Powered by Deep Web Technologies
Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DOE/EA-1626: Final Environmental Assessment for Midwest Geological Sequestration Consortium (MGSC) Phase III Large-Scale Field Test (October 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26 26 FINAL ENVIRONMENTAL ASSESSMENT Midwest Geological Sequestration Consortium (MGSC) Phase III Large-Scale Field Test Decatur, Illinois October 2008 U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY U.S. Department of Energy MGSC Phase III National Energy Technology Laboratory Final Environmental Assessment ______________________________________________________________________________ Table of Contents i October 2008 TABLE OF CONTENTS LIST OF TABLES.......................................................................................................................... v LIST OF FIGURES ........................................................................................................................

2

Large-Scale Structures Testing Facility  

Science Conference Proceedings (OSTI)

... a 13.7m-high reaction buttress equipped with a horizontal hydraulic ram. ... Another test series evaluated fracture propagation in steel plates 1 m wide ...

2011-12-22T23:59:59.000Z

3

Large-Scale Industrial CCS Projects Selected for Continued Testing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Industrial CCS Projects Selected for Continued Testing Large-Scale Industrial CCS Projects Selected for Continued Testing Large-Scale Industrial CCS Projects Selected for Continued Testing June 10, 2010 - 1:00pm Addthis Washington, DC - Three Recovery Act funded projects have been selected by the U.S. Department of Energy (DOE) to continue testing large-scale carbon capture and storage (CCS) from industrial sources. The projects - located in Texas, Illinois, and Louisiana - were initially selected for funding in October 2009 as part of a $1.4 billion effort to capture carbon dioxide (CO2) from industrial sources for storage or beneficial use. The first phase of research and development (R&D) included $21.6 million in Recovery Act funding and $22.5 million in private funding for a total initial investment of $44.1 million.

4

Large scale meteorological influence during the Geysers 1979 field experiment  

DOE Green Energy (OSTI)

A series of meteorological field measurements conducted during July 1979 near Cobb Mountain in Northern California reveals evidence of several scales of atmospheric circulation consistent with the climatic pattern of the area. The scales of influence are reflected in the structure of wind and temperature in vertically stratified layers at a given observation site. Large scale synoptic gradient flow dominates the wind field above about twice the height of the topographic ridge. Below that there is a mixture of effects with evidence of a diurnal sea breeze influence and a sublayer of katabatic winds. The July observations demonstrate that weak migratory circulations in the large scale synoptic meteorological pattern have a significant influence on the day-to-day gradient winds and must be accounted for in planning meteorological programs including tracer experiments.

Barr, S.

1980-01-01T23:59:59.000Z

5

A Bootstrap Technique for Testing the Relationship between Local-Scale Radar Observations of Cloud Occurrence and Large-Scale Atmospheric Fields  

Science Conference Proceedings (OSTI)

A classification scheme is created to map the synoptic-scale (large scale) atmospheric state to distributions of local-scale cloud properties. This mapping is accomplished by a neural network that classifies 17 months of synoptic-scale initial ...

Roger Marchand; Nathaniel Beagley; Sandra E. Thompson; Thomas P. Ackerman; David M. Schultz

2006-11-01T23:59:59.000Z

6

Large-scale sodium spray fire code validation (SOFICOV) test  

Science Conference Proceedings (OSTI)

A large-scale, sodium, spray fire code validation test was performed in the HEDL 850-m/sup 3/ Containment System Test Facility (CSTF) as part of the Sodium Spray Fire Code Validation (SOFICOV) program. Six hundred fifty eight kilograms of sodium spray was sprayed in an air atmosphere for a period of 2400 s. The sodium spray droplet sizes and spray pattern distribution were estimated. The containment atmosphere temperature and pressure response, containment wall temperature response and sodium reaction rate with oxygen were measured. These results are compared to post-test predictions using SPRAY and NACOM computer codes.

Jeppson, D.W.; Muhlestein, L.D.

1985-01-01T23:59:59.000Z

7

PHASE TRANSITION GENERATED COSMOLOGICAL MAGNETIC FIELD AT LARGE SCALES  

SciTech Connect

We constrain a primordial magnetic field (PMF) generated during a phase transition (PT) using the big bang nucleosynthesis bound on the relativistic energy density. The amplitude of the PMF at large scales is determined by the shape of the PMF spectrum outside its maximal correlation length scale. Even if the amplitude of the PMF at 1 Mpc is small, PT-generated PMFs can leave observable signatures in the potentially detectable relic gravitational wave background if a large enough fraction (1%-10%) of the thermal energy is converted into the PMF.

Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 (United States); Tevzadze, Alexander G. [Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave., Tbilisi 0160 (Georgia); Ratra, Bharat, E-mail: tinatin@phys.ksu.edu, E-mail: aleko@tevza.org, E-mail: ratra@phys.ksu.edu [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506 (United States)

2011-01-10T23:59:59.000Z

8

VP 100: New Facility in Boston to Test Large-Scale Wind Blades | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VP 100: New Facility in Boston to Test Large-Scale Wind Blades VP 100: New Facility in Boston to Test Large-Scale Wind Blades VP 100: New Facility in Boston to Test Large-Scale Wind Blades July 23, 2010 - 1:19pm Addthis Boston's Wind Technology Testing Center, funded in part with Recovery Act funds, will be first in U.S. to test blades up to 300 feet long. | Photo Courtesy of Massachusetts Clean Energy Center Boston's Wind Technology Testing Center, funded in part with Recovery Act funds, will be first in U.S. to test blades up to 300 feet long. | Photo Courtesy of Massachusetts Clean Energy Center Stephen Graff Former Writer & editor for Energy Empowers, EERE America's first-of-its-kind wind blade testing facility - capable of testing a blade as long as a football field - almost never was. Because of funding woes, the Massachusetts Clean Energy Center (MassCEC),

9

Hydrogen-combustion analyses of large-scale tests  

DOE Green Energy (OSTI)

This report uses results of the large-scale tests with turbulence performed by the Electric Power Research Institute at the Nevada Test Site to evaluate hydrogen burn-analysis procedures based on lumped-parameter codes like COMPARE-H2 and associated burn-parameter models. The test results: (1) confirmed, in a general way, the procedures for application to pulsed burning, (2) increased significantly our understanding of the burn phenomenon by demonstrating that continuous burning can occur, and (3) indicated that steam can terminate continuous burning. Future actions recommended include: (1) modification of the code to perform continuous-burn analyses, which is demonstrated, (2) analyses to determine the type of burning (pulsed or continuous) that will exist in nuclear containments and the stable location if the burning is continuous, and (3) changes to the models for estimating burn parameters.

Gido, R.G.; Koestel, A.

1986-01-01T23:59:59.000Z

10

Large scale test simulations using the Virtual Environment for Test Optimization (VETO)  

SciTech Connect

The Virtual Environment for Test Optimization (VETO) is a set of simulation tools under development at Sandia to enable test engineers to do computer simulations of tests. The tool set utilizes analysis codes and test information to optimize design parameters and to provide an accurate model of the test environment which aides in the maximization of test performance, training, and safety. Previous VETO effort has included the development of two structural dynamics simulation modules that provide design and optimization tools for modal and vibration testing. These modules have allowed test engineers to model and simulate complex laboratory testing, to evaluate dynamic response behavior, and to investigate system testability. Further development of the VETO tool set will address the accurate modeling of large scale field test environments at Sandia. These field test environments provide weapon system certification capabilities and have different simulation requirements than those of laboratory testing.

Klenke, S.E.; Heffelfinger, S.R.; Bell, H.J.; Shierling, C.L.

1997-10-01T23:59:59.000Z

11

Large-Scale Spray Releases: Additional Aerosol Test Results  

SciTech Connect

One of the events postulated in the hazard analysis for the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak event involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids that behave as a Newtonian fluid. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and in processing facilities across the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are mostly absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale testing. The small-scale testing and resultant data are described in Mahoney et al. (2012b), and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used to mimic the relevant physical properties projected for actual WTP process streams.

Daniel, Richard C.; Gauglitz, Phillip A.; Burns, Carolyn A.; Fountain, Matthew S.; Shimskey, Rick W.; Billing, Justin M.; Bontha, Jagannadha R.; Kurath, Dean E.; Jenks, Jeromy WJ; MacFarlan, Paul J.; Mahoney, Lenna A.

2013-08-01T23:59:59.000Z

12

Large-Scale Spray Releases: Initial Aerosol Test Results  

Science Conference Proceedings (OSTI)

One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and rectangular slots. The round holes ranged in size from 0.2 to 4.46 mm. The slots ranged from (width × length) 0.3 × 5 to 2.74 × 76.2 mm. Most slots were oriented longitudinally along the pipe, but some were oriented circumferentially. In addition, a limited number of multi-hole test pieces were tested in an attempt to assess the impact of a more complex breach. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. The purpose of this report is to present the experimental results and analyses for the aerosol measurements obtained in the large-scale test stand. The report includes a description of the simulants used and their properties, equipment and operations, data analysis methodology, and test results. The results of tests investigating the role of slurry particles in plugging of small breaches are reported in Mahoney et al. 2012a. The results of the aerosol measurements in the small-scale test stand are reported in Mahoney et al. (2012b).

Schonewill, Philip P.; Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Kurath, Dean E.; Adkins, Harold E.; Billing, Justin M.; Burns, Carolyn A.; Davis, James M.; Enderlin, Carl W.; Fischer, Christopher M.; Jenks, Jeromy WJ; Lukins, Craig D.; MacFarlan, Paul J.; Shutthanandan, Janani I.; Smith, Dennese M.

2012-12-01T23:59:59.000Z

13

Infrastructure for large-scale tests in marine autonomy  

E-Print Network (OSTI)

This thesis focuses on the development of infrastructure for research with large-scale autonomous marine vehicle fleets and the design of sampling trajectories for compressive sensing (CS). The newly developed infrastructure ...

Hummel, Robert A. (Robert Andrew)

2012-01-01T23:59:59.000Z

14

LARGE SCALE PERMEABILITY TEST OF THE GRANITE IN THE STRIPA MINE AND THERMAL CONDUCTIVITY TEST  

E-Print Network (OSTI)

No.2 LARGE SCALE PERMEABILITY TEST OF THE GRANITE' IN THEMINE AND, THERMAL CONDUCTIVITY TEST Lars Lundstrom and HakanSUMMARY REPORT Background TEST SITE Layout of test places

Lundstrom, L.

2011-01-01T23:59:59.000Z

15

PROPERTIES IMPORTANT TO MIXING FOR WTP LARGE SCALE INTEGRATED TESTING  

Science Conference Proceedings (OSTI)

Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i.e., Newtonian or non-Newtonian). The most important properties for testing with Newtonian slurries are the Archimedes number distribution and the particle concentration. For some test objectives, the shear strength is important. In the testing to collect data for CFD V and V and CFD comparison, the liquid density and liquid viscosity are important. In the high temperature testing, the liquid density and liquid viscosity are important. The Archimedes number distribution combines effects of particle size distribution, solid-liquid density difference, and kinematic viscosity. The most important properties for testing with non-Newtonian slurries are the slurry yield stress, the slurry consistency, and the shear strength. The solid-liquid density difference and the particle size are also important. It is also important to match multiple properties within the same simulant to achieve behavior representative of the waste. Other properties such as particle shape, concentration, surface charge, and size distribution breadth, as well as slurry cohesiveness and adhesiveness, liquid pH and ionic strength also influence the simulant properties either directly or through other physical properties such as yield stress.

Koopman, D.; Martino, C.; Poirier, M.

2012-04-26T23:59:59.000Z

16

Inflationary susceptibilities, duality and large-scale magnetic fields generation  

E-Print Network (OSTI)

We investigate what can be said about the interaction of scalar fields with Abelian gauge fields during a quasi-de Sitter phase of expansion and under the assumption that the electric and the magnetic susceptibilities do not coincide. The duality symmetry, transforming the magnetic susceptibility into the inverse of the electric susceptibility, exchanges the magnetic and electric power spectra. The mismatch between the two susceptibilities determines an effective refractive index affecting the evolution of the canonical fields. The constraints imposed by the duration of the inflationary phase and by the magnetogenesis requirements pin down the rate of variation of the susceptibilities that is consistent with the observations of the magnetic field strength over astrophysical and cosmological scales but avoids back-reaction problems. The parameter space of this magnetogenesis scenario is wider than in the case when the susceptibilities are equal, as it happens when the inflaton or some other spectator field is solely coupled to the standard gauge kinetic term.

Massimo Giovannini

2013-10-07T23:59:59.000Z

17

CONSTRAINING PRIMORDIAL MAGNETIC FIELDS THROUGH LARGE-SCALE STRUCTURE  

Science Conference Proceedings (OSTI)

We study primordial magnetic field effects on the matter perturbations in the universe. We assume magnetic field generation prior to the big bang nucleosynthesis (BBN), i.e., during the radiation-dominated epoch of the universe expansion, but do not limit analysis by considering a particular magnetogenesis scenario. Contrary to previous studies, we limit the total magnetic field energy density and not the smoothed amplitude of the magnetic field at large (of the order of 1 Mpc) scales. We review several cosmological signatures, such as halo abundance, thermal Sunyaev-Zel'dovich effect, and Ly{alpha} data. For a cross-check, we compare our limits with that obtained through the cosmic microwave background faraday rotation effect and BBN. The limits range between 1.5 nG and 4.5 nG for n{sub B} in (- 3; -1.5).

Kahniashvili, Tina; Natarajan, Aravind; Battaglia, Nicholas [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Maravin, Yurii [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506 (United States); Tevzadze, Alexander G., E-mail: tinatin@andrew.cmu.edu [Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, 3 Chavchavadze Avenue, Tbilisi 0128 (Georgia)

2013-06-10T23:59:59.000Z

18

Large-Scale Hybrid Dynamic Simulation Employing Field Measurements  

Science Conference Proceedings (OSTI)

Simulation and measurements are two primary ways for power engineers to gain understanding of system behaviors and thus accomplish tasks in system planning and operation. Many well-developed simulation tools are available in today's market. On the other hand, large amount of measured data can be obtained from traditional SCADA systems and currently fast growing phasor networks. However, simulation and measurement are still two separate worlds. There is a need to combine the advantages of simulation and measurements. In view of this, this paper proposes the concept of hybrid dynamic simulation which opens up traditional simulation by providing entries for measurements. A method is presented to implement hybrid simulation with PSLF/PSDS. Test studies show the validity of the proposed hybrid simulation method. Applications of such hybrid simulation include system event playback, model validation, and software validation.

Huang, Zhenyu; Guttromson, Ross T.; Hauer, John F.

2004-06-30T23:59:59.000Z

19

Goethite Bench-scale and Large-scale Preparation Tests  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous ion, Fe{sup 2+}-Fe{sup 2+} is oxidized to Fe{sup 3+} - in the presence of goethite seed particles. Rhenium does not mimic that process; it is not a strong enough reducing agent to duplicate the TcO{sub 4}{sup -}/Fe{sup 2+} redox reactions. Laboratory tests conducted in parallel with these scaled tests identified modifications to the liquid chemistry necessary to reduce ReO{sub 4}{sup -} and capture rhenium in the solids at levels similar to those achieved by Um (2010) for inclusion of Tc into goethite. By implementing these changes, Re was incorporated into Fe-rich solids for testing at VSL. The changes also changed the phase of iron that was in the slurry product: rather than forming goethite ({alpha}-FeOOH), the process produced magnetite (Fe{sub 3}O{sub 4}). Magnetite was considered by Pacific Northwest National Laboratory (PNNL) and VSL to probably be a better product to improve Re retention in the melter because it decomposes at a higher temperature than goethite (1538 C vs. 136 C). The feasibility tests at VSL were conducted using Re-rich magnetite. The tests did not indicate an improved retention of Re in the glass during vitrification, but they did indicate an improved melting rate (+60%), which could have significant impact on HLW processing. It is still to be shown whether the Re is a solid solution in the magnetite as {sup 99}Tc was determined to be in goethite.

Josephson, Gary B.; Westsik, Joseph H.

2011-10-23T23:59:59.000Z

20

An automatic water management system for large-scale rice paddy fields  

Science Conference Proceedings (OSTI)

An automatic water management system for large-scale paddy fields has been developed. The purposes of that are to supply the paddy fields with water or drain water from that automatically, to decrease water consumption, and to have a good harvest. To ... Keywords: estimating mean water level, optimal water allocation, paddy field, predict field consumption, prediction of growth stages, water level control

Teruji Sekozawa

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ultra high energy cosmic rays and the large scale structure of the galactic magnetic field  

E-Print Network (OSTI)

We study the deflection of ultra high energy cosmic ray protons in different models of the regular galactic magnetic field. Such particles have gyroradii well in excess of 1 kpc and their propagation in the galaxy reflects only the large scale structure of the galactic magnetic field. A future large experimental statistics of cosmic rays of energy above 10$^{19}$ eV could be used for a study of the large scale structure of the galactic magnetic field if such cosmic rays are indeed charged nuclei accelerated at powerful astrophysical objects and if the distribution of their sources is not fully isotropic.

Todor Stanev

1996-07-17T23:59:59.000Z

22

Dark energy, integrated Sachs-Wolfe effect and large-scale magnetic fields  

E-Print Network (OSTI)

The impact of large-scale magnetic fields on the interplay between the ordinary and integrated Sachs-Wolfe effects is investigated in the presence of a fluctuating dark energy component. The modified initial conditions of the Einstein-Boltzmann hierarchy allow for the simultaneous inclusion of dark energy perturbations and of large-scale magnetic fields. The temperature and polarization angular power spectra are compared with the results obtained in the magnetized version of the (minimal) concordance model. Purported compensation effects arising at large scales are specifically investigated. The fluctuating dark energy component modifies, in a computable manner, the shapes of the 1- and 2-$\\sigma$ contours in the parameter space of the magnetized background. The allowed spectral indices and magnetic field intensities turn out to be slightly larger than those determined in the framework of the magnetized concordance model where the dark energy fluctuations are absent.

Massimo Giovannini

2009-07-18T23:59:59.000Z

23

Large-Scale Software Unit Testing on the Grid Yaohang Li, 2  

E-Print Network (OSTI)

-scale and cost-efficient computational grid resources as a software testing test bed to support automated. Grid computing is characterized by large-scale sharing and cooperation of dynamically distributed a grid-based software testing framework to facilitate the automated process of utilizing the grid

Li, Yaohang

24

PIV Studies of Large Scale Structures in the Near Field of Small Aspect Ratio Elliptic Jets  

Science Conference Proceedings (OSTI)

The near flow field of small aspect ratio elliptic turbulent free jets (issuing from nozzle and orifice) was experimentally studied using a 2D PIV. Two point velocity correlations in these jets revealed the extent and orientation of the large scale structures ... Keywords: Axis switching, Elliptic jet, PIV, Spatial filtering, Two point correlation

G. Ramesh; L. Venkatakrishnan; A. Prabhu

2006-01-01T23:59:59.000Z

25

Large-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random Fields  

E-Print Network (OSTI)

pricing. Although it is known that probabilistic forecasts (which give a distribution over possible futureLarge-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random Fields Matt Wytock and J. Zico Kolter Abstract-- Short-term forecasting is a ubiquitous practice

Kolter, J. Zico

26

TOPOLOGY OF A LARGE-SCALE STRUCTURE AS A TEST OF MODIFIED GRAVITY  

SciTech Connect

The genus of the isodensity contours is a robust measure of the topology of a large-scale structure, and it is relatively insensitive to nonlinear gravitational evolution, galaxy bias, and redshift-space distortion. We show that the growth of density fluctuations is scale dependent even in the linear regime in some modified gravity theories, which opens a new possibility of testing the theories observationally. We propose to use the genus of the isodensity contours, an intrinsic measure of the topology of the large-scale structure, as a statistic to be used in such tests. In Einstein's general theory of relativity, density fluctuations grow at the same rate on all scales in the linear regime, and the genus per comoving volume is almost conserved as structures grow homologously, so we expect that the genus-smoothing-scale relation is basically time independent. However, in some modified gravity models where structures grow with different rates on different scales, the genus-smoothing-scale relation should change over time. This can be used to test the gravity models with large-scale structure observations. We study the cases of the f(R) theory, DGP braneworld theory as well as the parameterized post-Friedmann models. We also forecast how the modified gravity models can be constrained with optical/IR or redshifted 21 cm radio surveys in the near future.

Wang Xin; Chen Xuelei [Key Laboratory of Optical Astronomy, National Astronomical ObservatoriesChinese Academy of Sciences, Beijing 100012 (China); Park, Changbom [Korea Institute for Advanced Study, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)

2012-03-01T23:59:59.000Z

27

Disk Accretion Flow Driven by Large-Scale Magnetic Fields: Solutions with Constant Specific Energy  

E-Print Network (OSTI)

(Abridged) We study the dynamical evolution of a stationary, axisymmetric, and perfectly conducting cold accretion disk containing a large-scale magnetic field around a Kerr black hole, trying to understand the relation between accretion and the transportation of angular momentum and energy. We solve the radial momentum equation for solutions corresponding to an accretion flow that starts from a subsonic state at infinity, smoothly passes the fast critical point, then supersonically falls into the horizon of the black hole. The solutions always have the following features: 1) The specific energy of fluid particles remains constant but the specific angular momentum is effectively removed by the magnetic field. 2) At large radii, where the disk motion is dominantly rotational, the energy density of the magnetic field is equipartitioned with the rotational energy density of the disk. 3) Inside the fast critical point, where radial motion becomes important, the ratio of the electromagnetic energy density to the kinetic energy density drops quickly. The results indicate that: 1) Disk accretion does not necessarily imply energy dissipation since magnetic fields do not have to transport or dissipate a lot of energy as they effectively transport angular momentum. 2) When resistivity is small, the large-scale magnetic field is amplified by the shearing rotation of the disk until the magnetic energy density is equipartitioned with the rotational energy density, ending up with a geometrically thick disk. This is in contrast with the evolution of small-scale magnetic fields where if the resistivity is nonzero the magnetic energy density is likely to be equipartitioned with the kinetic energy density associated with local random motions (e.g., turbulence), making a thin Keplerian disk possible.

Li-Xin Li

2002-12-20T23:59:59.000Z

28

On the Velocity in the Effective Field Theory of Large Scale Structures  

E-Print Network (OSTI)

We compute the renormalized two-point functions of density, divergence and vorticity of the velocity in the Effective Field Theory of Large Scale Structures. We show that the mass-weighted velocity, as opposed to the volume-weighted velocity, is the natural variable to use. We then prove that, Because of momentum and mass conservation, the corrections from short scales to the large-scale power spectra of density, divergence and vorticity must start at order $k^{4}$. For the vorticity this constitutes the leading term. Exact (approximated) self-similarity of an Einstein-de Sitter ($\\Lambda$CDM) background fixes the time dependence so that the vorticity power spectrum at leading order is uniquely determined, up to a normalization, by the symmetries of the problem. Focusing on density and velocity divergence, we show that the current formulation of the theory does not have enough counterterms to cancel all divergences. At the lowest order, the missing terms are a new stochastic noise and a heat conduction term in the continuity equation. For an Einstein de Sitter universe, we show that all three renormalized cross- and auto-correlation functions have the same structure but different numerical coefficients, which we compute. Using momentum instead of velocity, one can re-absorb the new terms and work with an uncorrected continuity equation but at the cost of having uncancelled IR divergences in equal-time correlators and a more complicated perturbation theory.

Lorenzo Mercolli; Enrico Pajer

2013-07-11T23:59:59.000Z

29

Thermocline Thermal Storage Test for Large-Scale Solar Thermal Power Plants  

DOE Green Energy (OSTI)

Solar thermal-to-electric power plants have been tested and investigated at Sandia National Laboratories (SNL) since the late 1970s, and thermal storage has always been an area of key study because it affords an economical method of delivering solar-electricity during non-daylight hours. This paper describes the design considerations of a new, single-tank, thermal storage system and details the benefits of employing this technology in large-scale (10MW to 100MW) solar thermal power plants. Since December 1999, solar engineers at Sandia National Laboratories' National Solar Thermal Test Facility (NSTTF) have designed and are constructing a thermal storage test called the thermocline system. This technology, which employs a single thermocline tank, has the potential to replace the traditional and more expensive two-tank storage systems. The thermocline tank approach uses a mixture of silica sand and quartzite rock to displace a significant portion of the volume in the tank. Then it is filled with the heat transfer fluid, a molten nitrate salt. A thermal gradient separates the hot and cold salt. Loading the tank with the combination of sand, rock, and molten salt instead of just molten salt dramatically reduces the system cost. The typical cost of the molten nitrate salt is $800 per ton versus the cost of the sand and rock portion at $70 per ton. Construction of the thermocline system will be completed in August 2000, and testing will run for two to three months. The testing results will be used to determine the economic viability of the single-tank (thermocline) storage technology for large-scale solar thermal power plants. Also discussed in this paper are the safety issues involving molten nitrate salts and other heat transfer fluids, such as synthetic heat transfer oils, and the impact of these issues on the system design.

ST.LAURENT,STEVEN J.

2000-08-14T23:59:59.000Z

30

Testing of Large-Scale ICV Glasses with Hanford LAW Simulant  

SciTech Connect

Preliminary glass compositions for immobilizing Hanford low-activity waste (LAW) by the in-container vitrification (ICV) process were initially fabricated at crucible- and engineering-scale, including simulants and actual (radioactive) LAW. Glasses were characterized for vapor hydration test (VHT) and product consistency test (PCT) responses and crystallinity (both quenched and slow-cooled samples). Selected glasses were tested for toxicity characteristic leach procedure (TCLP) responses, viscosity, and electrical conductivity. This testing showed that glasses with LAW loading of 20 mass% can be made readily and meet all product constraints by a far margin. Glasses with over 22 mass% Na2O can be made to meet all other product quality and process constraints. Large-scale testing was performed at the AMEC, Geomelt Division facility in Richland. Three tests were conducted using simulated LAW with increasing loadings of 12, 17, and 20 mass% Na2O. Glass samples were taken from the test products in a manner to represent the full expected range of product performance. These samples were characterized for composition, density, crystalline and non-crystalline phase assemblage, and durability using the VHT, PCT, and TCLP tests. The results, presented in this report, show that the AMEC ICV product with meets all waste form requirements with a large margin. These results provide strong evidence that the Hanford LAW can be successfully vitrified by the ICV technology and can meet all the constraints related to product quality. The economic feasibility of the ICV technology can be further enhanced by subsequent optimization.

Hrma, Pavel R.; Kim, Dong-Sang; Vienna, John D.; Matyas, Josef; Smith, Donald E.; Schweiger, Michael J.; Yeager, John D.

2005-03-01T23:59:59.000Z

31

Consistency test of general relativity from large scale structure of the Universe  

E-Print Network (OSTI)

We construct a consistency test of General Relativity (GR) on cosmological scales. This test enables us to distinguish between the two alternatives to explain the late-time accelerated expansion of the universe, that is, dark energy models based on GR and modified gravity models without dark energy. We derive the consistency relation in GR which is written only in terms of observables - the Hubble parameter, the density perturbations, the peculiar velocities and the lensing potential. The breakdown of this consistency relation implies that the Newton constant which governs large-scale structure is different from that in the background cosmology, which is a typical feature in modified gravity models. We propose a method to perform this test by reconstructing the weak lensing spectrum from measured density perturbations and peculiar velocities. This reconstruction relies on Poisson's equation in GR to convert the density perturbations to the lensing potential. Hence any inconsistency between the reconstructed lensing spectrum and the measured lensing spectrum indicates the failure of GR on cosmological scales. The difficulties in performing this test using actual observations are discussed.

Yong-Seon Song; Kazuya Koyama

2008-02-26T23:59:59.000Z

32

Built-in data-flow integration testing in large-scale component-based systems  

Science Conference Proceedings (OSTI)

Modern large-scale component-based applications and service ecosystems are built following a number of different component models and architectural styles, such as the data-flow architectural style. In this style, each building block receives data from ...

Éric Piel; Alberto Gonzalez-Sanchez; Hans-Gerhard Gross

2010-11-01T23:59:59.000Z

33

Large-Scale Pumping Test Recommendations for the 200-ZP-1 Operable Unit  

Science Conference Proceedings (OSTI)

CH2M Hill Plateau Remediation Company (CHPRC) is currently assessing aquifer characterization needs to optimize pump-and-treat remedial strategies (e.g., extraction well pumping rates, pumping schedule/design) in the 200-ZP-1 operable unit (OU), and in particular for the immediate area of the 241 TX-TY Tank Farm. Specifically, CHPRC is focusing on hydrologic characterization opportunities that may be available for newly constructed and planned ZP-1 extraction wells. These new extraction wells will be used to further refine the 3-dimensional subsurface contaminant distribution within this area and will be used in concert with other existing pump-and-treat wells to remediate the existing carbon tetrachloride contaminant plume. Currently, 14 extraction wells are actively used in the Interim Record of Decision ZP-1 pump-and-treat system for the purpose of remediating the existing carbon tetrachloride contamination in groundwater within this general area. As many as 20 new extraction wells and 17 injection wells may be installed to support final pump-and-treat operations within the OU area. It should be noted that although the report specifically refers to the 200-ZP-1 OU, the large-scale test recommendations are also applicable to the adjacent 200-UP-1 OU area. This is because of the similar hydrogeologic conditions exhibited within these two adjoining OU locations.

Spane, Frank A.

2010-09-08T23:59:59.000Z

34

DRAM errors in the wild: a large-scale field study  

Science Conference Proceedings (OSTI)

Errors in dynamic random access memory (DRAM) are a common form of hardware failure in modern compute clusters. Failures are costly both in terms of hardware replacement costs and service disruption. While a large body of work exists on DRAM in laboratory ... Keywords: data corruption, dimm, dram, dram reliability, ecc, empirical study, hard error, large-scale systems, memory, soft error

Bianca Schroeder; Eduardo Pinheiro; Wolf-Dietrich Weber

2009-06-01T23:59:59.000Z

35

Large-Scale Testing and High-Fidelity Simulation Capabilities at Sandia National Laboratories to Support Space Power and Propulsion  

SciTech Connect

Sandia National Laboratories, as a Department of Energy, National Nuclear Security Agency, has major responsibility to ensure the safety and security needs of nuclear weapons. As such, with an experienced research staff, Sandia maintains a spectrum of modeling and simulation capabilities integrated with experimental and large-scale test capabilities. This expertise and these capabilities offer considerable resources for addressing issues of interest to the space power and propulsion communities. This paper presents Sandia's capability to perform thermal qualification (analysis, test, modeling and simulation) using a representative weapon system as an example demonstrating the potential to support NASA's Lunar Reactor System.

Dobranich, Dean [Thermal and Reactive Processes Department, Sandia National Laboratories Albuquerque, NM 87185 (United States); Blanchat, Thomas K. [Fire Science and Technology Department, Sandia National Laboratories Albuquerque, NM 87185 (United States)

2008-01-21T23:59:59.000Z

36

Large-Scale Atmospheric and Oceanic Conditions During the 2011-2012 DYNAMO Field Campaign  

Science Conference Proceedings (OSTI)

An international field campaign, Dynamics of the Madden Julian Oscillation (DYNAMO), took place in the Indian Ocean during October 2011 – March 2012 to collect observations for the Madden-Julian Oscillation (MJO), especially its convective ...

Jon Gottschalck; Paul E. Roundy; Carl J. Schreck III; Augustin Vintzileos; Chidong Zhang

37

Modeling the large-scale structure of a barchan dune field  

E-Print Network (OSTI)

In nature, barchan dunes typically exist as members of larger fields that display enigmatic structures that cannot be readily explained by external forcing. To explore the possibility that observed patterns self-organize, we built a numerical model that treats barchans as discrete entities that obey known empirical relationships and interact with one another according to simplified rules derived from theoretical and numerical work, and from field observations. A rich array of patterns, similar to those observed in nature, emerge from these relatively simple behaviors and interactions, offering a cohesive depiction and a potential explanation of field-scale phenomena. This is the first model to integrate calving and results support the hypothesis that it exerts a first order control on the system; It is fundamental to the formation and stability of field patterns and when the process is disabled, all dunes in all runs grow without bound on short time-scales. Insights derived from this synthesis of dune-scale p...

Worman, S; Littlewood, R; Andreotti, B; Claudin, P

2013-01-01T23:59:59.000Z

38

Gauge Field Generation on Large-Scale GPU-Enabled Systems  

E-Print Network (OSTI)

Over the past years GPUs have been successfully applied to the task of inverting the fermion matrix in lattice QCD calculations. Even strong scaling to capability-level supercomputers, corresponding to O(100) GPUs or more has been achieved. However strong scaling a whole gauge field generation algorithm to this regim requires significantly more functionality than just having the matrix inverter utilizing the GPUs and has not yet been accomplished. This contribution extends QDP-JIT, the migration of SciDAC QDP++ to GPU-enabled parallel systems, to help to strong scale the whole Hybrid Monte-Carlo to this regime. Initial results are shown for gauge field generation with Chroma simulating pure Wilson fermions on OLCF TitanDev.

Winter, Frank

2012-01-01T23:59:59.000Z

39

Gauge Field Generation on Large-Scale GPU-Enabled Systems  

E-Print Network (OSTI)

Over the past years GPUs have been successfully applied to the task of inverting the fermion matrix in lattice QCD calculations. Even strong scaling to capability-level supercomputers, corresponding to O(100) GPUs or more has been achieved. However strong scaling a whole gauge field generation algorithm to this regim requires significantly more functionality than just having the matrix inverter utilizing the GPUs and has not yet been accomplished. This contribution extends QDP-JIT, the migration of SciDAC QDP++ to GPU-enabled parallel systems, to help to strong scale the whole Hybrid Monte-Carlo to this regime. Initial results are shown for gauge field generation with Chroma simulating pure Wilson fermions on OLCF TitanDev.

Frank Winter

2012-12-04T23:59:59.000Z

40

Proceedings: Evolution of Large Scale Structure --Garching, August 1998 THE EFAR PECULIAR VELOCITY FIELD  

E-Print Network (OSTI)

determinations, and used to determine the peculiar velocities (PV) of the clusters. We find that the mean detected lo­ cally (Lynden­Bell et al. 1988), and therefore is a sensitive test of cosmo­ logical models and bulge components of the galaxies are also available, allow­ ing a reliable morphological classifi

Saglia, Roberto P.

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Large-scale magnetic fields, curvature fluctuations and the thermal history of the Universe  

E-Print Network (OSTI)

It is shown that gravitating magnetic fields affect the evolution of curvature perturbations in a way that is reminiscent of a pristine non-adiabatic pressure fluctuation. The gauge-invariant evolution of curvature perturbations is used to constrain the magnetic power spectrum. Depending on the essential features of the thermodynamic history of the Universe, the explicit derivation of the bound is modified. The theoretical uncertainty in the constraints on the magnetic energy spectrum is assessed by comparing the results obtained in the case of the conventional thermal history with the estimates stemming from less conventional (but phenomenologically allowed) post-inflationary evolutions.

Massimo Giovannini

2007-07-05T23:59:59.000Z

42

Determination of soil liquefaction characteristics by large-scale laboratory tests. [Sand  

SciTech Connect

The testing program described in this report was carried out to study the liquefaction behavior of a clean, uniform, medium sand. Horizontal beds of this sand, 42 inches by 90 inches by 4 inches were prepared by pluviation with a special sand spreader, saturated, and tested in a shaking table system designed for this program, which applied a horizontal cyclic shear stress to the specimens. Specimen size was selected to reduce boundary effects as much as possible. Values of pore pressures and shear strains developed during the tests are presented for sand specimens at relative densities of 54, 68, 82, and 90 percent, and the results interpreted to determine the values of the stress ratio causing liquefaction at the various relative densities.

1975-05-01T23:59:59.000Z

43

Develop and test an internally cooled, cabled superconductor (ICCS) for large scale MHD magnets  

DOE Green Energy (OSTI)

The work conducted under DOE/PETC Contract DE-AC22-84PC70512 has included four principal tasks, (1) development of a Design Requirements Definition for a retrofit MHD magnet system, (2) analysis of an internally cooled, cabled superconductor (ICCS) to use in that design, (3) design of an experiment to test a subscale version of that conductor, which is a NbTi, copper stabilized superconductor, and (4) proof-of-concept testing of the conductor. The program was carried forth through the third task with very successful development and test of a conventional ICCS conductor with 27 multifilamentary copper-superconductor composite strands and a new concept conductor in which, in each triplet, two strands were pure copper and the third strand was a multifilamentary composite. In reviewing the magnet design and the premises for the conductor design it became obvious that, since the principal source of perturbation in MHD magnets derives from slippage between coils, or between turns in a coil, thereby producing frictional heat which must flow through the conductor sheath and the helium to the superconductor strands, an extra barrier might be highly effective in enhancing magnet stability and protection. This concept was developed and a sample conductor manufactured and tested in comparison with an identical conductor lacking such an additional barrier. Results of these conductor tests confirm the potential value of such a barrier. As the work of tasks 1 through 3 has been reported in detail in quarterly and semiannual reports, as well as in special reports prepared throughout the course of this project, this report reviews early work briefly and then discusses this last phase in great detail. 8 refs., 36 figs.

Marston, P.G.; Hale, J.R.; Dawson, A.M.

1990-04-30T23:59:59.000Z

44

MCHF calculations of isotope shifts; I program implementation and test runs II large-scale active space calculations  

Science Conference Proceedings (OSTI)

A new isotope shift program, part of the MCHF atomic structure package, has been written and tested. The program calculates the isotope shift of an atomic level from MCHF or CI wave functions. The program is specially designed to be used with very large CI expansions, for which angular data cannot be stored on disk. To explore the capacity of the program, large-scale isotope shift calculations have been performed for a number of low lying levels in B I and B II. From the isotope shifts of these levels the transition isotope shift have been calculated for the resonance transitions in B I and B II. The calculated transition isotope shifts in B I are in very good agreement with experimental shifts, and compare favourably with shifts obtained from a many-body perturbation calculation.

Joensson, P. [Lund Institute of Technology, Lund (Sweden); Fischer, C.F. [Vanderbilt Univ., Nashville, TN (United States)

1994-03-30T23:59:59.000Z

45

Surface Layer Transport of Sulfate Particles in the Western United States by the Large-Scale Wind Field  

Science Conference Proceedings (OSTI)

The transport patterns of fine sulfur aerosols in the western United States are shown. The large-scale resultant horizontal flux was computed in terms of that contributed by the mean flux versus that contributed by a turbulence, or eddy, ...

Lowell L. Ashbaugh; Leonard O. Myrup; Robert G. Flocchini

1984-05-01T23:59:59.000Z

46

GrenchMark: A Framework for Testing Large-Scale Distributed Computing Systems Alexandru Iosup (Delft University of Technology, The Netherlands)  

E-Print Network (OSTI)

computing - Computing as utility (similar to electricity) - Small components, distributed cost of ownership://grenchmark.st.ewi.tudelft.nlgrenchmark.st.ewi.tudelft.nl// The GrenchMark framework for testing large-scale distributed systems Testing Multi-Cluster Grids · Generate and annotation data · Tested in grids, peer-to-peer systems, and heterogeneous clusters - Extensible reference

Iosup, Alexandru

47

LARGE-SCALE MECURY CONTROL TECHNOLOGY TESTING FOR LIGNITE-FIRED UTILITIES-OXIDATION SYSTEMS FOR WET FGD  

SciTech Connect

The Energy & Environmental Research Center (EERC) is conducting a consortium-based effort directed toward resolving the mercury (Hg) control issues facing the lignite industry. Specifically, the EERC team--the EERC, EPRI, URS, ADA-ES, Babcock & Wilcox, the North Dakota Industrial Commission, SaskPower, and the Mercury Task Force, which includes Basin Electric Power Cooperative, Otter Tail Power Company, Great River Energy, Texas Utilities (TXU), Montana-Dakota Utilities Co., Minnkota Power Cooperative, BNI Coal Ltd., Dakota Westmoreland Corporation, and the North American Coal Company--has undertaken a project to significantly and cost-effectively oxidize elemental mercury in lignite combustion gases, followed by capture in a wet scrubber. This approach will be applicable to virtually every lignite utility in the United States and Canada and potentially impact subbituminous utilities. The oxidation process is proven at the pilot-scale and in short-term full-scale tests. Additional optimization is continuing on oxidation technologies, and this project focuses on longer-term full-scale testing. The lignite industry has been proactive in advancing the understanding of and identifying control options for Hg in lignite combustion flue gases. Approximately 1 year ago, the EERC and EPRI began a series of Hg-related discussions with the Mercury Task Force as well as utilities firing Texas and Saskatchewan lignites. This project is one of three being undertaken by the consortium to perform large-scale Hg control technology testing to address the specific needs and challenges to be met in controlling Hg from lignite-fired power plants. This project involves Hg oxidation upstream of a system equipped with an electrostatic precipitator (ESP) followed by wet flue gas desulfurization (FGD). The team involved in conducting the technical aspects of the project includes the EERC, Babcock & Wilcox, URS, and ADA-ES. The host sites include Minnkota Power Cooperative Milton R. Young Unit 2 and TXU Monticello Unit 3. The work involves establishing Hg oxidation levels upstream of air pollution control devices (APCDs) and removal rates across existing ESP and FGD units, determining costs associated with those removal rates, investigating the possibility of the APCD acting as a multipollutant control device, quantifying the balance of plant impacts of the control technologies, and facilitating technology commercialization.

