National Library of Energy BETA

Sample records for large-scale experiment initiated

  1. The Phoenix series large scale LNG pool fire experiments.

    SciTech Connect (OSTI)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  2. Large-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect (OSTI)

    Schonewill, Philip P.; Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Kurath, Dean E.; Adkins, Harold E.; Billing, Justin M.; Burns, Carolyn A.; Davis, James M.; Enderlin, Carl W.; Fischer, Christopher M.; Jenks, Jeromy WJ; Lukins, Craig D.; MacFarlan, Paul J.; Shutthanandan, Janani I.; Smith, Dennese M.

    2012-12-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and rectangular slots. The round holes ranged in size from 0.2 to 4.46 mm. The slots ranged from (width × length) 0.3 × 5 to 2.74 × 76.2 mm. Most slots were oriented longitudinally along the pipe, but some were oriented circumferentially. In addition, a limited number of multi-hole test pieces were tested in an attempt to assess the impact of a more complex breach. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. The purpose of this report is to present the experimental results and analyses for the aerosol measurements obtained in the large-scale test stand. The report includes a description of the simulants used and their properties, equipment and operations, data analysis methodology, and test results. The results of tests investigating the role of slurry particles in plugging of small breaches are reported in Mahoney et al. 2012a. The results of the aerosol measurements in the small-scale test stand are reported in Mahoney et al. (2012b).

  3. A review of large-scale LNG spills : experiment and modeling.

    SciTech Connect (OSTI)

    Luketa-Hanlin, Anay Josephine

    2005-04-01

    The prediction of the possible hazards associated with the storage and transportation of liquefied natural gas (LNG) by ship has motivated a substantial number of experimental and analytical studies. This paper reviews the experimental and analytical work performed to date on large-scale spills of LNG. Specifically, experiments on the dispersion of LNG, as well as experiments of LNG fires from spills on water and land are reviewed. Explosion, pool boiling, and rapid phase transition (RPT) explosion studies are described and discussed, as well as models used to predict dispersion and thermal hazard distances. Although there have been significant advances in understanding the behavior of LNG spills, technical knowledge gaps to improve hazard prediction are identified. Some of these gaps can be addressed with current modeling and testing capabilities. A discussion of the state of knowledge and recommendations to further improve the understanding of the behavior of LNG spills on water is provided.

  4. Behavioral Initiatives for Energy Efficiency: Large-Scale Energy Reductions through Sensors, Feedback & Information Technology

    SciTech Connect (OSTI)

    2010-01-12

    Broad Funding Opportunity Announcement Project: A team of researchers from more than 10 departments at Stanford University is collaborating to transform the way Americans interact with our energy-use data. The team built a web-based platform that collects historical electricity data which it uses to perform a variety of experiments to learn what triggers people to respond. Experiments include new financial incentives, a calculator to understand the potential savings of efficient appliances, new Facebook interface designs, communication studies using Twitter, and educational programs with the Girl Scouts. Economic modeling is underway to better understand how results from the San Francisco Bay Area can be broadened to other parts of the country.

  5. Tensor to scalar ratio and large scale power suppression from pre-slow roll initial conditions

    SciTech Connect (OSTI)

    Lello, Louis; Boyanovsky, Daniel, E-mail: lal81@pitt.edu, E-mail: boyan@pitt.edu [Department of Physics and Astronomy, University of Pittsburgh, 3941 O'Hara St, Pittsburgh, PA 15260 (United States)

    2014-05-01

    We study the corrections to the power spectra of curvature and tensor perturbations and the tensor-to-scalar ratio r in single field slow roll inflation with standard kinetic term due to initial conditions imprinted by a ''fast-roll'' stage prior to slow roll. For a wide range of initial inflaton kinetic energy, this stage lasts only a few e-folds and merges smoothly with slow-roll thereby leading to non-Bunch-Davies initial conditions for modes that exit the Hubble radius during slow roll. We describe a program that yields the dynamics in the fast-roll stage while matching to the slow roll stage in a manner that is independent of the inflationary potentials. Corrections to the power spectra are encoded in a ''transfer function'' for initial conditions T{sub ?}(k), P{sub ?}(k) = P{sup BD}{sub ?}(k)T{sub ?}(k), implying a modification of the ''consistency condition'' for the tensor to scalar ratio at a pivot scale k{sub 0}: r(k{sub 0}) = ?8n{sub T}(k{sub 0})[T{sub T}(k{sub 0})/T{sub R}(k{sub 0})]. We obtain T{sub ?}(k) to leading order in a Born approximation valid for modes of observational relevance today. A fit yields T{sub ?}(k) = 1+A{sub ?}k{sup ?p}cos [2??k/H{sub sr}+?{sub ?}], with 1.5?initial conditions. These corrections lead to both a suppression of the quadrupole and oscillatory features in both P{sub R}(k) and r(k{sub 0}) with a period of the order of the Hubble scale during slow roll inflation. The results are quite general and independent of the specific inflationary potentials, depending solely on the ratio of kinetic to potential energy ? and the slow roll parameters ?{sub V}, ?{sub V} to leading order in slow roll. For a wide range of ? and the values of ?{sub V};?{sub V} corresponding to the upper bounds from Planck, we find that the low quadrupole is consistent with the results from Planck, and the oscillations in r(k{sub 0}) as a function of k{sub 0} could be observable if the modes corresponding to the quadrupole and the pivot scale crossed the Hubble radius very few (23) e-folds after the onset of slow roll. We comment on possible impact on the recent BICEP2 results.

  6. Barriers to commercialization of large-scale solar electricity: Lessions learned from the LUZ experience

    SciTech Connect (OSTI)

    Lotker, M.

    1991-11-01

    This report discusses the economic and policy factors leading to the initial successful introduction of Luz International Limited`s Solar Electric Generating Systems (SEGS). It then addresses the wide range of barriers to continued SEGS commercialization, including state and federal tax policy, avoided cost energy pricing, artificial size limitations under the Public Utility Regulatory Policies Act (PURPA), the loss of effectiveness of PURPA itself, the lack of incentives available to utilities as owners of solar electric plants, and the limited ways in which the environmental benefits of this technology have been recognized. The way in which each of these barriers contributed to the suspension of new LUZ projects is highlighted. In addition, mitigation approaches to each of these barriers are suggested.

  7. Modeling ramp compression experiments using large-scale molecular dynamics simulation.

    SciTech Connect (OSTI)

    Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I.; Winey, J. Michael; Gupta, Yogendra Mohan; Lane, J. Matthew D.; Ditmire, Todd; Quevedo, Hernan J.

    2011-10-01

    Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.

  8. Running Large Scale Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Large Scale Jobs Running Large Scale Jobs Users face various challenges with running and scaling large scale jobs on peta-scale production systems. For example, certain applications may not have enough memory per core, the default environment variables may need to be adjusted, or I/O dominates run time. This page lists some available programming and run time tuning options and tips users can try on their large scale applications on Hopper for better performance. Try different compilers

  9. Analysis of ground response data at Lotung large-scale soil- structure interaction experiment site. Final report

    SciTech Connect (OSTI)

    Chang, C.Y.; Mok, C.M.; Power, M.S.

    1991-12-01

    The Electric Power Research Institute (EPRI), in cooperation with the Taiwan Power Company (TPC), constructed two models (1/4-scale and 1/2-scale) of a nuclear plant containment structure at a site in Lotung (Tang, 1987), a seismically active region in northeast Taiwan. The models were constructed to gather data for the evaluation and validation of soil-structure interaction (SSI) analysis methodologies. Extensive instrumentation was deployed to record both structural and ground responses at the site during earthquakes. The experiment is generally referred to as the Lotung Large-Scale Seismic Test (LSST). As part of the LSST, two downhole arrays were installed at the site to record ground motions at depths as well as at the ground surface. Structural response and ground response have been recorded for a number of earthquakes (i.e. a total of 18 earthquakes in the period of October 1985 through November 1986) at the LSST site since the completion of the installation of the downhole instruments in October 1985. These data include those from earthquakes having magnitudes ranging from M{sub L} 4.5 to M{sub L} 7.0 and epicentral distances range from 4.7 km to 77.7 km. Peak ground surface accelerations range from 0.03 g to 0.21 g for the horizontal component and from 0.01 g to 0.20 g for the vertical component. The objectives of the study were: (1) to obtain empirical data on variations of earthquake ground motion with depth; (2) to examine field evidence of nonlinear soil response due to earthquake shaking and to determine the degree of soil nonlinearity; (3) to assess the ability of ground response analysis techniques including techniques to approximate nonlinear soil response to estimate ground motions due to earthquake shaking; and (4) to analyze earth pressures recorded beneath the basemat and on the side wall of the 1/4 scale model structure during selected earthquakes.

  10. Running Large Scale Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    try on their large scale applications on Hopper for better performance. Try different compilers and compiler options The available compilers on Hopper are PGI, Cray, Intel, GNU,...

  11. large-scale conveyance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    large-scale conveyance - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  12. Constructing a large-scale 3D Geologic Model for Analysis of the Non-Proliferation Experiment

    SciTech Connect (OSTI)

    Wagoner, J; Myers, S

    2008-04-09

    We have constructed a regional 3D geologic model of the southern Great Basin, in support of a seismic wave propagation investigation of the 1993 Nonproliferation Experiment (NPE) at the Nevada Test Site (NTS). The model is centered on the NPE and spans longitude -119.5{sup o} to -112.6{sup o} and latitude 34.5{sup o} to 39.8{sup o}; the depth ranges from the topographic surface to 150 km below sea level. The model includes the southern half of Nevada, as well as parts of eastern California, western Utah, and a portion of northwestern Arizona. The upper crust is constrained by both geologic and geophysical studies, while the lower crust and upper mantle are constrained by geophysical studies. The mapped upper crustal geologic units are Quaternary basin fill, Tertiary deposits, pre-Tertiary deposits, intrusive rocks of all ages, and calderas. The lower crust and upper mantle are parameterized with 5 layers, including the Moho. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geology at the NTS. Digital geologic outcrop data were available for both Nevada and Arizona, whereas geologic maps for California and Utah were scanned and hand-digitized. Published gravity data (2km spacing) were used to determine the thickness of the Cenozoic deposits and thus estimate the depth of the basins. The free surface is based on a 10m lateral resolution DEM at the NTS and a 90m lateral resolution DEM elsewhere. Variations in crustal thickness are based on receiver function analysis and a framework compilation of reflection/refraction studies. We used Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. For seismic studies, the geologic units are mapped to specific seismic velocities. The gross geophysical structure of the crust and upper mantle is taken from regional surface-wave studies. For regional seismic simulations we convert this realistic geologic model into elastic parameters. Upper crustal units are treated as seismically homogeneous while the lower crust and upper mantle are parameterized by a smoothly varying velocity profile. In order to mitigate spurious reflections, the lower crust and upper mantle are treated as velocity gradients as a function of depth.

  13. Large scale tracking algorithms.

    SciTech Connect (OSTI)

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  14. Creation of the dam for the No. 2 Kambaratinskaya HPP by large-scale blasting: analysis of planning experience and lessons learned

    SciTech Connect (OSTI)

    Shuifer, M. I.; Argal, E. S.

    2012-05-15

    Results of complex instrument observations and video taping during large-scale blasts detonated for creation of the dam at the No. 2 Kambaratinskaya HPP on the Naryn River in the Kyrgyz Republic are analyzed. Tests of the energy effectiveness of the explosives are evaluated, characteristics of LSB manifestations in seismic and air waves are revealed, and the shaping and movement of the rock mass are examined. A methodological analysis of the planning and production of the LSB is given.

  15. Development of fine-resolution analyses and expanded large-scale forcing properties. Part II: Scale-awareness and application to single-column model experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Sha; Vogelmann, Andrew M.; Li, Zhijin; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Endo, Satoshi

    2015-01-20

    Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scalesmore » larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.« less

  16. Development of fine-resolution analyses and expanded large-scale forcing properties. Part II: Scale-awareness and application to single-column model experiments

    SciTech Connect (OSTI)

    Feng, Sha; Vogelmann, Andrew M.; Li, Zhijin; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Endo, Satoshi

    2015-01-20

    Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scales larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.

  17. Nuclear-pumped lasers for large-scale applications

    SciTech Connect (OSTI)

    Anderson, R.E.; Leonard, E.M.; Shea, R.F.; Berggren, R.R.

    1989-05-01

    Efficient initiation of large-volume chemical lasers may be achieved by neutron induced reactions which produce charged particles in the final state. When a burst mode nuclear reactor is used as the neutron source, both a sufficiently intense neutron flux and a sufficiently short initiation pulse may be possible. Proof-of-principle experiments are planned to demonstrate lasing in a direct nuclear-pumped large-volume system; to study the effects of various neutron absorbing materials on laser performance; to study the effects of long initiation pulse lengths; to demonstrate the performance of large-scale optics and the beam quality that may be obtained; and to assess the performance of alternative designs of burst systems that increase the neutron output and burst repetition rate. 21 refs., 8 figs., 5 tabs.

  18. Nuclear-pumped lasers for large-scale applications

    SciTech Connect (OSTI)

    Anderson, R.E.; Leonard, E.M.; Shea, R.E.; Berggren, R.R.

    1988-01-01

    Efficient initiation of large-volume chemical lasers may be achieved by neutron induced reactions which produce charged particles in the final state. When a burst mode nuclear reactor is used as the neutron source, both a sufficiently intense neutron flux and a sufficient short initiation pulse may be possible. Proof-of-principle experiments are planned to demonstrate lasing in a direct nuclear-pumped large-volume system: to study the effects of various neutron absorbing materials on laser performance; to study the effects of long initiation pulse lengths; to determine the performance of large-scale optics and the beam quality that may bo obtained; and to assess the performance of alternative designs of burst systems that increase the neutron output and burst repetition rate. 21 refs., 7 figs., 5 tabs.

  19. Large-Scale Information Systems

    SciTech Connect (OSTI)

    D. M. Nicol; H. R. Ammerlahn; M. E. Goldsby; M. M. Johnson; D. E. Rhodes; A. S. Yoshimura

    2000-12-01

    Large enterprises are ever more dependent on their Large-Scale Information Systems (LSLS), computer systems that are distinguished architecturally by distributed components--data sources, networks, computing engines, simulations, human-in-the-loop control and remote access stations. These systems provide such capabilities as workflow, data fusion and distributed database access. The Nuclear Weapons Complex (NWC) contains many examples of LSIS components, a fact that motivates this research. However, most LSIS in use grew up from collections of separate subsystems that were not designed to be components of an integrated system. For this reason, they are often difficult to analyze and control. The problem is made more difficult by the size of a typical system, its diversity of information sources, and the institutional complexities associated with its geographic distribution across the enterprise. Moreover, there is no integrated approach for analyzing or managing such systems. Indeed, integrated development of LSIS is an active area of academic research. This work developed such an approach by simulating the various components of the LSIS and allowing the simulated components to interact with real LSIS subsystems. This research demonstrated two benefits. First, applying it to a particular LSIS provided a thorough understanding of the interfaces between the system's components. Second, it demonstrated how more rapid and detailed answers could be obtained to questions significant to the enterprise by interacting with the relevant LSIS subsystems through simulated components designed with those questions in mind. In a final, added phase of the project, investigations were made on extending this research to wireless communication networks in support of telemetry applications.

  20. Large-Scale Renewable Energy Guide Webinar

    Broader source: Energy.gov [DOE]

    Webinar introduces the Large Scale Renewable Energy Guide." The webinar will provide an overview of this important FEMP guide, which describes FEMP's approach to large-scale renewable energy projects and provides guidance to Federal agencies and the private sector on how to develop a common process for large-scale renewable projects.

  1. Supporting large-scale computational science

    SciTech Connect (OSTI)

    Musick, R., LLNL

    1998-02-19

    Business needs have driven the development of commercial database systems since their inception. As a result, there has been a strong focus on supporting many users, minimizing the potential corruption or loss of data, and maximizing performance metrics like transactions per second, or TPC-C and TPC-D results. It turns out that these optimizations have little to do with the needs of the scientific community, and in particular have little impact on improving the management and use of large-scale high-dimensional data. At the same time, there is an unanswered need in the scientific community for many of the benefits offered by a robust DBMS. For example, tying an ad-hoc query language such as SQL together with a visualization toolkit would be a powerful enhancement to current capabilities. Unfortunately, there has been little emphasis or discussion in the VLDB community on this mismatch over the last decade. The goal of the paper is to identify the specific issues that need to be resolved before large-scale scientific applications can make use of DBMS products. This topic is addressed in the context of an evaluation of commercial DBMS technology applied to the exploration of data generated by the Department of Energy`s Accelerated Strategic Computing Initiative (ASCI). The paper describes the data being generated for ASCI as well as current capabilities for interacting with and exploring this data. The attraction of applying standard DBMS technology to this domain is discussed, as well as the technical and business issues that currently make this an infeasible solution.

  2. EINSTEIN'S SIGNATURE IN COSMOLOGICAL LARGE-SCALE STRUCTURE

    SciTech Connect (OSTI)

    Bruni, Marco; Hidalgo, Juan Carlos; Wands, David

    2014-10-10

    We show how the nonlinearity of general relativity generates a characteristic nonGaussian signal in cosmological large-scale structure that we calculate at all perturbative orders in a large-scale limit. Newtonian gravity and general relativity provide complementary theoretical frameworks for modeling large-scale structure in ?CDM cosmology; a relativistic approach is essential to determine initial conditions, which can then be used in Newtonian simulations studying the nonlinear evolution of the matter density. Most inflationary models in the very early universe predict an almost Gaussian distribution for the primordial metric perturbation, ?. However, we argue that it is the Ricci curvature of comoving-orthogonal spatial hypersurfaces, R, that drives structure formation at large scales. We show how the nonlinear relation between the spatial curvature, R, and the metric perturbation, ?, translates into a specific nonGaussian contribution to the initial comoving matter density that we calculate for the simple case of an initially Gaussian ?. Our analysis shows the nonlinear signature of Einstein's gravity in large-scale structure.

  3. Large-Scale Industrial CCS Projects Selected for Continued Testing |

    Office of Environmental Management (EM)

    Department of Energy CCS Projects Selected for Continued Testing Large-Scale Industrial CCS Projects Selected for Continued Testing June 10, 2010 - 1:00pm Addthis Washington, DC - Three Recovery Act funded projects have been selected by the U.S. Department of Energy (DOE) to continue testing large-scale carbon capture and storage (CCS) from industrial sources. The projects - located in Texas, Illinois, and Louisiana - were initially selected for funding in October 2009 as part of a $1.4

  4. Autonomie Large Scale Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large Scale Deployment Autonomie Large Scale Deployment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss009_rousseau_2011_o.pdf More Documents & Publications Autonomie Plug&Play Software Architecture Vehicle Technologies Office Merit Review 2015: Accelerate the Development and Introduction of Advanced Technologies Through Model Based System Engineering Vehicle Technologies Office Merit Review 2014:

  5. Sensitivity technologies for large scale simulation.

    SciTech Connect (OSTI)

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias; Wilcox, Lucas C.; Hill, Judith C.; Ghattas, Omar; Berggren, Martin Olof; Akcelik, Volkan; Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    Sensitivity analysis is critically important to numerous analysis algorithms, including large scale optimization, uncertainty quantification,reduced order modeling, and error estimation. Our research focused on developing tools, algorithms and standard interfaces to facilitate the implementation of sensitivity type analysis into existing code and equally important, the work was focused on ways to increase the visibility of sensitivity analysis. We attempt to accomplish the first objective through the development of hybrid automatic differentiation tools, standard linear algebra interfaces for numerical algorithms, time domain decomposition algorithms and two level Newton methods. We attempt to accomplish the second goal by presenting the results of several case studies in which direct sensitivities and adjoint methods have been effectively applied, in addition to an investigation of h-p adaptivity using adjoint based a posteriori error estimation. A mathematical overview is provided of direct sensitivities and adjoint methods for both steady state and transient simulations. Two case studies are presented to demonstrate the utility of these methods. A direct sensitivity method is implemented to solve a source inversion problem for steady state internal flows subject to convection diffusion. Real time performance is achieved using novel decomposition into offline and online calculations. Adjoint methods are used to reconstruct initial conditions of a contamination event in an external flow. We demonstrate an adjoint based transient solution. In addition, we investigated time domain decomposition algorithms in an attempt to improve the efficiency of transient simulations. Because derivative calculations are at the root of sensitivity calculations, we have developed hybrid automatic differentiation methods and implemented this approach for shape optimization for gas dynamics using the Euler equations. The hybrid automatic differentiation method was applied to a first order approximation of the Euler equations and used as a preconditioner. In comparison to other methods, the AD preconditioner showed better convergence behavior. Our ultimate target is to perform shape optimization and hp adaptivity using adjoint formulations in the Premo compressible fluid flow simulator. A mathematical formulation for mixed-level simulation algorithms has been developed where different physics interact at potentially different spatial resolutions in a single domain. To minimize the implementation effort, explicit solution methods can be considered, however, implicit methods are preferred if computational efficiency is of high priority. We present the use of a partial elimination nonlinear solver technique to solve these mixed level problems and show how these formulation are closely coupled to intrusive optimization approaches and sensitivity analyses. Production codes are typically not designed for sensitivity analysis or large scale optimization. The implementation of our optimization libraries into multiple production simulation codes in which each code has their own linear algebra interface becomes an intractable problem. In an attempt to streamline this task, we have developed a standard interface between the numerical algorithm (such as optimization) and the underlying linear algebra. These interfaces (TSFCore and TSFCoreNonlin) have been adopted by the Trilinos framework and the goal is to promote the use of these interfaces especially with new developments. Finally, an adjoint based a posteriori error estimator has been developed for discontinuous Galerkin discretization of Poisson's equation. The goal is to investigate other ways to leverage the adjoint calculations and we show how the convergence of the forward problem can be improved by adapting the grid using adjoint-based error estimates. Error estimation is usually conducted with continuous adjoints but if discrete adjoints are available it may be possible to reuse the discrete version for error estimation. We investigate the advantages and disadvantages of continuous and discre

  6. Large-Scale Manufacturing of Nanoparticle-Based Lubrication Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large-Scale Manufacturing of Nanoparticle-Based Lubrication Additives Large-Scale Manufacturing of Nanoparticle-Based Lubrication Additives PDF icon nanoparticulate-basedlubricati...

  7. The Effective Field Theory of Cosmological Large Scale Structures...

    Office of Scientific and Technical Information (OSTI)

    The Effective Field Theory of Cosmological Large Scale Structures Citation Details In-Document Search Title: The Effective Field Theory of Cosmological Large Scale Structures...

  8. Large Scale Computing and Storage Requirements for Advanced Scientific...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2014 ASCRFrontcover.png Large Scale Computing and Storage Requirements for ...

  9. Large-Scale Renewable Energy Guide: Developing Renewable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities Large-Scale Renewable Energy Guide: Developing Renewable Energy ...

  10. Large-Scale Residential Energy Efficiency Programs Based on CFLs...

    Open Energy Info (EERE)

    Large-Scale Residential Energy Efficiency Programs Based on CFLs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Large-Scale Residential Energy Efficiency Programs Based...

  11. ACCOLADES: A Scalable Workflow Framework for Large-Scale Simulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACCOLADES: A Scalable Workflow Framework for Large-Scale Simulation and Analyses of Automotive Engines Title ACCOLADES: A Scalable Workflow Framework for Large-Scale Simulation and...

  12. DLFM library tools for large scale dynamic applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applications DLFM library tools for large scale dynamic applications Large scale Python and other dynamic applications may spend huge time at startup. The DLFM library,...

  13. Large-Scale PV Integration Study

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  14. Large-Scale Renewable Energy Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large-Scale Renewable Energy Guide Large-Scale Renewable Energy Guide Presentation covers the Large-scale RE Guide: Developing Renewable Energy Projects Larger than 10 MWs at Federal Facilities for the FUPWG Spring meeting, held on May 22, 2013 in San Francisco, California. PDF icon FEMP's Large-Scale Renewable Energy Guide - Presented by Brad Gustafson More Documents & Publications Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger Than 10 MWs at Federal

  15. Batteries for Large Scale Energy Storage

    SciTech Connect (OSTI)

    Soloveichik, Grigorii L.

    2011-07-15

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with ?-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  16. Energy Department Loan Guarantee Would Support Large-Scale Rooftop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S....

  17. Large-Scale First-Principles Molecular Dynamics Simulations on...

    Office of Scientific and Technical Information (OSTI)

    Conference: Large-Scale First-Principles Molecular Dynamics Simulations on the BlueGeneL Platform using the Qbox Code Citation Details In-Document Search Title: Large-Scale...

  18. Locations of Smart Grid Demonstration and Large-Scale Energy...

    Office of Environmental Management (EM)

    Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Map of the United States ...

  19. SimFS: A Large Scale Parallel File System Simulator

    Energy Science and Technology Software Center (OSTI)

    2011-08-30

    The software provides both framework and tools to simulate a large-scale parallel file system such as Lustre.

  20. DLFM library tools for large scale dynamic applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DLFM library tools for large scale dynamic applications DLFM library tools for large scale dynamic applications Large scale Python and other dynamic applications may spend huge time at startup. The DLFM library, developed by Mike Davis at Cray, Inc., is a set of functions that can be incorporated into a dynamically-linked application to provide improved performance during the loading of dynamic libraries when running the application at large scale on Edison. To access this library, do module

  1. Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Larger Than 10 MWs at Federal Facilities | Department of Energy Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities The Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities provides best practices and other helpful guidance for federal agencies developing

  2. Energy Department Applauds Nation's First Large-Scale Industrial Carbon

    Energy Savers [EERE]

    Capture and Storage Facility | Department of Energy Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility August 24, 2011 - 6:23pm Addthis Washington, D.C. - The U.S. Department of Energy issued the following statement in support of today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur,

  3. Large Scale Computing and Storage Requirements for Advanced Scientific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Research: Target 2014 Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2014 ASCRFrontcover.png Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research An ASCR / NERSC Review January 5-6, 2011 Final Report Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research, Report of the Joint ASCR / NERSC Workshop conducted January 5-6, 2011 Goals This workshop is being

  4. Large Scale Computing and Storage Requirements for Basic Energy Sciences:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Target 2014 Large Scale Computing and Storage Requirements for Basic Energy Sciences: Target 2014 BESFrontcover.png Final Report Large Scale Computing and Storage Requirements for Basic Energy Sciences, Report of the Joint BES/ ASCR / NERSC Workshop conducted February 9-10, 2010 Workshop Agenda The agenda for this workshop is presented here: including presentation times and speaker information. Read More » Workshop Presentations Large Scale Computing and Storage Requirements for Basic

  5. Large Scale Computing and Storage Requirements for High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Scale Computing and Storage Requirements for High Energy Physics HEPFrontcover.png Large Scale Computing and Storage Requirements for High Energy Physics An HEP / ASCR / NERSC Workshop November 12-13, 2009 Report Large Scale Computing and Storage Requirements for High Energy Physics, Report of the Joint HEP / ASCR / NERSC Workshop conducted Nov. 12-13, 2009 https://www.nersc.gov/assets/HPC-Requirements-for-Science/HEPFrontcover.png Goals This workshop was organized by the Department of

  6. Large-Scale Federal Renewable Energy Projects | Department of Energy

    Office of Environmental Management (EM)

    Large-Scale Federal Renewable Energy Projects Large-Scale Federal Renewable Energy Projects Renewable energy projects larger than 10 megawatts (MW), also known as utility-scale projects, are complex and typically require private-sector financing. The Federal Energy Management Program (FEMP) developed a guide to help federal agencies, and the developers and financiers that work with them, to successfully install these projects at federal facilities. FEMP's Large-Scale Renewable Energy Guide,

  7. Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |

    Office of Environmental Management (EM)

    Department of Energy Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration

  8. Large-scale anomalies from primordial dissipation

    SciTech Connect (OSTI)

    D'Amico, Guido; Gobbetti, Roberto; Kleban, Matthew; Schillo, Marjorie E-mail: rg1509@nyu.edu E-mail: mls604@nyu.edu

    2013-11-01

    We analyze an inflationary model in which part of the power in density perturbations arises due to particle production. The amount of particle production is modulated by an auxiliary field. Given an initial gradient for the auxiliary field, this model produces a hemispherical power asymmetry and a suppression of power at low multipoles similar to those observed by WMAP and Planck in the CMB temperature. It also predicts an additive contribution to ?T with support only at very small l that is aligned with the direction of the power asymmetry and has a definite sign, as well as small oscillations in the power spectrum at all l.

  9. Sandia Energy - Large-Scale Computational Fluid Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that were originally designed for nuclear-weapons-related problems for use in coal and biomass energy applications. These tools allow large-scale simulations of turbulent...

  10. Large Scale Production Computing and Storage Requirements for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 Hilton Washington DCRockville Hotel and Executive Meeting Center 1750 Rockville Pike, Rockville, MD 20852-1699 Final Report Large Scale Computing and Storage Requirements...

  11. Optimizing Cluster Heads for Energy Efficiency in Large-Scale...

    Office of Scientific and Technical Information (OSTI)

    Optimizing Cluster Heads for Energy Efficiency in Large-Scale Heterogeneous Wireless Sensor Networks Gu, Yi; Wu, Qishi; Rao, Nageswara S. V. Hindawi Publishing Corporation None...

  12. Computational Fluid Dynamics & Large-Scale Uncertainty Quantification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fluid Dynamics & Large-Scale Uncertainty Quantification for Wind Energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure ...

  13. Optimizing Cluster Heads for Energy Efficiency in Large-Scale...

    Office of Scientific and Technical Information (OSTI)

    clustering is generally considered as an efficient and scalable way to facilitate the management and operation of such large-scale networks and minimize the total energy...

  14. Strategies to Finance Large-Scale Deployment of Renewable Energy...

    Open Energy Info (EERE)

    to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  15. MEASURING LENSING MAGNIFICATION OF QUASARS BY LARGE SCALE STRUCTURE...

    Office of Scientific and Technical Information (OSTI)

    ...IABILITY-LUMINOSITY RELATION Citation Details In-Document Search Title: MEASURING LENSING MAGNIFICATION OF QUASARS BY LARGE SCALE STRUCTURE USING THE VARIABILITY-LUMINOSITY ...

  16. Effects of Volcanism, Crustal Thickness, and Large Scale Faulting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Evolution of Geothermal Systems: Collaborative Project in Chile Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the Development and Evolution of ...

  17. FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy...

    Broader source: Energy.gov (indexed) [DOE]

    jobs, and advancing national goals for energy security. The guide describes the fundamentals of deploying financially attractive, large-scale renewable energy projects and...

  18. Stimulated forward Raman scattering in large scale-length laser...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Stimulated forward Raman scattering in large scale-length laser-produced plasmas Citation Details In-Document Search Title: Stimulated forward Raman scattering in...

  19. A Model for Turbulent Combustion Simulation of Large Scale Hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Model for Turbulent Combustion Simulation of Large Scale Hydrogen Explosions Event Sponsor: Argonne Leadership Computing Facility Seminar Start Date: Oct 6 2015 - 10:00am...

  20. Overcoming the Barrier to Achieving Large-Scale Production -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overcoming the Barrier to Achieving Large-Scale Production - A Case Study This presentation summarizes the information given by Semprius during the Photovoltaic Validation and ...

  1. Large-Scale Hydropower Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydropower » Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the

  2. High Fidelity Simulations of Large-Scale Wireless Networks

    SciTech Connect (OSTI)

    Onunkwo, Uzoma; Benz, Zachary

    2015-11-01

    The worldwide proliferation of wireless connected devices continues to accelerate. There are 10s of billions of wireless links across the planet with an additional explosion of new wireless usage anticipated as the Internet of Things develops. Wireless technologies do not only provide convenience for mobile applications, but are also extremely cost-effective to deploy. Thus, this trend towards wireless connectivity will only continue and Sandia must develop the necessary simulation technology to proactively analyze the associated emerging vulnerabilities. Wireless networks are marked by mobility and proximity-based connectivity. The de facto standard for exploratory studies of wireless networks is discrete event simulations (DES). However, the simulation of large-scale wireless networks is extremely difficult due to prohibitively large turnaround time. A path forward is to expedite simulations with parallel discrete event simulation (PDES) techniques. The mobility and distance-based connectivity associated with wireless simulations, however, typically doom PDES and fail to scale (e.g., OPNET and ns-3 simulators). We propose a PDES-based tool aimed at reducing the communication overhead between processors. The proposed solution will use light-weight processes to dynamically distribute computation workload while mitigating communication overhead associated with synchronizations. This work is vital to the analytics and validation capabilities of simulation and emulation at Sandia. We have years of experience in Sandias simulation and emulation projects (e.g., MINIMEGA and FIREWHEEL). Sandias current highly-regarded capabilities in large-scale emulations have focused on wired networks, where two assumptions prevent scalable wireless studies: (a) the connections between objects are mostly static and (b) the nodes have fixed locations.

  3. ARM - Evaluation Product - Vertical Air Motion during Large-Scale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stratiform Rain ProductsVertical Air Motion during Large-Scale Stratiform Rain ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Vertical Air Motion during Large-Scale Stratiform Rain The Vertical Air Motion during Large-Scale Stratiform Rain (VERVELSR) value-added product (VAP) uses the unique

  4. How Three Retail Buyers Source Large-Scale Solar Electricity

    Broader source: Energy.gov [DOE]

    Large-scale, non-utility solar power purchase agreements (PPAs) are still a rarity despite the growing popularity of PPAs across the country. In this webinar, participants will learn more about how...

  5. Large-Scale First-Principles Molecular Dynamics Simulations on...

    Office of Scientific and Technical Information (OSTI)

    Qbox is an FPMD implementation specifically designed for large-scale parallel platforms such as BlueGeneL. Strong scaling tests for a Materials Science application show an 86% ...

  6. Energy Department Applauds Nation's First Large-Scale Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Phase 1 of its ICCS program, aimed at testing large-scale industrial CCS technologies. ... Find out more about DOE's support of research, development and deployment of CCS ...

  7. Large scale magnetic fields and coherent structures in nonuniform unmagnetized plasma

    SciTech Connect (OSTI)

    Jucker, Martin; Andrushchenko, Zhanna N.; Pavlenko, Vladimir P.

    2006-07-15

    The properties of streamers and zonal magnetic structures in magnetic electron drift mode turbulence are investigated. The stability of such large scale structures is investigated in the kinetic and the hydrodynamic regime, for which an instability criterion similar to the Lighthill criterion for modulational instability is found. Furthermore, these large scale flows can undergo further nonlinear evolution after initial linear growth, which can lead to the formation of long-lived coherent structures consisting of self-bound wave packets between the surfaces of two different flow velocities with an expected modification of the anomalous electron transport properties.

  8. Revised Environmental Assessment Large-Scale, Open-Air Explosive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Assessment Large-Scale, Open-Air Explosive Detonation, DIVINE STRAKE, at the Nevada Test Site May 2006 Prepared by Department of Energy National Nuclear Security Administration Nevada Site Office Environmental Assessment May 2006 Large-Scale, Open-Air Explosive Detonation, DIVINE STRAKE, at the Nevada Test Site TABLE OF CONTENTS 1.0 PURPOSE AND NEED FOR ACTION.....................................................1-1 1.1 Introduction and

  9. MEASURING LENSING MAGNIFICATION OF QUASARS BY LARGE SCALE STRUCTURE USING

    Office of Scientific and Technical Information (OSTI)

    THE VARIABILITY-LUMINOSITY RELATION (Journal Article) | SciTech Connect MEASURING LENSING MAGNIFICATION OF QUASARS BY LARGE SCALE STRUCTURE USING THE VARIABILITY-LUMINOSITY RELATION Citation Details In-Document Search Title: MEASURING LENSING MAGNIFICATION OF QUASARS BY LARGE SCALE STRUCTURE USING THE VARIABILITY-LUMINOSITY RELATION We introduce a technique to measure gravitational lensing magnification using the variability of type I quasars. Quasars' variability amplitudes and luminosities

  10. The Cielo Petascale Capability Supercomputer: Providing Large-Scale

    Office of Scientific and Technical Information (OSTI)

    Computing for Stockpile Stewardship (Conference) | SciTech Connect Conference: The Cielo Petascale Capability Supercomputer: Providing Large-Scale Computing for Stockpile Stewardship Citation Details In-Document Search Title: The Cielo Petascale Capability Supercomputer: Providing Large-Scale Computing for Stockpile Stewardship × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information

  11. COMMENTS OF THE LARGE-SCALE SOLAR ASSOCIATION TO DEPARTMENT

    Broader source: Energy.gov (indexed) [DOE]

    COMMENTS OF THE LARGE-SCALE SOLAR ASSOCIATION TO DEPARTMENT OF ENERGY'S RAPID RESPONSE TEAM FOR TRANSMISSION'S REQUEST FOR INFORMATION Submitted by electronic mail to: Lamont.Jackson@hq.doe.gov The Large-scale Solar Association appreciates this opportunity to respond to the Department of Energy's (DOE) Rapid Response Team for Transmission's (RRTT) Request for Information. 1 We applaud the DOE for creating the RRTT and continuing to advance the efforts already made under the Memorandum of

  12. Large Scale Production Computing and Storage Requirements for Fusion Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences: Target 2017 Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences" is organized by the Department of Energy's Office of Fusion Energy Sciences (FES), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center (NERSC). The review's goal is to

  13. Large Scale Production Computing and Storage Requirements for High Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics: Target 2017 Large Scale Production Computing and Storage Requirements for High Energy Physics: Target 2017 HEPlogo.jpg The NERSC Program Requirements Review "Large Scale Computing and Storage Requirements for High Energy Physics" is organized by the Department of Energy's Office of High Energy Physics (HEP), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center (NERSC). The review's goal is to characterize

  14. Cosmological Simulations for Large-Scale Sky Surveys | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility Cosmological Simulations for Large-Scale Sky Surveys PI Name: Salman Habib PI Email: habib@anl.gov Institution: Argonne National Laboratory Allocation Program: INCITE Allocation Hours at ALCF: 80 Million Year: 2016 Research Domain: Physics The focus of cosmology today is on its two mysterious pillars, dark matter and dark energy. Large-scale sky surveys are the current drivers of precision cosmology and have been instrumental in making fundamental discoveries in these

  15. The Cielo Petascale Capability Supercomputer: Providing Large-Scale

    Office of Scientific and Technical Information (OSTI)

    Computing for Stockpile Stewardship (Conference) | SciTech Connect Conference: The Cielo Petascale Capability Supercomputer: Providing Large-Scale Computing for Stockpile Stewardship Citation Details In-Document Search Title: The Cielo Petascale Capability Supercomputer: Providing Large-Scale Computing for Stockpile Stewardship Authors: Vigil, Benny Manuel [1] ; Doerfler, Douglas W. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-03-11 OSTI Identifier:

  16. Understanding large scale HPC systems through scalable monitoring and

    Office of Scientific and Technical Information (OSTI)

    analysis. (Conference) | SciTech Connect Understanding large scale HPC systems through scalable monitoring and analysis. Citation Details In-Document Search Title: Understanding large scale HPC systems through scalable monitoring and analysis. As HPC systems grow in size and complexity, diagnosing problems and understanding system behavior, including failure modes, becomes increasingly difficult and time consuming. At Sandia National Laboratories we have developed a tool, OVIS, to facilitate

  17. Breakthrough Large-Scale Industrial Project Begins Carbon Capture and

    Energy Savers [EERE]

    Utilization | Department of Energy Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products

  18. What Will the Neighbors Think? Building Large-Scale Science Projects Around the World

    ScienceCinema (OSTI)

    Jones, Craig; Mrotzek, Christian; Toge, Nobu; Sarno, Doug

    2010-01-08

    Public participation is an essential ingredient for turning the International Linear Collider into a reality. Wherever the proposed particle accelerator is sited in the world, its neighbors -- in any country -- will have something to say about hosting a 35-kilometer-long collider in their backyards. When it comes to building large-scale physics projects, almost every laboratory has a story to tell. Three case studies from Japan, Germany and the US will be presented to examine how community relations are handled in different parts of the world. How do particle physics laboratories interact with their local communities? How do neighbors react to building large-scale projects in each region? How can the lessons learned from past experiences help in building the next big project? These and other questions will be discussed to engage the audience in an active dialogue about how a large-scale project like the ILC can be a good neighbor.

  19. Development of fine-resolution analyses and expanded large-scale forcing

    Office of Scientific and Technical Information (OSTI)

    properties. Part II: Scale-awareness and application to single-column model experiments (Journal Article) | SciTech Connect II: Scale-awareness and application to single-column model experiments Citation Details In-Document Search Title: Development of fine-resolution analyses and expanded large-scale forcing properties. Part II: Scale-awareness and application to single-column model experiments Fine-resolution three-dimensional fields have been produced using the Community Gridpoint

  20. Large-Scale Data Challenges in Future Power Grids

    SciTech Connect (OSTI)

    Yin, Jian; Sharma, Poorva; Gorton, Ian; Akyol, Bora A.

    2013-03-25

    This paper describes technical challenges in supporting large-scale real-time data analysis for future power grid systems and discusses various design options to address these challenges. Even though the existing U.S. power grid has served the nation remarkably well over the last 120 years, big changes are in the horizon. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components. The whole system becomes highly dynamic and needs constant adjustments based on real time data. Even though millions of sensors such as phase measurement units (PMUs) and smart meters are being widely deployed, a data layer that can support this amount of data in real time is needed. Unlike the data fabric in cloud services, the data layer for smart grids must address some unique challenges. This layer must be scalable to support millions of sensors and a large number of diverse applications and still provide real time guarantees. Moreover, the system needs to be highly reliable and highly secure because the power grid is a critical piece of infrastructure. No existing systems can satisfy all the requirements at the same time. We examine various design options. In particular, we explore the special characteristics of power grid data to meet both scalability and quality of service requirements. Our initial prototype can improve performance by orders of magnitude over existing general-purpose systems. The prototype was demonstrated with several use cases from PNNL’s FPGI and was shown to be able to integrate huge amount of data from a large number of sensors and a diverse set of applications.

  1. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    SciTech Connect (OSTI)

    Gerber, Richard A.; Wasserman, Harvey J.

    2012-03-02

    IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

  2. Large-Scale Sequencing: The Future of Genomic Sciences Colloquium

    SciTech Connect (OSTI)

    Margaret Riley; Merry Buckley

    2009-01-01

    Genetic sequencing and the various molecular techniques it has enabled have revolutionized the field of microbiology. Examining and comparing the genetic sequences borne by microbes - including bacteria, archaea, viruses, and microbial eukaryotes - provides researchers insights into the processes microbes carry out, their pathogenic traits, and new ways to use microorganisms in medicine and manufacturing. Until recently, sequencing entire microbial genomes has been laborious and expensive, and the decision to sequence the genome of an organism was made on a case-by-case basis by individual researchers and funding agencies. Now, thanks to new technologies, the cost and effort of sequencing is within reach for even the smallest facilities, and the ability to sequence the genomes of a significant fraction of microbial life may be possible. The availability of numerous microbial genomes will enable unprecedented insights into microbial evolution, function, and physiology. However, the current ad hoc approach to gathering sequence data has resulted in an unbalanced and highly biased sampling of microbial diversity. A well-coordinated, large-scale effort to target the breadth and depth of microbial diversity would result in the greatest impact. The American Academy of Microbiology convened a colloquium to discuss the scientific benefits of engaging in a large-scale, taxonomically-based sequencing project. A group of individuals with expertise in microbiology, genomics, informatics, ecology, and evolution deliberated on the issues inherent in such an effort and generated a set of specific recommendations for how best to proceed. The vast majority of microbes are presently uncultured and, thus, pose significant challenges to such a taxonomically-based approach to sampling genome diversity. However, we have yet to even scratch the surface of the genomic diversity among cultured microbes. A coordinated sequencing effort of cultured organisms is an appropriate place to begin, since not only are their genomes available, but they are also accompanied by data on environment and physiology that can be used to understand the resulting data. As single cell isolation methods improve, there should be a shift toward incorporating uncultured organisms and communities into this effort. Efforts to sequence cultivated isolates should target characterized isolates from culture collections for which biochemical data are available, as well as other cultures of lasting value from personal collections. The genomes of type strains should be among the first targets for sequencing, but creative culture methods, novel cell isolation, and sorting methods would all be helpful in obtaining organisms we have not yet been able to cultivate for sequencing. The data that should be provided for strains targeted for sequencing will depend on the phylogenetic context of the organism and the amount of information available about its nearest relatives. Annotation is an important part of transforming genome sequences into useful resources, but it represents the most significant bottleneck to the field of comparative genomics right now and must be addressed. Furthermore, there is a need for more consistency in both annotation and achieving annotation data. As new annotation tools become available over time, re-annotation of genomes should be implemented, taking advantage of advancements in annotation techniques in order to capitalize on the genome sequences and increase both the societal and scientific benefit of genomics work. Given the proper resources, the knowledge and ability exist to be able to select model systems, some simple, some less so, and dissect them so that we may understand the processes and interactions at work in them. Colloquium participants suggest a five-pronged, coordinated initiative to exhaustively describe six different microbial ecosystems, designed to describe all the gene diversity, across genomes. In this effort, sequencing should be complemented by other experimental data, particularly transcriptomics and metabolomics data, all of which

  3. Lessons from Large-Scale Renewable Energy Integration Studies: Preprint

    SciTech Connect (OSTI)

    Bird, L.; Milligan, M.

    2012-06-01

    In general, large-scale integration studies in Europe and the United States find that high penetrations of renewable generation are technically feasible with operational changes and increased access to transmission. This paper describes other key findings such as the need for fast markets, large balancing areas, system flexibility, and the use of advanced forecasting.

  4. Large Scale Computing and Storage Requirements for High Energy Physics

    SciTech Connect (OSTI)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.

  5. Self-consistency tests of large-scale dynamics parameterizations for single-column modeling

    SciTech Connect (OSTI)

    Edman, Jacob P.; Romps, David M.

