrogen production from renewable organic wastes  

SciTech Connect

Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

Shihwu Sung

2004-04-30T23:59:59.000Z

268

Biological Hydrogen Production Using a Membrane Bioreactor  

E-Print Network (OSTI)

was removed, producing 2200 mg/L of cells and 500 mL/h of biogas. When operated in MBR mode, the solids. This SRT increased the overall glucose utilization (98%), the biogas production rate (640 m,800 F 600 mg/L) both increased. However, the biogas produc- tion decreased (310 F 40 m

269

Syngas and hydrogen production in a volumetric radiant burner  

Science Journals Connector (OSTI)

The production of syngas is the most energy demanding and metal consuming stage in the conversion of gaseous hydrocarbons (GH's) into value-added products. Its complexity restrains many practical applications of chemical processing of GH's, especially for low scale of operation. The paper describes new compact and highly productive generator of syngas and hydrogen based on the combustion of GH's in volumetric permeable matrixes with locked IR radiation that can serve as a solution of this problem. It is shown that such simple devices can provide a highly efficient methane conversion into syngas and thus facilitate the utilization of low-capacity sources of GH's for economically feasible low scale syngas and hydrogen production from various local hydrocarbon sources.

V.S. Arutyunov; V.M. Shmelev; M. Yu Sinev; O.V. Shapovalova

2011-01-01T23:59:59.000Z

270

THERMOCATALYTIC CO2-FREE PRODUCTION OF HYDROGEN FROM HYDROCARBON FUELS  

E-Print Network (OSTI)

THERMOCATALYTIC CO2- FREE PRODUCTION OF HYDROGEN FROM HYDROCARBON FUELS N. Muradov Florida Solar Energy Center 1679 Clearlake Road, Cocoa, Florida 32922 tel. 321-638-1448, fax. 321-638-1010, muradov (except for the start-up operation). This results in the following advantages: (1) no CO/CO2 byproducts

271

Hydrogen Production in a Single Chamber Microbial Electrolysis Cell  

E-Print Network (OSTI)

) at greater yields than fermentation and at greater energy efficiencies than water electrolysis. It has been to produce water. A microbial electrolysis cell (MEC) operates in a manner similar to an MFC exceptHydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane D O U G L

272

Improving Photosynthesis for Hydrogen and Fuels Production January 24, 2011  

E-Print Network (OSTI)

Improving Photosynthesis for Hydrogen and Fuels Production January 24, 2011 Webinar Q&A Q: How do you induce hypoxic photosynthesis? I imagine you N-stress, to accumulate starch first? A to bring photosynthesis to a level lower than that of respiration. Since then, a number of labs

273

Lighting Up Enzymes for Solar Hydrogen Production (Fact Sheet)  

SciTech Connect

Scientists at the National Renewable Energy Laboratory (NREL) have combined quantum dots, which are spherical nanoparticles that possess unique size-tunable photophysical properties, with the high substrate selectivity and fast turnover of hydrogenase enzymes to achieve light-driven hydrogen (H2) production. They found that quantum dots of cadmium telluride coated in carboxylic acids easily formed highly stable complexes with the hydrogenase and that these hybrid assemblies functioned to catalyze H2 production using the energy of sunlight.

Not Available

2011-02-01T23:59:59.000Z

274

DOE Completes Large-Scale Carbon Sequestration Project Awards | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Large-Scale Carbon Sequestration Project Awards Completes Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards November 17, 2008 - 4:58pm Addthis Regional Partner to Demonstrate Safe and Permanent Storage of 2 Million Tons of CO2 at Wyoming Site WASHINGTON, DC - Completing a series of awards through its Regional Carbon Sequestration Partnership Program, the U.S. Department of Energy (DOE) today awarded $66.9 million to the Big Sky Regional Carbon Sequestration Partnership for the Department's seventh large-scale carbon sequestration project. Led by Montana State University-Bozeman, the Partnership will conduct a large-volume test in the Nugget Sandstone formation to demonstrate the ability of a geologic formation to safely, permanently and economically

275

Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Industrial Carbon Capture, Storage Plant Begins Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration project funded by the American Recovery and Reinvestment Act (ARRA) to move into the construction phase. Led by the Archer Daniels Midland Company (ADM), a member of DOE's Midwest Geological Sequestration Consortium, the Illinois-ICCS project is designed to sequester approximately 2,500 metric tons of carbon dioxide

276

Energy Department Applauds Nation's First Large-Scale Industrial Carbon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nation's First Large-Scale Industrial Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility August 24, 2011 - 6:23pm Addthis Washington, D.C. - The U.S. Department of Energy issued the following statement in support of today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur, Illinois. Supported by the 2009 economic stimulus legislation - the American Recovery and Reinvestment Act - the ambitious project will capture and store one million tons of carbon dioxide (CO2) per year produced as the result of processing corn into fuel-grade ethanol from the nearby Archer Daniels Midland biofuels plant. Since all of

277

DOE Completes Large-Scale Carbon Sequestration Project Awards | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Completes Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards November 17, 2008 - 4:58pm Addthis Regional Partner to Demonstrate Safe and Permanent Storage of 2 Million Tons of CO2 at Wyoming Site WASHINGTON, DC - Completing a series of awards through its Regional Carbon Sequestration Partnership Program, the U.S. Department of Energy (DOE) today awarded $66.9 million to the Big Sky Regional Carbon Sequestration Partnership for the Department's seventh large-scale carbon sequestration project. Led by Montana State University-Bozeman, the Partnership will conduct a large-volume test in the Nugget Sandstone formation to demonstrate the ability of a geologic formation to safely, permanently and economically

278

Energy Department Applauds Nation's First Large-Scale Industrial Carbon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Applauds Nation's First Large-Scale Industrial Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility August 24, 2011 - 6:23pm Addthis Washington, D.C. - The U.S. Department of Energy issued the following statement in support of today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur, Illinois. Supported by the 2009 economic stimulus legislation - the American Recovery and Reinvestment Act - the ambitious project will capture and store one million tons of carbon dioxide (CO2) per year produced as the result of processing corn into fuel-grade ethanol from the nearby Archer Daniels Midland biofuels plant. Since all of

279

Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Industrial Carbon Capture, Storage Plant Begins Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration project funded by the American Recovery and Reinvestment Act (ARRA) to move into the construction phase. Led by the Archer Daniels Midland Company (ADM), a member of DOE's Midwest Geological Sequestration Consortium, the Illinois-ICCS project is designed to sequester approximately 2,500 metric tons of carbon dioxide

280

How Three Retail Buyers Source Large-Scale Solar Electricity  

Office of Energy Efficiency and Renewable Energy (EERE)

Large-scale, non-utility solar power purchase agreements (PPAs) are still a rarity despite the growing popularity of PPAs across the country. In this webinar, participants will learn more about how...

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Retroreflective shadowgraph technique for large-scale flow visualization  

E-Print Network (OSTI)

for large-scale flow visualization, the simple shadow- graph can often provide the most robust solution photographed the shadowgram of a blasting-cap ex- plosion outdoors in daylight (see Fig. 6.14a of [1]). One

Settles, Gary S.

282

Surrogate modeling for large-scale black-box systems  

E-Print Network (OSTI)

This research introduces a systematic method to reduce the complexity of large-scale blackbox systems for which the governing equations are unavailable. For such systems, surrogate models are critical for many applications, ...

Liem, Rhea Patricia

2007-01-01T23:59:59.000Z

283

Large-Scale Industrial CCS Projects Selected for Continued Testing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Industrial CCS Projects Selected for Continued Testing Large-Scale Industrial CCS Projects Selected for Continued Testing Large-Scale Industrial CCS Projects Selected for Continued Testing June 10, 2010 - 1:00pm Addthis Washington, DC - Three Recovery Act funded projects have been selected by the U.S. Department of Energy (DOE) to continue testing large-scale carbon capture and storage (CCS) from industrial sources. The projects - located in Texas, Illinois, and Louisiana - were initially selected for funding in October 2009 as part of a $1.4 billion effort to capture carbon dioxide (CO2) from industrial sources for storage or beneficial use. The first phase of research and development (R&D) included $21.6 million in Recovery Act funding and $22.5 million in private funding for a total initial investment of $44.1 million.

284

DOE Awards First Three Large-Scale Carbon Sequestration Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Three Large-Scale Carbon Sequestration Projects First Three Large-Scale Carbon Sequestration Projects DOE Awards First Three Large-Scale Carbon Sequestration Projects October 9, 2007 - 3:14pm Addthis U.S. Projects Total $318 Million and Further President Bush's Initiatives to Advance Clean Energy Technologies to Confront Climate Change WASHINGTON, DC - In a major step forward for demonstrating the promise of clean energy technology, U.S Deputy Secretary of Energy Clay Sell today announced that the Department of Energy (DOE) awarded the first three large-scale carbon sequestration projects in the United States and the largest single set in the world to date. The three projects - Plains Carbon Dioxide Reduction Partnership; Southeast Regional Carbon Sequestration Partnership; and Southwest Regional Partnership for Carbon

285

Realistic Large Scale ad hoc Animal Monitoring Bartosz Wietrzyk, Milena Radenkovic  

E-Print Network (OSTI)

Realistic Large Scale ad hoc Animal Monitoring Bartosz Wietrzyk, Milena Radenkovic School for profitability of animal production as well as welfare of animals and farmers. In this paper we define requirements for such monitoring on the basis of questionnaires distributed to potential users and processing

Aickelin, Uwe

286

Holographic principle and large scale structure in the universe  

E-Print Network (OSTI)

A reasonable representation of large scale structure, in a closed universe so large it's nearly flat, can be developed by extending the holographic principle and assuming the bits of information describing the distribution of matter density in the universe remain in thermal equilibrium with the cosmic microwave background radiation. The analysis identifies three levels of self-similar large scale structure, corresponding to superclusters, galaxies, and star clusters, between today's observable universe and stellar systems. The self-similarity arises because, according to the virial theorem, the average gravitational potential energy per unit volume in each structural level is the same and depends only on the gravitational constant. The analysis indicates stellar systems first formed at z\\approx62, consistent with the findings of Naoz et al, and self-similar large scale structures began to appear at redshift z\\approx4. It outlines general features of development of self-similar large scale structures at redshift z<4. The analysis is consistent with observations for angular momentum of large scale structures as a function of mass, and average speed of substructures within large scale structures. The analysis also indicates relaxation times for star clusters are generally less than the age of the universe and relaxation times for more massive structures are greater than the age of the universe.

T. R. Mongan

2011-08-10T23:59:59.000Z

287

Hydrogen production using single-chamber membrane-free microbial electrolysis cells  

E-Print Network (OSTI)

efficiencies of hydrogen fuel cells in converting hydrogen to electricity. The development of advancedHydrogen production using single-chamber membrane-free microbial electrolysis cells Hongqiang Hu., Hydrogen production using single-chamber membrane-free microbial electrol- ysis cells, Water Research (2008

Tullos, Desiree

288

Co-production of Hydrogen and Electricity (A Developer's Perspective)  

NLE Websites -- All DOE Office Websites (Extended Search)

Co-production of Hydrogen and Electricity (A Developer's Perspective) Pinakin Patel FuelCell Energy, Inc. Transportation and Stationary Power Integration Workshop Fuel Cell Seminar 2008 Phoenix, AZ October 27, 2008 reliable, efficient, ultra-clean Presentation Outline * FuelCell Energy Overview * Direct Fuel Cell (DFC) Technology Status * Hydrogen Co-production Technology, Benefits and Status * Strategic Input for the DOE Workshop FCE Overview * Leading fuel cell developer for over 30 years - MCFC, SOFC, PAFC and PEM (up to 2 MW size products) - Over 230 million kWh of clean power produced world-wide (>60 installations) - Renewable fuels: over two dozen sites with ADG fuel - Ultra-clean technology: CARB-2007 certified Danbury, CT * Highly innovative approach to fuel cell development

289

Simulation Studies of Hydrogen Ion reflection from Tungsten for the Surface Production of Negative Hydrogen Ions  

SciTech Connect

The production efficiency of negative ions at tungsten surface by particle reflection has been investigated. Angular distributions and energy spectra of reflected hydrogen ions from tungsten surface are calculated with a Monte Carlo simulation code ACAT. The results obtained with ACAT have indicated that angular distributions of reflected hydrogen ions show narrow distributions for low-energy incidence such as 50 eV, and energy spectra of reflected ions show sharp peaks around 90% of incident energy. These narrow angular distributions and sharp peaks are favorable for the efficient extraction of negative ions from an ion source equipped with tungsten surface as negative ionization converter. The retained hydrogen atoms in tungsten lead to the reduction in extraction efficiency due to boarded angular distributions.

Kenmotsu, Takahiro; Wada, Motoi [Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan)

2011-09-26T23:59:59.000Z

290

Hydrogen Production by the Thermophilic Alga Mastigocladus laminosus: Effects of Nitrogen, Temperature, and Inhibition of Photosynthesis  

Science Journals Connector (OSTI)

...production of hydrogen by solar radiation was also...production of hydrogen by solar radiation was also...Although there are both advantages and disadvantages to this approach...Thus, the total solar energy conversion efficiency...

Kazuhisa Miyamoto; Patrick C. Hallenbeck; John R. Benemann

1979-09-01T23:59:59.000Z

291

E-Print Network 3.0 - alternative hydrogen production Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

a number of countries have quite a substantial production of hydrogen, among these are Germany and the USA... . In the Nordic countries most of the production of hydrogen is...

292

A Conjecture on 180° Production of High Energy Hydrogen Isotopes from Nuclei  

Science Journals Connector (OSTI)

......of 1 1igh energy hydrogen isotopes in the reac...func- tion. The production cross sections of the hydrogen isotopes are well...Assuming the production cross section of...the above mentioned method, we find it tend......

Fumiyo Uchiyama

1978-03-01T23:59:59.000Z

293

Coupling of Solar Energy to Hydrogen Peroxide Production in the Cyanobacterium Anacystis nidulans  

Science Journals Connector (OSTI)

...Physiology and Biotechnology Coupling of Solar Energy to Hydrogen Peroxide Production...system for the bioconversion of solar energy. Our experimental system was based...agar and alginate. Coupling of Solar Energy to Hydrogen Peroxide Production...

Mercedes Roncel; José A. Navarro; Miguel A. De la Rosa

1989-02-01T23:59:59.000Z

294

Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production  

E-Print Network (OSTI)

50% of daily production H 2 gas storage costs (separate fromNatural gas is currently the lowest cost hydrogen productioncosts are calculated for each station. On-site natural gas steam reformers The hydrogen production

Yang, Christopher; Ogden, Joan M

2005-01-01T23:59:59.000Z

295

Effect of gamma interferon on hydrogen peroxide production by cultured mouse peritoneal macrophages.  

Science Journals Connector (OSTI)

...increase in hydrogen peroxide production and only in...assayed by the method of Pick and...Immunol. Methods 38:161-170...superoxide and hydrogen peroxide production by macrophages...Immunol. Methods 46:211-226...

A K Sharp; D K Banerjee

1986-11-01T23:59:59.000Z

296

Overcoming the Barrier to Achieving Large-Scale Production -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study This presentation summarizes the information given by Semprius during the Photovoltaic Validation and Bankability Workshop in San Jose, California, on August 31, 2011....

297

Overcoming the Barrier to Achieving Large-Scale Production -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CPV TestingValidation * Solar Cell - NREL (Golden, CO) - Fraunhofer ISE (Freiburg, Germany) * Module - NREL (Golden, CO) - SNL (Albuquerque, NM) - Fraunhofer ISE (Freiburg,...

298

Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry Derived Materials  

SciTech Connect

Solar photoelectrochemical water-splitting has long been viewed as one of the “holy grails” of chemistry because of its potential impact as a clean, renewable method of fuel production. Several known photocatalytic semiconductors can be used; however, the fundamental mechanisms of the process remain poorly understood and no known material has the required properties for cost effective hydrogen production. In order to investigate morphological and compositional variations in metal oxides as they relate to opto-electrochemical properties, we have employed a combinatorial methodology using automated, high-throughput, electrochemical synthesis and screening together with conventional solid-state methods. This report discusses a number of novel, high-throughput instruments developed during this project for the expeditious discovery of improved materials for photoelectrochemical hydrogen production. Also described within this report are results from a variety of materials (primarily tungsten oxide, zinc oxide, molybdenum oxide, copper oxide and titanium dioxide) whose properties were modified and improved by either layering, inter-mixing, or doping with one or more transition metals. Furthermore, the morphologies of certain materials were also modified through the use of structure directing agents (SDA) during synthesis to create mesostructures (features 2-50 nm) that increased surface area and improved rates of hydrogen production.