Michael J. Holmes; Steven A. Benson; Jeffrey S. Thompson

2004-03-01T23:59:59.000Z

48

Large-Scale Hydropower  

Energy.gov (U.S. Department of Energy (DOE))

Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 MW in size, and there is more than 80,000 MW...

49

LyMAS: Predicting Large-Scale Lyman-alpha Forest Statistics from the Dark Matter Density Field  

E-Print Network (OSTI)

[abridged] We describe LyMAS (Ly-alpha Mass Association Scheme), a method of predicting clustering statistics in the Ly-alpha forest on large scales from moderate resolution simulations of the dark matter distribution, with calibration from high-resolution hydrodynamic simulations of smaller volumes. We use the "Horizon MareNostrum" simulation, a 50 Mpc/h comoving volume evolved with the adaptive mesh hydrodynamic code RAMSES, to compute the conditional probability distribution P(F_s|delta_s) of the transmitted flux F_s, smoothed (1-dimensionally) over the spectral resolution scale, on the dark matter density contrast delta_s, smoothed (3-dimensionally) over a similar scale. In this study we adopt the spectral resolution of the SDSS-III BOSS at z=2.5, and we find optimal results for a dark matter smoothing length sigma=0.3 Mpc/h (comoving). In extended form, LyMAS exactly reproduces both the 1-dimensional power spectrum and 1-point flux distribution of the hydro simulation spectra. Applied to the MareNostrum ...

Peirani, Sébastien; Colombi, Stéphane; Blaizot, Jérémy; Dubois, Yohan; Pichon, Christophe

2013-01-01T23:59:59.000Z

50

Data Analysis, Pre-Ignition Assessment, and Post-Ignition Modeling of the Large-Scale Annular Cookoff Tests  

SciTech Connect

In order to understand the implications that cookoff of plastic-bonded explosive-9501 could have on safety assessments, we analyzed the available data from the large-scale annular cookoff (LSAC) assembly series of experiments. In addition, we examined recent data regarding hypotheses about pre-ignition that may be relevant to post-ignition behavior. Based on the post-ignition data from Shot 6, which had the most complete set of data, we developed an approximate equation of state (EOS) for the gaseous products of deflagration. Implementation of this EOS into the multimaterial hydrodynamics computer program PAGOSA yielded good agreement with the inner-liner collapse sequence for Shot 6 and with other data, such as velocity interferometer system for any reflector and resistance wires. A metric to establish the degree of symmetry based on the concept of time of arrival to pin locations was used to compare numerical simulations with experimental data. Several simulations were performed to elucidate the mode of ignition in the LSAC and to determine the possible compression levels that the metal assembly could have been subjected to during post-ignition.

G. Terrones; F.J. Souto; R.F. Shea; M.W.Burkett; E.S. Idar

2005-09-30T23:59:59.000Z

51

Proceedings of the Joint IAEA/CSNI Specialists` Meeting on Fracture Mechanics Verification by Large-Scale Testing held at Pollard Auditorium, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This report contains 40 papers that were presented at the Joint IAEA/CSNI Specialists` Meeting Fracture Mechanics Verification by Large-Scale Testing held at the Pollard Auditorium, Oak Ridge, Tennessee, during the week of October 26--29, 1992. The papers are printed in the order of their presentation in each session and describe recent large-scale fracture (brittle and/or ductile) experiments, analyses of these experiments, and comparisons between predictions and experimental results. The goal of the meeting was to allow international experts to examine the fracture behavior of various materials and structures under conditions relevant to nuclear reactor components and operating environments. The emphasis was on the ability of various fracture models and analysis methods to predict the wide range of experimental data now available. The individual papers have been cataloged separately.

Pugh, C.E.; Bass, B.R.; Keeney, J.A. [comps.] [Oak Ridge National Lab., TN (United States)

1993-10-01T23:59:59.000Z

52

1. Large Scale Climate Simulator (Building 3144) The LSCS tests roof and/or attic assemblies weighing up to  

E-Print Network (OSTI)

) The RGHB performs advanced thermal testing of full-size wall/fenestration systems. It accommodates systems content in materials, vapor pressure, temperature, heat flux, humidity, and condensation. 7. MAXLAB MAXLAB. It is adequate for testing in most residential and light commercial buildings. 12. Duct Blaster A Duct Blaster

Oak Ridge National Laboratory

53

Announcement of a Cooperative Research and Development Agreement (CRADA) Opportunity for a Large-Scale Blade Test Facility Partnership  

SciTech Connect

The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) is seeking government, private, or non-profit partners to design, construct, and assist in operating one or more wind turbine blade test facilities capable of testing blades up to at least 70 m (230 ft) in length. DOE/NREL encourages interested parties to respond to this CRADA announcement with a proposal by September 1, 2006.

2006-05-01T23:59:59.000Z

54

Announcement of a Cooperative Research and Development Agreement (CRADA) Opportunity for a Large-Scale Blade Test Facility Partnership  

DOE Green Energy (OSTI)

The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) is seeking government, private, or non-profit partners to design, construct, and assist in operating one or more wind turbine blade test facilities capable of testing blades up to at least 70 m (230 ft) in length. DOE/NREL encourages interested parties to respond to this CRADA announcement with a proposal by September 1, 2006.

Not Available

2006-05-01T23:59:59.000Z

55

Results of Large-Scale Testing on Effects of Anti-Foam Agent on Gas Retention and Release  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site. The waste treatment process in the pretreatment facility will mix both Newtonian and non-Newtonian slurries in large process tanks. Process vessels mixing non-Newtonian slurries will use pulse jet mixers (PJMs), air sparging, and recirculation pumps. An anti-foam agent (AFA) will be added to the process streams to prevent surface foaming, but may also increase gas holdup and retention within the slurry. The work described in this report addresses gas retention and release in simulants with AFA through testing and analytical studies. Gas holdup and release tests were conducted in a 1/4-scale replica of the lag storage vessel operated in the Pacific Northwest National Laboratory (PNNL) Applied Process Engineering Laboratory using a kaolin/bentonite clay and AZ-101 HLW chemical simulant with non-Newtonian rheological properties representative of actual waste slurries. Additional tests were performed in a small-scale mixing vessel in the PNNL Physical Sciences Building using liquids and slurries representing major components of typical WTP waste streams. Analytical studies were directed at discovering how the effect of AFA might depend on gas composition and predicting the effect of AFA on gas retention and release in the full-scale plant, including the effects of mass transfer to the sparge air. The work at PNNL was part of a larger program that included tests conducted at Savannah River National Laboratory (SRNL) that is being reported separately. SRNL conducted gas holdup tests in a small-scale mixing vessel using the AZ-101 high-level waste (HLW) chemical simulant to investigate the effects of different AFAs, their components, and of adding noble metals. Full-scale, single-sparger mass transfer tests were also conducted at SRNL in water and AZ-101 HLW simulant to provide data for PNNL’s WTP gas retention and release modeling.

Stewart, Charles W.; Guzman-Leong, Consuelo E.; Arm, Stuart T.; Butcher, Mark G.; Golovich, Elizabeth C.; Jagoda, Lynette K.; Park, Walter R.; Slaugh, Ryan W.; Su, Yin-Fong; Wend, Christopher F.; Mahoney, Lenna A.; Alzheimer, James M.; Bailey, Jeffrey A.; Cooley, Scott K.; Hurley, David E.; Johnson, Christian D.; Reid, Larry D.; Smith, Harry D.; Wells, Beric E.; Yokuda, Satoru T.

2008-01-03T23:59:59.000Z

56

The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory  

Science Conference Proceedings (OSTI)

We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60{sup o}, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the {approx} 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for. In this work, we have identified and quantified a systematic uncertainty affecting the energy determination of cosmic rays detected by the surface detector array of the Pierre Auger Observatory. This systematic uncertainty, induced by the influence of the geomagnetic field on the shower development, has a strength which depends on both the zenith and the azimuthal angles. Consequently, we have shown that it induces distortions of the estimated cosmic ray event rate at a given energy at the percent level in both the azimuthal and the declination distributions, the latter of which mimics an almost dipolar pattern. We have also shown that the induced distortions are already at the level of the statistical uncertainties for a number of events N {approx_equal} 32 000 (we note that the full Auger surface detector array collects about 6500 events per year with energies above 3 EeV). Accounting for these effects is thus essential with regard to the correct interpretation of large scale anisotropy measurements taking explicitly profit from the declination distribution.

Abreu, P.; /Lisbon, IST; Aglietta, M.; /IFSI, Turin; Ahn, E.J.; /Fermilab; Albuquerque, I.F.M.; /Sao Paulo U.; Allard, D.; /APC, Paris; Allekotte, I.; /Centro Atomico Bariloche; Allen, J.; /New York U.; Allison, P.; /Ohio State U.; Alvarez Castillo, J.; /Mexico U., ICN; Alvarez-Muniz, J.; /Santiago de Compostela U.; Ambrosio, M.; /Naples U. /INFN, Naples /Nijmegen U., IMAPP

2011-11-01T23:59:59.000Z

57

Performance assessment of mass flow rate measurement capability in a large scale transient two-phase flow test system  

SciTech Connect

Mass flow is an important measured variable in the Loss-of-Fluid Test (LOFT) Program. Large uncertainties in mass flow measurements in the LOFT piping during LOFT coolant experiments requires instrument testing in a transient two-phase flow loop that simulates the geometry of the LOFT piping. To satisfy this need, a transient two-phase flow loop has been designed and built. The load cell weighing system, which provides reference mass flow measurements, has been analyzed to assess its capability to provide the measurements. The analysis consisted of first performing a thermal-hydraulic analysis using RELAP4 to compute mass inventory and pressure fluctuations in the system and mass flow rate at the instrument location. RELAP4 output was used as input to a structural analysis code SAPIV which is used to determine load cell response. The computed load cell response was then smoothed and differentiated to compute mass flow rate from the system. Comparison between computed mass flow rate at the instrument location and mass flow rate from the system computed from the load cell output was used to evaluate mass flow measurement capability of the load cell weighing system. Results of the analysis indicate that the load cell weighing system will provide reference mass flows more accurately than the instruments now in LOFT.

Nalezny, C.L.; Chapman, R.L.; Martinell, J.S.; Riordon, R.P.; Solbrig, C.W.

1979-01-01T23:59:59.000Z

58

QUANTIFYING THE SIGNIFICANCE OF THE MAGNETIC FIELD FROM LARGE-SCALE CLOUD TO COLLAPSING CORE: SELF-SIMILARITY, MASS-TO-FLUX RATIO, AND STAR FORMATION EFFICIENCY  

SciTech Connect

Dust polarization observational results are analyzed for the high-mass star formation region W51 from the largest parent cloud ({approx}2 pc, James Clerk Maxwell Telescope) to the large-scale envelope ({approx}0.5 pc, BIMA array) down to the collapsing core e2 ({approx}60 mpc, Submillimeter Array). Magnetic field and dust emission gradient orientations reveal a correlation which becomes increasingly more tight with higher resolution. The previously developed polarization-intensity-gradient method is applied in order to quantify the magnetic field significance. This technique provides a way to estimate the local magnetic field force compared to gravity without the need of any mass or field strength measurements, solely making use of measured angles which reflect the geometrical imprint of the various forces. All three data sets clearly show regions with distinct features in the field-to-gravity force ratio. Azimuthally averaged radial profiles of this force ratio reveal a transition from a field dominance at larger distances to a gravity dominance closer to the emission peaks. Normalizing these profiles to a characteristic core scale points toward self-similarity. Furthermore, the polarization-intensity-gradient method is linked to the mass-to-flux ratio, providing a new approach to estimate the latter one without mass and field strength inputs. A transition from a magnetically supercritical to a subcritical state as a function of distance from the emission peak is found for the e2 core. Finally, based on the measured radius-dependent field-to-gravity force ratio we derive a modified star formation efficiency with a diluted gravity force. Compared to a standard (free-fall) efficiency, the observed field is capable of reducing the efficiency down to 10% or less.

Koch, Patrick M.; Ho, Paul T. P. [Academia Sinica, Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Tang, Ya-Wen, E-mail: pmkoch@asiaa.sinica.edu.tw [Observatoire Aquitain des Sciences de l'Univers, Universite de Bordeaux, 2 rue de l'Observatoire, BP 89, F-33271 Floirac Cedex (France)

2012-03-01T23:59:59.000Z

59

Plains CO2 Reduction Partnership--Development Phase - Large Scale Field Tests  

NLE Websites -- All DOE Office Websites (Extended Search)

626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4867 sean.plasynski@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Edward N. Steadman Technical Contact Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018

60

Performance of powder-filled evacuated panel insulation in a manufactured home roof cavity: Tests in the Large Scale Climate Simulator  

SciTech Connect

A full-scale section of half the top of a single-wide manufactured home has been studied in the Large Scale Climate Simulator (LSCS) at the Oak Ridge National Laboratory. A small roof cavity with little room for insulation at the eaves is often the case with single-wide units and limits practical ways to improve thermal performance. The purpose of the current tests was to obtain steady-state performance data for the roof cavity of the manufactured home test section when the roof cavity was insulated with fiberglass batts, blown-in rock wool insulation or combinations of these insulations and powder-filled evacuated panel (PEP) insulation. Four insulation configurations were tested: (A) a configuration with two layers of nominal R{sub US}-7 h {center_dot} ft{sup 2} {center_dot} F/BTU (R{sub SI}-1.2 m{sup 2} {center_dot} K/W) fiberglass batts; (B) a layer of PEPs and one layer of the fiberglass batts; (C) four layers of the fiberglass batts; and (D) an average 4.1 in. (10.4 cm) thick layer of blown-in rock wool at an average density of 2.4 lb/ft{sup 3} (38 kg/m{sup 3}). Effects of additional sheathing were determined for Configurations B and C. With Configuration D over the ceiling, two layers of expanded polystyrene (EPS) boards, each about the same thickness as the PEPs, were installed over the trusses instead of the roof. Aluminum foils facing the attic and over the top layer of EPS were added. The top layer of EPS was then replaced by PEPs.

Petrie, T.W.; Kosny, J.; Childs, P.W.

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

RELAP5/MOD3 simulation of the loss of residual heat removal during midloop operation experiment conducted at the ROSA-IV/ Large Scale Test Facility  

E-Print Network (OSTI)

The modeling of the complex thermal hydraulics Of reactor systems involves the use Of experimental test systems as well as numerical codes. A simulation of the loss of residual heat removal (RHR) during midloop operations was performed using the RELAP5/MOD3 thermal hydraulic code. The experiment was conducted at the Rig of Safety Assessment (ROSA)-IV/ Large Scale Test Facility (LSTF). The experiment involved a 5% cold leg break along with the loss of the RHR system-The transient was simulated for 3040 seconds. The ROSA-1-V/]LsTF is one of the largest test facilities in the world and is located in Japan. It is a volumetrically scaled (1/48) full height, two loop model of a Westinghouse four loop pressurized water reactor (PWR). The facility consists of pressure vessel, two symmetric loops, a pressurizer and a full emergency core cooling system (ECCS) system. The transient was run on the CRAY-YMP supercomputer at Texas A&M university. Core boiling and primary pressurization followed the initiation of the transient. The time to core boiling was overpredicted. Almost all Primary parameters were predicted well until the occurrence of the loop seal clearing (LSC) at 2400 seconds. The secondary side temperatures were in good agreement with the experimental data until the LSC. Following the LSC, the steam condensation in the tubes was not calculated. This resulted in the overprediction of primary pressures after the LSC. Also, the temperatures in the hot and the cold legs were overpredicted. Because there was no significant condensation in the U-tubes, the core remained uncovered. Moreover, the LSC did not recover. Consequently, secondary side temperatures were underpredicted after the LSC. This indicated the deficiency of the condensation model. The core temperature excursion at the time of the LSC was not predicted, though there was good agreement between the experimental and calculated data for the rest of the transient. Severe oscillations were calculated throughout the course of the transient. Overall, there was reasonable qualitative agreement between the measured and the calculated data.

Banerjee, Sibashis Sanatkumar

1994-01-01T23:59:59.000Z

62

Improved generation of large-scale atomistic representations and pyrolysis/combustion simulations of Illinois coal and coal char using the Reaxff reactive force field.  

E-Print Network (OSTI)

??A highly automated molecular generation approach was implemented and coupled with reactive force field methods to create a new computational capability that enabled the investigation… (more)

Castro Marcano, Fidel

2012-01-01T23:59:59.000Z

63

Energy Basics: Large-Scale Hydropower  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

64

Virtual screening on large scale grids  

Science Conference Proceedings (OSTI)

Large scale grids for in silico drug discovery open opportunities of particular interest to neglected and emerging diseases. In 2005 and 2006, we have been able to deploy large scale virtual docking within the framework of the WISDOM initiative against ... Keywords: Avian influenza, Large scale grids, Malaria, Virtual screening

Nicolas Jacq; Vincent Breton; Hsin-Yen Chen; Li-Yung Ho; Martin Hofmann; Vinod Kasam; Hurng-Chun Lee; Yannick Legré; Simon C. Lin; Astrid Maaí; Emmanuel Medernach; Ivan Merelli; Luciano Milanesi; Giulio Rastelli; Matthieu Reichstadt; Jean Salzemann; Horst Schwichtenberg; Ying-Ta Wu; Marc Zimmermann

2007-05-01T23:59:59.000Z

65

TYPES OF FIELD TESTING  

NLE Websites -- All DOE Office Websites (Extended Search)

TYPES OF FIELD TESTING Convincing proof of energy savings and performance in a specific building and occupant context If direct proof of savings is desired, the only feasible...

66

Moisture studies of a self-drying roof: Tests in the large scale climate simulator and results from thermal and hygric models  

Science Conference Proceedings (OSTI)

Simultaneous experiments on the moisture behavior of six low-slope roof systems were performed in a climate simulator. The systems comprised a self-drying design over a conventional metal deck, a self-drying design over a significantly more permeable slotted metal deck and four others over conventional metal decks: a system typical of US construction with a liquid water permeable vapor retarder, a system typical of European construction with a liquid water permeable vapor retarder, a top-ventilated system with a polyethylene vapor retarder, and an impermeable control system with a polyethylene vapor retarder. Total weight of each test panel was measured and recorded continuously, along with temperatures and heat fluxes, to compare the behavior of the various systems. The authors imposed steady-state temperatures from hot summer to cold winter conditions to obtain the R-values of the construction dry insulations in each panel. Temperature cycles typical of hot summer days and mild winter days were then imposed above the construction dry assemblies to obtain baseline diurnal performance. The authors applied a one-dimensional thermal and hygric model. The solid and slotted deck were assumed to differ only in water vapor permeance. A model was not attempted for the top-ventilated system. The 1-D model predicted very well the slow rates of wetting in the winter cycles and both the slow then fast rates of drying in the summer cycles before and after water addition, except it overpredicted the drying rate for the US construction with a liquid water permeable vapor retarder.

Desjarlais, A.O.; Petrie, T.W.; Childs, P.W.; Atchley, J.A.

1998-08-01T23:59:59.000Z

67

Investigation of CO2 plume behavior for a large-scale pilot test of geologic carbon storage in a saline formation  

SciTech Connect

The hydrodynamic behavior of carbon dioxide (CO{sub 2}) injected into a deep saline formation is investigated, focusing on trapping mechanisms that lead to CO{sub 2} plume stabilization. A numerical model of the subsurface at a proposed power plant with CO{sub 2} capture is developed to simulate a planned pilot test, in which 1,000,000 metric tons of CO{sub 2} is injected over a four-year period, and the subsequent evolution of the CO{sub 2} plume for hundreds of years. Key measures are plume migration distance and the time evolution of the partitioning of CO{sub 2} between dissolved, immobile free-phase, and mobile free-phase forms. Model results indicate that the injected CO{sub 2} plume is effectively immobilized at 25 years. At that time, 38% of the CO{sub 2} is in dissolved form, 59% is immobile free phase, and 3% is mobile free phase. The plume footprint is roughly elliptical, and extends much farther up-dip of the injection well than down-dip. The pressure increase extends far beyond the plume footprint, but the pressure response decreases rapidly with distance from the injection well, and decays rapidly in time once injection ceases. Sensitivity studies that were carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual CO{sub 2} saturation indicate that small changes in properties can have a large impact on plume evolution, causing significant trade-offs between different trapping mechanisms.

Doughty, C.

2009-04-01T23:59:59.000Z

68

DOE Completes Large-Scale Carbon Sequestration Project Awards | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Completes Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards November 17, 2008 - 4:58pm Addthis Regional Partner to Demonstrate Safe and Permanent Storage of 2 Million Tons of CO2 at Wyoming Site WASHINGTON, DC - Completing a series of awards through its Regional Carbon Sequestration Partnership Program, the U.S. Department of Energy (DOE) today awarded $66.9 million to the Big Sky Regional Carbon Sequestration Partnership for the Department's seventh large-scale carbon sequestration project. Led by Montana State University-Bozeman, the Partnership will conduct a large-volume test in the Nugget Sandstone formation to demonstrate the ability of a geologic formation to safely, permanently and economically

69

DOE Completes Large-Scale Carbon Sequestration Project Awards | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Large-Scale Carbon Sequestration Project Awards Completes Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards November 17, 2008 - 4:58pm Addthis Regional Partner to Demonstrate Safe and Permanent Storage of 2 Million Tons of CO2 at Wyoming Site WASHINGTON, DC - Completing a series of awards through its Regional Carbon Sequestration Partnership Program, the U.S. Department of Energy (DOE) today awarded $66.9 million to the Big Sky Regional Carbon Sequestration Partnership for the Department's seventh large-scale carbon sequestration project. Led by Montana State University-Bozeman, the Partnership will conduct a large-volume test in the Nugget Sandstone formation to demonstrate the ability of a geologic formation to safely, permanently and economically

70

Analysis Driven Field Testing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ANALYSIS DRIVEN FIELD TESTING ANALYSIS DRIVEN FIELD TESTING Greg Barker, MEP Paul Norton, NERD C.E. Hancock, MEP Building America Residential Energy Efficiency Stakeholder Meeting Austin, TX March 2, 2012 MODELING DRIVEN FIELD TESTING Greg Barker, MEP Paul Norton, NERD C.E. Hancock, MEP Building America Residential Energy Efficiency Stakeholder Meeting Austin, TX March 2, 2012 MODELING DRIVEN MEASUREMENTS Greg Barker, MEP Paul Norton, NERD C.E. Hancock, MEP Building America Residential Energy Efficiency Stakeholder Meeting Austin, TX March 2, 2012 Building America Residential Energy Efficiency Stakeholder Meeting Austin, TX March 2, 2012 "Modeling without measuring lacks credibility. Measuring without modeling lacks generality." Ed Hancock

71

Planning and implementing a large-scale polymer flood  

Science Conference Proceedings (OSTI)

The motive for the Eliasville polymerflood originated while planning a waterflood in this light oil, limestone reservoir. Adverse reservoir waterflood characteristics were identified prior to unitization and laboratory work was undertaken to demonstrate the benefits of reducing water mobility by increasing water vicosity with several different polyacrylamides. Computer simulations incorporating polymer properties from laboratory work and known Caddo waterflood performance were used to design the polymerflood. Three injection tests were conducted to determine polymer injectivity. Pressure transient tests were used to measure the in-situ polymer viscosity. One of the injection tests included an off-pattern producing well which permitted an estimation of polymer retention and incremental oil recovery in a short time. Based on the injection tests and simulation work a large scale polymer project was implemented. The optimum slug size required 30,000,000 lb of emulsion polymer. Facilities used to mix and feed this large amount of polymer are described. A low-shear polymer flow control method was developed to insure maximum fluid viscosity at the formation perforations. Product specifications were verified prior to accepting delivery and injection fluid quality was monitored in laboratories constructed for the project. Early production response to field wide polymer injection is comparable to that observed at the off-pattern producing well during the injection test. While the early field response is encouraging, the effects of salt water injection on slug integrity and increased pattern size on oil recovery are still to be determined.

Weiss, W.W.; Baldwin, R.W.

1984-04-01T23:59:59.000Z

72

Energy Basics: Large-Scale Hydropower  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

These plants are more than 30 MW in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a...

73

Program Management for Large Scale Engineering Programs  

E-Print Network (OSTI)

The goal of this whitepaper is to summarize the LAI research that applies to program management. The context of most of the research discussed in this whitepaper are large-scale engineering programs, particularly in the ...

Oehmen, Josef

74

Large-Scale Offshore Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Large-Scale Offshore Wind Power in the United States EXECUTIVE SUMMARY September 2010 NOTICE This report was prepared as an account of work sponsored by an agency of the United...

75

Large-Scale Hydrogen Combustion Experiments  

Science Conference Proceedings (OSTI)

Large-scale combustion experiments show that deliberate ignition can limit hydrogen accumulation in reactor containments. The collected data allow accurate evaluation of containment pressures and temperatures associated with hydrogen combustion.

1988-10-18T23:59:59.000Z

76

Large-Scale Dynamics and Global Warming  

Science Conference Proceedings (OSTI)

Predictions of future climate change raise a variety of issues in large-scale atmospheric and oceanic dynamics. Several of these are reviewed in this essay, including the sensitivity of the circulation of the Atlantic Ocean to increasing ...

Isaac M. Held

1993-02-01T23:59:59.000Z

77

Japanese refrigerators field testing  

SciTech Connect

Residential refrigerators consume the equivalent of 1700 megawatts (MW) of baseload power in the Bonneville Power Administration (BPA) service area. Japanese manufacturers have designed refrigerator units that appear more energy efficient than some currently available American models. This report summarizes preliminary findings from field testing of 12 refrigerators of Japanese manufacture to evaluate annual kilowatt hour (kWh) use during actual operation. The units have also undergone laboratory testing sponsored by BPA at ETL Testing Laboratories, Inc. in Cortland, New York. A final report of the project -- due at the end of 1989 -- will correlate in detail the results of field and laboratory tests in comparison to performance ratings determined by the manufacturer.

Lou, A.T.

1989-03-01T23:59:59.000Z

78

Japanese Refrigerators Field Testing.  

SciTech Connect

Residential refrigerators consume the equivalent of 1700 megawatts (MW) of baseload power in the Bonneville Power Administration (BPA) service area. Japanese manufacturers have designed refrigerator units that appear more energy efficient than some currently available American models. This report summarizes preliminary findings from field testing of 12 refrigerators of Japanese manufacture to evaluate annual kilowatt hour (kWh) use during actual operation. The units have also undergone laboratory testing sponsored by BPA at ETL Testing Laboratories, Inc. in Cortland, New York. A final report of the project -- due at the end of 1989 -- will correlate in detail the results of field and laboratory tests in comparison to performance ratings determined by the manufacturer.

Lou, Albert T.

1989-03-01T23:59:59.000Z

79

Metal hydride based isotope separation: Large-scale operations  

DOE Green Energy (OSTI)

A program to develop a metal hydride based hydrogen isotope separation process began at the Savannah River Laboratory in 1980. This semi-continuous gas chromatographic separation process will be used in new tritium facilities at the Savannah River Site. A tritium production unit is scheduled to start operation in 1993. An experimental, large-scale unit is currently being tested using protium and deuterium. Operation of the large-scale unit has demonstrated separation of mixed hydrogen isotopes (55% protium and 45% deuterium), resulting in protium and deuterium product streams with purities better than 99.5%. 3 refs., 4 figs.

Horen, A.S.; Lee, Myung W.

1991-01-01T23:59:59.000Z

80

Metal hydride based isotope separation: Large-scale operations  

DOE Green Energy (OSTI)

A program to develop a metal hydride based hydrogen isotope separation process began at the Savannah River Laboratory in 1980. This semi-continuous gas chromatographic separation process will be used in new tritium facilities at the Savannah River Site. A tritium production unit is scheduled to start operation in 1993. An experimental, large-scale unit is currently being tested using protium and deuterium. Operation of the large-scale unit has demonstrated separation of mixed hydrogen isotopes (55% protium and 45% deuterium), resulting in protium and deuterium product streams with purities better than 99.5%. 3 refs., 4 figs.

Horen, A.S.; Lee, Myung W.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Distributed large-scale natural graph factorization  

Science Conference Proceedings (OSTI)

Natural graphs, such as social networks, email graphs, or instant messaging patterns, have become pervasive through the internet. These graphs are massive, often containing hundreds of millions of nodes and billions of edges. While some theoretical models ... Keywords: asynchronous algorithms, distributed optimization, graph algorithms, graph factorization, large-scale machine learning, matrix factorization

Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, Alexander J. Smola

2013-05-01T23:59:59.000Z

82

Scaling Issues for Large-Scale Grids  

E-Print Network (OSTI)

· ESNet Can Play a Very Important Role in the Science Grid � Security Aspects of Grids · ESNet Can Provide will be important and very useful for managing large-scale virtual org. structures #12;·ESNet Can Play a Very Important Role in the Science Grid · ESNet can provide a rooted and managed namespace, and a place to home

83

Large-Scale Renewable Energy Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Guide Renewable Energy Guide Brad Gustafson, FEMP 2 Large-scale RE Guide Large-scale RE Guide: Developing Renewable Energy Projects Larger than 10 MWs at Federal Facilities Introduction and Overview Federal Utility Partnership Working Group May 22, 2013 Federal Energy Management Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy 3 Federal Energy Management Program FEMP works with key individuals to accomplish energy change within organizations by bringing expertise from all levels of project and policy implementation to enable Federal Agencies to meet energy related goals and to provide energy leadership to the country. 4 FEMP Renewable Energy * Works to increase the proportion of renewable energy in the Federal government's energy mix.

84

Strategies to Finance Large-Scale Deployment of Renewable Energy...  

Open Energy Info (EERE)

Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Jump to: navigation, search Name Strategies to Finance Large-Scale...

85

Large Scale Computing and Storage Requirements for Advanced Scientific...  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2014 ASCRFrontcover.png Large Scale Computing and Storage Requirements for...

86

MTC Envelope: Defining the Capability of Large Scale Computers...  

NLE Websites -- All DOE Office Websites (Extended Search)

MTC Envelope: Defining the Capability of Large Scale Computers in the Context of Parallel Scripting Applications Title MTC Envelope: Defining the Capability of Large Scale...

87

The Phoenix series large scale LNG pool fire experiments.  

SciTech Connect

The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

2010-12-01T23:59:59.000Z

88

Large-Scale PV Integration Study  

DOE Green Energy (OSTI)

This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

2011-07-29T23:59:59.000Z

89

A time management optimization framework for large-scale distributed hardware-in-the-loop simulation  

Science Conference Proceedings (OSTI)

Large-scale distributed HIL(Hardware-In-The-Loop) simulation is an important and indispensable method for testing and verifying complex engineering systems. An important necessary condition for realizing HIL simulation is that the speedup ratio of full-speed ... Keywords: hardware-in-the-loop simulation, large-scale distributed simulation, optimization framework, speedup ratio of simulation, time management

Wei Dong

2013-05-01T23:59:59.000Z

90

The large scale clustering of radio sources  

E-Print Network (OSTI)

The observed two-point angular correlation function, w(theta), of mJy radio sources exhibits the puzzling feature of a power-law behaviour up to very large (almost 10 degrees) angular scales which cannot be accounted for in the standard hierarchical clustering scenario for any realistic redshift distribution of such sources. After having discarded the possibility that the signal can be explained by a high density local source population, we find no alternatives to assuming that - at variance with all the other extragalactic populations studied so far, and in particular with optically selected quasars - radio sources responsible for the large-scale clustering signal were increasingly less clustered with increasing look-back time, up to at least z=1. The data are accurately accounted for in terms of a bias function which decreases with increasing redshift, mirroring the evolution with cosmic time of the characteristic halo mass, M_{star}, entering the non linear regime. In the framework of the `concordance cosmology', the effective halo mass controlling the bias parameter is found to decrease from about 10^{15} M_{sun}/h at z=0 to the value appropriate for optically selected quasars, 10^{13} M_{sun}/h, at z=1.5. This suggests that, in the redshift range probed by the data, the clustering evolution of radio sources is ruled by the growth of large-scale structure, and that they are associated with the densest environments virializing at any cosmic epoch. The data provide only loose constraints on radio source clustering at z>1 so we cannot rule out the possibility that at these redshifts the clustering evolution of radio sources enters a different regime, perhaps similar to that found for optically selected quasars. The dependence of w(theta) on cosmological parameters is also discussed.

M. Negrello; M. Magliocchetti; G. De Zotti

2006-02-13T23:59:59.000Z

91

Solar cycle variations of large scale flows in the Sun  

E-Print Network (OSTI)

Using data from the Michelson Doppler Imager (MDI) instrument on board the Solar and Heliospheric Observatory (SOHO), we study the large-scale velocity fields in the outer part of the solar convection zone using the ring diagram technique. We use observations from four different times to study possible temporal variations in flow velocity. We find definite changes in both the zonal and meridional components of the flows. The amplitude of the zonal flow appears to increase with solar activity and the flow pattern also shifts towards lower latitude with time.

Sarbani Basu; H. M. Antia

2000-01-17T23:59:59.000Z

92

On the Completeness of Multi-Variate Optimum Interpolation for Large-Scale Meteorological Analysis  

Science Conference Proceedings (OSTI)

The Baer-Tribbia nonlinear modal initialization method implies that large-scale meteorological analyses should focus on analysis of slow mode fields. An idealized multi-variate optimum interpolation analysis is shown to produce grid point results ...

Norman A. Phillips

1982-10-01T23:59:59.000Z

93

Dependence of Large-Scale Precipitation Climatologies on Temporal and Spatial Sampling  

Science Conference Proceedings (OSTI)

Large-scale observed precipitation climatologies are needed for a variety of purposes in the fields of climate and environmental modeling. Although new satellite-derived precipitation estimates offer the prospect of near-global climatologies ...

Mike Hulme; Mark New

1997-05-01T23:59:59.000Z

94

Federal Energy Management Program: Large-scale Renewable Energy Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Large-scale Large-scale Renewable Energy Projects (Larger than 10 MWs) to someone by E-mail Share Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on Facebook Tweet about Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on Twitter Bookmark Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on Google Bookmark Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on Delicious Rank Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on Digg Find More places to share Federal Energy Management Program: Large-scale Renewable Energy Projects (Larger than 10 MWs) on

95

Energy Department Loan Guarantee Would Support Large-Scale Rooftop...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S....

96

Locations of Smart Grid Demonstration and Large-Scale Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Map of the United States...

97

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

Director Editors Richard Gerber Harvey Wasserman NERSC UserServices Group NERSC User Services Group Large ScaleNERSC

Gerber, Richard A.

2011-01-01T23:59:59.000Z

98

Large Scale Soft X-ray Loops And Their Magnetic Chirality In Both Hemispheres  

E-Print Network (OSTI)

The magnetic chirality in solar atmosphere has been studied based on the soft X-ray and magnetic field observations. It is found that some of large-scale twisted soft X-ray loop systems occur for several months in the solar atmosphere, before the disappearance of the corresponding background large-scale magnetic field. It provides the observational evidence of the helicity of the large-scale magnetic field in the solar atmosphere and the reverse one relative to the helicity rule in both hemispheres with solar cycles. The transfer of the magnetic helicity from the subatmosphere is consistent with the formation of large-scale twisted soft X-ray loops in the both solar hemispheres.

Zhang, Hongqi; Gao, Yu; Su, Jiangtao; Sokoloff, D D; Kuzanyan, K

2010-01-01T23:59:59.000Z

99

Algorithms for Large-Scale Internet Measurements  

E-Print Network (OSTI)

As the Internet has grown in size and importance to society, it has become increasingly difficult to generate global metrics of interest that can be used to verify proposed algorithms or monitor performance. This dissertation tackles the problem by proposing several novel algorithms designed to perform Internet-wide measurements using existing or inexpensive resources. We initially address distance estimation in the Internet, which is used by many distributed applications. We propose a new end-to-end measurement framework called Turbo King (T-King) that uses the existing DNS infrastructure and, when compared to its predecessor King, obtains delay samples without bias in the presence of distant authoritative servers and forwarders, consumes half the bandwidth, and reduces the impact on caches at remote servers by several orders of magnitude. Motivated by recent interest in the literature and our need to find remote DNS nameservers, we next address Internet-wide service discovery by developing IRLscanner, whose main design objectives have been to maximize politeness at remote networks, allow scanning rates that achieve coverage of the Internet in minutes/hours (rather than weeks/months), and significantly reduce administrator complaints. Using IRLscanner and 24-hour scan durations, we perform 20 Internet-wide experiments using 6 different protocols (i.e., DNS, HTTP, SMTP, EPMAP, ICMP and UDP ECHO). We analyze the feedback generated and suggest novel approaches for reducing the amount of blowback during similar studies, which should enable researchers to collect valuable experimental data in the future with significantly fewer hurdles. We finally turn our attention to Intrusion Detection Systems (IDS), which are often tasked with detecting scans and preventing them; however, it is currently unknown how likely an IDS is to detect a given Internet-wide scan pattern and whether there exist sufficiently fast stealth techniques that can remain virtually undetectable at large-scale. To address these questions, we propose a novel model for the windowexpiration rules of popular IDS tools (i.e., Snort and Bro), derive the probability that existing scan patterns (i.e., uniform and sequential) are detected by each of these tools, and prove the existence of stealth-optimal patterns.

Leonard, Derek Anthony

2010-12-01T23:59:59.000Z

100

Production Hydraulic Packer Field Test  

Science Conference Proceedings (OSTI)

In October 1999, the Rocky Mountain Oilfield Testing Center and Halliburton Energy Services cooperated on a field test of Halliburton's new Production Hydraulic Packer technology on Well 46-TPX-10 at Naval Petroleum Reserve No. 3 near Casper, WY. Performance of the packer was evaluated in set and unset operations. The packer's ability to seal the annulus between the casing and tubing was hydraulically tested and the results were recorded.

Schneller, Tricia; Salas, Jose

2000-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Large-scale three-dimensional geothermal reservoir simulation on small computer systems  

DOE Green Energy (OSTI)

The performance of TOUGH2, Lawrence Berkeley Laboratory`s general purpose simulator for mass and heat flow and transport enhanced with the addition of a set of preconditioned conjugate gradient solvers, was tested on three PCs (486-33, 486-66, Pentium-90), a MacIntosh Quadra 800, and a workstation IBM RISC 6000. A two-phase, single porosity, 3-D geothermal reservoir model with 1,411 irregular grid blocks, with production from and injection into the reservoir was used as the test model. The code modifications to TOUGH2 and its setup in each machine environment are described. Computational work per time step and CPU time requirements are reported for each of the machines used. It is concluded that the current PCs provide the best price/performance platform for running large-scale geothermal field simulations that just a few years ago could only be executed on mainframe computers and high-end workstations.

Antunez, E.; Moridis, G.; Pruess, K.

1995-05-01T23:59:59.000Z

102

Large Scale Computing and Storage Requirements for Fusion Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

at NERSC HPC Requirements Reviews Requirements for Science: Target 2014 Fusion Energy Sciences (FES) Large Scale Computing and Storage Requirements for Fusion Energy...

103

Solving large scale polynomial convex problems on \\ell_1/nuclear ...  

E-Print Network (OSTI)

Oct 24, 2012 ... Solving large scale polynomial convex problems on \\ell_1/nuclear norm balls by randomized first-order algorithms. Aharon Ben-Tal (abental ...