    2015-03-18

    Large-scale dynamics parameterizations are tested numerically in cloud-resolving simulations, including a new version of the weak-pressure-gradient approximation (WPG) introduced by Edman and Romps (2014), the weak-temperature-gradient approximation (WTG), and a prior implementation of WPG. We perform a series of self-consistency tests with each large-scale dynamics parameterization, in which we compare the result of a cloud-resolving simulation coupled to WTG or WPG with an otherwise identical simulation with prescribed large-scale convergence. In self-consistency tests based on radiative-convective equilibrium (RCE; i.e., no large-scale convergence), we find that simulations either weakly coupled or strongly coupled to either WPG or WTG are self-consistent, but WPG-coupled simulations exhibit a nonmonotonic behavior as the strength of the coupling to WPG is varied. We also perform self-consistency tests based on observed forcings from two observational campaigns: the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and the ARM Southern Great Plains (SGP) Summer 1995 IOP. In these tests, we show that the new version of WPG improves upon prior versions of WPG by eliminating a potentially troublesome gravity-wave resonance.

  6. Self-consistency tests of large-scale dynamics parameterizations for single-column modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Edman, Jacob P.; Romps, David M.

    2015-03-18

    Large-scale dynamics parameterizations are tested numerically in cloud-resolving simulations, including a new version of the weak-pressure-gradient approximation (WPG) introduced by Edman and Romps (2014), the weak-temperature-gradient approximation (WTG), and a prior implementation of WPG. We perform a series of self-consistency tests with each large-scale dynamics parameterization, in which we compare the result of a cloud-resolving simulation coupled to WTG or WPG with an otherwise identical simulation with prescribed large-scale convergence. In self-consistency tests based on radiative-convective equilibrium (RCE; i.e., no large-scale convergence), we find that simulations either weakly coupled or strongly coupled to either WPG or WTG are self-consistent, butmore » WPG-coupled simulations exhibit a nonmonotonic behavior as the strength of the coupling to WPG is varied. We also perform self-consistency tests based on observed forcings from two observational campaigns: the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and the ARM Southern Great Plains (SGP) Summer 1995 IOP. In these tests, we show that the new version of WPG improves upon prior versions of WPG by eliminating a potentially troublesome gravity-wave resonance.« less

  7. The workshop on iterative methods for large scale nonlinear problems

    SciTech Connect (OSTI)

    Walker, H.F.; Pernice, M.

    1995-12-01

    The aim of the workshop was to bring together researchers working on large scale applications with numerical specialists of various kinds. Applications that were addressed included reactive flows (combustion and other chemically reacting flows, tokamak modeling), porous media flows, cardiac modeling, chemical vapor deposition, image restoration, macromolecular modeling, and population dynamics. Numerical areas included Newton iterative (truncated Newton) methods, Krylov subspace methods, domain decomposition and other preconditioning methods, large scale optimization and optimal control, and parallel implementations and software. This report offers a brief summary of workshop activities and information about the participants. Interested readers are encouraged to look into an online proceedings available at http://www.usi.utah.edu/logan.proceedings. In this, the material offered here is augmented with hypertext abstracts that include links to locations such as speakers` home pages, PostScript copies of talks and papers, cross-references to related talks, and other information about topics addresses at the workshop.

  8. LARGE-SCALE MOTIONS IN THE PERSEUS GALAXY CLUSTER

    SciTech Connect (OSTI)

    Simionescu, A.; Werner, N.; Urban, O.; Allen, S. W.; Fabian, A. C.; Sanders, J. S.; Mantz, A.; Nulsen, P. E. J.; Takei, Y.

    2012-10-01

    By combining large-scale mosaics of ROSAT PSPC, XMM-Newton, and Suzaku X-ray observations, we present evidence for large-scale motions in the intracluster medium of the nearby, X-ray bright Perseus Cluster. These motions are suggested by several alternating and interleaved X-ray bright, low-temperature, low-entropy arcs located along the east-west axis, at radii ranging from {approx}10 kpc to over a Mpc. Thermodynamic features qualitatively similar to these have previously been observed in the centers of cool-core clusters, and were successfully modeled as a consequence of the gas sloshing/swirling motions induced by minor mergers. Our observations indicate that such sloshing/swirling can extend out to larger radii than previously thought, on scales approaching the virial radius.

  9. Performance Health Monitoring of Large-Scale Systems

    SciTech Connect (OSTI)

    Rajamony, Ram

    2014-11-20

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-?scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  10. Relic vector field and CMB large scale anomalies

    SciTech Connect (OSTI)

    Chen, Xingang; Wang, Yi E-mail: yw366@cam.ac.uk

    2014-10-01

    We study the most general effects of relic vector fields on the inflationary background and density perturbations. Such effects are observable if the number of inflationary e-folds is close to the minimum requirement to solve the horizon problem. We show that this can potentially explain two CMB large scale anomalies: the quadrupole-octopole alignment and the quadrupole power suppression. We discuss its effect on the parity anomaly. We also provide analytical template for more detailed data comparison.

  11. Large-Scale Manufacturing of Nanoparticle-Based Lubrication Additives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large-Scale Manufacturing of Nanoparticulate-Based Lubrication Additives Development of Boron-Based Nanolubrication Additives for Improved Energy Efficiency and Reduced Emissions Lubricants play a vital role in machine life and performance, reducing friction and wear and preventing component failure. Poor lubricant performance can cause signifcant energy and material losses. The already large global demand for lubricants is expected to continue growing in the future. Engine oils account for

  12. Large Scale Computing and Storage Requirements for Fusion Energy Sciences:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Target 2014 High Energy Physics (HEP) Nuclear Physics (NP) Overview Published Reports Case Study FAQs NERSC HPC Achievement Awards Share Your Research User Submitted Research Citations NERSC Citations Home » Science at NERSC » HPC Requirements Reviews » Requirements Reviews: Target 2014 » Fusion Energy Sciences (FES) Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2014 FESFrontcover.png An FES / ASCR / NERSC Workshop August 3-4, 2010 Final Report Large

  13. Large Scale Production Computing and Storage Requirements for Advanced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Computing Research: Target 2017 Large Scale Production Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2017 ASCRLogo.png This is an invitation-only review organized by the Department of Energy's Office of Advanced Scientific Computing Research (ASCR) and NERSC. The general goal is to determine production high-performance computing, storage, and services that will be needed for ASCR to achieve its science goals through 2017. A specific focus

  14. Large Scale Production Computing and Storage Requirements for Basic Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences: Target 2017 Large Scale Production Computing and Storage Requirements for Basic Energy Sciences: Target 2017 BES-Montage.png This is an invitation-only review organized by the Department of Energy's Office of Basic Energy Sciences (BES), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center (NERSC). The goal is to determine production high-performance computing, storage, and services that will be needed for BES to

  15. Large Scale Production Computing and Storage Requirements for Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Environmental Research: Target 2017 Large Scale Production Computing and Storage Requirements for Biological and Environmental Research: Target 2017 BERmontage.gif September 11-12, 2012 Hilton Rockville Hotel and Executive Meeting Center 1750 Rockville Pike Rockville, MD, 20852-1699 TEL: 1-301-468-1100 Sponsored by: U.S. Department of Energy Office of Science Office of Advanced Scientific Computing Research (ASCR) Office of Biological and Environmental Research (BER) National Energy

  16. Large Scale Production Computing and Storage Requirements for Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics: Target 2017 Large Scale Production Computing and Storage Requirements for Nuclear Physics: Target 2017 NPicon.png This invitation-only review is organized by the Department of Energy's Offices of Nuclear Physics (NP) and Advanced Scientific Computing Research (ASCR) and by NERSC. The goal is to determine production high-performance computing, storage, and services that will be needed for NP to achieve its science goals through 2017. The review brings together DOE Program Managers,

  17. Computational Fluid Dynamics & Large-Scale Uncertainty Quantification for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Fluid Dynamics & Large-Scale Uncertainty Quantification for Wind Energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery

  18. Economical Large Scale Advanced Membrane and Sorbent Strategies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand growth for chemical commodities, plus the high energy intensity of separations used in commodity production, present opportunities. William J. Koros Georgia Institute of Technology Economical Large Scale Advanced Membrane & Sorbent Strategies *Membranes and sorbents, offering up to 10X reductions in process energy intensity and CO 2 emissions, enable many opportunities. *An approach is outlined to pursue these opportunities and to provide competitive advantages and environmental

  19. Geospatial Optimization of Siting Large-Scale Solar Projects

    SciTech Connect (OSTI)

    Macknick, J.; Quinby, T.; Caulfield, E.; Gerritsen, M.; Diffendorfer, J.; Haines, S.

    2014-03-01

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  20. Dynamic crack initiation toughness : experiments and peridynamic modeling.

    SciTech Connect (OSTI)

    Foster, John T.

    2009-10-01

    This is a dissertation on research conducted studying the dynamic crack initiation toughness of a 4340 steel. Researchers have been conducting experimental testing of dynamic crack initiation toughness, K{sub Ic}, for many years, using many experimental techniques with vastly different trends in the results when reporting K{sub Ic} as a function of loading rate. The dissertation describes a novel experimental technique for measuring K{sub Ic} in metals using the Kolsky bar. The method borrows from improvements made in recent years in traditional Kolsky bar testing by using pulse shaping techniques to ensure a constant loading rate applied to the sample before crack initiation. Dynamic crack initiation measurements were reported on a 4340 steel at two different loading rates. The steel was shown to exhibit a rate dependence, with the recorded values of K{sub Ic} being much higher at the higher loading rate. Using the knowledge of this rate dependence as a motivation in attempting to model the fracture events, a viscoplastic constitutive model was implemented into a peridynamic computational mechanics code. Peridynamics is a newly developed theory in solid mechanics that replaces the classical partial differential equations of motion with integral-differential equations which do not require the existence of spatial derivatives in the displacement field. This allows for the straightforward modeling of unguided crack initiation and growth. To date, peridynamic implementations have used severely restricted constitutive models. This research represents the first implementation of a complex material model and its validation. After showing results comparing deformations to experimental Taylor anvil impact for the viscoplastic material model, a novel failure criterion is introduced to model the dynamic crack initiation toughness experiments. The failure model is based on an energy criterion and uses the K{sub Ic} values recorded experimentally as an input. The failure model is then validated against one class of problems showing good agreement with experimental results.

  1. Robust large-scale parallel nonlinear solvers for simulations.

    SciTech Connect (OSTI)

    Bader, Brett William; Pawlowski, Roger Patrick; Kolda, Tamara Gibson

    2005-11-01

    This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton's method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application of different models. Our research has been directed at evaluating techniques using different models than Newton's method: a lower order model, Broyden's method, and a higher order model, the tensor method. We have developed large-scale versions of each of these models and have demonstrated their use in important applications at Sandia. Broyden's method replaces the Jacobian with an approximation, allowing codes that cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-memory methods, which have been successful in optimization, allow us to extend this approach to large-scale problems. We compare the robustness and efficiency of Newton's method, modified Newton's method, Jacobian-free Newton-Krylov method, and our limited-memory Broyden method. Comparisons are carried out for large-scale applications of fluid flow simulations and electronic circuit simulations. Results show that, in cases where the Jacobian was inaccurate or could not be computed, Broyden's method converged in some cases where Newton's method failed to converge. We identify conditions where Broyden's method can be more efficient than Newton's method. We also present modifications to a large-scale tensor method, originally proposed by Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor methods are an alternative to Newton-based methods and are based on computing a step based on a local quadratic model rather than a linear model. The advantage of Bouaricha's method is that it can use any existing linear solver, which makes it simple to write and easily portable. However, the method usually takes twice as long to solve as Newton-GMRES on general problems because it solves two linear systems at each iteration. In this paper, we discuss modifications to Bouaricha's method for a practical implementation, including a special globalization technique and other modifications for greater efficiency. We present numerical results showing computational advantages over Newton-GMRES on some realistic problems. We further discuss a new approach for dealing with singular (or ill-conditioned) matrices. In particular, we modify an algorithm for identifying a turning point so that an increasingly ill-conditioned Jacobian does not prevent convergence.

  2. Shock initiation experiments on ratchet grown PBX 9502

    SciTech Connect (OSTI)

    Gustavsen, Richard L; Thompson, Darla G; Olinger, Barton W; Deluca, Racci; Bartram, Brian D; Pierce, Timothy H; Sanchez, Nathaniel J

    2010-01-01

    This study compares the shock initiation behavior of PBX 9502 pressed to less than nominal density (nominal density is 1.890 {+-} 0.005 g/cm{sup 3}) with PBX 9502 pressed to nominal density and then ''ratchet grown'' to low density. PBX 9502 is an insensitive plastic bonded explosive consisting of 95 weight % dry-aminated tri-amino-tri-nitro-benzene (TATB) and 5 weight % Kel-F 800 plastic binder. ''Ratchet growth'' - an irreversible increase in specific volume - occurs when an explosive based on TATB is temperature cycled. The design of our study is as follows: PBX 9502, all from the same lot, received the following four treatments. Samples in the first group were pressed to less than nominal density. These were not ratchet grown and used as a baseline. Samples in the second group were pressed to nominal density and then ratchet grown by temperature cycling 30 times between -54 C and +80 C. Samples in the final group were pressed to nominal density and cut into 100 mm by 25.4 mm diameter cylinders. During thermal cycling the cylinders were axially constrained by a 100 psi load. Samples for shock initiation experiments were cut perpendicular (disks) and parallel (slabs) to the axial load. The four sample groups can be summarized with the terms pressed low, ratchet grown/no load, axial load/disks, and axial load/slabs. All samples were shock initiated with nearly identical inputs in plate impact experiments carried out on a gas gun. Wave profiles were measured after propagation through 3, 4, 5, and 6 mm of explosive. Side by side comparison of wave profiles from different samples is used as a measure of relative sensitivity. All reduced density samples were more shock sensitive than nominal density PBX 9502. Differences in shock sensitivity between ratchet grown and pressed to low density PBX 9502 were small, but the low density pressings are slightly more sensitive than the ratchet grown samples.

  3. Large scale obscuration and related climate effects open literature bibliography

    SciTech Connect (OSTI)

    Russell, N.A.; Geitgey, J.; Behl, Y.K.; Zak, B.D.

    1994-05-01

    Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ``Nuclear Winter Controversy`` in the early 1980`s. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest.

  4. Large-Scale Algal Cultivation, Harvesting and Downstream Processing Workshop

    Broader source: Energy.gov [DOE]

    ATP3 (Algae Testbed Public-Private Partnership) is hosting the Large-Scale Algal Cultivation, Harvesting and Downstream Processing Workshop on November 2–6, 2015, at the Arizona Center for Algae Technology and Innovation in Mesa, Arizona. Topics will include practical applications of growing and managing microalgal cultures at production scale (such as methods for handling cultures, screening strains for desirable characteristics, identifying and mitigating contaminants, scaling up cultures for outdoor growth, harvesting and processing technologies, and the analysis of lipids, proteins, and carbohydrates). Related training will include hands-on laboratory and field opportunities.

  5. Large-scale anisotropy in stably stratified rotating flows

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marino, R.; Mininni, P. D.; Rosenberg, D. L.; Pouquet, A.

    2014-08-28

    We present results from direct numerical simulations of the Boussinesq equations in the presence of rotation and/or stratification, both in the vertical direction. The runs are forced isotropically and randomly at small scales and have spatial resolutions of up tomore » $1024^3$ grid points and Reynolds numbers of $$\\approx 1000$$. We first show that solutions with negative energy flux and inverse cascades develop in rotating turbulence, whether or not stratification is present. However, the purely stratified case is characterized instead by an early-time, highly anisotropic transfer to large scales with almost zero net isotropic energy flux. This is consistent with previous studies that observed the development of vertically sheared horizontal winds, although only at substantially later times. However, and unlike previous works, when sufficient scale separation is allowed between the forcing scale and the domain size, the total energy displays a perpendicular (horizontal) spectrum with power law behavior compatible with $$\\sim k_\\perp^{-5/3}$$, including in the absence of rotation. In this latter purely stratified case, such a spectrum is the result of a direct cascade of the energy contained in the large-scale horizontal wind, as is evidenced by a strong positive flux of energy in the parallel direction at all scales including the largest resolved scales.« less

  6. The effective field theory of cosmological large scale structures

    SciTech Connect (OSTI)

    Carrasco, John Joseph M.; Hertzberg, Mark P.; Senatore, Leonardo

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ? 106c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations ?(k) for all the observables. As an example, we calculate the correction to the power spectrum at order ?(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ? 0.24h Mpc1.

  7. Planning under uncertainty solving large-scale stochastic linear programs

    SciTech Connect (OSTI)

    Infanger, G. . Dept. of Operations Research Technische Univ., Vienna . Inst. fuer Energiewirtschaft)

    1992-12-01

    For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.

  8. Large scale, urban decontamination; developments, historical examples and lessons learned

    SciTech Connect (OSTI)

    Demmer, R.L.

    2007-07-01

    Recent terrorist threats and actions have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the prospect for the cleanup and removal of radioactive dispersal device (RDD or 'dirty bomb') residues. In response, the United States Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. The efficiency of RDD cleanup response will be improved with these new developments and a better understanding of the 'old reliable' methodologies. While an RDD is primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. There are a number of significant lessons that can be gained from a look at previous large scale cleanup projects. Too often we are quick to apply a costly 'package and dispose' method when sound technological cleaning approaches are available. Understanding historical perspectives, advanced planning and constant technology improvement are essential to successful decontamination. (authors)

  9. Large-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect (OSTI)

    Daniel, Richard C.; Gauglitz, Phillip A.; Burns, Carolyn A.; Fountain, Matthew S.; Shimskey, Rick W.; Billing, Justin M.; Bontha, Jagannadha R.; Kurath, Dean E.; Jenks, Jeromy WJ; MacFarlan, Paul J.; Mahoney, Lenna A.

    2013-08-01

    One of the events postulated in the hazard analysis for the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak event involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids that behave as a Newtonian fluid. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and in processing facilities across the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNLs test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are mostly absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale testing. The small-scale testing and resultant data are described in Mahoney et al. (2012b), and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used to mimic the relevant physical properties projected for actual WTP process streams.

  10. Ferroelectric opening switches for large-scale pulsed power drivers.

    SciTech Connect (OSTI)

    Brennecka, Geoffrey L.; Rudys, Joseph Matthew; Reed, Kim Warren; Pena, Gary Edward; Tuttle, Bruce Andrew; Glover, Steven Frank

    2009-11-01

    Fast electrical energy storage or Voltage-Driven Technology (VDT) has dominated fast, high-voltage pulsed power systems for the past six decades. Fast magnetic energy storage or Current-Driven Technology (CDT) is characterized by 10,000 X higher energy density than VDT and has a great number of other substantial advantages, but it has all but been neglected for all of these decades. The uniform explanation for neglect of CDT technology is invariably that the industry has never been able to make an effective opening switch, which is essential for the use of CDT. Most approaches to opening switches have involved plasma of one sort or another. On a large scale, gaseous plasmas have been used as a conductor to bridge the switch electrodes that provides an opening function when the current wave front propagates through to the output end of the plasma and fully magnetizes the plasma - this is called a Plasma Opening Switch (POS). Opening can be triggered in a POS using a magnetic field to push the plasma out of the A-K gap - this is called a Magnetically Controlled Plasma Opening Switch (MCPOS). On a small scale, depletion of electron plasmas in semiconductor devices is used to affect opening switch behavior, but these devices are relatively low voltage and low current compared to the hundreds of kilo-volts and tens of kilo-amperes of interest to pulsed power. This work is an investigation into an entirely new approach to opening switch technology that utilizes new materials in new ways. The new materials are Ferroelectrics and using them as an opening switch is a stark contrast to their traditional applications in optics and transducer applications. Emphasis is on use of high performance ferroelectrics with the objective of developing an opening switch that would be suitable for large scale pulsed power applications. Over the course of exploring this new ground, we have discovered new behaviors and properties of these materials that were here to fore unknown. Some of these unexpected discoveries have lead to new research directions to address challenges.

  11. Aerosols released during large-scale integral MCCI tests in the ACE Program

    SciTech Connect (OSTI)

    Fink, J.K.; Thompson, D.H.; Spencer, B.W.; Sehgal, B.R.

    1992-04-01

    As part of the internationally sponsored Advanced Containment Experiments (ACE) program, seven large-scale experiments on molten core concrete interactions (MCCIs) have been performed at Argonne National Laboratory. One of the objectives of these experiments is to collect and characterize all the aerosols released from the MCCIs. Aerosols released from experiments using four types of concrete (siliceous, limestone/common sand, serpentine, and limestone/limestone) and a range of metal oxidation for both BWR and PWR reactor core material have been collected and characterized. Release fractions were determined for UO{sup 2}, Zr, the fission-products: BaO, SrO, La{sub 2}O{sub 3}, CeO{sub 2}, MoO{sub 2}, Te, Ru, and control materials: Ag, In, and B{sub 4}C. Release fractions of UO{sub 2} and the fission products other than Te were small in all tests. However, release of control materials was significant.

  12. Aerosols released during large-scale integral MCCI tests in the ACE Program

    SciTech Connect (OSTI)

    Fink, J.K.; Thompson, D.H.; Spencer, B.W. ); Sehgal, B.R. )

    1992-01-01

    As part of the internationally sponsored Advanced Containment Experiments (ACE) program, seven large-scale experiments on molten core concrete interactions (MCCIs) have been performed at Argonne National Laboratory. One of the objectives of these experiments is to collect and characterize all the aerosols released from the MCCIs. Aerosols released from experiments using four types of concrete (siliceous, limestone/common sand, serpentine, and limestone/limestone) and a range of metal oxidation for both BWR and PWR reactor core material have been collected and characterized. Release fractions were determined for UO{sup 2}, Zr, the fission-products: BaO, SrO, La{sub 2}O{sub 3}, CeO{sub 2}, MoO{sub 2}, Te, Ru, and control materials: Ag, In, and B{sub 4}C. Release fractions of UO{sub 2} and the fission products other than Te were small in all tests. However, release of control materials was significant.

  13. Large Scale Obscuration and Related Climate Effects Workshop: Proceedings

    SciTech Connect (OSTI)

    Zak, B.D.; Russell, N.A.; Church, H.W.; Einfeld, W.; Yoon, D.; Behl, Y.K.

    1994-05-01

    A Workshop on Large Scale Obsurcation and Related Climate Effects was held 29--31 January, 1992, in Albuquerque, New Mexico. The objectives of the workshop were: to determine through the use of expert judgement the current state of understanding of regional and global obscuration and related climate effects associated with nuclear weapons detonations; to estimate how large the uncertainties are in the parameters associated with these phenomena (given specific scenarios); to evaluate the impact of these uncertainties on obscuration predictions; and to develop an approach for the prioritization of further work on newly-available data sets to reduce the uncertainties. The workshop consisted of formal presentations by the 35 participants, and subsequent topical working sessions on: the source term; aerosol optical properties; atmospheric processes; and electro-optical systems performance and climatic impacts. Summaries of the conclusions reached in the working sessions are presented in the body of the report. Copies of the transparencies shown as part of each formal presentation are contained in the appendices (microfiche).

  14. ANALYSIS OF TURBULENT MIXING JETS IN LARGE SCALE TANK

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R; Robert Leishear, R; David Stefanko, D

    2007-03-28

    Flow evolution models were developed to evaluate the performance of the new advanced design mixer pump for sludge mixing and removal operations with high-velocity liquid jets in one of the large-scale Savannah River Site waste tanks, Tank 18. This paper describes the computational model, the flow measurements used to provide validation data in the region far from the jet nozzle, the extension of the computational results to real tank conditions through the use of existing sludge suspension data, and finally, the sludge removal results from actual Tank 18 operations. A computational fluid dynamics approach was used to simulate the sludge removal operations. The models employed a three-dimensional representation of the tank with a two-equation turbulence model. Both the computational approach and the models were validated with onsite test data reported here and literature data. The model was then extended to actual conditions in Tank 18 through a velocity criterion to predict the ability of the new pump design to suspend settled sludge. A qualitative comparison with sludge removal operations in Tank 18 showed a reasonably good comparison with final results subject to significant uncertainties in actual sludge properties.

  15. Large scale electromechanical transistor with application in mass sensing

    SciTech Connect (OSTI)

    Jin, Leisheng; Li, Lijie

    2014-12-07

    Nanomechanical transistor (NMT) has evolved from the single electron transistor, a device that operates by shuttling electrons with a self-excited central conductor. The unfavoured aspects of the NMT are the complexity of the fabrication process and its signal processing unit, which could potentially be overcome by designing much larger devices. This paper reports a new design of large scale electromechanical transistor (LSEMT), still taking advantage of the principle of shuttling electrons. However, because of the large size, nonlinear electrostatic forces induced by the transistor itself are not sufficient to drive the mechanical member into vibrationan external force has to be used. In this paper, a LSEMT device is modelled, and its new application in mass sensing is postulated using two coupled mechanical cantilevers, with one of them being embedded in the transistor. The sensor is capable of detecting added mass using the eigenstate shifts method by reading the change of electrical current from the transistor, which has much higher sensitivity than conventional eigenfrequency shift approach used in classical cantilever based mass sensors. Numerical simulations are conducted to investigate the performance of the mass sensor.

  16. Parallel I/O Software Infrastructure for Large-Scale Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel IO Software Infrastructure for Large-Scale Systems Parallel IO Software Infrastructure for Large-Scale Systems Choudhary.png An illustration of how MPI---IO file domain...

  17. Large-Scale Deep Learning on the YFCC100M Dataset (Conference...

    Office of Scientific and Technical Information (OSTI)

    Large-Scale Deep Learning on the YFCC100M Dataset Citation Details In-Document Search Title: Large-Scale Deep Learning on the YFCC100M Dataset You are accessing a document from...

  18. FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Helps Federal Facilities Develop Large-Scale Renewable Energy Projects FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects August 21, 2013 - 12:00am Addthis EERE's Federal Energy Management Program issued a new resource that provides best practices and helpful guidance for federal agencies developing large-scale renewable energy projects. The resource, Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger than 10 MWs at

  19. EERE Success Story-FEMP Helps Federal Facilities Develop Large-Scale

    Office of Environmental Management (EM)

    Renewable Energy Projects | Department of Energy FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects EERE Success Story-FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects August 21, 2013 - 12:00am Addthis EERE's Federal Energy Management Program issued a new resource that provides best practices and helpful guidance for federal agencies developing large-scale renewable energy projects. The resource, Large-Scale Renewable Energy Guide:

  20. Ground movements associated with large-scale underground coal gasification

    SciTech Connect (OSTI)

    Siriwardane, H.J.; Layne, A.W.

    1989-09-01

    The primary objective of this work was to predict the surface and underground movement associated with large-scale multiwell burn sites in the Illinois Basin and Appalachian Basin by using the subsidence/thermomechanical model UCG/HEAT. This code is based on the finite element method. In particular, it can be used to compute (1) the temperature field around an underground cavity when the temperature variation of the cavity boundary is known, and (2) displacements and stresses associated with body forces (gravitational forces) and a temperature field. It is hypothesized that large Underground Coal Gasification (UCG) cavities generated during the line-drive process will be similar to those generated by longwall mining. If that is the case, then as a UCG process continues, the roof of the cavity becomes unstable and collapses. In the UCG/HEAT computer code, roof collapse is modeled using a simplified failure criterion (Lee 1985). It is anticipated that roof collapse would occur behind the burn front; therefore, forward combustion can be continued. As the gasification front propagates, the length of the cavity would become much larger than its width. Because of this large length-to-width ratio in the cavity, ground response behavior could be analyzed by considering a plane-strain idealization. In a plane-strain idealization of the UCG cavity, a cross-section perpendicular to the axis of propagation could be considered, and a thermomechanical analysis performed using a modified version of the two-dimensional finite element code UCG/HEAT. 15 refs., 9 figs., 3 tabs.

  1. DOE Awards First Three Large-Scale Carbon Sequestration Projects

    Broader source: Energy.gov [DOE]

    U.S. Projects Total $318 Million and Further President Bush's Initiatives to Advance Clean Energy Technologies to Confront Climate Change

  2. Cosmological implications of the CMB large-scale structure

    SciTech Connect (OSTI)

    Melia, Fulvio

    2015-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) and Planck may have uncovered several anomalies in the full cosmic microwave background (CMB) sky that could indicate possible new physics driving the growth of density fluctuations in the early universe. These include an unusually low power at the largest scales and an apparent alignment of the quadrupole and octopole moments. In a ?CDM model where the CMB is described by a Gaussian Random Field, the quadrupole and octopole moments should be statistically independent. The emergence of these low probability features may simply be due to posterior selections from many such possible effects, whose occurrence would therefore not be as unlikely as one might naively infer. If this is not the case, however, and if these features are not due to effects such as foreground contamination, their combined statistical significance would be equal to the product of their individual significances. In the absence of such extraneous factors, and ignoring the biasing due to posterior selection, the missing large-angle correlations would have a probability as low as ?0.1% and the low-l multipole alignment would be unlikely at the ?4.9% level; under the least favorable conditions, their simultaneous observation in the context of the standard model could then be likely at only the ?0.005% level. In this paper, we explore the possibility that these features are indeed anomalous, and show that the corresponding probability of CMB multipole alignment in the R{sub h}=ct universe would then be ?710%, depending on the number of large-scale SachsWolfe induced fluctuations. Since the low power at the largest spatial scales is reproduced in this cosmology without the need to invoke cosmic variance, the overall likelihood of observing both of these features in the CMB is ?7%, much more likely than in ?CDM, if the anomalies are real. The key physical ingredient responsible for this difference is the existence in the former of a maximum fluctuation size at the time of recombination, which is absent in the latter because of inflation.

  3. The IR-resummed Effective Field Theory of Large Scale Structures (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect The IR-resummed Effective Field Theory of Large Scale Structures Citation Details In-Document Search Title: The IR-resummed Effective Field Theory of Large Scale Structures We present a new method to resum the effect of large scale motions in the Effective Field Theory of Large Scale Structures. Because the linear power spectrum in ΛCDM is not scale free the effects of the large scale flows are enhanced. Although previous EFT calculations of the equal-time density

  4. Large-scale structure evolution in axisymmetric, compressible free-shear layers

    SciTech Connect (OSTI)

    Aeschliman, D.P.; Baty, R.S.

    1997-05-01

    This paper is a description of work-in-progress. It describes Sandia`s program to study the basic fluid mechanics of large-scale mixing in unbounded, compressible, turbulent flows, specifically, the turbulent mixing of an axisymmetric compressible helium jet in a parallel, coflowing compressible air freestream. Both jet and freestream velocities are variable over a broad range, providing a wide range mixing layer Reynolds number. Although the convective Mach number, M{sub c}, range is currently limited by the present nozzle design to values of 0.6 and below, straightforward nozzle design changes would permit a wide range of convective Mach number, to well in excess of 1.0. The use of helium allows simulation of a hot jet due to the large density difference, and also aids in obtaining optical flow visualization via schlieren due to the large density gradient in the mixing layer. The work comprises a blend of analysis, experiment, and direct numerical simulation (DNS). There the authors discuss only the analytical and experimental efforts to observe and describe the evolution of the large-scale structures. The DNS work, used to compute local two-point velocity correlation data, will be discussed elsewhere.

  5. PROPERTIES IMPORTANT TO MIXING FOR WTP LARGE SCALE INTEGRATED TESTING

    SciTech Connect (OSTI)

    Koopman, D.; Martino, C.; Poirier, M.

    2012-04-26

    Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i.e., Newtonian or non-Newtonian). The most important properties for testing with Newtonian slurries are the Archimedes number distribution and the particle concentration. For some test objectives, the shear strength is important. In the testing to collect data for CFD V and V and CFD comparison, the liquid density and liquid viscosity are important. In the high temperature testing, the liquid density and liquid viscosity are important. The Archimedes number distribution combines effects of particle size distribution, solid-liquid density difference, and kinematic viscosity. The most important properties for testing with non-Newtonian slurries are the slurry yield stress, the slurry consistency, and the shear strength. The solid-liquid density difference and the particle size are also important. It is also important to match multiple properties within the same simulant to achieve behavior representative of the waste. Other properties such as particle shape, concentration, surface charge, and size distribution breadth, as well as slurry cohesiveness and adhesiveness, liquid pH and ionic strength also influence the simulant properties either directly or through other physical properties such as yield stress.

  6. Large Scale Wind and Solar Integration in Germany

    SciTech Connect (OSTI)

    Ernst, Bernhard; Schreirer, Uwe; Berster, Frank; Pease, John; Scholz, Cristian; Erbring, Hans-Peter; Schlunke, Stephan; Makarov, Yuri V.

    2010-02-28

    This report provides key information concerning the German experience with integrating of 25 gigawatts of wind and 7 gigawatts of solar power capacity and mitigating its impacts on the electric power system. The report has been prepared based on information provided by the Amprion GmbH and 50Hertz Transmission GmbH managers and engineers to the Bonneville Power Administration (BPA) and Pacific Northwest National Laboratory representatives during their visit to Germany in October 2009. The trip and this report have been sponsored by the BPA Technology Innovation office. Learning from the German experience could help the Bonneville Power Administration engineers to compare and evaluate potential new solutions for managing higher penetrations of wind energy resources in their control area. A broader dissemination of this experience will benefit wind and solar resource integration efforts in the United States.

  7. Large-Scale First-Principles Molecular Dynamics Simulations with Electrostatic Embedding: Application to Acetylcholinesterase Catalysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fattebert, Jean-Luc; Lau, Edmond Y.; Bennion, Brian J.; Huang, Patrick; Lightstone, Felice C.

    2015-10-22

    Enzymes are complicated solvated systems that typically require many atoms to simulate their function with any degree of accuracy. We have recently developed numerical techniques for large scale First-Principles molecular dynamics simulations and applied them to study the enzymatic reaction catalyzed by acetylcholinesterase. We carried out Density functional theory calculations for a quantum mechanical (QM) sub- system consisting of 612 atoms with an O(N) complexity finite-difference approach. The QM sub-system is embedded inside an external potential field representing the electrostatic effect due to the environment. We obtained finite temperature sampling by First-Principles molecular dynamics for the acylation reaction of acetylcholinemore » catalyzed by acetylcholinesterase. Our calculations shows two energies barriers along the reaction coordinate for the enzyme catalyzed acylation of acetylcholine. In conclusion, the second barrier (8.5 kcal/mole) is rate-limiting for the acylation reaction and in good agreement with experiment.« less

  8. Drivers and barriers to e-invoicing adoption in Greek large scale manufacturing industries

    SciTech Connect (OSTI)

    Marinagi, Catherine E-mail: ptrivel@yahoo.com Trivellas, Panagiotis E-mail: ptrivel@yahoo.com Reklitis, Panagiotis E-mail: ptrivel@yahoo.com; Skourlas, Christos

    2015-02-09

    This paper attempts to investigate the drivers and barriers that large-scale Greek manufacturing industries experience in adopting electronic invoices (e-invoices), based on three case studies with organizations having international presence in many countries. The study focuses on the drivers that may affect the increase of the adoption and use of e-invoicing, including the customers demand for e-invoices, and sufficient know-how and adoption of e-invoicing in organizations. In addition, the study reveals important barriers that prevent the expansion of e-invoicing, such as suppliers’ reluctance to implement e-invoicing, and IT infrastructures incompatibilities. Other issues examined by this study include the observed benefits from e-invoicing implementation, and the financial priorities of the organizations assumed to be supported by e-invoicing.

  9. Application of DYNA3D in large scale crashworthiness calculations

    SciTech Connect (OSTI)

    Benson, D.J.; Hallquist, J.O.; Igarashi, M.; Shimomaki, K.; Mizuno, M.

    1986-01-01

    This paper presents an example of an automobile crashworthiness calculation. Based on our experiences with the example calculation, we make recommendations to those interested in performing crashworthiness calculations. The example presented in this paper was supplied by Suzuki Motor Co., Ltd., and provided a significant shakedown for the new large deformation shell capability of the DYNA3D code. 15 refs., 3 figs.

  10. Solar energy teaching lab with large scale working model

    SciTech Connect (OSTI)

    Pearson, J.; Cook, T.

    1980-01-01

    An active solar energy retrofit has been added to an engineering building at John Brown University. A new system dependent evaluation procedure incorporating the f-chart method was used for panel selection. The system is designed and instrumented in order to provide various laboratory experiences and data collection capability. Data collection and system control are provided by a microcomputer. 7 refs.

  11. In-situ sampling of a large-scale particle simulation for interactive

    Office of Scientific and Technical Information (OSTI)

    visualization and analysis (Journal Article) | SciTech Connect In-situ sampling of a large-scale particle simulation for interactive visualization and analysis Citation Details In-Document Search Title: In-situ sampling of a large-scale particle simulation for interactive visualization and analysis We propose storing a random sampling of data from large scale particle simulations, such as the Roadrunner Universe MC{sup 3} cosmological simulation, to be used for interactive post-analysis and

  12. Locations of Smart Grid Demonstration and Large-Scale Energy Storage

    Energy Savers [EERE]

    Projects | Department of Energy Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Map of the United States showing the location of all projects created with funding from the Smart Grid Demonstration and Energy Storage Project, funded through the American Recovery and Reinvestment Act. PDF icon Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects More Documents

  13. DOE's Office of Science Seeks Proposals for Expanded Large-Scale Scientific

    Energy Savers [EERE]

    Computing | Department of Energy Seeks Proposals for Expanded Large-Scale Scientific Computing DOE's Office of Science Seeks Proposals for Expanded Large-Scale Scientific Computing May 16, 2005 - 12:47pm Addthis WASHINGTON, D.C. -- Secretary of Energy Samuel W. Bodman announced today that DOE's Office of Science is seeking proposals to support innovative, large-scale computational science projects to enable high-impact advances through the use of advanced computers not commonly available in

  14. Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Evolution of Geothermal Systems: Collaborative Project in Chile | Department of Energy Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the Development and Evolution of Geothermal Systems: Collaborative Project in Chile Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the Development and Evolution of Geothermal Systems: Collaborative Project in Chile Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the Development

  15. Asynchronous Two-Level Checkpointing Scheme for Large-Scale Adjoints...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researchLANSeventslistn Adjoints are an important computational tool for large-scale sensitivity evaluation, uncertainty quantification, and derivative-based...

  16. Large-scale Offshore Wind Power in the United States. Assessment of Opportunities and Barriers

    SciTech Connect (OSTI)

    Musial, Walter; Ram, Bonnie

    2010-09-01

    This report describes the benefits of and barriers to large-scale deployment of offshore wind energy systems in U.S. waters.

  17. U.S. Signs International Fusion Energy Agreement; Large-Scale...

    Office of Science (SC) Website

    U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion Energy Project to Begin Construction News News Home Featured Articles Science Headlines 2015 2014 2013 ...

  18. PATHWAYS OF LARGE-SCALE MAGNETIC COUPLINGS BETWEEN SOLAR CORONAL EVENTS

    SciTech Connect (OSTI)

    Schrijver, Carolus J.; Title, Alan M.; DeRosa, Marc L.; Yeates, Anthony R.

    2013-08-20

    The high-cadence, comprehensive view of the solar corona by SDO/AIA shows many events that are widely separated in space while occurring close together in time. In some cases, sets of coronal events are evidently causally related, while in many other instances indirect evidence can be found. We present case studies to highlight a variety of coupling processes involved in coronal events. We find that physical linkages between events do occur, but concur with earlier studies that these couplings appear to be crucial to understanding the initiation of major eruptive or explosive phenomena relatively infrequently. We note that the post-eruption reconfiguration timescale of the large-scale corona, estimated from the extreme-ultraviolet afterglow, is on average longer than the mean time between coronal mass ejections (CMEs), so that many CMEs originate from a corona that is still adjusting from a previous event. We argue that the coronal field is intrinsically global: current systems build up over days to months, the relaxation after eruptions continues over many hours, and evolving connections easily span much of a hemisphere. This needs to be reflected in our modeling of the connections from the solar surface into the heliosphere to properly model the solar wind, its perturbations, and the generation and propagation of solar energetic particles. However, the large-scale field cannot be constructed reliably by currently available observational resources. We assess the potential of high-quality observations from beyond Earth's perspective and advanced global modeling to understand the couplings between coronal events in the context of CMEs and solar energetic particle events.

  19. Just enough inflation: power spectrum modifications at large scales

    SciTech Connect (OSTI)

    Cicoli, Michele [Dipartimento di Fisica ed Astronomia, Universit di Bologna, via Irnerio 46, 40126 Bologna (Italy); Downes, Sean [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (China); Dutta, Bhaskar [Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242 (United States); Pedro, Francisco G.; Westphal, Alexander, E-mail: mcicoli@ictp.it, E-mail: ssdownes@phys.ntu.edu.tw, E-mail: dutta@physics.tamu.edu, E-mail: francisco.pedro@desy.de, E-mail: alexander.westphal@desy.de [Deutsches Elektronen-Synchrotron DESY, Theory Group, D-22603 Hamburg (Germany)

    2014-12-01

    We show that models of 'just enough' inflation, where the slow-roll evolution lasted only 50- 60 e-foldings, feature modifications of the CMB power spectrum at large angular scales. We perform a systematic analytic analysis in the limit of a sudden transition between any possible non-slow-roll background evolution and the final stage of slow-roll inflation. We find a high degree of universality since most common backgrounds like fast-roll evolution, matter or radiation-dominance give rise to a power loss at large angular scales and a peak together with an oscillatory behaviour at scales around the value of the Hubble parameter at the beginning of slow-roll inflation. Depending on the value of the equation of state parameter, different pre-inflationary epochs lead instead to an enhancement of power at low ?, and so seem disfavoured by recent observational hints for a lack of CMB power at ??<40. We also comment on the importance of initial conditions and the possibility to have multiple pre-inflationary stages.

  20. Parallel Tensor Compression for Large-Scale Scientific Data.

    SciTech Connect (OSTI)

    Kolda, Tamara G.; Ballard, Grey; Austin, Woody Nathan

    2015-10-01

    As parallel computing trends towards the exascale, scientific data produced by high-fidelity simulations are growing increasingly massive. For instance, a simulation on a three-dimensional spatial grid with 512 points per dimension that tracks 64 variables per grid point for 128 time steps yields 8 TB of data. By viewing the data as a dense five way tensor, we can compute a Tucker decomposition to find inherent low-dimensional multilinear structure, achieving compression ratios of up to 10000 on real-world data sets with negligible loss in accuracy. So that we can operate on such massive data, we present the first-ever distributed memory parallel implementation for the Tucker decomposition, whose key computations correspond to parallel linear algebra operations, albeit with nonstandard data layouts. Our approach specifies a data distribution for tensors that avoids any tensor data redistribution, either locally or in parallel. We provide accompanying analysis of the computation and communication costs of the algorithms. To demonstrate the compression and accuracy of the method, we apply our approach to real-world data sets from combustion science simulations. We also provide detailed performance results, including parallel performance in both weak and strong scaling experiments.

  1. Lotung large-scale seismic test strong motion records. Volume 1, General description: Final report

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The Electric Power Research Institute (EPRI), in cooperation with the Taiwan Power Company (TPC), constructed two models (1/4 scale and 1/12 scale) of a nuclear plant concrete containment structure at a seismically active site in Lotung, Taiwan. Extensive instrumentation was deployed to record both structural and ground responses during earthquakes. The experiment, generally referred to as the Lotung Large-Scale Seismic Test (LSST), was used to gather data for soil-structure interaction (SSI) analysis method evaluation and validation as well as for site ground response investigation. A number of earthquakes having local magnitudes ranging from 4.5 to 7.0 have been recorded at the LSST site since the completion of the test facility in September 1985. This report documents the earthquake data, both raw and processed, collected from the LSST experiment. Volume 1 of the report provides general information on site location, instrument types and layout, data acquisition and processing, and data file organization. The recorded data are described chronologically in subsequent volumes of the report.

  2. Combined Climate and Carbon-Cycle Effects of Large-Scale Deforestation

    SciTech Connect (OSTI)

    Bala, G; Caldeira, K; Wickett, M; Phillips, T J; Lobell, D B; Delire, C; Mirin, A

    2006-10-17

    The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO{sub 2} to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These are the first such simulations performed using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, since the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. While these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.

  3. Large-Scale First-Principles Molecular Dynamics Simulations on the

    Office of Scientific and Technical Information (OSTI)

    BlueGene/L Platform using the Qbox Code (Conference) | SciTech Connect Conference: Large-Scale First-Principles Molecular Dynamics Simulations on the BlueGene/L Platform using the Qbox Code Citation Details In-Document Search Title: Large-Scale First-Principles Molecular Dynamics Simulations on the BlueGene/L Platform using the Qbox Code We demonstrate that the Qbox code supports unprecedented large-scale First-Principles Molecular Dynamics (FPMD) applications on the BlueGene/L

  4. First U.S. Large-Scale CO2 Storage Project Advances | Department of Energy

    Office of Environmental Management (EM)

    First U.S. Large-Scale CO2 Storage Project Advances First U.S. Large-Scale CO2 Storage Project Advances April 6, 2009 - 1:00pm Addthis Washington, DC - Drilling nears completion for the first large-scale carbon dioxide (CO2) injection well in the United States for CO2 sequestration. This project will be used to demonstrate that CO2 emitted from industrial sources - such as coal-fired power plants - can be stored in deep geologic formations to mitigate large quantities of greenhouse gas

  5. A large-scale structure at redshift 1.71 in the Lockman Hole

    SciTech Connect (OSTI)

    Henry, J. Patrick; Hasinger, Gnther; Suh, Hyewon; Aoki, Kentaro; Finoguenov, Alexis; Fotopoulou, Sotiria; Salvato, Mara; Tanaka, Masayuki

    2014-01-01

    We previously identified LH146, a diffuse X-ray source in the Lockman Hole, as a galaxy cluster at redshift 1.753. The redshift was based on one spectroscopic value, buttressed by seven additional photometric redshifts. We confirm here the previous spectroscopic redshift and present concordant spectroscopic redshifts for an additional eight galaxies. The average of these nine redshifts is 1.714 0.012 (error on the mean). Scrutiny of the galaxy distribution in redshift space and the plane of the sky shows that there are two concentrations of galaxies near the X-ray source. In addition, there are three diffuse X-ray sources spread along the axis connecting the galaxy concentrations. LH146 is one of these three and lies approximately at the center of the two galaxy concentrations and the outer two diffuse X-ray sources. We thus conclude that LH146 is at the redshift initially reported but it is not a single virialized galaxy cluster, as previously assumed. Rather, it appears to mark the approximate center of a larger region containing more objects. For brevity, we refer to all these objects and their alignments as a large-scale structure. The exact nature of LH146 itself remains unclear.