Jaramillo, Thomas F.; Baeck, Sung-Hyeon; Kleiman-Shwarsctein, Alan; Stucky, Galen D. (PI); McFarland, Eric W. (PI)

2004-10-25T23:59:59.000Z

299

Low-Cost Hydrogen Distributed Production System Development  

SciTech Connect

H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen costing approximately $2.87/kg, still above the DOE's 2010 $2.50/kg target. We also began laboratory testing of reforming ethanol, which we showed is currently the least expensive approach to making renewable hydrogen. Extended testing of neat ethanol in micro-reactors was successful, and we also were able to reform E-85 acquired from a local fueling station for 2,700 hours, although some modifications were required to handle the 15% gasoline present in E-85. We began initial tests of a catalyst-coated wall reformer tube that showed some promise in reducing the propensity to coke with E-85. These coated-wall tests ran for 350 hours. Additional resources would be required to commercialize an ethanol reformer operating on E-85, but there is no market for such a product at this time, so this ethanol reformer project was moth-balled pending future government or industry support. The two main objectives of this project were: (1) to design, build and test a steam methane reformer and pressure swing adsorption system that, if scaled up and mass produced, could potentially meet the DOE 2015 cost and efficiency targets for on-site distributed hydrogen generation, and (2) to demonstrate the efficacy of a low-cost renewable hydrogen generation system based on reforming ethanol to hydrogen at the fueling station.

C.E. (Sandy) Thomas, Ph.D., President; Principal Investigator, and

2011-03-10T23:59:59.000Z

300

Requirements for low cost electricity and hydrogen fuel production from multi-unit intertial fusion energy plants with a shared driver and target factory  

E-Print Network (OSTI)

achieving low CoE for hydrogen production. Although other WEfor competitive hydrogen production, such advanced targetsElectricity and Hydrogen Fuel Production from Multi-Unit

Logan, B. Grant; Moir, Ralph; Hoffman, Myron A.

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Overview of hydrogen production research in the Clean Energy Research Laboratory (CERL) at UOIT  

Science Journals Connector (OSTI)

Abstract This paper discusses new hydrogen production methods that have been actively investigated both theoretically and experimentally at UOIT and some recent findings through experimental measurements and analysis. A major cluster of activities at UOIT has developed novel hydrogen production systems from electrolysis to thermochemical cycles and from integrated cycles to solar-light based hydrogen production processes. The results confirm that both thermochemical cycles and photochemical processes offer promising potential for sustainable hydrogen production.

I. Dincer; G.F. Naterer

2014-01-01T23:59:59.000Z

302

Aminoguanidine inhibits aortic hydrogen peroxide production, VSMC NOX activity and hypercontractility in diabetic mice  

E-Print Network (OSTI)

hydrogen peroxide production Aortic H 2 O 2 was detected specifically using an Amplex Red Assay (details see Methods

Oak, Jeong-Ho; Youn, Ji-Youn; Cai, Hua

2009-01-01T23:59:59.000Z

303

Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis: Independent Review  

SciTech Connect

This independent review examines DOE cost targets for state-of-the art hydrogen production using water electrolysis.

Not Available

2009-09-01T23:59:59.000Z

304

Life Cycle Assessment of Renewable Hydrogen Production via Wind/Electrolysis: Milestone Completion Report  

Energy.gov (U.S. Department of Energy (DOE))

This report summarizes the results of a lifecycle assessment of a renewable hydrogen production process employing wind/electrolysis.

305

Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report  

Energy.gov (U.S. Department of Energy (DOE))

This report updates the 1999 economic analysis of NREL’s photobiological hydrogen production from Chlamydomonas reinhardtii.

306

Hydrogen Production by Noncatalytic Autothermal Reformation of Aviation Fuel Using Supercritical Water  

Science Journals Connector (OSTI)

Hydrogen Production by Noncatalytic Autothermal Reformation of Aviation Fuel Using Supercritical Water ... Energy Fuels, 2009, 23 (12), ...

Jason W. Picou; Jonathan E. Wenzel; H. Brian Lanterman; Sunggyu Lee

2009-10-07T23:59:59.000Z

307

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network (OSTI)

compressor Compressed hydrogen storage Figure 2: High-compressor Compressed hydrogen storage Clean Energy Group lduction, and a hydrogen compression, storage, and Energy

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

308

Anthracycline Antibiotic-stimulated Superoxide, Hydrogen Peroxide, and Hydroxyl Radical Production by NADH Dehydrogenase  

Science Journals Connector (OSTI)

...ani nand hydrogen peroxide production by NADH dehydrogenase...MATERIALS AND METHODS Materials...Superoxide production by NADH dehydrogenase...with the hydrogen ion concentration...Materials and Methods." The paired...ani nand hydrogen peroxide...elicit methane production from DMSO...Materials and Methods." In these...

James H. Doroshow

1983-10-01T23:59:59.000Z

309

Short Communication High hydrogen production rate of microbial electrolysis cell (MEC) with  

E-Print Network (OSTI)

of these methods so far shown sufficient promise for economical production of hydrogen (Miyake et al., 1999; WoodShort Communication High hydrogen production rate of microbial electrolysis cell (MEC) with reduced cells (MECs) require high hydrogen production rates and a compact reactor. These goals can be achieved

310

A HYBRID ADSORBENT-MEMBRANE REACTOR (HAMR) SYSTEM FOR HYDROGEN PRODUCTION  

E-Print Network (OSTI)

hydrogen production for proton exchange membrane (PEM) fuel cells for various mobile and stationaryA HYBRID ADSORBENT-MEMBRANE REACTOR (HAMR) SYSTEM FOR HYDROGEN PRODUCTION A. Harale, H. Hwang, P recently our focus has been on new HAMR systems for hydrogen production, of potential interest to pure

Southern California, University of

311

Electron Source in Photoinduced Hydrogen Production on Pt-Supported TiO2 Particles  

Science Journals Connector (OSTI)

Electron Source in Photoinduced Hydrogen Production on Pt-Supported TiO2 Particles ... Comment on “Electron Source in Photoinduced Hydrogen Production on Pt-Supported TiO2 Particles” ... Comment on “Electron Source in Photoinduced Hydrogen Production on Pt-Supported TiO2 Particles” ...

Toshiyuki Abe; Eiji Suzuki; Kentaro Nagoshi; Kohichi Miyashita; Masao Kaneko:

2000-03-24T23:59:59.000Z

312

Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

60-46674 60-46674 September 2009 Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production March 27, 2008 - August 31, 2009 B.D. James, G.N. Baum, J. Perez, and K.N. Baum Directed Technologies, Inc. Arlington, Virginia National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Subcontract Report NREL/SR-560-46674 September 2009 Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production March 27, 2008 - August 31, 2009 B.D. James, G.N. Baum, J. Perez, and K.N. Baum

313

Fuzzy Delphi method for evaluating hydrogen production technologies  

Science Journals Connector (OSTI)

The purpose of this research is to establish an evaluation model for selecting the most appropriate technology for development in Taiwan, based on 14 evaluation criteria. Due to the inherent uncertainty and imprecision associated with the mapping of decision makers’ perception to crisp values, linguistic variables are used to assess the weights of the criteria and the ratings of each technology with respect to each criterion. The criteria weights and technology ratings are collected through a seven-point linguistic scale using a Delphi questionnaire. The linguistic scores are then converted into fuzzy numbers, and a consensus of the decision makers’ opinions on weights and ratings is mathematically derived using fuzzy Delphi methodology. We have used the model to evaluate seven different hydrogen production technologies. The results indicate that hydrogen production via electrolysis by wind power and that via electrolysis by photovoltaic electricity are the two technologies that should be chosen for further development.

Pao-Long Chang; Chiung-Wen Hsu; Po-Chien Chang

2011-01-01T23:59:59.000Z

314

A NOVEL MEMBRANE REACTOR FOR DIRECT HYDROGEN PRODUCTION FROM COAL  

SciTech Connect

Gas Technology Institute is developing a novel concept of membrane reactor coupled with a gasifier for high efficiency, clean and low cost production of hydrogen from coal. The concept incorporates a hydrogen-selective membrane within a gasification reactor for direct extraction of hydrogen from coal-derived synthesis gases. The objective of this project is to determine the technical and economic feasibility of this concept by screening, testing and identifying potential candidate membranes under high temperature, high pressure, and harsh environments of the coal gasification conditions. The best performing membranes will be selected for preliminary reactor design and cost estimates. Hydrogen permeation data for several perovskite membranes BCN (BaCe{sub 0.9}Nd{sub 0.1}O{sub 3-x}), SCE (SrCe{sub 0.9}Eu{sub 0.1}O{sub 3}) and SCTm (SrCe{sub 0.95}Tm{sub 0.05}O{sub 3}) have been successfully obtained for temperatures between 800 and 950 C and pressures from 1 to 12 bar in this project. However, it is known that the cerate-based perovskite materials can react with CO{sub 2}. Therefore, the stability issue of the proton conducting perovskite materials under CO{sub 2} or H{sub 2}S environments was examined. Tests were conducted in the Thermo Gravimetric Analyzer (TGA) unit for powder and disk forms of BCN and SCE. Perovskite materials doped with zirconium (Zr) are known to be resistant to CO{sub 2}. The results from the evaluation of the chemical stability for the Zr doped perovskite membranes are presented. During this reporting period, flowsheet simulation was also performed to calculate material and energy balance based on several hydrogen production processes from coal using high temperature membrane reactor (1000 C), low temperature membrane reactor (250 C), or conventional technologies. The results show that the coal to hydrogen process employing both the high temperature and the low temperature membrane reactors can increase the hydrogen production efficiency (cold gas efficiency) by more than 50% compared to the conventional process. Using either high temperature or low temperature membrane reactor process also results in an increase of the cold gas efficiencies as well as the thermal efficiencies of the overall process.

Shain Doong; Estela Ong; Mike Atroshenko; Francis Lau; Mike Roberts

2005-07-29T23:59:59.000Z

315

COMMENTS OF THE LARGE-SCALE SOLAR ASSOCIATION TO DEPARTMENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMENTS OF THE LARGE-SCALE SOLAR ASSOCIATION TO DEPARTMENT COMMENTS OF THE LARGE-SCALE SOLAR ASSOCIATION TO DEPARTMENT OF ENERGY'S RAPID RESPONSE TEAM FOR TRANSMISSION'S REQUEST FOR INFORMATION Submitted by electronic mail to: Lamont.Jackson@hq.doe.gov The Large-scale Solar Association appreciates this opportunity to respond to the Department of Energy's (DOE) Rapid Response Team for Transmission's (RRTT) Request for Information. 1 We applaud the DOE for creating the RRTT and continuing to advance the efforts already made under the Memorandum of Understanding (MOU) entered into by nine Federal agencies in 2009 to expedite electric transmission construction. We also applaud the federal and state agencies that have expanded the Renewable Energy Policy Group and the Renewable Energy Action Team in California to focus on transmission, and hope that the tremendous

316

Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and Other Large Systems Event Sponsor: Leadership Computing Facility Seminar Start Date: Dec 5 2013 - 2:00pm Building/Room: Building 240/Room 4301 Location: Argonne National Laboratory Speaker(s): Dmitri G. Fedorov Speaker(s) Title: National Institute of Advanced Industrial Science and Technology (AIST) Host: Yuri Alexeev Our approach to large scale calculations is based on fragmenting a molecular system into pieces, and performing quantum-mechanical calculations of these fragments and their pairs in the fragment molecular orbital method (FMO). After a brief summary of the methodology, some typical applications to protein-ligand complexes, chemical reactions in explicit solvent, and nanomaterials (silicon nanowires, zeolites.

317

Nevada Weatherizes Large-Scale Complex | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Weatherizes Large-Scale Complex Nevada Weatherizes Large-Scale Complex Nevada Weatherizes Large-Scale Complex July 1, 2010 - 10:11am Addthis What does this project do? This nonprofit weatherized a 22-unit low-income multifamily complex, reducing the building's duct leakage from 90 percent to just 5 percent. The weatherization program of the Rural Nevada Development Corporation (RNDC) reached a recent success in its eleven counties-wide territory. In June, the nonprofit finished weatherizing a 22-unit low-income multifamily complex, reducing the building's duct leakage from 90 percent to just 5 percent. "That is one big savings and is why I am proud of this project," says Dru Simerson, RNDC Weatherization Manager. RNDC's crew replaced all windows and 17 furnaces and installed floor

318

Cosmological Implications of the CMB Large-scale Structure  

E-Print Network (OSTI)

WMAP and Planck may have uncovered several anomalies in the full CMB sky that could indicate possible new physics driving the growth of density fluctuations in the early Universe. These include an unusually low power at the largest scales and an apparent alignment of the quadrupole and octopole moments. In LCDM, the quadrupole and octopole moments should be statistically independent. These low probability features may simply be due to posterior selections from many such possible effects. If this is not the case, however, their combined statistical significance would be equal to the product of their individual significances. Ignoring the biasing due to posterior selection, the missing large-angle correlations would have a probability as low as ~0.1% and the low-l multipole alignment would be unlikely at the ~4.9% level; under the least favourable conditions, their simultaneous observation in the context of the standard model could then be likely at only the ~0.005% level. In this paper, we explore the possibility that these features are indeed anomalous, and show that the corresponding probability of CMB multipole alignment in the R_h=ct Universe would then be ~7-10%, depending on the number of large-scale Sachs-Wolfe induced fluctuations. Since the low power at the largest spatial scales is reproduced in this cosmology without the need to invoke cosmic variance, the overall likelihood of observing both of these features in the CMB is > 7%, much more likely than in LCDM. The key physical ingredient responsible for this difference is the existence in the former of a maximum fluctuation size at the time of recombination, which is absent in the latter because of inflation.

Fulvio Melia

2014-09-27T23:59:59.000Z

319

Comparative Environmental Impact Evaluation of Hydrogen Production Methods from Renewable and Nonrenewable Sources  

Science Journals Connector (OSTI)

In this chapter, a comparative environmental impact study of possible hydrogen production methods from renewable and nonrenewable sources is undertaken ... potential, GWP and acidification potential, AP), production

Canan Acar; Ibrahim Dincer

2013-01-01T23:59:59.000Z

320

The development of autocatalytic structural materials for use in the sulfur-iodine process for the production of hydrogen .  

E-Print Network (OSTI)

??The Sulfur-Iodine Cycle for the thermochemical production of hydrogen offers many benefits to traditional methods of hydrogen production. As opposed to steam methane reforming -… (more)

Miu, Kevin (Kevin K.)

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Chemical Hydride Slurry for Hydrogen Production and Storage  

SciTech Connect

The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston University have demonstrated the technical viability of the process and have provided data for the cost analyses that have been performed. We also concluded that a carbothermic process could also produce magnesium at acceptable costs. The use of slurry as a medium to carry chemical hydrides has been shown during this project to offer significant advantages for storing, delivering, and distributing hydrogen: • Magnesium hydride slurry is stable for months and pumpable. • The oils of the slurry minimize the contact of oxygen and moisture in the air with the metal hydride in the slurry. Thus reactive chemicals, such as lithium hydride, can be handled safely in the air when encased in the oils of the slurry. • Though magnesium hydride offers an additional safety feature of not reacting readily with water at room temperatures, it does react readily with water at temperatures above the boiling point of water. Thus when hydrogen is needed, the slurry and water are heated until the reaction begins, then the reaction energy provides heat for more slurry and water to be heated. • The reaction system can be relatively small and light and the slurry can be stored in conventional liquid fuel tanks. When transported and stored, the conventional liquid fuel infrastructure can be used. • The particular metal hydride of interest in this project, magnesium hydride, forms benign byproducts, magnesium hydroxide (“Milk of Magnesia”) and magnesium oxide. • We have estimated that a magnesium hydride slurry system (including the mixer device and tanks) could meet the DOE 2010 energy density goals. ? During the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering hydrogen. Further evaluation and development of this concept will be performed as follow-on work under a

McClaine, Andrew W.