104

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

outlined in the 2011 DOE Strategic Plan†. † U.S. Departmentstrategic plans. Large Scale Computing and Storage Requirements for Nuclear Physics DOE  

Gerber, Richard A.

2012-01-01T23:59:59.000Z

105

Large Scale Computing and Storage Requirements for Basic Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

at NERSC HPC Requirements Reviews Requirements for Science: Target 2014 Basic Energy Sciences (BES) Large Scale Computing and Storage Requirements for Basic Energy...

106

Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and Other Large Systems Event Sponsor: Leadership Computing Facility Seminar Start Date: Dec 5 2013 - 2:00pm...

107

Energy Department Awards $66.7 Million for Large-Scale Carbon Sequestration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

66.7 Million for Large-Scale Carbon 66.7 Million for Large-Scale Carbon Sequestration Project Energy Department Awards $66.7 Million for Large-Scale Carbon Sequestration Project December 18, 2007 - 4:58pm Addthis Regional Partner to Demonstrate Safe and Permanent Storage of One Million Tons of CO2 at Illinois Site WASHINGTON, DC - Following closely on the heels of three recent awards through the Department of Energy's (DOE) Regional Carbon Sequestration Partnership Program, DOE today awarded $66.7 million to the Midwest Geological Sequestration Consortium (MGSC) for the Department's fourth large-scale carbon sequestration project. The Partnership led by the Illinois State Geological Survey will conduct large volume tests in the Illinois Basin to demonstrate the ability of a geologic formation to

108

DOE Awards $126.6 Million for Two More Large-Scale Carbon Sequestration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$126.6 Million for Two More Large-Scale Carbon $126.6 Million for Two More Large-Scale Carbon Sequestration Projects DOE Awards $126.6 Million for Two More Large-Scale Carbon Sequestration Projects May 6, 2008 - 11:30am Addthis Projects in California and Ohio Join Four Others in Effort to Drastically Reduce Greenhouse Gas Emissions WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced awards of more than $126.6 million to the West Coast Regional Carbon Sequestration Partnership (WESTCARB) and the Midwest Regional Carbon Sequestration Partnership (MRCSP) for the Department's fifth and sixth large-scale carbon sequestration projects. These industry partnerships, which are part of DOE's Regional Carbon Sequestration Partnership, will conduct large volume tests in California and Ohio to demonstrate the ability of a geologic

109

First U.S. Large-Scale CO2 Storage Project Advances | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First U.S. Large-Scale CO2 Storage Project Advances First U.S. Large-Scale CO2 Storage Project Advances First U.S. Large-Scale CO2 Storage Project Advances April 6, 2009 - 1:00pm Addthis Washington, DC - Drilling nears completion for the first large-scale carbon dioxide (CO2) injection well in the United States for CO2 sequestration. This project will be used to demonstrate that CO2 emitted from industrial sources - such as coal-fired power plants - can be stored in deep geologic formations to mitigate large quantities of greenhouse gas emissions. The Archer Daniels Midland Company (ADM) hosted an event April 6 for a CO2 injection test at their Decatur, Ill. ethanol facility. The injection well is being drilled into the Mount Simon Sandstone to a depth more than a mile beneath the surface. This is the first drilling into the sandstone geology

110

A large scale study of text-messaging use  

Science Conference Proceedings (OSTI)

Text messaging has become a popular form of communication with mobile phones worldwide. We present findings from a large scale text messaging study of 70 university students in the United States. We collected almost 60, 000 text messages over a period ... Keywords: large-scale study, mobile device, short message service, sms, text messaging, texting

Agathe Battestini; Vidya Setlur; Timothy Sohn

2010-09-01T23:59:59.000Z

111

Large-Scale Eucalyptus Energy Farms and Power Cogeneration1  

E-Print Network (OSTI)

Large-Scale Eucalyptus Energy Farms and Power Cogeneration1 Robert C. Noronla2 The initiation of a large-scale cogeneration project, especially one that combines construction of the power generation supplemental fuel source must be sought if the cogeneration facility will consume more fuel than

Standiford, Richard B.

112

Large-Scale Hydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Hydropower Basics Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the stored water is released, it passes through and rotates turbines, which spin generators to produce electricity. Water stored in a reservoir can be accessed quickly for use during times when the demand for electricity is high. Dammed hydropower projects can also be built as power storage facilities.

113

Large-Scale Hydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Hydropower Basics Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the stored water is released, it passes through and rotates turbines, which spin generators to produce electricity. Water stored in a reservoir can be accessed quickly for use during times when the demand for electricity is high. Dammed hydropower projects can also be built as power storage facilities.

114

Bayesian Uncertainty Quantification for Large Scale Spatial Inverse Problems  

E-Print Network (OSTI)

We considered a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a high dimension spatial field. The Bayesian approach contains a natural mechanism for regularization in the form of prior information, can incorporate information from heterogeneous sources and provides a quantitative assessment of uncertainty in the inverse solution. The Bayesian setting casts the inverse solution as a posterior probability distribution over the model parameters. Karhunen-Lo'eve expansion and Discrete Cosine transform were used for dimension reduction of the random spatial field. Furthermore, we used a hierarchical Bayes model to inject multiscale data in the modeling framework. In this Bayesian framework, we have shown that this inverse problem is well-posed by proving that the posterior measure is Lipschitz continuous with respect to the data in total variation norm. The need for multiple evaluations of the forward model on a high dimension spatial field (e.g. in the context of MCMC) together with the high dimensionality of the posterior, results in many computation challenges. We developed two-stage reversible jump MCMC method which has the ability to screen the bad proposals in the first inexpensive stage. Channelized spatial fields were represented by facies boundaries and variogram-based spatial fields within each facies. Using level-set based approach, the shape of the channel boundaries was updated with dynamic data using a Bayesian hierarchical model where the number of points representing the channel boundaries is assumed to be unknown. Statistical emulators on a large scale spatial field were introduced to avoid the expensive likelihood calculation, which contains the forward simulator, at each iteration of the MCMC step. To build the emulator, the original spatial field was represented by a low dimensional parameterization using Discrete Cosine Transform (DCT), then the Bayesian approach to multivariate adaptive regression spline (BMARS) was used to emulate the simulator. Various numerical results were presented by analyzing simulated as well as real data.

Mondal, Anirban

2011-08-01T23:59:59.000Z

115

Superconductivity for Large Scale Wind Turbines  

SciTech Connect

A conceptual design has been completed for a 10MW superconducting direct drive wind turbine generator employing low temperature superconductors for the field winding. Key technology building blocks from the GE Wind and GE Healthcare businesses have been transferred across to the design of this concept machine. Wherever possible, conventional technology and production techniques have been used in order to support the case for commercialization of such a machine. Appendices A and B provide further details of the layout of the machine and the complete specification table for the concept design. Phase 1 of the program has allowed us to understand the trade-offs between the various sub-systems of such a generator and its integration with a wind turbine. A Failure Modes and Effects Analysis (FMEA) and a Technology Readiness Level (TRL) analysis have been completed resulting in the identification of high risk components within the design. The design has been analyzed from a commercial and economic point of view and Cost of Energy (COE) calculations have been carried out with the potential to reduce COE by up to 18% when compared with a permanent magnet direct drive 5MW baseline machine, resulting in a potential COE of 0.075 $/kWh. Finally, a top-level commercialization plan has been proposed to enable this technology to be transitioned to full volume production. The main body of this report will present the design processes employed and the main findings and conclusions.

R. Fair; W. Stautner; M. Douglass; R. Rajput-Ghoshal; M. Moscinski; P. Riley; D. Wagner; J. Kim; S. Hou; F. Lopez; K. Haran; J. Bray; T. Laskaris; J. Rochford; R. Duckworth

2012-10-12T23:59:59.000Z

116

Safety aspects of large-scale combustion of hydrogen  

DOE Green Energy (OSTI)

Recent hydrogen-safety investigations have studied the possible large-scale effects from phenomena such as the accumulation of combustible hydrogen-air mixtures in large, confined volumes. Of particular interest are safe methods for the disposal of the hydrogen and the pressures which can arise from its confined combustion. Consequently, tests of the confined combustion of hydrogen-air mixtures were conducted in a 2100 m/sup 3/ volume. These tests show that continuous combustion, as the hydrogen is generated, is a safe method for its disposal. It also has been seen that, for hydrogen concentrations up to 13 vol %, it is possible to predict maximum pressures that can occur upon ignition of premixed hydrogen-air atmospheres. In addition information has been obtained concerning the survivability of the equipment that is needed to recover from an accident involving hydrogen combustion. An accident that involved the inadvertent mixing of hydrogen and oxygen gases in a tube trailer gave evidence that under the proper conditions hydrogen combustion can transit to a detonation. If detonation occurs the pressures which can be experienced are much higher although short in duration.

Edeskuty, F.J.; Haugh, J.J.; Thompson, R.T.

1986-01-01T23:59:59.000Z

117

Energy Department Applauds Nation's First Large-Scale Industrial Carbon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nation's First Large-Scale Industrial Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility August 24, 2011 - 6:23pm Addthis Washington, D.C. - The U.S. Department of Energy issued the following statement in support of today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur, Illinois. Supported by the 2009 economic stimulus legislation - the American Recovery and Reinvestment Act - the ambitious project will capture and store one million tons of carbon dioxide (CO2) per year produced as the result of processing corn into fuel-grade ethanol from the nearby Archer Daniels Midland biofuels plant. Since all of

118

ARM - Evaluation Product - Vertical Air Motion during Large-Scale  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsVertical Air Motion during Large-Scale ProductsVertical Air Motion during Large-Scale Stratiform Rain Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Vertical Air Motion during Large-Scale Stratiform Rain Site(s) NIM SGP General Description The Vertical Air Motion during Large-Scale Stratiform Rain (VERVELSR) value-added product (VAP) uses the unique properties of a 95-GHz radar Doppler velocity spectra to produce vertical profiles of air motion during low-to-moderate (1-20 mm/hr) rainfall events It is designed to run at ARM sites that include a W-band ARM cloud radar (WACR) radar with spectra data processing. The VERVELSR VAP, based on the work of Giangrande et al. (2010), operates by exploiting a resonance effect that occurs in

119

Energy Department Applauds Nation's First Large-Scale Industrial Carbon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Applauds Nation's First Large-Scale Industrial Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility August 24, 2011 - 6:23pm Addthis Washington, D.C. - The U.S. Department of Energy issued the following statement in support of today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur, Illinois. Supported by the 2009 economic stimulus legislation - the American Recovery and Reinvestment Act - the ambitious project will capture and store one million tons of carbon dioxide (CO2) per year produced as the result of processing corn into fuel-grade ethanol from the nearby Archer Daniels Midland biofuels plant. Since all of

120

Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Industrial Carbon Capture, Storage Plant Begins Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration project funded by the American Recovery and Reinvestment Act (ARRA) to move into the construction phase. Led by the Archer Daniels Midland Company (ADM), a member of DOE's Midwest Geological Sequestration Consortium, the Illinois-ICCS project is designed to sequester approximately 2,500 metric tons of carbon dioxide

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Large-Scale Aspects of the United States Hydrologic Cycle  

Science Conference Proceedings (OSTI)

A large-scale, gridpoint, atmospheric, hydrologic climatology consisting of atmospheric precipitable water, precipitation, atmospheric moisture flux convergence, and a residual evaporation for the conterminous United States is described. A large-...

John O. Roads; Shyh-C. Chen; Alexander K. Guetter; Konstantine P. Georgakakos

1994-09-01T23:59:59.000Z

122

Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Industrial Carbon Capture, Storage Plant Begins Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration project funded by the American Recovery and Reinvestment Act (ARRA) to move into the construction phase. Led by the Archer Daniels Midland Company (ADM), a member of DOE's Midwest Geological Sequestration Consortium, the Illinois-ICCS project is designed to sequester approximately 2,500 metric tons of carbon dioxide

123

Materialized community ground models for large-scale earthquake simulation  

Science Conference Proceedings (OSTI)

Large-scale earthquake simulation requires source datasets which describe the highly heterogeneous physical characteristics of the earth in the region under simulation. Physical characteristic datasets are the first stage in a simulation pipeline which ...

Steven W. Schlosser; Michael P. Ryan; Ricardo Taborda; Julio López; David R. O'Hallaron; Jacobo Bielak

2008-11-01T23:59:59.000Z

124

Advanced concepts in large-scale network simulation  

Science Conference Proceedings (OSTI)

This tutorial paper reviews existing concepts and future directions in selected areas related to simulation of large-scale networks. It covers specifically topics in traffic modeling, simulation of routing, network emulation, and real-time simulation.

David M. Nicol; Michael Liljenstam; Jason Liu

2005-12-01T23:59:59.000Z

125

Large-Scale Meteorology and Deep Convection during TRMM KWAJEX  

Science Conference Proceedings (OSTI)

An overview of the large-scale behavior of the atmosphere during the Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX) is presented. Sounding and ground radar data collected during KWAJEX, and several routinely available ...

Adam H. Sobel; Sandra E. Yuter; Christopher S. Bretherton; George N. Kiladis

2004-02-01T23:59:59.000Z

126

Data mining techniques for large-scale gene expression analysis  

E-Print Network (OSTI)

Modern computational biology is awash in large-scale data mining problems. Several high-throughput technologies have been developed that enable us, with relative ease and little expense, to evaluate the coordinated expression ...

Palmer, Nathan Patrick

2011-01-01T23:59:59.000Z

127

Platforms and real options in large-scale engineering systems  

E-Print Network (OSTI)

This thesis introduces a framework and two methodologies that enable engineering management teams to assess the value of real options in programs of large-scale, partially standardized systems implemented a few times over ...

Kalligeros, Konstantinos C., 1976-

2006-01-01T23:59:59.000Z

128

Technoeconomic Evaluation of Large-Scale Electrolytic Hydrogen Production Technologies  

Science Conference Proceedings (OSTI)

Large-scale production of electrolytic hydrogen and oxygen could increase use of baseload and off-peak surplus power. To be competitive, however, water electrolysis will require low-cost electricity.

1985-09-20T23:59:59.000Z

129

Decomposition methods for large scale stochastic and robust optimization problems  

E-Print Network (OSTI)

We propose new decomposition methods for use on broad families of stochastic and robust optimization problems in order to yield tractable approaches for large-scale real world application. We introduce a new type of a ...

Becker, Adrian Bernard Druke

2011-01-01T23:59:59.000Z

130

Student Pages: RFP-Large-Scale Diversion of Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Supplying Our Water Needs H2O Request For Proposal Large Scale Diversion of Water U.S. Army Corp of Engineers-Chicago District online Be sure to submit the online sign-off each...

131

On solving large scale polynomial convex problems by randomized ...  

E-Print Network (OSTI)

plications), the (unimprovable in the large-scale case) rate of convergence of FOM's ...... mjnj min[mj,nj]) a.o.) and eigenvalue decomposition of a matrix from Sm.

132

DOE Awards First Three Large-Scale Carbon Sequestration Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Three Large-Scale Carbon Sequestration Projects First Three Large-Scale Carbon Sequestration Projects DOE Awards First Three Large-Scale Carbon Sequestration Projects October 9, 2007 - 3:14pm Addthis U.S. Projects Total $318 Million and Further President Bush's Initiatives to Advance Clean Energy Technologies to Confront Climate Change WASHINGTON, DC - In a major step forward for demonstrating the promise of clean energy technology, U.S Deputy Secretary of Energy Clay Sell today announced that the Department of Energy (DOE) awarded the first three large-scale carbon sequestration projects in the United States and the largest single set in the world to date. The three projects - Plains Carbon Dioxide Reduction Partnership; Southeast Regional Carbon Sequestration Partnership; and Southwest Regional Partnership for Carbon

133

Ferroelectric opening switches for large-scale pulsed power drivers.  

DOE Green Energy (OSTI)

Fast electrical energy storage or Voltage-Driven Technology (VDT) has dominated fast, high-voltage pulsed power systems for the past six decades. Fast magnetic energy storage or Current-Driven Technology (CDT) is characterized by 10,000 X higher energy density than VDT and has a great number of other substantial advantages, but it has all but been neglected for all of these decades. The uniform explanation for neglect of CDT technology is invariably that the industry has never been able to make an effective opening switch, which is essential for the use of CDT. Most approaches to opening switches have involved plasma of one sort or another. On a large scale, gaseous plasmas have been used as a conductor to bridge the switch electrodes that provides an opening function when the current wave front propagates through to the output end of the plasma and fully magnetizes the plasma - this is called a Plasma Opening Switch (POS). Opening can be triggered in a POS using a magnetic field to push the plasma out of the A-K gap - this is called a Magnetically Controlled Plasma Opening Switch (MCPOS). On a small scale, depletion of electron plasmas in semiconductor devices is used to affect opening switch behavior, but these devices are relatively low voltage and low current compared to the hundreds of kilo-volts and tens of kilo-amperes of interest to pulsed power. This work is an investigation into an entirely new approach to opening switch technology that utilizes new materials in new ways. The new materials are Ferroelectrics and using them as an opening switch is a stark contrast to their traditional applications in optics and transducer applications. Emphasis is on use of high performance ferroelectrics with the objective of developing an opening switch that would be suitable for large scale pulsed power applications. Over the course of exploring this new ground, we have discovered new behaviors and properties of these materials that were here to fore unknown. Some of these unexpected discoveries have lead to new research directions to address challenges.

Brennecka, Geoffrey L.; Rudys, Joseph Matthew; Reed, Kim Warren; Pena, Gary Edward; Tuttle, Bruce Andrew; Glover, Steven Frank

2009-11-01T23:59:59.000Z

134

Applications of large-scale computation to particle accelerators  

SciTech Connect

The rapid growth in the power of large-scale computers has had a revolutionary effect on the study of charged-particle accelerators that is similar to the impact of smaller computers on everyday life. Before an accelerator is built, it is now the absolute rule to simulate every component and subsystem by computer to establish modes of operation and tolerances. We will bypass the important and fruitful areas of control and operation, and consider only application to design and diagnostic interpretation. Applications of computers can be divided into separate categories including: component design, system design, stability studies, cost optimization, and operating condition simulation. For the purposes of this report, we will choose a few examples from the above categories to illustrate the methods used, and discuss the significance of the work to the project. We also briefly discuss the accelerator project itself. The examples that will be discussed are: The design of accelerator structures for electron-positron linear colliders and circular colliding beam systems, simulation of the wake fields from multibunch electron beams for linear colliders. Particle-in-cell simulation of space-charge dominated beams for an experimental linear induction accelerator for Heavy Ion Fusion.

Herrmannsfeldt, W.B.

1991-05-01T23:59:59.000Z

135

Large Scale Testing, Demonstration and Commercialization of the...  

NLE Websites -- All DOE Office Websites (Extended Search)

efficient components such as aluminum radiators (instead of stainless steel) and brass heat exchangers. FY 2012 Accomplishments Following are the accomplishments from...

136

Large-Scale Testing of Enhanced Mercury Removal for Subbituminous...  

NLE Websites -- All DOE Office Websites (Extended Search)

the mid-1990s to develop advanced, cost-effective mercury (Hg) control technologies for coal-fired power plants. Anticipating new Federal rules and possible state legislation,...

137

An analytical framework for particle and volume data of large-scale combustion simulations  

Science Conference Proceedings (OSTI)

This paper presents a framework to enable parallel data analyses and visualizations that combine both Lagrangian particle data and Eulerian field data of large-scale combustion simulations. Our framework is characterized by a new range query based design ... Keywords: data transformation and representation, feature extraction and tracking, scalability issues

Franz Sauer, Hongfeng Yu, Kwan-Liu Ma

2013-11-01T23:59:59.000Z

138

Approaches to large scale unsaturated flow in heterogeneous, stratified, and fractured geologic media  

Science Conference Proceedings (OSTI)

This report develops a broad review and assessment of quantitative modeling approaches and data requirements for large-scale subsurface flow in radioactive waste geologic repository. The data review includes discussions of controlled field experiments, existing contamination sites, and site-specific hydrogeologic conditions at Yucca Mountain. Local-scale constitutive models for the unsaturated hydrodynamic properties of geologic media are analyzed, with particular emphasis on the effect of structural characteristics of the medium. The report further reviews and analyzes large-scale hydrogeologic spatial variability from aquifer data, unsaturated soil data, and fracture network data gathered from the literature. Finally, various modeling strategies toward large-scale flow simulations are assessed, including direct high-resolution simulation, and coarse-scale simulation based on auxiliary hydrodynamic models such as single equivalent continuum and dual-porosity continuum. The roles of anisotropy, fracturing, and broad-band spatial variability are emphasized. 252 refs.

Ababou, R.

1991-08-01T23:59:59.000Z

139

Squidball: an experiment in large-scale motion capture and game design  

Science Conference Proceedings (OSTI)

This paper describes Squidball, a new large-scale motion capture based game. It was tested on up to 4000 player audiences last summer at SIGGRAPH 2004. It required the construction of the world's largest motion capture space at the time, and many ...

Christoph Bregler; Clothilde Castiglia; Jessica DeVincezo; Roger Luke DuBois; Kevin Feeley; Tom Igoe; Jonathan Meyer; Michael Naimark; Alexandru Postelnicu; Michael Rabinovich; Sally Rosenthal; Katie Salen; Jeremi Sudol; Bo Wright

2005-11-01T23:59:59.000Z

140

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Large-Scale Industrial Project Begins Carbon Capture Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and Other Large Systems Event Sponsor: Leadership Computing Facility Seminar Start Date: Dec 5 2013 - 2:00pm Building/Room: Building 240/Room 4301 Location: Argonne National Laboratory Speaker(s): Dmitri G. Fedorov Speaker(s) Title: National Institute of Advanced Industrial Science and Technology (AIST) Host: Yuri Alexeev Our approach to large scale calculations is based on fragmenting a molecular system into pieces, and performing quantum-mechanical calculations of these fragments and their pairs in the fragment molecular orbital method (FMO). After a brief summary of the methodology, some typical applications to protein-ligand complexes, chemical reactions in explicit solvent, and nanomaterials (silicon nanowires, zeolites.

142

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Large-Scale Industrial Project Begins Carbon Capture Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

143

COMMENTS OF THE LARGE-SCALE SOLAR ASSOCIATION TO DEPARTMENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMENTS OF THE LARGE-SCALE SOLAR ASSOCIATION TO DEPARTMENT COMMENTS OF THE LARGE-SCALE SOLAR ASSOCIATION TO DEPARTMENT OF ENERGY'S RAPID RESPONSE TEAM FOR TRANSMISSION'S REQUEST FOR INFORMATION Submitted by electronic mail to: Lamont.Jackson@hq.doe.gov The Large-scale Solar Association appreciates this opportunity to respond to the Department of Energy's (DOE) Rapid Response Team for Transmission's (RRTT) Request for Information. 1 We applaud the DOE for creating the RRTT and continuing to advance the efforts already made under the Memorandum of Understanding (MOU) entered into by nine Federal agencies in 2009 to expedite electric transmission construction. We also applaud the federal and state agencies that have expanded the Renewable Energy Policy Group and the Renewable Energy Action Team in California to focus on transmission, and hope that the tremendous

144

Nevada Weatherizes Large-Scale Complex | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Weatherizes Large-Scale Complex Nevada Weatherizes Large-Scale Complex Nevada Weatherizes Large-Scale Complex July 1, 2010 - 10:11am Addthis What does this project do? This nonprofit weatherized a 22-unit low-income multifamily complex, reducing the building's duct leakage from 90 percent to just 5 percent. The weatherization program of the Rural Nevada Development Corporation (RNDC) reached a recent success in its eleven counties-wide territory. In June, the nonprofit finished weatherizing a 22-unit low-income multifamily complex, reducing the building's duct leakage from 90 percent to just 5 percent. "That is one big savings and is why I am proud of this project," says Dru Simerson, RNDC Weatherization Manager. RNDC's crew replaced all windows and 17 furnaces and installed floor

145

Lessons from Large-Scale Renewable Energy Integration Studies: Preprint  

Science Conference Proceedings (OSTI)

In general, large-scale integration studies in Europe and the United States find that high penetrations of renewable generation are technically feasible with operational changes and increased access to transmission. This paper describes other key findings such as the need for fast markets, large balancing areas, system flexibility, and the use of advanced forecasting.

Bird, L.; Milligan, M.

2012-06-01T23:59:59.000Z

146

A holonic approach to model and deploy large scale simulations  

Science Conference Proceedings (OSTI)

Multi-Agent Based Simulations (MABS) for real-world problems may require a large number of agents. A possible solution is to distribute the simulation in multiple machines. Thus, we are forced to consider how Large Scale MABS can be deployed in order ...

Sebastian Rodriguez; Vincent Hilaire; Abder Koukam

2006-05-01T23:59:59.000Z

147

A root cause localization model for large scale systems  

Science Conference Proceedings (OSTI)

Root cause localization, the process of identifying the source of problems in a system using purely external observations, is a significant challenge in many large-scale systems. In this paper, we propose an abstract model that captures the common issues ...

Emre Kiciman; Lakshminarayanan Subramanian

2005-06-01T23:59:59.000Z

148

Predictive discrete latent factor models for large scale dyadic data  

Science Conference Proceedings (OSTI)

We propose a novel statistical method to predict large scale dyadic response variables in the presence of covariate information. Our approach simultaneously incorporates the effect of covariates and estimates local structure that is induced by interactions ... Keywords: co-clustering, dyadic data, generalized linear regression, latent factor modeling

Deepak Agarwal; Srujana Merugu

2007-08-01T23:59:59.000Z

149

Computational challenges in large-scale air pollution modelling  

Science Conference Proceedings (OSTI)

Many difficulties must be overcome when large-scale air pollution models are treated numerically, because the physical and chemical processes in the atmosphere are very fast. This is why it is necessary to use a large space domain in order ... Keywords: air pollution models, finite elements, ordinary differential equations, parallel computational, partial differential equations, quasi-steady-state-approximation

Tzvetan Ostromsky; Wojciech Owczarz; Zahari Zlatev

2001-06-01T23:59:59.000Z

150

A Simulator for Large-Scale Parallel Computer Architectures  

Science Conference Proceedings (OSTI)

Efficient design of hardware and software for large-scale parallel execution requires detailed understanding of the interactions between the application, computer, and network. The authors have developed a macro-scale simulator SST/macro that permits ... Keywords: Computer Architecture Simulation, Macro-scale Simulator, Message Passing Interface, Network Congestion, Network Models

Helgi Adalsteinsson; Scott Cranford; David A. Evensky; Joseph P. Kenny; Jackson Mayo; Ali Pinar; Curtis L. Janssen

2010-04-01T23:59:59.000Z

151

Believability in simplifications of large scale physically based simulation  

Science Conference Proceedings (OSTI)

We verify two hypotheses which are assumed to be true only intuitively in many rigid body simulations. I: In large scale rigid body simulation, viewers may not be able to perceive distortion incurred by an approximated simulation method. II: ... Keywords: 3D graphics and realism, animation, physically based simulation

Donghui Han; Shu-wei Hsu; Ann McNamara; John Keyser

2013-08-01T23:59:59.000Z

152

The cube: a very large-scale interactive engagement space  

Science Conference Proceedings (OSTI)

"The Cube" is a unique facility that combines 48 large multi-touch screens and very large-scale projection surfaces to form one of the world's largest interactive learning and engagement spaces. The Cube facility is part of the Queensland University ... Keywords: interactive wall displays, multi-touch, very large displays

Markus Rittenbruch, Andrew Sorensen, Jared Donovan, Debra Polson, Michael Docherty, Jeff Jones

2013-10-01T23:59:59.000Z

153

In Situ Visualization for Large-Scale Combustion Simulations  

Science Conference Proceedings (OSTI)

As scientific supercomputing moves toward petascale and exascale levels, in situ visualization stands out as a scalable way for scientists to view the data their simulations generate. This full picture is crucial particularly for capturing and understanding ... Keywords: in situ visualization, large-scale simulation, parallel rendering, supercomputing, scalability, computer graphics, graphics and multimedia

Hongfeng Yu; Chaoli Wang; Ray W. Grout; Jacqueline H. Chen; Kwan-Liu Ma

2010-05-01T23:59:59.000Z

154

Large-scale three-dimensional geothermal reservoir simulation on PCs  

DOE Green Energy (OSTI)

TOUGH2, Lawrence Berkeley Laboratory`s general purpose simulator for mass and heat flow and transport was enhanced with the addition of a set of preconditioned conjugate gradient solvers and ported to a PC. The code was applied to a number of large 3-D geothermal reservoir problems with up to 10,000 grid blocks. Four test problems were investigated. The first two involved a single-phase liquid system, and a two-phase system with regular Cartesian grids. The last two involved a two-phase field problem with irregular gridding with production from and injection into a single porosity reservoir, and a fractured reservoir. The code modifications to TOUGH2 and its setup in the PC environment are described. Algorithms suitable for solving large matrices that are generally non-symmetric and non-positive definite are reviewed. Computational work per time step and CPU time requirements are reported as function of problem size. The excessive execution time and storage requirements of the direct solver in TOUGH2 limits the size of manageable 3-D reservoir problems to a few hundred grid blocks. The conjugate gradient solvers significantly reduced the execution time and storage requirements making possible the execution of considerably larger problems (10,000 + grid blocks). It is concluded that the current PCs provide an economical platform for running large-scale geothermal field simulations that just a few years ago could only be executed on mainframe computers.

Antunez, E.; Moridis, G.; Pruess, K.

1994-01-01T23:59:59.000Z

155

Large-scale three-dimensional geothermal reservoir simulation on PCs  

Science Conference Proceedings (OSTI)

TOUGH2, Lawrence Berkeley Laboratory's general purpose simulator for mass and heat flow and transport was enhanced with the addition of a set of preconditioned conjugate gradient solvers and ported to a PC. The code was applied to a number of large 3-D geothermal reservoir problems with up to 10,000 grid blocks. Four test problems were investigated. The first two involved a single-phase liquid system, and a two-phase system with regular Cartesian grids. The last two involved a two-phase field problem with irregular gridding with production from and injection into a single porosity reservoir, and a fractured reservoir. The code modifications to TOUGH2 and its setup in the PC environment are described. Algorithms suitable for solving large matrices that are generally non-symmetric and non-positive definite are reviewed. Computational work per time step and CPU time requirements are reported as function of problem size. The excessive execution time and storage requirements of the direct solver in TOUGH2 limits the size of manageable 3-D reservoir problems to a few hundred grid blocks. The conjugate gradient solvers significantly reduced the execution time and storage requirements making possible the execution of considerably larger problems (10,000+ grid blocks). It is concluded that the current PCs provide an economical platform for running large-scale geothermal field simulations that just a few years ago could only be executed on mainframe computers.

Antunez, Emilio; Moridis, George; Pruess, Karsten

1994-01-20T23:59:59.000Z

156

Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project  

SciTech Connect

This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Tyburski, J.R. [I. T. Corp., Albuquerque, NM (United States)

1993-05-01T23:59:59.000Z

157

No large scale curvature perturbations during the waterfall phase transition of hybrid inflation  

Science Conference Proceedings (OSTI)

In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of the standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depends crucially on the competition between the classical and the quantum mechanical backreactions to terminate inflation. If one considers only the classical evolution of the system, we show that the highly blue-tilted entropy perturbations induce highly blue-tilted large scale curvature perturbations during the waterfall phase transition which dominate over the original adiabatic curvature perturbations. However, we show that the quantum backreactions of the waterfall field inhomogeneities produced during the phase transition dominate completely over the classical backreactions. The cumulative quantum backreactions of very small scale tachyonic modes terminate inflation very efficiently and shut off the curvature perturbation evolution during the waterfall phase transition. This indicates that the standard hybrid inflation model is safe under large scale curvature perturbations during the waterfall phase transition.

Abolhasani, Ali Akbar [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of); School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Firouzjahi, Hassan [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

2011-03-15T23:59:59.000Z

158

Connecting the Physical Properties of Galaxies with the Overdensity and Tidal Shear of the Large-Scale Environment  

E-Print Network (OSTI)

We have examined the correlations between the large-scale environment of galaxies and their physical properties, using a sample of 28,354 nearby galaxies drawn from the Sloan Digital Sky Survey, and the large-scale tidal field reconstructed in real space from the 2Mass Redshift Survey and smoothed over a radius of $\\sim 6 h^{-1}$Mpc. The large-scale environment is expressed in terms of the overdensity, the ellipticity of the shear and the type of the large-scale structure. The physical properties analyzed include $r$-band absolute magnitude $M_{^{0.1}r}$, stellar mass $M_\\ast$, $g-r$ colour, concentration parameter $R_{90}/R_{50}$ and surface stellar mass density $\\mu_\\ast$. Both luminosity and stellar mass are found to be statistically linked to the large-scale environment, regardless of how the environment is quantified. More luminous (massive) galaxies reside preferentially in the regions with higher densities, lower ellipticities and halo-like structures. At fixed luminosity, the large-scale overdensity depends strongly on parameters related to the recent star formation history, that is colour and D(4000), but is almost independent of the structural parameters $R_{90}/R_{50}$ and $\\mu_\\ast$. All the physical properties are statistically linked to the shear of the large-scale environment even when the large-scale density is constrained to a narrow range. This statistical link has been found to be most significant in the quasi-linear regions where the large-scale density approximates to an order of unity, but no longer significant in highly nonlinear regimes with $\\delta_{\\rm LS}\\gg 1$.

Jounghun Lee; Cheng Li

2008-03-12T23:59:59.000Z

159

NREL: Wind Research - Field Test Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Test Sites Field Test Sites Aerial view of the National Wind Technology Center with the Flatiron Mountains in the background NREL's NWTC has numerous test pads available to industry partners for testing wind turbines that range in size from a few hundred kilowatts to several megawatts. PIX 17711. Manufacturers can take advantage of NREL's numerous test pads and the technical expertise of its staff to field test prototypes of small and large wind turbines. Many of the small wind turbines tested at the NWTC are participants in NREL's Small Wind Turbine Independent Test Program. Small and mid-sized turbines field tested at the NWTC include those manufactured by Atlantic Orient Corporation, Bergey Windpower, Southwest Wind Power, Northern Power Systems, Endurance Wind Power Inc., Gaia-Wind Ltd.,

160

Square Butte HVDC modulation system field tests  

SciTech Connect

The authors describe field tests conducted at the Square Butte dc system to validate transfer functions of the digital model for dc current and voltage modulation control design. The field tests and digital model results confirm a dominant interarea mode of oscillation of 0.8 hz. Field tests also established spurious responses in rectifier and inverter frequency measurements which appear to be attributable to transducer distortion.

Grund, C.E. (General Electric Co., Schenectady, NY (USA)); Hauer, J.F. (BPA, Portland, OR (US)); Crane, L.P.; Carlson, D.L. (Minnesota Power and Light Co., Duluth, MN (USA)); Wright, S.E. (EPRI, Palo Alto, CA (US))

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Environmental Energy Technologies Division Thermal Field Tests  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Field Tests Joseph H. Klems, LBNL DOE PEER Review San Francisco, CA April 20, 1999 Environmental Energy Technologies Division Current Work l Skylight Thermal Performance *...

162

Measuring and tuning energy efficiency on large scale high performance computing platforms.  

Science Conference Proceedings (OSTI)

Recognition of the importance of power in the field of High Performance Computing, whether it be as an obstacle, expense or design consideration, has never been greater and more pervasive. While research has been conducted on many related aspects, there is a stark absence of work focused on large scale High Performance Computing. Part of the reason is the lack of measurement capability currently available on small or large platforms. Typically, research is conducted using coarse methods of measurement such as inserting a power meter between the power source and the platform, or fine grained measurements using custom instrumented boards (with obvious limitations in scale). To collect the measurements necessary to analyze real scientific computing applications at large scale, an in-situ measurement capability must exist on a large scale capability class platform. In response to this challenge, we exploit the unique power measurement capabilities of the Cray XT architecture to gain an understanding of power use and the effects of tuning. We apply these capabilities at the operating system level by deterministically halting cores when idle. At the application level, we gain an understanding of the power requirements of a range of important DOE/NNSA production scientific computing applications running at large scale (thousands of nodes), while simultaneously collecting current and voltage measurements on the hosting nodes. We examine the effects of both CPU and network bandwidth tuning and demonstrate energy savings opportunities of up to 39% with little or no impact on run-time performance. Capturing scale effects in our experimental results was key. Our results provide strong evidence that next generation large-scale platforms should not only approach CPU frequency scaling differently, but could also benefit from the capability to tune other platform components, such as the network, to achieve energy efficient performance.

Laros, James H., III

2011-08-01T23:59:59.000Z

163

Large-Scale Renewable Energy Development on Public Lands  

NLE Websites -- All DOE Office Websites (Extended Search)

Large-Scale Renewable Energy Large-Scale Renewable Energy Development on Public Lands Boyan Kovacic boyan.kovacic@ee.doe.gov 5/2/12 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov * BLM RE Drivers * BLM RE Programs * BLM Permitting and Revenues * Case Studies * Withdrawn Military Land Outline 3 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov BLM: Bureau of Land Management BO: Biological Opinion CSP: Concentrating Solar Power DOE: Department of Energy DOI: Department of Interior EA: Environmental Assessment EIS: Environmental Impact Statement FONSI: Finding of No Significant Impact FS: U.S. Forrest Service IM: Instruction Memorandum MPDS: Maximum Potential Development Scenario NEPA: National Environmental Policy Act NOI: Notice of Intent NOP: Notice to Proceed

164

Large-Scale Renewable Energy Development on Public Lands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Renewable Energy Large-Scale Renewable Energy Development on Public Lands Boyan Kovacic boyan.kovacic@ee.doe.gov 5/2/12 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov * BLM RE Drivers * BLM RE Programs * BLM Permitting and Revenues * Case Studies * Withdrawn Military Land Outline 3 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov BLM: Bureau of Land Management BO: Biological Opinion CSP: Concentrating Solar Power DOE: Department of Energy DOI: Department of Interior EA: Environmental Assessment EIS: Environmental Impact Statement FONSI: Finding of No Significant Impact FS: U.S. Forrest Service IM: Instruction Memorandum MPDS: Maximum Potential Development Scenario NEPA: National Environmental Policy Act NOI: Notice of Intent NOP: Notice to Proceed

165

The Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)  

NLE Websites -- All DOE Office Websites (Extended Search)

LBA (Amazon) LBA (Amazon) The Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) Overview [LBA Logo] The Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) is an international research initiative conducted from 1995-2005 and led by Brazil. The LBA Project encompasses several scientific disciplines, or components. The LBA-ECO component focuses on the question: "How do tropical forest conversion, regrowth, and selective logging influence carbon storage, nutrient dynamics, trace gas fluxes, and the prospect for sustainable land use in Amazonia?" The Amazon rain forest or Amazonia, is the largest remaining expanse of tropical rain forest on Earth, harboring approximately one-third of all Earth's species. Although the rain forest's area is so large that it

166

Safety aspects of large-scale handling of hydrogen  

DOE Green Energy (OSTI)

Since the decade of the 1950s, there has been a large increase in the quantity of hydrogen, especially liquid hydrogen, that has been produced, transported, and used. The technology of hydrogen, as it relates to safety, has also developed at the same time. The possible sources of hazards that can arise in the large-scale handling of hydrogen are recognized, and for the most part, sufficiently understood. These hazard sources are briefly discussed. 26 refs., 4 figs.

Edeskuty, F.J.; Stewart, W.F.

1988-01-01T23:59:59.000Z

167

Mechanism for the suppression of quantum noise at large scales on expanding space  

E-Print Network (OSTI)

We present an exactly-solvable model for the suppression of quantum noise at large scales on expanding space. The suppression arises naturally in the de Broglie-Bohm pilot-wave formulation of quantum theory, according to which the Born probability rule has a dynamical origin. For a scalar field on a radiation-dominated background we construct the exact solution for the time-evolving wave functional and study properties of the associated field trajectories. It is shown that the time evolution of a field mode on expanding space is mathematically equivalent to that of a standard harmonic oscillator with a 'retarded time' that depends on the wavelength of the mode. In the far super-Hubble regime the equivalent oscillator evolves over only one Hubble time, yielding a simple mechanism whereby relaxation to the Born rule can be suppressed on very large scales. We present numerical simulations illustrating how the expansion of space can cause a retardation of relaxation in the super-Hubble regime. Given these results it is natural to expect a suppression of quantum noise at super-Hubble wavelengths. Such suppression could have taken place in a pre-inflationary era, resulting in a large-scale power deficit in the cosmic microwave background.