  6. ACCOLADES: A Scalable Workflow Framework for Large-Scale Simulation and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analyses of Automotive Engines | Argonne National Laboratory ACCOLADES: A Scalable Workflow Framework for Large-Scale Simulation and Analyses of Automotive Engines Title ACCOLADES: A Scalable Workflow Framework for Large-Scale Simulation and Analyses of Automotive Engines Publication Type Conference Proceedings Year of Publication 2015 Authors Aithal, SM, Wild, SM Conference Name High Performance Computing Volume 9137 Pagination 87-95 Publisher Springer Conference Location Frankfurt, Germany

  7. Partition-of-unity finite-element method for large scale quantum molecular

    Office of Scientific and Technical Information (OSTI)

    dynamics on massively parallel computational platforms (Technical Report) | SciTech Connect Technical Report: Partition-of-unity finite-element method for large scale quantum molecular dynamics on massively parallel computational platforms Citation Details In-Document Search Title: Partition-of-unity finite-element method for large scale quantum molecular dynamics on massively parallel computational platforms Over the course of the past two decades, quantum mechanical calculations have

  8. HyLights -- Tools to Prepare the Large-Scale European Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects on Hydrogen for Transport | Department of Energy HyLights -- Tools to Prepare the Large-Scale European Demonstration Projects on Hydrogen for Transport HyLights -- Tools to Prepare the Large-Scale European Demonstration Projects on Hydrogen for Transport Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California PDF icon buenger.pdf More Documents & Publications Santa Clara Valley

  9. Overcoming the Barrier to Achieving Large-Scale Production - A Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Semprius Confidential 1 Overcoming the Barriers to Achieving Large-Scale Production - A Case Study From concept to large-scale production, one manufacturer tells the story and identifies the primary challenges and how a small amount of government support could be most helpful. ____________________________________________________ Scott Burroughs Semprius, Inc. August 31, 2011 Semprius Confidential 2 Semprius Overview / Background Company: * Leading developer of commercial & utility solar

  10. Transport Induced by Large Scale Convective Structures in a Dipole-Confined Plasma

    SciTech Connect (OSTI)

    Grierson, B. A.; Mauel, M. E.; Worstell, M. W.; Klassen, M.

    2010-11-12

    Convective structures characterized by ExB motion are observed in a dipole-confined plasma. Particle transport rates are calculated from density dynamics obtained from multipoint measurements and the reconstructed electrostatic potential. The calculated transport rates determined from the large-scale dynamics and local probe measurements agree in magnitude, show intermittency, and indicate that the particle transport is dominated by large-scale convective structures.

  11. 'Sidecars' Pave the Way for Concurrent Analytics of Large-Scale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulations 'Sidecars' Pave the Way for Concurrent Analytics of Large-Scale Simulations 'Sidecars' Pave the Way for Concurrent Analytics of Large-Scale Simulations Halo Finder Enhancement Puts Supercomputer Users in the Driver's Seat November 2, 2015 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Nyxfilamentsandreeberhalos In this Reeber halo finder simulation, the blueish haze is a volume rendering of the density field that Nyx calculates every time step. The light blue and

  12. Effect of Subgrid Cloud Variability on Parameterization of Indirect Aerosol Effect in Large-Scale Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effect of Subgrid Cloud Variability on Parameterization of Indirect Aerosol Effect in Large-Scale Models M. Ovtchinnikov and S. J. Ghan Pacific Northwest National Laboratory Richland, Washington X. Dong University of Utah Salt Lake City, Utah M. H. Zhang State University of New York Stony Brook, New York Introduction An adequate parameterization of cloud microphysics is essential for estimating the indirect aerosol effect in large-scale models. Such a parameterization must rely on a physically

  13. Towards a Large-Scale Recording System: Demonstration of Polymer-Based

    Office of Scientific and Technical Information (OSTI)

    Penetrating Array for Chronic Neural Recording (Conference) | SciTech Connect Towards a Large-Scale Recording System: Demonstration of Polymer-Based Penetrating Array for Chronic Neural Recording Citation Details In-Document Search Title: Towards a Large-Scale Recording System: Demonstration of Polymer-Based Penetrating Array for Chronic Neural Recording Authors: Tooker, A ; Liu, D ; Anderson, E B ; Felix, S ; Shah, K G ; Lee, K Y ; Chung, J E ; Pannu, S ; Frank, L ; Tolosa, V Publication

  14. BLM and Forest Service Consider Large-Scale Geothermal Leasing | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy and Forest Service Consider Large-Scale Geothermal Leasing BLM and Forest Service Consider Large-Scale Geothermal Leasing June 18, 2008 - 4:29pm Addthis In an effort to encourage appropriate geothermal energy development on public lands, the Bureau of Land Management (BLM) and the U.S. Forest Service have prepared a Draft Programmatic Environmental Impact Statement (PEIS) for geothermal leasing in the West, including Alaska. The draft PEIS considers all public lands and national

  15. Overcoming the Barrier to Achieving Large-Scale Production - A Case Study |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Overcoming the Barrier to Achieving Large-Scale Production - A Case Study Overcoming the Barrier to Achieving Large-Scale Production - A Case Study This presentation summarizes the information given by Semprius during the Photovoltaic Validation and Bankability Workshop in San Jose, California, on August 31, 2011. PDF icon semprius_burroughs_pv_validation_2011_aug.pdf More Documents & Publications Federal Energy Management Program Report Template PV Validation and

  16. A First Step towards Large-Scale Plants to Plastics Engineering |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A First Step towards Large-Scale Plants to Plastics Engineering A First Step towards Large-Scale Plants to Plastics Engineering November 9, 2010 - 1:56pm Addthis Brookhaven National Laboratory researches making plastics from plants. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? By optimizing the accumulation of particular fatty acids, a Brookhaven team of scientists are developing a method suitable for

  17. Optimizing Cluster Heads for Energy Efficiency in Large-Scale Heterogeneous Wireless Sensor Networks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gu, Yi; Wu, Qishi; Rao, Nageswara S. V.

    2010-01-01

    Many complex sensor network applications require deploying a large number of inexpensive and small sensors in a vast geographical region to achieve quality through quantity. Hierarchical clustering is generally considered as an efficient and scalable way to facilitate the management and operation of such large-scale networks and minimize the total energy consumption for prolonged lifetime. Judicious selection of cluster heads for data integration and communication is critical to the success of applications based on hierarchical sensor networks organized as layered clusters. We investigate the problem of selecting sensor nodes in a predeployed sensor network to be the cluster headsmore » to minimize the total energy needed for data gathering. We rigorously derive an analytical formula to optimize the number of cluster heads in sensor networks under uniform node distribution, and propose a Distance-based Crowdedness Clustering algorithm to determine the cluster heads in sensor networks under general node distribution. The results from an extensive set of experiments on a large number of simulated sensor networks illustrate the performance superiority of the proposed solution over the clustering schemes based on k -means algorithm.« less

  18. Initial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initial operation of a pulse-burst laser system for high-repetition-rate Thomson scattering a... W. S. Harris, 1 D. J. Den Hartog, 1,2 and N. C. Hurst 1 1 Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA 2 Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA ͑Presented 17 May 2010; received 12 May 2010; accepted 31 May 2010; published online 1 October 2010͒ A

  19. LUCI: A facility at DUSEL for large-scale experimental study of geologic carbon sequestration

    SciTech Connect (OSTI)

    Peters, C. A.; Dobson, P.F.; Oldenburg, C.M.; Wang, J. S. Y.; Onstott, T.C.; Scherer, G.W.; Freifeld, B.M.; Ramakrishnan, T.S.; Stabinski, E.L.; Liang, K.; Verma, S.

    2010-10-01

    LUCI, the Laboratory for Underground CO{sub 2} Investigations, is an experimental facility being planned for the DUSEL underground laboratory in South Dakota, USA. It is designed to study vertical flow of CO{sub 2} in porous media over length scales representative of leakage scenarios in geologic carbon sequestration. The plan for LUCI is a set of three vertical column pressure vessels, each of which is {approx}500 m long and {approx}1 m in diameter. The vessels will be filled with brine and sand or sedimentary rock. Each vessel will have an inner column to simulate a well for deployment of down-hole logging tools. The experiments are configured to simulate CO{sub 2} leakage by releasing CO{sub 2} into the bottoms of the columns. The scale of the LUCI facility will permit measurements to study CO{sub 2} flow over pressure and temperature variations that span supercritical to subcritical gas conditions. It will enable observation or inference of a variety of relevant processes such as buoyancy-driven flow in porous media, Joule-Thomson cooling, thermal exchange, viscous fingering, residual trapping, and CO{sub 2} dissolution. Experiments are also planned for reactive flow of CO{sub 2} and acidified brines in caprock sediments and well cements, and for CO{sub 2}-enhanced methanogenesis in organic-rich shales. A comprehensive suite of geophysical logging instruments will be deployed to monitor experimental conditions as well as provide data to quantify vertical resolution of sensor technologies. The experimental observations from LUCI will generate fundamental new understanding of the processes governing CO{sub 2} trapping and vertical migration, and will provide valuable data to calibrate and validate large-scale model simulations.

  20. Large scale validation of the M5L lung CAD on heterogeneous CT datasets

    SciTech Connect (OSTI)

    Lopez Torres, E. E-mail: cerello@to.infn.it; Fiorina, E.; Pennazio, F.; Peroni, C.; Saletta, M.; Cerello, P. E-mail: cerello@to.infn.it; Camarlinghi, N.; Fantacci, M. E.

    2015-04-15

    Purpose: M5L, a fully automated computer-aided detection (CAD) system for the detection and segmentation of lung nodules in thoracic computed tomography (CT), is presented and validated on several image datasets. Methods: M5L is the combination of two independent subsystems, based on the Channeler Ant Model as a segmentation tool [lung channeler ant model (lungCAM)] and on the voxel-based neural approach. The lungCAM was upgraded with a scan equalization module and a new procedure to recover the nodules connected to other lung structures; its classification module, which makes use of a feed-forward neural network, is based of a small number of features (13), so as to minimize the risk of lacking generalization, which could be possible given the large difference between the size of the training and testing datasets, which contain 94 and 1019 CTs, respectively. The lungCAM (standalone) and M5L (combined) performance was extensively tested on 1043 CT scans from three independent datasets, including a detailed analysis of the full Lung Image Database Consortium/Image Database Resource Initiative database, which is not yet found in literature. Results: The lungCAM and M5L performance is consistent across the databases, with a sensitivity of about 70% and 80%, respectively, at eight false positive findings per scan, despite the variable annotation criteria and acquisition and reconstruction conditions. A reduced sensitivity is found for subtle nodules and ground glass opacities (GGO) structures. A comparison with other CAD systems is also presented. Conclusions: The M5L performance on a large and heterogeneous dataset is stable and satisfactory, although the development of a dedicated module for GGOs detection could further improve it, as well as an iterative optimization of the training procedure. The main aim of the present study was accomplished: M5L results do not deteriorate when increasing the dataset size, making it a candidate for supporting radiologists on large scale screenings and clinical programs.

  1. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    SciTech Connect (OSTI)

    Gerber, Richard; Wasserman, Harvey

    2011-03-31

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a brief summary of those relevant to issues raised by researchers at the workshop.

  2. Copy of Using Emulation and Simulation to Understand the Large-Scale Behavior of the Internet.

    SciTech Connect (OSTI)

    Adalsteinsson, Helgi; Armstrong, Robert C.; Chiang, Ken; Gentile, Ann C.; Lloyd, Levi; Minnich, Ronald G.; Vanderveen, Keith; Van Randwyk, Jamie A; Rudish, Don W.

    2008-10-01

    We report on the work done in the late-start LDRDUsing Emulation and Simulation toUnderstand the Large-Scale Behavior of the Internet. We describe the creation of a researchplatform that emulates many thousands of machines to be used for the study of large-scale inter-net behavior. We describe a proof-of-concept simple attack we performed in this environment.We describe the successful capture of a Storm bot and, from the study of the bot and furtherliterature search, establish large-scale aspects we seek to understand via emulation of Storm onour research platform in possible follow-on work. Finally, we discuss possible future work.3

  3. Autonomous UAV-Based Mapping of Large-Scale Urban Firefights

    SciTech Connect (OSTI)

    Snarski, S; Scheibner, K F; Shaw, S; Roberts, R S; LaRow, A; Oakley, D; Lupo, J; Neilsen, D; Judge, B; Forren, J

    2006-03-09

    This paper describes experimental results from a live-fire data collect designed to demonstrate the ability of IR and acoustic sensing systems to detect and map high-volume gunfire events from tactical UAVs. The data collect supports an exploratory study of the FightSight concept in which an autonomous UAV-based sensor exploitation and decision support capability is being proposed to provide dynamic situational awareness for large-scale battalion-level firefights in cluttered urban environments. FightSight integrates IR imagery, acoustic data, and 3D scene context data with prior time information in a multi-level, multi-step probabilistic-based fusion process to reliably locate and map the array of urban firing events and firepower movements and trends associated with the evolving urban battlefield situation. Described here are sensor results from live-fire experiments involving simultaneous firing of multiple sub/super-sonic weapons (2-AK47, 2-M16, 1 Beretta, 1 Mortar, 1 rocket) with high optical and acoustic clutter at ranges up to 400m. Sensor-shooter-target configurations and clutter were designed to simulate UAV sensing conditions for a high-intensity firefight in an urban environment. Sensor systems evaluated were an IR bullet tracking system by Lawrence Livermore National Laboratory (LLNL) and an acoustic gunshot detection system by Planning Systems, Inc. (PSI). The results demonstrate convincingly the ability for the LLNL and PSI sensor systems to accurately detect, separate, and localize multiple shooters and the associated shot directions during a high-intensity firefight (77 rounds in 5 sec) in a high acoustic and optical clutter environment with no false alarms. Preliminary fusion processing was also examined that demonstrated an ability to distinguish co-located shooters (shooter density), range to <0.5 m accuracy at 400m, and weapon type.

  4. Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors

    SciTech Connect (OSTI)

    Gomez, A.; Villanueva, R.; Vie, D.; Murcia-Mascaros, S.; Martinez, E.; Beltran, A.; Sapina, F.; Vicent, M.; Sanchez, E.

    2013-01-15

    Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10-15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and the nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures. - Graphical abstract: Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders by thermal decomposition of precursors obtained by freeze-drying, and this synthetic procedure has been scaled up to the 100 g scale. Highlights: Black-Right-Pointing-Pointer Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders. Black-Right-Pointing-Pointer The synthetic method involves the thermal decomposition of precursors obtained by freeze-drying. Black-Right-Pointing-Pointer The temperature of the thermal treatment controls particle sizes. Black-Right-Pointing-Pointer The preparation procedure has been scaled up to the 100 g scale. Black-Right-Pointing-Pointer This method is appropriate for the large-scale industrial preparation of multimetallic systems.

  5. Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-01-25

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

  6. Variability of Load and Net Load in Case of Large Scale Distributed Wind Power

    SciTech Connect (OSTI)

    Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Gomez-Lazaro, E.; Rawn, B.; Dobschinski, J.; Meibom, P.; Lannoye, E.; Aigner, T.; Wan, Y. H.; Milligan, M.

    2011-01-01

    Large scale wind power production and its variability is one of the major inputs to wind integration studies. This paper analyses measured data from large scale wind power production. Comparisons of variability are made across several variables: time scale (10-60 minute ramp rates), number of wind farms, and simulated vs. modeled data. Ramp rates for Wind power production, Load (total system load) and Net load (load minus wind power production) demonstrate how wind power increases the net load variability. Wind power will also change the timing of daily ramps.

  7. Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar

    Energy Savers [EERE]

    Power for U.S. Military Housing | Department of Energy Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing September 7, 2011 - 2:10pm Addthis Washington D.C. - U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment for a partial guarantee of a $344 million loan that will support the SolarStrong Project, which is expected

  8. Comparison of the effects in the rock mass of large-scale chemical and

    Office of Scientific and Technical Information (OSTI)

    nuclear explosions. Final technical report, June 9, 1994--October 9, 1994 (Technical Report) | SciTech Connect Comparison of the effects in the rock mass of large-scale chemical and nuclear explosions. Final technical report, June 9, 1994--October 9, 1994 Citation Details In-Document Search Title: Comparison of the effects in the rock mass of large-scale chemical and nuclear explosions. Final technical report, June 9, 1994--October 9, 1994 × You are accessing a document from the Department

  9. ARM - PI Product - Large Scale Ice Water Path and 3-D Ice Water Content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsLarge Scale Ice Water Path and 3-D Ice Water Content ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Large Scale Ice Water Path and 3-D Ice Water Content Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM

  10. Large-scale Screening of Zeolite Structures for CO2 Membrane Separations |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Large-scale Screening of Zeolite Structures for CO2 Membrane Separations Previous Next List J. Kim, M. Abouelnasr, L.-C. Lin, and B. Smit, J Am Chem Soc, 135, 7545-7552 (2013) DOI: 10.1021/ja400267g Abstract: We have conducted large-scale screening of zeolite materials for CO2/CH4 and CO2/N2 membrane separation applications using the free energy landscape of the guest molecules inside these porous materials. We

  11. Robust and scalable scheme to generate large-scale entanglement webs

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Robust and scalable scheme to generate large-scale entanglement webs Citation Details In-Document Search Title: Robust and scalable scheme to generate large-scale entanglement webs We propose a robust and scalable scheme to generate an N-qubit W state among separated quantum nodes (cavity-QED systems) by using linear optics and postselections. The present scheme inherits the robustness of the Barrett-Kok scheme [S. D. Barrett and P. Kok, Phys. Rev. A 71,

  12. Stimulated forward Raman scattering in large scale-length laser-produced

    Office of Scientific and Technical Information (OSTI)

    plasmas (Journal Article) | SciTech Connect Stimulated forward Raman scattering in large scale-length laser-produced plasmas Citation Details In-Document Search Title: Stimulated forward Raman scattering in large scale-length laser-produced plasmas Authors: Niemann, C ; Berger, R L ; Divol, L ; Kirkwood, R K ; Moody, J D ; Sorce, C M ; Glenzer, S H Publication Date: 2011-08-22 OSTI Identifier: 1113524 Report Number(s): LLNL-JRNL-496073 DOE Contract Number: W-7405-ENG-48 Resource Type:

  13. Development of fine-resolution analyses and expanded large-scale forcing properties. Part I: Methodology and evaluation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Zhijin; Vogelmann, Andrew M.; Feng, Sha; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Endo, Satoshi

    2015-01-20

    We produce fine-resolution, three-dimensional fields of meteorological and other variables for the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Southern Great Plains site. The Community Gridpoint Statistical Interpolation system is implemented in a multiscale data assimilation (MS-DA) framework that is used within the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. The MS-DA algorithm uses existing reanalysis products and constrains fine-scale atmospheric properties by assimilating high-resolution observations. A set of experiments show that the data assimilation analysis realistically reproduces the intensity, structure, and time evolution of clouds and precipitation associated with a mesoscale convective system.more » Evaluations also show that the large-scale forcing derived from the fine-resolution analysis has an overall accuracy comparable to the existing ARM operational product. For enhanced applications, the fine-resolution fields are used to characterize the contribution of subgrid variability to the large-scale forcing and to derive hydrometeor forcing, which are presented in companion papers.« less

  14. Development of fine-resolution analyses and expanded large-scale forcing properties. Part I: Methodology and evaluation

    SciTech Connect (OSTI)

    Li, Zhijin; Vogelmann, Andrew M.; Feng, Sha; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Endo, Satoshi

    2015-01-20

    We produce fine-resolution, three-dimensional fields of meteorological and other variables for the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Southern Great Plains site. The Community Gridpoint Statistical Interpolation system is implemented in a multiscale data assimilation (MS-DA) framework that is used within the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. The MS-DA algorithm uses existing reanalysis products and constrains fine-scale atmospheric properties by assimilating high-resolution observations. A set of experiments show that the data assimilation analysis realistically reproduces the intensity, structure, and time evolution of clouds and precipitation associated with a mesoscale convective system. Evaluations also show that the large-scale forcing derived from the fine-resolution analysis has an overall accuracy comparable to the existing ARM operational product. For enhanced applications, the fine-resolution fields are used to characterize the contribution of subgrid variability to the large-scale forcing and to derive hydrometeor forcing, which are presented in companion papers.

  15. Measuring and tuning energy efficiency on large scale high performance computing platforms.

    SciTech Connect (OSTI)

    Laros, James H., III

    2011-08-01

    Recognition of the importance of power in the field of High Performance Computing, whether it be as an obstacle, expense or design consideration, has never been greater and more pervasive. While research has been conducted on many related aspects, there is a stark absence of work focused on large scale High Performance Computing. Part of the reason is the lack of measurement capability currently available on small or large platforms. Typically, research is conducted using coarse methods of measurement such as inserting a power meter between the power source and the platform, or fine grained measurements using custom instrumented boards (with obvious limitations in scale). To collect the measurements necessary to analyze real scientific computing applications at large scale, an in-situ measurement capability must exist on a large scale capability class platform. In response to this challenge, we exploit the unique power measurement capabilities of the Cray XT architecture to gain an understanding of power use and the effects of tuning. We apply these capabilities at the operating system level by deterministically halting cores when idle. At the application level, we gain an understanding of the power requirements of a range of important DOE/NNSA production scientific computing applications running at large scale (thousands of nodes), while simultaneously collecting current and voltage measurements on the hosting nodes. We examine the effects of both CPU and network bandwidth tuning and demonstrate energy savings opportunities of up to 39% with little or no impact on run-time performance. Capturing scale effects in our experimental results was key. Our results provide strong evidence that next generation large-scale platforms should not only approach CPU frequency scaling differently, but could also benefit from the capability to tune other platform components, such as the network, to achieve energy efficient performance.

  16. Research project on CO2 geological storage and groundwaterresources: Large-scale hydrological evaluation and modeling of impact ongroundwater systems

    SciTech Connect (OSTI)

    Birkholzer, Jens; Zhou, Quanlin; Rutqvist, Jonny; Jordan,Preston; Zhang,K.; Tsang, Chin-Fu

    2007-10-24

    If carbon dioxide capture and storage (CCS) technologies areimplemented on a large scale, the amounts of CO2 injected and sequesteredunderground could be extremely large. The stored CO2 then replaces largevolumes of native brine, which can cause considerable pressureperturbation and brine migration in the deep saline formations. Ifhydraulically communicating, either directly via updipping formations orthrough interlayer pathways such as faults or imperfect seals, theseperturbations may impact shallow groundwater or even surface waterresources used for domestic or commercial water supply. Possibleenvironmental concerns include changes in pressure and water table,changes in discharge and recharge zones, as well as changes in waterquality. In compartmentalized formations, issues related to large-scalepressure buildup and brine displacement may also cause storage capacityproblems, because significant pressure buildup can be produced. Toaddress these issues, a three-year research project was initiated inOctober 2006, the first part of which is summarized in this annualreport.

  17. Analysis of molten fuel-coolant interaction during a reactivity-initiated accident experiment. [BWR; PWR

    SciTech Connect (OSTI)

    El-Genk, M.S.; Hobbins, R.R.

    1981-01-01

    The results of a reactivity-initiated accident experiment, designated RIA-ST-4, are discussed and analyzed with regard to molten fuel-coolant interaction (MFCI). In this experiment, extensive amounts of molten UO/sub 2/ fuel and zircaloy cladding were produced and fragmented upon mixing with the coolant. Coolant pressurization up to 35 MPa and coolant overheating in excess of 940 K occurred after fuel rod failure. The initial coolant conditions were similar to those in boiling water reactors during a hot startup (that is, coolant pressure of 6.45 MPa, coolant temperature of 538 K, and coolant flow rate of 85 cm/sup 3//s). It is concluded that the high coolant pressure recorded in the RIA-ST-4 experiment was caused by an energetic MFCI and was not due to gas release from the test rod at failure, Zr/water reaction, or to UO/sub 2/ fuel vapor pressure. The high coolant temperature indicated the presence of superheated steam, which may have formed during the expansion of the working fluid back to the initial coolant pressure; yet, the thermal-to-mechanical energy conversion ratio is estimated to be only 0.3%.

  18. Optimization of large-scale heterogeneous system-of-systems models.

    SciTech Connect (OSTI)

    Parekh, Ojas; Watson, Jean-Paul; Phillips, Cynthia Ann; Siirola, John; Swiler, Laura Painton; Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Lee, Herbert K. H. (University of California, Santa Cruz, Santa Cruz, CA); Hart, William Eugene; Gray, Genetha Anne (Sandia National Laboratories, Livermore, CA); Woodruff, David L. (University of California, Davis, Davis, CA)

    2012-01-01

    Decision makers increasingly rely on large-scale computational models to simulate and analyze complex man-made systems. For example, computational models of national infrastructures are being used to inform government policy, assess economic and national security risks, evaluate infrastructure interdependencies, and plan for the growth and evolution of infrastructure capabilities. A major challenge for decision makers is the analysis of national-scale models that are composed of interacting systems: effective integration of system models is difficult, there are many parameters to analyze in these systems, and fundamental modeling uncertainties complicate analysis. This project is developing optimization methods to effectively represent and analyze large-scale heterogeneous system of systems (HSoS) models, which have emerged as a promising approach for describing such complex man-made systems. These optimization methods enable decision makers to predict future system behavior, manage system risk, assess tradeoffs between system criteria, and identify critical modeling uncertainties.

  19. Simultaneous effect of modified gravity and primordial non-Gaussianity in large scale structure observations

    SciTech Connect (OSTI)

    Mirzatuny, Nareg; Khosravi, Shahram; Baghram, Shant; Moshafi, Hossein E-mail: khosravi@mail.ipm.ir E-mail: hosseinmoshafi@iasbs.ac.ir

    2014-01-01

    In this work we study the simultaneous effect of primordial non-Gaussianity and the modification of the gravity in f(R) framework on large scale structure observations. We show that non-Gaussianity and modified gravity introduce a scale dependent bias and growth rate functions. The deviation from ?CDM in the case of primordial non-Gaussian models is in large scales, while the growth rate deviates from ?CDM in small scales for modified gravity theories. We show that the redshift space distortion can be used to distinguish positive and negative f{sub NL} in standard background, while in f(R) theories they are not easily distinguishable. The galaxy power spectrum is generally enhanced in presence of non-Gaussianity and modified gravity. We also obtain the scale dependence of this enhancement. Finally we define galaxy growth rate and galaxy growth rate bias as new observational parameters to constrain cosmology.

  20. Bacteria Modified to Secrete Biologically Active Protein for Large-Scale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production - Energy Innovation Portal Bacteria Modified to Secrete Biologically Active Protein for Large-Scale Production Inventors: Sydnor Withers III, Miguel Dominguez, Matthew DeLisa, Charles Haitjema Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary E. coli is the most common prokaryote used to produce protein. The expressed protein generally accumulates in the cytoplasm. While this approach is useful for some proteins, not all

  1. PARTICLE ACCELERATION BY COLLISIONLESS SHOCKS CONTAINING LARGE-SCALE MAGNETIC-FIELD VARIATIONS

    SciTech Connect (OSTI)

    Guo, F.; Jokipii, J. R.; Kota, J. E-mail: jokipii@lpl.arizona.ed

    2010-12-10

    Diffusive shock acceleration at collisionless shocks is thought to be the source of many of the energetic particles observed in space. Large-scale spatial variations of the magnetic field have been shown to be important in understanding observations. The effects are complex, so here we consider a simple, illustrative model. Here we solve numerically the Parker transport equation for a shock in the presence of large-scale sinusoidal magnetic-field variations. We demonstrate that the familiar planar-shock results can be significantly altered as a consequence of large-scale, meandering magnetic lines of force. Because the perpendicular diffusion coefficient {kappa}{sub perpendicular} is generally much smaller than the parallel diffusion coefficient {kappa}{sub ||}, the energetic charged particles are trapped and preferentially accelerated along the shock front in the regions where the connection points of magnetic field lines intersecting the shock surface converge, and thus create the 'hot spots' of the accelerated particles. For the regions where the connection points separate from each other, the acceleration to high energies will be suppressed. Further, the particles diffuse away from the 'hot spot' regions and modify the spectra of downstream particle distribution. These features are qualitatively similar to the recent Voyager observations in the Heliosheath. These results are potentially important for particle acceleration at shocks propagating in turbulent magnetized plasmas as well as those which contain large-scale nonplanar structures. Examples include anomalous cosmic rays accelerated by the solar wind termination shock, energetic particles observed in propagating heliospheric shocks, galactic cosmic rays accelerated by supernova blast waves, etc.

  2. Panel 1, Towards Sustainable Energy Systems: The Role of Large-Scale Hydrogen Storage in Germany

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hanno Butsch | Head of International Cooperation NOW GmbH National Organization Hydrogen and Fuel Cell Technology Towards sustainable energy systems - The role of large scale hydrogen storage in Germany May 14th, 2014 | Sacramento Political background for the transition to renewable energies 2 * Climate protection: Global responsibility for the next generation. * Energy security: More independency from fossil fuels. * Securing the economy: Creating new markets and jobs through innovations. Three

  3. Large-Scale Production of Marine Microalgae for Fuel and Feeds

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office (BETO) 2015 Project Peer Review Large-Scale Production of Marine Microalgae for Fuel and Feeds March 24, 2015 Algae Platform Review Mark Huntley Cornell Marine Algal Biofuels Consortium This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement  BETO MYPP Goals (3) Demonstrate 1. Performance against clear cost goals and technical targets (Q4 2013) 2. Productivity of 1,500 gal/acre/yr algal oil (Q4 2014)

  4. Development of fine-resolution analyses and expanded large-scale forcing

    Office of Scientific and Technical Information (OSTI)

    properties. Part I: Methodology and evaluation (Journal Article) | SciTech Connect I: Methodology and evaluation Citation Details In-Document Search Title: Development of fine-resolution analyses and expanded large-scale forcing properties. Part I: Methodology and evaluation We produce fine-resolution, three-dimensional fields of meteorological and other variables for the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Southern Great Plains site. The Community Gridpoint

  5. Final Report: Large-Scale Optimization for Bayesian Inference in Complex Systems

    SciTech Connect (OSTI)

    Ghattas, Omar

    2013-10-15

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimiza- tion) Project focuses on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimiza- tion and inversion methods. Our research is directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. Our efforts are integrated in the context of a challenging testbed problem that considers subsurface reacting flow and transport. The MIT component of the SAGUARO Project addresses the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas-Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to- observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as "reduce then sample" and "sample then reduce." In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their speedups.

  6. Large-Scale Computational Screening of Zeolites for Ethane/Ethene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Separation | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Scale Computational Screening of Zeolites for Ethane/Ethene Separation Previous Next List J. Kim, L.-C. Lin, R. L. Martin, J. A. Swisher, M. Haranczyk, and B. Smit, Langmuir 28 (32), 11914 (2012) DOI: 10.1021/la302230z Abstract Image Abstract: Large-scale computational screening of thirty thousand zeolite structures was conducted to find optimal structures for separation of ethane/ethene mixtures.

  7. DOE/NNSA Participates in Large-Scale CTBT On-Site Inspection Exercise in

    National Nuclear Security Administration (NNSA)

    Jordan | National Nuclear Security Administration Large-Scale CTBT On-Site Inspection Exercise in Jordan | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  8. A method of orbital analysis for large-scale first-principles simulations

    SciTech Connect (OSTI)

    Ohwaki, Tsukuru; Otani, Minoru; Ozaki, Taisuke

    2014-06-28

    An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF{sub 4})

  9. High Fidelity Simulations of Large-Scale Wireless Networks (Plus-Up)

    SciTech Connect (OSTI)

    Onunkwo, Uzoma

    2015-11-01

    Sandia has built a strong reputation in scalable network simulation and emulation for cyber security studies to protect our nations critical information infrastructures. Georgia Tech has preeminent reputation in academia for excellence in scalable discrete event simulations, with strong emphasis on simulating cyber networks. Many of the experts in this field, such as Dr. Richard Fujimoto, Dr. George Riley, and Dr. Chris Carothers, have strong affiliations with Georgia Tech. The collaborative relationship that we intend to immediately pursue is in high fidelity simulations of practical large-scale wireless networks using ns-3 simulator via Dr. George Riley. This project will have mutual benefits in bolstering both institutions expertise and reputation in the field of scalable simulation for cyber-security studies. This project promises to address high fidelity simulations of large-scale wireless networks. This proposed collaboration is directly in line with Georgia Techs goals for developing and expanding the Communications Systems Center, the Georgia Tech Broadband Institute, and Georgia Tech Information Security Center along with its yearly Emerging Cyber Threats Report. At Sandia, this work benefits the defense systems and assessment area with promise for large-scale assessment of cyber security needs and vulnerabilities of our nations critical cyber infrastructures exposed to wireless communications.

  10. Proceedings of the Joint IAEA/CSNI Specialists` Meeting on Fracture Mechanics Verification by Large-Scale Testing held at Pollard Auditorium, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Pugh, C.E.; Bass, B.R.; Keeney, J.A.

    1993-10-01

    This report contains 40 papers that were presented at the Joint IAEA/CSNI Specialists` Meeting Fracture Mechanics Verification by Large-Scale Testing held at the Pollard Auditorium, Oak Ridge, Tennessee, during the week of October 26--29, 1992. The papers are printed in the order of their presentation in each session and describe recent large-scale fracture (brittle and/or ductile) experiments, analyses of these experiments, and comparisons between predictions and experimental results. The goal of the meeting was to allow international experts to examine the fracture behavior of various materials and structures under conditions relevant to nuclear reactor components and operating environments. The emphasis was on the ability of various fracture models and analysis methods to predict the wide range of experimental data now available. The individual papers have been cataloged separately.

  11. SHOCK INITIATION EXPERIMENTS ON THE TATB BASED EXPLOSIVE RX-03-GO WITH IGNITION AND GROWTH MODELING

    SciTech Connect (OSTI)

    Vandersall, K S; Garcia, F; Tarver, C M

    2009-06-23

    Shock initiation experiments on the TATB based explosive RX-03-GO (92.5% TATB, 7.5% Cytop A by weight) were performed to obtain in-situ pressure gauge data, characterize the run-distance-to-detonation behavior, and calculate Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the explosive sample with manganin piezoresistive pressure gauge packages placed between sample slices. The RX-03-GO formulation utilized is similar to that of LX-17 (92.5% TATB, 7.5% Kel-f by weight) with the notable differences of a new binder material and TATB that has been dissolved and recrystallized in order to improve the purity and morphology. The shock sensitivity will be compared with that of prior data on LX-17 and other TATB formulations. Ignition and Growth modeling parameters were obtained with a reasonable fit to the experimental data.

  12. Intercomparison of methods of coupling between convection and large-scale circulation. 1. Comparison over uniform surface conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Daleu, C. L.; Plant, R. S.; Woolnough, S. J.; Sessions, S.; Herman, M. J.; Sobel, A.; Wang, S.; Kim, D.; Cheng, A.; Bellon, G.; et al

    2015-10-24

    Here, as part of an international intercomparison project, a set of single-column models (SCMs) and cloud-resolving models (CRMs) are run under the weak-temperature gradient (WTG) method and the damped gravity wave (DGW) method. For each model, the implementation of the WTG or DGW method involves a simulated column which is coupled to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. The simulated column has the same surface conditions as the reference state and is initialized with profiles from the reference state. We performed systematic comparison of the behavior of different models under a consistentmore » implementation of the WTG method and the DGW method and systematic comparison of the WTG and DGW methods in models with different physics and numerics. CRMs and SCMs produce a variety of behaviors under both WTG and DGW methods. Some of the models reproduce the reference state while others sustain a large-scale circulation which results in either substantially lower or higher precipitation compared to the value of the reference state. CRMs show a fairly linear relationship between precipitation and circulation strength. SCMs display a wider range of behaviors than CRMs. Some SCMs under the WTG method produce zero precipitation. Within an individual SCM, a DGW simulation and a corresponding WTG simulation can produce different signed circulation. When initialized with a dry troposphere, DGW simulations always result in a precipitating equilibrium state. The greatest sensitivities to the initial moisture conditions occur for multiple stable equilibria in some WTG simulations, corresponding to either a dry equilibrium state when initialized as dry or a precipitating equilibrium state when initialized as moist. Multiple equilibria are seen in more WTG simulations for higher SST. In some models, the existence of multiple equilibria is sensitive to some parameters in the WTG calculations.« less

  13. Primordial non-Gaussianity in the bispectra of large-scale structure

    SciTech Connect (OSTI)

    Tasinato, Gianmassimo; Tellarini, Matteo; Ross, Ashley J.; Wands, David E-mail: matteo.tellarini@port.ac.uk E-mail: david.wands@port.ac.uk

    2014-03-01

    The statistics of large-scale structure in the Universe can be used to probe non-Gaussianity of the primordial density field, complementary to existing constraints from the cosmic microwave background. In particular, the scale dependence of halo bias, which affects the halo distribution at large scales, represents a promising tool for analyzing primordial non-Gaussianity of local form. Future observations, for example, may be able to constrain the trispectrum parameter g{sub NL} that is difficult to study and constrain using the CMB alone. We investigate how galaxy and matter bispectra can distinguish between the two non-Gaussian parameters f{sub NL} and g{sub NL}, whose effects give nearly degenerate contributions to the power spectra. We use a generalization of the univariate bias approach, making the hypothesis that the number density of halos forming at a given position is a function of the local matter density contrast and of its local higher-order statistics. Using this approach, we calculate the halo-matter bispectra and analyze their properties. We determine a connection between the sign of the halo bispectrum on large scales and the parameter g{sub NL}. We also construct a combination of halo and matter bispectra that is sensitive to f{sub NL}, with little contamination from g{sub NL}. We study both the case of single and multiple sources to the primordial gravitational potential, discussing how to extend the concept of stochastic halo bias to the case of bispectra. We use a specific halo mass-function to calculate numerically the bispectra in appropriate squeezed limits, confirming our theoretical findings.

  14. Large-Scale Field Study of Landfill Covers at Sandia National Laboratories

    SciTech Connect (OSTI)

    Dwyer, S.F.

    1998-09-01

    A large-scale field demonstration comparing final landfill cover designs has been constructed and is currently being monitored at Sandia National Laboratories in Albuquerque, New Mexico. Two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side with four alternative cover test plots designed for dry environments. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper presents an overview of the ongoing demonstration.

  15. Networks of silicon nanowires: A large-scale atomistic electronic structure analysis

    SciTech Connect (OSTI)

    Kele?, mit; Bulutay, Ceyhun; Liedke, Bartosz; Heinig, Karl-Heinz

    2013-11-11

    Networks of silicon nanowires possess intriguing electronic properties surpassing the predictions based on quantum confinement of individual nanowires. Employing large-scale atomistic pseudopotential computations, as yet unexplored branched nanostructures are investigated in the subsystem level as well as in full assembly. The end product is a simple but versatile expression for the bandgap and band edge alignments of multiply-crossing Si nanowires for various diameters, number of crossings, and wire orientations. Further progress along this line can potentially topple the bottom-up approach for Si nanowire networks to a top-down design by starting with functionality and leading to an enabling structure.

  16. Harvey Wasserman! Large Scale Computing and Storage Requirements for High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Harvey Wasserman! Large Scale Computing and Storage Requirements for High Energy Physics Research: Target 2017 Meeting Goals & Process! ! --- 1 --- December 3 , 2 012 Logistics: Schedule * Agenda o n w orkshop w eb p age - h%p://www.nersc.gov/science/requirements/HEP * Mid---morning / a <ernoon b reak, l unch * Self---organizaBon for dinner * MulBple s cience a reas, o ne w orkshop - Science---focused b ut c rosscu?ng d iscussion - Explore a reas o f c ommon n eed ( within H EP) *

  17. Testing the big bang: Light elements, neutrinos, dark matter and large-scale structure

    SciTech Connect (OSTI)

    Schramm, D.N. Fermi National Accelerator Lab., Batavia, IL )

    1991-06-01

    In this series of lectures, several experimental and observational tests of the standard cosmological model are examined. In particular, detailed discussion is presented regarding nucleosynthesis, the light element abundances and neutrino counting; the dark matter problems; and the formation of galaxies and large-scale structure. Comments will also be made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing'' and the cosmological and astrophysical constraints on it. 126 refs., 8 figs., 2 tabs.

  18. NREL Offers an Open-Source Solution for Large-Scale Energy Data Collection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Analysis - News Releases | NREL NREL Offers an Open-Source Solution for Large-Scale Energy Data Collection and Analysis June 18, 2013 The Energy Department's National Renewable Energy Laboratory (NREL) is launching an open-source system for storing, integrating, and aligning energy-related time-series data. NREL's Energy DataBus is used for tracking and analyzing energy use on its own campus. The system is applicable to other facilities-including anything from a single building to a

  19. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid

    SciTech Connect (OSTI)

    Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

    2013-02-15

    Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

  20. Large Scale Ice Water Path and 3-D Ice Water Content

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Liu, Guosheng

    2008-01-15

    Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.

  1. On the possible origin of the large scale cosmic magnetic field

    SciTech Connect (OSTI)

    Coroniti, F. V.

    2014-01-10

    The possibility that the large scale cosmic magnetic field is directly generated at microgauss, equipartition levels during the reionization epoch by collisionless shocks that are forced to satisfy a downstream shear flow boundary condition is investigated through the development of two modelsthe accretion of an ionized plasma onto a weakly ionized cool galactic disk and onto a cool filament of the cosmic web. The dynamical structure and the physical parameters of the models are synthesized from recent cosmological simulations of the early reionization era after the formation of the first stars. The collisionless shock stands upstream of the disk and filament, and its dissipation is determined by ion inertial length Weibel turbulence. The downstream shear boundary condition is determined by the rotational neutral gas flow in the disk and the inward accretion flow along the filament. The shocked plasma is accelerated to the downstream shear flow velocity by the Weibel turbulence, and the relative shearing motion between the electrons and ions produces a strong, ion inertial scale current sheet that generates an equipartition strength, large scale downstream magnetic field, ?10{sup 6} G for the disk and ?6 10{sup 8} G for the filament. By assumption, hydrodynamic turbulence transports the shear-shock generated magnetic flux throughout the disk and filament volume.

  2. Nonlinear Seismic Correlation Analysis of the JNES/NUPEC Large-Scale Piping System Tests.

    SciTech Connect (OSTI)

    Nie,J.; DeGrassi, G.; Hofmayer, C.; Ali, S.

    2008-06-01

    The Japan Nuclear Energy Safety Organization/Nuclear Power Engineering Corporation (JNES/NUPEC) large-scale piping test program has provided valuable new test data on high level seismic elasto-plastic behavior and failure modes for typical nuclear power plant piping systems. The component and piping system tests demonstrated the strain ratcheting behavior that is expected to occur when a pressurized pipe is subjected to cyclic seismic loading. Under a collaboration agreement between the US and Japan on seismic issues, the US Nuclear Regulatory Commission (NRC)/Brookhaven National Laboratory (BNL) performed a correlation analysis of the large-scale piping system tests using derailed state-of-the-art nonlinear finite element models. Techniques are introduced to develop material models that can closely match the test data. The shaking table motions are examined. The analytical results are assessed in terms of the overall system responses and the strain ratcheting behavior at an elbow. The paper concludes with the insights about the accuracy of the analytical methods for use in performance assessments of highly nonlinear piping systems under large seismic motions.

  3. Technical and economical aspects of large-scale CO{sub 2} storage in deep oceans

    SciTech Connect (OSTI)

    Sarv, H.; John, J.

    2000-07-01

    The authors examined the technical and economical feasibility of two options for large-scale transportation and ocean sequestration of captured CO{sub 2} at depths of 3000 meters or greater. In one case, CO{sub 2} was pumped from a land-based collection center through six parallel-laid subsea pipelines. Another case considered oceanic tanker transport of liquid carbon dioxide to an offshore floating platform or a barge for vertical injection through a large-diameter pipe to the ocean floor. Based on the preliminary technical and economic analyses, tanker transportation and offshore injection through a large-diameter, 3,000-meter vertical pipeline from a floating structure appears to be the best method for delivering liquid CO{sub 2} to deep ocean floor depressions for distances greater than 400 km. Other benefits of offshore injection are high payload capability and ease of relocation. For shorter distances (less than 400 km), CO{sub 2} delivery by subsea pipelines is more cost-effective. Estimated costs for 500-km transport and storage at a depth of 3000 meters by subsea pipelines or tankers were under 2 dollars per ton of stored CO{sub 2}. Their analyses also indicates that large-scale sequestration of captured CO{sub 2} in oceans is technologically feasible and has many commonalities with other strategies for deepsea natural gas and oil exploration installations.

  4. A High-Performance Rechargeable Iron Electrode for Large-Scale Battery-Based Energy Storage

    SciTech Connect (OSTI)

    Manohar, AK; Malkhandi, S; Yang, B; Yang, C; Prakash, GKS; Narayanan, SR

    2012-01-01

    Inexpensive, robust and efficient large-scale electrical energy storage systems are vital to the utilization of electricity generated from solar and wind resources. In this regard, the low cost, robustness, and eco-friendliness of aqueous iron-based rechargeable batteries are particularly attractive and compelling. However, wasteful evolution of hydrogen during charging and the inability to discharge at high rates have limited the deployment of iron-based aqueous batteries. We report here new chemical formulations of the rechargeable iron battery electrode to achieve a ten-fold reduction in the hydrogen evolution rate, an unprecedented charging efficiency of 96%, a high specific capacity of 0.3 Ah/g, and a twenty-fold increase in discharge rate capability. We show that modifying high-purity carbonyl iron by in situ electro-deposition of bismuth leads to substantial inhibition of the kinetics of the hydrogen evolution reaction. The in situ formation of conductive iron sulfides mitigates the passivation by iron hydroxide thereby allowing high discharge rates and high specific capacity to be simultaneously achieved. These major performance improvements are crucial to advancing the prospect of a sustainable large-scale energy storage solution based on aqueous iron-based rechargeable batteries. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.034208jes] All rights reserved.

  5. Large Scale Ice Water Path and 3-D Ice Water Content

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Liu, Guosheng

    Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.

  6. Environmental performance evaluation of large-scale municipal solid waste incinerators using data envelopment analysis

    SciTech Connect (OSTI)

    Chen, H.-W.; Chang, N.-B.; Chen, J.-C.; Tsai, S.-J.