2008-09-30T23:59:59.000Z

322

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network (OSTI)

Hydrogen from Solar via Light- Assisted High-TemperatureHydrogen from Solar via Light-Assisted High-Temperature

Luc, Wesley Wai

323

DOE Hydrogen Analysis Repository: H2 Production by Fermentation  

NLE Websites -- All DOE Office Websites (Extended Search)

H2 Production by Fermentation H2 Production by Fermentation Project Summary Full Title: Boundary Analysis for H2 Production by Fermentation Project ID: 70 Principal Investigator: Tim Eggeman Keywords: Hydrogen production; pressure swing adsorption (PSA); glucose; costs; fermentation Performer Principal Investigator: Tim Eggeman Organization: Neoterics International Address: 2319 S. Ellis Ct. Lakewood, CO 80228 Telephone: 303-358-6390 Email: time@NeotericsInt.com Sponsor(s) Name: Roxanne Garland Organization: DOE/EERE/HFCIT Telephone: 202-586-7260 Email: Roxanne.Garland@ee.doe.gov Name: Margaret Mann Organization: National Renewable Energy Laboratory Telephone: 303-275-2921 Email: Margaret_mann@nrel.gov Period of Performance Start: July 2001 End: September 2004 Project Description Type of Project: Analysis

324

HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION FROM NUCLEAR ENERGY  

SciTech Connect

An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate.

James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Joseph J. Hartvigsen

2005-10-01T23:59:59.000Z

325

Photoelectrochemical Hydrogen Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Arun Madan MVSystems, Incorporated (MVS) 500 Corporate Circle, Suite L Golden, CO 80401 Phone: (303) 271-9907 Email: ArunMadan@aol.com or amadan@mvsystemsinc.com DOE Managers HQ: Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-FC36-07GO17105, A00 Subcontractor: University of Hawaii at Manoa (UH), Honolulu, HI Project Start Date: September 1, 2007 Project End Date: December 31, 2012 Fiscal Year (FY) 2012 Objectives Work closely with the DOE Working Group on * Photoelectrochemical (PEC) Hydrogen Production for optimizing PEC materials and devices. Develop new PEC film materials compatible with high- *

326

Resource Analysis for Hydrogen Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Marc W. Melaina (Primary Contact), Michael Penev and Donna Heimiller National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3836 Email: Marc.Melaina@nrel.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@hq.doe.gov Project Start Date: October 1, 2009 Project End Date: September 28, 2012 Fiscal Year (FY) 2012 Objectives Understand the hydrogen production requirements for a * future demand scenario Estimate low-carbon energy resources required to meet * the future scenario demand Compare resource requirements to current consumption * and projected future consumption Determine resource availability geographically and on a *

327

A Novel Membrane Reactor for Direct Hydrogen Production From Coal  

SciTech Connect

Gas Technology Institute has developed a novel concept of a membrane reactor closely coupled with a coal gasifier for direct extraction of hydrogen from coal-derived syngas. The objective of this project is to determine the technical and economic feasibility of this concept by screening, testing and identifying potential candidate membranes under the coal gasification conditions. The best performing membranes were selected for preliminary reactor design and cost estimate. The overall economics of hydrogen production from this new process was assessed and compared with conventional hydrogen production technologies from coal. Several proton-conducting perovskite membranes based on the formulations of BCN (BaCe{sub 0.8}Nd{sub 0.2}O{sub 3-x}), BCY (BaCe{sub 0.8}Y{sub 0.2}O{sub 3-x}), SCE (Eu-doped SrCeO{sub 3}) and SCTm (SrCe{sub 0.95}Tm{sub 0.05}O{sub 3}) were successfully tested in a new permeation unit at temperatures between 800 and 1040 C and pressures from 1 to 12 bars. The experimental data confirm that the hydrogen flux increases with increasing hydrogen partial pressure at the feed side. The highest hydrogen flux measured was 1.0 cc/min/cm{sup 2} (STP) for the SCTm membrane at 3 bars and 1040 C. The chemical stability of the perovskite membranes with respect to CO{sub 2} and H{sub 2}S can be improved by doping with Zr, as demonstrated from the TGA (Thermal Gravimetric Analysis) tests in this project. A conceptual design, using the measured hydrogen flux data and a modeling approach, for a 1000 tons-per-day (TPD) coal gasifier shows that a membrane module can be configured within a fluidized bed gasifier without a substantial increase of the gasifier dimensions. Flowsheet simulations show that the coal to hydrogen process employing the proposed membrane reactor concept can increase the hydrogen production efficiency by more than 50% compared to the conventional process. Preliminary economic analysis also shows a 30% cost reduction for the proposed membrane reactor process, assuming membrane materials meeting DOE's flux and cost target. Although this study shows that a membrane module can be configured within a fluidized bed gasifier, placing the membrane module outside the gasifier in a closely coupled way in terms of temperature and pressure can still offer the same performance advantage. This could also avoid the complicated fluid dynamics and heat transfer issues when the membrane module is installed inside the gasifier. Future work should be focused on improving the permeability and stability for the proton-conducting membranes, testing the membranes with real syngas from a gasifier and scaling up the membrane size.

Shain Doong; Estela Ong; Mike Atrosphenko; Francis Lau; Mike Roberts

2006-01-20T23:59:59.000Z

328

NETL: ICCS Area 1 - Air Products and Chemicals, Inc  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Products and Chemicals, Inc. - Industrial Carbon Capture and Sequestration Air Products and Chemicals, Inc. - Industrial Carbon Capture and Sequestration Air Products and Chemicals, Inc.: Demonstration of CO2 Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production Allentown, Pennsylvania PROJECT FACT SHEET Air Products and Chemicals, Inc.: Demonstration of CO2 Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production [PDF-1.6MB] (Oct 2012) ENVIRONMENTAL REPORTS APCI Environmental Assessment [PDF-30MB] FONSI Finding of no significant impact [PDF-257KB] CONSTRUCTION PHOTOS [PDF-572.9KB] PROGRAM PUBLICATIONS Information to come. PAPERS AND PRESENTATIONS Demonstration of Carbon Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production or "Port Arthur CCUS" [PDF-1.13MB] (May 2013)

329

Parallel Stochastic Gradient Algorithms for Large-Scale Matrix ...  

E-Print Network (OSTI)

On large-scale matrix completion tasks, Jellyfish is orders of magnitude more efficient than ...... NNLS was written in Matlab, and some of the functions are available .... Figure 6: Low-Rank Factorization Graph on (A) Movielens1M and (B)

2013-03-21T23:59:59.000Z

330

Lessons from Large-Scale Renewable Energy Integration Studies: Preprint  

SciTech Connect

In general, large-scale integration studies in Europe and the United States find that high penetrations of renewable generation are technically feasible with operational changes and increased access to transmission. This paper describes other key findings such as the need for fast markets, large balancing areas, system flexibility, and the use of advanced forecasting.

Bird, L.; Milligan, M.

2012-06-01T23:59:59.000Z

331

Opportunistic Evolution: Efficient Evolutionary Computation on Large-Scale  

E-Print Network (OSTI)

Opportunistic Evolution: Efficient Evolutionary Computation on Large-Scale Computational Grids evaluation designed for deployment of evo- lutionary computation to very large grid computing ar- chitectures evolutionary com- putation toolkit to a commercial Java-based grid comput- ing platform known as Frontier

Luke, Sean

332

Opportunistic Evolution: Efficient Evolutionary Computation on Large-Scale  

E-Print Network (OSTI)

Opportunistic Evolution: Efficient Evolutionary Computation on Large-Scale Computational Grids evaluation designed for deployment of evo- lutionary computation to very large grid computing ar- chitectures evolutionary computa- tion toolkit to a commercial Java-based grid computing plat- form known as Frontier

George Mason University

333

Large Scale Mining of Molecular Fragments with Wildcards  

E-Print Network (OSTI)

Large Scale Mining of Molecular Fragments with Wildcards Heiko Hofer1 , Christian Borgelt2 a novel molecule will be active or inactive, so that future chemical tests can be focused on the most molecular fragments to discriminate between active and inactive molecules. In this paper we present two

Borgelt, Christian

334

Redundancy Control in Large Scale Sensor Networks via Compressive Sensing  

E-Print Network (OSTI)

, China. The authors deployed 100 sensor nodes and 1096 relay nodes to monitor the urban CO2 in a 5000(mRedundancy Control in Large Scale Sensor Networks via Compressive Sensing Liwen Xu1 , Yongcai Wang1, and require high data storage and management costs. To deal with these challenges, compressive sensing (CS

Wang, Yongcai

335

A Large-Scale Deforestation Experiment: Effects of Patch Area  

E-Print Network (OSTI)

A Large-Scale Deforestation Experiment: Effects of Patch Area and Isolation on Amazon Birds Gonçalo,4 Thomas E. Lovejoy1,5 As compared with extensive contiguous areas, small isolated habitat patches lack many species. Some species disappear after isolation; others are rarely found in any small patch

Stouffer, Phil

336

A large-scale exploration of group viewing patterns  

Science Journals Connector (OSTI)

We present a large-scale study of television viewing habits, focusing on how individuals adapt their preferences when consuming content with others. While there has been a great deal of research on modeling individual preferences, there has been considerably ... Keywords: group recommendation, group viewing patterns

Allison J.B. Chaney, Mike Gartrell, Jake M. Hofman, John Guiver, Noam Koenigstein, Pushmeet Kohli, Ulrich Paquet

2014-06-01T23:59:59.000Z

337

An Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

An Analysis of Hydrogen An Analysis of Hydrogen Production from Renewable Electricity Sources Preprint J.I. Levene, M.K. Mann, R. Margolis, and A. Milbrandt National Renewable Energy Laboratory Prepared for ISES 2005 Solar World Congress Orlando, Florida August 6-12, 2005 Conference Paper NREL/CP-560-37612 September 2005 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

338

Enhanced Hydrogen and 1,3-Propanediol Production From Glycerol by Fermentation Using  

E-Print Network (OSTI)

ARTICLE Enhanced Hydrogen and 1,3-Propanediol Production From Glycerol by Fermentation Using Mixed value products, such as hydrogen gas and 1,3-propanediol (PD), was examined using anaerobic fermentation for hydrogen produc- tion over other methods, such as electrolytic or thermo- chemical processes

339

Current (2009) State-of-the-Art Hydrogen Production Cost Estimate  

E-Print Network (OSTI)

Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis National Cost Estimate Using Water Electrolysis To: Mr. Mark Ruth, NREL, DOE Hydrogen Systems Integration Office. For central production, the hydrogen cost is at the plant gate of an electrolysis facility with a capacity

340

Rapid hydrogen production from water using aluminum nanoclusters: A quantum molecular dynamics simulation study  

E-Print Network (OSTI)

Rapid hydrogen production from water using aluminum nanoclusters: A quantum molecular dynamics Available online 31 December 2013 Keywords: Hydrogen production Water Aluminum nanoclusters Quantum molecular dynamics simulation It is hoped that a hydrogen-on-demand generator may one day start with just

Southern California, University of

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Production of Hydrogen Peroxide by Murine Epidermal Keratinocytes following Treatment with the Tumor Promoter 12-O-Tetradecanoylphorbol-13-acetate  

Science Journals Connector (OSTI)

...measurement of hydrogen peroxide production at the 10...biochemical methods for ROI detection...intracellular hydrogen peroxide levels...A sensitive method for the estimation of hydrogen peroxide in...nism: the production of Superoxide...

Fredika M. Robertson; Andrew J. Beavis; Tatiana M. Oberyszyn; Sean M. O'Connell; Anthea Dokidos; Debra L. Laskin; Jeffrey D. Laskin; and John J. Reiners, Jr.

1990-09-15T23:59:59.000Z

342

Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production Analysis Using the H2A v3 Model (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A v3 Model (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A v3 Model (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A v3 Model (Text Version) on Google Bookmark Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A v3 Model (Text Version) on Delicious Rank Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A v3 Model (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A v3 Model (Text Version) on AddThis.com...

343

Photoelectrochemical Hydrogen Production on InP Nanowire Arrays with Molybdenum Sulfide Electrocatalysts  

Science Journals Connector (OSTI)

Photoelectrochemical Hydrogen Production on InP Nanowire Arrays with Molybdenum Sulfide Electrocatalysts ... Several semiconductor nanowire systems, synthesized by different methods, have been investigated by photoelectrochemistry. ... power available from the hydrogen produced and the power supplied by an external source. ...

Lu Gao; Yingchao Cui; Jia Wang; Alessandro Cavalli; Anthony Standing; Thuy T. T. Vu; Marcel A. Verheijen; Jos E. M. Haverkort; Erik P. A. M. Bakkers; Peter H. L. Notten

2014-05-29T23:59:59.000Z

344

A Simple Method To Demonstrate the Enzymatic Production of Hydrogen from Sugar  

Science Journals Connector (OSTI)

A Simple Method To Demonstrate the Enzymatic Production of Hydrogen from Sugar ... In the experimental protocol described here, it has been demonstrated that the common sugar glucose can be used to produce hydrogen using two enzymes, glucose dehydrogenase and hydrogenase. ...

Ian Hurley; Natalie Hershlag; Jonathan Woodward

1998-10-01T23:59:59.000Z

345

Summary of Electrolytic Hydrogen Production: Milestone Completion Report  

SciTech Connect

This report provides an overview of the current state of electrolytic hydrogen production technologies and an economic analysis of the processes and systems available as of December 2003. The operating specifications of commercially available electrolyzers from five manufacturers, i.e., Stuart, Teledyne, Proton, Norsk Hydro, and Avalence, are summarized. Detailed economic analyses of three systems for which cost and economic data were available were completed. The contributions of the cost of electricity, system efficiency, and capital costs to the total cost of electrolysis are discussed.

Ivy, J.

2004-09-01T23:59:59.000Z

346

Summary of Electrolytic Hydrogen Production: Milestone Completion Report  

SciTech Connect

This report provides an overview of the current state of electrolytic hydrogen production technologies and an economic analysis of the processes and systems available as of December 2003. The operating specifications of commercially available electrolyzers from five manufacturers, i.e., Stuart, Teledyne, Proton, Norsk Hydro, and Avalence, are summarized. Detailed economic analyses of three systems for which cost and economic data were available were completed. The contributions of the cost of electricity, system efficiency, and capital costs to the total cost of electrolysis are discussed.

Ivy, J.

2004-04-01T23:59:59.000Z

347

Hydrogen production by gasification of municipal solid waste  

SciTech Connect

As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such as energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which can be considered largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using ASPEN Plus flow sheeting software to simulate a process which produces hydrogen gas from MSW; the model will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design. This paper gives an overview of the complete MSW gasification process, and describes in detail the way in which MSW is modeled by the computer as a process material. In addition, details of the gasifier unit model are described; in this unit modified MSW reacts under pressure with oxygen and steam to form a mixture of gases which include hydrogen.

Rogers, R. III

1994-05-20T23:59:59.000Z

348

The use of advanced steam reforming technology for hydrogen production  

SciTech Connect

The demand for supplementary hydrogen production in refineries is growing significantly world-wide as environmental legislation concerning cleaner gasoline and diesel fuels is introduced. The main manufacturing method is by steam reforming. The process has been developed both to reduce the capital cost and increase efficiency, reliability and ease of operation. ICI Katalco`s Leading Concept Hydrogen or LCH process continues this process of improvement by replacing the conventional fired steam reformer with a type of heat exchange reformer known as the Gas Heated Reformer or GHR. The GHR was first used in the Leading Concept Ammonia process, LCA at ICI`s manufacturing site at Severnside, England and commissioned in 1988 and later in the Leading Concept Methanol (LCM) process for methanol at Melbourne, Australia and commissioned in 1994. The development of the LCH process follows on from both LCA and LCM processes. This paper describes the development and use of the GHR in steam reforming, and shows how the GHR can be used in LCH. A comparison between the LCH process and a conventional hydrogen plant is given, showing the benefits of the LCH process in certain circumstances.

Abbishaw, J.B.; Cromarty, B.J. [ICI Katalco, Billingham (United Kingdom)

1996-12-01T23:59:59.000Z

349

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network (OSTI)

Overview of Hydrogen and Fuel Cell Research." Energy, v.34,Quantum Boost,” DOE Hydrogen and Fuel Cells Program: FY 2012Analysis. ” DOE Hydrogen and Fuel Cells Program, Web. 22

Luc, Wesley Wai

350

Wind Energy and Production of Hydrogen and Electricity -- Opportunities for Renewable Hydrogen: Preprint  

SciTech Connect

An assessment of options for wind/hydrogen/electricity systems at both central and distributed scales provides insight into opportunities for renewable hydrogen.

Levene, J.; Kroposki, B.; Sverdrup, G.