Samuel Colin; Antony Valentini

2013-06-07T23:59:59.000Z

168

Parallel I/O Software Infrastructure for Large-Scale Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Parallel IO Software Infrastructure for Large-Scale Systems Parallel IO Software Infrastructure for Large-Scale Systems | Tags: Math & Computer Science Choudhary.png An...

169

Engine Oil Aeration Test FIELD SERVICE SIMULATED  

E-Print Network (OSTI)

Engine Oil Aeration Test OBJECTIVE FIELD SERVICE SIMULATED SPECIFICATIONS The objective of this test is to determine the effectiveness of engine lubricating oils at minimizing air entrainment oil. TEST FIXTURE The test engine is a 1994 International Truck 7.3 liter V-8, four- stroke

Chapman, Clark R.

170

An Evaluation of the Network Simulators in Large-Scale Distributed Simulations  

Science Conference Proceedings (OSTI)

This is a survey paper about the state-of-the-art in large-scale network simulation. Networks for the smart grids are characterized by millions of sensor nodes exchanging information about the status of the grid. This information exchange must be realized reliably and efficiently due to the mission critical nature of the power grid. Hence, the applications and the network protocols developed for the smart grid need go through rigorous testing and analysis before deployment. Developers usually do not have access to such a large-scale network that can be used as a controlled test-bed; therefore, network simulation becomes an essential tool for testing. Network simulation is a well studied problem in the literature and there are various widely used network simulators. These simulators can be adopted for testing applications and protocols of the smart grid. Due to the scale of these networks, parallel/distributed simulations need to be conducted. Even though most network simulators support distributed simulations, generating a large-scale network model to simulate can still be a cumbersome task. In this survey, we describe a selection of commonly used network simulators and evaluate them with respect to the following features that can aid users in distributed simulations of large-scale networks: transparency of setting up distributed simulation, automated topology generation, information hiding, lightweight routing protocols, network error simulation, evaluation of the network model during simulation and trace analysis tools. As a complementary result, we identify two issues with network simulators that can be addressed with runtime steering methods.

Ciraci, Selim; Akyol, Bora A.

2011-11-13T23:59:59.000Z

171

Field Test Best Practices (FTBP) Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Test Best Practices (FTBP) Update: Field Test Best Practices (FTBP) Update: It's here! And we need you! Lieko Earle Dane Christensen Bethany Sparn Building America Stakeholder Meeting 2012-03-02 NATIONAL RENEWABLE ENERGY LABORATORY Identified Field Testing Needs 2 * Difficult to find good general guidelines * Difficult to find examples of good field test plans * Difficult to find information on instrumentation options * No easily-accessible central repository for best practices knowledge * Field tests were taking longer and costing more $$ than initially estimated * We keep reinventing the wheel * Start from scratch each time we write a data-logger program? * Repeat each other's mistakes? NATIONAL RENEWABLE ENERGY LABORATORY What is the FTBP Resource?

172

Large-Scale Urban Decontamination; Developments, Historical Examples and Lessons Learned  

SciTech Connect

Recent terrorist threats and actual events have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the real potential for the cleanup and removal of radioactive dispersal device (RDD or “dirty bomb”) residues. In response the U. S. Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. Interest in chemical and biological (CB) cleanup has also peaked with the threat of terrorist action like the anthrax attack at the Hart Senate Office Building and with catastrophic natural events such as Hurricane Katrina. The efficiency of cleanup response will be improved with these new developments and a better understanding of the “old reliable” methodologies. Perhaps the most interesting area of investigation for large area decontamination is that of the RDD. While primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. Non-radioactive, CB threats each have unique decontamination challenges and recent events have provided some examples. The U. S. Environmental Protection Agency (EPA), as lead agency for these emergency cleanup responses, has a sound approach for decontamination decision-making that has been applied several times. The anthrax contamination at the U. S. Hart Senate Office Building and numerous U. S. Post Office facilities are examples of employing novel technical responses. Decontamination of the Hart Office building required development of a new approach for high level decontamination of biological contamination as well as techniques for evaluating the technology effectiveness. The World Trade Center destruction also demonstrated the need for, and successful implementation of, appropriate cleanup methodologies. There are a number of significant lessons that can be gained from a look at previous large scale cleanup projects. Too often we are quick to apply a costly “package and dispose” method when sound technological cleaning approaches are available. Understanding historical perspectives, advanced planning and constant technology improvement are essential to successful decontamination.

Rick Demmer

2007-02-01T23:59:59.000Z

173

NAMD - The Engine for Large-Scale Classical MD Simulations of Biomolecular  

NLE Websites -- All DOE Office Websites (Extended Search)

NAMD NAMD NAMD - The Engine for Large-Scale Classical MD Simulations of Biomolecular Systems Based on a Polarizable Force Field PI Name: Benoit Roux PI Email: roux@uchicago.edu Institution: Argonne National Laboratory & University of Chicago Allocation Program: ESP Allocation Hours at ALCF: 80 Million Year: 2010 to 2013 Research Domain: Biological Sciences Biology, at the atomic and molecular level, is governed by complex interactions involving a large number of key constituents, including water, ions, proteins, nucleic acids, and lipid membranes. The goal of this project is to develop new technologies to simulate virtual models of biomolecular systems with an unprecedented accuracy. Large-scale molecular dynamics (MD) simulations based on atomic models play an increasingly

174

Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators  

E-Print Network (OSTI)

A new generation of laser wakefield accelerators, supported by the extreme accelerating fields generated in the interaction of PW-Class lasers and underdense targets, promises the production of high quality electron beams in short distances for multiple applications. Achieving this goal will rely heavily on numerical modeling for further understanding of the underlying physics and identification of optimal regimes, but large scale modeling of these scenarios is computationally heavy and requires efficient use of state-of-the-art Petascale supercomputing systems. We discuss the main difficulties involved in running these simulations and the new developments implemented in the OSIRIS framework to address these issues, ranging from multi-dimensional dynamic load balancing and hybrid distributed / shared memory parallelism to the vectorization of the PIC algorithm. We present the results of the OASCR Joule Metric program on the issue of large scale modeling of LWFA, demonstrating speedups of over 1 order of magni...

Fonseca, Ricardo A; Fiúza, Frederico; Davidson, Asher; Tsung, Frank S; Mori, Warren B; Silva, Luís O

2013-01-01T23:59:59.000Z

175

ANTARES proposal: Towards a large scale high energy cosmic neutrino undersea detector  

E-Print Network (OSTI)

The ANTARES collaboration propose to observe High Energy Cosmic Neutrinos using a Deep Sea Cherenkov detector. The sky survey with high energy neutrinos is complementary to the observations with photons. It is expected that this will shed a new light on the understanding of the origin of cosmics rays, on galactic and extra galactic sources. In this document, we will elaborate on the potential interest of such a study for Astrophysicists and Particle Physicists. For Oceanologists participating in the collaboration, the main goal is a long term measurement of environmental parameters in the deep sea. We propose to explore the possibility of a km-scale detector to be installed in a deep site in the Mediterranean sea, for which a broad collaboration will be needed. A variety of technical problems have to be solved. Strong constraints coming from the deep sea environment and the lack of accessibility, require sea science engineering expertise. For items such as detector deployment in deep water, data transmission through optical cables, corrosion, bio-fouling of optical modules, positioning, we have found technical support from collaborators and partners which have experience in this field (COM, CSTN, CTME, IFREMER, France Telecom Cables, INSU-CNRS...). We will test the sea engineering part of a detector including test deployments close to the Toulon coast (France) where technical support is available and where several sites at depths down to 2500 m are easily accessible. During the same time, issues connected to the accomplishment of a large scale detector and the selection of an optimum site will be addressed. We propose to build and install a demonstrator (a fully equipped 3-dimensional test array) the design of which can be extended to a km^3 scale detector. We plan to reach this goal within the next 2 years.

ANTARES collaboration

1997-07-11T23:59:59.000Z

176

Large Scale Deployment of Renewables for Electricity Generation  

E-Print Network (OSTI)

-cellulose material. Anaerobic digestion or gasification of biomass produces gas that can be used in similar applications to natural gas. Small-scale biogas production is now a well-established technology and large-scale application is in the advanced stages... of development. The possibility of using biogas in fuel cells exists, but there are a number of technical difficulties that remain to be overcome in this area. Source: www.britishbiogen.co.uk and WEA (2000). 5 All figures refer to electricity.Where necessary...

Neuhoff, Karsten

2006-03-14T23:59:59.000Z

177

Solving Large-scale Eigenvalue Problems in SciDACApplications  

SciTech Connect

Large-scale eigenvalue problems arise in a number of DOE applications. This paper provides an overview of the recent development of eigenvalue computation in the context of two SciDAC applications. We emphasize the importance of Krylov subspace methods, and point out its limitations. We discuss the value of alternative approaches that are more amenable to the use of preconditioners, and report the progression using the multi-level algebraic sub-structuring techniques to speed up eigenvalue calculation. In addition to methods for linear eigenvalue problems, we also examine new approaches to solving two types of non-linear eigenvalue problems arising from SciDAC applications.

Yang, Chao

2005-06-29T23:59:59.000Z

178

Large scale obscuration and related climate effects open literature bibliography  

SciTech Connect

Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ``Nuclear Winter Controversy`` in the early 1980`s. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest.

Russell, N.A.; Geitgey, J.; Behl, Y.K.; Zak, B.D.

1994-05-01T23:59:59.000Z

179

NETL: News Release - First U.S. Large-Scale CO2 Storage Project Advances  

NLE Websites -- All DOE Office Websites (Extended Search)

April 6, 2009 April 6, 2009 First U.S. Large-Scale CO2 Storage Project Advances One Million Metric Tons of Carbon to be Injected at Illinois Site Washington, DC -Drilling nears completion for the first large-scale carbon dioxide (CO2) injection well in the United States for CO2 sequestration. This project will be used to demonstrate that CO2 emitted from industrial sources - such as coal-fired power plants - can be stored in deep geologic formations to mitigate large quantities of greenhouse gas emissions. MORE INFO Link to the Midwest Geological Sequestration Consortium web site The Archer Daniels Midland Company (ADM) hosted an event April 6 for a CO2 injection test at their Decatur, Ill. ethanol facility. The injection well is being drilled into the Mount Simon Sandstone to a depth more than a mile

180

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

strategic plans. Large  Scale  Computing  and  Storage  Requirements  for  Fusion  Energy  Sciences   DOE  

Gerber, Richard

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Exploring Cloud Computing for Large-scale Scientific Applications  

Science Conference Proceedings (OSTI)

This paper explores cloud computing for large-scale data-intensive scientific applications. Cloud computing is attractive because it provides hardware and software resources on-demand, which relieves the burden of acquiring and maintaining a huge amount of resources that may be used only once by a scientific application. However, unlike typical commercial applications that often just requires a moderate amount of ordinary resources, large-scale scientific applications often need to process enormous amount of data in the terabyte or even petabyte range and require special high performance hardware with low latency connections to complete computation in a reasonable amount of time. To address these challenges, we build an infrastructure that can dynamically select high performance computing hardware across institutions and dynamically adapt the computation to the selected resources to achieve high performance. We have also demonstrated the effectiveness of our infrastructure by building a system biology application and an uncertainty quantification application for carbon sequestration, which can efficiently utilize data and computation resources across several institutions.

Lin, Guang; Han, Binh; Yin, Jian; Gorton, Ian

2013-06-27T23:59:59.000Z

182

Large Scale GSHP as Alternative Energy for American Farmers Geothermal  

Open Energy Info (EERE)

GSHP as Alternative Energy for American Farmers Geothermal GSHP as Alternative Energy for American Farmers Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Large Scale GSHP as Alternative Energy for American Farmers Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description We propose a large scale demonstration of solar assisted GSHP systems on two poultry farms in mid-Missouri. The heating load of Farm A with 4 barns will be 510 tons and Farm B with 5 barns will be 440 tons. Solar assisted GSHP systems will be installed, and new utility business model will be applied to both farms. Farm A will be constructed with commercial products in order to bring immediate impact to the industry. Farm B will also have a thermal energy storage system installed, and improved solar collectors will be used. A comprehensive energy analysis and economic study will be conducted.

183

Shear-current effect in a turbulent convection with a large-scale shear  

E-Print Network (OSTI)

The shear-current effect in a nonrotating homogeneous turbulent convection with a large-scale constant shear is studied. The large-scale velocity shear causes anisotropy of turbulent convection, which produces the mean electromotive force $\\bec{\\cal E}^{(W)} \\propto {\\bf W} {\\bf \\times} {\\bf J}$ and the mean electric current along the original mean magnetic field, where ${\\bf W}$ is the background mean vorticity due to the shear and ${\\bf J}$ is the mean electric current. This results in a large-scale dynamo even in a nonrotating and nonhelical homogeneous sheared turbulent convection, whereby the $\\alpha$ effect vanishes. It is found that turbulent convection promotes the shear-current dynamo instability, i.e., the heat flux causes positive contribution to the shear-current effect. However, there is no dynamo action due to the shear-current effect for small hydrodynamic and magnetic Reynolds numbers even in a turbulent convection, if the spatial scaling for the turbulent correlation time is $\\tau(k) \\propto k^{-2}$, where $k$ is the small-scale wave number.

I. Rogachevskii; N. Kleeorin

2007-02-24T23:59:59.000Z

184

PARTICLE ACCELERATION AT A FLARE TERMINATION SHOCK: EFFECT OF LARGE-SCALE MAGNETIC TURBULENCE  

Science Conference Proceedings (OSTI)

We investigate the acceleration of charged particles (both electrons and protons) at collisionless shocks predicted to exist in the vicinity of solar flares. The existence of standing termination shocks has been examined by flare models and numerical simulations. We study electron energization by numerically integrating the equations of motion of a large number of test-particle electrons in the time-dependent two-dimensional electric and magnetic fields generated from hybrid simulations (kinetic ions and fluid electron) using parameters typical of the solar flare plasma environment. The shock is produced by injecting plasma flow toward a rigid piston. Large-scale magnetic fluctuations-known to exist in plasmas and known to have important effects on the nonthermal electron acceleration at shocks-are also included in our simulations. For the parameters characteristic of the flaring region, our calculations suggest that the termination shock formed in the reconnection outflow region (above post-flare loops) could accelerate electrons to a kinetic energy of a few MeV within 100 ion cyclotron periods, which is of the order of a millisecond. Given a sufficient turbulence amplitude level ({delta}B{sup 2}/B 2{sub 0} {approx} 0.3), about 10% of thermal test-particle electrons are accelerated to more than 15 keV. We find that protons are also accelerated, but not to as high energy in the available time and the energy spectra are considerably steeper than that of the electrons for the parameters used in our simulations. Our results are qualitatively consistent with the observed hard X-ray emissions in solar flares.

Guo Fan; Giacalone, Joe, E-mail: guofan@lpl.arizona.edu [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States)

2012-07-01T23:59:59.000Z

185

Resampling Hypothesis Tests for Autocorrelated Fields  

Science Conference Proceedings (OSTI)

Presently employed hypothesis tests for multivariate geophysical data (e.g., climatic fields) require the assumption that either the data are serially uncorrelated, or spatially uncorrelated, or both. Good methods have been developed to deal with ...

D. S. Wilks

1997-01-01T23:59:59.000Z

186

SchlumbergerRES/Field-Test-Plan.PPT/18/06/00/1 Field Test Plan Michigan  

E-Print Network (OSTI)

1 La ©SchlumbergerRES/Field-Test-Plan.PPT/18/06/00/1 Field Test Plan Michigan QLand, QBorehole, R Camp, Well --- Oil/Gas PL Permit Zone - CONFIDENTIAL - #12;8 La ©SchlumbergerRES/Field-Test-Plan.PPT/18/VSP compiled by Andreas Laake, SLB Project Coordinator Status :October 26, 2000 #12;2 La ©SchlumbergerRES/Field

187

Large Scale Geothermal Exchange System for Residential, Office and Retail  

Open Energy Info (EERE)

Geothermal Exchange System for Residential, Office and Retail Geothermal Exchange System for Residential, Office and Retail Development Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Large Scale Geothermal Exchange System for Residential, Office and Retail Development Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description RiverHeath will be a new neighborhood, with residences, shops, restaurants, and offices. The design incorporates walking trails, community gardens, green roofs, and innovative stormwater controls. A major component of the project is our reliance on renewable energy. One legacy of the land's industrial past is an onsite hydro-electric facility which formerly powered the paper factories. The onsite hydro is being refurbished and will furnish 100% of the project's electricity demand.

188

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

NLE Websites -- All DOE Office Websites (Extended Search)

28, 2013 28, 2013 Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization DOE-Supported Project in Texas Demonstrates Viability of CCUS Technology Washington, D.C. - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). MORE INFO Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

189

Large-Scale Analyses of Glycosylation in Cellulases  

NLE Websites -- All DOE Office Websites (Extended Search)

Article Article Large-Scale Analyses of Glycosylation in Cellulases Fengfeng Zhou 1,2 , Victor Olman 1,2 , and Ying Xu 1,2 * 1 Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology / Institute of Bioinformatics, University of Georgia, Athens, GA 30602-7229, USA; 2 BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830-8050, USA. *Corresponding author. E-mail: xyn@bmb.uga.edu DOI: 10.1016/S1672-0229(08)60049-2 Cellulases are important glycosyl hydrolases (GHs) that hydrolyze cellulose poly- mers into smaller oligosaccharides by breaking the cellulose β (1→4) bonds, and they are widely used to produce cellulosic ethanol from the plant biomass. N-linked and O-linked glycosylations were proposed to impact the catalytic ef f iciency, cel- lulose binding af f inity and the stability of cellulases based on observations

190

Cosmological Simulations for Large-Scale Sky Surveys | Argonne Leadership  

NLE Websites -- All DOE Office Websites (Extended Search)

Instantaneous velocity magnitude in a flow through an open valve in a valve/piston assembly. Instantaneous velocity magnitude in a flow through an open valve in a valve/piston assembly. Instantaneous velocity magnitude in a flow through an open valve in a valve/piston assembly. Christos Altantzis, MIT, and Martin Schmitt, LAV. All the images were generated from their work at LAV. Cosmological Simulations for Large-Scale Sky Surveys PI Name: Christos Frouzakis PI Email: frouzakis@lav.mavt.ethz.ch Institution: Swiss Federal Institute of Technology Zurich Allocation Program: INCITE Allocation Hours at ALCF: 100 Million Year: 2014 Research Domain: Chemistry The combustion of coal and petroleum-based fuels supply most of the energy needed to meet the world's transportation and power generation demands. To address the anticipated petroleum shortage, along with increasing energy

191

A New Scalable Directory Architecture for Large-Scale Multiprocessors  

E-Print Network (OSTI)

The memory overhead introduced by directories constitutes a major hurdle in the scalability of cc-NUMA architectures, which makes the shared-memory paradigm unfeasible for very large-scale systems. This work is focused on improving the scalability of shared-memory multiprocessors by significantly reducing the size of the directory. We propose multilayer clustering as an effective approach to reduce the directory-entry width. Detailed evaluation for 64 processors shows that using this approach we can drastically reduce the memory overhead, while suffering a performance degradation very similar to previous compressed schemes (such as Coarse Vector). In addition, a novel two-level directory architecture is proposed in order to eliminate the penalty caused by these compressed directories. This organization consists of a small Full-Map firstlevel directory (which provides precise information for the most recently referenced lines) and a compressed secondlevel directory (which provides in-ex...

Manuel E. Acacio; José González; José M. García; José Duato

2001-01-01T23:59:59.000Z

192

Lightweight computational steering of very large scale molecular dynamics simulations  

Science Conference Proceedings (OSTI)

We present a computational steering approach for controlling, analyzing, and visualizing very large scale molecular dynamics simulations involving tens to hundreds of millions of atoms. Our approach relies on extensible scripting languages and an easy to use tool for building extensions and modules. The system is extremely easy to modify, works with existing C code, is memory efficient, and can be used from inexpensive workstations and networks. We demonstrate how we have used this system to manipulate data from production MD simulations involving as many as 104 million atoms running on the CM-5 and Cray T3D. We also show how this approach can be used to build systems that integrate common scripting languages (including Tcl/Tk, Perl, and Python), simulation code, user extensions, and commercial data analysis packages.

Beazley, D.M. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Computer Science; Lomdahl, P.S. [Los Alamos National Lab., NM (United States)

1996-09-01T23:59:59.000Z

193

Atypical Behavior Identification in Large Scale Network Traffic  

SciTech Connect

Cyber analysts are faced with the daunting challenge of identifying exploits and threats within potentially billions of daily records of network traffic. Enterprise-wide cyber traffic involves hundreds of millions of distinct IP addresses and results in data sets ranging from terabytes to petabytes of raw data. Creating behavioral models and identifying trends based on those models requires data intensive architectures and techniques that can scale as data volume increases. Analysts need scalable visualization methods that foster interactive exploration of data and enable identification of behavioral anomalies. Developers must carefully consider application design, storage, processing, and display to provide usability and interactivity with large-scale data. We present an application that highlights atypical behavior in enterprise network flow records. This is accomplished by utilizing data intensive architectures to store the data, aggregation techniques to optimize data access, statistical techniques to characterize behavior, and a visual analytic environment to render the behavioral trends, highlight atypical activity, and allow for exploration.

Best, Daniel M.; Hafen, Ryan P.; Olsen, Bryan K.; Pike, William A.

2011-10-23T23:59:59.000Z

194

Nuclear-pumped lasers for large-scale applications  

SciTech Connect

Efficient initiation of large-volume chemical lasers may be achieved by neutron induced reactions which produce charged particles in the final state. When a burst mode nuclear reactor is used as the neutron source, both a sufficiently intense neutron flux and a sufficiently short initiation pulse may be possible. Proof-of-principle experiments are planned to demonstrate lasing in a direct nuclear-pumped large-volume system; to study the effects of various neutron absorbing materials on laser performance; to study the effects of long initiation pulse lengths; to demonstrate the performance of large-scale optics and the beam quality that may be obtained; and to assess the performance of alternative designs of burst systems that increase the neutron output and burst repetition rate. 21 refs., 8 figs., 5 tabs.

Anderson, R.E.; Leonard, E.M.; Shea, R.F.; Berggren, R.R.

1989-05-01T23:59:59.000Z

195

Grid infrastructure to support science portals for large scale instruments.  

SciTech Connect

Soon, a new generation of scientific workbenches will be developed as a collaborative effort among various research institutions in the US. These scientific workbenches will be accessed in the Web via portals. Reusable components are needed to build such portals for different scientific disciplines, allowing uniform desktop access to remote resources. Such components will include tools and services enabling easy collaboration, job submission, job monitoring, component discovery, and persistent object storage. Based on experience gained from Grand Challenge applications for large-scale instruments, we demonstrate how Grid infrastructure components can be used to support the implementation of science portals. The availability of these components will simplify the prototype implementation of a common portal architecture.

von Laszewski, G.; Foster, I.

1999-09-29T23:59:59.000Z

196

Unified architecture for large-scale attested metering  

E-Print Network (OSTI)

We introduce a secure architecture called an attested meter for advanced metering that supports large-scale deployments, flexible configurations, and enhanced protection for consumer privacy and metering integrity. Our study starts with a threat analysis for advanced metering networks and formulates protection requirements for those threats. The attested meter satisfies these through a unified set of system interfaces based on virtual machines and attestation for the software agents of various parties that use the meter. We argue that this combination provides a well-adapted architecture for advanced metering and we take a step towards demonstrating its feasibility with a prototype implementation based on the Trusted Platform Module (TPM) and Xen Virtual Machine Monitor (VMM). This is the first effort use virtual machines and attestation in an advanced meter. 1.

Michael Lemay; George Gross; Carl A. Gunter; Sanjam Garg

2007-01-01T23:59:59.000Z

197

Modeling The Large Scale Bias of Neutral Hydrogen  

E-Print Network (OSTI)

We present analytical estimates of the large scale bias of neutral Hydrogen (HI) based on the Halo Occupation Distribution formalism. We use a simple, non-parametric model which monotonically relates the total mass of a halo with its HI mass at zero redshift; for earlier times we assume limiting models for the HI density parameter evolution, consistent with the data presently available, as well as two main scenarios for the evolution of our HI mass - Halo mass relation. We find that both the linear and the first non-linear bias terms exhibit a remarkable evolution with redshift, regardless of the specific limiting model assumed for the HI evolution. These analytical predictions are then shown to be consistent with measurements performed on the Millennium Simulation. Additionally, we show that this strong bias evolution does not sensibly affect the measurement of the HI Power Spectrum.

Marin, Felipe; Seo, Hee-Jong; Vallinotto, Alberto

2009-01-01T23:59:59.000Z

198

Planning under uncertainty solving large-scale stochastic linear programs  

Science Conference Proceedings (OSTI)

For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.

Infanger, G. (Stanford Univ., CA (United States). Dept. of Operations Research Technische Univ., Vienna (Austria). Inst. fuer Energiewirtschaft)

1992-12-01T23:59:59.000Z

199

Training a Large Scale Classifier with the Quantum Adiabatic Algorithm  

E-Print Network (OSTI)

In a previous publication we proposed discrete global optimization as a method to train a strong binary classifier constructed as a thresholded sum over weak classifiers. Our motivation was to cast the training of a classifier into a format amenable to solution by the quantum adiabatic algorithm. Applying adiabatic quantum computing (AQC) promises to yield solutions that are superior to those which can be achieved with classical heuristic solvers. Interestingly we found that by using heuristic solvers to obtain approximate solutions we could already gain an advantage over the standard method AdaBoost. In this communication we generalize the baseline method to large scale classifier training. By large scale we mean that either the cardinality of the dictionary of candidate weak classifiers or the number of weak learners used in the strong classifier exceed the number of variables that can be handled effectively in a single global optimization. For such situations we propose an iterative and piecewise approach in which a subset of weak classifiers is selected in each iteration via global optimization. The strong classifier is then constructed by concatenating the subsets of weak classifiers. We show in numerical studies that the generalized method again successfully competes with AdaBoost. We also provide theoretical arguments as to why the proposed optimization method, which does not only minimize the empirical loss but also adds L0-norm regularization, is superior to versions of boosting that only minimize the empirical loss. By conducting a Quantum Monte Carlo simulation we gather evidence that the quantum adiabatic algorithm is able to handle a generic training problem efficiently.

Hartmut Neven; Vasil S. Denchev; Geordie Rose; William G. Macready

2009-12-04T23:59:59.000Z

200

Trip Report-Produced-Water Field Testing  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

Sullivan, Enid J. [Los Alamos National Laboratory

2012-05-25T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Gauss-Bonnet Quintessence: Background Evolution, Large Scale Structure and Cosmological Constraints  

E-Print Network (OSTI)

We investigate a string-inspired dark energy scenario featuring a scalar field with a coupling to the Gauss-Bonnet invariant. Such coupling can trigger the onset of late dark energy domination after a scaling matter era. The universe may then cross the phantom divide and perhaps also exit from the acceleration. We discuss extensively the cosmological and astrophysical implications of the coupled scalar field. Data from the Solar system, supernovae Ia, cosmic microwave background radiation, large scale structure and big bang nucleosynthesis is used to constrain the parameters of the model. A good Newtonian limit may require to fix the coupling. With all the data combined, there appears to be some tension with the nucleosynthesis bound, and the baryon oscillation scale seems to strongly disfavor the model. These possible problems might be overcome in more elaborate models. In addition, the validity of these constraints in the present context is not strictly established. Evolution of fluctuations in the scalar field and their impact to clustering of matter is studied in detail and more model-independently. Small scale limit is derived for the perturbations and their stability is addressed. A divergence is found and discussed. The general equations for scalar perturbations are also presented and solved numerically, confirming that the Gauss-Bonnet coupling can be compatible with the observed spectrum of cosmic microwave background radiation as well as the matter power spectrum inferred from large scale surveys.

Tomi Koivisto; David F. Mota

2006-09-22T23:59:59.000Z

202

Mechanism for the suppression of quantum noise at large scales on expanding space  

E-Print Network (OSTI)

We present an exactly-solvable model for the suppression of quantum noise at large scales on expanding space. The suppression arises naturally in the de Broglie-Bohm pilot-wave formulation of quantum theory, according to which the Born probability rule has a dynamical origin. For a scalar field on a radiation-dominated background we construct the exact solution for the time-evolving wave functional and study properties of the associated field trajectories. It is shown that the time evolution of a field mode on expanding space is mathematically equivalent to that of a standard harmonic oscillator with a 'retarded time' that depends on the wavelength of the mode. In the far super-Hubble regime the equivalent oscillator evolves over only one Hubble time, yielding a simple mechanism whereby relaxation to the Born rule can be suppressed on very large scales. We present numerical simulations illustrating how the expansion of space can cause a retardation of relaxation in the super-Hubble regime. Given these results...

Colin, Samuel

2013-01-01T23:59:59.000Z

203

DOE Awards $126.6 Million for Two More Large-Scale Carbon Sequestratio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

126.6 Million for Two More Large-Scale Carbon Sequestration Projects DOE Awards 126.6 Million for Two More Large-Scale Carbon Sequestration Projects May 6, 2008 - 11:30am Addthis...

204

Energy Department Awards $66.7 Million for Large-Scale Carbon...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

66.7 Million for Large-Scale Carbon Sequestration Project Energy Department Awards 66.7 Million for Large-Scale Carbon Sequestration Project December 18, 2007 - 4:58pm Addthis...

205

The Distinction between Large-Scale and Mesoscale Contribution to Severe Convection: A Case Study Example  

Science Conference Proceedings (OSTI)

Using a case study of a relatively modest severe weather event as an example, a framework for understanding the large-scale-mesoscale interaction is developed and discussed. Large-scale processes are limited, by definition, to those which are ...

Charles A. Doswell III

1987-03-01T23:59:59.000Z

206

A New Scalable Directory Architecture for Large-Scale Multiprocessors  

E-Print Network (OSTI)

The memory overhead introduced by directories constitutes a major hurdle in the scalability of cc-NUMA architectures, which makes the shared-memory paradigm unfeasible for very large-scale systems. This work is focused on improving the scalability of shared-memory multiprocessors by significantly reducing the size of the directory. We propose multilayer clustering as an effective approach to reduce the directory-entry width. Detailed evaluation for 64 processors shows that using this approach we can drastically reduce the memory overhead, while suffering a performance degradation very similar to previous compressed schemes (such as Coarse Vector). In addition, a novel two-level directory architecture is proposed in order to eliminate the penalty caused by these compressed directories. This organization consists of a small Full-Map firstlevel directory (which provides precise information for the most recently referenced lines) and a compressed secondlevel directory (which provides in-excess information). Results show that a system with this directory architecture can achieve the same performance as a multiprocessor with a big and non-scalable Full-Map directory, with a very significant reduction of the memory overhead.

Manuel Acacio Jos; José González; José M. García

2001-01-01T23:59:59.000Z

207

LARGE SCALE METHOD FOR THE PRODUCTION AND PURIFICATION OF CURIUM  

DOE Patents (OSTI)

A large-scale process for production and purification of Cm/sup 242/ is described. Aluminum slugs containing Am are irradiated and declad in a NaOH-- NaHO/sub 3/ solution at 85 to 100 deg C. The resulting slurry filtered and washed with NaOH, NH/sub 4/OH, and H/sub 2/O. Recovery of Cm from filtrate and washings is effected by an Fe(OH)/sub 3/ precipitation. The precipitates are then combined and dissolved ln HCl and refractory oxides centrifuged out. These oxides are then fused with Na/sub 2/CO/sub 3/ and dissolved in HCl. The solution is evaporated and LiCl solution added. The Cm, rare earths, and anionic impurities are adsorbed on a strong-base anfon exchange resin. Impurities are eluted with LiCl--HCl solution, rare earths and Cm are eluted by HCl. Other ion exchange steps further purify the Cm. The Cm is then precipitated as fluoride and used in this form or further purified and processed. (T.R.H.)

Higgins, G.H.; Crane, W.W.T.

1959-05-19T23:59:59.000Z

208

Parallel Index and Query for Large Scale Data Analysis  

SciTech Connect

Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies are critical for facilitating interactive exploration of large datasets, but numerous challenges remain in terms of designing a system for process- ing general scientific datasets. The system needs to be able to run on distributed multi-core platforms, efficiently utilize underlying I/O infrastructure, and scale to massive datasets. We present FastQuery, a novel software framework that address these challenges. FastQuery utilizes a state-of-the-art index and query technology (FastBit) and is designed to process mas- sive datasets on modern supercomputing platforms. We apply FastQuery to processing of a massive 50TB dataset generated by a large scale accelerator modeling code. We demonstrate the scalability of the tool to 11,520 cores. Motivated by the scientific need to search for inter- esting particles in this dataset, we use our framework to reduce search time from hours to tens of seconds.

Chou, Jerry; Wu, Kesheng; Ruebel, Oliver; Howison, Mark; Qiang, Ji; Prabhat,; Austin, Brian; Bethel, E. Wes; Ryne, Rob D.; Shoshani, Arie

2011-07-18T23:59:59.000Z

209

Error analysis in wind turbine field testing  

DOE Green Energy (OSTI)

In wind turbine field testing, one of the most important issues is understanding and accounting for data errors. Extended dynamic testing of wind turbines requires a thorough uncertainty analysis and a regimen of quality assurance steps in order to preserve accuracy. Test objectives need to be identified to determine the accuracy requirements of any data measurement, collection, and analysis process. Frequently, the uncertainty analysis reveals that the major sources of error can be allowed for with careful calibration and signal drift tracking procedures. This paper offers a basis for the discussion and development of a repeatable and accurate process to track errors and account for them in data processing.

McNiff, B [McNiff Light Industries, Carlisle, MA (United States); Simms, D [National Renewable Energy Lab., Golden, CO (United States)

1994-08-01T23:59:59.000Z

210

GAS MIXING ANALYSIS IN A LARGE-SCALED SALTSTONE FACILITY  

SciTech Connect

Computational fluid dynamics (CFD) methods have been used to estimate the flow patterns mainly driven by temperature gradients inside vapor space in a large-scaled Saltstone vault facility at Savannah River site (SRS). The purpose of this work is to examine the gas motions inside the vapor space under the current vault configurations by taking a three-dimensional transient momentum-energy coupled approach for the vapor space domain of the vault. The modeling calculations were based on prototypic vault geometry and expected normal operating conditions as defined by Waste Solidification Engineering. The modeling analysis was focused on the air flow patterns near the ventilated corner zones of the vapor space inside the Saltstone vault. The turbulence behavior and natural convection mechanism used in the present model were benchmarked against the literature information and theoretical results. The verified model was applied to the Saltstone vault geometry for the transient assessment of the air flow patterns inside the vapor space of the vault region using the potential operating conditions. The baseline model considered two cases for the estimations of the flow patterns within the vapor space. One is the reference nominal case. The other is for the negative temperature gradient between the roof inner and top grout surface temperatures intended for the potential bounding condition. The flow patterns of the vapor space calculated by the CFD model demonstrate that the ambient air comes into the vapor space of the vault through the lower-end ventilation hole, and it gets heated up by the Benard-cell type circulation before leaving the vault via the higher-end ventilation hole. The calculated results are consistent with the literature information. Detailed results and the cases considered in the calculations will be discussed here.

Lee, S

2008-05-28T23:59:59.000Z

211

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

SciTech Connect

IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

Gerber, Richard A.; Wasserman, Harvey J.

2012-03-02T23:59:59.000Z

212

Large-Scale Data Challenges in Future Power Grids  

Science Conference Proceedings (OSTI)

This paper describes technical challenges in supporting large-scale real-time data analysis for future power grid systems and discusses various design options to address these challenges. Even though the existing U.S. power grid has served the nation remarkably well over the last 120 years, big changes are in the horizon. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components. The whole system becomes highly dynamic and needs constant adjustments based on real time data. Even though millions of sensors such as phase measurement units (PMUs) and smart meters are being widely deployed, a data layer that can support this amount of data in real time is needed. Unlike the data fabric in cloud services, the data layer for smart grids must address some unique challenges. This layer must be scalable to support millions of sensors and a large number of diverse applications and still provide real time guarantees. Moreover, the system needs to be highly reliable and highly secure because the power grid is a critical piece of infrastructure. No existing systems can satisfy all the requirements at the same time. We examine various design options. In particular, we explore the special characteristics of power grid data to meet both scalability and quality of service requirements. Our initial prototype can improve performance by orders of magnitude over existing general-purpose systems. The prototype was demonstrated with several use cases from PNNL’s FPGI and was shown to be able to integrate huge amount of data from a large number of sensors and a diverse set of applications.

Yin, Jian; Sharma, Poorva; Gorton, Ian; Akyol, Bora A.

2013-03-25T23:59:59.000Z

213

NETL: News Release - Carbon Sequestration Field Test Begins in...  

NLE Websites -- All DOE Office Websites (Extended Search)

5 , 2007 Carbon Sequestration Field Test Begins in Illinois Basin Field Test Pairs Geologic Sequestration and Enhanced Oil Recovery WASHINGTON, DC - The Midwest Geological...

214

HVAC Water Heater Field Tests Research Project | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Water Heater Field Tests Research Project HVAC Water Heater Field Tests Research Project The U.S. Department of Energy is currently conducting research into heating,...

215

Field Testing of Automated Demand Response for Integration of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Testing of Automated Demand Response for Integration of Renewable Resources in California's Ancillary Services Market for Regulation Products Title Field Testing of Automated...

216

Large Scale Computing and Storage Requirements for High Energy Physics  

Science Conference Proceedings (OSTI)

The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.

Gerber, Richard A.; Wasserman, Harvey

2010-11-24T23:59:59.000Z

217

Field testing plan for unsaturated zone monitoring and field studies  

Science Conference Proceedings (OSTI)

The University of Arizona, in cooperation with the Bureau of Economic Geology at The University of Texas at Austin, and Stephens and Associates in Albuquerque, New Mexico has developed a field testing plan for evaluating subsurface monitoring systems. The U.S. Nuclear Regulatory Commission has requested development of these testing plans for low-level radioactive waste disposal sites (LLW) and for monitoring at decommissioned facilities designated under the {open_quotes}Site Decommissioning Management Plan{close_quotes} (SDMP). The tests are conducted on a 50 m by 50 m plot on the University of Arizona`s Maricopa Agricultural Center. Within the 50 m by 50 m plot one finds: (1) an instrumented buried trench, (2) monitoring islands similar to those proposed for the Ward Valley, California LLW Facility, (3) deep borehole monitoring sites, (4) gaseous transport monitoring, and (5) locations for testing non-invasive geophysical measurement techniques. The various subplot areas are instrumented with commercially available instruments such as neutron probes, time domain reflectometry probes, tensiometers, psychrometers, heat dissipation sensors, thermocouples, solution samplers, and cross-hole geophysics electrodes. Measurement depths vary from ground surface to 15 m. The data from the controlled flow and transport experiments, conducted over the plot, will be used to develop an integrated approach to long-term monitoring of the vadose zone at waste disposal sites. The data will also be used to test field-scale flow and transport models. This report describes in detail the design of the experiment and the methodology proposed for evaluating the data.

Young, M.H.; Wierenga, P.J.; Warrick, A.W. [and others

1996-10-01T23:59:59.000Z

218

Large-Scale Recirculation of Air over Southern Africa  

Science Conference Proceedings (OSTI)

Kinematic air parcel trajectory analysis is used to determine patterns of horizontal air transport in 2000 km × 2000 km areas over southern Africa. From these, composite zonal and meridional transport fields are derived for the subcontinent to ...

P. D. Tyson; M. Garstang; R. Swap

1996-12-01T23:59:59.000Z

219

Solution accelerators for large scale 3D electromagnetic inverse problems  

E-Print Network (OSTI)

observation wells and injection well are indicated in thetransmitter position in the injection well and R a detectorat 18.5 kHz, in the center/injection well. Vertical field

Newman, Gregory A.; Boggs, Paul T.

2004-01-01T23:59:59.000Z

220

Field Verification of Distributed Renewable Generation, Volume 1: Renewable Energy Field Test Concepts  

Science Conference Proceedings (OSTI)

This report describes field verification of distributed renewable generation and focuses on renewable energy field test concepts.