    2010-07-15

    Limited to insufficient land resources, incinerators are considered in many countries such as Japan and Germany as the major technology for a waste management scheme capable of dealing with the increasing demand for municipal and industrial solid waste treatment in urban regions. The evaluation of these municipal incinerators in terms of secondary pollution potential, cost-effectiveness, and operational efficiency has become a new focus in the highly interdisciplinary area of production economics, systems analysis, and waste management. This paper aims to demonstrate the application of data envelopment analysis (DEA) - a production economics tool - to evaluate performance-based efficiencies of 19 large-scale municipal incinerators in Taiwan with different operational conditions. A 4-year operational data set from 2002 to 2005 was collected in support of DEA modeling using Monte Carlo simulation to outline the possibility distributions of operational efficiency of these incinerators. Uncertainty analysis using the Monte Carlo simulation provides a balance between simplifications of our analysis and the soundness of capturing the essential random features that complicate solid waste management systems. To cope with future challenges, efforts in the DEA modeling, systems analysis, and prediction of the performance of large-scale municipal solid waste incinerators under normal operation and special conditions were directed toward generating a compromised assessment procedure. Our research findings will eventually lead to the identification of the optimal management strategies for promoting the quality of solid waste incineration, not only in Taiwan, but also elsewhere in the world.

  7. Re-evaluation of the 1995 Hanford Large Scale Drum Fire Test Results

    SciTech Connect (OSTI)

    Yang, J M

    2007-05-02

    A large-scale drum performance test was conducted at the Hanford Site in June 1995, in which over one hundred (100) 55-gal drums in each of two storage configurations were subjected to severe fuel pool fires. The two storage configurations in the test were pallet storage and rack storage. The description and results of the large-scale drum test at the Hanford Site were reported in WHC-SD-WM-TRP-246, ''Solid Waste Drum Array Fire Performance,'' Rev. 0, 1995. This was one of the main references used to develop the analytical methodology to predict drum failures in WHC-SD-SQA-ANAL-501, 'Fire Protection Guide for Waste Drum Storage Array,'' September 1996. Three drum failure modes were observed from the test reported in WHC-SD-WM-TRP-246. They consisted of seal failure, lid warping, and catastrophic lid ejection. There was no discernible failure criterion that distinguished one failure mode from another. Hence, all three failure modes were treated equally for the purpose of determining the number of failed drums. General observations from the results of the test are as follows: {lg_bullet} Trash expulsion was negligible. {lg_bullet} Flame impingement was identified as the main cause for failure. {lg_bullet} The range of drum temperatures at failure was 600 C to 800 C. This is above the yield strength temperature for steel, approximately 540 C (1,000 F). {lg_bullet} The critical heat flux required for failure is above 45 kW/m{sup 2}. {lg_bullet} Fire propagation from one drum to the next was not observed. The statistical evaluation of the test results using, for example, the student's t-distribution, will demonstrate that the failure criteria for TRU waste drums currently employed at nuclear facilities are very conservative relative to the large-scale test results. Hence, the safety analysis utilizing the general criteria described in the five bullets above will lead to a technically robust and defensible product that bounds the potential consequences from postulated fires in TRU waste facilities, the means of storage in which are the Type A, 55-gal drums.

  8. Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology and Results from Long-Haul Truck Drive Cycle Evaluations

    SciTech Connect (OSTI)

    LaClair, Tim J

    2011-05-01

    This report addresses the approach that will be used in the Large Scale Duty Cycle (LSDC) project to evaluate the fuel savings potential of various truck efficiency technologies. The methods and equations used for performing the tractive energy evaluations are presented and the calculation approach is described. Several representative results for individual duty cycle segments are presented to demonstrate the approach and the significance of this analysis for the project. The report is divided into four sections, including an initial brief overview of the LSDC project and its current status. In the second section of the report, the concepts that form the basis of the analysis are presented through a discussion of basic principles pertaining to tractive energy and the role of tractive energy in relation to other losses on the vehicle. In the third section, the approach used for the analysis is formalized and the equations used in the analysis are presented. In the fourth section, results from the analysis for a set of individual duty cycle measurements are presented and different types of drive cycles are discussed relative to the fuel savings potential that specific technologies could bring if these drive cycles were representative of the use of a given vehicle or trucking application. Additionally, the calculation of vehicle mass from measured torque and speed data is presented and the accuracy of the approach is demonstrated.

  9. HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY SYSTEM SIMULATION AND ECONOMICS

    SciTech Connect (OSTI)

    J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

    2009-05-01

    A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

  10. Detecting and mitigating abnormal events in large scale networks: budget constrained placement on smart grids

    SciTech Connect (OSTI)

    Santhi, Nandakishore; Pan, Feng

    2010-10-19

    Several scenarios exist in the modern interconnected world which call for an efficient network interdiction algorithm. Applications are varied, including various monitoring and load shedding applications on large smart energy grids, computer network security, preventing the spread of Internet worms and malware, policing international smuggling networks, and controlling the spread of diseases. In this paper we consider some natural network optimization questions related to the budget constrained interdiction problem over general graphs, specifically focusing on the sensor/switch placement problem for large-scale energy grids. Many of these questions turn out to be computationally hard to tackle. We present a particular form of the interdiction question which is practically relevant and which we show as computationally tractable. A polynomial-time algorithm will be presented for solving this problem.

  11. Aerodynamic force measurement on a large-scale model in a short duration test facility

    SciTech Connect (OSTI)

    Tanno, H.; Kodera, M.; Komuro, T.; Sato, K.; Takahasi, M.; Itoh, K.

    2005-03-01

    A force measurement technique has been developed for large-scale aerodynamic models with a short test time. The technique is based on direct acceleration measurements, with miniature accelerometers mounted on a test model suspended by wires. Measuring acceleration at two different locations, the technique can eliminate oscillations from natural vibration of the model. The technique was used for drag force measurements on a 3 m long supersonic combustor model in the HIEST free-piston driven shock tunnel. A time resolution of 350 {mu}s is guaranteed during measurements, whose resolution is enough for ms order test time in HIEST. To evaluate measurement reliability and accuracy, measured values were compared with results from a three-dimensional Navier-Stokes numerical simulation. The difference between measured values and numerical simulation values was less than 5%. We conclude that this measurement technique is sufficiently reliable for measuring aerodynamic force within test durations of 1 ms.

  12. Molecular Dynamics Simulations from SNL's Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Plimpton, Steve; Thompson, Aidan; Crozier, Paul

    LAMMPS (http://lammps.sandia.gov/index.html) stands for Large-scale Atomic/Molecular Massively Parallel Simulator and is a code that can be used to model atoms or, as the LAMMPS website says, as a parallel particle simulator at the atomic, meso, or continuum scale. This Sandia-based website provides a long list of animations from large simulations. These were created using different visualization packages to read LAMMPS output, and each one provides the name of the PI and a brief description of the work done or visualization package used. See also the static images produced from simulations at http://lammps.sandia.gov/pictures.html The foundation paper for LAMMPS is: S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19 (1995), but the website also lists other papers describing contributions to LAMMPS over the years.

  13. Measurement of the large-scale anisotropy of the cosmic background radiation at 3mm

    SciTech Connect (OSTI)

    Epstein, G.L.

    1983-12-01

    A balloon-borne differential radiometer has measured the large-scale anisotropy of the cosmic background radiation (CBR) with high sensitivity. The antenna temperature dipole anistropy at 90 GHz (3 mm wavelength) is 2.82 +- 0.19 mK, corresponding to a thermodynamic anistropy of 3.48 +- mK for a 2.7 K blackbody CBR. The dipole direction, 11.3 +- 0.1 hours right ascension and -5.7/sup 0/ +- 1.8/sup 0/ declination, agrees well with measurements at other frequencies. Calibration error dominates magnitude uncertainty, with statistical errors on dipole terms being under 0.1 mK. No significant quadrupole power is found, placing a 90% confidence-level upper limit of 0.27 mK on the RMS thermodynamic quadrupolar anistropy. 22 figures, 17 tables.

  14. Large-Scale Computational Screening of Zeolites for Ethane/Ethene Separation

    SciTech Connect (OSTI)

    Kim, J; Lin, LC; Martin, RL; Swisher, JA; Haranczyk, M; Smit, B

    2012-08-14

    Large-scale computational screening of thirty thousand zeolite structures was conducted to find optimal structures for seperation of ethane/ethene mixtures. Efficient grand canonical Monte Carlo (GCMC) simulations were performed with graphics processing units (GPUs) to obtain pure component adsorption isotherms for both ethane and ethene. We have utilized the ideal adsorbed solution theory (LAST) to obtain the mixture isotherms, which were used to evaluate the performance of each zeolite structure based on its working capacity and selectivity. In our analysis, we have determined that specific arrangements of zeolite framework atoms create sites for the preferential adsorption of ethane over ethene. The majority of optimum separation materials can be identified by utilizing this knowledge and screening structures for the presence of this feature will enable the efficient selection of promising candidate materials for ethane/ethene separation prior to performing molecular simulations.

  15. Large-scale production of anhydrous nitric acid and nitric acid solutions of dinitrogen pentoxide

    DOE Patents [OSTI]

    Harrar, Jackson E. (Castro Valley, CA); Quong, Roland (Oakland, CA); Rigdon, Lester P. (Livermore, CA); McGuire, Raymond R. (Brentwood, CA)

    2001-01-01

    A method and apparatus are disclosed for a large scale, electrochemical production of anhydrous nitric acid and N.sub.2 O.sub.5. The method includes oxidizing a solution of N.sub.2 O.sub.4 /aqueous-HNO.sub.3 at the anode, while reducing aqueous HNO.sub.3 at the cathode, in a flow electrolyzer constructed of special materials. N.sub.2 O.sub.4 is produced at the cathode and may be separated and recycled as a feedstock for use in the anolyte. The process is controlled by regulating the electrolysis current until the desired products are obtained. The chemical compositions of the anolyte and catholyte are monitored by measurement of the solution density and the concentrations of N.sub.2 O.sub.4.

  16. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect (OSTI)

    James E. O'Brien

    2010-08-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a hydrogen economy. The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  17. Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties

    SciTech Connect (OSTI)

    Lenormand, R.; Thiele, M.R.

    1997-08-01

    The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

  18. Survey and analysis of selected jointly owned large-scale electric utility storage projects

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

  19. LARGE-SCALE MAGNETIC HELICITY FLUXES ESTIMATED FROM MDI MAGNETIC SYNOPTIC CHARTS OVER THE SOLAR CYCLE 23

    SciTech Connect (OSTI)

    Yang Shangbin; Zhang Hongqi

    2012-10-10

    To investigate the characteristics of large-scale and long-term evolution of magnetic helicity with solar cycles, we use the method of Local Correlation Tracking to estimate the magnetic helicity evolution over solar cycle 23 from 1996 to 2009 using 795 MDI magnetic synoptic charts. The main results are as follows: the hemispheric helicity rule still holds in general, i.e., the large-scale negative (positive) magnetic helicity dominates the northern (southern) hemisphere. However, the large-scale magnetic helicity fluxes show the same sign in both hemispheres around 2001 and 2005. The global, large-scale magnetic helicity flux over the solar disk changes from a negative value at the beginning of solar cycle 23 to a positive value at the end of the cycle, while the net accumulated magnetic helicity is negative in the period between 1996 and 2009.

  20. Radiofrequency Ablation of Osteoid Osteoma: Initial Experience with a New Monopolar Ablation Device

    SciTech Connect (OSTI)

    Mahnken, Andreas H. Bruners, Philipp; Delbrueck, Heide; Guenther, Rolf W.

    2011-06-15

    The purpose of this article is to report our initial experience with the 'off-label' use of a new monopolar radiofrequency (RF) probe for percutaneous ablation of osteoid osteomas. Seventeen patients (12 male and 5 female, mean age 24.8 [range 9-49]) with osteoid osteoma were treated by computed tomography (CT)-guided RF ablation (RFA). All procedures were performed with the patient under general aesthesia. After localization of the nidus, a 13G hollow drill was introduced into the nidus through a 7F introducer sheath. A monopolar 16.5G RF probe with a 9-mm active tip (Soloist; Boston Scientific, Natick, MA) was inserted through the introducer sheath and connected to the RF generator. Energy application was started at 2 W and subsequently increased every 2 min by 1 W to a maximum of 8 W. The procedure ended if impedance increased by 500 Ohm-Sign . Mean duration of energy deposition was 14.2 {+-} 3.3 min. Fourteen of 17 patients (82%) were free of symptoms at 29.9 {+-} 14.8 (range 4 to 47) months of follow-up. The primary and secondary success rates were 83% and 100%, respectively. In 3 patients, recurrence of pain at 6 (n = 1) and 15 (n = 2) months after the initial procedure was successfully treated by reablation. There were no complications. Monopolar RFA using the Soloist probe is effective and safe for the treatment of osteoid osteoma. It results in comparable success rates as other monopolar or bipolar RF systems in the treatment of osteoid osteoma.

  1. Data Analysis, Pre-Ignition Assessment, and Post-Ignition Modeling of the Large-Scale Annular Cookoff Tests

    SciTech Connect (OSTI)

    G. Terrones; F.J. Souto; R.F. Shea; M.W.Burkett; E.S. Idar

    2005-09-30

    In order to understand the implications that cookoff of plastic-bonded explosive-9501 could have on safety assessments, we analyzed the available data from the large-scale annular cookoff (LSAC) assembly series of experiments. In addition, we examined recent data regarding hypotheses about pre-ignition that may be relevant to post-ignition behavior. Based on the post-ignition data from Shot 6, which had the most complete set of data, we developed an approximate equation of state (EOS) for the gaseous products of deflagration. Implementation of this EOS into the multimaterial hydrodynamics computer program PAGOSA yielded good agreement with the inner-liner collapse sequence for Shot 6 and with other data, such as velocity interferometer system for any reflector and resistance wires. A metric to establish the degree of symmetry based on the concept of time of arrival to pin locations was used to compare numerical simulations with experimental data. Several simulations were performed to elucidate the mode of ignition in the LSAC and to determine the possible compression levels that the metal assembly could have been subjected to during post-ignition.

  2. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    SciTech Connect (OSTI)

    Abhyankar, Nikit; Phadke, Amol

    2011-01-20

    Large-scale EE programs would modestly increase tariffs but reduce consumers' electricity bills significantly. However, the primary benefit of EE programs is a significant reduction in power shortages, which might make these programs politically acceptable even if tariffs increase. To increase political support, utilities could pursue programs that would result in minimal tariff increases. This can be achieved in four ways: (a) focus only on low-cost programs (such as replacing electric water heaters with gas water heaters); (b) sell power conserved through the EE program to the market at a price higher than the cost of peak power purchase; (c) focus on programs where a partial utility subsidy of incremental capital cost might work and (d) increase the number of participant consumers by offering a basket of EE programs to fit all consumer subcategories and tariff tiers. Large scale EE programs can result in consistently negative cash flows and significantly erode the utility's overall profitability. In case the utility is facing shortages, the cash flow is very sensitive to the marginal tariff of the unmet demand. This will have an important bearing on the choice of EE programs in Indian states where low-paying rural and agricultural consumers form the majority of the unmet demand. These findings clearly call for a flexible, sustainable solution to the cash-flow management issue. One option is to include a mechanism like FAC in the utility incentive mechanism. Another sustainable solution might be to have the net program cost and revenue loss built into utility's revenue requirement and thus into consumer tariffs up front. However, the latter approach requires institutionalization of EE as a resource. The utility incentive mechanisms would be able to address the utility disincentive of forgone long-run return but have a minor impact on consumer benefits. Fundamentally, providing incentives for EE programs to make them comparable to supply-side investments is a way of moving the electricity sector toward a model focused on providing energy services rather than providing electricity.

  3. Large-Scale Urban Decontamination; Developments, Historical Examples and Lessons Learned

    SciTech Connect (OSTI)

    Rick Demmer

    2007-02-01

    Recent terrorist threats and actual events have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the real potential for the cleanup and removal of radioactive dispersal device (RDD or dirty bomb) residues. In response the U. S. Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. Interest in chemical and biological (CB) cleanup has also peaked with the threat of terrorist action like the anthrax attack at the Hart Senate Office Building and with catastrophic natural events such as Hurricane Katrina. The efficiency of cleanup response will be improved with these new developments and a better understanding of the old reliable methodologies. Perhaps the most interesting area of investigation for large area decontamination is that of the RDD. While primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. Non-radioactive, CB threats each have unique decontamination challenges and recent events have provided some examples. The U. S. Environmental Protection Agency (EPA), as lead agency for these emergency cleanup responses, has a sound approach for decontamination decision-making that has been applied several times. The anthrax contamination at the U. S. Hart Senate Office Building and numerous U. S. Post Office facilities are examples of employing novel technical responses. Decontamination of the Hart Office building required development of a new approach for high level decontamination of biological contamination as well as techniques for evaluating the technology effectiveness. The World Trade Center destruction also demonstrated the need for, and successful implementation of, appropriate cleanup methodologies. There are a number of significant lessons that can be gained from a look at previous large scale cleanup projects. Too often we are quick to apply a costly package and dispose method when sound technological cleaning approaches are available. Understanding historical perspectives, advanced planning and constant technology improvement are essential to successful decontamination.

  4. Development of explosive event scale model testing capability at Sandia`s large scale centrifuge facility

    SciTech Connect (OSTI)

    Blanchat, T.K.; Davie, N.T.; Calderone, J.J.

    1998-02-01

    Geotechnical structures such as underground bunkers, tunnels, and building foundations are subjected to stress fields produced by the gravity load on the structure and/or any overlying strata. These stress fields may be reproduced on a scaled model of the structure by proportionally increasing the gravity field through the use of a centrifuge. This technology can then be used to assess the vulnerability of various geotechnical structures to explosive loading. Applications of this technology include assessing the effectiveness of earth penetrating weapons, evaluating the vulnerability of various structures, counter-terrorism, and model validation. This document describes the development of expertise in scale model explosive testing on geotechnical structures using Sandia`s large scale centrifuge facility. This study focused on buried structures such as hardened storage bunkers or tunnels. Data from this study was used to evaluate the predictive capabilities of existing hydrocodes and structural dynamics codes developed at Sandia National Laboratories (such as Pronto/SPH, Pronto/CTH, and ALEGRA). 7 refs., 50 figs., 8 tabs.

  5. Public attitudes regarding large-scale solar energy development in the U.S.

    SciTech Connect (OSTI)

    Carlisle, Juliet E.; Kane, Stephanie L.; Solan, David; Bowman, Madelaine; Joe, Jeffrey C.

    2015-08-01

    Using data collected from both a National sample as well as an oversample in U.S. Southwest, we examine public attitudes toward the construction of utility-scale solar facilities in the U.S. as well as development in one’s own county. Our multivariate analyses assess demographic and sociopsychological factors as well as context in terms of proximity of proposed project by considering the effect of predictors for respondents living in the Southwest versus those from a National sample.We find that the predictors, and impact of the predictors, related to support and opposition to solar development vary in terms of psychological and physical distance. Overall, for respondents living in the U.S. Southwest we find that environmentalism, belief that developers receive too many incentives, and trust in project developers to be significantly related to support and opposition to solar development, in general. When Southwest respondents consider large-scale solar development in their county, the influence of these variables changes so that property value, race, and age only yield influence. Differential effects occur for respondents of our National sample.We believe our findings to be relevant for those outside the U.S. due to the considerable growth PV solar has experienced in the last decade, especially in China, Japan, Germany, and the U.S.

  6. Galaxy evolution and large-scale structure in the far-infrared. I. IRAS pointed observations

    SciTech Connect (OSTI)

    Lonsdale, C.J.; Hacking, P.B.

    1989-04-01

    Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution. 81 refs.

  7. The linearly scaling 3D fragment method for large scale electronic structure calculations

    SciTech Connect (OSTI)

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang

    2009-07-28

    The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  8. The Linearly Scaling 3D Fragment Method for Large Scale Electronic Structure Calculations

    SciTech Connect (OSTI)

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang

    2009-06-26

    The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  9. Primordial Magnetic Field Effects on the CMB and Large-Scale Structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yamazaki, Dai G.; Ichiki, Kiyotomo; Kajino, Toshitaka; Mathews, Grant J.

    2010-01-01

    Mmore » agnetic fields are everywhere in nature, and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high-temperature environment of the big bang. Such a primordial magnetic field (PMF) would be expected to manifest itself in the cosmic microwave background (CMB) temperature and polarization anisotropies, and also in the formation of large-scale structure. In this paper, we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cutoff scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude B λ and the power spectral index n B which have been deduced from the available CMB observational data by using our computational framework.« less

  10. Public attitudes regarding large-scale solar energy development in the U.S.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlisle, Juliet E.; Kane, Stephanie L.; Solan, David; Bowman, Madelaine; Joe, Jeffrey C.

    2015-08-01

    Using data collected from both a National sample as well as an oversample in U.S. Southwest, we examine public attitudes toward the construction of utility-scale solar facilities in the U.S. as well as development in one’s own county. Our multivariate analyses assess demographic and sociopsychological factors as well as context in terms of proximity of proposed project by considering the effect of predictors for respondents living in the Southwest versus those from a National sample.We find that the predictors, and impact of the predictors, related to support and opposition to solar development vary in terms of psychological and physical distance.more » Overall, for respondents living in the U.S. Southwest we find that environmentalism, belief that developers receive too many incentives, and trust in project developers to be significantly related to support and opposition to solar development, in general. When Southwest respondents consider large-scale solar development in their county, the influence of these variables changes so that property value, race, and age only yield influence. Differential effects occur for respondents of our National sample.We believe our findings to be relevant for those outside the U.S. due to the considerable growth PV solar has experienced in the last decade, especially in China, Japan, Germany, and the U.S.« less

  11. A Report on Simulation-Driven Reliability and Failure Analysis of Large-Scale Storage Systems

    SciTech Connect (OSTI)

    Wan, Lipeng; Wang, Feiyi; Oral, H. Sarp; Vazhkudai, Sudharshan S.; Cao, Qing

    2014-11-01

    High-performance computing (HPC) storage systems provide data availability and reliability using various hardware and software fault tolerance techniques. Usually, reliability and availability are calculated at the subsystem or component level using limited metrics such as, mean time to failure (MTTF) or mean time to data loss (MTTDL). This often means settling on simple and disconnected failure models (such as exponential failure rate) to achieve tractable and close-formed solutions. However, such models have been shown to be insufficient in assessing end-to-end storage system reliability and availability. We propose a generic simulation framework aimed at analyzing the reliability and availability of storage systems at scale, and investigating what-if scenarios. The framework is designed for an end-to-end storage system, accommodating the various components and subsystems, their interconnections, failure patterns and propagation, and performs dependency analysis to capture a wide-range of failure cases. We evaluate the framework against a large-scale storage system that is in production and analyze its failure projections toward and beyond the end of lifecycle. We also examine the potential operational impact by studying how different types of components affect the overall system reliability and availability, and present the preliminary results

  12. Using calibrated engineering models to predict energy savings in large-scale geothermal heat pump projects

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J.; Thornton, J.W.

    1998-10-01

    Energy savings performance contracting (ESPC) is now receiving greater attention as a means of implementing large-scale energy conservation projects in housing. Opportunities for such projects exist for military housing, federally subsidized low-income housing, and planned communities (condominiums, townhomes, senior centers), to name a few. Accurate prior (to construction) estimates of the energy savings in these projects reduce risk, decrease financing costs, and help avoid post-construction disputes over performance contract baseline adjustments. This paper demonstrates an improved method of estimating energy savings before construction takes place. Using an engineering model calibrated to pre-construction energy-use data collected in the field, this method is able to predict actual energy savings to a high degree of accuracy. This is verified with post-construction energy-use data from a geothermal heat pump ESPC at Fort Polk, Louisiana. This method also allows determination of the relative impact of the various energy conservation measures installed in a comprehensive energy conservation project. As an example, the breakout of savings at Fort Polk for the geothermal heat pumps, desuperheaters, lighting retrofits, and low-flow hot water outlets is provided.

  13. Using Calibrated Engineering Models To Predict Energy Savings In Large-Scale Geothermal Heat Pump Projects

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick; Thornton, Jeff W.

    1998-01-01

    Energy savings performance contracting (ESPC) is now receiving greater attention as a means of implementing large-scale energy conservation projects in housing. Opportunities for such projects exist for military housing, federally subsidized low-income housing, and planned communities (condominiums, townhomes, senior centers), to name a few. Accurate prior (to construction) estimates of the energy savings in these projects reduce risk, decrease financing costs, and help avoid post-construction disputes over performance contract baseline adjustments. This paper demonstrates an improved method of estimating energy savings before construction takes place. Using an engineering model calibrated to pre-construction energy-use data collected in the field, this method is able to predict actual energy savings to a high degree of accuracy. This is verified with post-construction energy-use data from a geothermal heat pump ESPC at Fort Polk, Louisiana. This method also allows determination of the relative impact of the various energy conservation measures installed in a comprehensive energy conservation project. As an example, the breakout of savings at Fort Polk for the geothermal heat pumps, desuperheaters, lighting retrofits, and low-flow hot water outlets is provided.

  14. The Lagrangian-space Effective Field Theory of large scale structures

    SciTech Connect (OSTI)

    Porto, Rafael A.; Zaldarriaga, Matias; Senatore, Leonardo E-mail: senatore@stanford.edu

    2014-05-01

    We introduce a Lagrangian-space Effective Field Theory (LEFT) formalism for the study of cosmological large scale structures. Unlike the previous Eulerian-space construction, it is naturally formulated as an effective field theory of extended objects in Lagrangian space. In LEFT the resulting finite size effects are described using a multipole expansion parameterized by a set of time dependent coefficients and organized in powers of the ratio of the wavenumber of interest k over the non-linear scale k{sub NL}. The multipoles encode the effects of the short distance modes on the long-wavelength universe and absorb UV divergences when present. There are no IR divergences in LEFT. Some of the parameters that control the perturbative approach are not assumed to be small and can be automatically resummed. We present an illustrative one-loop calculation for a power law universe. We describe the dynamics both at the level of the equations of motion and through an action formalism.

  15. Induced core formation time in subcritical magnetic clouds by large-scale trans-Alfvnic flows

    SciTech Connect (OSTI)

    Kudoh, Takahiro; Basu, Shantanu E-mail: basu@uwo.ca

    2014-10-20

    We clarify the mechanism of accelerated core formation by large-scale nonlinear flows in subcritical magnetic clouds by finding a semi-analytical formula for the core formation time and describing the physical processes that lead to them. Recent numerical simulations show that nonlinear flows induce rapid ambipolar diffusion that leads to localized supercritical regions that can collapse. Here, we employ non-ideal magnetohydrodynamic simulations including ambipolar diffusion for gravitationally stratified sheets threaded by vertical magnetic fields. One of the horizontal dimensions is eliminated, resulting in a simpler two-dimensional simulation that can clarify the basic process of accelerated core formation. A parameter study of simulations shows that the core formation time is inversely proportional to the square of the flow speed when the flow speed is greater than the Alfvn speed. We find a semi-analytical formula that explains this numerical result. The formula also predicts that the core formation time is about three times shorter than that with no turbulence, when the turbulent speed is comparable to the Alfvn speed.

  16. Kinematic morphology of large-scale structure: evolution from potential to rotational flow

    SciTech Connect (OSTI)

    Wang, Xin; Szalay, Alex; Aragn-Calvo, Miguel A.; Neyrinck, Mark C.; Eyink, Gregory L.

    2014-09-20

    As an alternative way to describe the cosmological velocity field, we discuss the evolution of rotational invariants constructed from the velocity gradient tensor. Compared with the traditional divergence-vorticity decomposition, these invariants, defined as coefficients of the characteristic equation of the velocity gradient tensor, enable a complete classification of all possible flow patterns in the dark-matter comoving frame, including both potential and vortical flows. We show that this tool, first introduced in turbulence two decades ago, is very useful for understanding the evolution of the cosmic web structure, and in classifying its morphology. Before shell crossing, different categories of potential flow are highly associated with the cosmic web structure because of the coherent evolution of density and velocity. This correspondence is even preserved at some level when vorticity is generated after shell crossing. The evolution from the potential to vortical flow can be traced continuously by these invariants. With the help of this tool, we show that the vorticity is generated in a particular way that is highly correlated with the large-scale structure. This includes a distinct spatial distribution and different types of alignment between the cosmic web and vorticity direction for various vortical flows. Incorporating shell crossing into closed dynamical systems is highly non-trivial, but we propose a possible statistical explanation for some of the phenomena relating to the internal structure of the three-dimensional invariant space.

  17. Fingerprints of anomalous primordial Universe on the abundance of large scale structures

    SciTech Connect (OSTI)

    Baghram, Shant; Abolhasani, Ali Akbar; Firouzjahi, Hassan; Namjoo, Mohammad Hossein E-mail: abolhasani@ipm.ir E-mail: MohammadHossein.Namjoo@utdallas.edu

    2014-12-01

    We study the predictions of anomalous inflationary models on the abundance of structures in large scale structure observations. The anomalous features encoded in primordial curvature perturbation power spectrum are (a): localized feature in momentum space, (b): hemispherical asymmetry and (c): statistical anisotropies. We present a model-independent expression relating the number density of structures to the changes in the matter density variance. Models with localized feature can alleviate the tension between observations and numerical simulations of cold dark matter structures on galactic scales as a possible solution to the missing satellite problem. In models with hemispherical asymmetry we show that the abundance of structures becomes asymmetric depending on the direction of observation to sky. In addition, we study the effects of scale-dependent dipole amplitude on the abundance of structures. Using the quasars data and adopting the power-law scaling k{sup n{sub A}-1} for the amplitude of dipole we find the upper bound n{sub A}<0.6 for the spectral index of the dipole asymmetry. In all cases there is a critical mass scale M{sub c} in which for MM{sub c}) the enhancement in variance induced from anomalous feature decreases (increases) the abundance of dark matter structures in Universe.

  18. NV Energy Large-Scale Photovoltaic Integration Study: Intra-Hour Dispatch and AGC Simulation

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Meng, Da; Guo, Xinxin; Jin, Chunlian; Samaan, Nader A.

    2013-01-02

    The uncertainty and variability with photovoltaic (PV) generation make it very challenging to balance power system generation and load, especially under high penetration cases. Higher reserve requirements and more cycling of conventional generators are generally anticipated for large-scale PV integration. However, whether the existing generation fleet is flexible enough to handle the variations and how well the system can maintain its control performance are difficult to predict. The goal of this project is to develop a software program that can perform intra-hour dispatch and automatic generation control (AGC) simulation, by which the balancing operations of a system can be simulated to answer the questions posed above. The simulator, named Electric System Intra-Hour Operation Simulator (ESIOS), uses the NV Energy southern system as a study case, and models the systems generator configurations, AGC functions, and operator actions to balance system generation and load. Actual dispatch of AGC generators and control performance under various PV penetration levels can be predicted by running ESIOS. With data about the load, generation, and generator characteristics, ESIOS can perform similar simulations and assess variable generation integration impacts for other systems as well. This report describes the design of the simulator and presents the study results showing the PV impacts on NV Energy real-time operations.

  19. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; et al

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functionsmore » for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.« less

  20. SIMULTANEOUS OBSERVATIONS OF A LARGE-SCALE WAVE EVENT IN THE SOLAR ATMOSPHERE: FROM PHOTOSPHERE TO CORONA

    SciTech Connect (OSTI)

    Shen, Yuandeng; Liu, Yu

    2012-06-20

    For the first time, we report a large-scale wave that was observed simultaneously in the photosphere, chromosphere, transition region, and low corona layers of the solar atmosphere. Using the high temporal and high spatial resolution observations taken by the Solar Magnetic Activity Research Telescope at Hida Observatory and the Atmospheric Imaging Assembly (AIA) on board Solar Dynamic Observatory, we find that the wave evolved synchronously at different heights of the solar atmosphere, and it propagated at a speed of 605 km s{sup -1} and showed a significant deceleration (-424 m s{sup -2}) in the extreme-ultraviolet (EUV) observations. During the initial stage, the wave speed in the EUV observations was 1000 km s{sup -1}, similar to those measured from the AIA 1700 A (967 km s{sup -1}) and 1600 A (893 km s{sup -1}) observations. The wave was reflected by a remote region with open fields, and a slower wave-like feature at a speed of 220 km s{sup -1} was also identified following the primary fast wave. In addition, a type-II radio burst was observed to be associated with the wave. We conclude that this wave should be a fast magnetosonic shock wave, which was first driven by the associated coronal mass ejection and then propagated freely in the corona. As the shock wave propagated, its legs swept the solar surface and thereby resulted in the wave signatures observed in the lower layers of the solar atmosphere. The slower wave-like structure following the primary wave was probably caused by the reconfiguration of the low coronal magnetic fields, as predicted in the field-line stretching model.

  1. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    SciTech Connect (OSTI)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  2. Project Description Advanced Fuel Cycle Initiative AFC-2A and AFC-2B Experiments

    SciTech Connect (OSTI)

    AFCI AFC-2A and AFC-2B Experiments Project Executi

    2007-03-01

    The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the AFC-1 fuel test series currently in progress in the ATR. This document discusses the experiments and the planned activities that will take place.

  3. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)

    SciTech Connect (OSTI)

    William J. Schroeder

    2011-11-13

    This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannot be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally-intensive problem important to the nations scientific progress as described shortly. Further, SLAC researchers routinely generate massive amounts of data, and frequently collaborate with other researchers located around the world. Thus SLAC is an ideal teammate through which to develop, test and deploy this technology. The nature of the datasets generated by simulations performed at SLAC presented unique visualization challenges especially when dealing with higher-order elements that were addressed during this Phase II. During this Phase II, we have developed a strong platform for collaborative visualization based on ParaView. We have developed and deployed a ParaView Web Visualization framework that can be used for effective collaboration over the Web. Collaborating and visualizing over the Web presents the community with unique opportunities for sharing and accessing visualization and HPC resources that hitherto with either inaccessible or difficult to use. The technology we developed in here will alleviate both these issues as it becomes widely deployed and adopted.

  4. FY results for the Los Alamos large scale demonstration and deployment project

    SciTech Connect (OSTI)

    Stallings, E.; McFee, J.

    2000-11-01

    The Los Alamos Large Scale Demonstration and Deployment Project (LSDDP) in support of the US Department of Energy (DOE) Deactivation and Decommissioning Focus Area (DDFA) is identifying and demonstrating technologies to reduce the cost and risk of management of transuranic element contaminated large metal objects, i.e. gloveboxes. DOE must dispose of hundreds of gloveboxes from Rocky Flats, Los Alamos and other DOE sites. Current practices for removal, decontamination and size reduction of large metal objects translates to a DOE system-wide cost in excess of $800 million, without disposal costs. In FY99 and FY00 the Los Alamos LSDDP performed several demonstrations on cost/risk savings technologies. Commercial air pallets were demonstrated for movement and positioning of the oversized crates in neutron counting equipment. The air pallets are able to cost effectively address the complete waste management inventory, whereas the baseline wheeled carts could address only 25% of the inventory with higher manpower costs. A gamma interrogation radiography technology was demonstrated to support characterization of the crates. The technology was developed for radiography of trucks for identification of contraband. The radiographs were extremely useful in guiding the selection and method for opening very large crated metal objects. The cost of the radiography was small and the operating benefit is high. Another demonstration compared a Blade Cutting Plunger and reciprocating saw for removal of glovebox legs and appurtenances. The cost comparison showed that the Blade Cutting Plunger costs were comparable, and a significant safety advantage was reported. A second radiography demonstration was conducted evaluation of a technology based on WIPP-type x-ray characterization of large boxes. This technology provides considerable detail of the contents of the crates. The technology identified details as small as the fasteners in the crates, an unpunctured aerosol can, and a vessel containing liquids. The cost of this technology is higher than the gamma interrogation technique, but the detail provided is much greater.

  5. Model based multivariable controller for large scale compression stations. Design and experimental validation on the LHC 18KW cryorefrigerator

    SciTech Connect (OSTI)

    Bonne, François; Bonnay, Patrick; Bradu, Benjamin

    2014-01-29

    In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsed heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  6. LyMAS: Predicting large-scale Ly? forest statistics from the dark matter density field

    SciTech Connect (OSTI)

    Peirani, Sbastien; Colombi, Stphane; Dubois, Yohan; Pichon, Christophe; Weinberg, David H.; Blaizot, Jrmy

    2014-03-20

    We describe Ly? Mass Association Scheme (LyMAS), a method of predicting clustering statistics in the Ly? forest on large scales from moderate-resolution simulations of the dark matter (DM) distribution, with calibration from high-resolution hydrodynamic simulations of smaller volumes. We use the 'Horizon-MareNostrum' simulation, a 50 h {sup 1} Mpc comoving volume evolved with the adaptive mesh hydrodynamic code RAMSES, to compute the conditional probability distribution P(F{sub s} |? {sub s}) of the transmitted flux F{sub s} , smoothed (one-dimensionally, 1D) over the spectral resolution scale, on the DM density contrast ? {sub s}, smoothed (three-dimensionally, 3D) over a similar scale. In this study we adopt the spectral resolution of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) at z = 2.5, and we find optimal results for a DM smoothing length ? = 0.3 h {sup 1} Mpc (comoving). In its simplest form, LyMAS draws randomly from the hydro-calibrated P(F{sub s} |? {sub s}) to convert DM skewers into Ly? forest pseudo-spectra, which are then used to compute cross-sightline flux statistics. In extended form, LyMAS exactly reproduces both the 1D power spectrum and one-point flux distribution of the hydro simulation spectra. Applied to the MareNostrum DM field, LyMAS accurately predicts the two-point conditional flux distribution and flux correlation function of the full hydro simulation for transverse sightline separations as small as 1 h {sup 1} Mpc, including redshift-space distortion effects. It is substantially more accurate than a deterministic density-flux mapping ({sup F}luctuating Gunn-Peterson Approximation{sup )}, often used for large-volume simulations of the forest. With the MareNostrum calibration, we apply LyMAS to 1024{sup 3} N-body simulations of a 300 h {sup 1} Mpc and 1.0 h {sup 1} Gpc cube to produce large, publicly available catalogs of mock BOSS spectra that probe a large comoving volume. LyMAS will be a powerful tool for interpreting 3D Ly? forest data, thereby transforming measurements from BOSS and other massive quasar absorption surveys into constraints on dark energy, DM, space geometry, and intergalactic medium physics.

  7. APPLICATIONS OF CFD METHOD TO GAS MIXING ANALYSIS IN A LARGE-SCALED TANK

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R

    2007-03-19

    The computational fluid dynamics (CFD) modeling technique was applied to the estimation of maximum benzene concentration for the vapor space inside a large-scaled and high-level radioactive waste tank at Savannah River site (SRS). The objective of the work was to perform the calculations for the benzene mixing behavior in the vapor space of Tank 48 and its impact on the local concentration of benzene. The calculations were used to evaluate the degree to which purge air mixes with benzene evolving from the liquid surface and its ability to prevent an unacceptable concentration of benzene from forming. The analysis was focused on changing the tank operating conditions to establish internal recirculation and changing the benzene evolution rate from the liquid surface. The model used a three-dimensional momentum coupled with multi-species transport. The calculations included potential operating conditions for air inlet and exhaust flows, recirculation flow rate, and benzene evolution rate with prototypic tank geometry. The flow conditions are assumed to be fully turbulent since Reynolds numbers for typical operating conditions are in the range of 20,000 to 70,000 based on the inlet conditions of the air purge system. A standard two-equation turbulence model was used. The modeling results for the typical gas mixing problems available in the literature were compared and verified through comparisons with the test results. The benchmarking results showed that the predictions are in good agreement with the analytical solutions and literature data. Additional sensitivity calculations included a reduced benzene evolution rate, reduced air inlet and exhaust flow, and forced internal recirculation. The modeling results showed that the vapor space was fairly well mixed and that benzene concentrations were relatively low when forced recirculation and 72 cfm ventilation air through the tank boundary were imposed. For the same 72 cfm air inlet flow but without forced recirculation, the heavier benzene gas was stratified. The results demonstrated that benzene concentrations were relatively low for typical operating configurations and conditions. Detailed results and the cases considered in the calculations will be discussed here.

  8. Comparison of prestellar core elongations and large-scale molecular cloud structures in the Lupus I region

    SciTech Connect (OSTI)

    Poidevin, Frdrick; Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David; Angile, Francesco E.; Devlin, Mark J.; Klein, Jeffrey; Benton, Steven J.; Netterfield, Calvin B.; Chapin, Edward L.; Fissel, Laura M.; Gandilo, Natalie N.; Fukui, Yasuo; Gundersen, Joshua O.; Korotkov, Andrei L.; Matthews, Tristan G.; Novak, Giles; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Olmi, Luca; and others

    2014-08-10

    Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 ?m maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of the morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 ?m with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamicsincluding secondary filaments that often run orthogonally to the primary filamentand possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core.

  9. Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint

    SciTech Connect (OSTI)

    Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

    2011-02-01

    This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

  10. The power of event-driven analytics in Large Scale Data Processing

    ScienceCinema (OSTI)

    None

    2011-04-25

    FeedZai is a software company specialized in creating high-­-throughput low-­-latency data processing solutions. FeedZai develops a product called "FeedZai Pulse" for continuous event-­-driven analytics that makes application development easier for end users. It automatically calculates key performance indicators and baselines, showing how current performance differ from previous history, creating timely business intelligence updated to the second. The tool does predictive analytics and trend analysis, displaying data on real-­-time web-­-based graphics. In 2010 FeedZai won the European EBN Smart Entrepreneurship Competition, in the Digital Models category, being considered one of the "top-­-20 smart companies in Europe". The main objective of this seminar/workshop is to explore the topic for large-­-scale data processing using Complex Event Processing and, in particular, the possible uses of Pulse in the scope of the data processing needs of CERN. Pulse is available as open-­-source and can be licensed both for non-­-commercial and commercial applications. FeedZai is interested in exploring possible synergies with CERN in high-­-volume low-­-latency data processing applications. The seminar will be structured in two sessions, the first one being aimed to expose the general scope of FeedZai's activities, and the second focused on Pulse itself: 10:00-11:00 FeedZai and Large Scale Data Processing Introduction to FeedZai FeedZai Pulse and Complex Event Processing Demonstration Use-Cases and Applications Conclusion and Q&A 11:00-11:15 Coffee break 11:15-12:30 FeedZai Pulse Under the Hood A First FeedZai Pulse Application PulseQL overview Defining KPIs and Baselines Conclusion and Q&A About the speakers Nuno Sebastião is the CEO of FeedZai. Having worked for many years for the European Space Agency (ESA), he was responsible the overall design and development of Satellite Simulation Infrastructure of the agency. Having left ESA to found FeedZai, Nuno is currently responsible for the whole operations of the company. Nuno holds an M.Eng. in Informatics Engineering for the University of Coimbra, and an MBA from the London Business School. Paulo Marques is the CTO of FeedZai, being responsible for product development. Paulo is an Assistant Professor at the University of Coimbra, in the area of Distributed Data Processing, and an Adjunct Associated Professor at Carnegie Mellon, in the US. In the past Paulo lead a large number of projects for institutions like the ESA, Microsoft Research, SciSys, Siemens, among others, being now fully dedicated to FeedZai. Paulo holds a Ph.D. in Distributed Systems from the University of Coimbra.

  11. Large Scale DD Simulation Results for Crystal Plasticity Parameters in Fe-Cr And Fe-Ni Systems

    SciTech Connect (OSTI)

    Zbib, Hussein M.; Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.

    2012-04-30

    The development of viable nuclear energy source depends on ensuring structural materials integrity. Structural materials in nuclear reactors will operate in harsh radiation conditions coupled with high level hydrogen and helium production, as well as formation of high density of point defects and defect clusters, and thus will experience severe degradation of mechanical properties. Therefore, the main objective of this work is to develop a capability that predicts aging behavior and in-service lifetime of nuclear reactor components and, thus provide an instrumental tool for tailoring materials design and development for application in future nuclear reactor technologies. Towards this end goal, the long term effort is to develop a physically based multiscale modeling hierarchy, validated and verified, to address outstanding questions regarding the effects of irradiation on materials microstructure and mechanical properties during extended service in the fission and fusion environments. The focus of the current investigation is on modern steels for use in nuclear reactors including high strength ferritic-martensitic steels (Fe-Cr-Ni alloys). The effort is to develop a predicative capability for the influence of irradiation on mechanical behavior. Irradiation hardening is related to structural information crossing different length scales, such as composition, dislocation, and crystal orientation distribution. To predict effective hardening, the influence factors along different length scales should be considered. Therefore, a hierarchical upscaling methodology is implemented in this work in which relevant information is passed between models at three scales, namely, from molecular dynamics to dislocation dynamics to dislocation-based crystal plasticity. The molecular dynamics (MD) was used to predict the dislocation mobility in body centered cubic (bcc) Fe and its Ni and Cr alloys. The results are then passed on to dislocation dynamics to predict the critical resolved shear stress (CRSS) from the evolution of local dislocation and defects. In this report the focus is on the results obtained from large scale dislocation dynamics simulations. The effect of defect density, materials structure was investigated, and evolution laws are obtained. These results will form the bases for the development of evolution and hardening laws for a dislocation-based crystal plasticity framework. The hierarchical upscaling method being developed in this project can provide a guidance tool to evaluate performance of structural materials for next-generation nuclear reactors. Combined with other tools developed in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, the models developed will have more impact in improving the reliability of current reactors and affordability of new reactors.

  12. ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

    SciTech Connect (OSTI)

    David Wenzhong Gao

    2012-09-30

    The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An intelligent controller that increases battery life within hybrid energy storage systems for wind application was developed. Comprehensive studies have been conducted and simulation results are analyzed. A permanent magnet synchronous generator, coupled with a variable speed wind turbine, is connected to a power grid (14-bus system). A rectifier, a DC-DC converter and an inverter are used to provide a complete model of the wind system. An Energy Storage System (ESS) is connected to a DC-link through a DC-DC converter. An intelligent controller is applied to the DC-DC converter to help the Voltage Source Inverter (VSI) to regulate output power and also to control the operation of the battery and supercapacitor. This ensures a longer life time for the batteries. The detailed model is simulated in PSCAD/EMTP. Additionally, economic analysis has been done for different methods that can reduce the wind power output fluctuation. These methods are, wind power curtailment, dumping loads, battery energy storage system and hybrid energy storage system. From the results, application of single advanced HESS can save more money for wind turbines owners. Generally the income would be the same for most of methods because the wind does not change and maximum power point tracking can be applied to most systems. On the other hand, the cost is the key point. For short term and small wind turbine, the BESS is the cheapest and applicable method while for large scale wind turbines and wind farms the application of advanced HESS would be the best method to reduce the power fluctuation. The key outcomes of this project include a new intelligent controller that can reduce energy exchanged between the battery and DC-link, reduce charging/discharging cycles, reduce depth of discharge and increase time interval between charge/discharge, and lower battery temperature. This improves the overall lifetime of battery energy storages. Additionally, a new design method based on probability help optimize the power capacity specification for BESS and super-capacitors. Recommendations include experimental implementation of the controller and energy storage systems in laboratory environment for further testing and verification, which will help commercialization of the proposed system design and controller.