2006-03-01T23:59:59.000Z

351

NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)  

SciTech Connect

Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

Ramsden, T.; Harrison, K.; Steward, D.

2009-11-16T23:59:59.000Z

352

The Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)  

NLE Websites -- All DOE Office Websites (Extended Search)

LBA (Amazon) LBA (Amazon) The Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) Overview [LBA Logo] The Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) is an international research initiative conducted from 1995-2005 and led by Brazil. The LBA Project encompasses several scientific disciplines, or components. The LBA-ECO component focuses on the question: "How do tropical forest conversion, regrowth, and selective logging influence carbon storage, nutrient dynamics, trace gas fluxes, and the prospect for sustainable land use in Amazonia?" The Amazon rain forest or Amazonia, is the largest remaining expanse of tropical rain forest on Earth, harboring approximately one-third of all Earth's species. Although the rain forest's area is so large that it

353

Large-Scale Renewable Energy Development on Public Lands  

NLE Websites -- All DOE Office Websites (Extended Search)

Large-Scale Renewable Energy Large-Scale Renewable Energy Development on Public Lands Boyan Kovacic boyan.kovacic@ee.doe.gov 5/2/12 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov * BLM RE Drivers * BLM RE Programs * BLM Permitting and Revenues * Case Studies * Withdrawn Military Land Outline 3 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov BLM: Bureau of Land Management BO: Biological Opinion CSP: Concentrating Solar Power DOE: Department of Energy DOI: Department of Interior EA: Environmental Assessment EIS: Environmental Impact Statement FONSI: Finding of No Significant Impact FS: U.S. Forrest Service IM: Instruction Memorandum MPDS: Maximum Potential Development Scenario NEPA: National Environmental Policy Act NOI: Notice of Intent NOP: Notice to Proceed

354

Large-Scale Renewable Energy Development on Public Lands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Renewable Energy Large-Scale Renewable Energy Development on Public Lands Boyan Kovacic boyan.kovacic@ee.doe.gov 5/2/12 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov * BLM RE Drivers * BLM RE Programs * BLM Permitting and Revenues * Case Studies * Withdrawn Military Land Outline 3 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov BLM: Bureau of Land Management BO: Biological Opinion CSP: Concentrating Solar Power DOE: Department of Energy DOI: Department of Interior EA: Environmental Assessment EIS: Environmental Impact Statement FONSI: Finding of No Significant Impact FS: U.S. Forrest Service IM: Instruction Memorandum MPDS: Maximum Potential Development Scenario NEPA: National Environmental Policy Act NOI: Notice of Intent NOP: Notice to Proceed

355

Prototype Vector Machine for Large Scale Semi-Supervised Learning  

SciTech Connect

Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of the kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.

Zhang, Kai; Kwok, James T.; Parvin, Bahram

2009-04-29T23:59:59.000Z

356

Suppression of large-scale perturbations by stiff solid  

E-Print Network (OSTI)

Evolution of large-scale scalar perturbations in the presence of stiff solid (solid with pressure to energy density ratio > 1/3) is studied. If the solid dominated the dynamics of the universe long enough, the perturbations could end up suppressed by as much as several orders of magnitude. To avoid too steep large-angle power spectrum of CMB, radiation must have prevailed over the solid long enough before recombination.

Balek, Vladimír

2015-01-01T23:59:59.000Z

357

9 - Large-scale biomass combustion plants: an overview  

Science Journals Connector (OSTI)

Abstract: For a long time biomass was combusted mostly on a small scale. Now the largest biomass boilers are over 500 MWth. This chapter tries to outline the main methods for large-scale biomass combustion. The main boiler types are the grate and bubbling-fluidised bed boilers although circulating-fluidised bed and pulverised firing do play a role. Particular emphasis has been placed on emissions, the effect of fuel quality and operating issues.

S. Caillat; E. Vakkilainen

2013-01-01T23:59:59.000Z

358

DOE Hydrogen and Fuel Cells Program Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

2024 Date: September 19, 2012 2024 Date: September 19, 2012 Title: Hydrogen Production Cost Using Low-Cost Natural Gas Originator: Sara Dillich, Todd Ramsden & Marc Melaina Approved by: Sunita Satyapal Date: September 24, 2012 Item: Hydrogen produced and dispensed in distributed facilities at high-volume refueling stations using current technology and DOE's Annual Energy Outlook (AEO) 2009 projected prices for industrial natural gas result in a hydrogen levelized cost of $4.49 per gallon-gasoline-equivalent (gge) (untaxed) including compression, storage and dispensing costs. The hydrogen production portion of this cost is $2.03/gge. In comparison, current analyses using low-cost natural gas with a price of $2.00 per MMBtu can decrease the hydrogen levelized cost to $3.68 per gge (untaxed) including

359

DOE Hydrogen and Fuel Cells Program Record 5012a: Well-to-Wheels Analyses for Solar and Wind Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program Record DOE Hydrogen and Fuel Cells Program Record Record #: 5012a Date: December 21, 2005 Title: Well-to-Wheels Analyses for Solar & Wind Hydrogen Production Originator: Roxanne Garland Approved by: JoAnn Milliken Date: January 6, 2006 Item: This record explains the basis for the differences between the analyses of well-to-wheels energy use and greenhouse gas emissions conducted via Argonne National Laboratory's GREET Model, cited in the U.S. Department of Energy's Solar and Wind Technologies for Hydrogen Production Report to Congress, 1 and those conducted by the National Research Council, cited in the report The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs. 2 Well-to-Wheels Energy Use and Greenhouse Gas Emissions - Argonne National

360

Agenda for the Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Hydrogen Production Technical Team Research Review  

NLE Websites -- All DOE Office Websites (Extended Search)

& Hydrogen Production Technical Team Research Review Agenda for Tuesday, November 6, 2007 Location: BCS Incorporated, 8929 Stephens Road, Laurel, MD. 20723 410-997-7778 8:30 - 9:00 Continental Breakfast 9:00 DOE Targets, Tools and Technology o Bio-Derived Liquids to Hydrogen Distributed Reforming Targets DOE, Arlene Anderson o H2A Overview, NREL, Darlene Steward o Bio-Derived Liquids to Hydrogen Distributed Reforming Cost Analysis DTI, Brian James 10:00 Research Review o Low-Cost Hydrogen Distributed Production Systems, H2Gen, Sandy Thomas o Integrated Short Contact Time Hydrogen Generator, GE Global Research, Wei Wei o Distributed Bio-Oil Reforming, NREL, Darlene Steward o High Pressure Steam Ethanol Reforming, ANL, Romesh Kumar

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Geospatial Optimization of Siting Large-Scale Solar Projects  

SciTech Connect

Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

Macknick, J.; Quinby, T.; Caulfield, E.; Gerritsen, M.; Diffendorfer, J.; Haines, S.

2014-03-01T23:59:59.000Z

362

Natural Gas Used as Feedstock for Hydrogen Production  

U.S. Energy Information Administration (EIA) Indexed Site

Used as Feedstock for Hydrogen Production Used as Feedstock for Hydrogen Production (Million Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area 2008 2009 2010 2011 2012 View History U.S. 188,075 143,004 154,503 169,465 183,051 2008-2012 East Coast (PADD 1) 5,149 4,178 3,346 4,815 6,313 2008-2012 Midwest (PADD 2) 37,044 36,936 45,452 44,623 46,640 2008-2012 Gulf Coast (PADD 3) 80,291 41,049 43,170 50,968 62,829 2008-2012 Rocky Mountain (PADD 4) 12,747 11,904 12,047 12,896 12,595 2008-2012 West Coast (PADD 5) 52,844 48,937 50,488 56,163 54,674 2008-2012 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

363

ENHANCED HYDROGEN ECONOMICS VIA COPRODUCTION OF FUELS AND CARBON PRODUCTS  

SciTech Connect

This Department of Energy National Energy Technology Laboratory sponsored research effort to develop environmentally cleaner projects as a spin-off of the FutureGen project, which seeks to reduce or eliminate emissions from plants that utilize coal for power or hydrogen production. New clean coal conversion processes were designed and tested for coproducing clean pitches and cokes used in the metals industry as well as a heavy crude oil. These new processes were based on direct liquefaction and pyrolysis techniques that liberate volatile liquids from coal without the need for high pressure or on-site gaseous hydrogen. As a result of the research, a commercial scale plant for the production of synthetic foundry coke has broken ground near Wise, Virginia under the auspices of Carbonite Inc. This plant will produce foundry coke by pyrolyzing a blend of steam coal feedstocks. A second plant is planned by Quantex Energy Inc (in Texas) which will use solvent extraction to coproduce a coke residue as well as crude oil. A third plant is being actively considered for Kingsport, Tennessee, pending a favorable resolution of regulatory issues.

Kennel, Elliot B; Bhagavatula, Abhijit; Dadyburjor, Dady; Dixit, Santhoshi; Garlapalli, Ravinder; Magean, Liviu; Mukkha, Mayuri; Olajide, Olufemi A; Stiller, Alfred H; Yurchick, Christopher L

2011-03-31T23:59:59.000Z

364

Large-Scale Wind Integration Studies in the United States: Preliminary Results  

SciTech Connect

The National Renewable Energy Laboratory, under the sponsorship of the U.S. Department of Energy, is managing two large-scale wind integration studies. The Western Wind and Solar Integration Study (WWSIS) covers the footprint of WestConnect, a group of transmission owners that covers most of Colorado, New Mexico, Arizona, Nevada, and Wyoming. The Eastern Wind Integration and Transmission Study (EWITS) covers a large part of the Eastern Interconnection, and leverages a large-scale transmission study known as the Joint Coordinated System Plan (JCSP). Both studies analyze the impact of 20-30% wind energy penetration within the study footprint based on energy. This paper discusses key results that have emerged so far from each study, focusing primarily on simulation results based on hourly production simulations. Results from both studies show that high wind penetrations can be successfully integrated into the power system, but depend on sufficient transmission and significant changes in operations.

Milligan, M.; Lew, D.; Corbus, D.; Piwko, R.; Miller, N.; Clark, K.; Jordan, G.; Freeman, L.; Zavadil, B.; Schuerger, M.

2009-01-01T23:59:59.000Z

365

Hydrogen Production from Biomass via Indirect Gasification: The Impact of NREL Process Development Unit Gasifier Correlations  

SciTech Connect

This report describes a set of updated gasifier correlations developed by NREL to predict biomass gasification products and Minimum Hydrogen Selling Price.

Kinchin, C. M.; Bain, R. L.

2009-05-01T23:59:59.000Z

366

Energy Department Invests $20 Million to Advance Hydrogen Production and Delivery Technologies  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $20 million for ten new research and development projects that will advance hydrogen production and delivery technologies.

367

Webinar: Critical Updates to the Hydrogen Analysis Production Model (H2A v3)  

Energy.gov (U.S. Department of Energy (DOE))

Video recording and text version of the webinar, “Critical Updates to the Hydrogen Analysis Production Model (H2A v3),” originally presented on February 8, 2012.

368

Critical Updates to the Hydrogen Analysis Production Model (H2A v3)  

Energy.gov (U.S. Department of Energy (DOE))

Presentation slides from the February 8, 2012, Fuel Cell Technologies Program webinar, "Critical Updates to the Hydrogen Analysis Production Model (H2A v3)".

369

Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen Production (2009)  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Brian James, Strategic Analysis Inc., at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

370

Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton  

Energy.gov (U.S. Department of Energy (DOE))

Slides presented at the DOE Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton" on May 23, 2011.

371

Next Generation Hydrogen Station Composite Data Products: Data through Quarter 4 of 2013  

SciTech Connect

This report includes 25 composite data products (CDPs) produced for next generation hydrogen stations, with data through quarter 4 of 2013.

Sprik, S.; Kurtz, J.; Peters, M.

2014-05-01T23:59:59.000Z

372

Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton  

Energy.gov (U.S. Department of Energy (DOE))

Video recording of the webinar, Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton, originally presented on May 23, 2011.

373

Hydrogen production via carbon-assisted water electrolysis at room temperature.  

E-Print Network (OSTI)

??The objective of the work was to conduct carbon-assisted water electrolysis at room temperature with reduced energy costs for hydrogen production and to improve upon… (more)

Bollineni, Shilpa

2008-01-01T23:59:59.000Z

374

DOE Issues 2 Requests for Information on Low-Cost Hydrogen Production and Delivery  

Energy.gov (U.S. Department of Energy (DOE))

The US DOE's FCTO has issued two RFIs seeking feedback from the research community and relevant stakeholders about hydrogen production and hydrogen delivery RD&D activities aimed at developing technologies that can ultimately produce and deliver low-cost hydrogen.

375

Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel Simulants  

E-Print Network (OSTI)

,2 operated by fuel cells. Unfortunately, the lack of infrastructure, such as a network of hydrogen refueling of hydrogen sulfide (H2S), which poisons the anode in the fuel cell stack, leading to low SOFC efficiencyPerformance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel

Azad, Abdul-Majeed

376

IEA agreement on the production and utilization of hydrogen: 2000 annual report  

SciTech Connect

The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen.

Elam, Carolyn C. [National Renewable Energy Lab., Golden, CO (US)] (ed.)

2001-12-01T23:59:59.000Z

377

Sun Also Rises: Planning for Large-Scale Solar Power  

SciTech Connect

Wind, solar, and other renewable energy are an important part of any present-day energy. The portion of energy they supply will certainly be increasing over the next few years. Arguably, large-scale wind power has reached technological maturity, and with more than 100 GW of capacity, ample experience exists on integrating wind systems. Solar technologies, on the other hand, are emerging, and substantial R&D investments are being made to achieve parity with retail electricity costs in the near future. As this happens, annual capacity additions of solar power will become significant.

Bebic, J.; Walling, R.; O'Brien, K.; Kroposki, B.

2009-05-01T23:59:59.000Z

378

Large scale EPR correlations and cosmic gravitational waves  

E-Print Network (OSTI)

We study how quantum correlations survive at large scales in spite of their exposition to stochastic backgrounds of gravitational waves. We consider Einstein-Podolski-Rosen (EPR) correlations built up on the polarizations of photon pairs and evaluate how they are affected by the cosmic gravitational wave background (CGWB). We evaluate the quantum decoherence of the EPR correlations in terms of a reduction of the violation of the Bell inequality as written by Clauser, Horne, Shimony and Holt (CHSH). We show that this decoherence remains small and that EPR correlations can in principle survive up to the largest cosmic scales.

B. Lamine; R. Hervé; M. -T. Jaekel; A. Lambrecht; S. Reynaud

2011-05-10T23:59:59.000Z

379

Large-Scale Anisotropy of EGRET Gamma Ray Sources  

E-Print Network (OSTI)

In the course of its operation, the EGRET experiment detected high-energy gamma ray sources at energies above 100 MeV over the whole sky. In this communication, we search for large-scale anisotropy patterns among the catalogued EGRET sources using an expansion in spherical harmonics, accounting for EGRET's highly non-uniform exposure. We find significant excess in the quadrupole and octopole moments. This is consistent with the hypothesis that, in addition to the galactic plane, a second mid-latitude (5^{\\circ} < |b| < 30^{\\circ}) population, perhaps associated with the Gould belt, contributes to the gamma ray flux above 100 MeV.

Luis Anchordoqui; Thomas McCauley; Thomas Paul; Olaf Reimer; Diego F. Torres

2005-06-24T23:59:59.000Z

380

Robust Morphological Measures for Large-Scale Structure  

E-Print Network (OSTI)

A complete family of statistical descriptors for the morphology of large--scale structure based on Minkowski--Functionals is presented. These robust and significant measures can be used to characterize the local and global morphology of spatial patterns formed by a coverage of point sets which represent galaxy samples. Basic properties of these measures are highlighted and their relation to the `genus statistics' is discussed. Test models like a Poissonian point process and samples generated from a Voronoi--model are put into perspective.