2003-03-25T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ANL/ALCF/ESP-13/14 NAMD - The Engine for Large-Scale Classical MD  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 NAMD - The Engine for Large-Scale Classical MD Simulations of Biomolecular Systems Based on a Polarizable Force Field ALCF-2 Early Science Program Technical Report Argonne Leadership Computing Facility About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:

222

Large scale fluctuations and dynamics of the Bullard - von K\\'arm\\'an dynamo  

E-Print Network (OSTI)

A synthetic fluid dynamo built in the spirit of the Bullard device [E. C. Bullard, Proc. Camb. Phil. Soc., 51, 744 (1955)] is investigated. It is a two-step dynamo in which one process stems from the fluid turbulence, while the other part is an alpha effect achieved by a linear amplification of currents in external coils [M. Bourgoin et al., New J. Phys., 8, 329 (2006)]. Modifications in the forcing are introduced in order to change the dynamics of the flow, and hence the dynamo behavior. Some features, such as on-off intermittency at onset of dynamo action, are very robust. Large scales fluctuations have a significant impact on the resulting dynamo, in particular in the observation of magnetic field reversals.

Verhille, Gautier; Fanjat, Grégory; Volk, Romain; Bourgoin, Mickael; Pinton, Jean-François

2009-01-01T23:59:59.000Z

223

3X-100 blade field test.  

DOE Green Energy (OSTI)

In support of a Work-For-Other (WFO) agreement between the Wind Energy Technology Department at Sandia National Laboratories and 3TEX, one of the three Micon 65/13M wind turbines at the USDA Agriculture Research Service (ARS) center in Bushland, Texas, has been used to test a set of 9 meter wind turbine blades, manufactured by TPI composites using the 3TEX carbon material for the spar cap. Data collected from the test has been analyzed to evaluate both the aerodynamic performance and the structural response from the blades. The blades aerodynamic and structural performance, the meteorological inflow and the wind turbine structural response has been monitored with an array of 57 instruments: 15 to characterize the blades, 13 to characterize inflow, and 15 to characterize the time-varying state of the turbine. For the test, data was sampled at a rate of 40 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow, as well as both modeling and field testing results.

Zayas, Jose R.; Johnson, Wesley D.

2008-03-01T23:59:59.000Z

224

PATHWAYS OF LARGE-SCALE MAGNETIC COUPLINGS BETWEEN SOLAR CORONAL EVENTS  

SciTech Connect

The high-cadence, comprehensive view of the solar corona by SDO/AIA shows many events that are widely separated in space while occurring close together in time. In some cases, sets of coronal events are evidently causally related, while in many other instances indirect evidence can be found. We present case studies to highlight a variety of coupling processes involved in coronal events. We find that physical linkages between events do occur, but concur with earlier studies that these couplings appear to be crucial to understanding the initiation of major eruptive or explosive phenomena relatively infrequently. We note that the post-eruption reconfiguration timescale of the large-scale corona, estimated from the extreme-ultraviolet afterglow, is on average longer than the mean time between coronal mass ejections (CMEs), so that many CMEs originate from a corona that is still adjusting from a previous event. We argue that the coronal field is intrinsically global: current systems build up over days to months, the relaxation after eruptions continues over many hours, and evolving connections easily span much of a hemisphere. This needs to be reflected in our modeling of the connections from the solar surface into the heliosphere to properly model the solar wind, its perturbations, and the generation and propagation of solar energetic particles. However, the large-scale field cannot be constructed reliably by currently available observational resources. We assess the potential of high-quality observations from beyond Earth's perspective and advanced global modeling to understand the couplings between coronal events in the context of CMEs and solar energetic particle events.

Schrijver, Carolus J.; Title, Alan M.; DeRosa, Marc L. [Lockheed Martin Advanced Technology Center, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Yeates, Anthony R. [Department of Mathematical Sciences, Durham University, Science Laboratories, South Road, Durham DH1 3LE (United Kingdom)

2013-08-20T23:59:59.000Z

225

IN SITU FIELD TESTING OF PROCESSES  

Science Conference Proceedings (OSTI)

The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license application (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes REV 02. The scientific analysis of data for inputs to model calibration and validation as documented in REV 02 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what conditions, the tests were conducted. The descriptions and analyses provide data useful for refining and confirming the understanding of flow, drift seepage, and transport processes in the UZ. The UZ testing activities included measurement of permeability distribution, quantification of the seepage of water into the drifts, evaluation of fracture-matrix interaction, study of flow along faults, testing of flow and transport between drifts, characterization of hydrologic heterogeneity along drifts, estimation of drying effects on the rock surrounding the drifts due to ventilation, monitoring of moisture conditions in open and sealed drifts, and determination of the degree of minimum construction water migration below drift. These field tests were conducted in two underground drifts at Yucca Mountain, the Exploratory Studies Facility (ESF) drift, and the cross-drift for Enhanced Characterization of the Repository Block (ECRB), as described in Section 1.2. Samples collected in boreholes and underground drifts have been used for additional hydrochemical and isotopic analyses for additional understanding of the UZ setting. The UZ transport tests conducted at the nearby Busted Butte site (see Figure 1-4) are also described in this scientific analysis report.

J.S.Y. YANG

2004-11-08T23:59:59.000Z

226

NETL: News Release - DOE Awards First Three Large-Scale Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2007 DOE Awards First Three Large-Scale Carbon Sequestration Projects U.S. Projects Total 318 Million and Further President Bush's Initiatives to Advance Clean Energy...

227

Large-scale solar projects in the United States have made great...  

NLE Websites -- All DOE Office Websites (Extended Search)

the United States have made great progress in delivering competitively priced renewable electricity September 2013 The price at which electricity from large-scale solar power...

228

A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion  

E-Print Network (OSTI)

comparison of terascale combustion simulation data. Mathe-premixed hydrogen ?ames. Combustion and Flame, [7] J. L.of Large Scale Turbulent Combustion Peer-Timo Bremer 1 ,

Bremer, Peer-Timo

2010-01-01T23:59:59.000Z

229

A Tractable Approach to Understanding the Results from Large-Scale 3D Transient  

E-Print Network (OSTI)

) problems or NASA's HPCC (High Performance Computing & Communication) grand challenges, can easily. Introduction Large-scale simulations of physical phenomena on high performance computing systems (often on mas

Peraire, Jaime

230

Technical R eport A practical method for solving large-scale TRS  

E-Print Network (OSTI)

R eport. University of Patras. Department of Mathematics. GR-265 04 Patras, Greece. http://www.math.upatras.gr/. A practical method for solving large-scale TRS.

231

Agent Based Modeling of large- scale socio-technical metal networks  

Science Conference Proceedings (OSTI)

17-02-10. Challenge the future. Delft. University of. Technology. Agent Based Modeling of large- scale socio-technical metal networks. Dr. Igor Nikolic, A.

232

ESS 2012 Peer Review - Nitrogen-Oxygen Battery for Large Scale...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 Frank Delnick, David Ingersoll, Karen Waldrip, Peter Feibelman NitrogenOxygen Battery A Transformational Architecture for Large Scale Energy Storage Power Sources...

233

NIChE Workshop on Materials for Large-Scale Energy ...  

Science Conference Proceedings (OSTI)

... Workshop on Materials for Large-Scale Energy Storage. Purpose: This workshop will delve into the end-use applications and market drivers for large ...

2010-10-05T23:59:59.000Z

234

NREL: News - NREL Offers an Open-Source Solution for Large-Scale...  

NLE Websites -- All DOE Office Websites (Extended Search)

Version News Release NR-3613 NREL Offers an Open-Source Solution for Large-Scale Energy Data Collection and Analysis June 18, 2013 The Energy Department's National...

235

System aspects of large scale implementation of a photovoltaic power plant.  

E-Print Network (OSTI)

?? In this thesis the static and dynamic behavior of large scale grid connected PV power plants are analyzed. A model of a 15 MW… (more)

Ruiz, Álvaro

2011-01-01T23:59:59.000Z

236

A review of large-scale LNG spills : experiment and modeling.  

SciTech Connect

The prediction of the possible hazards associated with the storage and transportation of liquefied natural gas (LNG) by ship has motivated a substantial number of experimental and analytical studies. This paper reviews the experimental and analytical work performed to date on large-scale spills of LNG. Specifically, experiments on the dispersion of LNG, as well as experiments of LNG fires from spills on water and land are reviewed. Explosion, pool boiling, and rapid phase transition (RPT) explosion studies are described and discussed, as well as models used to predict dispersion and thermal hazard distances. Although there have been significant advances in understanding the behavior of LNG spills, technical knowledge gaps to improve hazard prediction are identified. Some of these gaps can be addressed with current modeling and testing capabilities. A discussion of the state of knowledge and recommendations to further improve the understanding of the behavior of LNG spills on water is provided.

Luketa-Hanlin, Anay Josephine

2005-04-01T23:59:59.000Z

237

FIELD TEST OF THE FLAME QUALITY INDICATOR  

Science Conference Proceedings (OSTI)

The flame quality indicator concept was developed at BNL specifically to monitor the brightness of the flame in a small oil burner and to provide a ''call for service'' notification when the brightness has changed from its setpoint, either high or low. In prior development work BNL has explored the response of this system to operational upsets such as excess air changes, fouled atomizer nozzles, poor fuel quality, etc. Insight Technologies, Inc. and Honeywell, Inc. have licensed this technology from the U.S. Department of Energy and have been cooperating to develop product offerings which meet industry needs with an optimal combination of function and price. Honeywell has recently completed the development of the Flame Quality Monitor (FQM or Honeywell QS7100F). This is a small module which connects via a serial cable to the burners primary operating control. Primary advantages of this approach are simplicity, cost, and ease of installation. Call-for-service conditions are output in the form of front panel indicator lights and contact closure which can trigger a range of external communication options. Under this project a field test was conducted of the FQM in cooperation with service organizations in Virginia, Pennsylvania, New Jersey, New York, and Connecticut. At total of 83 field sites were included. At each site the FQM was installed in parallel with another embodiment of this concept--the Insight AFQI. The AFQI incorporates a modem and provides the ability to provide detailed information on the trends in the flame quality over the course of the two year test period. The test site population was comprised of 79.5% boilers, 13.7% warm air furnaces, and 6.8% water heaters. Nearly all were of residential size--with firing rates ranging from 0.6 gallons of oil per hour to 1.25. During the course of the test program the monitoring equipment successfully identified problems including: plugged fuel lines, fouled nozzles, collapsed combustion chambers, and poor fuel pump cut-off. Service organizations can use these early indications to reduce problems and service costs. There were also some ''call-for-service'' indications for which problems were not identified. The test program also showed that monitoring of the flame can provide information on burner run times and this can be used to estimate current oversize factors and to determine actual fuel usage, enabling more efficient fuel delivery procedures.

Andrew M. Rudin; Thomas Butcher; Henry Troost

2003-02-04T23:59:59.000Z

238

NESC-VII: Fracture Mechanics Analyses of WPS Experiments on Large-scale Cruciform Specimen  

SciTech Connect

This paper describes numerical analyses performed to simulate warm pre-stress (WPS) experiments conducted with large-scale cruciform specimens within the Network for Evaluation of Structural Components (NESC-VII) project. NESC-VII is a European cooperative action in support of WPS application in reactor pressure vessel (RPV) integrity assessment. The project aims in evaluation of the influence of WPS when assessing the structural integrity of RPVs. Advanced fracture mechanics models will be developed and performed to validate experiments concerning the effect of different WPS scenarios on RPV components. The Oak Ridge National Laboratory (ORNL), USA contributes to the Work Package-2 (Analyses of WPS experiments) within the NESCVII network. A series of WPS type experiments on large-scale cruciform specimens have been conducted at CEA Saclay, France, within the framework of NESC VII project. This paper first describes NESC-VII feasibility test analyses conducted at ORNL. Very good agreement was achieved between AREVA NP SAS and ORNL. Further analyses were conducted to evaluate the NESC-VII WPS tests conducted under Load-Cool-Transient- Fracture (LCTF) and Load-Cool-Fracture (LCF) conditions. This objective of this work is to provide a definitive quantification of WPS effects when assessing the structural integrity of reactor pressure vessels. This information will be utilized to further validate, refine, and improve the WPS models that are being used in probabilistic fracture mechanics computer codes now in use by the NRC staff in their effort to develop risk-informed updates to Title 10 of the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G.

Yin, Shengjun [ORNL; Williams, Paul T [ORNL; Bass, Bennett Richard [ORNL

2011-01-01T23:59:59.000Z

239

Cooperative field test program for wind systems  

DOE Green Energy (OSTI)

The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

Bollmeier, W.S. II; Dodge, D.M.

1992-03-01T23:59:59.000Z

240

Impulsive phase flare energy transport by large-scale Alfven waves and the electron acceleration problem  

E-Print Network (OSTI)

The impulsive phase of a solar flare marks the epoch of rapid conversion of energy stored in the pre-flare coronal magnetic field. Hard X-ray observations imply that a substantial fraction of flare energy released during the impulsive phase is converted to the kinetic energy of mildly relativistic electrons (10-100 keV). The liberation of the magnetic free energy can occur as the coronal magnetic field reconfigures and relaxes following reconnection. We investigate a scenario in which products of the reconfiguration - large-scale Alfven wave pulses - transport the energy and magnetic-field changes rapidly through the corona to the lower atmosphere. This offers two possibilities for electron acceleration. Firstly, in a coronal plasma with beta energies on the order of 10 keV and above, including by repeated interactions between electrons and wavefronts. Secondly, when they reflect and mode-convert in the chromosphere, a cascade to high wavenumbers may develop. This will also accelerate electrons by turbulence, in a medium with a locally high electron number density. This concept, which bridges MHD-based and particle-based views of a flare, provides an interpretation of the recently-observed rapid variations of the line-of-sight component of the photospheric magnetic field across the flare impulsive phase, and offers solutions to some perplexing flare problems, such as the flare "number problem" of finding and resupplying sufficient electrons to explain the impulsive-phase hard X-ray emission.

L. Fletcher; H. S. Hudson

2007-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

FEASIBILITY OF LARGE-SCALE OCEAN CO2 SEQUESTRATION  

Science Conference Proceedings (OSTI)

This report describes research conducted between July 1, 2003 and September 30, 2003 on the use of dry regenerable sorbents for concentration of carbon dioxide from flue gas. Based on 5-cycle fixed bed tests of grade 3 sodium bicarbonate, calcination in carbon dioxide at 160 C does not affect the activity or capacity of the sorbent in subsequent carbonation cycles. Increasing the calcination temperature to 200 C does have an adverse impact on sorbent performance. RTI produced a supported sorbent with a nominal composition of 40% sodium carbonate. While this material has good attrition resistance, the activity, as determined by thermogravimetry, fixed bed testing and analysis of physical properties is insufficient for use as a carbon dioxide sorbent.

Peter Brewer; James Barry

2003-12-16T23:59:59.000Z

242

Introduction to a Large-Scale Biogas Plant in a Dairy Farm  

Science Conference Proceedings (OSTI)

This article describes a large-scale biogas plant in a dairy farm located in the Tongzhou District of Beijing. It is has a treatment capacity of 30t manure and 30t wastewater per day, a total of 60t/d with a residence time of 20 days. Input material ... Keywords: Large scale biogas plant, CHP, Biogas storage within digestor

Xiaolin Fan; Zifu Li; Tingting Wang; Fubin Yin; Xin Jin

2010-12-01T23:59:59.000Z

243

Level-of-detail rendering of large-scale irregular volume datasets using particles  

Science Conference Proceedings (OSTI)

This paper describes a level-of-detail rendering technique for large-scale irregular volume datasets. It is well known that the memory bandwidth consumed by visibility sorting becomes the limiting factor when carrying out volume rendering of such datasets. ... Keywords: large-scale irregular volume, level-of-detail, volume rendering of unstructured meshes

Takuma Kawamura; Naohisa Sakamoto; Koji Koyamada

2010-09-01T23:59:59.000Z

244

Structural fatigue assessment and management of large-scale port logistics equipments  

Science Conference Proceedings (OSTI)

With the advances of port enterprises, much intensive research has been gradually involved in the structural fatigue assessment and management of port logistics equipments. However, relevant work on large-scale port logistics equipments is still ... Keywords: S-N curve, crack formation, crack propagation life, fatigue assessment, fracture mechanics, gantry cranes, large-scale port logistics equipment, structural safety assessment

Yuan Liu; Weijian Mi; Huiqiang Zheng

2008-11-01T23:59:59.000Z

245

A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion  

E-Print Network (OSTI)

A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion Peer a new topological framework for the analysis of large scale, time-varying, turbulent combustion consumption thresh- olds for an entire time-dependent combustion simulation. By computing augmented merge

Tierny, Julien

246

Large scale continuous visual event recognition using max-margin Hough transformation framework  

Science Conference Proceedings (OSTI)

In this paper we propose a novel method for continuous visual event recognition (CVER) on a large scale video dataset using max-margin Hough transformation framework. Due to high scalability, diverse real environmental state and wide scene variability ... Keywords: Continuous visual event, Event detection, Large scale, Max-margin Hough transform

Bhaskar Chakraborty, Jordi Gonzílez, F. Xavier Roca

2013-10-01T23:59:59.000Z

247

A study of dynamic meta-learning for failure prediction in large-scale systems  

Science Conference Proceedings (OSTI)

Despite years of study on failure prediction, it remains an open problem, especially in large-scale systems composed of vast amount of components. In this paper, we present a dynamic meta-learning framework for failure prediction. It intends to not only ... Keywords: Blue Gene, Dynamic techniques, Failure prediction, Large-scale systems, Meta-learning

Zhiling Lan; Jiexing Gu; Ziming Zheng; Rajeev Thakur; Susan Coghlan

2010-06-01T23:59:59.000Z

248

Online job provisioning for large scale science experiments over an optical grid infrastructure  

Science Conference Proceedings (OSTI)

Many emerging science experiments require that the massive data generated by big instruments be accessible and analyzed by a large number of geographically dispersed users. Such large scale science experiments are enabled by an Optical Grid infrastructure ... Keywords: WDM network, grid, job provisioning, large scale science experiment, resource co-scheduling

Xiang Yu; Chunming Qiao; Dantong Yu

2009-04-01T23:59:59.000Z

249

Remote visualization of large scale data for ultra-high resolution display environments  

Science Conference Proceedings (OSTI)

ParaView is one of the most widely used scientific tools that support parallel visualization of large scale data. The Scalable Adaptive Graphics Environment (SAGE) is a graphics middleware that enables real-time streaming of ultra-high resolution visual ... Keywords: ParaView, SAGE, large-scale data, remote visualization, ultra-high resolution visualization

Sungwon Nam; Byungil Jeong; Luc Renambot; Andrew Johnson; Kelly Gaither; Jason Leigh

2009-11-01T23:59:59.000Z

250

The Roles of Mean Meridional Motions and Large-Scale Eddies in Zonally Averaged Circulations  

Science Conference Proceedings (OSTI)

A hierarchy of zonally averaged atmospheric models is used to study the role of mean meridional motions and large-scale eddies in determining the zonal climate. Five models are developed: a radiative-convective equilibrium model (no large-scale ...

Karl E. Taylor

1980-01-01T23:59:59.000Z

251

Large-Scale Integration of Deferrable Demand and Renewable Energy Sources  

E-Print Network (OSTI)

1 Large-Scale Integration of Deferrable Demand and Renewable Energy Sources Anthony Papavasiliou model for assessing the impacts of the large-scale integration of renewable energy sources. In order to accurately assess the impacts of renewable energy integration and demand response integration

Oren, Shmuel S.

252

U.S. Energy Infrastructure Investment: Large-Scale Integrated Smart Grid  

E-Print Network (OSTI)

U.S. Energy Infrastructure Investment: Large-Scale Integrated Smart Grid Solutions with High: LargeScale Integrated Smart Grid Solutions with High Penetration of Renewable Resources, Dispersed- ing electricity grid. Much attention is being given to smart grid development in the U.S. and around

253

Large-scale Renewable Energy Projects (Larger than 10 MWs) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-scale Renewable Energy Projects (Larger than 10 MWs) Large-scale Renewable Energy Projects (Larger than 10 MWs) Large-scale Renewable Energy Projects (Larger than 10 MWs) October 7, 2013 - 9:32am Addthis Renewable energy projects larger than 10 megawatts (MW) are complex and typically require private-sector financing. The Federal Energy Management Program (FEMP) developed a guide to help Federal agencies, and the developers and financiers that work with them, to successfully install these projects at Federal facilities. The Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger than 10 MWs at Federal Facilities: A Practical Guide to Getting Large-Scale Renewable Energy Projects Financed with Private Capital provides a framework to allow the Federal Government, private developers, and financiers to work in a

254

Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit  

Open Energy Info (EERE)

Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme Jump to: navigation, search Name Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme Agency/Company /Organization European Climate Foundation Sector Energy Focus Area Energy Efficiency, Buildings, - Building Energy Efficiency Topics Co-benefits assessment, Background analysis Resource Type Publications Website http://3csep.ceu.hu/sites/defa Country Hungary UN Region Eastern Europe References Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme[1] Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme Screenshot "The goal of the present research was to gauge the net employment impacts of a largescale deep building energy-efficiency renovation programme in

255

Strategies to Finance Large-Scale Deployment of Renewable Energy Projects:  

Open Energy Info (EERE)

Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Agency/Company /Organization: International Energy Agency (IEA) Sector: Energy Focus Area: Renewable Energy Topics: Finance, Implementation, Policies/deployment programs Resource Type: Publications Website: iea-retd.org/archives/publications/finance-re Cost: Free Language: English Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Screenshot References: Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach[1]

256

Large scale Li17Pb83/water interaction studies  

SciTech Connect

One current concept in fusion blanket design is to utilize water as the coolant and liquid lithium-lead as the breeding/neutron-multiplier material. Considering the possibility of certain off-normal events it is conceivable that water leakage into the liquid metal may occur due to a tube rupture. The BLAnket Safety Test facility (BLAST) simulates this transient event by injecting sub-cooled water, under high pressure, into a stagnant loop of liquid lithium-lead (Li17Pb83). In this paper the BLAST facility will be described, such as the various mechanical components and the measurement devices. The current results of the data analyses from the first three experiments are also presented.

Kranert, O.; Kottowski, H.M.; Savatteri, C.

1989-03-01T23:59:59.000Z

257

Building Technologies Office: Field Test Best Practices Website  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Test Best Field Test Best Practices Website to someone by E-mail Share Building Technologies Office: Field Test Best Practices Website on Facebook Tweet about Building Technologies Office: Field Test Best Practices Website on Twitter Bookmark Building Technologies Office: Field Test Best Practices Website on Google Bookmark Building Technologies Office: Field Test Best Practices Website on Delicious Rank Building Technologies Office: Field Test Best Practices Website on Digg Find More places to share Building Technologies Office: Field Test Best Practices Website on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center

258

Zero discharge and large-scale DCS are plant highlights  

Science Conference Proceedings (OSTI)

This article reports that the Mulberry cogeneration facility has several features that make it notable in the power field. A zero-discharge wastewater system, an inlet-air chilling system, a secondary boiler, and an extensive distributed-control system (DCS) for overall plant operation are examples. Ability to meet the two-stage NO{sub x}-emission limits -- 25 ppm during the first three years and 15 ppm thereafter -- is a unique challenge. The plant design allows the lower limit to be met now, and retrofit with different burners is possible if NO{sub x}-emission limits are tightened later. The facility, near Bartow in Polk County, Fla, is owned by Polk Power Partners LP, whose members include Central and South West Energy Inc (CSW) of Dallas and ARK Energy of Laguna Hills, Calif. The operating company, CSW Operations, is a subsidiary of CSW. Heart of the plant is a single gas-turbine (GT)/HRSG/steam-turbine combined cycle, providing electric power to Tampa Electric Co and Florida Power Corp, with up to 25,000 lb/hr of process steam for an adjacent ethanol plant which was developed by the facility`s partnership. Commercial operation of Mulberry began on Sept 2, 1994.

Solar, R.

1995-04-01T23:59:59.000Z

259

Large-Scale Continuous Subgraph Queries on Streams  

SciTech Connect

Graph pattern matching involves finding exact or approximate matches for a query subgraph in a larger graph. It has been studied extensively and has strong applications in domains such as computer vision, computational biology, social networks, security and finance. The problem of exact graph pattern matching is often described in terms of subgraph isomorphism which is NP-complete. The exponential growth in streaming data from online social networks, news and video streams and the continual need for situational awareness motivates a solution for finding patterns in streaming updates. This is also the prime driver for the real-time analytics market. Development of incremental algorithms for graph pattern matching on streaming inputs to a continually evolving graph is a nascent area of research. Some of the challenges associated with this problem are the same as found in continuous query (CQ) evaluation on streaming databases. This paper reviews some of the representative work from the exhaustively researched field of CQ systems and identifies important semantics, constraints and architectural features that are also appropriate for HPC systems performing real-time graph analytics. For each of these features we present a brief discussion of the challenge encountered in the database realm, the approach to the solution and state their relevance in a high-performance, streaming graph processing framework.

Choudhury, Sutanay; Holder, Larry; Chin, George; Feo, John T.

2011-11-30T23:59:59.000Z

260

LARGE SCALE PERMEABILITY TEST OF THE GRANITE IN THE STRIPA MINE AND THERMAL CONDUCTIVITY TEST  

E-Print Network (OSTI)

KBS (Swedish Nuclear Fuel Safety Program) -"~ __- L_ _ _ ~-.DOCUMENTS SSCTION Swedish Nuclear Fuel Supply Co. Fack 10240~nsles'clkerhet, KBS (SWe:1ish Nuclear Fuel Safety Program)

Lundstrom, L.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Large Scale Simulations of Jets in Dense and Magnetised Environments  

E-Print Network (OSTI)

We report two simulations that have been carried out at the SX-5 at HLRS (Stuttgart). One simulation is axisymmetric and purely hydrodynamic, but with a resolution of 20 points per beam-radius (ppb). The bipolar jet is injected in the center of a spherically symmetric King profile, initially underdense to its environment by a factor of 10,000. As expected from our previous work, the jet starts with producing a spherical bubble around it, bounded by the bow shock. The bubble slowly elongates, first with roughly elliptical shape, and then forms narrower extensions in beam direction. The final aspect ratio of the bow shock is 1.8. We have transformed the results on a 3D-rectangular grid and integrated the emission properties to compare the results with observed central cluster radio galaxies. In the particular case of Cygnus A, we come to convincing consistency, morphologically, regarding the size of the influenced region by the jet, size, and cylindrical shape of the radio cocoon, and source age. This strongly supports our earlier hypothesis on the nature of the jet in Cygnus A, and the derived constraints on other jet parameters like a power of $8 \\times 10^{46}$ erg/s and an age of 27 Myr. But, the simulation also clearly shows the shortcoming of the model: The jet's beam is very unstable, reaching the tip of the bow shock only very seldom. Also, the contact discontinuity between shocked beam plasma and shocked ambient gas is quite disrupted by the action of the Kelvin-Helmholtz-instability. This is not seen in observations, and necessitates the presence of dynamically important magnetic fields or an at least moderately relativistic flow, or both. [abridged

Martin G. H. Krause; Max Camenzind

2003-07-08T23:59:59.000Z

262

Uncertainty quantification for large-scale ocean circulation predictions.  

SciTech Connect

Uncertainty quantificatio in climate models is challenged by the sparsity of the available climate data due to the high computational cost of the model runs. Another feature that prevents classical uncertainty analyses from being easily applicable is the bifurcative behavior in the climate data with respect to certain parameters. A typical example is the Meridional Overturning Circulation in the Atlantic Ocean. The maximum overturning stream function exhibits discontinuity across a curve in the space of two uncertain parameters, namely climate sensitivity and CO{sub 2} forcing. We develop a methodology that performs uncertainty quantificatio in the presence of limited data that have discontinuous character. Our approach is two-fold. First we detect the discontinuity location with a Bayesian inference, thus obtaining a probabilistic representation of the discontinuity curve location in presence of arbitrarily distributed input parameter values. Furthermore, we developed a spectral approach that relies on Polynomial Chaos (PC) expansions on each sides of the discontinuity curve leading to an averaged-PC representation of the forward model that allows efficient uncertainty quantification and propagation. The methodology is tested on synthetic examples of discontinuous data with adjustable sharpness and structure.

Safta, Cosmin; Debusschere, Bert J.; Najm, Habib N.; Sargsyan, Khachik

2010-09-01T23:59:59.000Z

263

Field Testing of Environmentally Friendly Drilling System  

SciTech Connect

The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

David Burnett

2009-05-31T23:59:59.000Z

264

Building Technologies Office: HVAC and Water Heater Field Tests Research  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC and Water Heater HVAC and Water Heater Field Tests Research Project to someone by E-mail Share Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Facebook Tweet about Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Twitter Bookmark Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Google Bookmark Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Delicious Rank Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Digg Find More places to share Building Technologies Office: HVAC and Water Heater Field Tests Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research

265

Estimating Large-Scale Precipitation Minus Evapotranspiration from GRACE Satellite Gravity Measurements  

Science Conference Proceedings (OSTI)

Currently, observations of key components of the earth's large-scale water and energy budgets are sparse or even nonexistent. One key component, precipitation minus evapotranspiration (P ? ET), remains largely unmeasured due to the absence of ...

Sean Swenson; John Wahr

2006-04-01T23:59:59.000Z

266

Observed Large-Scale Structures and Diabatic Heating and Drying Profiles during TWP-ICE  

Science Conference Proceedings (OSTI)

This study documents the characteristics of the large-scale structures and diabatic heating and drying profiles observed during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), which was conducted in January–February 2006 in ...

Shaocheng Xie; Timothy Hume; Christian Jakob; Stephen A. Klein; Renata B. McCoy; Minghua Zhang

2010-01-01T23:59:59.000Z

267

Horizontal Structure and Seasonality of Large-Scale Circulations Associated with Submonthly Tropical Convection  

Science Conference Proceedings (OSTI)

The relationship between deep tropical convection and large-scale atmospheric circulation in the 6–30-day period range is examined. Regression relationships between filtered outgoing longwave radiation at various locations in the Tropics and 200- ...

George N. Kiladis; Klaus M. Weickmann

1997-09-01T23:59:59.000Z

268

Conjugate-Gradient Methods for Large-Scale Minimization in Meteorology  

Science Conference Proceedings (OSTI)

During the last few years new meteorological variational analysis methods have evolved, requiring large-scale minimization of a nonlinear objective function described in terms of discrete variables. The conjugate-gradient method was found to ...

I. M. Navon; David M. Legler

1987-08-01T23:59:59.000Z

269

How Well Do Large-Scale Models Reproduce Regional Hydrological Extremes in Europe?  

Science Conference Proceedings (OSTI)

This paper presents a new methodology for assessing the ability of gridded hydrological models to reproduce large-scale hydrological high and low flow events (as a proxy for hydrological extremes) as described by catalogues of historical droughts [...

Christel Prudhomme; Simon Parry; Jamie Hannaford; Douglas B. Clark; Stefan Hagemann; Frank Voss

2011-12-01T23:59:59.000Z

270

DOE's Office of Science Seeks Proposals for Expanded Large-Scale Scientific  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seeks Proposals for Expanded Large-Scale Seeks Proposals for Expanded Large-Scale Scientific Computing DOE's Office of Science Seeks Proposals for Expanded Large-Scale Scientific Computing May 16, 2005 - 12:47pm Addthis WASHINGTON, D.C. -- Secretary of Energy Samuel W. Bodman announced today that DOE's Office of Science is seeking proposals to support innovative, large-scale computational science projects to enable high-impact advances through the use of advanced computers not commonly available in academia or the private sector. Projects currently funded are helping to reduce engine pollution and to improve our understanding of the stars and solar systems and human genetics. Successful proposers will be given the use of substantial computer time and data storage at the department's scientific

271

DOE's Office of Science Seeks Proposals for Expanded Large-Scale Scientific  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Office of Science Seeks Proposals for Expanded Large-Scale DOE's Office of Science Seeks Proposals for Expanded Large-Scale Scientific Computing DOE's Office of Science Seeks Proposals for Expanded Large-Scale Scientific Computing May 16, 2005 - 12:47pm Addthis WASHINGTON, D.C. -- Secretary of Energy Samuel W. Bodman announced today that DOE's Office of Science is seeking proposals to support innovative, large-scale computational science projects to enable high-impact advances through the use of advanced computers not commonly available in academia or the private sector. Projects currently funded are helping to reduce engine pollution and to improve our understanding of the stars and solar systems and human genetics. Successful proposers will be given the use of substantial computer time and data storage at the department's scientific

272

Large-Scale Residential Energy Efficiency Programs Based on CFLs | Open  

Open Energy Info (EERE)

Large-Scale Residential Energy Efficiency Programs Based on CFLs Large-Scale Residential Energy Efficiency Programs Based on CFLs Jump to: navigation, search Tool Summary Name: Large-Scale Residential Energy Efficiency Programs Based on CFLs Agency/Company /Organization: Energy Sector Management Assistance Program of the World Bank Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Implementation, Policies/deployment programs Website: www.esmap.org/filez/pubs/216201021421_CFL_Toolkit_Web_Version_021610_R References: Large-Scale Residential Energy Efficiency Programs Based on CFLs[1] Overview "The World Bank Group and its Energy Sector Management Assitance Progamme (ESMAP) have produced a toolkit for efficient lighting programmes, based on compact fluorescent lamps, that compiles and shares operational (design,

273

ARM - PI Product - Large Scale Ice Water Path and 3-D Ice Water Content  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsLarge Scale Ice Water Path and 3-D Ice Water ProductsLarge Scale Ice Water Path and 3-D Ice Water Content Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Large Scale Ice Water Path and 3-D Ice Water Content Site(s) SGP TWP General Description Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the

274

The Nonlinear Response of the Atmosphere to Large-Scale Mechanical and Thermal Forcing  

Science Conference Proceedings (OSTI)

The subject of large-scale mountain waves is reviewed briefly. Existing mountain wave theory based on a linear system is shown to give an inadequate description of the balance of angular momentum. The response of the atmosphere to mechanical ...

Guo-Xiong Wu

1984-08-01T23:59:59.000Z

275

Comparing Large-Scale Hydrological Model Simulations to Observed Runoff Percentiles in Europe  

Science Conference Proceedings (OSTI)

Large-scale hydrological models describing the terrestrial water balance at continental and global scales are increasingly being used in earth system modeling and climate impact assessments. However, because of incomplete process understanding and ...

Lukas Gudmundsson; Lena M. Tallaksen; Kerstin Stahl; Douglas B. Clark; Egon Dumont; Stefan Hagemann; Nathalie Bertrand; Dieter Gerten; Jens Heinke; Naota Hanasaki; Frank Voss; Sujan Koirala

2012-04-01T23:59:59.000Z

276

On-demand computation of policy based routes for large-scale network simulation  

Science Conference Proceedings (OSTI)

Routing table storage demands pose a significant obstacle for large-scale network simulation. On-demand computation of routes can alleviate those problems for models that do not require representation of routing dynamics. However, policy based routes, ...

Michael Liljenstam; David M. Nicol

2004-12-01T23:59:59.000Z

277

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network (OSTI)

and are added to the utility’s rate base. Large-scale EE2009a, 2009b, 2009c). utility’s rate base, and the utilityto the grid at a higher rate if the utility does not face

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

278

Sensitivity of Tropical Convection to Sea Surface Temperature in the Absence of Large-Scale Flow  

Science Conference Proceedings (OSTI)

The response of convection to changing sea surface temperature (SST) in the absence of large-scale flow is examined, using a three-dimensional cloud resolving model. The model includes a five-category bulk microphysical scheme representing snow, ...

Adrian M. Tompkins; George C. Craig

1999-02-01T23:59:59.000Z

279

Potential Climatic Impacts and Reliability of Very Large-Scale Wind Farms  

E-Print Network (OSTI)

Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has ...

Wang, Chien

280

A case study in meta-simulation design and performance analysis for large-scale networks  

Science Conference Proceedings (OSTI)

Simulation and emulation techniques are fundamental to aid the process of large-scale protocol design and network operations. However, the results from these techniques are often view with a great deal of skepticism from the networking community. Criticisms ...

David Bauer; Garrett Yaun; Christopher D. Carothers; Murat Yuksel; Shivkumar Kalyanaraman

2004-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Tropical Instability Wave Variability in the Pacific and Its Relation to Large-Scale Currents  

Science Conference Proceedings (OSTI)

Shipboard acoustic Doppler current profiler (ADCP)-derived zonal currents from 170° to 110°W are assembled into composite seasonal and ENSO cycles to produce detailed representations of large-scale ocean flow regimes that favor tropical ...

Eric S. Johnson; Jeffrey A. Proehl

2004-10-01T23:59:59.000Z

282

A Hybrid Kalman Filter Algorithm for Large-Scale Atmospheric Chemistry Data Assimilation  

Science Conference Proceedings (OSTI)

In the past, a number of algorithms have been introduced to solve data assimilation problems for large-scale applications. Here, several Kalman filters, coupled to the European Operational Smog (EUROS) atmospheric chemistry transport model, are ...

R. G. Hanea; G. J. M. Velders; A. J. Segers; M. Verlaan; A. W. Heemink

2007-01-01T23:59:59.000Z

283

Energy Transmission by Barotropic Rossby Waves across Large-Scale Topography  

Science Conference Proceedings (OSTI)

An analytical study investigates the energy transmission by free, barotropic, linear Rossby waves across a large scale bottom topography when topographic and beta-effects have the same order of magnitude. In open ocean regions which are not ...

Bernard Barnier

1984-02-01T23:59:59.000Z

284

Large-Scale Environmental Parameters Associated with Tropical Cyclone Formations in the Western North Pacific  

Science Conference Proceedings (OSTI)

The local environmental conditions associated with 405 tropical cyclone (TC) formations in the western North Pacific during 1990–2001 are examined in this study. Six large-scale parameters are obtained and computed from the NCEP reanalyses with ...

Kevin K. W. Cheung

2004-02-01T23:59:59.000Z

285

Large-Scale Atmospheric Forcing by Southeast Pacific Boundary Layer Clouds: A Regional Model Study  

Science Conference Proceedings (OSTI)

A regional model is used to study the radiative effect of boundary layer clouds over the southeast Pacific on large-scale atmosphere circulation during August–October 1999. With the standard settings, the model simulates reasonably well the large-...

Yuqing Wang; Shang-Ping Xie; Bin Wang; Haiming Xu

2005-04-01T23:59:59.000Z

286

Aerosols in Amazonia: Natural biogenic particles and large scale biomass burning impacts  

Science Conference Proceedings (OSTI)

The Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA) is a long term (20 years) research effort aimed at the understanding of the functioning of the Amazonian ecosystem. In particular

2013-01-01T23:59:59.000Z

287

On the Identification of the Large-Scale Properties of Tropical Convection using Cloud Regimes  

Science Conference Proceedings (OSTI)

The use of cloud regimes in identifying tropical convection and the associated large-scale atmospheric properties is investigated. The regimes are derived by applying cluster analysis to satellite retrievals of daytime-averaged frequency ...

Jackson Tan; Christian Jakob; Todd P. Lane

288

Large-Scale Vertical and Horizontal Circulation in the North Atlantic Ocean  

Science Conference Proceedings (OSTI)

Observations of large-scale hydrography, air–sea forcing, and regional circulation from numerous studies are combined by inverse methods to determine the basin-scale circulation, average diapycnal mixing, and adjustments to air–sea forcing of the ...

Rick Lumpkin; Kevin Speer

2003-09-01T23:59:59.000Z

289

National large-scale Urban True Orthophoto Mapping and its standard initiative  

Science Conference Proceedings (OSTI)

This document would highlight the current project activities, published or unpublished research contributions, success and challenges from March 2005 through December 2005 and plane for the coming years on the project, entitled "National Large-Scale ...

Guoqing Zhou; Wenhan Xie; Susan Benjamin; Robin G. Fegeas; John Simmers; Hap Cluff; Y. Lei; Jeanne Foust

2006-05-01T23:59:59.000Z

290

A Parallel Euler Approach for Large-Scale Biological Sequence Assembly  

Science Conference Proceedings (OSTI)

Biological sequence assembly is an essential step for sequencing the genomes of organisms. Sequence assembly is very computing intensive especially for the large-scale sequence assembly. Parallel computing is an effective way to reduce the computing ...