  13. Neutron Emission Characteristics of Two Mixed-Oxide Fuels: Simulations and Initial Experiments

    SciTech Connect (OSTI)

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. Flaska; J. T. Johnson; E. H. Seabury; E. M. Gantz

    2009-07-01

    Simulations and experiments have been carried out to investigate the neutron emission characteristics of two mixed-oxide (MOX) fuels at Idaho National Laboratory (INL). These activities are part of a project studying advanced instrumentation techniques in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and it's Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. This analysis used the MCNP-PoliMi Monte Carlo simulation tool to determine the relative strength and energy spectra of the different neutron source terms within these fuels, and then used this data to simulate the detection and measurement of these emissions using an array of liquid scintillator neutron spectrometers. These calculations accounted for neutrons generated from the spontaneous fission of the actinides in the MOX fuel as well as neutrons created via (alpha,n) reactions with oxygen in the MOX fuel. The analysis was carried out to allow for characterization of both neutron energy as well as neutron coincidences between multiple detectors. Coincidences between prompt gamma rays and neutrons were also analyzed. Experiments were performed at INL with the same materials used in the simulations to benchmark and begin validation tests of the simulations. Data was collected in these experiments using an array of four liquid scintillators and a high-speed waveform digitizer. Advanced digital pulse-shape discrimination algorithms were developed and used to collect this data. Results of the simulation and modeling studies are presented together with preliminary results from the experimental campaign.

  14. Techno-economic Modeling of the Integration of 20% Wind and Large-scale Energy Storage in ERCOT by 2030

    SciTech Connect (OSTI)

    Ross Baldick; Michael Webber; Carey King; Jared Garrison; Stuart Cohen; Duehee Lee

    2012-12-21

    This study’s objective is to examine interrelated technical and economic avenues for the Electric Reliability Council of Texas (ERCOT) grid to incorporate up to and over 20% wind generation by 2030. Our specific interests are to look at the factors that will affect the implementation of both high level of wind power penetration (> 20% generation) and installation of large scale storage.

  15. Placement of the dam for the no. 2 kambaratinskaya HPP by large-scale blasting: some observations

    SciTech Connect (OSTI)

    Shuifer, M. I.; Argal, E. S.

    2011-11-15

    Results of complex instrument observations of large-scale blasting during construction of the dam for the No. 2 Kambaratinskaya HPP on the Naryn River in the Republic of Kirgizia are analyzed. The purpose of these observations was: to determine the actual parameters of the seismic process, evaluate the effect of air and acoustic shock waves, and investigate the kinematics of the surface formed by the blast in its core region within the mass of fractured rocks.

  16. QCD Thermodynamics at High Temperature Peter Petreczky Large Scale Computing and Storage Requirements for Nuclear Physics (NP),

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    QCD Thermodynamics at High Temperature Peter Petreczky Large Scale Computing and Storage Requirements for Nuclear Physics (NP), Bethesda MD, April 29-30, 2014 NY Center for Computational Science 2 Defining questions of nuclear physics research in US: Nuclear Science Advisory Committee (NSAC) "The Frontiers of Nuclear Science", 2007 Long Range Plan "What are the phases of strongly interacting matter and what roles do they play in the cosmos ?" "What does QCD predict for

  17. Microsoft Word - The_Advanced_Networks_and_Services_Underpinning_Modern,Large-Scale_Science.SciDAC.v5.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESnet4: Advanced Networking and Services Supporting the Science Mission of DOE's Office of Science William E. Johnston ESnet Dept. Head and Senior Scientist Lawrence Berkeley National Laboratory May, 2007 1 Introduction In many ways, the dramatic achievements in scientific discovery through advanced computing and the discoveries of the increasingly large-scale instruments with their enormous data handling and remote collaboration requirements, have been made possible by accompanying

  18. A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage

    SciTech Connect (OSTI)

    Yang, Yuan; Zheng, Guangyuan; Cui, Yi

    2013-01-01

    Large-scale energy storage represents a key challenge for renewable energy and new systems with low cost, high energy density and long cycle life are desired. In this article, we develop a new lithium/polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li{sub 2}S{sub 8}) in ether solvent as a catholyte and metallic lithium as an anode. Unlike previous work on Li/S batteries with discharge products such as solid state Li{sub 2}S{sub 2} and Li{sub 2}S, the catholyte is designed to cycle only in the range between sulfur and Li{sub 2}S{sub 4}. Consequently all detrimental effects due to the formation and volume expansion of solid Li{sub 2}S{sub 2}/Li{sub 2}S are avoided. This novel strategy results in excellent cycle life and compatibility with flow battery design. The proof-of-concept Li/PS battery could reach a high energy density of 170 W h kg{sup -1} and 190 W h L{sup -1} for large scale storage at the solubility limit, while keeping the advantages of hybrid flow batteries. We demonstrated that, with a 5 M Li{sub 2}S{sub 8} catholyte, energy densities of 97 W h kg{sup -1} and 108 W h L{sup -1} can be achieved. As the lithium surface is well passivated by LiNO{sub 3} additive in ether solvent, internal shuttle effect is largely eliminated and thus excellent performance over 2000 cycles is achieved with a constant capacity of 200 mA h g{sup -1}. This new system can operate without the expensive ion-selective membrane, and it is attractive for large-scale energy storage.

  19. Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective Inhibition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective Inhibition G. J. Zhang Center for Atmospheric Sciences Scripps Institution of Oceanography La Jolla, California Introduction Atmospheric convection undergoes strong diurnal variation over both land and oceans (Gray and Jacobson 1977; Dai 2001; Nesbitt and Zipser 2003). Because of the nature of the diurnal variation of solar radiation, the phasing of convection with solar radiation has a

  20. Coordinated Multi-layer Multi-domain Optical Network (COMMON) for Large-Scale Science Applications (COMMON)

    SciTech Connect (OSTI)

    Vokkarane, Vinod

    2013-09-01

    We intend to implement a Coordinated Multi-layer Multi-domain Optical Network (COMMON) Framework for Large-scale Science Applications. In the COMMON project, specific problems to be addressed include 1) anycast/multicast/manycast request provisioning, 2) deployable OSCARS enhancements, 3) multi-layer, multi-domain quality of service (QoS), and 4) multi-layer, multidomain path survivability. In what follows, we outline the progress in the above categories (Year 1, 2, and 3 deliverables).

  1. Microsoft Word - NRAP-TRS-III-002-2012_Modeling the Performance of Large Scale CO2 Storage_20121024.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling the Performance of Large- Scale CO 2 Storage Systems: A Comparison of Different Sensitivity Analysis Methods 24 October 2012 Office of Fossil Energy NRAP-TRS-III-002-2012 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,

  2. Microsoft PowerPoint - 2-A-3-OK-Real-Time Data Infrastructure for Large Scale Wind Fleets.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real Time Data Infrastructure for Large Real-Time Data Infrastructure for Large Scale Wind Fleets - Return on Investment vs Fundamental Business Requirements Value now. Value over time. © Copyright 2011, OSIsoft, LLC All Rights Reserved. vs. Fundamental Business Requirements Reliability - 4 Ws and an H * What is reliability? - Uptime, OEE, profitable wind plants? (OEE Availability % * Production % * Quality %) * (OEE = Availability % * Production % * Quality %) * Why should money be spent to

  3. Initial operating experience of the 12-MW La Ola photovoltaic system.

    SciTech Connect (OSTI)

    Ellis, Abraham; Lenox, Carl; Johnson, Jay; Quiroz, Jimmy Edward; Schenkman, Benjamin L.

    2011-10-01

    The 1.2-MW La Ola photovoltaic (PV) power plant in Lanai, Hawaii, has been in operation since December 2009. The host system is a small island microgrid with peak load of 5 MW. Simulations conducted as part of the interconnection study concluded that unmitigated PV output ramps had the potential to negatively affect system frequency. Based on that study, the PV system was initially allowed to operate with output power limited to 50% of nameplate to reduce the potential for frequency instability due to PV variability. Based on the analysis of historical voltage, frequency, and power output data at 50% output level, the PV system has not significantly affected grid performance. However, it should be noted that the impact of PV variability on active and reactive power output of the nearby diesel generators was not evaluated. In summer 2011, an energy storage system was installed to counteract high ramp rates and allow the PV system to operate at rated output. The energy storage system was not fully operational at the time this report was written; therefore, analysis results do not address system performance with the battery system in place.

  4. Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms

    SciTech Connect (OSTI)

    Busby, Jeremy T; Gussev, Maxim N

    2011-04-01

    Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today s nuclear power reactor fleet and affects critical structural components within the reactor core. The effects of increased exposure to irradiation, stress, and/or coolant can substantially increase susceptibility to stress-corrosion cracking of austenitic steels in high-temperature water environments. . Despite 30 years of experience, the underlying mechanisms of IASCC are unknown. Extended service conditions will increase the exposure to irradiation, stress, and corrosive environment for all core internal components. The objective of this effort within the Light Water Reactor Sustainability program is to evaluate the response and mechanisms of IASCC in austenitic stainless steels with single variable experiments. A series of high-value irradiated specimens has been acquired from the past international research programs, providing a valuable opportunity to examine the mechanisms of IASCC. This batch of irradiated specimens has been received and inventoried. In addition, visual examination and sample cleaning has been completed. Microhardness testing has been performed on these specimens. All samples show evidence of hardening, as expected, although the degree of hardening has saturated and no trend with dose is observed. Further, the change in hardening can be converted to changes in mechanical properties. The calculated yield stress is consistent with previous data from light water reactor conditions. In addition, some evidence of changes in deformation mode was identified via examination of the microhardness indents. This analysis may provide further insights into the deformation mode under larger scale tests. Finally, swelling analysis was performed using immersion density methods. Most alloys showed some evidence of swelling, consistent with the expected trends for this class of alloy. The Hf-doped alloy showed densification rather than swelling. This observation may be related to the formation of second-phases under irradiation, although further examination is required

  5. LaunchMON: An Infrastructue for Large Scale Tool Daemon Launching

    Energy Science and Technology Software Center (OSTI)

    2001-04-25

    LaunchMON is a tool infrastructure that allows a HPC tool to deploy tool daemons into the right remote nodes. It makes use of a target resource manager (RM)'s Automatic Process Acquisition Interface (APAI) to identify the remote nodes and processes of a parallel program, and also exploits the same RM's efficient MPI job launching capability on co-locating daemons with the job. To support a wide range of HPC tools that are inherently distributed software, LaunchMONmore »provides the tool with distributed application programming interface sets: the front end (FE) API, the back end (BE) API and the middleware (MW) API. They each support a tool's front end, back end daemons and middleware communication daemons, respectively. Using those API sets, the tool can launch and initialize their remote daemons scalably.« less

  6. Active and passive acoustic imaging inside a large-scale polyaxial hydraulic fracture test

    SciTech Connect (OSTI)

    Glaser, S.D.; Dudley, J.W. II; Shlyapobersky, J.

    1999-07-01

    An automated laboratory hydraulic fracture experiment has been assembled to determine what rock and treatment parameters are crucial to improving the efficiency and effectiveness of field hydraulic fractures. To this end a large (460 mm cubic sample) polyaxial cell, with servo-controlled X,Y,Z, pore pressure, crack-mouth-opening-displacement, and bottom hole pressure, was built. Active imaging with embedded seismic diffraction arrays images the geometry of the fracture. Preliminary tests indicate fracture extent can be imaged to within 5%. Unique embeddible high-fidelity particle velocity AE sensors were designed and calibrated to allow determination of fracture source kinematics.

  7. Efficient large-scale finite-element computations in a CRAY environment

    SciTech Connect (OSTI)

    Goudreau, G.L.; Bailey, R.A.; Hallquist, J.O.; Murray, R.C.; Sackett, S.J.

    1983-06-01

    The Lawrence Livermore National Laboratory engineering computational experience on the CRAY-1 is highlighted in the context of our large general purpose solid and structural mechanics codes. DYNA2D and DYNA3D are explicit large deformation inelastic Lagrangian codes with one point elements and hourglass control. NIKE2D and NIKE3D are implicit codes of comparable continuum formulation but use two point constant pressure elements and an optimized linear equation solver. NIKE3D has a finite rotation plastic resultant shell element. The new general purpose linear elastic structures code GEMINI is also illustrated for large static and eigenvalue analysis. 19 references.

  8. Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; et al

    2014-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ (σmv) = 16 meV and σ (Neff)(Neff) = 0.020.more » Such a mass measurement will produce a high significance detection of non-zero σmνσmν, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics — the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046.« less

  9. Neutrino physics from the cosmic microwave background and large scale structure

    SciTech Connect (OSTI)

    Abazajian, K. N.; Arnold, K.; Austermann, J. E.; Benson, B. A.; Bischoff, C.; Brock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Chang, C. L.

    2015-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve ? (?m?)(?m?) = 16 meV and ? (Neff)(Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero ?m??m?, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics the origin of mass. This precise a measurement of NeffNeff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that View the MathML sourceNeff=3.046.

  10. Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure

    SciTech Connect (OSTI)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Dore, O.; Dunkley, J.; Errard, J.; Fraisse, A.; Gallicchio, J.; Halverson, N. W.; Hanany, S.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Hu, W.; Hubmayr, J.; Irwin, K.; Jones, W. C.; Kamionkowski, M.; Keating, B.; Keisler, R.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C. -L.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linder, E.; Lubin, P.; McMahon, J.; Miller, A.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L.K.; Yoon, K. W.; Zahn, O.

    2014-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve ? (?mv) = 16 meV and ? (Neff)(Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero ?m??m?, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046.

  11. Agent-based Large-Scale Emergency Evacuation Using Real-Time Open Government Data

    SciTech Connect (OSTI)

    Lu, Wei; Liu, Cheng; Bhaduri, Budhendra L

    2014-01-01

    The open government initiatives have provided tremendous data resources for the transportation system and emergency services in urban areas. This paper proposes a traffic simulation framework using high temporal resolution demographic data and real time open government data for evacuation planning and operation. A comparison study using real-world data in Seattle, Washington is conducted to evaluate the framework accuracy and evacuation efficiency. The successful simulations of selected area prove the concept to take advantage open government data, open source data, and high resolution demographic data in emergency management domain. There are two aspects of parameters considered in this study: user equilibrium (UE) conditions of traffic assignment model (simple Non-UE vs. iterative UE) and data temporal resolution (Daytime vs. Nighttime). Evacuation arrival rate, average travel time, and computation time are adopted as Measure of Effectiveness (MOE) for evacuation performance analysis. The temporal resolution of demographic data has significant impacts on urban transportation dynamics during evacuation scenarios. Better evacuation performance estimation can be approached by integrating both Non-UE and UE scenarios. The new framework shows flexibility in implementing different evacuation strategies and accuracy in evacuation performance. The use of this framework can be explored to day-to-day traffic assignment to support daily traffic operations.

  12. Analysis of results from a loss-of-offsite-power-initiated ATWS experiment in the LOFT facility. [PWR

    SciTech Connect (OSTI)

    Varacalle, D.J. Jr.; Koizumi, Y.; Giri, A.H.; Koske, J.E.; Sanchez-Pope, A.E.

    1983-01-01

    An anticipated transient without scram (ATWS), initiated by loss-of-offsite power, was experimentally simulated in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). Primary system pressure was controlled using a scaled safety relief valve (SRV) representative of those in a commercial PWR, while reactor power was reduced by moderator reactivity feedback in a natural circulation mode. The experiment showed that reactor power decreases more rapidly when the primary pumps are tripped in a loss-of-offsite-power ATWS than in a loss-of-feedwater induced ATWS when the primary pumps are left on. During the experiment, the SRV had sufficient relief capacity to control primary system pressure. Natural circulation was effective in removing core heat at high temperature, pressure, and core power. The system transient response predicted using the RELAP5/MOD1 computer code showed good agreement with the experimental data.

  13. Analysis of results from a loss-of-offsite-power-initiated ATWS experiment in the LOFT Facility

    SciTech Connect (OSTI)

    Varacalle, D.J.; Giri, A.M.; Koizumi, Y.; Koske, J.E.

    1983-07-01

    An anticipated transient without scram (ATWS), initiated by loss-of-offsite power, was experimentally simulated in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). Primary system pressure was controlled using a scaled safety relief valve (SRV) representative of those in a commercial PWR, while reactor power was reduced by moderator reactivity feedback in a natural circulation mode. The experiment showed that reactor power decreases more rapidly when the primary pumps are tripped in a loss-of-offsite-power ATWS than in a loss-of-feedwater induced ATWS when the primary pumps are left on. During the experiment, the SRV had sufficient relief capacity to control primary system pressure. Natural circulation was effective in removing core heat at high temperature, pressure, and core power. The system transient response predicted using the RELAPS/MOD1 computer code showed good agreement with the experimental data.

  14. Large-scale fabrication of BN tunnel barriers for graphene spintronics

    SciTech Connect (OSTI)

    Fu, Wangyang; Makk, Péter; Maurand, Romain; Bräuninger, Matthias; Schönenberger, Christian

    2014-08-21

    We have fabricated graphene spin-valve devices utilizing scalable materials made from chemical vapor deposition (CVD). Both the spin-transporting graphene and the tunnel barrier material are CVD-grown. The tunnel barrier is realized by Hexagonal boron nitride, used either as a monolayer or bilayer and placed over the graphene. Spin transport experiments were performed using ferromagnetic contacts deposited onto the barrier. We find that spin injection is still greatly suppressed in devices with a monolayer tunneling barrier due to resistance mismatch. This is, however, not the case for devices with bilayer barriers. For those devices, a spin relaxation time of ∼260 ps intrinsic to the CVD graphene material is deduced. This time scale is comparable to those reported for exfoliated graphene, suggesting that this CVD approach is promising for spintronic applications which require scalable materials.

  15. Method for large-scale fabrication of atomic-scale structures on material surfaces using surface vacancies

    DOE Patents [OSTI]

    Lim, Chong Wee (Urbana, IL); Ohmori, Kenji (Urbana, IL); Petrov, Ivan Georgiev (Champaign, IL); Greene, Joseph E. (Champaign, IL)

    2004-07-13

    A method for forming atomic-scale structures on a surface of a substrate on a large-scale includes creating a predetermined amount of surface vacancies on the surface of the substrate by removing an amount of atoms on the surface of the material corresponding to the predetermined amount of the surface vacancies. Once the surface vacancies have been created, atoms of a desired structure material are deposited on the surface of the substrate to enable the surface vacancies and the atoms of the structure material to interact. The interaction causes the atoms of the structure material to form the atomic-scale structures.

  16. Large-scale Environmental Variables and Transition to Deep Convection in Cloud Resolving Model Simulations: A Vector Representation

    SciTech Connect (OSTI)

    Hagos, Samson M.; Leung, Lai-Yung R.

    2012-11-01

    Cloud resolving model simulations and vector analysis are used to develop a quantitative method of assessing regional variations in the relationships between various large-scale environmental variables and the transition to deep convection. Results of the CRM simulations from three tropical regions are used to cluster environmental conditions under which transition to deep convection does and does not take place. Projections of the large-scale environmental variables on the difference between these two clusters are used to quantify the roles of these variables in the transition to deep convection. While the transition to deep convection is most sensitive to moisture and vertical velocity perturbations, the details of the profiles of the anomalies vary from region to region. In comparison, the transition to deep convection is found to be much less sensitive to temperature anomalies over all three regions. The vector formulation presented in this study represents a simple general framework for quantifying various aspects of how the transition to deep convection is sensitive to environmental conditions.

  17. Impacts of Array Configuration on Land-Use Requirements for Large-Scale Photovoltaic Deployment in the United States: Preprint

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R. M.

    2008-05-01

    Land use is often cited as an important issue for renewable energy technologies. In this paper we examine the relationship between land-use requirements for large-scale photovoltaic (PV) deployment in the U.S. and PV-array configuration. We estimate the per capita land requirements for solar PV and find that array configuration is a stronger driver of energy density than regional variations in solar insolation. When deployed horizontally, the PV land area needed to meet 100% of an average U.S. citizen's electricity demand is about 100 m2. This requirement roughly doubles to about 200 m2 when using 1-axis tracking arrays. By comparing these total land-use requirements with other current per capita land uses, we find that land-use requirements of solar photovoltaics are modest, especially when considering the availability of zero impact 'land' on rooftops. Additional work is need to examine the tradeoffs between array spacing, self-shading losses, and land use, along with possible techniques to mitigate land-use impacts of large-scale PV deployment.

  18. THE DETECTION OF THE LARGE-SCALE ALIGNMENT OF MASSIVE GALAXIES AT z {approx} 0.6

    SciTech Connect (OSTI)

    Li Cheng [Partner Group of the Max Planck Institute for Astrophysics at the Shanghai Astronomical Observatory and Key Laboratory for Research in Galaxies and Cosmology of Chinese Academy of Sciences, Nandan Road 80, Shanghai 200030 (China); Jing, Y. P. [Center for Astronomy and Astrophysics, Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Faltenbacher, A. [School of Physics, University of the Witwatersrand, P.O. Box Wits, Johannesburg 2050 (South Africa); Wang Jie, E-mail: leech@shao.ac.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2013-06-10

    We report on the detection of the alignment between galaxies and large-scale structure at z {approx} 0.6 based on the CMASS galaxy sample from the Baryon Oscillation Spectroscopy Survey Data Release 9. We use two statistics to quantify the alignment signal: (1) the alignment two-point correlation function that probes the dependence of galaxy clustering at a given separation in redshift space on the projected angle ({theta}{sub p}) between the orientation of galaxies and the line connecting to other galaxies, and (2) the cos (2{theta})-statistic that estimates the average of cos (2{theta}{sub p}) for all correlated pairs at a given separation s. We find a significant alignment signal out to about 70 h {sup -1} Mpc in both statistics. Applications of the same statistics to dark matter halos of mass above 10{sup 12} h {sup -1} M{sub Sun} in a large cosmological simulation show scale-dependent alignment signals similar to the observation, but with higher amplitudes at all scales probed. We show that this discrepancy may be partially explained by a misalignment angle between central galaxies and their host halos, though detailed modeling is needed in order to better understand the link between the orientations of galaxies and host halos. In addition, we find systematic trends of the alignment statistics with the stellar mass of the CMASS galaxies, in the sense that more massive galaxies are more strongly aligned with the large-scale structure.

  19. Economic Impact of Large-Scale Deployment of Offshore Marine and Hydrokinetic Technology in Oregon Coastal Counties

    SciTech Connect (OSTI)

    Jimenez, T.; Tegen, S.; Beiter, P.

    2015-03-01

    To begin understanding the potential economic impacts of large-scale WEC technology, the Bureau of Ocean Energy Management (BOEM) commissioned the National Renewable Energy Laboratory (NREL) to conduct an economic impact analysis of largescale WEC deployment for Oregon coastal counties. This report follows a previously published report by BOEM and NREL on the jobs and economic impacts of WEC technology for the entire state (Jimenez and Tegen 2015). As in Jimenez and Tegen (2015), this analysis examined two deployment scenarios in the 2026-2045 timeframe: the first scenario assumed 13,000 megawatts (MW) of WEC technology deployed during the analysis period, and the second assumed 18,000 MW of WEC technology deployed by 2045. Both scenarios require major technology and cost improvements in the WEC devices. The study is on very large-scale deployment so readers can examine and discuss the potential of a successful and very large WEC industry. The 13,000-MW is used as the basis for the county analysis as it is the smaller of the two scenarios. Sensitivity studies examined the effects of a robust in-state WEC supply chain. The region of analysis is comprised of the seven coastal counties in Oregon—Clatsop, Coos, Curry, Douglas, Lane, Lincoln, and Tillamook—so estimates of jobs and other economic impacts are specific to this coastal county area.

  20. Running Large Scale Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    peta-scale production systems. For example, certain applications may not have enough memory per core, the default environment variables may need to be adjusted, or IO dominates...

  1. An experimental investigation of the dynamics of submarine leveed channel initiation as sediment-laden density currents experience sudden unconfinement

    SciTech Connect (OSTI)

    Rowland, Joel C; Hilley, George E; Fildani, Andrea

    2009-01-01

    Leveed submarine channels play a critical role in the transfer of sediment from the upper continental slopes to interslope basins and ultimately deepwater settings. Despite a reasonable understanding of how these channels grow once established, how such channels initiate on previously unchannelized portions of the seafloor remains poorly understood. We conducted a series of experiments that elucidate the influence of excess density relative to flow velocity on the dynamics of, and depositional morphologies arising from, density currents undergoing sudden unconfinement across a sloped bed. Experimental currents transported only suspended sediment across a non-erodible substrate. Under flow conditions ranging from supercritical to subcritical (bulk Richardson numbers of 0.02 to 1.2) our experiments failed to produce deposits resembling or exhibiting the potential to evolve into self-formed leveed channels. In the absence of excess density, a submerged sediment-laden flow produced sharp crested lateral deposits bounding the margins of the flow for approximately a distance of two outlet widths down basin. These lateral deposits terminated in a centerline deposit that greatly exceeded marginal deposits in thickness. As excess density increased relative to the outlet velocity, the rate of lateral spreading of the flow increased relative to the downstream propagation of the density current, transitioning from a narrow flow aligned with the channel outlet to a broad radially expanding flow. Coincident with these changes in flow dynamics, the bounding lateral deposits extended for shorter distances, had lower, more poorly defined crests that were increasingly wider in separation than the initial outlet, and progressively became more oblong rather than linear. Based on our results, we conclude that leveed channels cannot initiate from sediment-laden density currents under strictly depositional conditions. Partial confinement of these currents appears to be necessary to establish the hydrodynamic conditions needed for sediment deposition along the margins of a density current which ultimately may evolve into confining levees. We suggest that erosion into a previously unchannelized substrate is the mostly likely source of this partial confinement.

  2. Large-scale mapping of landslides in the epicentral area Loma Prieta earthquake of October 17, 1989, Santa Cruz County

    SciTech Connect (OSTI)

    Spittler, T.E.; Sydnor, R.H.; Manson, M.W.; Levine, P.; McKittrick, M.M.

    1990-01-01

    The Loma Prieta earthquake of October 17, 1989 triggered landslides throughout the Santa Cruz Mountains in central California. The California Department of Conservation, Division of Mines and Geology (DMG) responded to a request for assistance from the County of Santa Cruz, Office of Emergency Services to evaluate the geologic hazard from major reactivated large landslides. DMG prepared a set of geologic maps showing the landslide features that resulted from the October 17 earthquake. The principal purpose of large-scale mapping of these landslides is: (1) to provide county officials with regional landslide information that can be used for timely recovery of damaged areas; (2) to identify disturbed ground which is potentially vulnerable to landslide movement during winter rains; (3) to provide county planning officials with timely geologic information that will be used for effective land-use decisions; (4) to document regional landslide features that may not otherwise be available for individual site reconstruction permits and for future development.

  3. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    SciTech Connect (OSTI)

    Nakano, H. Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Nishiyama, S.; Sasaki, K.

    2015-04-08

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ?3000?K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure.

  4. Scattering of electromagnetic waves by vortex density structures associated with interchange instability: Analytical and large scale plasma simulation results

    SciTech Connect (OSTI)

    Sotnikov, V.; Kim, T.; Lundberg, J.; Paraschiv, I.; Mehlhorn, T. A.

    2014-05-15

    The presence of plasma turbulence can strongly influence propagation properties of electromagnetic signals used for surveillance and communication. In particular, we are interested in the generation of low frequency plasma density irregularities in the form of coherent vortex structures. Interchange or flute type density irregularities in magnetized plasma are associated with Rayleigh-Taylor type instability. These types of density irregularities play an important role in refraction and scattering of high frequency electromagnetic signals propagating in the earth ionosphere, in high energy density physics, and in many other applications. We will discuss scattering of high frequency electromagnetic waves on low frequency density irregularities due to the presence of vortex density structures associated with interchange instability. We will also present particle-in-cell simulation results of electromagnetic scattering on vortex type density structures using the large scale plasma code LSP and compare them with analytical results.

  5. The absorption chiller in large scale solar pond cooling design with condenser heat rejection in the upper convecting zone

    SciTech Connect (OSTI)

    Tsilingiris, P.T. )

    1992-07-01

    The possibility of using solar ponds as low-cost solar collectors combined with commercial absorption chillers in large scale solar cooling design is investigated. The analysis is based on the combination of a steady-state solar pond mathematical model with the operational characteristics of a commercial absorption chiller, assuming condenser heat rejection in the upper convecting zone (U.C.Z.). The numerical solution of the nonlinear equations involved leads to results which relate the chiller capacity with pond design and environmental parameters, which are also employed for the investigation of the optimum pond size for a minimum capital cost. The derived cost per cooling kW for a 350 kW chiller ranges from about 300 to 500 $/kW cooling. This is almost an order of magnitude lower than using a solar collector field of evacuated tube type.

  6. Final Report on DOE Project entitled Dynamic Optimized Advanced Scheduling of Bandwidth Demands for Large-Scale Science Applications

    SciTech Connect (OSTI)

    Ramamurthy, Byravamurthy

    2014-05-05

    In this project, developed scheduling frameworks for dynamic bandwidth demands for large-scale science applications. In particular, we developed scheduling algorithms for dynamic bandwidth demands in this project. Apart from theoretical approaches such as Integer Linear Programming, Tabu Search and Genetic Algorithm heuristics, we have utilized practical data from ESnet OSCARS project (from our DOE lab partners) to conduct realistic simulations of our approaches. We have disseminated our work through conference paper presentations and journal papers and a book chapter. In this project we addressed the problem of scheduling of lightpaths over optical wavelength division multiplexed (WDM) networks. We published several conference papers and journal papers on this topic. We also addressed the problems of joint allocation of computing, storage and networking resources in Grid/Cloud networks and proposed energy-efficient mechanisms for operatin optical WDM networks.

  7. LY? FOREST TOMOGRAPHY FROM BACKGROUND GALAXIES: THE FIRST MEGAPARSEC-RESOLUTION LARGE-SCALE STRUCTURE MAP AT z > 2

    SciTech Connect (OSTI)

    Lee, Khee-Gan; Hennawi, Joseph F.; Eilers, Anna-Christina [Max Planck Institute for Astronomy, Knigstuhl 17, D-69117 Heidelberg (Germany); Stark, Casey; White, Martin [Department of Astronomy, University of California at Berkeley, B-20 Hearst Field Annex 3411, Berkeley, CA 94720 (United States); Prochaska, J. Xavier [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Schlegel, David J. [University of California Observatories, Lick Observatory, 1156 High Street, Santa Cruz, CA 95064 (United States); Arinyo-i-Prats, Andreu [Institut de Cincies del Cosmos, Universitat de Barcelona (IEEC-UB), Mart Franqus 1, E-08028 Barcelona (Spain); Suzuki, Nao [Kavli Institute for the Physics and Mathematics of the Universe (IPMU), The University of Tokyo, Kashiwano-ha 5-1-5, Kashiwa-shi, Chiba (Japan); Croft, Rupert A. C. [Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Caputi, Karina I. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700-AV Groningen (Netherlands); Cassata, Paolo [Instituto de Fisica y Astronomia, Facultad de Ciencias, Universidad de Valparaiso, Av. Gran Bretana 1111, Casilla 5030, Valparaiso (Chile); Ilbert, Olivier; Le Brun, Vincent; Le Fvre, Olivier [Aix Marseille Universit, CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Garilli, Bianca [INAF-IASF, Via Bassini 15, I-20133, Milano (Italy); Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Maccagni, Dario [INAF-Osservatorio Astronomico di Bologna, Via Ranzani,1, I-40127 Bologna (Italy); Nugent, Peter, E-mail: lee@mpia.de [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); and others

    2014-11-01

    We present the first observations of foreground Ly? forest absorption from high-redshift galaxies, targeting 24 star-forming galaxies (SFGs) with z ? 2.3-2.8 within a 5' 14' region of the COSMOS field. The transverse sightline separation is ?2 h {sup 1} Mpc comoving, allowing us to create a tomographic reconstruction of the three-dimensional (3D) Ly? forest absorption field over the redshift range 2.20 ? z ? 2.45. The resulting map covers 6 h {sup 1} Mpc 14 h {sup 1} Mpc in the transverse plane and 230 h {sup 1} Mpc along the line of sight with a spatial resolution of ?3.5 h {sup 1} Mpc, and is the first high-fidelity map of a large-scale structure on ?Mpc scales at z > 2. Our map reveals significant structures with ? 10 h {sup 1} Mpc extent, including several spanning the entire transverse breadth, providing qualitative evidence for the filamentary structures predicted to exist in the high-redshift cosmic web. Simulated reconstructions with the same sightline sampling, spectral resolution, and signal-to-noise ratio recover the salient structures present in the underlying 3D absorption fields. Using data from other surveys, we identified 18 galaxies with known redshifts coeval with our map volume, enabling a direct comparison with our tomographic map. This shows that galaxies preferentially occupy high-density regions, in qualitative agreement with the same comparison applied to simulations. Our results establish the feasibility of the CLAMATO survey, which aims to obtain Ly? forest spectra for ?1000 SFGs over ?1 deg{sup 2} of the COSMOS field, in order to map out the intergalactic medium large-scale structure at (z) ? 2.3 over a large volume (100 h {sup 1} Mpc){sup 3}.

  8. Adsorption and diffusion of Ru adatoms on Ru(0001)-supported graphene: Large-scale first-principles calculations

    SciTech Connect (OSTI)

    Han, Yong; Evans, James W.

    2015-10-27

    Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moir-cell superstructure due to lattice mismatch. Within a moir cell, there are three distinct regions: fcc, hcp, and mound, in which the C6-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atom in the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ~0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. Furthermore, this in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001).

  9. LARGE-SCALE PERIODIC VARIABILITY OF THE WIND OF THE WOLF-RAYET STAR WR 1 (HD 4004)

    SciTech Connect (OSTI)

    Chene, A.-N.

    2010-06-20

    We present the results of an intensive photometric and spectroscopic monitoring campaign of the WN4 Wolf-Rayet (WR) star WR 1 = HD 4004. Our broadband V photometry covering a timespan of 91 days shows variability with a period of P = 16.9{sup +0.6}{sub -0.3} days. The same period is also found in our spectral data. The light curve is non-sinusoidal with hints of a gradual change in its shape as a function of time. The photometric variations nevertheless remain coherent over several cycles and we estimate that the coherence timescale of the light curve is of the order of 60 days. The spectroscopy shows large-scale line-profile variability which can be interpreted as excess emission peaks moving from one side of the profile to the other on a timescale of several days. Although we cannot unequivocally exclude the unlikely possibility that WR 1 is a binary, we propose that the nature of the variability we have found strongly suggests that it is due to the presence in the wind of the WR star of large-scale structures, most likely corotating interaction regions (CIRs), which are predicted to arise in inherently unstable radiatively driven winds when they are perturbed at their base. We also suggest that variability observed in WR 6, WR 134, and WR 137 is of the same nature. Finally, assuming that the period of CIRs is related to the rotational period, we estimate the rotation rate of the four stars for which sufficient monitoring has been carried out, i.e., v{sub rot} = 6.5, 40, 70, and 275 km s{sup -1} for WR 1, WR 6, WR 134, and WR 137, respectively.

  10. Adsorption and diffusion of Ru adatoms on Ru(0001)-supported graphene: Large-scale first-principles calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Han, Yong; Evans, James W.

    2015-10-27

    Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C6-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atom inmore » the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ~0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. Furthermore, this in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001).« less

  11. Using Soir Lucene for Large-Scale Metagenomics Data Retrieval and Analysis (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema (OSTI)

    Goll, Johannes [JCVI

    2013-01-22

    JCVI's Johannes Goll on "Using Solr/Lucene for Large-Scale Metagenomics Data Retrieval and Analysis" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  12. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities (Book), Large-Scale Renewable Energy Guide, Federal Energy Management Program (FEMP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LARGE-SCALE RENEWABLE ENERGY GUIDE Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities A Practical Guide to Getting Large-Scale Renewable Energy Projects Financed with Private Capital Cover photos, clockwise from the top: Installing mirrored parabolic trough collectors - (January 19, 2012) Crews work around the clock installing mirrored parabolic trough collectors, built on site, that will cover 3 square miles at Abengoa's Solana Plant. Solana a 280 megawatt utility

  13. SDSS-III Baryon Oscillation Spectroscopic Survey data release 12: Galaxy target selection and large-scale structure catalogues

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reid, Beth; Ho, Shirley; Padmanabhan, Nikhil; Percival, Will J.; Tinker, Jeremy; Tojeiro, Rito; White, Marin; Daniel J. Einstein; Maraston, Claudia; Ross, Ashley J.; et al

    2015-11-17

    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets formore » which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. Furthermore, the code used, designated mksample, is released with this paper.« less

  14. Recent developments in large-scale finite-element Lagrangian hydrocode technology. [Dyna 20/dyna 30 computer code

    SciTech Connect (OSTI)

    Goudreau, G.L.; Hallquist, J.O.

    1981-10-01

    The state of Lagrangian hydrocodes for computing the large deformation dynamic response of inelastic continuua is reviewed in the context of engineering computation at the Lawrence Livermore National Laboratory, USA, and the DYNA2D/DYNA3D finite elements codes. The emphasis is on efficiency and computational cost. The simplest elements with explicit time integration. The two-dimensional four node quadrilateral and the three-dimensional hexahedron with one point quadrature are advocated as superior to other more expensive choices. Important auxiliary capabilities are a cheap but effective hourglass control, slidelines/planes with void opening/closure, and rezoning. Both strain measures and material formulation are seen as a homogeneous stress point problem and a flexible material subroutine interface admits both incremental and total strain formulation, dependent on internal energy or an arbitrary set of other internal variables. Vectorization on Class VI computers such as the CRAY-1 is a simple exercise for optimally organized primitive element formulations. Some examples of large scale computation are illustrated, including continuous tone graphic representation.

  15. Large-scale purification and crystallization of the endoribonuclease XendoU: troubleshooting with His-tagged proteins

    SciTech Connect (OSTI)

    Renzi, Fabiana; Panetta, Gianna; Vallone, Beatrice; Brunori, Maurizio; Arceci, Massimo; Bozzoni, Irene; Laneve, Pietro; Caffarelli, Elisa

    2006-03-01

    Recombinant His-tagged XendoU, a eukaryotic endoribonuclease, appeared to aggregate in the presence of divalent cations. Monodisperse protein which yielded crystals diffracting to 2.2 Å was obtained by addition of EDTA. XendoU is the first endoribonuclease described in higher eukaryotes as being involved in the endonucleolytic processing of intron-encoded small nucleolar RNAs. It is conserved among eukaryotes and its viral homologue is essential in SARS replication and transcription. The large-scale purification and crystallization of recombinant XendoU are reported. The tendency of the recombinant enzyme to aggregate could be reversed upon the addition of chelating agents (EDTA, imidazole): aggregation is a potential drawback when purifying and crystallizing His-tagged proteins, which are widely used, especially in high-throughput structural studies. Purified monodisperse XendoU crystallized in two different space groups: trigonal P3{sub 1}21, diffracting to low resolution, and monoclinic C2, diffracting to higher resolution.

  16. Using an Energy Performance Based Design-Build Process to Procure a Large Scale Low-Energy Building: Preprint

    SciTech Connect (OSTI)

    Pless, S.; Torcellini, P.; Shelton, D.

    2011-05-01

    This paper will review a procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners developed and implemented an energy performance based design-build process to procure a 220,000 ft2 office building with contractual requirements to meet demand side energy and LEED goals. We will outline the key procurement steps needed to ensure achievement of our energy efficiency and ZEB goals. The development of a clear and comprehensive Request for Proposals (RFP) that includes specific and measurable energy use intensity goals is critical to ensure energy goals are met in a cost effective manner. The RFP includes a contractual requirement to meet an absolute demand side energy use requirement of 25 kBtu/ft2, with specific calculation methods on what loads are included, how to normalize the energy goal based on increased space efficiency and data center allocation, specific plug loads and schedules, and calculation details on how to account for energy used from the campus hot and chilled water supply. Additional advantages of integrating energy requirements into this procurement process include leveraging the voluntary incentive program, which is a financial incentive based on how well the owner feels the design-build team is meeting the RFP goals.

  17. Modifying mixing and instability growth through the adjustment of initial conditions in a high-energy-density counter-propagating shear experiment on OMEGA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Merritt, E. C.; Doss, F. W.; Loomis, E. N.; Flippo, K. A.; Kline, J. L.

    2015-06-24

    Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varyingmore » two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. In addition, we also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths.« less

  18. Geomechanical effects on CO{sub 2} leakage through fault zones during large-scale underground injection

    SciTech Connect (OSTI)

    Rinaldi, A.P.; Rutqvist, J.; Cappa, F.

    2013-09-01

    The importance of geomechanicsincluding the potential for faults to reactivate during large scale geologic carbon sequestration operationshas recently become more widely recognized. However, notwithstanding the potential for triggering notable (felt) seismic events, the potential for buoyancy-driven CO{sub 2} to reach potable groundwater and the ground surface is actually more important from public safety and storage-efficiency perspectives. In this context, this work extends the previous studies on the geomechanical modeling of fault responses during underground carbon dioxide injection, focusing on the short-term integrity of the sealing caprock, and hence on the potential for leakage of either brine or CO{sub 2} to reach the shallow groundwater aquifers during active injection. We consider stress/strain-dependent permeability and study the leakage through the fault zone as its permeability changes during a reactivation, also causing seismicity. We analyze several scenarios related to the volume of CO{sub 2} injected (and hence as a function of the overpressure), involving both minor and major faults, and analyze the profile risks of leakage for different stress/strain-permeability coupling functions. We conclude that whereas it is very difficult to predict how much fault permeability could change upon reactivation, this process can have a significant impact on the leakage rate. Moreover, our analysis shows that induced seismicity associated with fault reactivation may not necessarily open up a new flow path for leakage. Results show a poor correlation between magnitude and amount of fluid leakage, meaning that a single event is generally not enough to substantially change the permeability along the entire fault length. Consequently, even if some changes in permeability occur, this does not mean that the CO{sub 2} will migrate up along the entire fault, breaking through the caprock to enter the overlying aquifer.

  19. On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2

    SciTech Connect (OSTI)

    Zhou, Q.; Birkholzer, J. T.

    2011-05-01

    The scale and magnitude of pressure perturbation and brine migration induced by geologic carbon sequestration is discussed assuming a full-scale deployment scenario in which enough CO{sub 2} is captured and stored to make relevant contributions to global climate change mitigation. In this scenario, the volumetric rates and cumulative volumes of CO{sub 2} injection would be comparable to or higher than those related to existing deep-subsurface injection and extraction activities, such as oil production. Large-scale pressure build-up in response to the injection may limit the dynamic storage capacity of suitable formations, because over-pressurization may fracture the caprock, may drive CO{sub 2}/brine leakage through localized pathways, and may cause induced seismicity. On the other hand, laterally extensive sedimentary basins may be less affected by such limitations because (i) local pressure effects are moderated by pressure propagation and brine displacement into regions far away from the CO{sub 2} storage domain; and (ii) diffuse and/or localized brine migration into overlying and underlying formations allows for pressure bleed-off in the vertical direction. A quick analytical estimate of the extent of pressure build-up induced by industrial-scale CO{sub 2} storage projects is presented. Also discussed are pressure perturbation and attenuation effects simulated for two representative sedimentary basins in the USA: the laterally extensive Illinois Basin and the partially compartmentalized southern San Joaquin Basin in California. These studies show that the limiting effect of pressure build-up on dynamic storage capacity is not as significant as suggested by Ehlig-Economides and Economides, who considered closed systems without any attenuation effects.

  20. Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface Radar and Satellite Data in Support of ARM SCM Activities

    SciTech Connect (OSTI)

    Liu, Guosheng

    2013-03-15

    Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term of condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMs’ cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3-D cloud ice water contents in support of cloud modeling activities. The approach of the study is to expand a (surface) point measurement to an (satellite) area measurement. That is, the study takes the advantage of the high quality cloud measurements (particularly cloud radar and microwave radiometer measurements) at the point of the ARM sites. We use the cloud ice water characteristics derived from the point measurement to guide/constrain a satellite retrieval algorithm, then use the satellite algorithm to derive the 3-D cloud ice water distributions within an 10° (latitude) x 10° (longitude) area. During the research period, we have developed, validated and improved our cloud ice water retrievals, and have produced and archived at ARM website as a PI-product of the 3-D cloud ice water contents using combined satellite high-frequency microwave and surface radar observations for SGP March 2000 IOP and TWP-ICE 2006 IOP over 10 deg. x 10 deg. area centered at ARM SGP central facility and Darwin sites. We have also worked on validation of the 3-D ice water product by CloudSat data, synergy with visible/infrared cloud ice water retrievals for better results at low ice water conditions, and created a long-term (several years) of ice water climatology in 10 x 10 deg. area of ARM SGP and TWP sites and then compared it with GCMs.

  1. Radiative Heating of the ISCCP Upper Level Cloud Regimes and its Impact on the Large-scale Tropical Circulation

    SciTech Connect (OSTI)

    Li, Wei; Schumacher, Courtney; McFarlane, Sally A.