T. Buchert

1994-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Generation of large-scale winds in horizontally anisotropic convection  

E-Print Network (OSTI)

We simulate three-dimensional, horizontally periodic Rayleigh-B\\'enard convection between free-slip horizontal plates, rotating about a horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficiently large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind.

von Hardenberg, J; Provenzale, A; Spiegel, E A

2015-01-01T23:59:59.000Z

382

Hydrogen Production by PEM Electrolysis: Spotlight on Giner and Proton  

NLE Websites -- All DOE Office Websites (Extended Search)

BY BY PEM ELECTROLYSIS: SPOTLIGHT ON GINER AND PROTON US DOE WEBINAR (May 23, 2011) 2 Webinar Outline *Water Electrolysis H 2 Production Overview DOE-EERE-FCT: Eric L. Miller *Spotlight: PEM Electrolysis R&D at Giner Giner Electrochemical Systems: Monjid Hamdan *Spotlight: PEM Electrolysis R&D at Proton Proton OnSite: Kathy Ayers *Q&A 3 DOE EERE-FCT Goals and Objectives Develop technologies to produce hydrogen from clean, domestic resources at a delivered and dispensed cost of $2-$4/gge Capacity (kg/day) Distributed Central 100,000,000 100,000 50,000 10,000 1,000 10 Natural Gas Reforming Photo- electro- chemical Biological Water Electrolysis (Solar) 2015-2020 Today-2015 2020-2030 Coal Gasification (No Carbon Capture) Electrolysis Water (Grid) Coal Gasification (Carbon Capture)

383

Feasibility of Hydrogen Production from Micro Hydropower Projects in Nepal  

E-Print Network (OSTI)

The current energy crisis in Nepal clearly indicates that the future energy-demand cannot be met by traditional energy-sources. Community-based micro-hydropower operations are considered to be one of the most feasible options for energy development. However, the power plant capacity factor remains very low due to limited commercial and business opportunities. Generation of hydrogen (H2) from the unutilized power could eradicate this problem. This new energy carrier is clean, can save foreign currency and increases the energy-security. The aim of this study is to determine the potential of H2 production from excess energy of a micro-hydro project in rural Nepal using “HOMER ” from NREL.

M. S. Zaman; A. B. Chhetri; M. S. Tango

2010-01-01T23:59:59.000Z

384

Study of hydrogen production system by using PV solar energy and PEM electrolyser in Algeria  

Science Journals Connector (OSTI)

Hydrogen fuel can be produced by using solar electric energy from photovoltaic (PV) modules for the electrolysis of water without emitting carbon dioxide or requiring fossil fuels. In this paper, an assessment of the technical potential for producing hydrogen from the PV/proton exchange membrane (PEM) electrolyser system is investigated. The present study estimates the amount of hydrogen produced by this system in six locations using hourly global solar irradiations on horizontal plane and ambient temperature. The system studied in this work is composed of 60 W PV module connected with a commercial 50 W PEM electrolyser via DC/DC converter equipped with a maximum power point tracking. The primary objective is to develop a mathematical model of hydrogen production system, including PV module and PEM electrolyser to analyze the system performance. The secondary aim is to compare the system performance in terms of hydrogen production at seven locations situated in different regions of Algeria. The amount of hydrogen produced is estimated at seven locations situated in different regions. In terms of hydrogen production, the results show that the southern region of Algeria (Adrar, Ghardaia, Bechar and Tamanrasset) is found to have the relatively highest hydrogen production. The total annual production of hydrogen is estimated to be around 20–29 m3 at these sites. The hydrogen production at various sites has been found to vary according to the solar radiation.

Djamila Ghribi; Abdellah Khelifa; Said Diaf; Maïouf Belhamel

2013-01-01T23:59:59.000Z

385

Wind to Hydrogen in California: Case Study  

SciTech Connect

This analysis presents a case study in California for a large scale, standalone wind electrolysis site. This is a techno-economic analysis of the 40,000 kg/day renewable production of hydrogen and subsequent delivery by truck to a fueling station in the Los Angeles area. This quantity of hydrogen represents about 1% vehicle market penetration for a city such as Los Angeles (assuming 0.62 kg/day/vehicle and 0.69 vehicles/person) [8]. A wind site near the Mojave Desert was selected for proximity to the LA area where hydrogen refueling stations are already built.

Antonia, O.; Saur, G.

2012-08-01T23:59:59.000Z

386

Enhanced Hydrogen Production from Formic Acid by Formate Hydrogen Lyase-Overexpressing Escherichia coli Strains  

Science Journals Connector (OSTI)

...the projected decrease in fossil fuel reserves on the one hand and improvements in hydrogen fuel cell technology on the other (3). A wide range of applications of hydrogen, from cars to small devices, is anticipated...

Akihito Yoshida; Taku Nishimura; Hideo Kawaguchi; Masayuki Inui; Hideaki Yukawa

2005-11-01T23:59:59.000Z

387

Kinetics of the Reduction of Wüstite by Hydrogen and Carbon Monoxide for the Chemical Looping Production of Hydrogen  

E-Print Network (OSTI)

produced could be stored, e.g. by geological sequestration, making the overall process “carbon-neutral”, or “carbon-negative” when biomass is used as fuel. In addition, the hydrogen produced during the oxidation of FexO and metallic Fe in steam can be kept... Kinetics of the reduction of wüstite by hydrogen and carbon monoxide for the chemical looping production of hydrogen Wen Liu a,n, Jin Yang Lim b, Marco A. Saucedo a, Allan N. Hayhurst b, Stuart A. Scott a, J.S. Dennis b a Department of Engineering...

Liu, Wen; Lim, Jin Yang; Saucedo, Marco A.; Hayhurst, Allan N.; Scott, Stuart A.; Dennis, J. S.

2014-08-13T23:59:59.000Z

388

Conceptual design of nuclear systems for hydrogen production  

E-Print Network (OSTI)

Demand for hydrogen in the transportation energy sector is expected to keep growing in the coming decades; in the short term for refining heavy oils and in the long term for powering fuel cells. However, hydrogen cannot ...

Hohnholt, Katherine J

2006-01-01T23:59:59.000Z

389

Large-scale anisotropy in stably stratified rotating flows  

SciTech Connect

We present results from direct numerical simulations of the Boussinesq equations in the presence of rotation and/or stratification, both in the vertical direction. The runs are forced isotropically and randomly at small scales and have spatial resolutions of up to $1024^3$ grid points and Reynolds numbers of $\\approx 1000$. We first show that solutions with negative energy flux and inverse cascades develop in rotating turbulence, whether or not stratification is present. However, the purely stratified case is characterized instead by an early-time, highly anisotropic transfer to large scales with almost zero net isotropic energy flux. This is consistent with previous studies that observed the development of vertically sheared horizontal winds, although only at substantially later times. However, and unlike previous works, when sufficient scale separation is allowed between the forcing scale and the domain size, the total energy displays a perpendicular (horizontal) spectrum with power law behavior compatible with $\\sim k_\\perp^{-5/3}$, including in the absence of rotation. In this latter purely stratified case, such a spectrum is the result of a direct cascade of the energy contained in the large-scale horizontal wind, as is evidenced by a strong positive flux of energy in the parallel direction at all scales including the largest resolved scales.

Marino, Dr. Raffaele [National Center for Atmospheric Research (NCAR); Mininni, Dr. Pablo D. [Universidad de Buenos Aires, Argentina; Rosenberg, Duane L [ORNL; Pouquet, Dr. Annick [National Center for Atmospheric Research (NCAR)

2014-01-01T23:59:59.000Z

390

Popularity and Performance: A Large-Scale Study  

E-Print Network (OSTI)

Social scientists have long sought to understand why certain people, items, or options become more popular than others. One seemingly intuitive theory is that inherent value drives popularity. An alternative theory claims that popularity is driven by the rich-get-richer effect of cumulative advantage---certain options become more popular, not because they are higher quality, but because they are already relatively popular. Realistically, it seems likely that popularity is driven by neither one of these forces alone but rather both together. Recently, researchers have begun using large-scale online experiments to study the effect of cumulative advantage in realistic scenarios, but there have been no large-scale studies of the combination of these two effects. We are interested in studying a case where decision-makers observe explicit signals of both the popularity and the quality of various options. We derive a model for change in popularity as a function of past popularity and past perceived quality. Our mode...

Krafft, Peter; Shmueli, Erez; Della Penna, Nicholas; Tenenbaum, Josh; Pentland, Sandy

2014-01-01T23:59:59.000Z

391

Low-Cost Production of Hydrogen and Electricity  

Office of Energy Efficiency and Renewable Energy (EERE)

Bloom Energy is testing the potential to produce low-cost hydrogen and electricity simultaneously from natural gas.

392

A summary of the Third Information Exchange Meeting on the nuclear production of hydrogen  

Science Journals Connector (OSTI)

The Nuclear Energy Agency of the Organisation for Economic Co-operation and Development has organised three international exchange meetings on hydrogen production through nuclear power. The most recent meeting was held in October 2005 in Oarai, Japan, and was sponsored by the International Atomic Energy Agency. The two-and-a-half-day conference covered a full range of topics related to the nuclear production of hydrogen. Presentations were made and discussions were held on the economic prospects of a hydrogen economy and nuclear power's potential role in it, global research and development activities related to hydrogen production technologies, the coupling of hydrogen production facilities to nuclear heat sources, and basic and applied science supporting nuclear hydrogen generation. The meeting presentations are available at: http://www.nea.fr/html/science/hydro/iem3/.

Mark C. Petri; Ryutaro Hino; Isao Yamagishi

2008-01-01T23:59:59.000Z

393

Hydrogen production from the reaction of solvated electrons with benzene in water-ammonia mixtures  

SciTech Connect

Product analysis data for the reaction of the ammoniated electron with benzene-water mixtures in liquid ammonia show that the dominant product is evolved hydrogen and not 1,4-cyclohexadiene.

Dewald, R.R.; Jones, S.R.; Schwartz, B.S.

1980-11-27T23:59:59.000Z

394

Design Aspects of Hybrid Adsorbent?Membrane Reactors for Hydrogen Production  

Science Journals Connector (OSTI)

Design Aspects of Hybrid Adsorbent?Membrane Reactors for Hydrogen Production ... For hydrogen to replace fossil fuels as the fuel of choice for mobile applications, it will require the creation of a production and delivery infrastructure equivalent to those that currently exist for fossil fuels. ...

Babak Fayyaz; Aadesh Harale; Byoung-Gi Park; Paul K. T. Liu; Muhammad Sahimi; Theodore T. Tsotsis

2005-05-14T23:59:59.000Z

395

A Techno-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles  

E-Print Network (OSTI)

A Techno-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles by Sébastien Prince options considered for future fuel cell vehicles. In this thesis, a model is developed to determine

Victoria, University of

396

System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect

A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

2010-10-01T23:59:59.000Z

397

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.  

SciTech Connect

The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

398

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2008.  

SciTech Connect

The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

2009-03-25T23:59:59.000Z

399

Large-Scale Analyses of Glycosylation in Cellulases  

NLE Websites -- All DOE Office Websites (Extended Search)

Article Article Large-Scale Analyses of Glycosylation in Cellulases Fengfeng Zhou 1,2 , Victor Olman 1,2 , and Ying Xu 1,2 * 1 Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology / Institute of Bioinformatics, University of Georgia, Athens, GA 30602-7229, USA; 2 BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830-8050, USA. *Corresponding author. E-mail: xyn@bmb.uga.edu DOI: 10.1016/S1672-0229(08)60049-2 Cellulases are important glycosyl hydrolases (GHs) that hydrolyze cellulose poly- mers into smaller oligosaccharides by breaking the cellulose β (1→4) bonds, and they are widely used to produce cellulosic ethanol from the plant biomass. N-linked and O-linked glycosylations were proposed to impact the catalytic ef f iciency, cel- lulose binding af f inity and the stability of cellulases based on observations

400

Cosmological Simulations for Large-Scale Sky Surveys | Argonne Leadership  

NLE Websites -- All DOE Office Websites (Extended Search)

Instantaneous velocity magnitude in a flow through an open valve in a valve/piston assembly. Instantaneous velocity magnitude in a flow through an open valve in a valve/piston assembly. Instantaneous velocity magnitude in a flow through an open valve in a valve/piston assembly. Christos Altantzis, MIT, and Martin Schmitt, LAV. All the images were generated from their work at LAV. Cosmological Simulations for Large-Scale Sky Surveys PI Name: Christos Frouzakis PI Email: frouzakis@lav.mavt.ethz.ch Institution: Swiss Federal Institute of Technology Zurich Allocation Program: INCITE Allocation Hours at ALCF: 100 Million Year: 2014 Research Domain: Chemistry The combustion of coal and petroleum-based fuels supply most of the energy needed to meet the world's transportation and power generation demands. To address the anticipated petroleum shortage, along with increasing energy

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Large Scale Geothermal Exchange System for Residential, Office and Retail  

Open Energy Info (EERE)

Geothermal Exchange System for Residential, Office and Retail Geothermal Exchange System for Residential, Office and Retail Development Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Large Scale Geothermal Exchange System for Residential, Office and Retail Development Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description RiverHeath will be a new neighborhood, with residences, shops, restaurants, and offices. The design incorporates walking trails, community gardens, green roofs, and innovative stormwater controls. A major component of the project is our reliance on renewable energy. One legacy of the land's industrial past is an onsite hydro-electric facility which formerly powered the paper factories. The onsite hydro is being refurbished and will furnish 100% of the project's electricity demand.

402

Nuclear-pumped lasers for large-scale applications  

SciTech Connect

Efficient initiation of large-volume chemical lasers may be achieved by neutron induced reactions which produce charged particles in the final state. When a burst mode nuclear reactor is used as the neutron source, both a sufficiently intense neutron flux and a sufficiently short initiation pulse may be possible. Proof-of-principle experiments are planned to demonstrate lasing in a direct nuclear-pumped large-volume system; to study the effects of various neutron absorbing materials on laser performance; to study the effects of long initiation pulse lengths; to demonstrate the performance of large-scale optics and the beam quality that may be obtained; and to assess the performance of alternative designs of burst systems that increase the neutron output and burst repetition rate. 21 refs., 8 figs., 5 tabs.

Anderson, R.E.; Leonard, E.M.; Shea, R.F.; Berggren, R.R.

1989-05-01T23:59:59.000Z

403

The XMM/Megacam-VST/VIRMOS Large Scale Structure Survey  

E-Print Network (OSTI)

The objective of the XMM-LSS Survey is to map the large scale structure of the universe, as highlighted by clusters and groups of galaxies, out to a redshift of about 1, over a single 8x8 sq.deg. area. For the first time, this will reveal the topology of the distribution of the deep potential wells and provide statistical measurements at truly cosmological distances. In addition, clusters identified via their X-ray properties will form the basis for the first uniformly-selected, multi-wavelength survey of the evolution of clusters and individual cluster galaxies as a function of redshift. The survey will also address the very important question of the QSO distribution within the cosmic web.

M. Pierre

2000-11-08T23:59:59.000Z

404

Atypical Behavior Identification in Large Scale Network Traffic  

SciTech Connect

Cyber analysts are faced with the daunting challenge of identifying exploits and threats within potentially billions of daily records of network traffic. Enterprise-wide cyber traffic involves hundreds of millions of distinct IP addresses and results in data sets ranging from terabytes to petabytes of raw data. Creating behavioral models and identifying trends based on those models requires data intensive architectures and techniques that can scale as data volume increases. Analysts need scalable visualization methods that foster interactive exploration of data and enable identification of behavioral anomalies. Developers must carefully consider application design, storage, processing, and display to provide usability and interactivity with large-scale data. We present an application that highlights atypical behavior in enterprise network flow records. This is accomplished by utilizing data intensive architectures to store the data, aggregation techniques to optimize data access, statistical techniques to characterize behavior, and a visual analytic environment to render the behavioral trends, highlight atypical activity, and allow for exploration.

Best, Daniel M.; Hafen, Ryan P.; Olsen, Bryan K.; Pike, William A.

2011-10-23T23:59:59.000Z

405

Large scale anisotropic bias from primordial non-Gaussianity  

SciTech Connect

In this work we study the large scale structure bias in models of anisotropic inflation. We use the Peak Background Splitting method in Excursion Set Theory to find the scale-dependent bias. We show that the amplitude of the bias is modified by a direction-dependent factor. In the specific anisotropic inflation model which we study, the scale-dependent bias vanishes at leading order when the long wavelength mode in squeezed limit is aligned with the anisotropic direction in the sky. We also extend the scale-dependent bias formulation to the general situations with primordial anisotropy. We find some selection rules indicating that some specific parts of a generic anisotropic bispectrum is picked up by the bias parameter. We argue that the anisotropic bias is mainly sourced by the angle between the anisotropic direction and the long wavelength mode in the squeezed limit.