2005-07-01T23:59:59.000Z

291

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network (OSTI)

as sources of low-cost baseload power. 4.6.3 Large­Scale EE b is the variable cost of baseload power purchases, and L isbut simply avoids baseload power purchases. Utilities that

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

292

Summertime Precipitation Variability over South America: Role of the Large-Scale Circulation  

Science Conference Proceedings (OSTI)

The observed large-scale circulation mechanisms associated with summertime precipitation variability over South America are investigated. Particular attention is paid to the Altiplano where a close relationship has been observed between rainfall ...

J. D. Lenters; K. H. Cook

1999-03-01T23:59:59.000Z

293

Sensitivity Study of Regional Climate Model Simulations to Large-Scale Nudging Parameters  

Science Conference Proceedings (OSTI)

Previous studies with nested regional climate models (RCMs) have shown that large-scale spectral nudging (SN) seems to be a powerful method to correct RCMs’ weaknesses such as internal variability, intermittent divergence in phase space (IDPS), ...

Adelina Alexandru; Ramon de Elia; René Laprise; Leo Separovic; Sébastien Biner

2009-05-01T23:59:59.000Z

294

Interannual Variability of Tropical Cyclones in the Australian Region: Role of Large-Scale Environment  

Science Conference Proceedings (OSTI)

This study investigates the role of large-scale environmental factors, notably sea surface temperature (SST), low-level relative vorticity, and deep-tropospheric vertical wind shear, in the interannual variability of November–April tropical ...

Hamish A. Ramsay; Lance M. Leslie; Peter J. Lamb; Michael B. Richman; Mark Leplastrier

2008-03-01T23:59:59.000Z

295

A steady-state L-mode tokamak fusion reactor : large scale and minimum scale.  

E-Print Network (OSTI)

??We perform extensive analysis on the physics of L-mode tokamak fusion reactors to identify (1) a favorable parameter space for a large scale steady-state reactor… (more)

Reed, Mark W. (Mark Wilbert)

2010-01-01T23:59:59.000Z

296

In-situ sampling of a large-scale particle simulation for interactive visualization and analysis  

Science Conference Proceedings (OSTI)

We describe a simulation-time random sampling of a large-scale particle simulation, the RoadRunner Universe MC3 cosmological simulation, for interactive post-analysis and visualization. Simulation data generation rates will continue to be ...

J. Woodring; J. Ahrens; J. Figg; J. Wendelberger; S. Habib; K. Heitmann

2011-06-01T23:59:59.000Z

297

Anisotropic mesoscopic traffic simulation approach to support large-scale traffic and logistic modeling and analysis  

Science Conference Proceedings (OSTI)

Large-scale traffic and transportation logistics analysis requires a realistic depiction of network traffic condition in a dynamic manner. In the past decades, vehicular traffic simulation approaches have been increasingly developed and applied to describe ...

Ye Tian; Yi-Chang Chiu

2011-12-01T23:59:59.000Z

298

The Dynamics of Large-Scale Cyclogenesis over the North Pacific Ocean  

Science Conference Proceedings (OSTI)

Earlier studies of persistent large-scale flow anomalies have been extended, with the aim of identifying the primary mechanisms for persistent anomaly development. In this study the focus is on wintertime cases of persistent cyclonic flow ...

Robert X. Black; Randall M. Dole

1993-02-01T23:59:59.000Z

299

Model-constrained optimization methods for reduction of parameterized large-scale systems  

E-Print Network (OSTI)

Most model reduction techniques employ a projection framework that utilizes a reduced-space basis. The basis is usually formed as the span of a set of solutions of the large-scale system, which are computed for selected ...

Bui-Thanh, Tan

2007-01-01T23:59:59.000Z

300

On the Ocean’s Large-Scale Circulation near the Limit of No Vertical Mixing  

Science Conference Proceedings (OSTI)

By convention, the ocean’s large-scale circulation is assumed to be a thermohaline overturning driven by the addition and extraction of buoyancy at the surface and vertical mixing in the interior. Previous work suggests that the overturning ...

J. R. Toggweiler; B. Samuels

1998-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Some Correlations between the Large-Scale Meridional Eddy Momentum Transport and Zonal Mean Quantities  

Science Conference Proceedings (OSTI)

An empirical study has been made which compares the large-scale meridional eddy momentum transport with some selected zonal mean quantities by calculating correlations between them as a function of time lag and latitude. The basic dataset was the ...

Anne Leach

1984-01-01T23:59:59.000Z

302

Influence of Forced Large-Scale Atmospheric Patterns on Surface Air Temperature in China  

Science Conference Proceedings (OSTI)

The seasonality of the influence of the tropical Pacific sea surface temperature (SST)-forced large-scale atmospheric patterns on the surface air temperature (SAT) over China is investigated for the period from 1969 to 2001. Both observations and ...

Xiaojing Jia; Hai Lin

2011-03-01T23:59:59.000Z

303

Explosive Cyclogenesis and Large-Scale Circulation Changes: Implications for Atmospheric Blocking  

Science Conference Proceedings (OSTI)

Large-scale circulation changes attending explosive surface cyclogenesis are quantitatively examined in two cases selected from recent winter seasons. Both cases feature a rapidly deepening surface cyclone over the western Atlantic Ocean, but ...

Stephen J. Colucci

1985-12-01T23:59:59.000Z

304

Tropical Cyclone Track Characteristics as a Function of Large-Scale Circulation Anomalies  

Science Conference Proceedings (OSTI)

Factors that contribute to intraseasonal variability in western North Pacific tropical cyclone track types are investigated. It is hypothesized that the 700-mb large-scale circulation can affect tropical cyclone track characteristics by enhancing ...

Patrick A. Harr; Russell L. Elsberry

1991-06-01T23:59:59.000Z

305

Agent Based Dynamic Service Synthesis in Large-Scale Open Environments: Experiences from the Agentcities Testbed  

Science Conference Proceedings (OSTI)

The notion of autonomous agents populating large-scale open environments, such as the public Internet, that are able to dynamically discover one another, interact and synthesise new software applications or results has become one of the key technology ...

Steven Willmott; Simon Thompson; David Bonnefoy; Patricia Charlton; Ion Constantinescu; Jonathan Dale; Tianning Zhang

2004-07-01T23:59:59.000Z

306

Large-Scale Heat and Moisture Budgets over the ASTEX Region  

Science Conference Proceedings (OSTI)

Rawinsonde data collected from the Atlantic Stratocumulus Transition Experiment (ASTEX) were used to investigate the mean and temporal characteristics of large-scale heat and moisture budgets for a 2-week period in June 1992. During this period a ...

Paul E. Ciesielski; Wayne H. Schubert; Richard H. Johnson

1999-09-01T23:59:59.000Z

307

Aerosol-Induced Large-Scale Variability in Precipitation over the Tropical Atlantic  

Science Conference Proceedings (OSTI)

Multiyear satellite observations are used to document a relationship between the large-scale variability in precipitation over the tropical Atlantic and aerosol traced to African sources. During boreal winter and spring there is a significant ...

Jingfeng Huang; Chidong Zhang; Joseph M. Prospero

2009-10-01T23:59:59.000Z

308

An Idealized Prototype for Large-Scale Land–Atmosphere Coupling  

Science Conference Proceedings (OSTI)

A process-based, semianalytic prototype model for understanding large-scale land–atmosphere coupling is developed here. The metric for quantifying the coupling is the sensitivity of precipitation P to soil moisture W, . For a range of prototype ...

Benjamin R. Lintner; Pierre Gentine; Kirsten L. Findell; Fabio D’Andrea; Adam H. Sobel; Guido D. Salvucci

2013-04-01T23:59:59.000Z

309

Large-Scale Vertical Eddy Diffusion in the Main Pycnocline of the Central North Pacific  

Science Conference Proceedings (OSTI)

Indirect procedures are used to estimate the latitudinal distribution of the large-scale vertical eddy diffusivity coefficient in the main pycnocline from the interannual change in T?, ?? structure of the water column in the central midlatitude ...

Warren White; Robert Bernstein

1981-04-01T23:59:59.000Z

310

Design of large-scale agricultural wireless sensor networks: email from the vineyard  

Science Conference Proceedings (OSTI)

We describe the design and implementation of a large-scale Wireless Sensor Network (WSN) for agriculture monitoring. As a part of validation we have deployed a prototype of 64 sensors to monitor a commercial vineyard. The system provides ... Keywords: WSN testbed, agricultural WSNs, agriculture monitoring, commercial vineyards, data collection, data storage, geographical coverage, large-scale WSNs, spatial resolution, vineyeard monitoring, wireless networks, wireless sensor networks

Christine Jardak; Krisakorn Rerkrai; Aleksandar Kovacevic; Janne Riihijarvi; Petri Mahonen

2010-08-01T23:59:59.000Z

311

The role of large-scale, extratropical dynamics in climate change  

SciTech Connect

The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop`s University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database.

Shepherd, T.G. [ed.

1994-02-01T23:59:59.000Z

312

LogGOPSim: simulating large-scale applications in the LogGOPS model  

Science Conference Proceedings (OSTI)

We introduce LogGOPSim---a fast simulation framework for parallel algorithms at large-scale. LogGOPSim utilizes a slightly extended version of the well-known LogGPS model in combination with full MPI message matching semantics and detailed simulation ... Keywords: LogGOPS model, LogGP, LogGPS, LogP, collective operations, large-scale performance, message passing interface, simulation

Torsten Hoefler; Timo Schneider; Andrew Lumsdaine

2010-06-01T23:59:59.000Z

313

Structuring of Large-scale Complex Hybrid Systems: from Illustrative Analysis toward Modelization  

Science Conference Proceedings (OSTI)

System structuring is paramount to the development of large-scale complex hybrid systems (LCHS). However, there is no well-established and effective methodology for the structuring of LCHS. Using the approach of illustrating and abstracting, this paper ... Keywords: autonomous system, block-diagram-based model, distributed system, hierarchical system, large-scale complex hybrid system (LCHS), multiple gradation, nested system, nesting, perception–decision link, system geometry, system modelization, system structuring

Huaglory Tianfield

2001-02-01T23:59:59.000Z

314

Field Test Best Practices Website | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » Building America » Field Test Best Residential Buildings » Building America » Field Test Best Practices Website Field Test Best Practices Website Photo of a man standing in front of a door performing a blower door test. The Field Test Best Practices website is a start-to-finish best practice guide for building science researchers engaged in field evaluations of energy efficiency measures. Developed by the National Renewable Energy Laboratory (NREL), this site is a collaborative effort to improve the quality of research methods that aim to improve energy efficiency of homes. On this website, find detailed guidance on: Defining the research objectives Planning for and conducting a field test Choosing, testing, and installing components Selecting equipment and knowing when and how to use it.

315

The Large Scale Cosmic-Ray Anisotropy as Observed with Milagro  

E-Print Network (OSTI)

Results are presented of a harmonic analysis of the large scale cosmic-ray anisotropy as observed by the Milagro observatory. We show a two-dimensional display of the sidereal anisotropy projections in right ascension generated by the fitting of three harmonics to 18 separate declination bands. The Milagro observatory is a water Cherenkov detector located in the Jemez mountains near Los Alamos, New Mexico. With a high duty cycle and large field-of-view, Milagro is an excellent instrument for measuring this anisotropy with high sensitivity at TeV energies. The analysis is conducted using a seven year data sample consisting of more than 95 billion events. We observe an anisotropy with a magnitude around 0.1% for cosmic rays with a median energy of 6 TeV. The dominant feature is a deficit region of depth (-2.85 +/- 0.06 stat. +/- 0.08 syst.)x10^(-3) in the direction of the Galactic North Pole with a range in declination of -10 to 45 degrees and 150 to 225 degrees in right ascension. We observe a steady increase ...

Abdo, A A; Aune, T; Berley, D; Casanova, S; Chen, C; Dingus, B L; Ellsworth, R W; Fleysher, L; Fleysher, R; González, M M; Goodman, J A; Hoffman, C M; Hopper, B; Hüntemeyer, P H; Kolterman, B E; Lansdell, C P; Linnemann, J T; McEnery, J E; Mincer, A I; Némethy, P; Noyes, D; Ryan, J M; Parkinson, P M Saz; Shoup, A; Sinnis, G; Smith, A J; Sullivan, G W; Vasileiou, V; Walker, G P; Williams, D A; Yodh, G B

2008-01-01T23:59:59.000Z

316

Reservoir description through pulse testing in a mature field  

SciTech Connect

Pulse testing was used in the Fortescue field to clarify reservoir geometries and fluid communication pathways. The high communication levels demonstrated in the test data required a nonstandard analysis of the pressure responses. In addition, proper attention to test planning, data acquisition, and data processing allowed valuable insights into reservoir limits. Most of the structural implications derived from the pulse tests have been supported subsequently by a recent 3D seismic survey of the area. The results and insights gained from these tests are being incorporated into a full-field simulation model of the Fortescue field, which is an integral part of a continuing depletion field study.

Braisted, D.M.; Spengler, R.M. (Esso Australia Ltd., Sydney (Australia)); Youie, R.A.

1993-06-01T23:59:59.000Z

317

Thermal Performance Evaluation of Attic Radiant Barrier Systems Using the Large Scale Climate Simulator (LSCS)  

SciTech Connect

Application of radiant barriers and low-emittance surface coatings in residential building attics can significantly reduce conditioning loads from heat flow through attic floors. The roofing industry has been developing and using various radiant barrier systems and low-emittance surface coatings to increase energy efficiency in buildings; however, minimal data are available that quantifies the effectiveness of these technologies. This study evaluates performance of various attic radiant barrier systems under simulated summer daytime conditions and nighttime or low solar gain daytime winter conditions using the large scale climate simulator (LSCS). The four attic configurations that were evaluated are 1) no radiant barrier (control), 2) perforated low-e foil laminated oriented strand board (OSB) deck, 3) low-e foil stapled on rafters, and 4) liquid applied low-emittance coating on roof deck and rafters. All test attics used nominal RUS 13 h-ft2- F/Btu (RSI 2.29 m2-K/W) fiberglass batt insulation on attic floor. Results indicate that the three systems with radiant barriers had heat flows through the attic floor during summer daytime condition that were 33%, 50%, and 19% lower than the control, respectively.

Shrestha, Som S [ORNL] [ORNL; Miller, William A [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL

2013-01-01T23:59:59.000Z

318

Small Scale Field Test Demonstrating CO2 sequestration in Arbuckle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale Field Test Demonstrating CO 2 sequestration in Arbuckle Saline Aquifer and by CO 2 -EOR at Wellington field, Sumner County, Kansas -- W. Lynn Watney and Jason Rush Kansas...

319

The Large-Scale Circulation and Heat Sources over the Tibetan Plateau and Surrounding Areas during the Early Summer of 1979. Part I: Precipitation and Kinematic Analyses  

Science Conference Proceedings (OSTI)

The time evolution of the large-scale precipitation, low-level (850 mb) wind, moisture and vertical motion fields over the Tibetan Plateau and surrounding areas during a 40-day period from late May to early July 1979 is studied based on the ...

Huibang Luo; Michio Yanai

1983-05-01T23:59:59.000Z

320

Controller Field Tests on the NREL CART2 Turbine  

DOE Green Energy (OSTI)

This document presents the results of the field tests carried out on the CART2 turbine at NREL to validate individual pitch control and active tower damping.

Bossanyi, E.; Wright, A.; Fleming, P.

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A Sequential Cooperative Game Theoretic Approach to Storage-Aware Scheduling of Multiple Large-Scale Workflow Applications in Grids  

Science Conference Proceedings (OSTI)

Scheduling large-scale applications in heterogeneous Grid and Cloud systems is a fundamental NP-complete problem for obtaining good performance and execution costs. We address the problem of scheduling an important class of large-scale Grid applications ...

Rubing Duan; Radu Prodan; Xiaorong Li

2012-09-01T23:59:59.000Z

322

Interwell pressure testing for field pilots  

SciTech Connect

Procedures are described, and results are compared with core analyses, for a number of transient pressure experiments that were carried out between wells in a small chemical flood pilot. Tests include: a standard pulse test, a simultaneous pressure buildup and falloff of wells in a five-spot pattern, a reverse pulse test, in which response from a producer was measured at a nearby injector during injection, and production drawdown tests from normally shut-in observation wells during polymer injection and during subsequent waterflood in a nearby injector. Flowing these observation wells provided an effective way to measure in-situ mobilities of injected fluids. For pulse tests, a simplified method for design and interpretation of single pulses is derived from basic equations. Dimensionless functions, representing directional permeability and geometrical mean permeability, are shown to be functions of a single dimensionless time lag of the maximum pressure response. For large dimensionless time lags, the ratio of dimensionless permeabilities approaches the value ..pi..e and simple geometric relationships may be used to predict either compressibility or formation thickness.

Stegemeier, G.L.

1982-09-01T23:59:59.000Z

323

Common Effects of Acidic Activators on Large-Scale Chromatin Structure and Transcription  

E-Print Network (OSTI)

Large-scale chromatin decondensation has been observed after the targeting of certain acidic activators to heterochromatic chromatin domains. Acidic activators are often modular, with two or more separable transcriptional activation domains. Whether these smaller regions are sufficient for all functions of the activators has not been demonstrated. We adapted an inducible heterodimerization system to allow systematic dissection of the function of acidic activators, individual subdomains within these activators, and short acidic-hydrophobic peptide motifs within these subdomains. Here, we demonstrate that large-scale chromatin decondensation activity is a general property of acidic activators. Moreover, this activity maps to the same acidic activator subdomains and acidic-hydrophobic peptide motifs that are responsible for transcriptional activation. Two copies of a mutant peptide motif of VP16 (viral protein 16) possess large-scale chromatin decondensation activity but minimal transcriptional activity, and a synthetic acidic-hydrophobic peptide motif had large-scale chromatin decondensation activity comparable to the strongest full-length acidic activator but no transcriptional activity. Therefore, the general property of large-scale chromatin decondensation shared by most acidic activators is not simply a direct result of transcription per se but is most likely the result of the concerted action of coactivator proteins recruited by the activators ’ short acidic-hydrophobic peptide motifs. Several transcriptional activators contain two or more distinct

Anne E. Carpenter; Sevinci Memedula; Matthew J. Plutz; Andrew S. Belmont

2004-01-01T23:59:59.000Z

324

Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?  

E-Print Network (OSTI)

from large-scale solar steam generator systems Persistenceof water as steam power generators. The largest of these

Allen, Michael F.; McHughen, Alan

2011-01-01T23:59:59.000Z

325

Geothermal field tests: heat exchanger evaluation  

DOE Green Energy (OSTI)

Results of the heat exchanger tests conducted on a scale model of a heat exchanger that has been designed and fabricated for the Geothermal Test Facility show that this exchanger will lose 60% of its heat transfer capability and fall below design requirements after 92 hours of operation. When the test exchanger was clean and operating as close as possible to design conditions, its overall heat transfer coefficient was 426 BTU/hr-ft/sup 2/ - /sup 0/f. when calculating in the fouling factor of .0035 this gave a design coefficient of 171 BTU/hr-ft/sup 2/ - /sup 0/f which was reached after less than four days of steady state operation. Thermal shocking of the test heat exchanger once each hour while the exchanger was operating at design conditions had no effect on scale removal or heat transfer. Results of tube cleaning showed that chemical treatment with 30% hydrochloric acid followed by a high pressure water jet (6000 psig), was effective in removing scale from tubes contacted with geothermal brine. After cleaning, the tubes were examined and some pitting was observed throughout the length of one tube.

Felsinger, D.E.

1973-07-06T23:59:59.000Z

326

Total Cost Per MwH for all common large scale power generation sources |  

Open Energy Info (EERE)

Total Cost Per MwH for all common large scale power generation sources Total Cost Per MwH for all common large scale power generation sources Home > Groups > DOE Wind Vision Community In the US DOEnergy, are there calcuations for real cost of energy considering the negative, socialized costs of all commercial large scale power generation soruces ? I am talking about the cost of mountain top removal for coal mined that way, the trip to the power plant, the sludge pond or ash heap, the cost of the gas out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs and so on. What I am tring to get at is the 'real cost' per MWh or KWh for the various sources ? I suspect that the costs commonly quoted for fossil fuels and nucelar are

327

Regional climate consequences of large-scale cool roof and photovoltaic array deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

climate consequences of large-scale cool roof and photovoltaic array deployment climate consequences of large-scale cool roof and photovoltaic array deployment This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2011 Environ. Res. Lett. 6 034001 (http://iopscience.iop.org/1748-9326/6/3/034001) Download details: IP Address: 98.204.49.123 The article was downloaded on 01/07/2011 at 12:38 Please note that terms and conditions apply. View the table of contents for this issue, or go to the journal homepage for more Home Search Collections Journals About Contact us My IOPscience IOP PUBLISHING ENVIRONMENTAL RESEARCH LETTERS Environ. Res. Lett. 6 (2011) 034001 (9pp) doi:10.1088/1748-9326/6/3/034001 Regional climate consequences of large-scale cool roof and photovoltaic array deployment Dev Millstein and Surabi Menon Lawrence

328

U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Signs U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion Energy Project to Begin Construction News Featured Articles Science Headlines 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 11.21.06 U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion Energy Project to Begin Construction Print Text Size: A A A Subscribe FeedbackShare Page Large-Scale, Clean Fusion Energy Project to Begin Construction November 21, 2006 PARIS, FRANCE - Representing the United States, Dr. Raymond L. Orbach, Under Secretary for Science of the U.S. Department of Energy (DOE), today joined counterparts from China, the European Union, India, Japan, the

329

Clean Energy Solutions Large Scale CHP and Fuel Cells Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Solutions Large Scale CHP and Fuel Cells Program Clean Energy Solutions Large Scale CHP and Fuel Cells Program Clean Energy Solutions Large Scale CHP and Fuel Cells Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Maximum Rebate CHP: $3,000,000 or 30% of project costs Fuel Cells: $3,000,000 or 45% of project costs Program Info Start Date 01/17/2013 State New Jersey Program Type State Grant Program Rebate Amount CHP greater than 1 MW-3 MW: $0.55/wattt CHP > 3 MW: $0.35/watt Fuel Cells > 1 MW with waste heat utilization: $2.00/watt Fuel Cells > 1 MW without waste heat utilization: $1.50/watt

330

Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Guarantee Would Support Large-Scale Rooftop Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing September 7, 2011 - 2:10pm Addthis Washington D.C. - U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment for a partial guarantee of a $344 million loan that will support the SolarStrong Project, which is expected to be a record expansion of residential rooftop solar power in the United States. Under the SolarStrong Project, SolarCity Corporation will install, own and operate up to 160,000 rooftop solar installations on as many as 124 U.S. military bases in up to 33 states. SolarCity expects the project to fund approximately 750 construction jobs over five years and 28 full time

331

Workshop report on large-scale matrix diagonalization methods in chemistry theory institute  

SciTech Connect

The Large-Scale Matrix Diagonalization Methods in Chemistry theory institute brought together 41 computational chemists and numerical analysts. The goal was to understand the needs of the computational chemistry community in problems that utilize matrix diagonalization techniques. This was accomplished by reviewing the current state of the art and looking toward future directions in matrix diagonalization techniques. This institute occurred about 20 years after a related meeting of similar size. During those 20 years the Davidson method continued to dominate the problem of finding a few extremal eigenvalues for many computational chemistry problems. Work on non-diagonally dominant and non-Hermitian problems as well as parallel computing has also brought new methods to bear. The changes and similarities in problems and methods over the past two decades offered an interesting viewpoint for the success in this area. One important area covered by the talks was overviews of the source and nature of the chemistry problems. The numerical analysts were uniformly grateful for the efforts to convey a better understanding of the problems and issues faced in computational chemistry. An important outcome was an understanding of the wide range of eigenproblems encountered in computational chemistry. The workshop covered problems involving self- consistent-field (SCF), configuration interaction (CI), intramolecular vibrational relaxation (IVR), and scattering problems. In atomic structure calculations using the Hartree-Fock method (SCF), the symmetric matrices can range from order hundreds to thousands. These matrices often include large clusters of eigenvalues which can be as much as 25% of the spectrum. However, if Cl methods are also used, the matrix size can be between 10{sup 4} and 10{sup 9} where only one or a few extremal eigenvalues and eigenvectors are needed. Working with very large matrices has lead to the development of

Bischof, C.H.; Shepard, R.L.; Huss-Lederman, S. [eds.

1996-10-01T23:59:59.000Z

332

Solar total energy: large scale experiment, Shenandoah, Georgia Site. Annual report, June 1978-June 1979  

DOE Green Energy (OSTI)

A background summary and a complete description of the progress and current status of activities relative to the Cooperative Agreement for the Solar Total Energy - Large Scale Experiment at the Bleyle Knitwear Plant at Shenandoah, Georgia are presented. A statement of objectives and an abstract of progress to date are included. This is followed by a short introduction containing a project overview, a summary of the participants and their respective roles, a brief description of the Solar Total Energy System (STES) design concept, and a chronological summary of progress to date. A general description of the site is given, a detailed report of progress is reported, and drawings and equipment lists are included. The closed-loop solar energy system planned for Shenandoah begins with circulation of Syltherm 800, a heat transfer fluid of the Dow-Corning Corporation, through the receiver tubes of a parabolic dish solar collector field. As solar energy is focused on the receivers, the heat transfer fluid is heated to approximately 399/sup 0/C (750/sup 0/F) and is pumped to a heat exchanger for immediate use, or to a thermal storage system for later use. Once in the heat exchanger, the fluid heats a working fluid that produces the steam required for operating the turbine. After performing this task, the heat transfer fluid returns to the collectors to repeat the cycle, while the steam turbine-generator system supplies the electrical demands for the knitwear plant and the STES. During STES operation, maximum thermal and electrical requirements of the application are expected to be at 1.08 MWth and 161 kWe, respectively. During the power generation phase, some of the steam is extracted for use as process steam in the knitwear manufacturing process, while exhaust steam from the turbine is passed through a condenser to produce hot water for heating, domestic use, and absorption air conditioning. (WHK)

Ney, E.J.

1979-07-01T23:59:59.000Z

333

Interactive exploration and analysis of large scale turbulent combustion using topology-based data segmentation  

E-Print Network (OSTI)

Abstract—Large-scale simulations are increasingly being used to study complex scientific and engineering phenomena. As a result, advanced visualization and data analysis are also becoming an integral part of the scientific process. Often, a key step in extracting insight from these large simulations involves the definition, extraction, and evaluation of features in the space and time coordinates of the solution. However, in many applications these features involve a range of parameters and decisions that will affect the quality and direction of the analysis. Examples include particular level sets of a specific scalar field, or local inequalities between derived quantities. A critical step in the analysis is to understand how these arbitrary parameters/decisions impact the statistical properties of the features, since such a characterization will help to evaluate the conclusions of the analysis as a whole. We present a new topological framework that in a single pass extracts and encodes entire families of possible features definitions as well as their statistical properties. For each time step we construct a hierarchical merge tree a highly compact, yet flexible feature representation. While this data structure is more than two orders of magnitude smaller than the raw simulation data it allows us to extract a set of feature for any given parameter selection in a post-processing step. Furthermore, we augment the trees with additional attributes making it possible to gather a large number of useful global, local, as well as conditional statistic that would otherwise be extremely difficult to compile. We also use this representation to create tracking graphs that describe the temporal evolution of the features over time. Our system provides a linked-view interface to explore the time-evolution of the graph interactively alongside the segmentation, thus making it possible to perform extensive data analysis in a very efficient manner. We demonstrate our framework

Peer-timo Bremer; Gunther H. Weber; Julien Tierny; Valerio Pascucci; Marcus S. Day; John B. Bell

2011-01-01T23:59:59.000Z

334

DOE/RMOTC/05.98001 Hydro-Balanced Stuffing Box Field Test Field Test Project Report  

NLE Websites -- All DOE Office Websites (Extended Search)

RMOTC/05.98001 RMOTC/05.98001 Hydro-Balanced Stuffing Box Field Test Field Test Project Report Date Published: May 28, 1999 Leo A. Giangiacomo, P.E. Rocky Mountain Oilfield Testing Center 907 N. Poplar, Suite 150 Casper, WY 82601 Distribution A. Approved for public release; Further dissemination unlimited. (Unclassified Unlimited) DOE/RMOTC/05.98001 Hydro-Balanced Stuffing Box Field Test Test Project Report Test Project Report Test Project Report Test Project Report Date Published: May 28, 1999 Leo A. Giangiacomo, P.E. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY ROCKY MOUNTAIN OILFIELD TESTING CENTER 907 N. Poplar, Suite 150 Casper, WY 82601 Work Performed Under RMOTC ERIP Funding Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

335

Observation of femtosecond laser-induced nanostructure-covered large scale waves on metals  

SciTech Connect

Following femtosecond (fs) laser pulse irradiation, we produce a type of periodic surface structure with a period tens of times greater than the laser wavelength and densely covered by an iterating pattern that consists of stripes of nanostructures and microscale cellular structures. The morphology of this large scale wave pattern crucially depends on laser fluence and the number of laser pulses, but not on the laser wavelength. Our study suggests that this large scale wave is initiated by fs laser induced surface unevenness followed by periodically distributed nonuniform surface heating from fs pulse irradiation.

Hwang, Taek Yong; Guo Chunlei [Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)

2011-04-15T23:59:59.000Z

336

Variability of Load and Net Load in Case of Large Scale Distributed Wind Power  

Science Conference Proceedings (OSTI)

Large scale wind power production and its variability is one of the major inputs to wind integration studies. This paper analyses measured data from large scale wind power production. Comparisons of variability are made across several variables: time scale (10-60 minute ramp rates), number of wind farms, and simulated vs. modeled data. Ramp rates for Wind power production, Load (total system load) and Net load (load minus wind power production) demonstrate how wind power increases the net load variability. Wind power will also change the timing of daily ramps.

Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Gomez-Lazaro, E.; Rawn, B.; Dobschinski, J.; Meibom, P.; Lannoye, E.; Aigner, T.; Wan, Y. H.; Milligan, M.

2011-01-01T23:59:59.000Z

337

Software System Design for Large Scale, Spatially-explicit Agroecosystem Modeling  

SciTech Connect

Recently, site-based agroecosystem model has been applied at regional and state level to enable comprehensive analyses of environmental sustainability of food and biofuel production. Those large-scale, spatially-explicit simulations present computational challenges in software systems design. Herein, we describe our software system design for large-scale, spatially-explicit agroecosystem modeling and data analysis. First, we describe the software design principles in three major phases: data preparation, high performance simulation, and data management and analysis. Then, we use a case study at a regional intensive modeling area (RIMA) to demonstrate our system implementation and capability.

Wang, Dali [ORNL; Nichols, Dr Jeff A [ORNL; Kang, Shujiang [ORNL; Post, Wilfred M [ORNL; Liu, Sumang [ORNL

2012-01-01T23:59:59.000Z

338

Construction, Field Testing, and Engineering Benefit Analysis  

E-Print Network (OSTI)

This project provides techniques to improve hot-mix asphalt (HMA) overlays specifically through the use of special additives and innovative surfacing technologies with aggregates that are locally available in Illinois. The ultimate goal is to improve pavement performance through optimized materials while also controlling cost by efficiently using local materials. Therefore, the proposed new mixes use locally available aggregates when possible. The project also considered the use of alternative aggregates such as steel slag to increase the friction quality of the HMA and therefore improve pavement performance. To evaluate the newly developed wearing course mixtures and evaluate their performance under actual traffic loading, test pavements were

High Friction; Surface Layer; Imad L. Al-qadi; Songsu Son; Thomas Zehr; Imad L. Al-qadi; Songsu Son; Thomas Zehr

2013-01-01T23:59:59.000Z

339

Test Functions Space in Noncommutative Quantum Field Theory  

E-Print Network (OSTI)

It is proven that the $\\star$-product of field operators implies that the space of test functions in the Wightman approach to noncommutative quantum field theory is one of the Gel'fand-Shilov spaces $S^{\\beta}$ with $\\beta test functions smears the noncommutative Wightman functions, which are in this case generalized distributions, sometimes called hyperfunctions. The existence and determination of the class of the test function spaces in NC QFT is important for any rigorous treatment in the Wightman approach.

M. Chaichian; M. Mnatsakanova; A. Tureanu; Yu. Vernov

2007-06-12T23:59:59.000Z

340

Large-scale solar cycle features of solar photospheric magnetic field  

E-Print Network (OSTI)

It is well accepted that the solar cycle originates from a magnetohydrodynamics dynamo deep inside the Sun. Many dynamo models have long been proposed based on a lot of observational constraints. In this paper, using 342 NSO/Kitt Peak solar synoptic charts we study the solar cycle phases in different solar latitudinal zones to set further constraints. Our results can be summarized as follows. (1) The variability of solar polar regions' area has a correlation with total unsigned magnetic flux in advance of 5 years. (2) The high-latitude region mainly appears unipolar in the whole solar cycle and its flux peak time lags sunspot cycle for 3 years. (3) For the activity belt, it is not surprised that its phase be the same as sunspot's. (4) The flux peak time of the low-latitude region shifts forward with an average gradient of 32.2 $day/deg$. These typical characteristics may provide some hints for constructing an actual solar dynamo.

W. B. Song

2007-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Large-scale solar cycle features of solar photospheric magnetic field  

E-Print Network (OSTI)

It is well accepted that the solar cycle originates from a magnetohydrodynamics dynamo deep inside the Sun. Many dynamo models have long been proposed based on a lot of observational constraints. In this paper, using 342 NSO/Kitt Peak solar synoptic charts we study the solar cycle phases in different solar latitudinal zones to set further constraints. Our results can be summarized as follows. (1) The variability of solar polar regions' area has a correlation with total unsigned magnetic flux in advance of 5 years. (2) The high-latitude region mainly appears unipolar in the whole solar cycle and its flux peak time lags sunspot cycle for 3 years. (3) For the activity belt, it is not surprised that its phase be the same as sunspot's. (4) The flux peak time of the low-latitude region shifts forward with an average gradient of 32.2 $day/deg$. These typical characteristics may provide some hints for constructing an actual solar dynamo.

Song, W B

2007-01-01T23:59:59.000Z

342

Diagnostic Downscaling of Large-Scale Wind Fields to Compute Local-Scale Trajectories  

Science Conference Proceedings (OSTI)

This paper describes a simple method, based on routine meteorological data, to produce high-resolution wind analyses throughout the planetary boundary layer (PBL). It is a new way to interpolate wind measurements. According to this method, high-...

Andreas Stohl; Kathrin Baumann; Gerhard Wotawa; Matthias Langer; Bruno Neininger; Martin Piringer; Herbert Formayer

1997-07-01T23:59:59.000Z

343

Status of micellar-polymer field tests: another view  

SciTech Connect

Questions are raised concerning the validity of the data and correlations and on choice of field data in correlations described in Petrol. Eng. Nov. 1979 concerning micellar-polymer field tests. The questions concern the use of incomplete field test results, selection of certain field tests and use of correlations obtained from data in 2 cases not presented consistently. This work develops different micellar-polymer field test graphs and conclusions with regard to the amount of surfactant used, correlation of mobility buffer slug size with oil recovery, effect of salinity of the reservoir, and effect of well spacing. The analysis offered indicates that use of micellar-polymer flooding as a means to provide additional energy shows potential, but determining factors for economic success will be reservoir selection and thorough process design. 13 references.

Holm, L.W.

1980-04-01T23:59:59.000Z

344

DOE Approves Field Test for Promising Carbon Capture Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Approves Field Test for Promising Carbon Capture Technology Approves Field Test for Promising Carbon Capture Technology DOE Approves Field Test for Promising Carbon Capture Technology November 20, 2012 - 12:00pm Addthis Washington, DC - A promising post combustion membrane technology that can separate and capture 90 percent of the carbon dioxide (CO2) from a pulverized coal plant has been successfully demonstrated and received Department of Energy (DOE) approval to advance to a larger-scale field test. In an $18.75 million project funded by the American Recovery and Reinvestment Act of 2009, Membrane Technology and Research Inc. (MTR) and its partners tested the Polaris™ membrane system, which uses a CO2-selective polymeric membrane (micro-porous films which act as semi-permeable barriers to separate two different mediums) material and

345

Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)  

Science Conference Proceedings (OSTI)

This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannot be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally-intensive problem important to the nations scientific progress as described shortly. Further, SLAC researchers routinely generate massive amounts of data, and frequently collaborate with other researchers located around the world. Thus SLAC is an ideal teammate through which to develop, test and deploy this technology. The nature of the datasets generated by simulations performed at SLAC presented unique visualization challenges especially when dealing with higher-order elements that were addressed during this Phase II. During this Phase II, we have developed a strong platform for collaborative visualization based on ParaView. We have developed and deployed a ParaView Web Visualization framework that can be used for effective collaboration over the Web. Collaborating and visualizing over the Web presents the community with unique opportunities for sharing and accessing visualization and HPC resources that hitherto with either inaccessible or difficult to use. The technology we developed in here will alleviate both these issues as it becomes widely deployed and adopted.

William J. Schroeder

2011-11-13T23:59:59.000Z

346

Supporting ad-hoc re-planning and shareability at large-scale events  

Science Conference Proceedings (OSTI)

In this paper we present results from a research and development project focusing on the use of mobile phones at a music festival. Our aim is to explore how the festival experience can be enhanced with the introduction of mobile services. Two questions ... Keywords: coordination, ethnography, festival, groups, interaction design, large-scale event, mobile service, mobility, planning

Sarah Lindström; Mårten Pettersson

2010-11-01T23:59:59.000Z

347

Large-scale byzantine fault tolerance: safe but not always live  

Science Conference Proceedings (OSTI)

The overall correctness of large-scale systems composed of many groups of replicas executing BFT protocols scales poorly with the number of groups. This is because the probability of at least one group being compromised (more than 1/3 faulty replicas) ...

Rodrigo Rodrigues; Petr Kouznetsov; Bobby Bhattacharjee

2007-06-01T23:59:59.000Z

348

IDO: intelligent data outsourcing with improved RAID reconstruction performance in large-scale data centers  

Science Conference Proceedings (OSTI)

Dealing with disk failures has become an increasingly common task for system administrators in the face of high disk failure rates in large-scale data centers consisting of hundreds of thousands of disks. Thus, achieving fast recovery from disk failures ...

Suzhen Wu; Hong Jiang; Bo Mao

2012-12-01T23:59:59.000Z

349

Investigating self-similarity and heavy-tailed distributions on a large-scale experimental facility  

Science Conference Proceedings (OSTI)

After the seminal work by Taqqu et al. relating self-similarity to heavy-tailed distributions, a number of research articles verified that aggregated Internet traffic time series show self-similarity and that Internet attributes, like Web file sizes ... Keywords: heavy-tailed distributions, large-scale experiments, monitoring, network traffic, self-similarity

Patrick Loiseau; Paulo Gonçalves; Guillaume Dewaele; Pierre Borgnat; Patrice Abry; Pascale Vicat-Blanc Primet

2010-08-01T23:59:59.000Z

350

An adaptive clustering-based resource discovery scheme for large scale MANETs  

Science Conference Proceedings (OSTI)

An increasing number of smart mobile devices offering the ability to perform various types of ubiquitous computation are emerging as large computer networks with an unprecedented scale. Large Scale Mobile Ad Hoc Networks (MANETs) place strong challenges ... Keywords: adaptive network clustering, distributed algorithms, mobile ad hoc networks, multi-hop head-based non-overlapping clustering, network resource discovery

Saad Al-Ahmadi; Abdullah Al-Dhelaan

2012-04-01T23:59:59.000Z

351

Using Markov chain analysis to study dynamic behaviour in large-scale grid systems  

Science Conference Proceedings (OSTI)

In large-scale grid systems with decentralized control, the interactions of many service providers and consumers will likely lead to emergent global system behaviours that result in unpredictable, often detrimental, outcomes. This possibility argues ... Keywords: discrete Markov chain, grid computing, perturbation analysis, piece-wise homogenous Markov chain

Christopher Dabrowski; Fern Hunt

2009-01-01T23:59:59.000Z

352

Synthesis and control on large scale multi-touch sensing displays  

Science Conference Proceedings (OSTI)

In this paper, we describe our experience in musical interface design for a large scale, high-resolution, multi-touch display surface. We provide an overview of historical and present-day context in multi-touch audio interaction, and describe our approach ... Keywords: bi-manual, dynamic patching, multi-touch, multi-user, synthesis, tactile, touch

Philip L. Davidson; Jefferson Y. Han

2006-06-01T23:59:59.000Z

353

Lessons Learned from Large-Scale User Studies: Using Android Market as a Source of Data  

Science Conference Proceedings (OSTI)

User studies with mobile devices have typically been cumbersome, since researchers have had to recruit participants, hand out or configure devices, and offer incentives and rewards. The increasing popularity of application stores has allowed researchers ... Keywords: Application Stores, Computer Science, Large-Scale Study, Mobile Computing, Mobile Devices, Ubiquitous Computing

Denzil Ferreira; Vassilis Kostakos; Anind K. Dey

2012-07-01T23:59:59.000Z

354

An Analysis of Klemp–Wilhelmson Schemes as Applied to Large-Scale Wave Modes  

Science Conference Proceedings (OSTI)

The use of Klemp–Wilhelmson (KW) time splitting for large-scale and global modeling is assessed through a series of von Neumann accuracy and stability analyses. Two variations of the KW splitting are evaluated in particular: the original acoustic-...