    2013-01-31

    Radiative heating profiles of the International Satellite Cloud Climatology Project (ISCCP) cloud regimes (or weather states) were estimated by matching ISCCP observations with radiative properties derived from cloud radar and lidar measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) sites at Manus, Papua New Guinea, and Darwin, Australia. Focus was placed on the ISCCP cloud regimes containing the majority of upper level clouds in the tropics, i.e., mesoscale convective systems (MCSs), deep cumulonimbus with cirrus, mixed shallow and deep convection, and thin cirrus. At upper levels, these regimes have average maximum cloud occurrences ranging from 30% to 55% near 12 km with variations depending on the location and cloud regime. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating contributions from the longwave and shortwave components. Upper level minima occur near 15 km, with the MCS regime showing the strongest cooling of 0.2 K/day and the thin cirrus showing no cooling. The gradient of upper level heating ranges from 0.2 to 0.4 K/(day?km), with the most convectively active regimes (i.e., MCSs and deep cumulonimbus with cirrus) having the largest gradient. When the above heating profiles were applied to the 25-year ISCCP data set, the tropics-wide average profile has a radiative heating maximum of 0.45Kday-1 near 250 hPa. Column-integrated radiative heating of upper level cloud accounts for about 20% of the latent heating estimated by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The ISCCP radiative heating of tropical upper level cloud only slightly modifies the response of an idealized primitive equation model forced with the tropics-wide TRMM PR latent heating, which suggests that the impact of upper level cloud is more important to large-scale tropical circulation variations because of convective feedbacks rather than direct forcing by the cloud radiative heating profiles. However, the height of the radiative heating maxima and gradient of the heating profiles are important to determine the sign and patterns of the horizontal circulation anomaly driven by radiative heating at upper levels.

  2. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system

    SciTech Connect (OSTI)

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer This study evaluates the effects of co-gasification of MSW with MSW bottom ash. Black-Right-Pointing-Pointer No significant difference between MSW treatment with and without MSW bottom ash. Black-Right-Pointing-Pointer PCDD/DFs yields are significantly low because of the high carbon conversion ratio. Black-Right-Pointing-Pointer Slag quality is significantly stable and slag contains few hazardous heavy metals. Black-Right-Pointing-Pointer The final landfill amount is reduced and materials are recovered by DMS process. - Abstract: This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.

  3. Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-08-05

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

  4. CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema (OSTI)

    Shih, Patrick [Kerfeld Lab, UC Berkeley and JGI

    2013-01-22

    Patrick Shih, representing both the University of California, Berkeley and JGI, gives a talk titled "CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  5. CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect (OSTI)

    Shih, Patrick [Kerfeld Lab, UC Berkeley and JGI] [Kerfeld Lab, UC Berkeley and JGI

    2012-03-22

    Patrick Shih, representing both the University of California, Berkeley and JGI, gives a talk titled "CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  6. PROCEEDINGS OF THE RIKEN BNL RESEARCH CENTER WORKSHOP ON LARGE SCALE COMPUTATIONS IN NUCLEAR PHYSICS USING THE QCDOC, SEPTEMBER 26 - 28, 2002.

    SciTech Connect (OSTI)

    AOKI,Y.; BALTZ,A.; CREUTZ,M.; GYULASSY,M.; OHTA,S.

    2002-09-26

    The massively parallel computer QCDOC (QCD On a Chip) of the RIKEN BNL Research Center (RI3RC) will provide ten-teraflop peak performance for lattice gauge calculations. Lattice groups from both Columbia University and RBRC, along with assistance from IBM, jointly handled the design of the QCDOC. RIKEN has provided $5 million in funding to complete the machine in 2003. Some fraction of this computer (perhaps as much as 10%) might be made available for large-scale computations in areas of theoretical nuclear physics other than lattice gauge theory. The purpose of this workshop was to investigate the feasibility and possibility of using a supercomputer such as the QCDOC for lattice, general nuclear theory, and other calculations. The lattice applications to nuclear physics that can be investigated with the QCDOC are varied: for example, the light hadron spectrum, finite temperature QCD, and kaon ({Delta}I = 1/2 and CP violation), and nucleon (the structure of the proton) matrix elements, to name a few. There are also other topics in theoretical nuclear physics that are currently limited by computer resources. Among these are ab initio calculations of nuclear structure for light nuclei (e.g. up to {approx}A = 8 nuclei), nuclear shell model calculations, nuclear hydrodynamics, heavy ion cascade and other transport calculations for RHIC, and nuclear astrophysics topics such as exploding supernovae. The physics topics were quite varied, ranging from simulations of stellar collapse by Douglas Swesty to detailed shell model calculations by David Dean, Takaharu Otsuka, and Noritaka Shimizu. Going outside traditional nuclear physics, James Davenport discussed molecular dynamics simulations and Shailesh Chandrasekharan presented a class of algorithms for simulating a wide variety of femionic problems. Four speakers addressed various aspects of theory and computational modeling for relativistic heavy ion reactions at RHIC. Scott Pratt and Steffen Bass gave general overviews of how qualitatively different types of physical processes evolve temporally in heavy ion reactions. Denes Molnar concentrated on the application of hydrodynamics, and Alex Krasnitz on a classical Yang-Mills field theory for the initial phase. We were pleasantly surprised by the excellence of the talks and the substantial interest from all parties. The diversity of the audience forced the speakers to give their talks at an understandable level, which was highly appreciated. One particular bonus of the discussions could be the application of highly developed three-dimensional astrophysics hydrodynamics codes to heavy ion reactions.

  7. CONSTRAINTS ON THE ORIGIN OF COSMIC RAYS ABOVE 10{sup 18} eV FROM LARGE-SCALE ANISOTROPY SEARCHES IN DATA OF THE PIERRE AUGER OBSERVATORY

    SciTech Connect (OSTI)

    Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Antici'c, T.; Arganda, E.; Collaboration: Pierre Auger Collaboration; and others

    2013-01-01

    A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10{sup 18} eV at the Pierre Auger Observatory is reported. For the first time, these large-scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 10{sup 18} eV, since they allow us to challenge an origin from stationary galactic sources densely distributed in the galactic disk and emitting predominantly light particles in all directions.

  8. FERMI RULES OUT THE INVERSE COMPTON/CMB MODEL FOR THE LARGE-SCALE JET X-RAY EMISSION OF 3C 273

    SciTech Connect (OSTI)

    Meyer, Eileen T.; Georganopoulos, Markos

    2014-01-10

    The X-ray emission mechanism in large-scale jets of powerful radio quasars has been a source of debate in recent years, with two competing interpretations: either the X-rays are of synchrotron origin, arising from a different electron energy distribution than that producing the radio to optical synchrotron component, or they are due to inverse Compton scattering of cosmic microwave background photons (IC/CMB) by relativistic electrons in a powerful relativistic jet with bulk Lorentz factor ? ? 10-20. These two models imply radically different conditions in the large-scale jet in terms of jet speed, kinetic power, and maximum energy of the particle acceleration mechanism, with important implications for the impact of the jet on the large-scale environment. A large part of the X-ray origin debate has centered on the well-studied source 3C 273. Here we present new observations from Fermi which put an upper limit on the gamma-ray flux from the large-scale jet of 3C 273 that violates at a confidence greater that 99.9% the flux expected from the IC/CMB X-ray model found by extrapolation of the UV to X-ray spectrum of knot A, thus ruling out the IC/CMB interpretation entirely for this source when combined with previous work. Further, this upper limit from Fermi puts a limit on the Doppler beaming factor of at least ? <9, assuming equipartition fields, and possibly as low as ? <5, assuming no major deceleration of the jet from knots A throughD1.

  9. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    SciTech Connect (OSTI)

    Li, Lee Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-14

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  10. National Nanotechnology Initiative's Signature Initiative Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NIST, NSF, OSHA, USDAFS Goal: Establish manufacturing technologies for economical and sustainable integration of nanoscale building blocks into complex, large scale systems. ...

  11. Efficacy of Intra-Arterial Infusion Chemotherapy for Head and Neck Cancers Using Coaxial Catheter Technique: Initial Experience

    SciTech Connect (OSTI)

    Tsurumaru, Daisuke Kuroiwa, Toshiro; Yabuuchi, Hidetake; Hirata, Hideki; Higaki, Yuichiro; Tomita, Kichinobu

    2007-04-15

    The aim of this study was to evaluate the efficacy of intra-arterial infusion chemotherapy for head and neck cancers using a coaxial catheter technique: the superficial temporal artery (STA)-coaxial catheter method. Thirty-one patients (21 males and 10 females; 37-83 years of age) with squamous cell carcinoma of the head and neck (maxilla, 2; epipharynx, 4; mesopharynx, 8; oral floor, 4; tongue, 10; lower gingiva, 1; buccal mucosa, 2) were treated by intra-arterial infusion chemotherapy. Four patients were excluded from the tumor-response evaluation because of a previous operation or impossibility of treatment due to catheter trouble. Forty-eight sessions of catheterization were performed. A guiding catheter was inserted into the STA and a microcatheter was advanced into the tumor-feeding artery via the guiding catheter under angiographic guidance. When the location of the tumor or its feeding artery was uncertain on angiography, computed tomographic angiography was performed. The anticancer agent carboplatin (CBDCA) was continuously injected for 24 h through the microcatheter from a portable infusion pump attached to the patient's waist. The total administration dose was 300-1300 mg per body. External radiotherapy was administered during intra-arterial chemotherapy at a total dose of 21-70.5 Gy.The initial response was complete response in 15 patients, partial response in 7 patients, and no change in 5 patients; the overall response rate was 81.5% (22/27). Complication-related catheter maintenance was observed in 15 of 48 sessions of catheterization. Injury and dislocation of the microcatheter occurred 10 times in 7 patients. Catheter infection was observed three times in each of two patients, and catheter occlusion and vasculitis occurred in two patients. Intra-arterial infusion chemotherapy via the STA-coaxial catheter method could have potential as a favorable treatment for head and neck tumors.

  12. Design of a large-scale anaerobic digestion facility for the recovery of energy from municipal solid waste

    SciTech Connect (OSTI)

    Kayhanian, M.; Jones, D.

    1996-12-31

    The California Prison Industry Authority, in conjunction with the City of Folsom, operates a 100 ton/d municipal solid waste (MSW) recovery facility using inmate labor. Through manual sorting, all useful organic and inorganic materials are recycled for marketing. The remaining organic material will be further processed to remove hazardous and inert material and prepared as a feedstock for an anaerobic digestion process. The clean organic waste (approximately 78 ton/d) will then be shredded and completely mixed with sewage water prior feeding to the digester. Off gas from the digester will be collected as a fuel for the steam boiler or combusted in a waste gas burner. Steam will be injected directly into the digester for heating. The anaerobically digested material will be moved to compost area where it will be mixed with wood faction of yard waste and processed aerobically for the production of compost material as a soil amendment. Anaerobic digesters will be constructed in two phases. The first phase consists of the construction of one 26 ton/d digester to confirm the suitability of feeding and mixing equipment. Modifications will be made to the second and third digesters, in the second phase, based on operating experience of the first digester. This paper discusses important design features of the anaerobic digestion facility.

  13. Design of a Physical Point-Absorbing WEC Model on which Multiple Control Strategies will be Tested at Large Scale in the MASK Basin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design of a Physical Point-Absorbing WEC Model on which Multiple Control Strategies will be Tested at Large Scale in the MASK Basin Diana L. Bull 1 , Ryan G. Coe 1 , Mark Monda 3 , Kevin Dullea 2 , Giorgio Bacelli 1 , David Patterson 1 1 Water Power Technologies, 2 Intelligent Systems Control, 3 Robotic and Security Systems Sandia National Laboratories, Albuquerque, NM 87185-1124 ABSTRACT A new multi-year effort has been launched by the Department of Energy to validate the extent to which

  14. Large-scale Manufacturing of Nanoparticulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions

    SciTech Connect (OSTI)

    Erdemir, Ali

    2013-09-26

    This project was funded under the Department of Energy (DOE) Lab Call on Nanomanufacturing for Energy Efficiency and was directed toward the development of novel boron-based nanocolloidal lubrication additives for improving the friction and wear performance of machine components in a wide range of industrial and transportation applications. Argonne?s research team concentrated on the scientific and technical aspects of the project, using a range of state-of-the art analytical and tribological test facilities. Argonne has extensive past experience and expertise in working with boron-based solid and liquid lubrication additives, and has intellectual property ownership of several. There were two industrial collaborators in this project: Ashland Oil (represented by its Valvoline subsidiary) and Primet Precision Materials, Inc. (a leading nanomaterials company). There was also a sub-contract with the University of Arkansas. The major objectives of the project were to develop novel boron-based nanocolloidal lubrication additives and to optimize and verify their performance under boundary-lubricated sliding conditions. The project also tackled problems related to colloidal dispersion, larger-scale manufacturing and blending of nano-additives with base carrier oils. Other important issues dealt with in the project were determination of the optimum size and concentration of the particles and compatibility with various base fluids and/or additives. Boron-based particulate additives considered in this project included boric acid (H{sub 3}BO{sub 3}), hexagonal boron nitride (h-BN), boron oxide, and borax. As part of this project, we also explored a hybrid MoS{sub 2} + boric acid formulation approach for more effective lubrication and reported the results. The major motivation behind this work was to reduce energy losses related to friction and wear in a wide spectrum of mechanical systems and thereby reduce our dependence on imported oil. Growing concern over greenhouse gas emissions was also a major reason. The transportation sector alone consumes about 13 million barrels of crude oil per day (nearly 60% of which is imported) and is responsible for about 30% of the CO{sub 2} emission. When we consider manufacturing and other energy-intensive industrial processes, the amount of petroleum being consumed due to friction and wear reaches more than 20 million barrels per day (from official energy statistics, U.S. Energy Information Administration). Frequent remanufacturing and/or replacement of worn parts due to friction-, wear-, and scuffing-related degradations also consume significant amounts of energy and give rise to additional CO{sub 2} emission. Overall, the total annual cost of friction- and wear-related energy and material losses is estimated to be rather significant (i.e., as much as 5% of the gross national products of highly industrialized nations). It is projected that more than half of the total friction- and wear-related energy losses can be recovered by developing and implementing advanced friction and wear control technologies. In transportation vehicles alone, 10% to 15% of the fuel energy is spent to overcome friction. If we can cut down the friction- and wear-related energy losses by half, then we can potentially save up to 1.5 million barrels of petroleum per day. Also, less friction and wear would mean less energy consumption as well as less carbon emissions and hazardous byproducts being generated and released to the environment. New and more robust anti-friction and -wear control technologies may thus have a significant positive impact on improving the efficiency and environmental cleanliness of the current legacy fleet and future transportation systems. Effective control of friction in other industrial sectors such as manufacturing, power generation, mining and oil exploration, and agricultural and earthmoving machinery may bring more energy savings. Therefore, this project was timely and responsive to the energy and environmental objectives of DOE and our nation. In this project, most of the boron-based mater

  15. NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF A CORONAL MAGNETIC FLUX ROPE SUPPORTING A LARGE-SCALE SOLAR FILAMENT FROM A PHOTOSPHERIC VECTOR MAGNETOGRAM

    SciTech Connect (OSTI)

    Jiang, Chaowei; Wu, S. T.; Hu, Qiang; Feng, Xueshang E-mail: wus@uah.edu E-mail: fengx@spaceweather.ac.cn

    2014-05-10

    Solar filaments are commonly thought to be supported in magnetic dips, in particular, in those of magnetic flux ropes (FRs). In this Letter, based on the observed photospheric vector magnetogram, we implement a nonlinear force-free field (NLFFF) extrapolation of a coronal magnetic FR that supports a large-scale intermediate filament between an active region and a weak polarity region. This result is a first, in the sense that current NLFFF extrapolations including the presence of FRs are limited to relatively small-scale filaments that are close to sunspots and along main polarity inversion lines (PILs) with strong transverse field and magnetic shear, and the existence of an FR is usually predictable. In contrast, the present filament lies along the weak-field region (photospheric field strength ? 100G), where the PIL is very fragmented due to small parasitic polarities on both sides of the PIL and the transverse field has a low signal-to-noise ratio. Thus, extrapolating a large-scale FR in such a case represents a far more difficult challenge. We demonstrate that our CESE-MHD-NLFFF code is sufficient for the challenge. The numerically reproduced magnetic dips of the extrapolated FR match observations of the filament and its barbs very well, which strongly supports the FR-dip model for filaments. The filament is stably sustained because the FR is weakly twisted and strongly confined by the overlying closed arcades.

  16. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    SciTech Connect (OSTI)

    Teng, Yun; Li, Lee Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-15

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18??15??15?cm{sup 3}, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  17. Hierarchical chlorine-doped rutile TiO{sub 2} spherical clusters of nanorods: Large-scale synthesis and high photocatalytic activity

    SciTech Connect (OSTI)

    Xu Hua; Zheng Zhi; Zhang Lizhi Zhang Hailu; Deng Feng

    2008-09-15

    In this study, we report the synthesis of hierarchical chlorine-doped rutile TiO{sub 2} spherical clusters of nanorods photocatalyst on a large scale via a soft interface approach. This catalyst showed much higher photocatalytic activity than the famous commercial titania (Degussa P25) under visible light ({lambda}>420 nm). The resulting sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy, {sup 1}H solid magic-angle spinning nuclear magnetic resonance (MAS-NMR) and photoluminescence spectroscopy. On the basis of characterization results, we found that the doping of chlorine resulted in red shift of absorption and higher surface acidity as well as crystal defects in the photocatalyst, which were the reasons for high photocatalytic activity of chlorine-doped TiO{sub 2} under visible light ({lambda}>420 nm). These hierarchical chlorine-doped rutile TiO{sub 2} spherical clusters of nanorods are very attractive in the fields of environmental pollutants removal and solar cell because of their easy separation and high activity. - Graphical abstract: Hierarchical chlorine-doped rutile TiO{sub 2} spherical clusters of nanorods photocatalyst were synthesized on a large scale via a soft interface approach. This catalyst showed much higher photocatalytic activity than the famous commercial titania (Degussa P25) under visible light ({lambda}>420 nm)

  18. Large scale DNA microsequencing device

    DOE Patents [OSTI]

    Foote, Robert S. (Oak Ridge, TN)

    1997-01-01

    A microminiature sequencing apparatus and method provide means for simultaneously obtaining sequences of plural polynucleotide strands. The apparatus comprises a microchip into which plural channels have been etched using standard lithographic procedures and chemical wet etching. The channels include a reaction well and a separating section. Enclosing the channels is accomplished by bonding a transparent cover plate over the apparatus. A first oligonucleotide strand is chemically affixed to the apparatus through an alkyl chain. Subsequent nucleotides are selected by complementary base pair bonding. A target nucleotide strand is used to produce a family of labelled sequencing strands in each channel which are separated in the separating section. During or following separation the sequences are determined using appropriate detection means.

  19. Large scale DNA microsequencing device

    DOE Patents [OSTI]

    Foote, Robert S. (Oak Ridge, TN)

    1999-01-01

    A microminiature sequencing apparatus and method provide means for simultaneously obtaining sequences of plural polynucleotide strands. The apparatus comprises a microchip into which plural channels have been etched using standard lithographic procedures and chemical wet etching. The channels include a reaction well and a separating section. Enclosing the channels is accomplished by bonding a transparent cover plate over the apparatus. A first oligonucleotide strand is chemically affixed to the apparatus through an alkyl chain. Subsequent nucleotides are selected by complementary base pair bonding. A target nucleotide strand is used to produce a family of labelled sequencing strands in each channel which are separated in the separating section. During or following separation the sequences are determined using appropriate detection means.

  20. Large scale DNA microsequencing device

    DOE Patents [OSTI]

    Foote, R.S.

    1999-08-31

    A microminiature sequencing apparatus and method provide means for simultaneously obtaining sequences of plural polynucleotide strands. The apparatus comprises a microchip into which plural channels have been etched using standard lithographic procedures and chemical wet etching. The channels include a reaction well and a separating section. Enclosing the channels is accomplished by bonding a transparent cover plate over the apparatus. A first oligonucleotide strand is chemically affixed to the apparatus through an alkyl chain. Subsequent nucleotides are selected by complementary base pair bonding. A target nucleotide strand is used to produce a family of labelled sequencing strands in each channel which are separated in the separating section. During or following separation the sequences are determined using appropriate detection means. 11 figs.

  1. Large scale DNA microsequencing device

    DOE Patents [OSTI]

    Foote, R.S.

    1997-08-26

    A microminiature sequencing apparatus and method provide a means for simultaneously obtaining sequences of plural polynucleotide strands. The apparatus cosists of a microchip into which plural channels have been etched using standard lithographic procedures and chemical wet etching. The channels include a reaction well and a separating section. Enclosing the channels is accomplished by bonding a transparent cover plate over the apparatus. A first oligonucleotide strand is chemically affixed to the apparatus through an alkyl chain. Subsequent nucleotides are selected by complementary base pair bonding. A target nucleotide strand is used to produce a family of labelled sequencing strands in each channel which are separated in the separating section. During or following separation the sequences are determined using appropriate detection means. 17 figs.

  2. Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  3. LARGE-SCALE DISTRIBUTION OF ARRIVAL DIRECTIONS OF COSMIC RAYS DETECTED ABOVE 10{sup 18} eV AT THE PIERRE AUGER OBSERVATORY

    SciTech Connect (OSTI)

    Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Antici'c, T.; Arganda, E.; Collaboration: Pierre Auger Collaboration; and others

    2012-12-15

    A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10{sup 18} eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 10{sup 18} eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 10{sup 18} eV from stationary Galactic sources densely distributed in the Galactic disk and predominantly emitting light particles in all directions.

  4. Co-optimizing Generation and Transmission Expansion with Wind Power in Large-Scale Power Grids Implementation in the US Eastern Interconnection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    You, Shutang; Hadley, Stanton W.; Shankar, Mallikarjun; Liu, Yilu

    2016-01-12

    This paper studies the generation and transmission expansion co-optimization problem with a high wind power penetration rate in the US Eastern Interconnection (EI) power grid. In this paper, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. Our paper also analyzed a time series generation method to capture the variation and correlation of both load and wind power across regions. The obtained series can be easily introduced into the expansion planning problem and then solved through existing MIP solvers. Simulation results show that the proposed planning model and series generation methodmore » can improve the expansion result significantly through modeling more detailed information of wind and load variation among regions in the US EI system. Moreover, the improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare in large-scale power grids.« less

  5. Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE Experiment September, 2002 SeptemMyungkee Sung (LSU/MiniBooNE) 4th International Workshop on the Identification of Dark Matter Cosmologically Interesting Region; Hot Dark Matter? LSND Signal at High ∆m 2 KARMEN II narrowed the signal region MiniBooNE will fully address this signal. Neutrino Osillation at High ∆m 2 LSND: Searching for ν µ →ν e ν µ - From µ + decay at rest with endpoint energy 53 MeV L = 30m, L/E ~ 1m/MeV, 167 tons of Mineral Oil Look for ν e Appearance: ν

  6. Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles, for Large-Scale Geologic Storage of CO₂

    SciTech Connect (OSTI)

    Bruno, Michael

    2014-12-08

    Geomechanics Technologies has completed a detailed characterization study of the Wilmington Graben offshore Southern California area for large-scale CO₂ storage. This effort has included: an evaluation of existing wells in both State and Federal waters, field acquisition of about 175 km (109 mi) of new seismic data, new well drilling, development of integrated 3D geologic, geomechanics, and fluid flow models for the area. The geologic analysis indicates that more than 796 MMt of storage capacity is available within the Pliocene and Miocene formations in the Graben for midrange geologic estimates (P50). Geomechanical analyses indicate that injection can be conducted without significant risk for surface deformation, induced stresses or fault activation. Numerical analysis of fluid migration indicates that injection into the Pliocene Formation at depths of 1525 m (5000 ft) would lead to undesirable vertical migration of the CO₂ plume. Recent well drilling however, indicates that deeper sand is present at depths exceeding 2135 m (7000 ft), which could be viable for large volume storage. For vertical containment, injection would need to be limited to about 250,000 metric tons per year per well, would need to be placed at depths greater than 7000ft, and would need to be placed in new wells located at least 1 mile from any existing offset wells. As a practical matter, this would likely limit storage operations in the Wilmington Graben to about 1 million tons per year or less. A quantitative risk analysis for the Wilmington Graben indicate that such large scale CO₂ storage in the area would represent higher risk than other similar size projects in the US and overseas.

  7. The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Albuquerque, I.F.M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; ,

    2011-11-01

    We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60{sup o}, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the {approx} 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for. In this work, we have identified and quantified a systematic uncertainty affecting the energy determination of cosmic rays detected by the surface detector array of the Pierre Auger Observatory. This systematic uncertainty, induced by the influence of the geomagnetic field on the shower development, has a strength which depends on both the zenith and the azimuthal angles. Consequently, we have shown that it induces distortions of the estimated cosmic ray event rate at a given energy at the percent level in both the azimuthal and the declination distributions, the latter of which mimics an almost dipolar pattern. We have also shown that the induced distortions are already at the level of the statistical uncertainties for a number of events N {approx_equal} 32 000 (we note that the full Auger surface detector array collects about 6500 events per year with energies above 3 EeV). Accounting for these effects is thus essential with regard to the correct interpretation of large scale anisotropy measurements taking explicitly profit from the declination distribution.

  8. Organo-sulfur molecules enable iron-based battery electrodes to meet the challenges of large-scale electrical energy storage

    SciTech Connect (OSTI)

    Yang, B; Malkhandi, S; Manohar, AK; Prakash, GKS; Narayanan, SR

    2014-07-03

    Rechargeable iron-air and nickel-iron batteries are attractive as sustainable and inexpensive solutions for large-scale electrical energy storage because of the global abundance and eco-friendliness of iron, and the robustness of iron-based batteries to extended cycling. Despite these advantages, the commercial use of iron-based batteries has been limited by their low charging efficiency. This limitation arises from the iron electrodes evolving hydrogen extensively during charging. The total suppression of hydrogen evolution has been a significant challenge. We have found that organo-sulfur compounds with various structural motifs (linear and cyclic thiols, dithiols, thioethers and aromatic thiols) when added in milli-molar concentration to the aqueous alkaline electrolyte, reduce the hydrogen evolution rate by 90%. These organo-sulfur compounds form strongly adsorbed layers on the iron electrode and block the electrochemical process of hydrogen evolution. The charge-transfer resistance and double-layer capacitance of the iron/electrolyte interface confirm that the extent of suppression of hydrogen evolution depends on the degree of surface coverage and the molecular structure of the organo-sulfur compound. An unanticipated electrochemical effect of the adsorption of organo-sulfur molecules is "de-passivation" that allows the iron electrode to be discharged at high current values. The strongly adsorbed organo-sulfur compounds were also found to resist electro-oxidation even at the positive electrode potentials at which oxygen evolution can occur. Through testing on practical rechargeable battery electrodes we have verified the substantial improvements to the efficiency during charging and the increased capability to discharge at high rates. We expect these performance advances to enable the design of efficient, inexpensive and eco-friendly iron-based batteries for large-scale electrical energy storage.

  9. Stochastic Engine Final Report: Applying Markov Chain Monte Carlo Methods with Importance Sampling to Large-Scale Data-Driven Simulation

    SciTech Connect (OSTI)

    Glaser, R E; Johannesson, G; Sengupta, S; Kosovic, B; Carle, S; Franz, G A; Aines, R D; Nitao, J J; Hanley, W G; Ramirez, A L; Newmark, R L; Johnson, V M; Dyer, K M; Henderson, K A; Sugiyama, G A; Hickling, T L; Pasyanos, M E; Jones, D A; Grimm, R J; Levine, R A

    2004-03-11

    Accurate prediction of complex phenomena can be greatly enhanced through the use of data and observations to update simulations. The ability to create these data-driven simulations is limited by error and uncertainty in both the data and the simulation. The stochastic engine project addressed this problem through the development and application of a family of Markov Chain Monte Carlo methods utilizing importance sampling driven by forward simulators to minimize time spent search very large state spaces. The stochastic engine rapidly chooses among a very large number of hypothesized states and selects those that are consistent (within error) with all the information at hand. Predicted measurements from the simulator are used to estimate the likelihood of actual measurements, which in turn reduces the uncertainty in the original sample space via a conditional probability method called Bayesian inferencing. This highly efficient, staged Metropolis-type search algorithm allows us to address extremely complex problems and opens the door to solving many data-driven, nonlinear, multidimensional problems. A key challenge has been developing representation methods that integrate the local details of real data with the global physics of the simulations, enabling supercomputers to efficiently solve the problem. Development focused on large-scale problems, and on examining the mathematical robustness of the approach in diverse applications. Multiple data types were combined with large-scale simulations to evaluate systems with {approx}{sup 10}20,000 possible states (detecting underground leaks at the Hanford waste tanks). The probable uses of chemical process facilities were assessed using an evidence-tree representation and in-process updating. Other applications included contaminant flow paths at the Savannah River Site, locating structural flaws in buildings, improving models for seismic travel times systems used to monitor nuclear proliferation, characterizing the source of indistinct atmospheric plumes, and improving flash radiography. In the course of developing these applications, we also developed new methods to cluster and analyze the results of the state-space searches, as well as a number of algorithms to improve the search speed and efficiency. Our generalized solution contributes both a means to make more informed predictions of the behavior of very complex systems, and to improve those predictions as events unfold, using new data in real time.

  10. Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.

    2008-11-18

    This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

  11. SU-C-16A-01: In Vivo Source Position Verification in High Dose Rate (HDR) Prostate Brachytherapy Using a Flat Panel Imager: Initial Clinical Experience

    SciTech Connect (OSTI)

    Franich, R; Smith, R; Millar, J; Haworth, A; Taylor, M; McDermott, L

    2014-06-15

    Purpose: We report our initial clinical experience with a novel position-sensitive source-tracking system based on a flat panel imager. The system has been trialled with 4 prostate HDR brachytherapy patients (8 treatment fractions) in this initial study. Methods: The flat panel imaging system was mounted under a customised carbon fibre couch top assembly (Figure 1). Three gold fiducial markers were implanted into the prostate of each patient at the time of catheter placement. X-ray dwell position markers were inserted into three catheters and a radiograph acquired to locate the implant relative to the imaging device. During treatment, as the HDR source dwells were delivered, images were acquired and processed to determine the position of the source in the patient. Source positions measured by the imaging device were compared to the treatment plan for verification of treatment delivery. Results: Measured dwell positions provided verification of relative dwell spacing within and between catheters, in the coronal plane. Measurements were typically within 2.0mm (0.2mm 3.3mm, s.d. 0.8mm) of the planned positions over 60 dwells (Figure 2). Discrimination between larger dwell intervals and catheter differentiation were clear. This confirms important delivery attributes such as correct transfer tube connection, source step size, relative catheter positions and therefore overall correct plan selection and delivery. The fiducial markers, visible on the radiograph, provided verification of treatment delivery to the correct anatomical location. The absolute position of the dwells was determined by comparing the measured dwell positions with the x-ray markers from the radiograph, validating the programmed treatment indexer length. The total impact on procedure time was less than 5 minutes. Conclusion: The novel, noninvasive HDR brachytherapy treatment verification system was used clinically with minor impact on workflow. The system allows verification of correct treatment delivery, free of most potential human related errors identified in ICRP 97. This research is supported by funding from the Australian Government Department of Health through Cancer Australia grant no. 616614.

  12. LARGE-SCALE CORONAL PROPAGATING FRONTS IN SOLAR ERUPTIONS AS OBSERVED BY THE ATMOSPHERIC IMAGING ASSEMBLY ON BOARD THE SOLAR DYNAMICS OBSERVATORYAN ENSEMBLE STUDY

    SciTech Connect (OSTI)

    Nitta, Nariaki V.; Schrijver, Carolus J.; Title, Alan M.; Liu, Wei

    2013-10-10

    This paper presents a study of a large sample of global disturbances in the solar corona with characteristic propagating fronts as intensity enhancement, similar to the phenomena that have often been referred to as Extreme Ultraviolet Imaging Telescope (EIT) waves or extreme-ultraviolet (EUV) waves. Now EUV images obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory provide a significantly improved view of these large-scale coronal propagating fronts (LCPFs). Between 2010 April and 2013 January, a total of 171 LCPFs have been identified through visual inspection of AIA images in the 193 channel. Here we focus on the 138 LCPFs that are seen to propagate across the solar disk, first studying how they are associated with flares, coronal mass ejections (CMEs), and type II radio bursts. We measure the speed of the LCPF in various directions until it is clearly altered by active regions or coronal holes. The highest speed is extracted for each LCPF. It is often considerably higher than EIT waves. We do not find a pattern where faster LCPFs decelerate and slow LCPFs accelerate. Furthermore, the speeds are not strongly correlated with the flare intensity or CME magnitude, nor do they show an association with type II bursts. We do not find a good correlation either between the speeds of LCPFs and CMEs in a subset of 86 LCPFs observed by one or both of the Solar and Terrestrial Relations Observatory spacecraft as limb events.

  13. Measurement of Electron Density near Plasma Grid of Large-scaled Negative Ion Source by Means of Millimeter-Wave Interferometer

    SciTech Connect (OSTI)

    Nagaoka, K.; Tokuzawa, T.; Tsumori, K.; Nakano, H.; Ito, Y.; Osakabe, M.; Ikeda, K.; Kisaki, M.; Shibuya, M.; Sato, M.; Komada, S.; Kondo, T.; Hayashi, H.; Asano, E.; Takeiri, Y.; Kaneko, O.

    2011-09-26

    A millimeter-wave interferometer with the frequency of 39 GHz ({lambda} 7.7 mm) was newly installed to a large-scaled negative ion source. The measurable line-integrated electron density (n{sub e}l) is from 2x10{sup 16} to 7x10{sup 18} m{sup -2}, where n{sub e} and l represent an electron density and the plasma length along the millimeter-wave path, respectively. Our interest in this study is behavior of negative ions and reduction of electron density in the beam extraction region near the plasma grid. The first results show the possibility of the electron density measurement by the millimeter-wave interferometer in this region. The line-averaged electron density increases proportional to the arc power under the condition without cesium seeding. The significant decrease of the electron density and significant increase of the negative ion density were observed just after the cesium seeding. The electron density measured with the interferometer agrees well with that observed with a Langmuir probe. The very high negative ion ratio of n{sub H-}/(n{sub e}+n{sub H-}) = 0.85 was achieved within 400 min. after the cesium seeding.

  14. Sensitivity analysis for joint inversion of ground-penetratingradar and thermal-hydrological data from a large-scale underground heatertest

    SciTech Connect (OSTI)

    Kowalsky, M.B.; Birkholzer, J.; Peterson, J.; Finsterle, S.; Mukhopadhya y, S.; Tsang, Y.T.

    2007-06-25

    We describe a joint inversion approach that combinesgeophysical and thermal-hydrological data for the estimation of (1)thermal-hydrological parameters (such as permeability, porosity, thermalconductivity, and parameters of the capillary pressure and relativepermeability functions) that are necessary for predicting the flow offluids and heat in fractured porous media, and (2) parameters of thepetrophysical function that relates water saturation, porosity andtemperature to the dielectric constant. The approach incorporates thecoupled simulation of nonisothermal multiphase fluid flow andground-penetrating radar (GPR) travel times within an optimizationframework. We discuss application of the approach to a large-scale insitu heater test which was conducted at Yucca Mountain, Nevada, to betterunderstand the coupled thermal, hydrological, mechanical, and chemicalprocesses that may occur in the fractured rock mass around a geologicrepository for high-level radioactive waste. We provide a description ofthe time-lapse geophysical data (i.e., cross-borehole ground-penetratingradar) and thermal-hydrological data (i.e., temperature and water contentdata) collected before and during the four-year heating phase of thetest, and analyze the sensitivity of the most relevantthermal-hydrological and petrophysical parameters to the available data.To demonstrate feasibility of the approach, and as a first step towardcomprehensive inversion of the heater test data, we apply the approach toestimate one parameter, the permeability of the rock matrix.

  15. X6.9-CLASS FLARE-INDUCED VERTICAL KINK OSCILLATIONS IN A LARGE-SCALE PLASMA CURTAIN AS OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY/ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect (OSTI)

    Srivastava, A. K. [Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital 263 002 (India); Goossens, M. [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven (Belgium)

    2013-11-01

    We present rare observational evidence of vertical kink oscillations in a laminar and diffused large-scale plasma curtain as observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The X6.9-class flare in active region 11263 on 2011 August 9 induces a global large-scale disturbance that propagates in a narrow lane above the plasma curtain and creates a low density region that appears as a dimming in the observational image data. This large-scale propagating disturbance acts as a non-periodic driver that interacts asymmetrically and obliquely with the top of the plasma curtain and triggers the observed oscillations. In the deeper layers of the curtain, we find evidence of vertical kink oscillations with two periods (795 s and 530 s). On the magnetic surface of the curtain where the density is inhomogeneous due to coronal dimming, non-decaying vertical oscillations are also observed (period ? 763-896 s). We infer that the global large-scale disturbance triggers vertical kink oscillations in the deeper layers as well as on the surface of the large-scale plasma curtain. The properties of the excited waves strongly depend on the local plasma and magnetic field conditions.

  16. United States and International Partners Initial ITER Agreement |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy International Partners Initial ITER Agreement United States and International Partners Initial ITER Agreement May 24, 2006 - 10:48am Addthis Paves the Way for Large-Scale, Clean Fusion Energy Project BRUSSELS, BELGIUM - Representing the United States, Dr. Raymond L. Orbach, Director of the U.S. Department of Energy's (DOE) Office of Science, joined counterparts from China, the European Union, India, Japan, the Republic of Korea, and the Russian Federation today to

  17. Heavy Ion Fusion Science Virtual National Laboratory1st Quarter FY08 Milestone Report: Report Initial Work on Developing Plasma Modeling Capability in WARP for NDCX ExperimentsReport Initial work on developing Plasma Modeling Capability in WARP for NDCX Experiments

    SciTech Connect (OSTI)

    Friedman, A.; Cohen, R.H.; Grote, D.P.; Vay, J.-L.

    2007-12-10

    This milestone has been accomplished. The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) has developed and implemented an initial beam-in-plasma implicit modeling capability in Warp; has carried out tests validating the behavior of the models employed; has compared the results of electrostatic and electromagnetic models when applied to beam expansion in an NDCX-I relevant regime; has compared Warp and LSP results on a problem relevant to NDCX-I; has modeled wave excitation by a rigid beam propagating through plasma; and has implemented and begun testing a more advanced implicit method that correctly captures electron drift motion even when timesteps too large to resolve the electron gyro-period are employed. The HIFS-VNL is well on its way toward having a state-of-the-art source-to-target simulation capability that will enable more effective support of ongoing experiments in the NDCX series and allow more confident planning for future ones.

  18. Assembly of 500,000 inter-specific catfish expressed sequence tags and large scale gene-associated marker development for whole genome association studies

    SciTech Connect (OSTI)

    Catfish Genome Consortium; Wang, Shaolin; Peatman, Eric; Abernathy, Jason; Waldbieser, Geoff; Lindquist, Erika; Richardson, Paul; Lucas, Susan; Wang, Mei; Li, Ping; Thimmapuram, Jyothi; Liu, Lei; Vullaganti, Deepika; Kucuktas, Huseyin; Murdock, Christopher; Small, Brian C; Wilson, Melanie; Liu, Hong; Jiang, Yanliang; Lee, Yoona; Chen, Fei; Lu, Jianguo; Wang, Wenqi; Xu, Peng; Somridhivej, Benjaporn; Baoprasertkul, Puttharat; Quilang, Jonas; Sha, Zhenxia; Bao, Baolong; Wang, Yaping; Wang, Qun; Takano, Tomokazu; Nandi, Samiran; Liu, Shikai; Wong, Lilian; Kaltenboeck, Ludmilla; Quiniou, Sylvie; Bengten, Eva; Miller, Norman; Trant, John; Rokhsar, Daniel; Liu, Zhanjiang

    2010-03-23

    Background-Through the Community Sequencing Program, a catfish EST sequencing project was carried out through a collaboration between the catfish research community and the Department of Energy's Joint Genome Institute. Prior to this project, only a limited EST resource from catfish was available for the purpose of SNP identification. Results-A total of 438,321 quality ESTs were generated from 8 channel catfish (Ictalurus punctatus) and 4 blue catfish (Ictalurus furcatus) libraries, bringing the number of catfish ESTs to nearly 500,000. Assembly of all catfish ESTs resulted in 45,306 contigs and 66,272 singletons. Over 35percent of the unique sequences had significant similarities to known genes, allowing the identification of 14,776 unique genes in catfish. Over 300,000 putative SNPs have been identified, of which approximately 48,000 are high-quality SNPs identified from contigs with at least four sequences and the minor allele presence of at least two sequences in the contig. The EST resource should be valuable for identification of microsatellites, genome annotation, large-scale expression analysis, and comparative genome analysis. Conclusions-This project generated a large EST resource for catfish that captured the majority of the catfish transcriptome. The parallel analysis of ESTs from two closely related Ictalurid catfishes should also provide powerful means for the evaluation of ancient and recent gene duplications, and for the development of high-density microarrays in catfish. The inter- and intra-specific SNPs identified from all catfish EST dataset assembly will greatly benefit the catfish introgression breeding program and whole genome association studies.

  19. Programmed Nanomaterial Assemblies in Large Scales: Applications of Synthetic and Genetically- Engineered Peptides to Bridge Nano-Assemblies and Macro-Assemblies

    SciTech Connect (OSTI)

    Matsui, Hiroshi

    2014-09-09

    Work is reported in these areas: Large-scale & reconfigurable 3D structures of precise nanoparticle assemblies in self-assembled collagen peptide grids; Binary QD-Au NP 3D superlattices assembled with collagen-like peptides and energy transfer between QD and Au NP in 3D peptide frameworks; Catalytic peptides discovered by new hydrogel-based combinatorial phage display approach and their enzyme-mimicking 2D assembly; New autonomous motors of metal-organic frameworks (MOFs) powered by reorganization of self-assembled peptides at interfaces; Biomimetic assembly of proteins into microcapsules on oil-in-water droplets with structural reinforcement via biomolecular recognition-based cross-linking of surface peptides; and Biomimetic fabrication of strong freestanding genetically-engineered collagen peptide films reinforced by quantum dot joints. We gained the broad knowledge about biomimetic material assembly from nanoscale to microscale ranges by coassembling peptides and NPs via biomolecular recognition. We discovered: Genetically-engineered collagen-like peptides can be self-assembled with Au NPs to generate 3D superlattices in large volumes (> ?m{sup 3}); The assembly of the 3D peptide-Au NP superstructures is dynamic and the interparticle distance changes with assembly time as the reconfiguration of structure is triggered by pH change; QDs/NPs can be assembled with the peptide frameworks to generate 3D superlattices and these QDs/NPs can be electronically coupled for the efficient energy transfer; The controlled assembly of catalytic peptides mimicking the catalytic pocket of enzymes can catalyze chemical reactions with high selectivity; and, For the bacteria-mimicking swimmer fabrication, peptide-MOF superlattices can power translational and propellant motions by the reconfiguration of peptide assembly at the MOF-liquid interface.

  20. Low-risk and cost-effective prior savings estimates for large-scale energy conservation projects in housing: Learning from the Fort Polk GHP project

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J.; Thornton, J.W.

    1997-08-01

    Many opportunities exist for large-scale energy conservation projects in housing. Energy savings performance contracting (ESPC) is now receiving greater attention, as a means to implement such projects. This paper proposes an improved method for prior (to construction) savings estimates for these projects. The proposed approach to prior estimates is verified against data from Fort Polk, LA. In the course of evaluating the ESPC at Fort Polk, the authors have collected energy use data which allowed them to develop calibrated engineering models which accurately predict pre-retrofit energy consumption. They believe that such calibrated models could be used to provide much more accurate estimates of energy savings in retrofit projects. The improved savings estimating approach described here is based on an engineering model calibrated to field-collected data from the pre-retrofit period. A dynamic model of pre-retrofit energy use was developed for all housing and non-housing loads on a complete electrical feeder at Fort Polk. The model included the heat transfer characteristics of the buildings, the pre-retrofit air source heat pump, a hot water consumption model and a profile for electrical use by lights and other appliances. Energy consumption for all 200 apartments was totaled, and by adjusting thermostat setpoints and outdoor air infiltration parameters, the models were matched to field-collected energy consumption data for the entire feeder. The energy conservation measures were then implemented in the calibrated model: the air source heat pumps were replaced by geothermal heat pumps with desuperheaters; hot water loads were reduced to account for the low-flow shower heads; and lighting loads were reduced to account for fixture delamping and replacement with compact fluorescent lights. The analysis of pre- and post-retrofit data indicates that the retrofits have saved 30.3% of pre-retrofit electrical energy consumption on the feeder modeled in this paper.

  1. Performance of powder-filled evacuated panel insulation in a manufactured home roof cavity: Tests in the Large Scale Climate Simulator

    SciTech Connect (OSTI)

    Petrie, T.W.; Kosny, J.; Childs, P.W.

    1996-03-01

    A full-scale section of half the top of a single-wide manufactured home has been studied in the Large Scale Climate Simulator (LSCS) at the Oak Ridge National Laboratory. A small roof cavity with little room for insulation at the eaves is often the case with single-wide units and limits practical ways to improve thermal performance. The purpose of the current tests was to obtain steady-state performance data for the roof cavity of the manufactured home test section when the roof cavity was insulated with fiberglass batts, blown-in rock wool insulation or combinations of these insulations and powder-filled evacuated panel (PEP) insulation. Four insulation configurations were tested: (A) a configuration with two layers of nominal R{sub US}-7 h {center_dot} ft{sup 2} {center_dot} F/BTU (R{sub SI}-1.2 m{sup 2} {center_dot} K/W) fiberglass batts; (B) a layer of PEPs and one layer of the fiberglass batts; (C) four layers of the fiberglass batts; and (D) an average 4.1 in. (10.4 cm) thick layer of blown-in rock wool at an average density of 2.4 lb/ft{sup 3} (38 kg/m{sup 3}). Effects of additional sheathing were determined for Configurations B and C. With Configuration D over the ceiling, two layers of expanded polystyrene (EPS) boards, each about the same thickness as the PEPs, were installed over the trusses instead of the roof. Aluminum foils facing the attic and over the top layer of EPS were added. The top layer of EPS was then replaced by PEPs.

  2. Large-Scale Testing of Effects of Anti-Foam Agent on Gas Holdup in Process Vessels in the Hanford Waste Treatment Plant - 8280

    SciTech Connect (OSTI)

    Mahoney, Lenna A.; Alzheimer, James M.; Arm, Stuart T.; Guzman-Leong, Consuelo E.; Jagoda, Lynette K.; Stewart, Charles W.; Wells, Beric E.; Yokuda, Satoru T.