Baghram, Shant; Firouzjahi, Hassan [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Namjoo, Mohammad Hossein, E-mail: baghram@ipm.ir, E-mail: mh.namjoo@ipm.ir, E-mail: firouz@ipm.ir [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

2013-08-01T23:59:59.000Z

406

Isolating relativistic effects in large-scale structure  

E-Print Network (OSTI)

We present a fully relativistic calculation of the observed galaxy number counts in the linear regime. We show that besides the density fluctuations and redshift-space distortions, various relativistic effects contribute to observations at large scales. These effects all have the same physical origin: they result from the fact that our coordinate system, namely the galaxy redshift and the incoming photons' direction, is distorted by inhomogeneities in our universe. We then discuss the impact of the relativistic effects on the angular power spectrum and on the two-point correlation function in configuration space. We show that the latter is very well adapted to isolate the relativistic effects since it naturally makes use of the symmetries of the different contributions. In particular, we discuss how the Doppler effect and the gravitational redshift distortions can be isolated by looking for a dipole in the cross-correlation function between a bright and a faint population of galaxies.

Bonvin, Camille

2014-01-01T23:59:59.000Z

407

Transient simulation for large scale flow in bubble columns  

Science Journals Connector (OSTI)

Abstract The transient simulation of large scale bubbly flow in bubble columns using the unsteady Reynolds averaged Navier Stokes (URANS) equations is investigated in the present paper. An extensive set of bubble forces is used with different models for the bubble induced turbulence. Criteria are given to assess the independence of the simulation time and the time step length. Using these criteria it is shown that a simulation time, time step length and mesh independent solution can be obtained for complex bubbly flows using URANS equations under certain requirements. With the obtained setup the contribution of the resolved turbulence to the total turbulence and the influence of the bubble induced turbulence modeling on the resolved turbulence is investigated. Further, it is pointed out that the virtual mass force is not negligible. The simulations are compared to data from the literature at two different superficial velocities, which cover monodisperse and polydisperse bubbly flows.

T. Ziegenhein; R. Rzehak; D. Lucas

2015-01-01T23:59:59.000Z

408

Training a Large Scale Classifier with the Quantum Adiabatic Algorithm  

E-Print Network (OSTI)

In a previous publication we proposed discrete global optimization as a method to train a strong binary classifier constructed as a thresholded sum over weak classifiers. Our motivation was to cast the training of a classifier into a format amenable to solution by the quantum adiabatic algorithm. Applying adiabatic quantum computing (AQC) promises to yield solutions that are superior to those which can be achieved with classical heuristic solvers. Interestingly we found that by using heuristic solvers to obtain approximate solutions we could already gain an advantage over the standard method AdaBoost. In this communication we generalize the baseline method to large scale classifier training. By large scale we mean that either the cardinality of the dictionary of candidate weak classifiers or the number of weak learners used in the strong classifier exceed the number of variables that can be handled effectively in a single global optimization. For such situations we propose an iterative and piecewise approach in which a subset of weak classifiers is selected in each iteration via global optimization. The strong classifier is then constructed by concatenating the subsets of weak classifiers. We show in numerical studies that the generalized method again successfully competes with AdaBoost. We also provide theoretical arguments as to why the proposed optimization method, which does not only minimize the empirical loss but also adds L0-norm regularization, is superior to versions of boosting that only minimize the empirical loss. By conducting a Quantum Monte Carlo simulation we gather evidence that the quantum adiabatic algorithm is able to handle a generic training problem efficiently.

Hartmut Neven; Vasil S. Denchev; Geordie Rose; William G. Macready

2009-12-04T23:59:59.000Z

409

Methane Steam Reforming in Hydrogen-permeable Membrane Reactor for Pure Hydrogen Production  

Science Journals Connector (OSTI)

Steam reforming of methane over a ruthenium catalyst has been carried ... hydrogen separation from the reaction mixture, the methane conversion significantly exceeds the equilibrium value, which ... an important ...

Yasuyuki Matsumura; Jianhua Tong

2008-12-01T23:59:59.000Z

410

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network (OSTI)

Hydrogen and Electricity: Public-Private Partnershipand electricity demands. • Foster Public-Private Partnershipand electricity demands. • Foster Public-Private Partnership

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

411

Sonoelectrochemical (20 khz) production of hydrogen from aqueous solutions.  

E-Print Network (OSTI)

??There are various methods of producing Hydrogen. These include electrolysis, which this work is based upon, and steam reforming; currently the most commercially viable method.… (more)

Symes, Daniel

2011-01-01T23:59:59.000Z

412

Distributed Hydrogen Production from Natural Gas: Independent Review Panel Report  

Energy.gov (U.S. Department of Energy (DOE))

Independent review report on the available information concerning the technologies needed for forecourts producing 150 kg/day of hydrogen from natural gas.

413

Hydrogen Production by PEM Electrolysis: Spotlight on Giner and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

inputs for zero carbon footprint - PEM technology can be integrated with solar and wind power Cost competitive with current commercial delivered hydrogen costs - Currently...

414

Distributed Hydrogen Production from Natural Gas: Independent Review  

SciTech Connect

Independent review report on the available information concerning the technologies needed for forecourts producing 150 kg/day of hydrogen from natural gas.

Fletcher, J.; Callaghan, V.

2006-10-01T23:59:59.000Z

415

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network (OSTI)

process powered by solar thermal energy for hydrogen21 2.5 Solar Thermal Energy and Solarproduction driven by solar thermal energy is a promising

Luc, Wesley Wai

416

Sonoelectrochemical production of hydrogen via alkaline water electrolysis.  

E-Print Network (OSTI)

??Alkaline water electrolysis is a promising technology to produce clean and pure hydrogen. This technology coupled with the ultrasound results in an enhanced rate of… (more)

Hassan Zadeh, Salman

2014-01-01T23:59:59.000Z

417

Improvements and optimisation of water electrolysis for hydrogen production.  

E-Print Network (OSTI)

??[Truncated abstract] Hydrogen as an important energy carrier has wide applications and great potentials. With ever increasing energy costs and concerns with climate change associated… (more)

Zeng, Kai

2012-01-01T23:59:59.000Z

418

Bioelectrocatalysis of hydrogen oxidation/production by hydrogenases  

NLE Websites -- All DOE Office Websites (Extended Search)

of hydrogen oxidationproduction by hydrogenases Source: In: Enzymatic fuel cells: From fundamentals to applications. Edited by H. Luckarift, G. Johnson and P....

419

Impact of Hydrogen Production on U.S. Energy Markets  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Models * A portfolio of models will be employed to project demands for hydrogen as a fuel, and impacts on feedstock price and supplies under alternative technological,...

420

Hydrogen  

Science Journals Connector (OSTI)

Hydrogen energy is a clean or inexhaustible energy like renewable energy and nuclear energy. Today’s energy supply has a considerable impact on the environment. Hydrogen energy is a promising alternative solut...

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Large-scale fabrication and assembly of carbon nanotubes via nanopelleting  

E-Print Network (OSTI)

Widespread use of carbon nanotubes is predicated on the development of robust large-scale manufacturing techniques. There remain, however, few feasible methods for the large-scale handling of aligned and geometrically ...

El Aguizy, Tarek A., 1977-

2004-01-01T23:59:59.000Z

422

Workshop on Scalable Cyber-Security Challenges in Large-Scale Networks: Deployment Obstacles  

E-Print Network (OSTI)

Workshop on Scalable Cyber-Security Challenges in Large-Scale Networks: Deployment Obstacles Large, and Definitions of Cybersecurity.... 8 Conventional Wisdom is Inadequate....................................... 9 Directions in Scalable Cyber-Security in Large-Scale Networks: Deployment Obstacles." The workshop

Feigenbaum, Joan

423

A Thesaurus and Online Encyclopedia Merging Method for Large Scale Domain-Ontology Automatic Construction  

Science Journals Connector (OSTI)

While building the large-scale domain ontology, the traditional manually-based construction method is low efficient and not feasible. In order to construct the large scale domain-ontology automatically; therefore...

Ting Wang; Jicheng Song; Ruihua Di; Yi Liang

2013-01-01T23:59:59.000Z

424

Mitigating Security Threats to Large-Scale Cross Border Virtualization Infrastructures  

Science Journals Connector (OSTI)

The large-scale cross border virtualization infrastructures can be seen as a federation of heterogeneous clouds. We present pragmatic analysis of the potential threats posed to the emerging large-scale cross...in...

Philippe Massonet; Syed Naqvi; Francesco Tusa; Massimo Villari…

2010-01-01T23:59:59.000Z

425

Architectural Design and Complexity Analysis of Large-Scale Cortical Simulation on a Hybrid Computing Platform  

E-Print Network (OSTI)

- performance computing platform for large-scale mathematical models. Traditional computing architecture cannot hybrid computing architecture for the simulation and evaluation of large-scale associative neural memory models. The proposed architecture achieves very high computing and communication performances

Qiu, Qinru

426

Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect

A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

2008-08-01T23:59:59.000Z

427

System for the co-production of electricity and hydrogen  

DOE Patents (OSTI)

Described herein is a system for the co-generation of hydrogen gas and electricity, wherein the proportion of hydrogen to electricity can be adjusted from 0% to 100%. The system integrates fuel cell technology for power generation with fuel-assisted steam-electrolysis. A hydrocarbon fuel, a reformed hydrocarbon fuel, or a partially reformed hydrocarbon fuel can be fed into the system.

Pham, Ai Quoc (San Jose, CA); Anderson, Brian Lee (Lodi, CA)

2007-10-02T23:59:59.000Z

428

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2009; Composite Data Products, Final Version September 11, 2009  

SciTech Connect

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2009.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2009-09-01T23:59:59.000Z

429

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Spring 2009; Composite Data Products, Final Version March 19, 2009  

SciTech Connect

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through March 2009.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2009-03-01T23:59:59.000Z

430

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Spring 2010; Composite Data Products, Final Version March 29, 2010  

SciTech Connect

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through March 2010.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2010-05-01T23:59:59.000Z

431

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project; Spring 2008 Composite Data Products, Final Version: February 29, 2008  

SciTech Connect

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through February 2008.

Wipke, K.; Sprik, S.; Kurtz J.

2008-04-01T23:59:59.000Z

432

A Linear Scaling Three Dimensional Fragment Method for Large Scale Electronic Structure Calculations  

E-Print Network (OSTI)

large scale electronic structure calculations Lin-Wang Wang,total energy electronic structure calculation method, which

Wang, Lin-Wang; Zhao, Zhengji; Meza, Juan

2008-01-01T23:59:59.000Z

433

A Linear Scaling Three Dimensional Fragment Method for Large Scale Electronic Structure Calculations  

E-Print Network (OSTI)

large scale electronic structure calculations Lin-Wang Wang,total energy electronic structure calculation method, which

Wang, Lin-Wang

2010-01-01T23:59:59.000Z

434

Estimating Hydrogen Production Potential in Biorefineries Using Microbial Electrolysis Cell Technology  

SciTech Connect

Microbial electrolysis cells (MECs) are devices that use a hybrid biocatalysis-electrolysis process for production of hydrogen from organic matter. Future biofuel and bioproducts industries are expected to generate significant volumes of waste streams containing easily degradable organic matter. The emerging MEC technology has potential to derive added- value from these waste streams via production of hydrogen. Biorefinery process streams, particularly the stillage or distillation bottoms contain underutilized sugars as well as fermentation and pretreatment byproducts. In a lignocellulosic biorefinery designed for producing 70 million gallons of ethanol per year, up to 7200 m3/hr of hydrogen can be generated. The hydrogen can either be used as an energy source or a chemical reagent for upgrading and other reactions. The energy content of the hydrogen generated is sufficient to meet 57% of the distillation energy needs. We also report on the potential for hydrogen production in existing corn mills and sugar-based biorefineries. Removal of the organics from stillage has potential to facilitate water recycle. Pretreatment and fermentation byproducts generated in lignocellulosic biorefinery processes can accumulate to highly inhibitory levels in the process streams, if water is recycled. The byproducts of concern including sugar- and lignin- degradation products such as furans and phenolics can also be converted to hydrogen in MECs. We evaluate hydrogen production from various inhibitory byproducts generated during pretreatment of various types of biomass. Finally, the research needs for development of the MEC technology and aspects particularly relevant to the biorefineries are discussed.

Borole, Abhijeet P [ORNL; Mielenz, Jonathan R [ORNL

2011-01-01T23:59:59.000Z

435

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

provide more guidance and support. Large  Scale  Computing  and  Storage  Requirements  for  Fusion  Energy  provide much-needed additional resources there remains a need to employ codes Large  Scale  Computing  and  Storage  Requirements  for  Fusion  Energy  provide large gains with little application porting effort. Large  Scale  Computing  and  Storage  Requirements  for  Fusion  Energy  

Gerber, Richard

2012-01-01T23:59:59.000Z

436

Involvement of Hydrogen Peroxide Production in Erbstatin-induced Apoptosis in Human Small Cell Lung Carcinoma Cells  

Science Journals Connector (OSTI)

...be due to hydrogen peroxide production via newly...MATERIALS AND METHODS Materials...diaminobenzidine. This method is con 4978 Involvement of Hydrogen Peroxide Production in Erbstatin-induced...erbstatin of hydrogen peroxide production in Ms-i...oeMaterialsand Methods. For the...

Siro Simizu; Masaya Imoto; Noriyuki Masuda; Minoru Takada; and Kazuo Umezawa

1996-11-01T23:59:59.000Z

437

Production of Hydroxyl-free Radical by Reaction of Hydrogen Peroxide with N-Methyl-N?-nitro-N-nitrosoguanidine  

Science Journals Connector (OSTI)

...by reaction of hydrogen peroxide (H2O2...resulted in -OH production. INTRODUCTION...MATERIALS AND METHODS Production of -OH...formation from hydrogen peroxide by ferrous...Statistical Methods,pp. 100-106...derived from hydrogen peroxide in lignin...mechanismfor the production of ethylene from...

Tomiko Mikuni; Masaharu Tatsuta; and Mikiharu Kamachi

1985-12-01T23:59:59.000Z

438

Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

EnhancEd hydrogEn Production EnhancEd hydrogEn Production intEgratEd with co 2 SEParation in a SinglE-StagE rEactor Description One alternative for the United States to establish independence from foreign energy sources is to utilize the nation's abundant domestic reserves of coal. Gasification provides a route to produce liquid fuels, chemical feedstocks, and hydrogen from coal. Coal continues to be viewed as the fuel source for the 21st century. Products from coal gasification, however, contain other gases, particularly carbon dioxide, as well as other contaminants that must be removed to produce the pure stream of hydrogen needed to operate fuel cells and other devices. This project seeks to demonstrate a technology to efficiently produce a pure hydrogen stream from

439

Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios  

Energy.gov (U.S. Department of Energy (DOE))

Report of levelized cost in 2005 US dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

440

Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios  

Fuel Cell Technologies Publication and Product Library (EERE)

Report of levelized cost in 2005 U.S. dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Political risk analysis in large-scale mineral investments  

SciTech Connect

This dissertation emphasizes problems encountered in applying current techniques within the framework of the expected-net-present-value investment evaluation paradigms commonly employed by mineral extraction firms. A method of political risk analysis consistent with expected-net-present-value paradigms is presented. This method of political risk analysis is grounded in the neoclassical tradition of economics which holds that economics should determine politics. The method of political risk analysis presented consists of direct and indirect portions. The direct portion of the method requires electoral polling to formulate support distributions for possible host nation policies toward foreign investors. It is applicable in freely politicized host nations. The indirect portion of the method presumes that abnormalities in economic trends produce political pressures intended to return a host nation economy to its normal state. Large-scale mineral investments are particularly vulnerable to political pressures and are at risk whenever economic abnormalities in a host nation manifest themselves. The degree of political risk present at any time is a direct function of the deviation of a host nation economy from its normal condition.

Proehl, T.S.

1985-01-01T23:59:59.000Z

442

Testing Inflation with Large Scale Structure: Connecting Hopes with Reality  

E-Print Network (OSTI)

The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large scale structure is however from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude $f_{\\rm NL}^{\\rm loc}$ ($f_{\\rm NL}^{\\rm eq}$), natural target levels of sensitivity are $\\Delta f_{\\rm NL}^{\\rm loc, eq.} \\simeq 1$. We highlight that such levels are within reach of future surveys by measuring 2-, 3- and 4-point statistics of the galaxy spatial distribution. This paper summarizes a workshop held at CITA (University of Toronto) on October 23-24, 2014.