Kevin C. Viner; Craig C. Epifanio

2008-12-01T23:59:59.000Z

355

Efficient data management in a large-scale epidemiology research project  

Science Conference Proceedings (OSTI)

This article describes the concept of a ''Central Data Management'' (CDM) and its implementation within the large-scale population-based medical research project ''Personalized Medicine''. The CDM can be summarized as a conjunction of data capturing, ... Keywords: Central Data Management, Electronic Case Report Forms, Electronic Data Capture, Individualized medicine, Personalized Medicine

Jens Meyer; Stefan Ostrzinski; Daniel Fredrich; Christoph Havemann; Janina Krafczyk; Wolfgang Hoffmann

2012-09-01T23:59:59.000Z

356

Overlay networks for task allocation and coordination in large-scale networks of cooperative agents  

Science Conference Proceedings (OSTI)

This paper proposes a novel method for scheduling and allocating atomic and complex tasks in large-scale networks of homogeneous or heterogeneous cooperative agents. Our method encapsulates the concepts of searching, task allocation and scheduling seamlessly ... Keywords: Cooperation, Cooperative agents, Coordination, Distributed constraint processing, Task and resource allocation

Panagiotis Karagiannis; George Vouros; Kostas Stergiou; Nikolaos Samaras

2012-01-01T23:59:59.000Z

357

Proceedings of the First International Workshop on Data Dissemination for Large Scale Complex Critical Infrastructures  

Science Conference Proceedings (OSTI)

Welcome to Valencia and to the first edition of the workshop on Data Distribution for Large-scale Complex Critical Infrastructures (DD4LCCI 2010). This workshop aims at providing a forum for researchers and engineers in academia and industry to foster ...

Christian Esposito; Aniruddha Gokhale; Domenico Cotroneo; Douglas C. Schmidt

2010-04-01T23:59:59.000Z

358

A practical ontology for the large-scale modeling of scholarly artifacts and their usage  

Science Conference Proceedings (OSTI)

The large-scale analysis of scholarly artifact usage is constrained primarily by current practices in usage data archiving, privacy issues concerned with the dissemination of usage data, and the lack of a practical ontology for modeling the usage domain. ... Keywords: resource description framework and schema, semantic networks, web ontology language

Marko A. Rodriguez; Johan Bollen; Herbert Van de Sompel

2007-06-01T23:59:59.000Z

359

Benchmarking parallel i/o performance for a large scale scientific application on the teragrid  

Science Conference Proceedings (OSTI)

This paper is a report on experiences in benchmarking I/O performance on leading computational facilities on the NSF TeraGrid network with a large scale scientific application. Instead of focusing only on the raw file I/O bandwidth provided by different ...

Frank Löffler; Jian Tao; Gabrielle Allen; Erik Schnetter

2009-08-01T23:59:59.000Z

360

Large-scale pattern growth of graphene films for stretchable transparent electrodes  

E-Print Network (OSTI)

of these highly conducting and transparent electrodes in flexible, stretchable, foldable electronics8,9 . Graphene growth provides high-quality multilayer graphene samples interacting strongly with their substrates method to grow and transfer high-quality stretchable graphene films on a large scale using CVD on nickel

Kim, Philip

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Sensory experience modifies spontaneous state dynamics in a large-scale barrel cortical model  

Science Conference Proceedings (OSTI)

Experimental evidence suggests that spontaneous neuronal activity may shape and be shaped by sensory experience. However, we lack information on how sensory experience modulates the underlying synaptic dynamics and how such modulation influences the ... Keywords: Barrel cortex, Large-scale model, STDP, Spontaneous dynamics

Elena Phoka; Mark Wildie; Simon R. Schultz; Mauricio Barahona

2012-10-01T23:59:59.000Z

362

Statistical Characteristics of the Large-Scale Response of Coastal Sea Level to Atmospheric Forcing  

Science Conference Proceedings (OSTI)

As part of a study of the large-scale response of coastal sea level to atmospheric forcing along the west coast of North America during June–September 1973, Halliwell and Allen calculate space- and time-lagged cross-correlation coefficients R?? ...

J. S. Allen; D. W. Denbo

1984-06-01T23:59:59.000Z

363

A sequential cooperative game theoretic approach to scheduling multiple large-scale applications in grids  

Science Conference Proceedings (OSTI)

Scheduling large-scale applications in heterogeneous distributed computing systems is a fundamental NP-complete problem that is critical to obtaining good performance and execution cost. In this paper, we address the scheduling problem of an important ... Keywords: Economic cost, Game theory, Grid computing, Performance, Scheduling, Storage

Rubing Duan, Radu Prodan, Xiaorong Li

2014-01-01T23:59:59.000Z

364

Hierarchical visibility for guaranteed search in large-scale outdoor terrain  

Science Conference Proceedings (OSTI)

Searching for moving targets in large environments is a challenging task that is relevant in several problem domains, such as capturing an invader in a camp, guarding security facilities, and searching for victims in large-scale search and rescue scenarios. ... Keywords: Exploration, Guaranteed search, HRI, Human---robot-interaction, Moving target search, Path planning, Pursuit-evasion, Task allocation

A. Kleiner; A. Kolling; M. Lewis; K. Sycara

2013-01-01T23:59:59.000Z

365

Linearly scaling 3D fragment method for large-scale electronic structure calculations  

Science Conference Proceedings (OSTI)

We present a new linearly scaling three-dimensional fragment (LS3DF) method for large scale ab initio electronic structure calculations. LS3DF is based on a divide-and-conquer approach, which incorporates a novel patching scheme that effectively ...

Lin-Wang Wang; Byounghak Lee; Hongzhang Shan; Zhengji Zhao; Juan Meza; Erich Strohmaier; David H. Bailey

2008-11-01T23:59:59.000Z

366

Performance modeling of hybrid MPI/OpenMP scientific applications on large-scale multicore supercomputers  

Science Conference Proceedings (OSTI)

In this paper, we present a performance modeling framework based on memory bandwidth contention time and a parameterized communication model to predict the performance of OpenMP, MPI and hybrid applications with weak scaling on three large-scale multicore ... Keywords: Hybrid MPI/OpenMP, Memory bandwidth contention time, Multicore supercomputers, Performance modeling

Xingfu Wu, Valerie Taylor

2013-12-01T23:59:59.000Z

367

Tunable Fano resonance in large scale polymer-dielectric slab photonic crystals  

Science Conference Proceedings (OSTI)

Using interference lithography and deposition technique we have fabricated large scale quasi one dimensional polymer-dielectric photonic crystal that provides sharp and deep Fano resonance in the transmission spectrum of the PC at normal incidence. Due ... Keywords: Interference lithography, Optical switch, Photonic crystals, Polymer, Tunable filter

Reza Asadi; Shahin Bagheri; Mahdi Khaje; Mohammad Malekmohammad; Mohammad-Taghi Tavassoly

2012-09-01T23:59:59.000Z

368

Determining the Mean, Large-Scale Circulation of the Atlantic with the Adjoint Method  

Science Conference Proceedings (OSTI)

A new model approach based on the adjoint formalism and aimed at assimilating large sets of hydrographic data is presented. The goal of the model calculations is to obtain the mean, large-scale ocean circulation together with coefficients of iso- ...

Reiner Schlitzer

1993-09-01T23:59:59.000Z

369

Large-Scale Dynamics of the Meiyu-Baiu Rainband: Environmental Forcing by the Westerly Jet  

Science Conference Proceedings (OSTI)

Meiyu-baiu is the major rainy season from central China to Japan brought by a zonally elongated rainband from June to mid-July. Large-scale characteristics and environmental forcing of this important phenomenon are investigated based on a ...

Takeaki Sampe; Shang-Ping Xie

2010-01-01T23:59:59.000Z

370

A steady-state L-mode tokamak fusion reactor : large scale and minimum scale  

E-Print Network (OSTI)

We perform extensive analysis on the physics of L-mode tokamak fusion reactors to identify (1) a favorable parameter space for a large scale steady-state reactor and (2) an operating point for a minimum scale steady-state ...

Reed, Mark W. (Mark Wilbert)

2010-01-01T23:59:59.000Z

371

Time efficient fabrication of ultra large scale nano dot arrays using electron beam lithography  

Science Conference Proceedings (OSTI)

An astonishingly simple yet versatile alternative method for the creation of ultra large scale nano dot arrays [1-3] utilising the fact that exposure in electron beam lithography (EBL) is performed by addressing single pixels with defined distances is ... Keywords: Electron beam lithography, Nano dot, Patterning, Photonic crystal, Plasmonics

Jochen Grebing; JüRgen FaíBender; Artur Erbe

2012-09-01T23:59:59.000Z

372

Hurricane Climatic Fluctuations. Part II: Relation to Large-Scale Circulation  

Science Conference Proceedings (OSTI)

Correlations are computed between interannual fluctuations of hurricane incidence in the Atlantic basin and large-scale patterns of seasonally-averaged sea-level pressure (SLP; 1899–1978), sea-surface temperature (SST; 1899–1967), and 500 mb ...

Lloyd J. Shapiro

1982-08-01T23:59:59.000Z

373

Computing and Data Infrastructure for Large-Scale Science NERSC and the DOE Science Grid  

E-Print Network (OSTI)

-bandwidth connectivity end to end (high-speed links from site systems to ESnet gateways) ­ Storage resources: four ­ Collaboration with ESnet for security and directory services #12;Initial Science Grid Configuration NERSC Supercomputing & Large-Scale Storage PNNL LBNL ANL ESnet Europe DOE Science Grid ORNL ESNet MDS CA Grid Managed

374

An Integrated Docking Pipeline for the Prediction of Large-Scale Protein-Protein Interactions  

E-Print Network (OSTI)

An Integrated Docking Pipeline for the Prediction of Large-Scale Protein-Protein Interactions Xin. In this study, we developed a protein-protein docking pipeline (PPDP) that integrates a variety of state studies. In this study, we developed a protein-protein docking pipeline by integrat

375

Interactive remote large-scale data visualization via prioritized multi-resolution streaming  

Science Conference Proceedings (OSTI)

The simulations that run on petascale and future exascale supercomputers pose a difficult challenge for scientists to visualize and analyze their results remotely. They are limited in their ability to interactively visualize their data mainly due to ... Keywords: data intensive supercomputing, distance visualization, large scale data, remote visualization, visualization systems

James P. Ahrens; Jonathan Woodring; David E. DeMarle; John Patchett; Mathew Maltrud

2009-11-01T23:59:59.000Z

376

An assessment of accountability policies for large-scale distributed computing systems  

Science Conference Proceedings (OSTI)

Grid computing systems offer resources to solve large-scale computational problems and are thus widely used in a large variety of domains, including computational sciences, energy management, and defense. Accountability in these application domains is ... Keywords: accountability, distributed systems, grid, policies, scalability

Wonjun Lee; Anna C. Squicciarini; Elisa Bertino

2009-04-01T23:59:59.000Z

377

MicroTCA implementation of synchronous Ethernet-Based DAQ systems for large scale experiments  

E-Print Network (OSTI)

the form of a tank filled with liquid Argon maintained at about 87 °K by a cryogenic system. An electric the calculation of the track coordinates in 2 dimensions. The third dimension is given by the measurement software. Proposals of such very large scale Liquid Argon Detector foresee the use of Liquefied Natural Gas

Paris-Sud XI, Université de

378

Fountain Codes Based Distributed Storage Algorithms for Large-Scale Wireless Sensor Networks  

Science Conference Proceedings (OSTI)

We consider large-scale networks with n nodes, out of which k are in possession, (e.g., have sensed or collected in some other way) k information packets. In the scenarios in which network nodes are vulnerable because of, for example, limited energy ...

Salah A. Aly; Zhenning Kong; Emina Soljanin

2008-04-01T23:59:59.000Z

379

Large-Scale Conditions Favorable for the Development of Heavy Rainfall during TAMEX IOP 3  

Science Conference Proceedings (OSTI)

The large-scale processes responsible for development of heavy precipitation during 20–23 May 1987 along the southeastern China coast are studied. There are two distinct rainfall peaks around 0000 UTC 20 May and 0000 UTC 22 May. Prior to the ...

Yi-Leng Chen; Jun Li

1995-10-01T23:59:59.000Z

380

China's changing landscape during the 1990s: Large-scale land transformations estimated with satellite data  

E-Print Network (OSTI)

China's changing landscape during the 1990s: Large-scale land transformations estimated January 2005. [1] Land-cover changes in China are being powered by demand for food for its growing increased by 2.99 million hectares and urban areas increased by 0.82 million hectares. In northern China

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

FEM Aided Prestress Design for Large-scale Ultra-low-temperature LNG Tank  

Science Conference Proceedings (OSTI)

A large-scale low-temperature aboveground LNG storage tank design is described in detail, especially the process of prestressing tendons configuration using finite element method (FEM). Considering the LNG storage tanks working conditions and corresponding ... Keywords: FEM, LNG, optimize design, prestressing design

Fang-yuan Li; Jin-bao Han

2010-06-01T23:59:59.000Z

382

Large-Scale Urban Modeling by Combining Ground Level Panoramic and Aerial Imagery  

E-Print Network (OSTI)

from the United States Ge- ographic Survey. One aerial image is shown in Fig. 1(a). Another inherentLarge-Scale Urban Modeling by Combining Ground Level Panoramic and Aerial Imagery Lu Wang, Suya You a high resolution orthorecti- fied aerial image to provide the building footprints. Users draw

Shahabi, Cyrus

383

Towards Ontology-based Data Quality Inference in Large-Scale Sensor Networks  

Science Conference Proceedings (OSTI)

This paper presents an ontology-based approach for data quality inference on streaming observation data originating from large-scale sensor networks. We evaluate this approach in the context of an existing river basin monitoring program called the Intelligent ... Keywords: Wireless Sensor Networks, Semantic Web, Distributed Computing

Sam Esswein; Sebastien Goasguen; Chris Post; Jason Hallstrom; David White; Gene Eidson

2012-05-01T23:59:59.000Z

384

Large-scale hybrid poplar production economics: 1995 Alexandria, Minnesota establishment cost and management  

DOE Green Energy (OSTI)

The purpose of this project was to track and monitor costs of planting, maintaining, and monitoring large scale commercial plantings of hybrid poplar in Minnesota. These costs assists potential growers and purchasers of this resource to determine the ways in which supply and demand may be secured through developing markets.

Downing, M. [Oak Ridge National Lab., TN (United States); Langseth, D. [WesMinn Resource Conservation and Development District, Alexandria, MN (United States); Stoffel, R. [Minnesota Dept. of Natural Resources, Alexandria, MN (United States); Kroll, T. [Minnesota Dept. of Natural Resources, St. Paul, MN (United States). Forestry Div.

1996-12-31T23:59:59.000Z

385

The Impact of Initial Condition Uncertainty on Numerical Simulations of Large-scale Explosive Cyclogenesis  

Science Conference Proceedings (OSTI)

The impact of initial condition uncertainty on short-range (up to 48 h) forecasts of large-scale explosive cyclogenesis is examined. Predictability experiments are conducted on 11 cases of rapid oceanic cyclogenesis that occurred in a long-term, ...

Steven L. Mullen; David P. Baumhefner

1989-12-01T23:59:59.000Z

386

The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource  

E-Print Network (OSTI)

The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over on Wind Energy Resource over Europe and its Intermittency Pascal Kriesche* and Adam Schlosser* Abstract In times of increasing importance of wind power in the world's energy mix, this study focuses on a better

387

Accelerated Stress Testing, Qualification Testing, HAST, Field Experience - What Do They All Mean? (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses the need for a set of tests for modules that would predict their long term-field performance.

Wohlgemuth, J.

2013-05-01T23:59:59.000Z

388

Small-Scale Carbon Sequestration Field Test Yields Significant Lessons  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small-Scale Carbon Sequestration Field Test Yields Significant Small-Scale Carbon Sequestration Field Test Yields Significant Lessons Learned Small-Scale Carbon Sequestration Field Test Yields Significant Lessons Learned May 20, 2009 - 1:00pm Addthis Washington, DC - The Midwest Regional Carbon Sequestration Partnership, one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon capture and storage technologies, has completed a preliminary geologic characterization and sequestration field test at FirstEnergy's R. E. Burger Plant near Shadyside, Ohio. The project provided significant geologic understanding and "lessons learned" from a region of the Appalachian Basin with few existing deep well penetrations for geologic characterization. The initial targets for the geologic storage of carbon dioxide (CO2) at the

389

Field Test Report: Preliminary Aquifer Test Characterization Results for Well 299-W15-225: Supporting Phase I of the 200-ZP-1 Groundwater Operable Unit Remedial Design  

SciTech Connect

This report examines the hydrologic test results for both local vertical profile characterization and large-scale hydrologic tests associated with a new extraction well (well 299-W15-225) that was constructed during FY2009 for inclusion within the future 200-West Area Groundwater Treatment System that is scheduled to go on-line at the end of FY2011. To facilitate the analysis of the large-scale hydrologic test performed at newly constructed extraction well 299-W15-225 (C7017; also referred to as EW-1 in some planning documents), the existing 200-ZP-1 interim pump-and-treat system was completely shut-down ~1 month before the performance of the large-scale hydrologic test. Specifically, this report 1) applies recently developed methods for removing barometric pressure fluctuations from well water-level measurements to enhance the detection of hydrologic test and pump-and-treat system effects at selected monitor wells, 2) analyzes the barometric-corrected well water-level responses for a preliminary determination of large-scale hydraulic properties, and 3) provides an assessment of the vertical distribution of hydraulic conductivity in the vicinity of newly constructed extraction well 299-W15-225. The hydrologic characterization approach presented in this report is expected to have universal application for meeting the characterization needs at other remedial action sites located within unconfined and confined aquifer systems.

Spane, Frank A.; Newcomer, Darrell R.

2009-09-23T23:59:59.000Z

390

The field test was conducted in the Prairie  

NLE Websites -- All DOE Office Websites (Extended Search)

field test was conducted in the Prairie Pothole Region - an area field test was conducted in the Prairie Pothole Region - an area that stretches from central Iowa into Northern Alberta, Canada, and contains thousands of shallow wetlands formed by retreating glaciers approximately 10,000 years ago. Terrestrial carbon capture and storage (CCS) involves plant removal of CO 2 from the atmosphere using photosynthesis and storing the greenhouse gas (GHG) in biomass

391

NETL: Carbon Storage - Small-Scale Field Tests  

NLE Websites -- All DOE Office Websites (Extended Search)

Small-Scale Field Tests Small-Scale Field Tests Carbon Storage Small-Scale Field Tests The U.S. Department of Energy (DOE) is supporting a number of small-scale field tests (injection of less than 500,000 million metric tons of CO2 per year) to explore various geologic CO2 storage opportunities within the United States and portions of Canada. DOE's small-scale field test efforts are designed to demonstrate that regional reservoirs have the capability to store thousands of years of CO2 emissions and provide the basis for larger volume, commercial-scale CO2 tests. The field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The data gathered during these small-scale tests provides valuable information regarding specific formations that have historically not been evaluated for the purpose of CO2 storage. The Carbon Storage Program strategy includes an established set of field test objectives applicable to the small-scale projects:

392

The absorption chiller in large scale solar pond cooling design with condenser heat rejection in the upper convecting zone  

SciTech Connect

The possibility of using solar ponds as low-cost solar collectors combined with commercial absorption chillers in large scale solar cooling design is investigated. The analysis is based on the combination of a steady-state solar pond mathematical model with the operational characteristics of a commercial absorption chiller, assuming condenser heat rejection in the upper convecting zone (U.C.Z.). The numerical solution of the nonlinear equations involved leads to results which relate the chiller capacity with pond design and environmental parameters, which are also employed for the investigation of the optimum pond size for a minimum capital cost. The derived cost per cooling kW for a 350 kW chiller ranges from about 300 to 500 $/kW cooling. This is almost an order of magnitude lower than using a solar collector field of evacuated tube type.

Tsilingiris, P.T. (Commercial Bank of Greece, Athens (Greece))

1992-07-01T23:59:59.000Z

393

A Large-Scale Matched-Index-of-Refraction Flow Facility for LDA Studies Around Complex Geometrics  

SciTech Connect

Abstract Useage of laser-Doppler anemometry (LDA) requires optical access to the flow field of interest. This has not always proved easy, as in the case of complex geometries or very near-wall boundary layer measurements. One solution is to employ a solid material and fluid with the same refractive index. In this case, there is no optical interference of the solid with the LDA. Although this technique is not new, previous studies have been limited to small flow apparatus and relatively unpleasant fluids. A large-scale flow tunnel has now been constructed, permitting matched index of refraction LDA measurements in difficult geometries, higher Reynolds numbers, and increased spatial resolution in the measurements. This paper describes the facility and fluid flow quality, and presents some preliminary results for very near-wall measurements of a transitional boundary layer behind a roughness element.

Stoots, Carl Marcel; Condie, Keith Glenn; McEligot, Donald Marinus; Becker, S.; Durst, F.

2001-04-01T23:59:59.000Z

394

Large-scale Ocean-based or Geothermal Power Plants by Thermoelectric Effects  

E-Print Network (OSTI)

Heat resources of small temperature difference are easily accessible, free and unlimited on earth. Thermoelectric effects provide the technology for converting these heat resources directly into electricity. We present designs of electricity generators based on thermoelectric effects and using heat resources of small temperature difference, e.g., ocean water at different depths and geothermal sources, and conclude that large-scale power plants based on thermoelectric effects are feasible and economically competitive. The key observation is that the power factor of thermoelectric materials, unlike the figure of merit, can be improved by orders of magnitude upon laminating good conductors and good thermoelectric materials. The predicted large-scale power plants based on thermoelectric effects, if validated, will have a global economic and social impact for its scalability, and the renewability, free and unlimited supply of heat resources of small temperature difference on earth.

Liu, Liping

2012-01-01T23:59:59.000Z

395

Large-Scale Wind Integration Studies in the United States: Preliminary Results  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory, under the sponsorship of the U.S. Department of Energy, is managing two large-scale wind integration studies. The Western Wind and Solar Integration Study (WWSIS) covers the footprint of WestConnect, a group of transmission owners that covers most of Colorado, New Mexico, Arizona, Nevada, and Wyoming. The Eastern Wind Integration and Transmission Study (EWITS) covers a large part of the Eastern Interconnection, and leverages a large-scale transmission study known as the Joint Coordinated System Plan (JCSP). Both studies analyze the impact of 20-30% wind energy penetration within the study footprint based on energy. This paper discusses key results that have emerged so far from each study, focusing primarily on simulation results based on hourly production simulations. Results from both studies show that high wind penetrations can be successfully integrated into the power system, but depend on sufficient transmission and significant changes in operations.

Milligan, M.; Lew, D.; Corbus, D.; Piwko, R.; Miller, N.; Clark, K.; Jordan, G.; Freeman, L.; Zavadil, B.; Schuerger, M.

2009-01-01T23:59:59.000Z

396

A PRACTICAL ONTOLOGY FOR THE LARGE-SCALE MODELING OF SCHOLARLY ARTIFACTS AND THEIR USAGE  

SciTech Connect

The large-scale analysis of scholarly artifact usage is constrained primarily by current practices in usage data archiving, privacy issues concerned with the dissemination of usage data, and the lack of a practical ontology for modeling the usage domain. As a remedy to the third constraint, this article presents a scholarly ontology that was engineered to represent those classes for which large-scale bibliographic and usage data exists, supports usage research, and whose instantiation is scalable to the order of 50 million articles along with their associated artifacts (e.g. authors and journals) and an accompanying 1 billion usage events. The real world instantiation of the presented abstract ontology is a semantic network model of the scholarly community which lends the scholarly process to statistical analysis and computational support. They present the ontology, discuss its instantiation, and provide some example inference rules for calculating various scholarly artifact metrics.

RODRIGUEZ, MARKO A. [Los Alamos National Laboratory; BOLLEN, JOHAN [Los Alamos National Laboratory; VAN DE SOMPEL, HERBERT [Los Alamos National Laboratory

2007-01-30T23:59:59.000Z

397

A Climatology of Tropical Anvil and Its Relationship to the Large-Scale Circulation  

E-Print Network (OSTI)

This dissertation uses multiple tools to investigate tropical anvil, i.e., thick, non-precipitating cloud associated with deep convection with the main objectives to provide a climatology of tropics-wide anvil properties and a better understanding of anvil formation, and to provide a more realistic assessment of the radiative impact of tropical anvil on the large-scale circulation. Based on 10 years (1998-2007) of observations, anvil observed by the Tropical Rainfall Measuring Mission (TRMM) Precipitation (PR) shows significant geographical variations, which can be linked to variations in the parent convection. Strong upper level wind shear appears to assist the generation of anvil and may further explain the different anvil statistics over land and ocean. Variations in the large-scale environment appear to play a more important role in anvil production in regions where convection regularly attains heights greater than 7 km. For regions where convection is less deep, variations in the depth of the convection and the large-scale environment likely contribute more equally to anvil generation. Anvil radiative heating profiles are estimated by extrapolating millimeter cloud radar (MMCR) radiative properties from Manus to the 10-year TRMM PR record. When the unconditional anvil areal coverage is taken into account, the anvil radiative heating becomes quite weak, increasing the PR latent heating profile by less than 1 percent at mid and upper levels. Stratiform rain and cirrus radiative heating contributions increase the upper level latent heating by 12 percent. This tropical radiative heating only slightly enhances the latent heating driven model response throughout the tropics, but more significantly over the East Pacific. These modest circulation changes suggest that previous studies may have overemphasized the importance of radiative heating in terms of Walker and Hadley circulation variations. Further, the relationship of cloud radiative heating to latent heating needs to be taken into account for more realistic studies of cloud radiative forcing on the large-scale circulation.

Li, Wei

2009-12-01T23:59:59.000Z

398

A ranking and exploration service based on large-scale usage data  

SciTech Connect

This poster presents the architecture and user interface of a prototype service that was designed to allow end-users to explore the s tructure of science and perform assessments of scholarly impact on the basis of large-scale usage data. The underlying usage data set was constructed by the NIESUR project which collected 1 billion usage events from a wide range of publishers, aggregators and institutional consortia.

Bollen, Johan [Los Alamos National Laboratory; Van De Sompel, Herbert L [Los Alamos National Laboratory; Balakireva, Lyudmila L [Los Alamos National Laboratory; Chute, Ryan M [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

399

The Effects of Human Resource Development on Operational and Financial Performance of Manufacturing Companies: A Large-Scale, Longitudinal Analysis  

E-Print Network (OSTI)

of Manufacturing Companies: A Large-Scale, Longitudinalfrom 207 manufacturing companies at three time points over aestimated that American companies spend approximately $134

Young Sung, Sun; Choi, Jin Nam

2011-01-01T23:59:59.000Z

400

NETL: News Release - Projects Selected to Address Challenges of Large-Scale  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 2008 3, 2008 Projects Selected to Address Challenges of Large-Scale Hydrogen Production from Coal and Coal-Biomass WASHINGTON, D. C. - The U.S. Department of Energy (DOE) announced today the selection of six projects that will address challenges facing the large-scale production of hydrogen from coal and coal-biomass mixtures. The ability of hydrogen to fuel transportation, power generation and industrial processes with only water as a by-product makes it an efficient and clean fuel to meet growing U.S. energy demands while assuring energy security. The National Academies affirmed in a 2004 report that hydrogen could fundamentally transform U.S. energy systems, but coal must be a significant component for making very large amounts of the gas. To address the challenges of large-scale production of hydrogen from coal, the Hydrogen Fuel Initiative was launched in 2003, announcing a $1.2 billion commitment to a hydrogen economy that minimizes America's dependence on foreign oil and reduces greenhouse gas emissions. The Presidential initiative also provides funding for hydrogen research and development (R&D).

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Best Practices and Tools for Large-scale Deployment of Renewable Energy and  

Open Energy Info (EERE)

Best Practices and Tools for Large-scale Deployment of Renewable Energy and Best Practices and Tools for Large-scale Deployment of Renewable Energy and Energy Efficiency Techniques Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Best Practices and Tools for Large-scale Deployment of Renewable Energy and Energy Efficiency Techniques in ESCWA Agency/Company /Organization: United Nations Economic and Social Commission for Western Asia Focus Area: Energy Efficiency, Renewable Energy, Solar, Wind Topics: Implementation, Policies/deployment programs, Background analysis Resource Type: Lessons learned/best practices Website: www.escwa.un.org/information/publications/edit/upload/sdpd-09-TP3.pdf Country: Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Sudan, Syria, United Arab Emirates, Yemen UN Region: "Western Asia & North Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

402

Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station  

Science Conference Proceedings (OSTI)

The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the time that enhanced AC was injected, the average mercury removal for the month long test was approximately 74% across the test baghouse module. ACI was interrupted frequently during the month long test because the test baghouse module was bypassed frequently to relieve differential pressure. The high air-to-cloth ratio of operations at this unit results in significant differential pressure, and thus there was little operating margin before encountering differential pressure limits, especially at high loads. This limited the use of sorbent injection as the added material contributes to the overall differential pressure. This finding limits sustainable injection of AC without appropriate modifications to the plant or its operations. Handling and storage issues were observed for the TOXECON ash-AC mixture. Malfunctioning equipment led to baghouse dust hopper plugging, and storage of the stagnant material at flue gas temperatures resulted in self-heating and ignition of the AC in the ash. In the hoppers that worked properly, no such problems were reported. Economics of mercury control at Big Brown were estimated for as-tested scenarios and scenarios incorporating changes to allow sustainable operation. This project was funded under the U.S. Department of Energy National Energy Technology Laboratory project entitled 'Large-Scale Mercury Control Technology Field Testing Program--Phase II'.

John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

2009-01-07T23:59:59.000Z

403

DOE Field Operations Program EV and HEV Testing  

SciTech Connect

The United States Department of Energy’s (DOE) Field Operations Program tests advanced technology vehicles (ATVs) and disseminates the testing results to provide fleet managers and other potential ATV users with accurate and unbiased information on vehicle performance. The ATVs (including electric, hybrid, and other alternative fuel vehicles) are tested using one or more methods - Baseline Performance Testing (EVAmerica and Pomona Loop), Accelerated Reliability Testing, and Fleet Testing. The Program (http://ev.inel.gov/sop) and its nine industry testing partners have tested over 30 full-size electric vehicle (EV) models and they have accumulated over 4 million miles of EV testing experience since 1994. In conjunction with several original equipment manufacturers, the Program has developed testing procedures for the new classes of hybrid, urban, and neighborhood EVs. The testing of these vehicles started during 2001. The EVS 18 presentation will include (1) EV and hybrid electric vehicle (HEV) test results, (2) operating experience with and performance trends of various EV and HEV models, and (3) experience with operating hydrogen-fueled vehicles. Data presented for EVs will include vehicle efficiency (km/kWh), average distance driven per charge, and range testing results. The HEV data will include operating considerations, fuel use rates, and range testing results.

Francfort, James Edward; Slezak, L. A.

2001-10-01T23:59:59.000Z

404

Creation of the dam for the No. 2 Kambaratinskaya HPP by large-scale blasting: analysis of planning experience and lessons learned  

SciTech Connect

Results of complex instrument observations and video taping during large-scale blasts detonated for creation of the dam at the No. 2 Kambaratinskaya HPP on the Naryn River in the Kyrgyz Republic are analyzed. Tests of the energy effectiveness of the explosives are evaluated, characteristics of LSB manifestations in seismic and air waves are revealed, and the shaping and movement of the rock mass are examined. A methodological analysis of the planning and production of the LSB is given.

Shuifer, M. I.; Argal, E. S. [JSC 'Gidrospetsproekt' (Russian Federation)

2012-05-15T23:59:59.000Z

405

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage  

E-Print Network (OSTI)

A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage Yuan Yang develop a new lithium/ polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li2S8) in ether solvent as a catholyte and metallic lithium as an anode. Unlike

Cui, Yi

406

BUILDING UNDERWATER AD-HOC NETWORKS AND SENSOR NETWORKS FOR LARGE SCALE REAL-TIME AQUATIC APPLICATIONS  

E-Print Network (OSTI)

BUILDING UNDERWATER AD-HOC NETWORKS AND SENSOR NETWORKS FOR LARGE SCALE REAL-TIME AQUATIC, CT 06269 Gainesville, FL 32611 Abstract-- Large-scale Underwater Ad-hoc Networks (UANET) and Underwater Sensor Networks (UWSN) are novel networking paradigms to explore the uninhabited oceans. How- ever

Cui, Jun-Hong

407

Field test plan: Buried waste technologies, Fiscal Year 1995  

SciTech Connect

The US Department of Energy, Office of Technology Development, supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that, when integrated with commercially available baseline technologies, form a comprehensive remediation system for the effective and efficient remediation of buried waste. The Fiscal Year 1995 effort is to deploy and test multiple technologies from four functional areas of buried waste remediation: site characterization, waste characterization, retrieval, and treatment. This document is the basic operational planning document for the deployment and testing of the technologies that support the field testing in Fiscal Year 1995. Discussed in this document are the scope of the tests; purpose and objective of the tests; organization and responsibilities; contingency plans; sequence of activities; sampling and data collection; document control; analytical methods; data reduction, validation, and verification; quality assurance; equipment and instruments; facilities and utilities; health and safety; residuals management; and regulatory management.

Heard, R.E.; Hyde, R.A. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Engleman, V.S.; Evans, J.D.; Jackson, T.W. [Science Applications International Corp., San Diego, CA (United States)

1995-06-01T23:59:59.000Z

408

Seasonal variations of grounding parameters by field tests  

SciTech Connect

The past fifteen years have seen considerable research in the area of substation grounding design, analysis and testing. These research include the revision of the IEEE Std.-80, the development of PC based computer programs, the in depth analysis of grounding parameters and the development of new field testing methods and devices. In spite of these advances, several questions were often asked, primarily due to safety concerns. The questions were related to the seasonal variation of critical grounding parameters such as the soil and gravel resistivities and their influence on the body current in an accidental circuit. There was also a need to study the total behavior of a substation ground grid with respect to different weather conditions by performing field tests. In response to the above needs, a comprehensive field test program was developed and implemented. The field test consisted of flowing approximately 150 amperes through the Texas Valley ground grid from a remote substation. The parameters investigated in this project were the grid impedance, the grid potential rise (GPR) , the fault current distribution, the touch/step voltages, the body current on different gravel beds and the soil/gravel resistivities. The measurements were performed in the rainy, winter and summer weather conditions during 1989--1990. The field test results, overall, indicate that the rainy weather is the worst condition for the substation safety because of the substantial reduction in the protective characteristics of the gravel. Among the gravel types, the washed gravel has much superior protective characteristics compared to the crusher run type of gravel. A comparison of SGSYS computed grounding parameters with measured results indicates that the grid resistance and GPR compare well but the computed touch voltage and body current are substantially higher than the measured values.

Patel, S.G. (Georgia Power Co., Forest Park, GA (United States). Research Center)

1992-07-01T23:59:59.000Z

409

Synthesis of ordered large-scale ZnO nanopore arrays  

SciTech Connect

An effective approach is demonstrated for growing ordered large-scale ZnO nanopore arrays through radio-frequency magnetron sputtering deposition on porous alumina membranes (PAMs). The realization of highly ordered hexagonal ZnO nanopore arrays benefits from the unique properties of ZnO (hexagonal structure, polar surfaces, and preferable growth directions) and PAMs (controllable hexagonal nanopores and localized negative charges). Further evidence has been shown through the effects of nanorod size and thermal treatment of PAMs on the yielded morphology of ZnO nanopore arrays. This approach opens the possibility of creating regular semiconducting nanopore arrays for the application of filters, sensors, and templates.

Ding, G.Q.; Shen, W.Z.; Zheng, M.J.; Fan, D.H. [Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, Department of Physics, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China)

2006-03-06T23:59:59.000Z

410

Non-linearity of large-scale structure formation in the Universe  

E-Print Network (OSTI)

In the standard picture of cosmological structure formation, the Universe we see today is evolved under the gravitational instability from tiny random fluctuations. In this talk I discuss the onset of non-linearity in the large scale structure formation of the Universe when the linear perturbation theory break downs. Using 1D Zel'dovich Approximation which provides an exact solution for density evolution, I illustrate two effects: mode spawning and mode merging and their connection to mode coupling. Those mode couplings (quadratic, cubic >...etc.) from gravitational clustering are in fact what the polyspectra (bispectrum, trispectrum...etc.) are meant to measure.

Lung-Yih Chiang

2005-08-17T23:59:59.000Z

411

Non-linearity of large-scale structure formation in the Universe  

E-Print Network (OSTI)

In the standard picture of cosmological structure formation, the Universe we see today is evolved under the gravitational instability from tiny random fluctuations. In this talk I discuss the onset of non-linearity in the large scale structure formation of the Universe when the linear perturbation theory break downs. Using 1D Zel'dovich Approximation which provides an exact solution for density evolution, I illustrate two effects: mode spawning and mode merging and their connection to mode coupling. Those mode couplings (quadratic, cubic >...etc.) from gravitational clustering are in fact what the polyspectra (bispectrum, trispectrum...etc.) are meant to measure.

Chiang, L Y

2005-01-01T23:59:59.000Z

412

Capacity degradation of field-tested silica gel samples  

DOE Green Energy (OSTI)

Researchers at the Solar Energy Research Institute (SERI) have begun preliminary studies to quantify the effect of contamination of silica gel used in dehumidification processes of desiccant cooling systems. Sorption capacity degradation of field tested samples was measured, and the source of degradation was quantified using surface analysis experimental methods.

Penney, T.R.; Pesaran, A.A.; Thomas, T.M.

1985-06-01T23:59:59.000Z

413

FIELD OBSERVATIONS OF GAS-CONDENSATE WELL TESTING  

E-Print Network (OSTI)

, a commercial simulator was used to perform phase- equilibrium and property calculations based on the PengFIELD OBSERVATIONS OF GAS- CONDENSATE WELL TESTING A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY-point pressure is impacted severely due to condensate banking around the wellbore. Condensate banking also

414

Gas characterization system 241-AN-105 field acceptance test procedure  

DOE Green Energy (OSTI)

This document details the field Acceptance Testing of a gas characterization system being installed on waste tank 241-AN-105. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

Schneider, T.C.

1996-03-01T23:59:59.000Z

415

Gas characterization system 241-AW-101 field acceptance test procedure  

DOE Green Energy (OSTI)

This document details the field Acceptance Testing of a gas characterization system being installed on waste tank 241-AW-101. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

Schneider, T.C.

1996-03-01T23:59:59.000Z

416

SOLERAS - Solar Cooling Engineering Field Test Project: Honeywell Technology Strategy Center. Final report, Volume 2. Engineering field test  

Science Conference Proceedings (OSTI)

The SOLERAS solar cooling system at Arizona Public Service Company in Phoenix, Arizona, was subjected to engineering field testing for a period of 18 months. Although some problems arose, which is typical with a new engineering model, the system generally ran well. This document describes the work completed in all three phases of this program, which included the preliminary analysis and detailed design of the solar cooling system, installation, testing, and data analysis.