    2008-06-03

    The Hanford Waste Treatment Plant (WTP) will vitrify the radioactive wastes stored in underground tanks. These wastes generate and retain hydrogen and other flammable gases that create safety concerns for the vitrification process tanks in the WTP. An anti-foam agent (AFA) will be added to the WTP process streams. Prior testing in a bubble column and a small-scale impeller-mixed vessel indicated that gas holdup in a high-level waste chemical simulant with AFA was up to 10 times that in clay simulant without AFA. This raised a concern that major modifications to the WTP design or qualification of an alternative AFA might be required to satisfy plant safety criteria. However, because the mixing and gas generation mechanisms in the small-scale tests differed from those expected in WTP process vessels, additional tests were performed in a large-scale prototypic mixing system with in situ gas generation. This paper presents the results of this test program. The tests were conducted at Pacific Northwest National Laboratory in a -scale model of the lag storage process vessel using pulse jet mixers and air spargers. Holdup and release of gas bubbles generated by hydrogen peroxide decomposition were evaluated in waste simulants containing an AFA over a range of Bingham yield stresses and gas gen geration rates. Results from the -scale test stand showed that, contrary to the small-scale impeller-mixed tests, gas holdup in clay without AFA is comparable to that in the chemical waste simulant with AFA. The test stand, simulants, scaling and data-analysis methods, and results are described in relation to previous tests and anticipated WTP operating conditions.

  3. Large-Scale Testing of Effects of Anti-Foam Agent on Gas Holdup in Process Vessels in the Hanford Waste Treatment Plant

    SciTech Connect (OSTI)

    Mahoney, L.A.; Alzheimer, J.M.; Arm, S.T.; Guzman-Leong, C.E.; Jagoda, L.K.; Stewart, C.W.; Wells, B.E.; Yokuda, S.T. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2008-07-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) will vitrify the radioactive wastes stored in underground tanks. These wastes generate and retain hydrogen and other flammable gases that create safety concerns for the vitrification process tanks in the WTP. An anti-foam agent (AFA) will be added to the WTP process streams. Previous testing in a bubble column and a small-scale impeller-mixed vessel indicated that gas holdup in a high-level waste chemical simulant with AFA was as much as 10 times higher than in clay simulant without AFA. This raised a concern that major modifications to the WTP design or qualification of an alternative AFA might be required to satisfy plant safety criteria. However, because the mixing and gas generation mechanisms in the small-scale tests differed from those expected in WTP process vessels, additional tests were performed in a large-scale prototypic mixing system with in situ gas generation. This paper presents the results of this test program. The tests were conducted at Pacific Northwest National Laboratory in a 1/4-scale model of the lag storage process vessel using pulse jet mixers and air spargers. Holdup and release of gas bubbles generated by hydrogen peroxide decomposition were evaluated in waste simulants containing an AFA over a range of Bingham yield stresses and gas generation rates. Results from the 1/4-scale test stand showed that, contrary to the small-scale impeller-mixed tests, holdup in the chemical waste simulant with AFA was not so greatly increased compared to gas holdup in clay without AFA. The test stand, simulants, scaling and data-analysis methods, and results are described in relation to previous tests and anticipated WTP operating conditions. (authors)

  4. 2010 Initial Allocation Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 83851 c855 60,000 15,000 Large-Scale Learning and the ... 5,000 Computational Resources for Univ m1046 the FIRST ... Carolina m230 Analysis of Hadron Structure State and ...

  5. Petascale Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Petascale Initiative Alice Koniges (third from left) led the Computational Science and ... (OSF), NERSC's operations center and was led by principal investigator Alice Koniges. ...

  6. Projects & Initiatives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expand Finance & Rates Involvement & Outreach Expand Involvement & Outreach Doing Business Expand Doing Business Skip navigation links Initiatives Columbia River Treaty Non...

  7. Low-Risk and Cost-Effective Prior Savings Estimates for Large-Scale Energy Conservation Projects in Housing: Learning from the Fort Polk GHP Project

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick; Thornton, Jeff W.

    1997-08-01

    Many opportunities exist for large-scale energy conservation projects in housing: military housing, federally-subsidized low-income housing, and planned communities (condominiums, townhomes, senior centers) to name a few. Energy savings performance contracting (ESPC) is now receiving greater attention, as a means to implement such projects. This paper proposes an improved method for prior (to construction) savings estimates for these projects. More accurate prior estimates reduce project risk, decrease financing costs, and help avoid post-construction legal disputes over performance contract baseline adjustments. The proposed approach to prior estimates is verified against data from Fort Polk, LA. In the course of evaluating the ESPC at Fort Polk, Louisiana, we have collected energy use data - both at the electrical feeder level and at the level of individual residences - which allowed us to develop calibrated engineering models which accurately predict pre-retrofit energy consumption. We believe that such calibrated models could be used to provide much more accurate estimates of energy savings in retrofit projects, particularly in cases where the energy consumption of large populations of housing can be captured on one or a few meters. The improved savings estimating approach described here is based on an engineering model calibrated to field-collected data from the pre-retrofit period. A dynamic model of pre-retrofit energy use was developed for all housing and non-housing loads on a complete electrical feeder at Fort Polk. The feeder serves 46 buildings containing a total of 200 individual apartments. Of the 46 buildings, there are three unique types, and among these types the only difference is compass orientation. The model included the heat transfer characteristics of the buildings, the pre-retrofit air source heat pump, a hot water consumption model and a profile for electrical use by lights and other appliances. Energy consumption for all 200 apartments was totaled, and by adjusting thermostat setpoints and outdoor air infiltration parameters, the models were matched to field-collected energy consumption data for the entire feeder. The energy conservation measures were then implemented in the calibrated model: the air source heat pumps were replaced by geothermal heat pumps (GHPs) with desuperheaters; hot water loads were reduced to account for the low-flow shower heads; and lighting loads were reduced to account for fixture delamping and replacement with compact fluorescent lights (CFLs). Our analysis of pre- and post-retrofit data (Shonder and Hughes, 1997) indicates that the retrofits have saved 30.3% of pre-retrofit electrical energy consumption on the feeder modeled in this paper. Using the method outlined, we have been able to predict this savings within 0.1% of its measured value, using only pre-construction energy consumption data, and data from one pilot test site. It is well-known that predictions of savings from energy conservation programs are often optimistic, especially in the case of residential retrofits. Fels and keating (1993) cite several examples of programs which achieved as little as 20% of the predicted energy savings. Factors which influence the sometimes large discrepancies between actual and predicted savings include changes in occupancy, take-back effects (in which more efficient system operation leads occupants to choose higher levels of comfort), and changes in base energy use (e.g. through purchase of additional appliances such as washing machines and clothes dryers). An even larger factor, perhaps, is the inaccuracy inherent in the engineering models (BLAST, DOE-2, etc.) commonly used to estimate building energy consumption, if these models are not first calibrated to site-monitored data. For example, prior estimates of base-wide savings from the Fort Polk ESPC were on the order of 40% of pre-retrofit electrical use; our analysis has shown the true savings for the entire project (which includes 16 separate electrical feeders) to be about 32%. It should be noted that the retrofits ca

  8. SCB initiator

    DOE Patents [OSTI]

    Bickes Jr., Robert W.; Renlund, Anita M.; Stanton, Philip L.

    1994-11-01

    A detonator for high explosives initiated by mechanical impact includes a cylindrical barrel, a layer of flyer material mechanically covering the barrel at one end, and a semiconductor bridge ignitor including a pair of electrically conductive pads connected by a semiconductor bridge. The bridge is in operational contact with the layer, whereby ignition of said bridge forces a portion of the layer through the barrel to detonate the explosive. Input means are provided for igniting the semiconductor bridge ignitor.

  9. SCB initiator

    DOE Patents [OSTI]

    Bickes, Jr., Robert W. (Albuquerque, NM); Renlund, Anita M. (Albuquerque, NM); Stanton, Philip L. (Albuquerque, NM)

    1994-01-01

    A detonator for high explosives initiated by mechanical impact includes a cylindrical barrel, a layer of flyer material mechanically covering the barrel at one end, and a semiconductor bridge ignitor including a pair of electrically conductive pads connected by a semiconductor bridge. The bridge is in operational contact with the layer, whereby ignition of said bridge forces a portion of the layer through the barrel to detonate the explosive. Input means are provided for igniting the semiconductor bridge ignitor.

  10. SU-E-CAMPUS-T-06: Initial Experience of Patient-Specific QA Using a Pencil Beam Scanning Proton Therapy System

    SciTech Connect (OSTI)

    Piskulich, F; Zhang, Y; Perles, L; Mascia, A; Lepage, R; Giebeler, A; Dong, L

    2014-06-15

    Purpose: To illustrate patient QA results for the first 10 patients treated at Scripps Proton Center by comparing point dose measurement using an ion chamber and in-house developed secondary MU program, and the measurement of 2D dose distribution using an ion chamber array. Methods: At the time of writing, 10 patient plans were approved for treatment using Varian ProBeam pencil beam scanning system and Eclipse treatment planning software. We used the IBA CC04 0.04 cm3 ion chamber and PTW Unidos E electrometer for point dose measurement in a small water tank (Sun Nuclear 1D scanner). We developed independent MU check software based on measured pencil beam dose profiles for various energies. We used PTW Octavius 729 XDR array to evaluate 2D planar dose distribution. The 3D gamma at 3%/3 mm local dose was used to compare a 3D calculated dose plan with a 2D measured dose distribution using PTW Verisoft software. All fields were exported to a verification phantom plan and delivered at 0 degrees for simplicity. Results: Comparisons between the CC04 ion chamber measurement and calculated dose agree well within 1%. The PTW Octavius 729 XDR array exhibited some dose rate dependence in high dose rate pencil beam delivery. Nevertheless, the results, used as a relative measurement, passed the gamma criteria of 3%/3mm for greater than 90% of area in all patient fields. Visual inspection showed good agreement between ion chamber dose profile and the calculated plan. The in-house secondary check for MU agreed very well with the plan dose and measurement. The results will be updated with more patients treated. Conclusion: The initial patient specific QA results are encouraging for a new pencil beam scanning only proton therapy system.

  11. Sunshot Initiative High Penetration Solar Portal

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE SunShot Initiative is a collaborative national initiative to make solar energy cost-competitive with other forms of energy by the end of the decade. Reducing the installed cost of solar energy systems by about 75% will drive widespread large-scale adoption of this renewable energy and restore U.S. leadership in the global clean energy race. The High Penetration Solar Portal was created as a resource to aggregate the most relevant and timely information related to high penetration solar scenarios and integrating solar into the grid. The site is designed so that utilities, grant awardees, regulators, researchers, and other solar professionals can easily share data, case studies, lessons learned, and demonstration project findings. [from https://solarhighpen.energy.gov/about_the_high_penetration_solar_portal

  12. Simulations of the quart (101-bar1)/water interface: A comparison of classical force fields, ab initi molecular dynamics, and x-ray reflectivity experiments.

    SciTech Connect (OSTI)

    Skelton, Adam; Fenter, Paul; Kubicki, James D.; Wesolowski, David J; Cummings, Peter T

    2011-01-01

    Classical molecular dynamics (CMD) simulations of the (1011) surface of quartz interacting with bulk liquid water are performed using three different classical force fields, Lopes et al., ClayFF, and CHARMM water contact angle (CWCA), and compared to ab initio molecular dynamics (AIMD) and X-ray reflectivity (XR) results. The axial densities of the water and surface atoms normal to the surface are calculated and compared to previous XR experiments. Favorable agreement is shown for all the force fields with respect to the position of the water atoms. Analyses such as the radial distribution functions between water and hydroxyl atoms and the average cosine of the angle between the water dipole vector and the normal of the surface are also calculated for each force field. Significant differences are found between the different force fields from such analyses, indicating differing descriptions of the structured water in the near vicinity of the surface. AIMD simulations are also performed to obtain the water and hydroxyl structure for comparison among the predictions of the three classical force fields to better understand which force field is most accurate. It is shown that ClayFF exhibits the best agreement with the AIMD simulations for water hydroxyl radial distribution functions, suggesting that ClayFF treats the hydrogen bonding more accurately.

  13. Method and infrastructure for cycle-reproducible simulation on large scale digital circuits on a coordinated set of field-programmable gate arrays (FPGAs)

    DOE Patents [OSTI]

    Asaad, Sameh W; Bellofatto, Ralph E; Brezzo, Bernard; Haymes, Charles L; Kapur, Mohit; Parker, Benjamin D; Roewer, Thomas; Tierno, Jose A

    2014-01-28

    A plurality of target field programmable gate arrays are interconnected in accordance with a connection topology and map portions of a target system. A control module is coupled to the plurality of target field programmable gate arrays. A balanced clock distribution network is configured to distribute a reference clock signal, and a balanced reset distribution network is coupled to the control module and configured to distribute a reset signal to the plurality of target field programmable gate arrays. The control module and the balanced reset distribution network are cooperatively configured to initiate and control a simulation of the target system with the plurality of target field programmable gate arrays. A plurality of local clock control state machines reside in the target field programmable gate arrays. The local clock state machines are configured to generate a set of synchronized free-running and stoppable clocks to maintain cycle-accurate and cycle-reproducible execution of the simulation of the target system. A method is also provided.

  14. Advection, Moistening, and Shallow-to-deep Convection Transitions During the Initiation and Propagation of Madden-Julian Oscillation

    SciTech Connect (OSTI)

    Hagos, Samson M.; Feng, Zhe; Landu, Kiranmayi; Long, Charles N.

    2014-09-11

    Using observations from the 2011 AMIE/DYNAMO field campaign over the Indian Ocean and a high-resolution regional model simulation, the processes that lead to the rapid shallow-to-deep convection transitions associated with the initiation and eastward propagation of the Madden-Julian Oscillation (MJO) are examined. By tracking the evolution of the depth of several thousand individual model simulated precipitation features, the role of and the processes that control the observed midtropospheric moisture buildup ahead of the detection of deep convection are quantified at large and convection scales. The frequency of shallow-to-deep convection transitions is found to be sensitive to this midlevel moisture and large-scale uplift. This uplift along with the decline of large-scale drying by equator-ward advection causes the moisture buildup leading to the initiation of the MJO. Convection scale moisture variability and uplift, and large-scale zonal advection play secondary roles.

  15. Grid Application for the BaBar Experiment

    SciTech Connect (OSTI)

    Khan, A.; Wilson, F.; /Rutherford

    2006-08-14

    This paper discusses the use of e-Science Grid in providing computational resources for modern international High Energy Physics (HEP) experiments. We investigate the suitability of the current generation of Grid software to provide the necessary resources to perform large-scale simulation of the experiment and analysis of data in the context of multinational collaboration.

  16. Systems Integration (Fact Sheet), SunShot Initiative, U.S. Department of

    Energy Savers [EERE]

    Energy (DOE) | Department of Energy Systems Integration (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE) Systems Integration (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE) The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration,

  17. Microdrill Initiative - Initial Market Evaluation

    SciTech Connect (OSTI)

    Spears & Associates, Inc

    2003-07-01

    The U.S. Department of Energy (DOE) is launching a major research and development initiative to create a small, fast, inexpensive and environmentally friendly rig for drilling 5000 feet boreholes to investigate potential oil and gas reservoirs. DOE wishes to get input from petroleum industry operators, service companies and equipment suppliers on the operation and application of this coiled-tubing-based drilling unit. To that end, DOE has asked Spears & Associates, Inc. (SAI) to prepare a special state-of-the-market report and assist during a DOE-sponsored project-scoping workshop in Albuquerque near the end of April 2003. The scope of the project is four-fold: (1) Evaluate the history, status and future of demand for very small bore-hole drilling; (2) Measure the market for coiled tubing drilling and describe the state-of-the-art; (3) Identify companies and individuals who should have an interest in micro drilling and invite them to the DOE workshop; and (4) Participate in 3 concurrent workshop sessions, record and evaluate participant comments and report workshop conclusions.

  18. Percutaneous Cryotherapy of Vascular Malformation: Initial Experience

    SciTech Connect (OSTI)

    Cornelis, F.; Neuville, A.; Labreze, C.; Kind, M.; Bui, B.; Midy, D.; Palussiere, J.; Grenier, N.

    2013-06-15

    The present report describes a case of percutaneous cryotherapy in a 36-year-old woman with a large and painful pectoral venous malformation. Cryoablation was performed in a single session for this 9-cm mass with 24 h hospitalisation. At 2- and 6-month follow-up, the pain had completely disappeared, and magnetic resonance imaging demonstrated a significant decrease in size. Percutaneous cryoablation shows promise as a feasible and apparently safe method for local control in patients with symptomatic venous vascular malformations.

  19. Using Performance Tools to Support Experiments in HPC Resilience

    SciTech Connect (OSTI)

    Naughton, III, Thomas J; Boehm, Swen; Engelmann, Christian; Vallee, Geoffroy R

    2014-01-01

    The high performance computing (HPC) community is working to address fault tolerance and resilience concerns for current and future large scale computing platforms. This is driving enhancements in the programming environ- ments, specifically research on enhancing message passing libraries to support fault tolerant computing capabilities. The community has also recognized that tools for resilience experimentation are greatly lacking. However, we argue that there are several parallels between performance tools and resilience tools . As such, we believe the rich set of HPC performance-focused tools can be extended (repurposed) to benefit the resilience community. In this paper, we describe the initial motivation to leverage standard HPC per- formance analysis techniques to aid in developing diagnostic tools to assist fault tolerance experiments for HPC applications. These diagnosis procedures help to provide context for the system when the errors (failures) occurred. We describe our initial work in leveraging an MPI performance trace tool to assist in provid- ing global context during fault injection experiments. Such tools will assist the HPC resilience community as they extend existing and new application codes to support fault tolerances.

  20. Large-scale lateral nanowire arrays nanogenerators

    DOE Patents [OSTI]

    Wang, Zhong L; Xu, Chen; Qin, Yong; Zhu, Guang; Yang, Rusen; Hu, Youfan; Zhang, Yan

    2014-01-07

    In a method of making a generating device, a plurality of spaced apart elongated seen members are deposited onto a surface of a flexible non-conductive substrate. An elongated conductive layer is applied to a top surface and a first side of each seed member, thereby leaving an exposed second side opposite the first side. A plurality of elongated piezoelectric nanostructures is grown laterally from the second side of each seed layer. A second conductive material is deposited onto the substrate adjacent each elongated first conductive layer so as to be soupled the distal end of each of the plurality of elongated piezoelectric nanostructures. The second conductive material is selected so as to form a Schottky barrier between the second conductive material and the distal end of each of the plurality of elongated piezoelectric nanostructures and so as to form an electrical contact with the first conductive layer.

  1. Large-Scale Wind Training Program

    SciTech Connect (OSTI)

    Porter, Richard L.

    2013-07-01

    Project objective is to develop a credit-bearing wind technician program and a non-credit safety training program, train faculty, and purchase/install large wind training equipment.

  2. Superconductivity for Large Scale Wind Turbines

    SciTech Connect (OSTI)

    R. Fair; W. Stautner; M. Douglass; R. Rajput-Ghoshal; M. Moscinski; P. Riley; D. Wagner; J. Kim; S. Hou; F. Lopez; K. Haran; J. Bray; T. Laskaris; J. Rochford; R. Duckworth

    2012-10-12

    A conceptual design has been completed for a 10MW superconducting direct drive wind turbine generator employing low temperature superconductors for the field winding. Key technology building blocks from the GE Wind and GE Healthcare businesses have been transferred across to the design of this concept machine. Wherever possible, conventional technology and production techniques have been used in order to support the case for commercialization of such a machine. Appendices A and B provide further details of the layout of the machine and the complete specification table for the concept design. Phase 1 of the program has allowed us to understand the trade-offs between the various sub-systems of such a generator and its integration with a wind turbine. A Failure Modes and Effects Analysis (FMEA) and a Technology Readiness Level (TRL) analysis have been completed resulting in the identification of high risk components within the design. The design has been analyzed from a commercial and economic point of view and Cost of Energy (COE) calculations have been carried out with the potential to reduce COE by up to 18% when compared with a permanent magnet direct drive 5MW baseline machine, resulting in a potential COE of 0.075 $/kWh. Finally, a top-level commercialization plan has been proposed to enable this technology to be transitioned to full volume production. The main body of this report will present the design processes employed and the main findings and conclusions.

  3. Large-Scale Liquid Hydrogen Handling Equipment

    Broader source: Energy.gov [DOE]

    Presentation by Jerry Gillette of Argonne National Laboratory at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007

  4. Large-scale quasi-geostrophic magnetohydrodynamics

    SciTech Connect (OSTI)

    Balk, Alexander M.

    2014-12-01

    We consider the ideal magnetohydrodynamics (MHD) of a shallow fluid layer on a rapidly rotating planet or star. The presence of a background toroidal magnetic field is assumed, and the 'shallow water' beta-plane approximation is used. We derive a single equation for the slow large length scale dynamics. The range of validity of this equation fits the MHD of the lighter fluid at the top of Earth's outer core. The form of this equation is similar to the quasi-geostrophic (Q-G) equation (for usual ocean or atmosphere), but the parameters are essentially different. Our equation also implies the inverse cascade; but contrary to the usual Q-G situation, the energy cascades to smaller length scales, while the enstrophy cascades to the larger scales. We find the Kolmogorov-type spectrum for the inverse cascade. The spectrum indicates the energy accumulation in larger scales. In addition to the energy and enstrophy, the obtained equation possesses an extra (adiabatic-type) invariant. Its presence implies energy accumulation in the 30° sector around zonal direction. With some special energy input, the extra invariant can lead to the accumulation of energy in zonal magnetic field; this happens if the input of the extra invariant is small, while the energy input is considerable.

  5. Large-Scale Computational Fluid Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Fluid Dynamics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  6. Large Scale Evaluation fo Nickel Aluminide Rolls

    SciTech Connect (OSTI)

    2005-09-01

    This completed project was a joint effort between Oak Ridge National Laboratory and Bethlehem Steel (now Mittal Steel) to demonstrate the effectiveness of using nickel aluminide intermetallic alloy rolls as part of an updated, energy-efficient, commercial annealing furnace system.

  7. Avanced Large-scale Integrated Computational Environment

    Energy Science and Technology Software Center (OSTI)

    1998-10-27

    The ALICE Memory Snooper is a software applications programming interface (API) and library for use in implementing computational steering systems. It allows distributed memory parallel programs to publish variables in the computation that may be accessed over the Internet. In this way, users can examine and even change the variables in their running application remotely. The API and library ensure the consistency of the variables across the distributed memory system.

  8. Nevada Weatherizes Large-Scale Complex

    Broader source: Energy.gov [DOE]

    Increased energy efficiency is translating into increased productivity for one Nevada weatherization organization.

  9. Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report

    SciTech Connect (OSTI)

    Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds

    2012-07-15

    To advance the state and nation toward clean energy, Hawaii is pursuing an aggressive Renewable Portfolio Standard (RPS), 40% renewable generation and 30% energy efficiency and transportation initiatives by 2030. Additionally, with support from federal, state and industry leadership, the Hawaii Clean Energy Initiative (HCEI) is focused on reducing Hawaii's carbon footprint and global warming impacts. To keep pace with the policy momentum and changing industry technologies, the Hawaiian Electric Companies are proactively pursuing a number of potential system upgrade initiatives to better manage variable resources like wind, solar and demand-side and distributed generation alternatives (i.e. DSM, DG). As variable technologies will continue to play a significant role in powering the future grid, practical strategies for utility integration are needed. Hawaiian utilities are already contending with some of the highest penetrations of renewables in the nation in both large-scale and distributed technologies. With island grids supporting a diverse renewable generation portfolio at penetration levels surpassing 40%, the Hawaiian utilities experiences can offer unique perspective on practical integration strategies. Efforts pursued in this industry and federal collaborative project tackled challenging issues facing the electric power industry around the world. Based on interactions with a number of western utilities and building on decades of national and international renewable integration experiences, three priority initiatives were targeted by Hawaiian utilities to accelerate integration and management of variable renewables for the islands. The three initiatives included: Initiative 1: Enabling reliable, real-time wind forecasting for operations by improving short-term wind forecasting and ramp event modeling capabilities with local site, field monitoring; Initiative 2: Improving operators situational awareness to variable resources via real-time grid condition monitoring using PMU devices and enhanced grid analysis tools; and Initiative 3: Identifying grid automation and smart technology architecture retrofit/improvement opportunities following a systematic review approach, inclusive of increasing renewables and variable distributed generation. Each of the initiative was conducted in partnership with industry technology and equipment providers to facilitate utility deployment experiences inform decision making, assess supporting infrastructure cost considerations, showcase state of the technology, address integration hurdles with viable workarounds. For each initiative, a multi-phased approach was followed that included 1) investigative planning and review of existing state-of-the-art, 2) hands on deployment experiences and 3) process implementation considerations. Each phase of the approach allowed for mid-course corrections, process review and change to any equipment/devices to be used by the utilities. To help the island grids transform legacy infrastructure, the Wind HUI provided more systematic approaches and exposure with vendor/manufacturers, hand-on review and experience with the equipment not only from the initial planning stages but through to deployment and assessment of field performance of some of the new, remote sensing and high-resolution grid monitoring technologies. HELCO became one of the first utilities in the nation to install and operate a high resolution (WindNet) network of remote sensing devices such as radiometers and SODARs to enable a short-term ramp event forecasting capability. This utility-industry and federal government partnership produced new information on wind energy forecasting including new data additions to the NOAA MADIS database; addressed remote sensing technology performance and O&M (operations and maintenance) challenges; assessed legacy equipment compatibility issues and technology solutions; evaluated cyber-security concerns; and engaged in community outreach opportunities that will help guide Hawaii and the nation toward more reliable adoption of clean energy resources. Results from these efforts are helping to inform Hawaiian utilities continue to Transform infrastructure, Incorporate renewable considerations and priorities into new processes/procedures, and Demonstrate the technical effectiveness and feasibility of new technologies to shape our pathways forward. Lessons learned and experience captured as part of this effort will hopefully provide practical guidance for others embarking on major legacy infrastructure transformations and renewable integration projects.

  10. Jet initiation of PBX 9502

    SciTech Connect (OSTI)

    McAfee, J.M.

    1987-07-01

    This report details the progress of an effort to determine the quantitative aspects of the initiation of PBX 9502 (95% TATB, 5% Kel-F 800) by copper jets. The particular jet used was that produced by the LAW warhead (66-mm diameter, 42/sup 0/ angle cone, copper-lined, conical shaped charge). Fifteen experiments, in various configurations, have been fired to define the essential parameters for quantitatively measuring the jet performance and initiation of bare PBX 9502. 7 refs., 8 figs.

  11. WCI - World Consensus Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    World Consensus Initiative 2005 Workshop Recap WCI 2004 Website WCI Book Contributed Papers

  12. The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-11-02

    Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nations CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

  13. Ignition Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition Experiments The goal of many NIF experiments is to create a self-sustaining "burn" of fusion fuel (the hydrogen isotopes deuterium and tritium) that produces as much or more energy than the energy required to initiate the fusion reaction-an event called ignition. In moving closer to achieving ignition, NIF researchers are fulfilling the vision of early laser pioneers who conceived of using the x rays generated by a powerful, brief laser pulse to fuse hydrogen isotopes and

  14. In-Situ Visualization Experiments with ParaView Cinema in RAGE

    SciTech Connect (OSTI)

    Kares, Robert John

    2015-10-15

    A previous paper described some numerical experiments performed using the ParaView/Catalyst in-situ visualization infrastructure deployed in the Los Alamos RAGE radiation-hydrodynamics code to produce images from a running large scale 3D ICF simulation. One challenge of the in-situ approach apparent in these experiments was the difficulty of choosing parameters likes isosurface values for the visualizations to be produced from the running simulation without the benefit of prior knowledge of the simulation results and the resultant cost of recomputing in-situ generated images when parameters are chosen suboptimally. A proposed method of addressing this difficulty is to simply render multiple images at runtime with a range of possible parameter values to produce a large database of images and to provide the user with a tool for managing the resulting database of imagery. Recently, ParaView/Catalyst has been extended to include such a capability via the so-called Cinema framework. Here I describe some initial experiments with the first delivery of Cinema and make some recommendations for future extensions of Cinema’s capabilities.

  15. Keck Futures Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Academies Keck Futures Initiative Complex Systems Conference, November 12 - 15, 2008 Challa Kumar(second from left) was invited to attend 1st National Academies Keck Futures Initiative Complex Systems Conference

  16. Ohio Fuel Cell Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top 5 Fuel Cell States: Why Local Policies Mean Green Growth Jun 21 st , 2011 2 * Ohio Fuel Cell Initiative * Ohio Fuel Cell Coalition * Accomplishments * Ohio Successes Discussion Areas 3 Ohio's Fuel Cell Initiative * Announced on 5/9/02 * Part of Ohio Third Frontier Initiative * $85 million investment to date * Core focus areas: 1) Expand the state's research capabilities; 2) Participate in demonstration projects; and 3) Expand the fuel cell industry in Ohio 4 OHIO'S FUEL CELL INITIATIVE

  17. Wind Integration Initiatives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expand Projects & Initiatives Finance & Rates Expand Finance & Rates Involvement & Outreach Expand Involvement & Outreach Doing Business Expand Doing Business...

  18. NERSC-InitialSummary.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Day-1 Summary Large Scale Computing and Storage Requirements for Biological and Environmental Research Joint BER / ASCR / NERSC Workshop NERSC Lawrence Berkeley National Laboratory May 7-8, 2009 Summary * Users need for more resources for DOE SC computing - But we need more concrete, science-based justification * Need for predictable throughput - Microbial Genomics and GFDL ESM - Need to differentiate between real-time needs and higher desired batch turnaround * Slow batch turnaround time may be

  19. APEC Smart Grid Initiative

    SciTech Connect (OSTI)

    Bloyd, Cary N.

    2012-03-01

    This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

  20. Carbon Capture Simulation Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture Simulation Initiative Fact sheet More Information Research Team Members Key Contacts Carbon Capture Simulation Initiative The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry, and academic institutions that is developing, demonstrating and deploying state-of-the-art computational modeling and simulation tools to accelerate the development of carbon capture technologies from discovery to development, demonstration, and ultimately the

  1. Renewable Energy Finance Tracking Initiative (REFTI) Solar Trend Analysis

    SciTech Connect (OSTI)

    Hubbell, R.; Lowder, T.; Mendelsohn, M.; Cory, K.

    2012-09-01

    This report is a summary of the finance trends for small-scale solar photovoltaic (PV) projects (PV <1 MW), large-scale PV projects (PV greater than or equal to 1 MW), and concentrated solar power projects as reported in the National Renewable Energy Laboratory's Renewable Energy Finance Tracking Initiative (REFTI). The report presents REFTI data during the five quarterly periods from the fourth quarter of 2009 to the first half of 2011. The REFTI project relies exclusively on the voluntary participation of industry stakeholders for its data; therefore, it does not offer a comprehensive view of the technologies it tracks. Despite this limitation, REFTI is the only publicly available resource for renewable energy project financial terms. REFTI analysis offers usable inputs into the project economic evaluations of developers and investors, as well as the policy assessments of public utility commissions and others in the renewable energy industry.

  2. Progress in Initiator Modeling

    SciTech Connect (OSTI)

    Hrousis, C A; Christensen, J S

    2009-05-04

    There is great interest in applying magnetohydrodynamic (MHD) simulation techniques to the designs of electrical high explosive (HE) initiators, for the purpose of better understanding a design's sensitivities, optimizing its performance, and/or predicting its useful lifetime. Two MHD-capable LLNL codes, CALE and ALE3D, are being used to simulate the process of ohmic heating, vaporization, and plasma formation in the bridge of an initiator, be it an exploding bridgewire (EBW), exploding bridgefoil (EBF) or slapper type initiator. The initiation of the HE is simulated using Tarver Ignition & Growth reactive flow models. 1-D, 2-D and 3-D models have been constructed and studied. The models provide some intuitive explanation of the initiation process and are useful for evaluating the potential impact of identified aging mechanisms (such as the growth of intermetallic compounds or powder sintering). The end product of this work is a simulation capability for evaluating margin in proposed, modified or aged initiation system designs.

  3. Industrial Carbon Management Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Carbon Management Initiative Fact Sheets Research Team Members Key Contacts Industrial Carbon Management Initiative (ICMI) Background The ICMI project is part of a larger program called Carbon Capture Simulation and Storage Initiative (C2S2I). The C2S2I has a goal of expanding the DOE's focus on Carbon Capture Utilization and Storage (CCUS) for advanced coal power systems and other applications, including the use of petroleum coke as a feedstock for the industrial sector. The American

  4. Initiatives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives Initiatives Through a variety of cross-cutting program initiatives, the Office of International Affairs (IA) responds to the most pressing global energy challenges, ranging from energy security and market volatility to long-term efforts to reduce carbon pollution and the impacts of climate change. IA has the primary responsibility for coordinating the efforts of diverse elements in the Department to ensure a unified voice in our international energy policy. This page highlights some

  5. About the Initiative

    SciTech Connect (OSTI)

    Not Available

    2007-06-01

    This factsheet gives an overview of the Solar America Initiative (SAI), including goals, research and development strategy, market transformation strategy, and benefits to nation.

  6. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 ...

  7. TVA- Solar Solutions Initiative

    Broader source: Energy.gov [DOE]

    Solar Solutions Initiative (SSI) is a pilot program that offers additional financial incentives for Solar PV systems participating in the Renewable Standard Offer program. Applications for new...

  8. National Laboratory Impact Initiative

    Broader source: Energy.gov [DOE]

    The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.  The national laboratories...

  9. Green Button Initiative Growing

    Broader source: Energy.gov [DOE]

    The Green Button initiative, which is the common-sense idea that electricity customers should be able to securely download their own energy usage information from their utility websites, is continuing to gain traction across the country.

  10. Initiatives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives Initiatives The Office of Energy Policy & Systems Analysis (EPSA) responds to the most pressing domestic energy challenges, delivering unbiased energy analysis to the Department of Energy's leadership on existing and prospective energy-related policies, focusing in part on integrative analysis of energy systems. EPSA also includes the Secretariat of the Quadrennial Energy Review, which has primary responsibility for supporting the White House interagency process and providing to

  11. Signatures of initial state modifications on bispectrum statistics

    SciTech Connect (OSTI)

    Meerburg, P Daniel; Schaar, Jan Pieter van der; Corasaniti, Pier Stefano E-mail: j.p.vanderschaar@uva.nl

    2009-05-15

    Modifications of the initial-state of the inflaton field can induce a departure from Gaussianity and leave a testable imprint on the higher order correlations of the CMB and large scale structures in the Universe. We focus on the bispectrum statistics of the primordial curvature perturbation and its projection on the CMB. For a canonical single-field action the three-point correlator enhancement is localized, maximizing in the collinear limit, corresponding to enfolded or squashed triangles in comoving momentum space. We show that the available local and equilateral template are very insensitive to this localized enhancement and do not generate noteworthy constraints on initial-state modifications. On the other hand, when considering the addition of a dimension 8 higher order derivative term, we find a dominant rapidly oscillating contribution, which had previously been overlooked and whose significantly enhanced amplitude is independent of the triangle under consideration. Nevertheless, the oscillatory nature of (the sign of) the correlation function implies the signal is nearly orthogonal to currently available observational templates, strongly reducing the sensitivity to the enhancement. Constraints on departures from the standard Bunch-Davies vacuum state can be derived, but also depend on the next-to-leading terms. We emphasize that the construction and application of especially adapted templates could lead to CMB bispectrum constraints on modified initial states already competing with those derived from the power spectrum.

  12. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GOAMAZON field campaign proposal in 2010, she received approval for IARA under the umbrella of the Large-scale Biosphere Atmosphere Experiment in Amazonia and initiated...

  13. RCRA facility stabilization initiative

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The RCRA Facility Stabilization Initiative was developed as a means of implementing the Corrective Action Program`s management goals recommended by the RIS for stabilizing actual or imminent releases from solid waste management units that threaten human health and the environment. The overall goal of stabilization is to, as situations warrant, control or abate threats to human health and/or the environment from releases at RCRA facilities, and/or to prevent or minimize the further spread of contamination while long-term remedies are pursued. The Stabilization initiative is a management philosophy and should not be confused with stabilization technologies.

  14. 2007 Initial Allocation Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Awards 2007 Initial Allocation Awards The following table lists the initial allocation awards for NERSC for the 2007 allocation year (Jan 9, 2007 through Jan 7, 2008). The list is in alphabetical order by the last name of the Principal Investigator. Note - Letters following the repository name indicate the following: 'I' DOE ASCR INCITE award 'S' NERSC Startup award A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Principal Site Request Repo SP HPSS Project Title Investigator Id Hours SRUs

  15. Clean Coal Power Initiative

    SciTech Connect (OSTI)

    Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

    2006-03-31

    This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

  16. Development of an integrated in-situ remediation technology. Topical report for task No. 12 and 13 entitled: Large scale field test of the Lasagna{trademark} process, September 26, 1994--May 25, 1996

    SciTech Connect (OSTI)

    Athmer, C.J.; Ho, Sa V.; Hughes, B.M.

    1997-04-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. This technology is an integrated in-situ treatment in which established geotechnical methods are used to instant degradation zones directly in the contaminated soil and electroosmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. This topical report summarizes the results of the field experiment conducted at the Paducah Gaseous Diffusion Plant in Paducah, KY. The test site covered 15 feet wide by 10 feet across and 15 feet deep with steel panels as electrodes and wickdrains containing granular activated carbon as treatment zone& The electrodes and treatment zones were installed utilizing innovative adaptation of existing emplacement technologies. The unit was operated for four months, flushing TCE by electroosmosis from the soil into the treatment zones where it was trapped by the activated carbon. The scale up from laboratory units to this field scale was very successful with respect to electrical parameters as weft as electroosmotic flow. Soil samples taken throughout the site before and after the test showed over 98% TCE removal, with most samples showing greater than 99% removal.

  17. Monolithic exploding foil initiator

    DOE Patents [OSTI]

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  18. Clean Energy Manufacturing Initiative

    SciTech Connect (OSTI)

    2013-04-01

    The initiative will strategically focus and rally EEREs clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  19. The future of emissions trading in light of the acid rain experience

    SciTech Connect (OSTI)

    McLean, B.J.; Rico, R.

    1995-12-31

    The idea of emissions trading was developed more than two decades ago by environmental economists eager to provide new ideas for how to improve the efficiency of environmental protection. However, early emissions trading efforts were built on the historical {open_quotes}command and control{close_quotes} infrastructure which has dominated U.S. environmental protection until today. The {open_quotes}command and control{close_quotes} model initially had advantages that were of a very pragmatic character: it assured large pollution reductions in a time when large, cheap reductions were available and necessary; and it did not require a sophisticated government infrastructure. Within the last five years, large-scale emission trading programs have been successfully designed and started that are fundamentally different from the earlier efforts, creating a new paradigm for environmental control just when our understanding of environmental problems is changing as well. The purpose of this paper is to focus on the largest national-scale program--the Acid Rain Program--and from that experience, forecast when emission trading programs may be headed based on our understanding of the factors currently influencing environmental management. The first section of this paper will briefly review the history of emissions trading programs, followed by a summary of the features of the Acid Rain Program, highlighting those features that distinguish it from previous efforts. The last section addresses the opportunities for emissions trading (and its probable future directions).

  20. Florida Hydrogen Initiative

    SciTech Connect (OSTI)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cell technology academic program at Florida Institute of Technology in Melbourne, Florida. Design and Development of an Advanced Hydrogen Storage System using Novel Materials ? E. Stefanakos, University of South Florida The goal of this project was to design and develop novel conducting polymeric nanomaterials for on-board hydrogen storage. The project approach was to examine synthesis of polyaniline solid state hydrogen storage materials. Advanced HiFoil ? Bipolar Plates ? J. Braun, M. Fuchs, EnerFuel, Inc. The goal of this project was to provide a durable, low cost bipolar plate for high temperature proton exchange membrane fuel cells. The project results produced a durable, low cost bipolar plate with very high in-plane thermal conductivity.

  1. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 Overview * Current SRS Liquid Waste System status * Opportunity to accelerate salt processing - transformational technologies - Rotary Microfiltration (RMF) and Small Column Ion Exchange (SCIX) - Actinide Removal Process/Modular Caustic Side Solvent Extraction (ARP/MCU) extension with next generation extractant - Salt

  2. Asset Revitalization Initiative ARI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Asset Revitalization Initiative ( ARI ) Mission * Community * Reuse ARI is a DOE-wide effort to advance the beneficial reuse of the agency's unique and diverse mix of assets, including land, facilities, infrastructure, equipment, technologies, natural resources, and highly skilled workforce. ARI promotes an efficient business environment to encourage collaboration between public and private resources. ARI integrates DOE missions with community interests. ARI is... Our Vision By 2020: Operations

  3. Nuclear Workforce Initiative - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear Nuclear Workforce Initiative The SRSCRO region of Georgia and South Carolina has the most unique nuclear industry capabilities in the nation. This region is at the forefront of new nuclear power production, environmental stewardship, innovative technology and national security. Long-term nuclear workforce demand is growing in the region as new nuclear reactors are under construction at the V.C Summer Nuclear Station in Fairfield County, SC and at Plant Vogtle in Waynesboro, GA. New

  4. OSM's reforestation initiative

    SciTech Connect (OSTI)

    Boyce, J.S.

    1999-07-01

    Implementation of the Surface Mining Control and Reclamation Act (SMCRA) has discouraged reforestation in some situations where reforestation would be desirable. OSM is engaged in an initiative to increase the amount of mined land reclaimed to forest where appropriate. The authors are seeking to determine those elements of the Federal/State regulator programs that discourage reforestation and find ways to offset these impacts. Potential factors militating against reforestation are identified and possible solutions are discussed.

  5. Global Threat Reduction Initiative

    Office of Environmental Management (EM)

    The Current Status of Gap and U.S.-Origin Nuclear Fuel Removals 2011 Jeff Galan, Deputy Project Manager U.S.-Origin Nuclear Remove Program National Nuclear Security Administration Global Threat Reduction Initiative Defense Nuclear Nonproliferation U.S. DEPARTMENT OF ENERGY 2 GTRI Mission and Goals GTRI is: A part of President Obama's comprehensive strategy to prevent nuclear terrorism; and The key organization responsible for implementing the U.S. HEU minimization policy. GTRI MISSION Reduce

  6. Green Initiatives and Contracting

    Office of Environmental Management (EM)

    GSA Is Now Training Contracting Officers In Green Purchasing Green Purchasing for the Federal Acquisition Work Force * introduction to the federal green purchasing program * assists learners with identifying green products * discusses factors that shape federal green purchasing initiatives https://cae.gsa.gov 2 "There's some challenges here" "Environmental Aisle" in the GSA Advantage electronic-purchasing website for federal buyers to find green products Environmental

  7. Modeling shock initiation in Composition B

    SciTech Connect (OSTI)

    Murphy, M.J.; Lee, E.L.; Weston, A.M.; Williams, A.E.

    1993-05-01

    A hydrodynamic modeling study of the shock initiation behavior of Composition B explosive was performed using the {open_quotes}Ignition and Growth of Reaction in High Explosive{close_quotes} model developed at the Lawrence Livermore National Laboratory. The HE (heterogeneous explosives) responses were computed using the CALE and DYNA2D hydrocodes and then compared to experimental results. The data from several standard shock initiation and HE performance experiments was used to determine the parameters required for the model. Simulations of the wedge tests (pop plots) and failure diameter tests were found to be sufficient for defining the ignition and growth parameters used in the two term version of the computational model. These coefficients were then applied in the response analysis of several Composition B impact initiation experiments. A description of the methodology used to determine the coefficients and the resulting range of useful application of the ignition and growth of reaction model is described.

  8. Through bulkhead initiator studies

    SciTech Connect (OSTI)

    Begeal, D.R.

    1997-03-01

    This report describes recent work done to demonstrate feasibility of a fail-safe Through Bulkhead Initiator with minimum dimensions and suitable for use in cyclical thermal environments. Much of the ground work for a fail-safe TBI was previously done by A.C. Schwartz. This study is an expansion of Schwartz`s work to evaluate devices with bulkheads of 304 stainless steel and Inconel 718; explosive donors of PETN, BNCP, and a 0.005 inch thick steel flying plate donor traveling at 2.6 mm/{micro}s; and explosive acceptors of PETN and BNCP. Bulkhead thickness were evaluated in the range of 0.040 to 0.180 inch. The explosive acceptors initiated a small HMX pellet to drive a 0.005 inch thick steel flying plate, and VISAR histories of the HMX-driven flying plates were the measure of acceptable performance. A companion set of samples used a PMMA acceptor to measure the particle velocities at the bulkhead/PMMA interface with VISAR. These data were used to compute the input pressure to the acceptor explosives in an attempt to measure initiation threshold. Unfortunately, the range of bulkhead thicknesses tested did not give any failures, thus the threshold was not determined. It was found that either explosive or the flying plate would perform as a TBI in the bulkhead thickness range tested. The optimum TBI is about 0.060 inches thick, and steel bulkheads seem to be more structurally sound than those made of Inconel. That is, cross section views of the Inconel bulkheads showed it to be more prone to stress cracking than was the 304 stainless steel. Both PETN and BNCP showed good performance when tested at {minus}65 F following thermal cycling of {minus}65 F to +165 F. Analysis of the TBI function times showed that BNCP acceptor explosives were undergoing the classical deflagration to detonation process. The PETN acceptors were undergoing prompt detonation.

  9. World Consensus Initiative 2004

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consensus Initiative 2004 Texas A&M University Meeting 12-16 February 2005 The study of nuclear reaction dynamics and thermodynamics in the Fermi-energy regime has progressed dramatically in the past 20 years. We, the undersigned, believe that it is important at this time to reflect on those advances and to produce a status report outlining both what we have learned and what outstanding questions remain. This exercise is important both for the focus it will give us internally in the field

  10. UNLV Nuclear Hydrogen Initiative

    SciTech Connect (OSTI)

    Hechanova, Anthony E.; Johnson, Allen; O'Toole, Brendan; Trabia, Mohamed; Peterson, Per

    2012-10-25

    Evaluation of the Crack growth rate (CGR) of Alloy 617 and Alloy 276 under constant K at ambient temperature has been completed. Creep deformation of Alloy 230 at different temperature range and load level has been completed and heat to heat variation has been noticed. Creep deformation study of Alloy 276 has been completed under an applied initial stress level of 10% of yield stress at 950C. The grain size evaluation of the tested creep specimens of Alloy 276 has been completed.