Marcelo Alvarez; Tobias Baldauf; J. Richard Bond; Neal Dalal; Roland de Putter; Olivier Doré; Daniel Green; Chris Hirata; Zhiqi Huang; Dragan Huterer; Donghui Jeong; Matthew C. Johnson; Elisabeth Krause; Marilena Loverde; Joel Meyers; P. Daniel Meerburg; Leonardo Senatore; Sarah Shandera; Eva Silverstein; Anže Slosar; Kendrick Smith; Matias Zaldarriaga; Valentin Assassi; Jonathan Braden; Amir Hajian; Takeshi Kobayashi; George Stein; Alexander van Engelen

2014-12-15T23:59:59.000Z

443

Large Scale Obscuration and Related Climate Effects Workshop: Proceedings  

SciTech Connect

A Workshop on Large Scale Obsurcation and Related Climate Effects was held 29--31 January, 1992, in Albuquerque, New Mexico. The objectives of the workshop were: to determine through the use of expert judgement the current state of understanding of regional and global obscuration and related climate effects associated with nuclear weapons detonations; to estimate how large the uncertainties are in the parameters associated with these phenomena (given specific scenarios); to evaluate the impact of these uncertainties on obscuration predictions; and to develop an approach for the prioritization of further work on newly-available data sets to reduce the uncertainties. The workshop consisted of formal presentations by the 35 participants, and subsequent topical working sessions on: the source term; aerosol optical properties; atmospheric processes; and electro-optical systems performance and climatic impacts. Summaries of the conclusions reached in the working sessions are presented in the body of the report. Copies of the transparencies shown as part of each formal presentation are contained in the appendices (microfiche).

Zak, B.D.; Russell, N.A.; Church, H.W.; Einfeld, W.; Yoon, D.; Behl, Y.K. [eds.

1994-05-01T23:59:59.000Z

444

HTS cables open the window for large-scale renewables  

Science Journals Connector (OSTI)

In a realistic approach to future energy consumption, the effects of sustainable power sources and the effects of growing welfare with increased use of electricity need to be considered. These factors lead to an increased transfer of electric energy over the networks. A dominant part of the energy need will come from expanded large-scale renewable sources. To use them efficiently over Europe, large energy transits between different countries are required. Bottlenecks in the existing infrastructure will be avoided by strengthening the network. For environmental reasons more infrastructure will be built underground. Nuon is studying the HTS technology as a component to solve these challenges. This technology offers a tremendously large power transport capacity as well as the possibility to reduce short circuit currents, making integration of renewables easier. Furthermore, power transport will be possible at lower voltage levels, giving the opportunity to upgrade the existing network while re-using it. This will result in large cost savings while reaching the future energy challenges. In a 6 km backbone structure in Amsterdam Nuon wants to install a 50 kV HTS Triax cable for a significant increase of the transport capacity, while developing its capabilities. Nevertheless several barriers have to be overcome.

A Geschiere; D Willén; E Piga; P Barendregt

2008-01-01T23:59:59.000Z

445

Large Scale Structure in the SDSS DR1 Galaxy Survey  

E-Print Network (OSTI)

The Large Scale Structure in the galaxy distribution is investigated using The First Data Release of the Sloan Digital Sky Survey. Using the Minimal Spanning Tree technique we have extracted sets of filaments, of wall--like structures, of galaxy groups, and of rich clusters from this unique sample. The physical properties of these structures were then measured and compared with the statistical expectations based on the Zel'dovich' theory. The measured characteristics of galaxy walls were found to be consistent with those for a spatially flat $\\Lambda$CDM cosmological model with $\\Omega_m\\approx$ 0.3 and $\\Omega_\\Lambda \\approx$ 0.7, and for Gaussian initial perturbations with a Harrison -- Zel'dovich power spectrum. Furthermore, we found that the mass functions of groups and of unrelaxed structure elements generally fit well with the expectations from Zel'dovich' theory. We also note that both groups and rich clusters tend to prefer the environments of walls, which tend to be of higher density, rather than the environments of filaments, which tend to be of lower density.

A. Doroshkevich; D. L. Tucker; S. Allam; M. J. Way

2003-07-11T23:59:59.000Z

446

Parallel Index and Query for Large Scale Data Analysis  

SciTech Connect

Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies are critical for facilitating interactive exploration of large datasets, but numerous challenges remain in terms of designing a system for process- ing general scientific datasets. The system needs to be able to run on distributed multi-core platforms, efficiently utilize underlying I/O infrastructure, and scale to massive datasets. We present FastQuery, a novel software framework that address these challenges. FastQuery utilizes a state-of-the-art index and query technology (FastBit) and is designed to process mas- sive datasets on modern supercomputing platforms. We apply FastQuery to processing of a massive 50TB dataset generated by a large scale accelerator modeling code. We demonstrate the scalability of the tool to 11,520 cores. Motivated by the scientific need to search for inter- esting particles in this dataset, we use our framework to reduce search time from hours to tens of seconds.

Chou, Jerry; Wu, Kesheng; Ruebel, Oliver; Howison, Mark; Qiang, Ji; Prabhat,; Austin, Brian; Bethel, E. Wes; Ryne, Rob D.; Shoshani, Arie

2011-07-18T23:59:59.000Z

447

Breakdown of large-scale circulation in turbulent rotating convection  

Science Journals Connector (OSTI)

Turbulent rotating convection in a cylinder is investigated both numerically and experimentally at Rayleigh number Ra=109 and Prandtl number ?=6.4. In this letter we discuss two topics: the breakdown under rotation of the domain-filling large-scale circulation (LSC) typical for confined convection, and the convective heat transfer through the fluid layer, expressed by the Nusselt number. The presence of the LSC is addressed for several rotation rates. For Rossby numbers Ro1.2 no LSC is found (the Rossby number indicates relative importance of buoyancy over rotation, hence small Ro indicates strong rotation). For larger Rossby numbers a precession of the LSC in anticyclonic direction (counter to the background rotation) is observed. It is shown that the heat transfer has a maximal value close to Ro=0.18 being about 15% larger than in the non-rotating case Ro=?. Since the LSC is no longer present at this Rossby value we conclude that the peak heat transfer is independent of the LSC.

R. P. J. Kunnen; H. J. H. Clercx; B. J. Geurts

2008-01-01T23:59:59.000Z

448

Enrichment and hydrogen production by marine anaerobic hydrogen-producing microflora  

Science Journals Connector (OSTI)

Acid, alkali, heat-shock, KNO3 and control pretreatment methods applied to anaerobic sludge were evaluated for their ability to selectively enrich the marine hydrogen-producing mixed microflora. Seawater culture ...

JinLing Cai; GuangCe Wang; YanChuan Li; DaLing Zhu…

2009-08-01T23:59:59.000Z

449

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network (OSTI)

y d r o g e n Energy Stations New York State Energy Researchin an effort led by the New York State Energy Research andNYSERDA) (2005), “New York Hydrogen Energy Roadmap,” NYSERDA

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

450

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network (OSTI)

and fuel cell main- tenance and stack refurbishment costs.fuel cell stack to “internally reform” input fuel into hydrogen (obviating the need for a separate reformer system and reducing costs),

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

451

DOE NSF Partnership to Address Critical Challenges in Hydrogen Production from Solar Water Splitting  

Energy.gov (U.S. Department of Energy (DOE))

EERE and the National Science Foundation (NSF) announce a funding opportunity in the area of renewable hydrogen technology research and development, specifically addressing discovery and development of advanced materials systems and chemical proceesses for direct photochemical and/or thermochemical water splitting for application in the solar production of hydrogen fuel.

452

Production of Hydrogen and Electricity from Coal with CO2 Capture  

E-Print Network (OSTI)

fuels · H2 (and CO2) distribution · H2 utilization (e.g. fuel cells, combustion) · Princeton energy carriers are needed: electricity and hydrogen. · If CO2 sequestration is viable, fossil fuel1 Production of Hydrogen and Electricity from Coal with CO2 Capture Princeton University: Tom

453

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network (OSTI)

27. Keenan, G. (2006), Air Products and Chemicals Inc. ,originally devel- oped by Air Products and Chemicals, Inc. (agreement between Air Products and Chemicals Inc. and the

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

454

Production of hydrogen from water using biophotolytic methods  

Science Journals Connector (OSTI)

Hydrogen gas has been produced on a continuous basis using two immobilized microorganisms. One organism, the cyanobacteria it(Anacystis nidulans), oxidizes water, producing molecular oxygen, and reduces exogen...

Howard H. Weetall; Lester O. Krampitz

1980-06-01T23:59:59.000Z

455

Biological Production of Hydrogen DOE Office of Science,  

E-Print Network (OSTI)

Research John Houghton 6/2/03: DOE Hydrogen and Fuel Cells Coordination Meeting 301-903-8288 John Communities Applications: Algae Ponds Source: Frank Dazzo, Center for Microbial Ecology, Michigan State

456

Hydrogen peroxide production by water electrolysis: Application to disinfection  

Science Journals Connector (OSTI)

Hydrogen peroxide was produced by direct current electrolysis using only two electrodes, a carbon felt...2...coated titanium anode. The required oxygen was supplied by oxidation of water and by transfer from the ...

P. Drogui; S. Elmaleh; M. Rumeau; C. Bernard…

2001-08-01T23:59:59.000Z

457

Comparing air quality impacts of hydrogen and gasoline  

E-Print Network (OSTI)

pathway, with hydrogen production at refueling stations (with centralized hydrogen production and gaseous hydrogenwith centralized hydrogen production and liquid hydrogen (

Sperling, Dan; Wang, Guihua; Ogden, Joan M.

2008-01-01T23:59:59.000Z

458

Large-Scale Spray Releases: Initial Aerosol Test Results  

SciTech Connect

One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and rectangular slots. The round holes ranged in size from 0.2 to 4.46 mm. The slots ranged from (width × length) 0.3 × 5 to 2.74 × 76.2 mm. Most slots were oriented longitudinally along the pipe, but some were oriented circumferentially. In addition, a limited number of multi-hole test pieces were tested in an attempt to assess the impact of a more complex breach. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. The purpose of this report is to present the experimental results and analyses for the aerosol measurements obtained in the large-scale test stand. The report includes a description of the simulants used and their properties, equipment and operations, data analysis methodology, and test results. The results of tests investigating the role of slurry particles in plugging of small breaches are reported in Mahoney et al. 2012a. The results of the aerosol measurements in the small-scale test stand are reported in Mahoney et al. (2012b).

Schonewill, Philip P.; Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Kurath, Dean E.; Adkins, Harold E.; Billing, Justin M.; Burns, Carolyn A.; Davis, James M.; Enderlin, Carl W.; Fischer, Christopher M.; Jenks, Jeromy WJ; Lukins, Craig D.; MacFarlan, Paul J.; Shutthanandan, Janani I.; Smith, Dennese M.

2012-12-01T23:59:59.000Z

459

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

SciTech Connect

IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

Gerber, Richard A.; Wasserman, Harvey J.

2012-03-02T23:59:59.000Z

460

Large Scale Structure in the SDSS Galaxy Survey  

E-Print Network (OSTI)

The Large Scale Structure (LSS) in the galaxy distribution is investigated using the Sloan Digital Sky Survey Early Data Release (SDSS EDR). Using the Minimal Spanning Tree technique we have extracted sets of filaments, of wall-like structures, of galaxy groups, and of rich clusters from this unique sample. The physical properties of these structures were then measured and compared with the expectations from Zel'dovich' theory. The measured characteristics of galaxy walls were found to be consistent with those for a spatially flat $\\Lambda$CDM cosmological model with $\\Omega_m\\approx$ 0.3 and $\\Omega_\\Lambda \\approx$ 0.7, and for Gaussian initial perturbations with a Harrison -- Zel'dovich power spectrum. Furthermore, we found that the mass functions of groups and of unrelaxed structure elements generally fit well with the expectations from Zel'dovich' theory, although there was some discrepancy for lower mass groups which may be due to incompleteness in the selected sample of groups. We also note that both groups and rich clusters tend to prefer the environments of walls, which tend to be of higher density, rather than the environments of filaments, which tend to be of lower density. Finally, we note evidence of systematic differences in the properties of the LSS between the Northern Galactic Cap stripe and the Southern Galactic Cap stripe -- in particular, in the physical properties of the walls, their spatial distribution, and the relative numbers of clusters embedded in walls. Because the mean separation of walls is $\\approx$ 60 -- 70$h^{-1}$ Mpc, each stripe only intersects a few tens of walls. Thus, small number statistics and cosmic variance are the likely drivers of these systematic differences.

A. Doroshkevich; D. L. Tucker; S. Allam

2002-06-18T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Lateral solids dispersion coefficient in large-scale fluidized beds  

SciTech Connect

The design of fuel feed ports in a large-scale fluidized bed combustor depends on the fuel characteristics and lateral solids mixing. However, the reported values of the effective lateral solids dispersion coefficient (D{sub sr}) are scattered in the broad range of 0.0001-0.1 m{sup 2}/s. With the aim of predicting D{sub sr} in wider fluidized beds which is difficult to measure directly or deduce from experimental results in lab-scale facilities, a computational method is proposed. It combines the Eulerian-Granular simulation and fictitious particle tracing technique. The value of D{sub sr} is calculated based on the movement of the tracers. The effect on D{sub sr} of bed width (W) ranging from 0.4 m up to 12.8 m at different levels of superficial gas velocity (U{sub 0}) is investigated. It is found that increasing W whilst maintaining U{sub 0}, D{sub sr} initially increases markedly, then its increase rate declines, and finally it stays around a constant value. The computed values of D{sub sr} are examined quantitatively and compared with a thorough list of the measured D{sub sr} in the literature since 1980s. Agreed with the measurements performed in the pilot-scale fluidized beds, the value of D{sub sr} in wider facilities at higher fluidizing velocities is predicted to be around the order of magnitude of 0.1 m{sup 2}/s, much higher than that in lab-scale beds. Finally, the effect of D{sub sr} on the distribution of fuel particles over the cross section in fluidized beds with the specified layout of feed ports is discussed. (author)

Liu, Daoyin; Chen, Xiaoping [School of Energy and Environment, Southeast University, Nanjing 210096 (China)

2010-11-15T23:59:59.000Z

462

Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells  

E-Print Network (OSTI)

gasification that rely on non-renewable energy sources [1]. Electrohydrogenesis using microbial electrolysis cells (MEC) is a promising approach for hydrogen production from organic matter, including waste- water

463

Amorphous Si Thin Film Based Photocathodes with High Photovoltage for Efficient Hydrogen Production  

E-Print Network (OSTI)

of California, Berkeley, California 94720, United States Joint Center for Artificial Photosynthesis and § Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United for solar hydrogen production. With platinum as prototypical cocatalyst, a photocurrent onset potential of 0

Javey, Ali

464

DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about the cost of hydrogen production using low-cost natural gas.

465

Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical Cycle Selection and Investment Priority  

Energy.gov (U.S. Department of Energy (DOE))

This Sandia National Laboratories report documents the evaluation of nine solar thermochemical reaction cycles for the production of hydrogen and identifies the critical path challenges to the commercial potential of each cycle.

466

A resource recycling technique of hydrogen production from the catalytic degradation of organics in wastewater  

Science Journals Connector (OSTI)

A resource recycling technique of hydrogen production from the catalytic degradation of organics in wastewater by aqueous phase reforming (APR) has...N,N-dimethylformamide (DMF) and cyclohexanol) in water could b...

XiaoNian Li; LingNiao Kong; YiZhi Xiang; YaoMing Ju…

2008-11-01T23:59:59.000Z

467

Microbial Electrolysis Cells (MECs) for High Yield Hydrogen (H2) Production from Biodegradable Materials  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Jason Ren, University of Colorado Boulder, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

468

DOE Issues 2 Requests for Information on Low-Cost Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on the RD&D needs for enabling low-cost, effective hydrogen production from all types of water electrolysis systems, both centralized and forecourt. Based on the results of these...

469

Liquid composition having ammonia borane and decomposing to form hydrogen and liquid reaction product  

DOE Patents (OSTI)

Liquid compositions of ammonia borane and a suitably chosen amine borane material were prepared and subjected to conditions suitable for their thermal decomposition in a closed system that resulted in hydrogen and a liquid reaction product.

Davis, Benjamin L; Rekken, Brian D

2014-04-01T23:59:59.000Z

470

Structure of aluminum hydroxide powders obtained as a byproduct of hydrogen fuel production  

Science Journals Connector (OSTI)

The structure of aluminum hydroxide powders obtained as byproducts of hydrogen fuel production was investigated. One of the main initial components comprised aluminum-magnesium chips with 0.6, 6 and 12 wt.% ma...