Not Available

1982-01-01T23:59:59.000Z

417

Prototype Engineered Barrier System Field Test (PEBSFT); Final report  

SciTech Connect

This final report represents a summary of data and interpretations obtained from the Prototype Engineered Barrier System Field Test (PEBSFT) performed in G-Tunnel within the Nevada Test Site. The PEBSFT was conducted to evaluate the applicability of measurement techniques, numerical models, and procedures developed for future field tests that will be conducted in the Exploratory Studies Facilities (ESF) at Yucca Mountain. The primary objective of the test was to provide a basis for determining whether tests planned for the ESF have the potential to be successful. Chapter 1 on high frequency electromagnetic tomography discusses the rock mass electromagnetic permittivity and attenuation rate changes that were measured to characterize the water distribution in the near field of a simulated waste container. The data are used to obtain quantitative estimates of how the moisture content in the rock mass changes during heating and to infer properties of the spatial variability of water distribution, leading to conclusions about the role of fractures in the system. Chapter 2 discusses the changes in rock moisture content detected by the neutron logging probe. Chapter 3 permeability tests discusses the characterization of the in-situ permeability of the fractured tuff around the borehole. The air permeability testing apparatus, the testing procedures, and the data analysis are presented. Chapter 4 describes the moisture collection system installed in the heater borehole to trap and measure the moisture volumes. Chapter 5 describes relative humidity measurements made with the thermocouple psychrometer and capacitance sensors. Chapter 6 discusses gas pressure measurements in the G-Tunnel, addressing the calibration and installation of piezoresistive-gaged transducers. Chapter 7 describes the calibration and installation of thermocouples for temperature measurements. Chapter 8 discusses the results of the PEBSFT.

Ramirez, A.L. [ed.; Buscheck, T.; Carlson, R.; Daily, W.; Lee, K.; Lin, Wunan; Mao, Nai-hsien; Ueng, Tzou-Shin; Wang, H.; Watwood, D.

1991-08-01T23:59:59.000Z

418

The effect of a fifth large-scale space-time dimension on orbital dynamics  

E-Print Network (OSTI)

A model based on simple assumptions about 4-dimensional space-time being closed and isotropic, and embedded in a 5th large-scale dimension, r, representing the radius of curvature of space-time, has been used in an application of Newton's Second Law to describe a system with angular momentum. It has been found that the equations of MOND used to explain the rotation curves of galaxies appear as a limit within this derivation and that there is a universal acceleration constant, ao, with a value, again consistent with that used by MOND. This approach does not require modification of Newtonian dynamics, only its extension into a fifth large-scale dimension. The transition from the classical Newtonian dynamics to the MOND regime emerges naturally and without the introduction of arbitrary fitting functions, if this 5-dimensional model is adopted. The paper also includes the derivation of an effect in 5-dimensional orbital dynamics which is in reasonable agreement with the observed Pioneer Anomaly.

M. B. Gerrard; T. J. Sumner

2006-05-12T23:59:59.000Z

419

First Large Scale Production of Low Radioactivity Argon From Underground Sources  

E-Print Network (OSTI)

We report on the first large-scale production of low radioactivity argon from underground gas wells. Low radioactivity argon is of general interest, in particular for the construction of large scale WIMP dark matter searches and detectors of reactor neutrinos for non-proliferation efforts. Atmospheric argon has an activity of about 1 Bq/kg from the decays of 39Ar; the concentration of 39Ar in the underground argon we are collecting is at least a factor of 100 lower than this value. The argon is collected from a stream of gas from a CO2 well in southwestern Colorado with a Vacuum Pressure Swing Adsorption (VPSA) plant. The gas from the well contains argon at a concentration of 400-600 ppm, and the VPSA plant produces an output stream with an argon concentration at the level of 30,000-50,000 ppm (3-5%) in a single pass. This gas is sent for further processing to Fermilab where it is purified by cryogenic distillation. The argon production rate is presently 0.5 kg/day.

Back, Henning O; Condon, Christopher; de Haas, Ernst; Ford, Richard; Galbiati, Cristiano; Goretti, Augusto; Hohman, Tristan; Inanni, Andrea; Loer, Ben; Montanari, David; Nelson, Allan; Pocar, Andrea

2012-01-01T23:59:59.000Z

420

LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY  

DOE Green Energy (OSTI)

OAK B202 LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY. The ''Hydrogen Economy'' will reduce petroleum imports and greenhouse gas emissions. However, current commercial hydrogen production processes use fossil fuels and releases carbon dioxide. Hydrogen produced from nuclear energy could avoid these concerns. The authors have recently completed a three-year project for the US Department of Energy whose objective was to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-splitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen and to select one for further detailed consideration. The authors selected the Sulfur-Iodine cycle, In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this paper.

SCHULTZ,KR; BROWN,LC; BESENBRUCH,GE; HAMILTON,CJ

2003-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion  

SciTech Connect

The advent of highly accurate, large scale volumetric simulations has made data analysis and visualization techniques an integral part of the modern scientific process. To develop new insights from raw data, scientists need the ability to define features of interest in a flexible manner and to understand how changes in the feature definition impact the subsequent analysis of the data. Therefore, simply exploring the raw data is not sufficient. This paper presents a new topological framework for the analysis of large scale, time-varying, turbulent combustion simulations. It allows the scientists to explore interactively the complete parameter space of fuel consumption thresholds for an entire time-dependent combustion simulation. By computing augmented merge trees and their corresponding data segmentations, the system allows the user complete flexibility to segment, select, and track burning cells through time thanks to a linked view interface. We developed this technique in the context of low-swirl turbulent pre-mixed flame simulation analysis, where the topological abstractions enable an efficient tracking through time of the burning cells and provide new qualitative and quantitative insights into the dynamics of the combustion process.

Bremer, P; Weber, G; Tierny, J; Pascucci, V; Day, M; Bell, J

2009-09-29T23:59:59.000Z

422

Parallel supercomputing: Advanced methods, algorithms, and software for large-scale linear and nonlinear problems  

SciTech Connect

The program outlined here is directed to research on methods, algorithms, and software for distributed parallel supercomputers. Of particular interest are finite element methods and finite difference methods together with sparse iterative solution schemes for scientific and engineering computations of very large-scale systems. Both linear and nonlinear problems will be investigated. In the nonlinear case, applications with bifurcation to multiple solutions will be considered using continuation strategies. The parallelizable numerical methods of particular interest are a family of partitioning schemes embracing domain decomposition, element-by-element strategies, and multi-level techniques. The methods will be further developed incorporating parallel iterative solution algorithms with associated preconditioners in parallel computer software. The schemes will be implemented on distributed memory parallel architectures such as the CRAY MPP, Intel Paragon, the NCUBE3, and the Connection Machine. We will also consider other new architectures such as the Kendall-Square (KSQ) and proposed machines such as the TERA. The applications will focus on large-scale three-dimensional nonlinear flow and reservoir problems with strong convective transport contributions. These are legitimate grand challenge class computational fluid dynamics (CFD) problems of significant practical interest to DOE. The methods developed and algorithms will, however, be of wider interest.

Carey, G.F.; Young, D.M.

1993-12-31T23:59:59.000Z

423

Wind tunnel test of 1/30 scale heliostat field array model. Test report  

DOE Green Energy (OSTI)

From 9 January through 20 January 1978, Honeywell conducted a wind tunnel test on a 1/30 scale partial heliostat field. The heliostats were per Honeywell's design developed under the 10 megawatt central receiver pilot electrical power plant subsystem research experiment contract. Likewise, the scaled section of the field geometry duplicated the proposed circular layout. Testing was conducted at the Georgia Institute of Technology's 9 foot subsonic tunnel. The objective of the test was to ascertain from a qualitative standpoint the field effects upon wind loading within a heliostat field. To accomplish this, numerous pressure tap measurements at different heights and at different field positions were taken with varying wind speeds, fence designs, and heliostat gimbal orientations. The Department of Energy specified boundary layer profile was also scaled by 1/30 in order to simulate the total wind effects as accurately as possible taking into account the potentially severe scaling or Reynolds number effects at a 1/30 scale. After initial model set-up within the tunnel and scaled boundary layer generated, 91 separate runs were accomplished. The results do demonstrate the high sensitivity of wind loading upon the collector field due to the actual heliostat orientation and fence geometry. Vertical pressure gradients within the model field and flow reentry angles provide a good qualitative feel as to the full scale environment that might be expected and point to the need for specific additional testing to further explore potentially dangerous conditions.

Brown, G. L.

1978-02-22T23:59:59.000Z

424

Flow reference method testing and analysis: Field test plan, Texas Utilities Decordova Steam Electric Station  

SciTech Connect

This report describes the experimental design and test plan for the first of three field tests that the US Environmental Protection Agency (EPA) conducted in 1997 as part of a major study to evaluate potential improvements to Method 2, EPA`s test method for measuring flue gas volumetric flow in stacks. The experimental design involved four test teams taking concurrent in-stack measurements with velocity sensing probes. Seven types of probes were included in the study. Three test matrices were used to gather data for inter-probe and inter-team comparisons and to assess the impact of velocity decline near the stack wall on volumetric flow measurements.

Lieberman, E.; Werner, A.S.

1997-05-30T23:59:59.000Z

425

Field Testing: Independent, Accredited Testing and Validation for the Wind Industry (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the field testing capabilities at the National Wind Technology Center (NWTC). NREL's specialized facilities and personnel at the NWTC provide the U.S. wind industry with scientific and engineering support that has proven critical to the development of wind energy for U.S. energy needs. The NWTC's specialized field-testing capabilities have evolved over 30 years of continuous support by the U.S. Department of Energy Wind and Hydropower Technologies Program and long standing industry partnerships. The NWTC provides wind industry manufacturers, developers, and operators with turbine and component testing all in one convenient location. Although industry utilizes sophisticated modeling tools to design and optimize turbine configurations, there are always limitations in modeling capabilities, and testing is a necessity to ensure performance and reliability. Designs require validation and testing is the only way to determine if there are flaws. Prototype testing is especially important in capturing manufacturing flaws that might require fleet-wide retrofits. The NWTC works with its industry partners to verify the performance and reliability of wind turbines that range in size from 400 Watts to 3 megawatts. Engineers conduct tests on components and full-scale turbines in laboratory environments and in the field. Test data produced from these tests can be used to validate turbine design codes and simulations that further advance turbine designs.

Not Available

2011-11-01T23:59:59.000Z

426

Regional climate consequences of large-scale cool roof and photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

climate consequences of large-scale cool roof and photovoltaic climate consequences of large-scale cool roof and photovoltaic array deployment Title Regional climate consequences of large-scale cool roof and photovoltaic array deployment Publication Type Journal Article Year of Publication 2011 Authors Millstein, Dev, and Surabi Menon Journal Environmental Research Letters Volume 6 Start Page 1 Pagination 9 Date Published 07/2011 Keywords co2 offsets, cool roofs, photovoltaics, radiative forcing, urban environment Abstract Modifications to the surface albedo through the deployment of cool roofs and pavements (reflective materials) and photovoltaic arrays (low reflection) have the potential to change radiative forcing, surface temperatures, and regional weather patterns. In this work we investigate the regional climate and radiative effects of modifying surface albedo to mimic massive deployment of cool surfaces (roofs and pavements) and, separately, photovoltaic arrays across the United States. We use a fully coupled regional climate model, the Weather Research and Forecasting (WRF) model, to investigate feedbacks between surface albedo changes, surface temperature, precipitation and average cloud cover. With the adoption of cool roofs and pavements, domain-wide annual average outgoing radiation increased by 0.16 ± 0.03 W m-2 (mean ± 95% C.I.) and afternoon summertime temperature in urban locations was reduced by 0.11-0.53 "C, although some urban areas showed no statistically significant temperature changes. In response to increased urban albedo, some rural locations showed summer afternoon temperature increases of up to +0.27 "C and these regions were correlated with less cloud cover and lower precipitation. The emissions offset obtained by this increase in outgoing radiation is calculated to be 3.3 ± 0.5 Gt CO2 (mean ± 95% C.I.). The hypothetical solar arrays were designed to be able to produce one terawatt of peak energy and were located in the Mojave Desert of California. To simulate the arrays, the desert surface albedo was darkened, causing local afternoon temperature increases of up to +0.4 "C. Due to the solar arrays, local and regional wind patterns within a 300 km radius were affected. Statistically significant but lower magnitude changes to temperature and radiation could be seen across the domain due to the introduction of the solar arrays. The addition of photovoltaic arrays caused no significant change to summertime outgoing radiation when averaged over the full domain, as interannual variation across the continent obscured more consistent local forcing.

427

Regional climate consequences of large-scale cool roof and photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

climate consequences of large-scale cool roof and photovoltaic climate consequences of large-scale cool roof and photovoltaic array deployment Title Regional climate consequences of large-scale cool roof and photovoltaic array deployment Publication Type Journal Article Year of Publication 2011 Authors Millstein, Dev, and Surabi Menon Journal Environmental Research Letters Volume 6 Start Page 1 Pagination 9 Date Published 07/2011 Keywords co2 offsets, cool roof, photovoltaics, radiative forcing, urban environment Abstract Modifications to the surface albedo through the deployment of cool roofs and pavements (reflective materials) and photovoltaic arrays (low reflection) have the potential to change radiative forcing, surface temperatures, and regional weather patterns. In this work we investigate the regional climate and radiative effects of modifying surface albedo to mimic massive deployment of cool surfaces (roofs and pavements) and, separately, photovoltaic arrays across the United States. We use a fully coupled regional climate model, the Weather Research and Forecasting (WRF) model, to investigate feedbacks between surface albedo changes, surface temperature, precipitation and average cloud cover. With the adoption of cool roofs and pavements, domain-wide annual average outgoing radiation increased by 0.16 ± 0.03 W m-2 (mean ± 95% C.I.) and afternoon summertime temperature in urban locations was reduced by 0.11-0.53 "C, although some urban areas showed no statistically significant temperature changes. In response to increased urban albedo, some rural locations showed summer afternoon temperature increases of up to +0.27 "C and these regions were correlated with less cloud cover and lower precipitation. The emissions offset obtained by this increase in outgoing radiation is calculated to be 3.3 ± 0.5 Gt CO2 (mean ± 95% C.I.). The hypothetical solar arrays were designed to be able to produce one terawatt of peak energy and were located in the Mojave Desert of California. To simulate the arrays, the desert surface albedo was darkened, causing local afternoon temperature increases of up to +0.4 "C. Due to the solar arrays, local and regional wind patterns within a 300 km radius were affected. Statistically significant but lower magnitude changes to temperature and radiation could be seen across the domain due to the introduction of the solar arrays. The addition of photovoltaic arrays caused no significant change to summertime outgoing radiation when averaged over the full domain, as interannual variation across the continent obscured more consistent local forcing.

428

NETL: News Release - DOE Announces Further Field Testing of Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Announces Further Field Testing of Advanced Mercury Control Technologies DOE Announces Further Field Testing of Advanced Mercury Control Technologies Six Projects Selected in Round 2 to Address Future Power Plant Mercury Reduction Initiatives PITTSBURGH, PA - With an eye on future federal regulations aimed at reducing mercury emissions, the U.S. Department of Energy has selected six additional projects as part of a DOE research program to advance the technical readiness of mercury control options for the Nation's fleet of coal-fired power plants. The six projects in this second round of awards build on last year's selection of eight projects, and will verify technology performance, evaluate costs, and assess balance-of-plant impacts. The projects will field test advanced, post-combustion technologies involving all coal types at utilities using pulverized coal or cyclone-boiler configurations, and focus on technologies capable of removing mercury from flue gas containing higher concentrations of elemental mercury. The technologies include sorbent injection, wet flue gas desulfurization systems enhancement, and combustion optimization.

429

Environmental Consequences of Large-Scale Deployment of New Energy Systems  

SciTech Connect

This project's scientific goal was to achieve better understanding of where land cover change may mitigate climate change, accounting for both direct climate effects as well as the impacts on the global carbon cycle. As tools for investigating this problem, several models of different complexities were used: an offline land model, a standard coupled climate model, and a model in which coupled carbon-climate interactions were explicitly represented. Results from all model simulations were qualitatively similar: climate mitigation projects involving large-scale re-growth of forests are predicted to be beneficial in mitigating future CO{sub 2}-induced global warming if these are carried out in the tropical latitudes, to be largely ineffectual if conducted in temperate latitudes, and to be counterproductive if implemented at high latitudes. Details of the quantitative differences in these predictions which are exhibited by the chosen climate models also are discussed.

Phillips, T J

2007-02-23T23:59:59.000Z

430

ESS 2012 Peer Review - Nitrogen-Oxygen Battery for Large Scale Energy Storage - Frank Delnick, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

US DOE Energy Storage Systems Research Program US DOE Energy Storage Systems Research Program Peer Review, Washington, DC Sept. 26-28, 2012 Frank Delnick, David Ingersoll, Karen Waldrip, Peter Feibelman Nitrogen/Oxygen Battery A Transformational Architecture for Large Scale Energy Storage Power Sources Technology Group Sandia National Laboratories Albuquerque, NM SAND2012-7881P N 2 /O 2 Battery Project Overview  Air/Air battery.  N 2 electrochemistry enables the redefinition of a gas (diffusion) electrode and the three phase interface.  Operated as redox flow battery.  Provide a very high energy density, very low cost, environmentally benign electrochemical platform for load leveling and for grid-integrated storage of energy generated by wind, solar and other sustainable but intermittent sources.

431

Large-scale Gadolinium-doped Water Cerenkov Detector for Non-Proliferation  

E-Print Network (OSTI)

Fission events from Special Nuclear Material (SNM), such as highly enriched uranium or plutonium, can produce simultaneous emission of multiple neutrons and high energy gamma-rays. The observation of time correlations between any of these particles is a significant indicator of the presence of fissionable material. Cosmogenic processes can also mimic these types of correlated signals. However, if the background is sufficiently low and fully characterized, significant changes in the correlated event rate in the presence of a target of interest constitutes a robust signature of the presence of SNM. Since fission emissions are isotropic, adequate sensitivity to these multiplicities requires a high efficiency detector with a large solid angle with respect to the target. Water Cerenkov detectors are a cost-effective choice when large solid angle coverage is required. In order to characterize the neutron detection performance of large-scale water Cerenkov detectors, we have designed and built a 3.5 kL water Cerenko...

Sweany, M; Bowden, N S; Dazeley, S; Keefer, G; Svoboda, R; Tripathi, M

2011-01-01T23:59:59.000Z

432

Strong effect of weak diffusion on scalar turbulence at large scales  

E-Print Network (OSTI)

Passive scalar turbulence forced steadily is characterized by the velocity correlation scale, $L$, injection scale, $l$, and diffusive scale, $r_d$. The scales are well separated if the diffusivity is small, $r_d\\ll l,L$, and one normally says that effects of diffusion are confined to smaller scales, $r\\ll r_d$. However, if the velocity is single scale one finds that a weak dependence of the scalar correlations on the molecular diffusivity persists to even larger scales, e.g. $l\\gg r\\gg r_d$ \\cite{95BCKL}. We consider the case of $L\\gg l$ and report a counter-intuitive result -- the emergence of a new range of large scales, $L\\gg r\\gg l^2/r_d$, where the diffusivity shows a strong effect on scalar correlations.

M. Chertkov; I. Kolokolov; V. Lebedev

2007-06-20T23:59:59.000Z

433

Modulational instability, wave breaking and formation of large scale dipoles in the atmosphere  

E-Print Network (OSTI)

In the present Letter we use the Direct Numerical Simulation (DNS) of the Navier-Stokes equation for a two-phase flow (water and air) to study the dynamics of the modulational instability of free surface waves and its contribution to the interaction between ocean and atmosphere. If the steepness of the initial wave is large enough, we observe a wave breaking and the formation of large scale dipole structures in the air. Because of the multiple steepening and breaking of the waves under unstable wave packets, a train of dipoles is released and propagate in the atmosphere at a height comparable with the wave length. The amount of energy dissipated by the breaker in water and air is considered and, contrary to expectations, we observe that the energy dissipation in air is larger than the one in the water. Possible consequences on the wave modelling and on the exchange of aerosols and gases between air and water are discussed.

Iafrati, A; Onorato, M

2012-01-01T23:59:59.000Z

434

Modulational instability, wave breaking and formation of large scale dipoles in the atmosphere  

E-Print Network (OSTI)

In the present Letter we use the Direct Numerical Simulation (DNS) of the Navier-Stokes equation for a two-phase flow (water and air) to study the dynamics of the modulational instability of free surface waves and its contribution to the interaction between ocean and atmosphere. If the steepness of the initial wave is large enough, we observe a wave breaking and the formation of large scale dipole structures in the air. Because of the multiple steepening and breaking of the waves under unstable wave packets, a train of dipoles is released and propagate in the atmosphere at a height comparable with the wave length. The amount of energy dissipated by the breaker in water and air is considered and, contrary to expectations, we observe that the energy dissipation in air is larger than the one in the water. Possible consequences on the wave modelling and on the exchange of aerosols and gases between air and water are discussed.

A. Iafrati; A. Babanin; M. Onorato

2012-08-27T23:59:59.000Z

435

Computation in Large-Scale Scientific and Internet Data Applications is a Focus of MMDS 2010  

E-Print Network (OSTI)

The 2010 Workshop on Algorithms for Modern Massive Data Sets (MMDS 2010) was held at Stanford University, June 15--18. The goals of MMDS 2010 were (1) to explore novel techniques for modeling and analyzing massive, high-dimensional, and nonlinearly-structured scientific and Internet data sets; and (2) to bring together computer scientists, statisticians, applied mathematicians, and data analysis practitioners to promote cross-fertilization of ideas. MMDS 2010 followed on the heels of two previous MMDS workshops. The first, MMDS 2006, addressed the complementary perspectives brought by the numerical linear algebra and theoretical computer science communities to matrix algorithms in modern informatics applications; and the second, MMDS 2008, explored more generally fundamental algorithmic and statistical challenges in modern large-scale data analysis.

Mahoney, Michael W

2010-01-01T23:59:59.000Z

436

Detecting and mitigating abnormal events in large scale networks: budget constrained placement on smart grids  

Science Conference Proceedings (OSTI)

Several scenarios exist in the modern interconnected world which call for an efficient network interdiction algorithm. Applications are varied, including various monitoring and load shedding applications on large smart energy grids, computer network security, preventing the spread of Internet worms and malware, policing international smuggling networks, and controlling the spread of diseases. In this paper we consider some natural network optimization questions related to the budget constrained interdiction problem over general graphs, specifically focusing on the sensor/switch placement problem for large-scale energy grids. Many of these questions turn out to be computationally hard to tackle. We present a particular form of the interdiction question which is practically relevant and which we show as computationally tractable. A polynomial-time algorithm will be presented for solving this problem.

Santhi, Nandakishore [Los Alamos National Laboratory; Pan, Feng [Los Alamos National Laboratory

2010-10-19T23:59:59.000Z

437

BCS MPI: N new approach i the system software design for large-scale parallel computers  

SciTech Connect

Buffered Co-Scheduled (BCS) MPI proposes a new approach to design the communication libraries for large-scale parallel machines. The emphasis of BCS MPI is on the global coordination of a large number of processes rather than in the traditional optimization of the local performance of a pair of communicating processes. BCS MPI delays the interprocessor communication in order to schedule globally the communication pattern and it is designed on top of a minimal set of collective communication primitives. In this paper we describe a prototype implementation of BCS MDI and its Communication protocols. The experimental results, executed on a set of scientific applications representative of the ASCI workload, show that BCS MPI is only marginally slower than the production-level MPI, but much simpler to implement, debug and analyze.

Fernández, J. C. (Juan C.); Petrini, F. (Fabrizio); Frachtenberg, E. (Eitan)

2003-01-01T23:59:59.000Z

438

BCS MPI: a new approach in the software design for large-scale parallel computers  

SciTech Connect

BCS MPI proposes a new approach to design the communication libraries for large scale parallel machines. The emphasis of BCS MPI is on the global coordination of the potentially large number of processes and in the reduction of the non determinism rather than in the traditional optimization of the local performance of a pair of communicating processes. BCS MPI delays the interprocessor communication in order to schedule globally the communication pattern and it is designed on top of a minimal set of collective communication primitives. In this paper we describe a prototype implementation of BCS MPI and its communication protocols. The experimental results, executed on a set of scientific applications representative of the ASCI workload, show that BCS MPI is only marginally slower than the production-level MPI, but much simpler to implement, debug and analyze.

Peinador, J. F. (Juan Fernandez); Petrini, F. (Fabrizio)

2003-01-01T23:59:59.000Z

439

Data Analysis and Visualization Environments for Large Scale Simulation as presented by  

E-Print Network (OSTI)

Sandia National Laboratories has been researching data analysis and visualization through several approaches. They have been research partners on several large open source projects as well as commercial and classified projects. Current research is centered around cluster solutions based largely on consumer hardware. Constantine Pavlakos outlined the historical research and the motivating problems behind the modern visualization efforts underway at SNL. The basic problem is that the data produced by large scale simulations is far too large to be handled sloppily. The data sets Mr. Pavlakos presented as examples were often on the order of half a petabyte in size. To address many of the issues associated with data sets of this scale Sandia has pursued cluster based solutions. I have a personal interest in this solution, and have experimented with the power wall that the UNM CS department

Constantine Pavlakos; Christopher E. Davis

2004-01-01T23:59:59.000Z

440

Environmental Consequences of Large-Scale Deployment of New Energy Systems  

DOE Green Energy (OSTI)

This project's scientific goal was to achieve better understanding of where land cover change may mitigate climate change, accounting for both direct climate effects as well as the impacts on the global carbon cycle. As tools for investigating this problem, several models of different complexities were used: an offline land model, a standard coupled climate model, and a model in which coupled carbon-climate interactions were explicitly represented. Results from all model simulations were qualitatively similar: climate mitigation projects involving large-scale re-growth of forests are predicted to be beneficial in mitigating future CO{sub 2}-induced global warming if these are carried out in the tropical latitudes, to be largely ineffectual if conducted in temperate latitudes, and to be counterproductive if implemented at high latitudes. Details of the quantitative differences in these predictions which are exhibited by the chosen climate models also are discussed.

Phillips, T J

2007-02-23T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Conceptual Framework and Levels of Abstraction for a Complex Large-Scale System  

SciTech Connect

A conceptual framework and levels of abstraction are created to apply across all potential threats. Bioterrorism is used as a complex example to describe the general framework. Bioterrorism is unlimited with respect to the use of a specific agent, mode of dissemination, and potential target. Because the threat is open-ended, there is a strong need for a common, systemic understanding of attack scenarios related to bioterrorism. In recognition of this large-scale complex problem, systems are being created to define, design and use the proper level of abstraction and conceptual framework in bioterrorism. The wide variety of biological agents and delivery mechanisms provide an opportunity for dynamic scale changes by the linking or interlinking of existing threat components. Concurrent impacts must be separated and evaluated in terms of a given environment and/or ‘abstraction framework.’

Simpson, Mary J.

2005-03-23T23:59:59.000Z

442

Large scale integration based, signal processor-its application and possible evolution  

Science Conference Proceedings (OSTI)

The micro-vector processor (MVP) is designed for applications ranging from expendable single-processor weapons and buoys to large multiprocessor federated systems. Multiple applications, easy reprogrammability, and low-power operation were achieved with an architecture that provides high throughput at moderate clock rates and maximum use of lsi circuts. The MVP software design includes support for both application programming in high-level language and implementation of signal-processing algorithms in a symbolic microprogramming language. These two programmability levels reduce software costs for new applications and for changing requirements. Two examples are used to illustrate MVP applications: cruise missile guidance and a multichannel acoustic beamformer. The MVP architecture, or some close derivative, is considered suitable for reimplementation in very large-scale integration. 2 references.

Harland, W.L.; Carvell, R. Jr.

1981-01-01T23:59:59.000Z

443

Improving Performance of Power Systems with Large-scale Variable Generation Additions  

Science Conference Proceedings (OSTI)

A power system with large-scale renewable resources, like wind and solar generation, creates significant challenges to system control performance and reliability characteristics because of intermittency and uncertainties associated with variable generation. It is important to quantify these uncertainties, and then incorporate this information into decision-making processes and power system operations. This paper presents three approaches to evaluate the flexibility needed from conventional generators and other resources in the presence of variable generation as well as provide this flexibility from a non-traditional resource – wide area energy storage system. These approaches provide operators with much-needed information on the likelihood and magnitude of ramping and capacity problems, and the ability to dispatch available resources in response to such problems.

Makarov, Yuri V.; Etingov, Pavel V.; Samaan, Nader A.; Lu, Ning; Ma, Jian; Subbarao, Krishnappa; Du, Pengwei; Kannberg, Landis D.

2012-07-22T23:59:59.000Z

444

Large scale shell model calculations for even-even $^{62-66}$Fe isotopes  

E-Print Network (OSTI)

The recently measured experimental data of Legnaro National Laboratories on neutron rich even isotopes of $^{62-66}$Fe with A=62,64,66 have been interpreted in the framework of large scale shell model. Calculations have been performed with a newly derived effective interaction GXPF1A in full $\\it{fp}$ space without truncation. The experimental data is very well explained for $^{62}$Fe, satisfactorily reproduced for $^{64}$Fe and poorly fitted for $^{66}$Fe. The increasing collectivity reflected in experimental data when approaching N=40 is not reproduced in calculated values. This indicates that whereas the considered valence space is adequate for $^{62}$Fe, inclusion of higher orbits from $\\it{sdg}$ shell is required for describing $^{66}$Fe.

P. C. Srivastava; I. Mehrotra

2009-07-23T23:59:59.000Z

445

Molecular Dynamics Simulations from SNL's Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)  

DOE Data Explorer (OSTI)

LAMMPS (http://lammps.sandia.gov/index.html) stands for Large-scale Atomic/Molecular Massively Parallel Simulator and is a code that can be used to model atoms or, as the LAMMPS website says, as a parallel particle simulator at the atomic, meso, or continuum scale. This Sandia-based website provides a long list of animations from large simulations. These were created using different visualization packages to read LAMMPS output, and each one provides the name of the PI and a brief description of the work done or visualization package used. See also the static images produced from simulations at http://lammps.sandia.gov/pictures.html The foundation paper for LAMMPS is: S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19 (1995), but the website also lists other papers describing contributions to LAMMPS over the years.

Plimpton, Steve; Thompson, Aidan; Crozier, Paul

446

Solving Large Scale Nonlinear Eigenvalue Problem in Next-Generation Accelerator Design  

SciTech Connect

A number of numerical methods, including inverse iteration, method of successive linear problem and nonlinear Arnoldi algorithm, are studied in this paper to solve a large scale nonlinear eigenvalue problem arising from finite element analysis of resonant frequencies and external Q{sub e} values of a waveguide loaded cavity in the next-generation accelerator design. They present a nonlinear Rayleigh-Ritz iterative projection algorithm, NRRIT in short and demonstrate that it is the most promising approach for a model scale cavity design. The NRRIT algorithm is an extension of the nonlinear Arnoldi algorithm due to Voss. Computational challenges of solving such a nonlinear eigenvalue problem for a full scale cavity design are outlined.

Liao, Ben-Shan; Bai, Zhaojun; /UC, Davis; Lee, Lie-Quan; Ko, Kwok; /SLAC

2006-09-28T23:59:59.000Z

447

The relationship between present large?scale forecast skill and new estimates of predictability error growth  

Science Conference Proceedings (OSTI)

Several new methods of verification are defined and tested on forecast error of current numerical models. The methods incorporate a notion of ‘‘usefulness’’ which is determined by placing upper and lower bounds on the error growth. The lower bound is derived from new estimates of predictability error growth produced by the NCAR Community Climate Model. The fields are spectrally decomposed to highlight forecast skill in various scales. The verification techniques are applied to forecast errors from the NMC and ECMWF operational models during 1979–82.

David P. Baumhefner

1984-01-01T23:59:59.000Z

448

Environmental Impacts From the Installation and Operation of Large-scale Solar Power Plants  

Science Conference Proceedings (OSTI)

Large-scale solar power plants are being developed at a rapid rate, and are setting up to use thousands or millions of acres of land globally. The environmental issues related to the installation and operation phases of such facilities have not, so far, been addressed comprehensively in the literature. Here we identify and appraise 32 impacts from these phases, under the themes of land use intensity, human health and well-being, plant and animal life, geohydrological resources, and climate change. Our appraisals assume that electricity generated by new solar power facilities will displace electricity from traditional U.S. generation technologies. Altogether we find 22 of the considered 32 impacts to be beneficial. Of the remaining 10 impacts, 4 are neutral, and 6 require further research before they can be appraised. None of the impacts are negative relative to traditional power generation. We rank the impacts in terms of priority, and find all the high-priority impacts to be beneficial. In quantitative terms, large-scale solar power plants occupy the same or less land per kW h than coal power plant life cycles. Removal of forests to make space for solar power causes CO{sub 2} emissions as high as 36 g CO{sub 2} kW h{sup -1}, which is a significant contribution to the life cycle CO{sub 2} emissions of solar power, but is still low compared to CO{sub 2} emissions from coal-based electricity that are about 1100 g CO{sub 2} kW h{sup -1}.

Fthenakis, V.; Turney, Damon

2011-04-23T23:59:59.000Z

449

A multiperiod optimization model to schedule large-scale petroleum development projects  

E-Print Network (OSTI)

This dissertation solves an optimization problem in the area of scheduling large-scale petroleum development projects under several resources constraints. The dissertation focuses on the application of a metaheuristic search Genetic Algorithm (GA) in solving the problem. The GA is a global search method inspired by natural evolution. The method is widely applied to solve complex and sizable problems that are difficult to solve using exact optimization methods. A classical resource allocation problem in operations research known under Knapsack Problems (KP) is considered for the formulation of the problem. Motivation of the present work was initiated by certain petroleum development scheduling problem in which large-scale investment projects are to be selected subject to a number of resources constraints in several periods. The constraints may occur from limitations in various resources such as capital budgets, operating budgets, and drilling rigs. The model also accounts for a number of assumptions and business rules encountered in the application that motivated this work. The model uses an economic performance objective to maximize the sum of Net Present Value (NPV) of selected projects over a planning horizon subject to constraints involving discrete time dependent variables. Computational experiments of 30 projects illustrate the performance of the model. The application example is only illustrative of the model and does not reveal real data. A Greedy algorithm was first utilized to construct an initial estimate of the objective function. GA was implemented to improve the solution and investigate resources constraints and their effect on the assets value. The timing and order of investment decisions under constraints have the prominent effect on the economic performance of the assets. The application of an integrated optimization model provides means to maximize the financial value of the assets, efficiently allocate limited resources and to analyze more scheduling alternatives in less time.

Husni, Mohammed Hamza

2008-12-01T23:59:59.000Z

450

Survey and analysis of selected jointly owned large-scale electric utility storage projects  

DOE Green Energy (OSTI)

The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

Not Available

1982-05-01T23:59:59.000Z

451

Formation of large-scale structures in ablative Kelvin-Helmholtz instability  

SciTech Connect

In this research, we studied numerically nonlinear evolutions of the Kelvin-Helmholtz instability (KHI) with and without thermal conduction, aka, the ablative KHI (AKHI) and the classical KHI (CKHI). The second order thermal conduction term with a variable thermal conductivity coefficient is added to the energy equation in the Euler equations in the AKHI to investigate the effect of thermal conduction on the evolution of large and small scale structures within the shear layer which separate the fluids with different velocities. The inviscid hyperbolic flux of Euler equation is computed via the classical fifth order weighted essentially nonoscillatory finite difference scheme and the temperature is solved by an implicit fourth order finite difference scheme with variable coefficients in the second order parabolic term to avoid severe time step restriction imposed by the stability of the numerical scheme. As opposed to the CKHI, fine scale structures such as the vortical structures are suppressed from forming in the AKHI due to the dissipative nature of the second order thermal conduction term. With a single-mode sinusoidal interface perturbation, the results of simulations show that the growth of higher harmonics is effectively suppressed and the flow is stabilized by the thermal conduction. With a two-mode sinusoidal interface perturbation, the vortex pairing is strengthened by the thermal conduction which would allow the formation of large-scale structures and enhance the mixing of materials. In summary, our numerical studies show that thermal conduction can have strong influence on the nonlinear evolutions of the KHI. Thus, it should be included in applications where thermal conduction plays an important role, such as the formation of large-scale structures in the high energy density physics and astrophysics.

Wang, L. F. [SMCE, China University of Mining and Technology, Beijing 100083 (China); CAPT, Peking University, Beijing 100871 (China) and LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Department of Mathematics, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Ye, W. H.; He, X. T. [CAPT, Peking University, Beijing 100871 (China) and LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Department of Physics, Zhejiang University, Hangzhou 310027 (China); Don, Wai-Sun [Department of Mathematics, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Sheng, Z. M. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Y. J. [SMCE, China University of Mining and Technology, Beijing 100083 (China)

2010-12-15T23:59:59.000Z

452

LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS  

DOE Green Energy (OSTI)

Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

James E. O'Brien

2010-08-01T23:59:59.000Z

453

Volcanic Eruptions, Large-Scale Modes in the Northern Hemisphere, and the El Niño–Southern Oscillation  

Science Conference Proceedings (OSTI)

The author analyzes the impact of 13 major stratospheric aerosol producing volcanic eruptions since 1870 on the large-scale variability modes of sea level pressure in the Northern Hemisphere winter. The paper focuses on the Arctic Oscillation (AO)...

Bo Christiansen

2008-03-01T23:59:59.000Z

454

The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over Europe and its Intermittency  

E-Print Network (OSTI)

In times of increasing importance of wind power in the world’s energy mix, this study focuses on a better understanding of the influences of large-scale climate variability on wind power resource over Europe. The impact ...

Kriesche, Pascal

455

A Poisson Regression Index for Tropical Cyclone Genesis and the Role of Large-Scale Vorticity in Genesis  

Science Conference Proceedings (OSTI)

A Poisson regression between the observed climatology of tropical cyclogenesis (TCG) and large-scale climate variables is used to construct a TCG index. The regression methodology is objective and provides a framework for the selection of the ...

Michael K. Tippett; Suzana J. Camargo; Adam H. Sobel

2011-05-01T23:59:59.000Z

456

Influence of Large-Scale Flow Regimes on Cool-Season Precipitation in the Northeastern United States  

Science Conference Proceedings (OSTI)

The influence of large-scale flow regimes on cool-season (November–April) northeastern U.S. (Northeast) precipitation is investigated for the period 1948–2003 from statistical and synoptic perspectives. These perspectives are addressed through (i)...

Heather M. Archambault; Lance F. Bosart; Daniel Keyser; Anantha R. Aiyyer

2008-08-01T23:59:59.000Z

457

On the Effects of Large-Scale Environment and Surface Types on Convective Cloud Characteristics over Darwin, Australia  

Science Conference Proceedings (OSTI)

Two seasons of Darwin, Australia, C-band polarimetric (CPOL) research radar, radiosoundings, and lightning data are examined to study the relative influence of the large-scale atmospheric regimes and the underlying surface types on tropical ...

Vickal V. Kumar; Alain Protat; Peter T. May; Christian Jakob; Guillaume Penide; Sushil Kumar; Laura Davies

2013-04-01T23:59:59.000Z

458

Interannual Variability of Rhine River Streamflow and Its Relationship with Large-Scale Anomaly Patterns in Spring and Autumn  

Science Conference Proceedings (OSTI)

Interannual-to-decadal variability of Rhine River streamflow and their relationship with large-scale climate anomaly patterns for spring [March–May (MAM)] and autumn [September–November (SON)] are investigated through a statistical analysis of ...

Monica Ionita; Gerrit Lohmann; Norel Rimbu; Silvia Chelcea

2012-02-01T23:59:59.000Z

459

The Role of the state in large-scale hydropower development perspectives from Chile, Ecuador, and Perú  

E-Print Network (OSTI)

In recent years, governments in South America have turned to large-scale hydropower as a cost-effective way to improve livelihoods while addressing the energy 'trilemma': ensuring that future energy technologies provide ...

Zambrano-Barragán, Patricio Xavier

2012-01-01T23:59:59.000Z

460

Generation of acoustic-gravity waves in ionospheric HF heating experiments : simulating large-scale natural heat sources  

E-Print Network (OSTI)

In this thesis, we investigate the potential role played by large-scale anomalous heat sources (e.g. prolonged heat wave events) in generating acoustic-gravity waves (AGWs) that might trigger widespread plasma turbulence ...

Pradipta, Rezy

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "large-scale field test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.