  11. 2004 Initial Allocation Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Awards 2004 Initial Allocation Awards The following table lists the allocation awards for NERSC for the extended 2004 fiscal year (Oct 1, 2003 through Nov 30, 2004). The list is in alphabetical order by the last name of the Principal Investigator. Note - Letters following the repository name indicate the following: 'I' DOE ASCR INCITE award 'S' NERSC Startup award A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Principal Site Request Repo SP HPSS Project Title Investigator Id Hours SRUs

  12. 2005 Initial Allocation Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Awards 2005 Initial Allocation Awards The following table lists the allocation awards for NERSC for the 2005 allocation year (Dec 1, 2004 through Nov 30, 2005). The list is in alphabetical order by the last name of the Principal Investigator. Note - Letters following the repository name indicate the following: 'I' DOE ASCR INCITE award 'S' NERSC Startup award A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Principal Site Request Repo SP HPSS Project Title Investigator Id Hours SRUs

  13. 2006 Initial Allocation Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Awards 2006 Initial Allocation Awards The following table lists the allocation awards for NERSC for the 2006 allocation year (Dec 1, 2005 through Jan 8, 2007). The list is in alphabetical order by the last name of the Principal Investigator. Note - Letters following the repository name indicate the following: 'I' DOE ASCR INCITE award 'S' NERSC Startup award A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Principal Site Request Repo SP HPSS Project Title Investigator Id Hours SRUs Agarwal,

  14. 2008 Initial Allocation Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Awards 2008 Initial Allocation Awards The following table lists the allocation awards for NERSC for the 2008 allocation year (Jan 8, 2008 through Jan 12, 2009). The list is in alphabetical order by the last name of the Principal Investigator. Note - Letters following the repository name indicate the following: 'I' DOE ASCR INCITE award 'S' NERSC Startup award A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Principal Site Request Repo SP HPSS Project Title Investigator Id Hours SRUs Adams,

  15. Hanford tanks initiative plan

    SciTech Connect (OSTI)

    McKinney, K.E.

    1997-07-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy`s Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System`s tank waste retrieval Program.

  16. The Initial State of a Primordial Anisotropic Stage of Inflation

    SciTech Connect (OSTI)

    Blanco-Pillado, Jose J.; Minamitsuji, Masato

    2015-06-12

    We investigate the possibility that the inflationary period in the early universe was preceded by a primordial stage of strong anisotropy. In particular we focus on the simplest model of this kind, where the spacetime is described by a non-singular Kasner solution that quickly evolves into an isotropic de Sitter space, the so-called Kasner-de Sitter solution. The initial Big Bang singularity is replaced, in this case, by a horizon. We show that the extension of this metric to the region behind the horizon contains a timelike singularity which will be visible by cosmological observers. This makes it impossible to have a reliable prediction of the quantum state of the cosmological perturbations in the region of interest. In this paper we consider the possibility that this Kasner-de Sitter universe is obtained as a result of a quantum tunneling process effectively substituting the region behind the horizon by an anisotropic parent vacuum state, namely a 1+1 dimensional spacetime compactified over an internal flat torus, T{sub 2}, which we take it to be of the form de Sitter{sub 2}×T{sub 2} or Minkowski{sub 2}×T{sub 2}. As a first approximation to understand the effects of this anisotropic initial state, we compute the power spectrum of a massless scalar field in these backgrounds. In both cases, the spectrum converges at small scales to the isotropic scale invariant form and only present important deviations from it at the largest possible scales. We find that the decompactification scenario from M{sub 2}×T{sub 2} leads to a suppressed and slightly anisotropic power spectrum at large scales which could be related to some of the anomalies present in the current CMB data. On the other hand, the spectrum of the universe with a dS{sub 2}×T{sub 2} parent vacuum presents an enhancement in power at large scales not consistent with observations.

  17. Precision flyer initiator

    DOE Patents [OSTI]

    Frank, A.M.; Lee, R.S.

    1998-05-26

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or ``flyer`` is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices. 10 figs.

  18. Precision flyer initiator

    DOE Patents [OSTI]

    Frank, Alan M. (Livermore, CA); Lee, Ronald S. (Livermore, CA)

    1998-01-01

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or "flyer" is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices.

  19. Initiatives for proliferation prevention

    SciTech Connect (OSTI)

    1997-04-01

    Preventing the proliferation of weapons of mass destruction is a central part of US national security policy. A principal instrument of the Department of Energy`s (DOE`s) program for securing weapons of mass destruction technology and expertise and removing incentives for scientists, engineers and technicians in the newly independent states (NIS) of the former Soviet Union to go to rogue countries or assist terrorist groups is the Initiatives for Proliferation Prevention (IPP). IPP was initiated pursuant to the 1994 Foreign Operations Appropriations Act. IPP is a nonproliferation program with a commercialization strategy. IPP seeks to enhance US national security and to achieve nonproliferation objectives by engaging scientists, engineers and technicians from former NIS weapons institutes; redirecting their activities in cooperatively-developed, commercially viable non-weapons related projects. These projects lead to commercial and economic benefits for both the NIS and the US IPP projects are funded in Russian, Ukraine, Kazakhstan and Belarus. This booklet offers an overview of the IPP program as well as a sampling of some of the projects which are currently underway.

  20. Large-Scale Manufacturing of Nanoparticle-Based Lubrication Additives |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy nanoparticulate-based_lubrication.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants for Improved Energy Efficiency and Reduced Emissions in Engines New and Emerging Technologies Parasitic Energy Losses

  1. Economical Large Scale Advanced Membrane and Sorbent Strategies

    Broader source: Energy.gov [DOE]

    Presentation by William Koros (Georgia Institute of Technology) for the Membrane Technology Workshop held July 24, 2012

  2. Large Scale Production Computing and Storage Requirements for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    offerings and will help ASCR Facilities Division justify support for Office of Science research. Final Report PDF Date and Location This review was held October 8-9, 2013 Hilton...

  3. Large Scale Production Computing and Storage Requirements for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11-12, 2012 Hilton Rockville Hotel and Executive Meeting Center 1750 Rockville Pike Rockville, MD, 20852-1699 TEL: 1-301-468-1100 Sponsored by: U.S. Department of Energy...

  4. Large Scale Production Computing and Storage Requirements for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2012 Hilton Washington DCRockville Hotel &Executive Meeting Center 1750 Rockville Pike, Rockville, MD,20852-1699 Final Report PDF Hotel Information Info on how to reserve a...

  5. Large-Scale Manufacturing of Nanoparticulate-Based Lubrication Additives

    SciTech Connect (OSTI)

    2009-06-01

    This factsheet describes a research project whose goal is to design, develop, manufacture, and scale up boron-based nanoparticulate lubrication additives.

  6. Tax Exemption for Large-Scale Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    Companies may receive a sales tax incentive of up to 100% of the Kentucky sales and use tax paid (on or after the activation date) on materials, machinery and equipment used to construct, retrofit...

  7. Large Scale Computing and Storage Requirements for Basic Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SciencesAn BES ASCR NERSC WorkshopFebruary 9-10, 2010... Read More Workshop Logistics Workshop location, directions, and registration information are included here......

  8. The Dark Energy of Turbulent Damping: Large Scale Dissipation...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Plasma Energization: Exchanges between Fluid and Kinetic Scales ; 2015-05-04 - 2015-05-06 ; Los Alamos, New Mexico, United States Research Org: Los ...

  9. UNIVERSITY OF CALIFORNIA The Future of Large Scale Visual Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Vector, then single-core MPPs - "Large" SMP platforms - Relatively well balanced: memory, FLOPS,IO 16 June 2014 The World that Was: Software Architecture * Data Analysis and...

  10. Design advanced for large-scale, economic, floating LNG plant

    SciTech Connect (OSTI)

    Naklie, M.M.

    1997-06-30

    A floating LNG plant design has been developed which is technically feasible, economical, safe, and reliable. This technology will allow monetization of small marginal fields and improve the economics of large fields. Mobil`s world-scale plant design has a capacity of 6 million tons/year of LNG and up to 55,000 b/d condensate produced from 1 bcfd of feed gas. The plant would be located on a large, secure, concrete barge with a central moonpool. LNG storage is provided for 250,000 cu m and condensate storage for 650,000 bbl. And both products are off-loaded from the barge. Model tests have verified the stability of the barge structure: barge motions are low enough to permit the plant to continue operation in a 100-year storm in the Pacific Rim. Moreover, the barge is spread-moored, eliminating the need for a turret and swivel. Because the design is generic, the plant can process a wide variety of feed gases and operate in different environments, should the plant be relocated. This capability potentially gives the plant investment a much longer project life because its use is not limited to the life of only one producing area.

  11. BLM and Forest Service Consider Large-Scale Geothermal Leasing...

    Office of Environmental Management (EM)

    Geothermal Leasing June 18, 2008 - 4:29pm Addthis In an effort to encourage appropriate geothermal energy development on public lands, the Bureau of Land Management (BLM) and the...

  12. Large-scale computations in analysis of structures

    SciTech Connect (OSTI)

    McCallen, D.B.; Goudreau, G.L.

    1993-09-01

    Computer hardware and numerical analysis algorithms have progressed to a point where many engineering organizations and universities can perform nonlinear analyses on a routine basis. Through much remains to be done in terms of advancement of nonlinear analysis techniques and characterization on nonlinear material constitutive behavior, the technology exists today to perform useful nonlinear analysis for many structural systems. In the current paper, a survey on nonlinear analysis technologies developed and employed for many years on programmatic defense work at the Lawrence Livermore National Laboratory is provided, and ongoing nonlinear numerical simulation projects relevant to the civil engineering field are described.

  13. Large-Scale Algal Cultivation, Harvesting and Downstream Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    screening strains for desirable characteristics, identifying and mitigating contaminants, scaling up cultures for outdoor growth, harvesting and processing technologies,...

  14. Single-field consistency relations of large scale structure

    SciTech Connect (OSTI)

    Creminelli, Paolo; Norea, Jorge; Simonovi?, Marko; Vernizzi, Filippo E-mail: jorge.norena@icc.ub.edu E-mail: filippo.vernizzi@cea.fr

    2013-12-01

    We derive consistency relations for the late universe (CDM and ?CDM): relations between an n-point function of the density contrast ? and an (n+1)-point function in the limit in which one of the (n+1) momenta becomes much smaller than the others. These are based on the observation that a long mode, in single-field models of inflation, reduces to a diffeomorphism since its freezing during inflation all the way until the late universe, even when the long mode is inside the horizon (but out of the sound horizon). These results are derived in Newtonian gauge, at first and second order in the small momentum q of the long mode and they are valid non-perturbatively in the short-scale ?. In the non-relativistic limit our results match with [1]. These relations are a consequence of diffeomorphism invariance; they are not satisfied in the presence of extra degrees of freedom during inflation or violation of the Equivalence Principle (extra forces) in the late universe.

  15. Large Scale Production Computing and Storage Requirements for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to provide the world-class facilities and services needed to support DOE Office of Science research. The review will produce a report that outlines HPC requirements for ASCR...

  16. DOE Completes Large-Scale Carbon Sequestration Project Awards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permanently and economically store more than two million tons of carbon dioxide (CO2). ... the region and present the opportunity to store more than 100 years of CO2 emissions from ...

  17. Robust and scalable scheme to generate large-scale entanglement...

    Office of Scientific and Technical Information (OSTI)

    by using linear optics and postselections. The present scheme inherits the robustness of the Barrett-Kok scheme S. D. Barrett and P. Kok, Phys. Rev. A 71, 060310(R) (2005). ...

  18. Lessons from Large-Scale Renewable Energy Integration Studies...

    Office of Scientific and Technical Information (OSTI)

    the WWSIS examined the planning and operational implications of adding up to 35% wind and solar energy penetration to the Western Interconnect of the United States. The study...

  19. Understanding large scale HPC systems through scalable monitoring...

    Office of Scientific and Technical Information (OSTI)

    As HPC systems grow in size and complexity, diagnosing problems and understanding system behavior, including failure modes, becomes increasingly difficult and time consuming. At ...

  20. Testing coupled dark energy with large scale structure observation

    SciTech Connect (OSTI)

    Yang, Weiqiang; Xu, Lixin, E-mail: d11102004@mail.dlut.edu.cn, E-mail: lxxu@dlut.edu.cn [Institute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116024 (China)

    2014-08-01

    The coupling between the dark components provides a new approach to mitigate the coincidence problem of cosmological standard model. In this paper, dark energy is treated as a fluid with a constant equation of state, whose coupling with dark matter is Q-bar =3H?{sub x}?-bar {sub x}. In the frame of dark energy, we derive the evolution equations for the density and velocity perturbations. According to the Markov Chain Monte Carlo method, we constrain the model by currently available cosmic observations which include cosmic microwave background radiation, baryon acoustic oscillation, type Ia supernovae, and f?{sub 8}(z) data points from redshift-space distortion. The results show the interaction rate in ? regions: ?{sub x}=0.00328{sub -0.00328-0.00328-0.00328}{sup +0.000736+0.00549+0.00816}, which means that the recently cosmic observations favor a small interaction rate which is up to the order of 10{sup -2}, meanwhile, the measurement of redshift-space distortion could rule out the large interaction rate in the ? region.

  1. Robust, Multifunctional Joint for Large Scale Power Production...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    joining for: Electrochemical devices, especially metal supported tubular SOFC cells Electronic devices operating at elevated temperatures Technology Status...

  2. Large Scale GSHP as Alternative Energy for American Farmers Geothermal...

    Open Energy Info (EERE)

    ground source heat pumps (GSHP) on two poultry farms as replacement of existing propane heating system. - Demonstrate that GSHP technology is affordable, can reduce utility...

  3. Cosmological Simulations for Large-Scale Sky Surveys | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on all HPC systems. In particular, on the IBM BGQ system, HACC has reached very high levels of performance-almost 14 petaflops (the highest ever recorded by a science code)...

  4. COMMENTS OF THE LARGE-SCALE SOLAR ASSOCIATION TO DEPARTMENT

    Broader source: Energy.gov (indexed) [DOE]

    consider providing a goal that could be scalable according to the length of the line. LSA does not have a specific recommendation for the length of time that is reasonable for...

  5. Pre-Approval Draft Environmental Assessment Large-Scale, Open...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Special Operations and Research Division I BAPC I State of Nevada Bureau of Air Pollution Control I BLM I Bureau of Land Management Bechtel Nevada Clean Air Act calcium ...

  6. Clean Energy Solutions Large Scale CHP and Fuel Cells Program...

    Broader source: Energy.gov (indexed) [DOE]

    the program has been managed by the NJ Board of Public Utilities (BPU) as a part of its Clean Energy Program. Applications should be directed to NJ BPU instead of NJ Economic...

  7. Large Scale Renewable Energy Property Tax Abatement (Nevada State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Solar Photovoltaics Wind (All) Biomass Hydroelectric Municipal Solid Waste Fuel Cells using Non-Renewable Fuels Landfill Gas Wind (Small) Anaerobic Digestion Fuel Cells...

  8. Zero discharge and large-scale DCS are plant highlights

    SciTech Connect (OSTI)

    Solar, R.

    1995-04-01

    This article reports that the Mulberry cogeneration facility has several features that make it notable in the power field. A zero-discharge wastewater system, an inlet-air chilling system, a secondary boiler, and an extensive distributed-control system (DCS) for overall plant operation are examples. Ability to meet the two-stage NO{sub x}-emission limits -- 25 ppm during the first three years and 15 ppm thereafter -- is a unique challenge. The plant design allows the lower limit to be met now, and retrofit with different burners is possible if NO{sub x}-emission limits are tightened later. The facility, near Bartow in Polk County, Fla, is owned by Polk Power Partners LP, whose members include Central and South West Energy Inc (CSW) of Dallas and ARK Energy of Laguna Hills, Calif. The operating company, CSW Operations, is a subsidiary of CSW. Heart of the plant is a single gas-turbine (GT)/HRSG/steam-turbine combined cycle, providing electric power to Tampa Electric Co and Florida Power Corp, with up to 25,000 lb/hr of process steam for an adjacent ethanol plant which was developed by the facility`s partnership. Commercial operation of Mulberry began on Sept 2, 1994.

  9. Large-Scale Atomistic Simulations of Material Failure

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Abraham, Farid [IBM Almaden Research; Duchaineau, Mark [LLNL; Wirth, Brian [LLNL; Heidelberg,; Seager, Mark [LLNL; De La Rubia, Diaz [LLNL

    These simulations from 2000 examine the supersonic propagation of cracks and the formation of complex junction structures in metals. Eight simulations concerning brittle fracture, ductile failure, and shockless compression are available.

  10. Goethite Bench-scale and Large-scale Preparation Tests

    SciTech Connect (OSTI)

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous ion, Fe{sup 2+}-Fe{sup 2+} is oxidized to Fe{sup 3+} - in the presence of goethite seed particles. Rhenium does not mimic that process; it is not a strong enough reducing agent to duplicate the TcO{sub 4}{sup -}/Fe{sup 2+} redox reactions. Laboratory tests conducted in parallel with these scaled tests identified modifications to the liquid chemistry necessary to reduce ReO{sub 4}{sup -} and capture rhenium in the solids at levels similar to those achieved by Um (2010) for inclusion of Tc into goethite. By implementing these changes, Re was incorporated into Fe-rich solids for testing at VSL. The changes also changed the phase of iron that was in the slurry product: rather than forming goethite ({alpha}-FeOOH), the process produced magnetite (Fe{sub 3}O{sub 4}). Magnetite was considered by Pacific Northwest National Laboratory (PNNL) and VSL to probably be a better product to improve Re retention in the melter because it decomposes at a higher temperature than goethite (1538 C vs. 136 C). The feasibility tests at VSL were conducted using Re-rich magnetite. The tests did not indicate an improved retention of Re in the glass during vitrification, but they did indicate an improved melting rate (+60%), which could have significant impact on HLW processing. It is still to be shown whether the Re is a solid solution in the magnetite as {sup 99}Tc was determined to be in goethite.

  11. Large Scale Comparative Visualisation of Regulatory Networks with TRNDiff

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chua, Xin-Yi; Buckingham, Lawrence; Hogan, James M.; Novichkov, Pavel

    2015-06-01

    The advent of Next Generation Sequencing (NGS) technologies has seen explosive growth in genomic datasets, and dense coverage of related organisms, supporting study of subtle, strain-specific variations as a determinant of function. Such data collections present fresh and complex challenges for bioinformatics, those of comparing models of complex relationships across hundreds and even thousands of sequences. Transcriptional Regulatory Network (TRN) structures document the influence of regulatory proteins called Transcription Factors (TFs) on associated Target Genes (TGs). TRNs are routinely inferred from model systems or iterative search, and analysis at these scales requires simultaneous displays of multiple networks well beyond thosemore » of existing network visualisation tools [1]. In this paper we describe TRNDiff, an open source system supporting the comparative analysis and visualization of TRNs (and similarly structured data) from many genomes, allowing rapid identification of functional variations within species. The approach is demonstrated through a small scale multiple TRN analysis of the Fur iron-uptake system of Yersinia, suggesting a number of candidate virulence factors; and through a larger study exploiting integration with the RegPrecise database (http://regprecise.lbl.gov; [2]) - a collection of hundreds of manually curated and predicted transcription factor regulons drawn from across the entire spectrum of prokaryotic organisms.« less

  12. Feasibility of Large-Scale Ocean CO2 Sequestration

    SciTech Connect (OSTI)

    Peter Brewer

    2008-08-31

    Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO{sub 2}. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves. In this report we detail research carried out in the period October 1, 2007 through September 30, 2008. The primary body of work is contained in a formal publication attached as Appendix 1 to this report. In brief we have surveyed the recent literature with respect to the natural occurrence of clathrate hydrates (with a special emphasis on methane hydrates), the tools used to investigate them and their potential as a new source of natural gas for energy production.

  13. Large Scale Computing and Storage Requirements for High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for High Energy Physics Accelerator Physics P. Spentzouris, Fermilab Motivation Accelerators enable many important applications, both in basic research and applied sciences Different machine attributes are emphasized for different applications * Different particle beams and operation principles * Different energies and intensities Accelerator science and technology objectives for all applications * Achieve higher energy and intensity, faster and cheaper machine design, more reliable operation a

  14. Large-scale soil bioremediation using white-rot fungi

    SciTech Connect (OSTI)

    Holroyd, M.L.; Caunt, P.

    1995-12-31

    Some organic pollutant compounds are considered resistant to conventional bioremediation because of their structure or behavior in soil. This phenomenon, together with the increasing need to reach lower target levels in shorter time periods, has shown the need for improved or alternative biological processes. It has been known for some time that the white-rot fungi, particularly the species Phanerochaete chrysosporium, have potentially useful abilities to rapidly degrade pollutant molecules. The use of white-rot fungi at the field scale presents a number of challenges, and this paper outlines the use of a process incorporating Phanerochaete to successfully bioremediate over 6,000 m{sup 3} of chlorophenol-contaminated soil at a site in Finland. Moreover, the method developed is very cost-effective and proved capable of reaching the very low target levels within the contracted time span.

  15. Creating Large Scale Database Servers (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    access to such a large quantity of data through a database server is a daunting task. ... This paper will describe the design of the database and the changes that we needed to make ...

  16. Towards a Large-Scale Recording System: Demonstration of Polymer...

    Office of Scientific and Technical Information (OSTI)

    Relation: Conference: Presented at: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, United States, Aug 26 - Aug...

  17. Stimulated forward Raman scattering in large scale-length laser...

    Office of Scientific and Technical Information (OSTI)

    Have feedback or suggestions for a way to improve these results? Save Share this Record Citation Formats MLA APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Save to My ...

  18. Towards a Large-Scale Recording System: Demonstration of Polymer...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Presented at: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, United States, Aug 26 - Aug ...

  19. Large Scale Computing and Storage Requirements for Biological...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the requirements input from the workshop attendees. Workshop attendees should review the case study update document and other background materials on the Reference Materials page....

  20. Panchromatic Views of Large-Scale Extragalactic Jets

    SciTech Connect (OSTI)

    Cheung, C.C.; /KIPAC, Menlo Park

    2007-06-01

    Highlights of recent observations of extended jets in AGN are presented. Specifically, we discuss new spectral constraints enabled by Spitzer, studies of the highest-redshift (z{approx}4) radio/X-ray quasar jets, and a new VLBA detection of superluminal motion in the M87 jet associated with a recent dramatic X-ray outburst. Expanding on the title, inverse Compton emission from extended radio lobes is considered and a testable prediction for the gamma-ray emission in one exemplary example is presented. Prospects for future studies with ALMA and low-frequency radio interferometers are briefly described.

  1. Creating Large Scale Database Servers (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Stanford Linear Accelerator Center, Menlo Park, CA (US) Sponsoring Org: USDOE Office of Energy Research (ER) (US) Country of Publication: United States Language: ...

  2. COLLOQUIUM: Large Scale Superconducting Magnets for Variety of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    These developments have been made using the low temperature superconductors (LTS) NbTi and Nb3Sn. The now operating Large Hadron Collider at CERN has demonstrated the scientific ...

  3. Large Scale Computing Requirements for Basic Energy Sciences...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    significant solution acceleration order of magnitude OFF SHORE BRAZIL CSEM DATA 3D Image Processing Requirements 3D Data and Imaging Volumes - nearly 1 million data points,...

  4. Large Scale GSHP as Alternative Energy for American Farmers

    Broader source: Energy.gov [DOE]

    Project objectives: 100% replacement of on-site fossil fuel in the poultry farm; Reduce heating cost by 70% through bar efficiency improvement, GSHP and solar applications; Reduce 4% of mortality through cooling effect of GSHP in summer.

  5. Large Scale Geothermal Exchange System for Residential, Office...

    Open Energy Info (EERE)

    cool the project. To develop the geothermal exchange system, engineers at Madison-based Sustainable Engineering Group (SEG), collaborated with architects at Milwaukee-based...

  6. Large-Scale Continuous Subgraph Queries on Streams

    SciTech Connect (OSTI)

    Choudhury, Sutanay; Holder, Larry; Chin, George; Feo, John T.

    2011-11-30

    Graph pattern matching involves finding exact or approximate matches for a query subgraph in a larger graph. It has been studied extensively and has strong applications in domains such as computer vision, computational biology, social networks, security and finance. The problem of exact graph pattern matching is often described in terms of subgraph isomorphism which is NP-complete. The exponential growth in streaming data from online social networks, news and video streams and the continual need for situational awareness motivates a solution for finding patterns in streaming updates. This is also the prime driver for the real-time analytics market. Development of incremental algorithms for graph pattern matching on streaming inputs to a continually evolving graph is a nascent area of research. Some of the challenges associated with this problem are the same as found in continuous query (CQ) evaluation on streaming databases. This paper reviews some of the representative work from the exhaustively researched field of CQ systems and identifies important semantics, constraints and architectural features that are also appropriate for HPC systems performing real-time graph analytics. For each of these features we present a brief discussion of the challenge encountered in the database realm, the approach to the solution and state their relevance in a high-performance, streaming graph processing framework.

  7. Electrochemical cells for medium- and large-scale energy storage

    SciTech Connect (OSTI)

    Wang, Wei; Wei, Xiaoliang; Choi, Daiwon; Lu, Xiaochuan; Yang, G.; Sun, C.

    2014-12-12

    This is one of the chapters in the book titled “Advances in batteries for large- and medium-scale energy storage: Applications in power systems and electric vehicles” that will be published by the Woodhead Publishing Limited. The chapter discusses the basic electrochemical fundamentals of electrochemical energy storage devices with a focus on the rechargeable batteries. Several practical secondary battery systems are also discussed as examples

  8. Large Scale Computing and Storage Requirements for Nuclear Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    must respond to their e-mail invitation. The Group Registration Deadline for the hotel is May 4, 2011. An official letter of invitation is available (PDF). Workshop Agenda...

  9. Instrumented Pipeline Initiative

    SciTech Connect (OSTI)

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  10. MONTANA PALLADIUM RESEARCH INITIATIVE

    SciTech Connect (OSTI)

    Peters, John McCloskey, Jay Douglas, Trevor Young, Mark Snyder, Stuart Gurney, Brian

    2012-05-09

    Project Objective: The overarching objective of the Montana Palladium Research Initiative is to perform scientific research on the properties and uses of palladium in the context of the U.S. Department of Energy'????????????????s Hydrogen, Fuel Cells and Infrastructure Technologies Program. The purpose of the research will be to explore possible palladium as an alternative to platinum in hydrogen-economy applications. To achieve this objective, the Initiatives activities will focus on several cutting-edge research approaches across a range of disciplines, including metallurgy, biomimetics, instrumentation development, and systems analysis. Background: Platinum-group elements (PGEs) play significant roles in processing hydrogen, an element that shows high potential to address this need in the U.S. and the world for inexpensive, reliable, clean energy. Platinum, however, is a very expensive component of current and planned systems, so less-expensive alternatives that have similar physical properties are being sought. To this end, several tasks have been defined under the rubric of the Montana Palladium Research Iniative. This broad swath of activities will allow progress on several fronts. The membrane-related activities of Task 1 employs state-of-the-art and leading-edge technologies to develop new, ceramic-substrate metallic membranes for the production of high-purity hydrogen, and develop techniques for the production of thin, defect-free platinum group element catalytic membranes for energy production and pollution control. The biomimetic work in Task 2 explores the use of substrate-attached hydrogen-producing enzymes and the encapsulation of palladium in virion-based protein coats to determine their utility for distributed hydrogen production. Task 3 work involves developing laser-induced breakdown spectroscopy (LIBS) as a real-time, in situ diagnostic technique to characterize PGEs nanoparticles for process monitoring and control. The systems engineering work in task 4 will determine how fuel cells ????????????????taken as systems behave over periods of time that should show how their reformers and other subsystems deteriorate with time.

  11. Initial Radionuclide Inventories

    SciTech Connect (OSTI)

    H. Miller

    2004-09-19

    The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclear fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently identified as 2030 and 2033, depending on the type of waste. TSPA-LA uses the results of this analysis to decay the inventory to the year of repository closure projected for the year of 2060.

  12. The MAJORANA Experiment

    SciTech Connect (OSTI)

    Guiseppe, V.E.; Keller, C.; Mei, D-M; Perevozchikov, O.; Perumpilly, G.; Thomas, K.; Xiang, W.; Zhang, C.; Aalseth, C.E.; Aguayo, E.; Ely, J.; Fast, J.E.; Hoppe, E.W.; Hossbach, T.W.; Keillor, M.; Kephart, J.D.; Kouzes, R.; Miley, H.S.; Mizouni, L.; Myers, A.W.; Reid, D.; Amman, M.; Bergevin, M.; Chan, Y-D; Detwiler, J.A.; Loach, J.C.; Luke, P.N.; Martin, R.D.; Poon, A.W.P.; Prior, G.; Vetter, K.; Yaver, H.; Avignone, F.T. III; Creswick, R.; Farach, H.; Mizouni, L.; Avignone, Frank Titus; Bertrand Jr, Fred E; Capps, Gregory L; Cooper, Reynold J; Radford, David C; Varner Jr, Robert L; Wilkerson, John F; Yu, Chang-Hong; Back, H.O.; Leviner, L.; Young, A.R.; Back , H.O.; Bai, X.; Hong, H.; Howard, S.; Medlin, D.; Sobolev, V.; Barabash, A.S.; Konovalov, S.I.; Vanyushin, I.; Yumatov, V.; Barbeau, P.S.; Collar, J.I.; Fields, N.; Boswell , M.; Brudanin, V.; Egorov, V.; Gusey, K.; Kochetov, O.; Shirchenko, M.; Timkin, V.; Yakushev, E.; Bugg, W.; Efremenko, M.; Burritt , T.H.; Burritt , T.H.; Busch, M.; Esterline, J.; Swift, G.; Tornow, W.; Hazama, R.; Nomachi, M.; Shima, T.; Finnerty , P.; et al.

    2011-01-01

    The Majorana Collaboration is assembling an array of HPGe detectors to search for neutrinoless double-beta decay in {sup 76}Ge. Initially, Majorana aims to construct a prototype module to demonstrate the potential of a future 1-tonne experiment. The design and potential reach of this prototype Demonstrator module are presented.

  13. The Majorana Experiment

    SciTech Connect (OSTI)

    Aalseth, Craig E.; Aguayo Navarrete, Estanislao; Amman, M.; Avignone, F. T.; Back, Henning O.; Bai, Xinhua; Barabash, Alexander S.; Barbeau, P. S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Bugg, William; Burritt, Tom H.; Busch, Matthew; Capps, Greg L.; Chan, Yuen-Dat; Collar, J. I.; Cooper, R. J.; Creswick, R.; Detwiler, Jason A.; Diaz, J.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Ely, James H.; Esterline, James H.; Farach, H. A.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, M.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Harper, Gregory; Hazama, R.; Henning, Reyco; Hime, Andrew; Hong, H.; Hoppe, Eric W.; Hossbach, Todd W.; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaRoque, B. H.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Medlin, D.; Mei, Dong-Ming; Miley, Harry S.; Miller, M. L.; Mizouni, Leila; Myers, Allan W.; Nomachi, Masaharu; Orrell, John L.; Peterson, David; Phillips, D.; Poon, Alan; Perevozchikov, O.; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Reid, Douglas J.; Rielage, Keith; Robertson, R. G. H.; Rodriguez, Larry; Ronquest, M. C.; Salazar, Harold; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Sobolev, V.; Steele, David; Strain, J.; Swift, Gary; Thomas, K.; Timkin, V.; Tornow, W.; Van Wechel, T. D.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Wolfe, B. A.; Xiang, W.; Yakushev, E.; Yaver, Harold; Young, A.; Yu, Chang-Hong; Yumatov, V.; Zhang, C.

    2011-08-01

    The Majorana Collaboration is assembling an array of HPGe detectors to search for neutrinoless double-beta decay in 76Ge. Initially, Majorana aims to construct a prototype module to demonstrate the potential of a future 1-tonne experiment. The design and potential reach of this prototype Demonstrator module are presented.

  14. Clean Air Initiative for Asian Cities | Open Energy Information

    Open Energy Info (EERE)

    "The Clean Air Initiative for Asian Cities (CAI-Asia) promotes innovative ways to improve air quality in Asian cities by sharing experiences and building partnerships. CAI-Asia was...

  15. Stimulated scattering in laser driven fusion and high energy density physics experiments

    SciTech Connect (OSTI)

    Yin, L. Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Finnegan, S. M.; Bergen, B.; Bowers, K. J.; Kirkwood, R. K.; Milovich, J.

    2014-09-15

    In laser driven fusion and high energy density physics experiments, one often encounters a k?{sub D} range of 0.15?initial electron plasma wave number and ?{sub D} is the Debye length). Using particle-in-cell simulations, the SRS reflectivity is found to scale as ? (k?{sub D}){sup ?4} for k?{sub D} ? 0.3 where electron trapping effects dominate SRS saturation; the reflectivity scaling deviates from the above for k?{sub D}?experiments at the National Ignition Facility (NIF). Large-scale simulations of the hohlraum plasma show that the SRS wavelength spectrum peaks below 600?nm, consistent with most measured NIF spectra, and that nonlinear trapping in the presence of plasma gradients determines the SRS spectral peak. Collisional effects on SRS, stimulated Brillouin scattering (SBS), LDI, and re-scatter, together with three dimensional effects, are examined. Effects of collisions are found to include de-trapping as well as cross-speckle electron temperature variation from collisional heating, the latter of which reduces gain, introduces a positive frequency shift that counters the trapping-induced negative frequency shift, and affects SRS and SBS saturation. Bowing and breakup of ion-acoustic wavefronts saturate SBS and cause a dramatic, sharp decrease in SBS reflectivity. Mitigation of SRS and SBS in the strongly nonlinear trapping regime is discussed.

  16. Facilities Initiatives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Initiatives Facilities Initiatives The Headquarters Office of Administration, Office of Logistics and Facility Operations, has several energy saving initiatives in place or in progress at their Headquarters' facilities in the Forrestal Building in Washington, DC, and Germantown Maryland. Many of these initiatives are part of their Energy Savings Performance Contract (ESPC). ESPCs allow Federal agencies to accomplish energy savings projects without up-front capital costs and without

  17. Endstates Initiative | Department of Energy

    Energy Savers [EERE]

    Endstates Initiative Endstates Initiative Endstates Initiative Scientific and technical, institutional and regulatory, and closure management challenges are currently hindering cleanup and closure of remaining environmental legacy waste sites across the Department of Energy (DOE) complex. There are no simple solutions for these integrated challenges and they demand innovative scientific and technical solutions and approaches, developed with the regulatory community. DOE Office of Environmental

  18. Midlatitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect (OSTI)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-01

    Convective processes play a critical role in the Earths energy balance through the redistribution of heat and moisture in the atmosphere and subsequent impacts on the hydrologic cycle. Global observation and accurate representation of these processes in numerical models is vital to improving our current understanding and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales that are associated with convective and stratiform precipitation processes; therefore, they must turn to parameterization schemes to represent these processes. In turn, the physical basis for these parameterization schemes needs to be evaluated for general application under a variety of atmospheric conditions. Analogously, space-based remote sensing algorithms designed to retrieve related cloud and precipitation information for use in hydrological, climate, and numerical weather prediction applications often rely on physical parameterizations that reliably translate indirectly related instrument measurements to the physical quantity of interest (e.g., precipitation rate). Importantly, both spaceborne retrieval algorithms and model convective parameterization schemes traditionally rely on field campaign data sets as a basis for evaluating and improving the physics of their respective approaches. The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the AprilMay 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administrations (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors, and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation, and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall retrieval algorithms over land that have never before been available. Several different components of convective cloud and precipitation processes tangible to both the convective parameterization and precipitation retrieval algorithm problem are targeted, such as preconvective environment and convective initiation, updraft/downdraft dynamics, condensate transport and detrainment, precipitation and cloud microphysics, spatial and temporal variability of precipitation, influence on the environment and radiation, and a detailed description of the large-scale forcing.

  19. Programs for Assembling SBH Experiments

    Energy Science and Technology Software Center (OSTI)

    1995-11-28

    DB EXP ASSEMBLY is a suite of programs that enable selection of bundles of data, which are referred to as experiments, from the DB SBH archival database. In other words, an experiment is a bundle of data which is analyzed as a unit. Program DBJ creates raw experiments based on initial specification. Program DBK then tests the experiments for a number of consistemcy and completeness criteria, reports bugs in the experiment and recommends solutions, andmore » performs the desired corrections. An experiment that has passed the final DBK test is ready for analysis by the DB DISCOVERY programs.« less

  20. Shock Initiation of Damaged Explosives

    SciTech Connect (OSTI)

    Chidester, S K; Vandersall, K S; Tarver, C M

    2009-10-22

    Explosive and propellant charges are subjected to various mechanical and thermal insults that can increase their sensitivity over the course of their lifetimes. To quantify this effect, shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX, 15% Viton by weight) and PBX 9502 (95% TATB, 5% Kel-F by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. We report the behavior of the HMX-based explosive LX-04 that was damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermally damaged LX-04 charges were heated to 190 C for long enough for the beta to delta solid - solid phase transition to occur, and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while thermally damaged LX-04 was much more shock sensitive. Similarly, the insensitive explosive PBX 9502 was mechanically damaged using the same two techniques. Since PBX 9502 does not undergo a solid - solid phase transition but does undergo irreversible or 'rachet' growth when thermally cycled, thermal damage to PBX 9502 was induced by this procedure. As for LX-04, the thermally damaged PBX 9502 demonstrated a greater shock sensitivity than mechanically damaged PBX 9502. The Ignition and Growth reactive flow model calculated the increased sensitivities by igniting more damaged LX-04 and PBX 9502 near the shock front based on the measured densities (porosities) of the damaged charges.

  1. ORISE: Undergraduates Research Experiences - Leslie Koyama

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Homeland Security HS-STEM Summer Internship Program, isolates colonies of E. coli in preparation for large scale protein purification. For Leslie Koyama, the possibility...

  2. ORISE: Undergraduate Research Experiences - Justin Vadas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to incorporate a magnet (in blue) in refrigeration applications to provide cooling at a ... as a source for large-scale magnetic refrigeration applications," said Vadas. "It seems ...

  3. Clean Energy Manufacturing Initiative Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative Events Clean Energy Manufacturing Initiative Events

  4. Workplace Charging Program and Initiatives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program and Initiatives Evan Kolkos New York Power Authority Clean Energy Technology 2008 All Rights Reserved NYPA: Who We Are * Largest state public power organization in the...

  5. Army Energy Initiatives Task Force

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentationgiven at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meetingcovers the Army Energy Initiatives Task Force.

  6. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers...

  7. Multidisciplinary University Research Initiative: High Operating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Initiative: High Operating Temperature Fluids Multidisciplinary University Research Initiative: High Operating Temperature Fluids Multidisciplinary University ...

  8. DOE-HUD initiative on energy efficiency in housing: A federal partnership

    SciTech Connect (OSTI)

    Brinch, J.; Ternes, M.; Myers, M.

    1996-07-01

    A five-year initiative between the US Department of Energy (DOE) and the US Department of Housing and Urban Development (HUD) demonstrated the feasibility of improving the energy efficiency of publicly-assisted housing. Twenty-seven projects and activities undertaken during 1990--95 involved research and field demonstrations, institutional and administrative changes to HUD policies and procedures, innovative financing and leveraging of federal dollars with non-federal money, and education, training, and technical assistance. With most of the 27 projects and activities completed, the two departments have initiated a five-year deployment effort, the DOE-Energy Partnerships for Affordable Homes, to achieve energy and water savings in public and assisted housing on a large scale throughout the country. A Clearinghouse for Energy Efficiency in Public and Assisted Housing managed by the National Center for Appropriate Technology (NCAT), will offer hands-on energy assistance to housing providers to complement DOE`s assistance. This paper presents the findings of the DOE-HUD Initiative, with primary attention paid to those projects which successfully integrated energy efficiency into private and public single and multifamily housing. The paper includes examples of the publications, case-study reports, exhibits and videotapes developed during the course of the Initiative. Information on the new DOE Energy Partnerships and on the NCAT Clearinghouse is also presented. New Partnership projects with the Atlanta and Chicago Housing Authorities describe the technical assistance envisioned under the Partnership.

  9. Clean Electricity Initiatives in California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edward Randolph Director, Energy Division California Public Utilities Commission July 14, 2014 2014 EIA Energy Conference Clean Electricity Policy Initiatives In California (Partial) * Wholesale Renewables : - Renewables Portfolio Standard - Feet in Tariffs (RAM & ReMAT) - All source procurement (under development) * Customer Renewable Generation - California Solar Initiative - Net Energy Metering - Green Tariffs - Energy Efficiency - Demand Response - Rate Reform - Storage - Retirement of

  10. GE funds initiative to support STEM initiatives in Oklahoma ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STEM Empowers OK: Initiative to enrich STEM education in Oklahoma Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share...

  11. Writing Effective Initial Summary Ratings Initial Summary Rating (ISR)

    Broader source: Energy.gov (indexed) [DOE]

    Initial Summary Ratings Initial Summary Rating (ISR) At the end of the performance cycle, the rating official must prepare an ISR in ePerformance for each SES member who has completed at least 90 days on an established performance plan. Rating officials must take into account the SES member's accomplishments achieved during the performance cycle and the impact to the organization's performance. Rating officials must appraise executives realistically and fairly and avoid ratings inflation.

  12. Thin-film optical initiator

    DOE Patents [OSTI]

    Erickson, Kenneth L.

    2001-01-01

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  13. California Solar Initiative- PV Incentives

    Broader source: Energy.gov [DOE]

    In January 2006, the California Public Utilities Commission (CPUC) adopted a program -- the California Solar Initiative (CSI) -- to provide more than $2.3 billion in incentives for photovoltaic (...

  14. Energy Efficient Schools Initiative- Loans

    Broader source: Energy.gov [DOE]

    The Energy Efficient Schools Initiative (EESI) was created in May 2008 to provide grants and loans to Tennessee school systems for capital outlay projects that meet energy efficient design and te...

  15. Georgia Power- Advanced Solar Initiative

    Broader source: Energy.gov [DOE]

    Note: According to Georgia Power's website, the Advanced Solar Initiative's final program guidelines are due to be published on June 25th and the bidding period for is expected to open on July 10,...

  16. The Midlatitude Continental Convective Clouds Experiment (MC3E) sounding network: operations, processing and analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jensen, M. P.; Toto, T.; Troyan, D.; Ciesielski, P. E.; Holdridge, D.; Kyrouac, J.; Schatz, J.; Zhang, Y.; Xie, S.

    2015-01-27

    The Midlatitude Continental Convective Clouds Experiment (MC3E) took place during the spring of 2011 centered in north-central Oklahoma, USA. The main goal of this field campaign was to capture the dynamical and microphysical characteristics of precipitating convective systems in the US Central Plains. A major component of the campaign was a six-site radiosonde array designed to capture the large-scale variability of the atmospheric state with the intent of deriving model forcing data sets. Over the course of the 46-day MC3E campaign, a total of 1362 radiosondes were launched from the enhanced sonde network. This manuscript provides details on the instrumentationmore » used as part of the sounding array, the data processing activities including quality checks and humidity bias corrections and an analysis of the impacts of bias correction and algorithm assumptions on the determination of convective levels and indices. It is found that corrections for known radiosonde humidity biases and assumptions regarding the characteristics of the surface convective parcel result in significant differences in the derived values of convective levels and indices in many soundings. In addition, the impact of including the humidity corrections and quality controls on the thermodynamic profiles that are used in the derivation of a large-scale model forcing data set are investigated. The results show a significant impact on the derived large-scale vertical velocity field illustrating the importance of addressing these humidity biases.« less

  17. Global Simulations of Dynamo and Magnetorotational Instability in Madison Plasma Experiments and Astrophysical Disks

    SciTech Connect (OSTI)

    Ebrahimi, Fatima

    2014-07-31

    Large-scale magnetic fields have been observed in widely different types of astrophysical objects. These magnetic fields are believed to be caused by the so-called dynamo effect. Could a large-scale magnetic field grow out of turbulence (i.e. the alpha dynamo effect)? How could the topological properties and the complexity of magnetic field as a global quantity, the so called magnetic helicity, be important in the dynamo effect? In addition to understanding the dynamo mechanism in astrophysical accretion disks, anomalous angular momentum transport has also been a longstanding problem in accretion disks and laboratory plasmas. To investigate both dynamo and momentum transport, we have performed both numerical modeling of laboratory experiments that are intended to simulate nature and modeling of configurations with direct relevance to astrophysical disks. Our simulations use fluid approximations (Magnetohydrodynamics - MHD model), where plasma is treated as a single fluid, or two fluids, in the presence of electromagnetic forces. Our major physics objective is to study the possibility of magnetic field generation (so called MRI small-scale and large-scale dynamos) and its role in Magneto-rotational Instability (MRI) saturation through nonlinear simulations in both MHD and Hall regimes.

  18. Initial Steps | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initial Steps Setting Research and Career Goals Each new postdoc should fill out a Postdoctoral Initial Discussion Form with his or her advisor. This is an opportunity to define career objectives, discuss how this postdoctoral appointment and its related research focus can contribute to those objectives, and identify opportunities for professional development while at Argonne. Postdocs should also consider transferrable skills needed to make successful career transitions and core competencies

  19. Services Initiatives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services Initiatives Services Initiatives The Transportation Team Uses Alternative Fueled Vehicles in HQ Fleet 81% of HQ Fleet is alternative fueled (FY 2014). HQ utilizes biodiesel (B20) fueled shuttle buses, a domestic renewable fuel derived from natural oils like soybean oil. Recycled Paper for Copiers and Printers DOE Headquarters purchases a combination of 30% and 100% post-consumer recycled content paper for use in its staffed copy centers, walk-up copiers, and dedicated office printers

  20. The Green Building Initiative | Open Energy Information

    Open Energy Info (EERE)

    Green Building Initiative Jump to: navigation, search Name: The Green Building Initiative Place: Portland, Oregon Zip: 97201 Product: The Green Building Initiative works with...