A. D. Shlyapin; A. Yu. Omarov; V. P. Tarasovskii; Yu. G. Trifonov

2013-09-01T23:59:59.000Z

471

Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming  

Energy.gov (U.S. Department of Energy (DOE))

A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences.

472

Large Scale Ice Water Path and 3-D Ice Water Content  

DOE Data Explorer (OSTI)

Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.

Liu, Guosheng

473

? Particles Initiate Biological Production of Superoxide Anions and Hydrogen Peroxide in Human Cells  

Science Journals Connector (OSTI)

...induce the cellular production of O2@ and H2O2 by...that the intracel lular production of O2@ and H202 is...18). MATERIALS AND METHODS Reagents. Cells were...concentration, 10 .LM).Hydrogen peroxide (H2O2; 30...intracellular O2@ and H202 production in human cells (19...

P. K. Narayanan; E. H. Goodwin; and B. E. Lehnert

1997-09-15T23:59:59.000Z

474

Production of Hydrogen Gas from Light and the Inorganic Electron Donor Thiosulfate by Rhodopseudomonas palustris  

Science Journals Connector (OSTI)

...control rates of H2 production. The possibility...compounds for H2 production by PNSBs beyond...with hydrogen fuel cells because it has a...potential for H2 production because they can...water along with solar energy to drive...studies with PNSBs, organic compounds are typically...

Jean J. Huang; Erin K. Heiniger; James B. McKinlay; Caroline S. Harwood

2010-10-01T23:59:59.000Z

475

Hydrogen and electricity production using microbial fuel cell-based technologies  

E-Print Network (OSTI)

1 Hydrogen and electricity production using microbial fuel cell-based technologies Bruce E. Logan/mol? ? #12;8 Energy Production using MFC technologies · Electricity production using microbial fuel cells · H to renewable energy #12;9 Demonstration of a Microbial Fuel Cell (MFC) MFC webcam (live video of an MFC running

Lee, Dongwon

476

Hydrogen and elemental carbon production from natural gas and other hydrocarbons  

DOE Patents (OSTI)

Diatomic hydrogen and unsaturated hydrocarbons are produced as reactor gases in a fast quench reactor. During the fast quench, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

Detering, Brent A. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

477

Int. J. Nuclear Hydrogen Production and Application, Vol. 1, No. 1, 2006 57 Copyright 2006 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

Int. J. Nuclear Hydrogen Production and Application, Vol. 1, No. 1, 2006 57 Copyright © 2006. (2006) `Global environmental impacts of the hydrogen economy', Int. J. Nuclear Hydrogen Production Manning is Head of the Atmospheric Dispersion Group at the UK Met Office. He holds a PhD in Experimental

478

Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches  

SciTech Connect

The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

Steven R. Sherman

2007-06-01T23:59:59.000Z

479

Gastric Secretion: Mechanism for Production of Hydrogen Ions  

Science Journals Connector (OSTI)

...from the hydro-lytic treatment of collective carotenoids...dissociation con-stant of water and other weak elec-trolytes...electro-lyte can be water, to produce hydrogen...under conditions of electrodialysis. These studies were...electric field, of either water or carbonic acid at...

Harry P. Gregor; Jesse M. Berkowitz

1965-11-05T23:59:59.000Z

480

Engineering a Synthetic Dual-Organism System for Hydrogen Production  

Science Journals Connector (OSTI)

...promising renewable energy source as pressure...but they are also energy intensive and therefore...due to its use of renewable biomass or sunlight as its primary energy source. Hydrogen...due to the current cost of its chemical synthesis...

Zeev Waks; Pamela A. Silver

2009-02-06T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale hydrogen production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled  

E-Print Network (OSTI)

Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis 2013 Keywords: Microbial reverse-electrodialysis electrolysis cell Ammonium bicarbonate Hydrogen reverse electrodialysis (RED) stack into the MEC, which was called a microbial reverse-electrodialysis

482

Hydrogen production by water dissociation using ceramic membranes. Annual report for FY 2007.  

SciTech Connect

The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew out of an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions [1]. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen to be produced by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting [1, 2]. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Chen, L.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Park, C. Y.; Picciolo, J. J.; Song, S. J.; Energy Systems

2008-03-04T23:59:59.000Z

483

Using MPI File Caching to Improve Parallel Write Performance for Large-Scale Scientific Applications  

SciTech Connect

Typical large-scale scientific applications periodically write checkpoint files to save the computational state throughout execution. Existing parallel file systems improve such write-only I/O patterns through the use of clientside file caching and write-behind strategies. In distributed environments where files are rarely accessed by more than one client concurrently, file caching has achieved significant success; however, in parallel applications where multiple clients manipulate a shared file, cache coherence control can serialize I/O. We have designed a thread based caching layer for the MPI I/O library, which adds a portable caching system closer to user applications so more information about the application's I/O patterns is available for better coherence control. We demonstrate the impact of our caching solution on parallel write performance with a comprehensive evaluation that includes a set of widely used I/O benchmarks and production application I/O kernels.

Liao, Wei-keng [Northwestern University, Evanston; Ching, Avery [Northwestern University, Evanston; Coloma, Kenin [Northwestern University, Evanston; Nisar, Arifa [Northwestern University, Evanston; Choudhary, Alok [Northwestern University, Evanston; Chen, Jackie [Sandia National Laboratories (SNL); Sankaran, Ramanan [ORNL; Klasky, Scott A [ORNL

2007-01-01T23:59:59.000Z

484

Using MPI file caching to improve parallel write performance for large-scale scientific applications  

SciTech Connect

Typical large-scale scientific applications periodically write checkpoint files to save the computational state throughout execution. Existing parallel file systems improve such write-only I/O patterns through the use of client-side file caching and write-behind strategies. In distributed environments where files are rarely accessed by more than one client concurrently, file caching has achieved significant success; however, in parallel applications where multiple clients manipulate a shared file, cache coherence control can serialize I/O. We have designed a thread based caching layer for the MPI I/O library, which adds a portable caching system closer to user applications so more information about the application's I/O patterns is available for better coherence control. We demonstrate the impact of our caching solution on parallel write performance with a comprehensive evaluation that includes a set of widely used I/O benchmarks and production application I/O kernels.

Sankaran, Ramanan [ORNL; Liao, Wei-Keng [ORNL; Chen, Jacqueline H [Sandia National Laboratories (SNL); Klasky, Scott A [ORNL; Choudhary, Alok [Northwestern University, Evanston

2007-01-01T23:59:59.000Z

485

The global financial markets: an ultra-large-scale systems perspective  

Science Journals Connector (OSTI)

We argue here that, in recent years, the world's financial markets have become a globally interconnected complex adaptive ultra-large-scale socio-technical system-of-systems, and that this has important consequences for how the financial markets should ... Keywords: algorithmic trading, financial markets, flash crash, high-frequency trading, large-scale complex IT systems, normalization of deviance, ultra-large-scale systems

Dave Cliff; Linda Northrop

2012-03-01T23:59:59.000Z

486

Process modeling of hydrogen production from municipal solid waste  

SciTech Connect

The ASPEN PLUS commercial simulation software has been used to develop a process model for a conceptual process to convert municipal solid waste (MSW) to hydrogen. The process consists of hydrothermal treatment of the MSW in water to create a slurry suitable as feedstock for an oxygen blown Texaco gasifier. A method of reducing the complicated MSW feed material to a manageable set of components is outlined along with a framework for modeling the stoichiometric changes associated with the hydrothermal treatment process. Model results indicate that 0.672 kmol/s of hydrogen can be produced from the processing of 30 kg/s (2600 tonne/day) of raw MSW. A number of variations on the basic processing parameters are explored and indicate that there is a clear incentive to reduce the inert fraction in the processed slurry feed and that cofeeding a low value heavy oil may be economically attractive.

Thorsness, C.B.

1995-01-01T23:59:59.000Z

487

E-Print Network 3.0 - astrophysical large-scale dynamos Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

dynamo cycle periods in astrophysical objects. An important... dynamos into three types: 1. magnetically dominated helical dynamos which sustain a large-scale magnetic... )...

488

DOE/NNSA Participates in Large-Scale CTBT On-Site Inspection...  

National Nuclear Security Administration (NNSA)

Large-Scale CTBT On-Site Inspection Exercise in Jordan | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

489

Comparison of Large Scale Renewable Energy Projects for the United States Air Force.  

E-Print Network (OSTI)

??This thesis focused on the performance of large-scale renewable energy projects for the United States Air Force. As global energy demands continue to rise, the… (more)

Hughes, Jeffrey S

2012-01-01T23:59:59.000Z

490

Enabling Large-Scale Linear Systems of Equations on Hybrid HPC Infrastructures  

Science Journals Connector (OSTI)

Scientific research is becoming increasingly dependent on the large-scale analysis of data using High Performance Computing (HPC) infrastructures. Scientific computing aims at constructing mathematical models ......

H. Astsatryan; V. Sahakyan; Yu. Shoukouryan; M. Daydé; A. Hurault

2012-01-01T23:59:59.000Z

491

The Linearly Scaling 3D Fragment Method for Large Scale Electronic Structure Calculations  

E-Print Network (OSTI)

large scale electronic structure calculations Zhengji Zhaoin [8]. 3. Electronic structure calculations for asymmetricd) initio electronic structure Pure CdS calculations. This

Zhao, Zhengji

2009-01-01T23:59:59.000Z

492

Optimization and control of a large-scale solar chimney power plant.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: The dissertation builds on previous research (Pretorius, 2004) and investigates the optimization and control of a large-scale solar chimney power plant. Performance results… (more)

Pretorius, Johannes Petrus

2007-01-01T23:59:59.000Z

493

Hydrogen production and delivery analysis in US markets : cost, energy and greenhouse gas emissions.  

SciTech Connect

Hydrogen production cost conclusions are: (1) Steam Methane Reforming (SMR) is the least-cost production option at current natural gas prices and for initial hydrogen vehicle penetration rates, at high production rates, SMR may not be the least-cost option; (2) Unlike coal and nuclear technologies, the cost of natural gas feedstock is the largest contributor to SMR production cost; (3) Coal- and nuclear-based hydrogen production have significant penalties at small production rates (and benefits at large rates); (4) Nuclear production of hydrogen is likely to have large economies of scale, but because fixed O&M costs are uncertain, the magnitude of these effects may be understated; and (5) Given H2A default assumptions for fuel prices, process efficiencies and labor costs, nuclear-based hydrogen is likely to be more expensive to produce than coal-based hydrogen. Carbon taxes and caps can narrow the gap. Hydrogen delivery cost conclusions are: (1) For smaller urban markets, compressed gas delivery appears most economic, although cost inputs for high-pressure gas trucks are uncertain; (2) For larger urban markets, pipeline delivery is least costly; (3) Distance from hydrogen production plant to city gate may change relative costs (all results shown assume 100 km); (4) Pipeline costs may be reduced with system 'rationalization', primarily reductions in service pipeline mileage; and (5) Liquefier and pipeline capital costs are a hurdle, particularly at small market sizes. Some energy and greenhouse gas Observations: (1) Energy use (per kg of H2) declines slightly with increasing production or delivery rate for most components (unless energy efficiency varies appreciably with scale, e.g., liquefaction); (2) Energy use is a strong function of production technology and delivery mode; (3) GHG emissions reflect the energy efficiency and carbon content of each component in a production-delivery pathway; (4) Coal and natural gas production pathways have high energy consumption and significant GHG emissions (in the absence of carbon caps, taxes or sequestration); (5) Nuclear pathway is most favorable from energy use and GHG emissions perspective; (6) GH2 Truck and Pipeline delivery have much lower energy use and GHG emissions than LH2 Truck delivery; and (7) For LH2 Truck delivery, the liquefier accounts for most of the energy and GHG emissions.

Mintz, M.; Gillette, J.; Elgowainy, A. (Decision and Information Sciences); ( ES)

2009-01-01T23:59:59.000Z

494

Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons  

DOE Patents (OSTI)

A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

Muradov, Nazim Z. (Melbourne, FL)

2011-08-23T23:59:59.000Z

495

Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis  

E-Print Network (OSTI)

Hydrogen production from cellulose in a two-stage process combining fermentation primarily of: acetic, lactic, succinic, and formic acids and ethanol. An additional 800 Ã? 290 mL H2/g #12;1. Introduction Biohydrogen production from cellulose has received consid- erable attention

496

Designing catalysts for hydrogen production | Center for Bio...  

NLE Websites -- All DOE Office Websites (Extended Search)

production 12 Oct 2012 Dr. Anne Jones is a Principal Investigator in the Center of Bio-Inspired Solar Fuel production at Arizona State University. Her lab is involved in...

497

Intracellular Hydrogen Peroxide Production Is an Upstream Event in Apoptosis Induced by Down-Regulation of Casein Kinase 2 in Prostate Cancer Cells  

Science Journals Connector (OSTI)

...hydrogen peroxide production independent of the...Kundu GC, et al. Hydrogen peroxide activates...S, Clement MV. Hydrogen peroxide-induced...reductive stress. Methods Enzymol 2002;352...Increased Nox1 and hydrogen peroxide in prostate...hydrogen peroxide production is an upstream event...

Kashif A. Ahmad; Guixia Wang; and Khalil Ahmed

2006-05-01T23:59:59.000Z

498

Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor  

SciTech Connect

High purity hydrogen is commercially produced from syngas by the Water Gas Shift Reaction (WGSR) in high and low temperature shift reactors using iron oxide and copper catalysts respectively. However, the WGSR is thermodynamically limited at high temperatures towards hydrogen production necessitating excess steam addition and catalytic operation. In the calcium looping process, the equilibrium limited WGSR is driven forward by the incessant removal of CO{sub 2} by-product through the carbonation of calcium oxide. At high pressures, this process obviates the need for a catalyst and excess steam requirement, thereby removing the costs related to the procurement and deactivation of the catalyst and steam generation. Thermodynamic analysis for the combined WGS and carbonation reaction was conducted. The combined WGS and carbonation reaction was investigated at varying pressures, temperatures and S/C ratios using a bench scale reactor system. It was found that the purity of hydrogen increases with the increase in pressure and at a pressure of 300 psig, almost 100% hydrogen is produced. It was also found that at high pressures, high purity hydrogen can be produced using stoichiometric quantities of steam. On comparing the catalytic and non catalytic modes of operation in the presence of calcium oxide, it was found that there was no difference in the purity of hydrogen produced at elevated pressures. Multicyclic reaction and regeneration experiments were also conducted and it was found that the purity of hydrogen remains almost constant after a few cycles.

Shwetha Ramkumar; Mahesh Iyer; Danny Wong; Himanshu Gupta; Bartev Sakadjian; Liang-Lhih Fan

2008-09-30T23:59:59.000Z

499

Production of Hydrogen Using Nanocrystalline Protein-Templated Catalysts on M13 Phage  

Science Journals Connector (OSTI)

Production of Hydrogen Using Nanocrystalline Protein-Templated Catalysts on M13 Phage ... (35-38) In this work, we template nickel, rhodium, and ceria onto the surface of the M13 bacteriophage in order to produce catalysts with excellent dispersion, higher thermal stability, and a more porous structure than catalysts made using other methods. ... This result indicates that the selectivity to methane was partially controlled by the availability of hydrogen atoms on the surface required to hydrogenate the hydrocarbon species produced by acetaldehyde decarbonylation. ...

Brian Neltner; Brian Peddie; Alex Xu; William Doenlen; Keith Durand; Dong Soo Yun; Scott Speakman; Andrew Peterson; Angela Belcher

2010-06-07T23:59:59.000Z

500

Reversible Electrocatalytic Production and Oxidation of Hydrogen at Low Overpotentials by a Functional Hydrogenase Mimic  

SciTech Connect

A new bis(diphosphine) nickel(II) complex, [Ni(PPh2NR2)2](BF4)2, 1, (R = CH2CH2OCH3) is described. A {Delta}G{sup o} of 0.84 kcal/mol{sup -1} for hydrogen addition for this complex was calculated from the experimentally determined equilibrium constant. This complex displays reversible electrocatalytic activity for hydrogen production and oxidation at low overpotentials, a characteristic most commonly associated with hydrogenase enzymes.

Smith, Stuart E.; Yang, Jenny Y.; DuBois, Daniel L.; Bullock, Morris

2012-03-26T23:59:59.000Z